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Abstract

Many design applications can be formulated as an optimization constrained by conservation
laws. Such optimization can be efficiently solved by the adjoint method, which
computes the gradient of the objective to the design variables. Traditionally, the
adjoint method has not been able to be implemented in "gray-box" conservation

law simulations. In gray-box simulations, the analytical and numerical form of

the conservation law is unknown, but the full solution of relevant flow quantities

is available. Optimization constrained by gray-box simulations can be challenging for
high-dimensional design because the adjoint method is not directly applicable.

My thesis considers the gray-box models whose flux functions contain unknown
algebraic dependence on the state variables. I develop a twin-model method that
estimates the adjoint gradient from the gray-box space-time solution. My method
utilizes the gray-box space-time solution in order to infer the unknown components
of the flux. The solution is used to train a parameterized, adjoint-enabled conservation
law simulator such that a metric of solution mismatch is minimized. After the
training, the twin model can estimate the gradient of the objective function by
the adjoint method, at a cost independent of the dimensionality of the gradient.
Also, an adaptive basis construction procedure is presented for the training to fully
exploit the information contained in the gray-box solution. The availability of the
estimated gradient enables more efficient optimization. My thesis considers a Bayesian
optimization framework, in which the objective, the true gradient, and the error in
the estimated gradient are modeled by Gaussian processes. Building upon previous
research, a twin-model-enhanced Bayesian optimization algorithm is developed. I
show that the algorithm can find the optimum of the objective function regardless
of the gradient accuracy if the true hyperparameters of the Gaussian models are given.

The twin-model method and the twin-model-enhanced optimization are demonstrated

in several gray-box models: a Buckley-Leverett equation whose flux function is unknown,
a steady-state Navier-Stokes equation whose state equation is unknown, and a porous
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media flow equation governing a petroleum reservoir whose componentwise mobility
factors are unknown. In these examples, the twin model is shown to accurately
estimate the gradients. Besides, the twin-model-enhanced Bayesian optimization can
achieve near-optimality within fewer iterations than without using the twin model.
Finally, I explore the applicability of the twin-model method in an example with
1000-dimensional control by using a gradient descent approach. The last example
implies that the twin model may be adopted by other optimization frameworks to
improve convergence, which indicates a direction of future research.
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Committee Member: Karen Willcox
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Chapter 1

Background

1.1 Motivation

A conservation law states that a particular property of a physical system does not
appear or vanish as the system evolves over time, such as the conservation of mass,
momentum, and energy. Mathematically, a conservation law can be expressed locally

as a continuity equation (1.1),

ou
E—f‘V'F—q, (11)

where u is the conserved physical quantity, ¢ is time, F' is the flux that depends on
u, and q is the source term that also depends on u. Many equations fundamental to
the physical world, such as the Navier-Stokes equation, the Maxwell equation, and

the porous medium transport equation, can be described by (1.1).

Optimization constrained by conservation laws is present in many engineering
applications. For example, in gas turbines, the rotor blades can operate at a temperature
close to 2000K [10]. To prevent material failure due to overheating, channels can be
forged inside the rotor blades to circulate coolant air whose dynamics are governed by
the Navier-Stokes equation [7]. The pressure used to drive the coolant flow is provided

by the compressor, resulting in a penalty on the turbine’s thermo-dynamic efliciency
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[8]. Engineers are thereby interested in optimizing the coolant channel geometry in
order to suppress the pressure loss. In this optimization problem, the control variables
are the parameters that describe the channel geometry. The dimensionality of the
optimization is the number of control variables, i.e., the control’s degree of freedom.
Another example is the field control of petroleum reservoir. In the petroleum reservoir,
the fluid flow of various phases and chemical components is dictated by porous
medium transport equations [4]. The flow can be passively and actively controlled
by a variety of techniques [1], such as the wellbore pressure control, the polymer
injection, and the steam heating [5]. The pressure, injection rate, and temperature
can vary in each well and during every day over decades of continuous operations.
The dimensionality of the optimization is the total number of these control variables.
Driven by economic interests, petroleum producers are devoted to optimizing the

controls for enhanced recovery and reduced cost.

Such optimization has been revolutionized by the numerical simulation and optimization
algorithms. On the one hand, conservation law simulation can provide an evaluation
of a candidate control that is cheaper, faster, and more scalable than conducting
physical experiments. On the other hand, advanced optimization algorithms can
guide the control toward the optimal with reduced number of simulation [40, 41,
42, 50, 54, 55, 56, 72]. However, optimization based on conservation law simulation
can still be overwhelmingly costly. The cost is two-fold: First, each simulation at a
given control may run for hours or days even on a high-end computer. Such expense
in time is usually a result of using high-fidelity physical models, complex numerical
schemes, and large-scale space-time discretization schemes. Second, optimization
algorithms generally take many iterations of simulation on various controls. The
number of iterations required to achieve near-optimality usually increases with the
control variables’ degree of freedom [60]. The two costs are multiplicative. The
multiplicative effect compromises the impact of computational efforts among field

engineers.
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Fortunately, the cost due to iteration can bc alleviated by adopting gradient-based
optimization algorithms [60]. A gradient-based algorithm requires significantly fewer
iterations than a derivative-free algorithm for problems with many control variables
[19, 60, 41]. Gradient-based algorithms require the gradient of the optimization
objective to the control variables, which is efficiently computable through the adjoint
method [11]. The adjoint method propagates the gradient from the objective backward
to the control variables through the path of time integration [11] or the chain of
numerical operations [18|. To keep track of the back propagation, the simulator source
code needs to be available. However, many industrial simulators do not have the
adjoint capability because their codes were developed without the adjoint technique
in mind. The implementation of the adjoint method in these legacy simulators can be
a major undertaking. For example, PSim, a reservoir simulator developed and owned
by ConocoPhillips, is a multi-million-line Fortran-77 code that traces its birth back
to the 1980’s. Implementing adjoint directly into the source code is not preferable
because it can take a tremendous amount of brain hours. Besides, the source code
and its physical models are only accessible and modifiable by the computational
team inside the company. For the sake of gradient computation, PSim has been
superseded by adjoint-enabled simulators, but it is hard to be replaced due to its
legacy usage. The legacy nature of many industrial simulators hinders the prevalence
of the adjoint method and gradient-based algorithms in many real-world problems

with high-dimensional control.

Despite their legacy nature, most simulators for unsteady conservation laws can
provide the discretized space-time solution of relevant flow quantities. For example,
PSim provides the space-time solution of pressure, saturation, and concentration for
multi-phase flow. Similarly, most steady-state simulators can provide the spatial
solution. Thus, the discussion will focus on the unsteady case because a steady-state
simulator can be viewed as a special case of unsteady-state simulators where the

solutions remain the same over many time steps.
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My thesis considers the conservation laws whose flux functions have an unknown
algebraic dependence on the state variables. The adjoint gradient computation may
be enabled by leveraging the space-time solution. The discretized space-time solution
provides invaluable information about the conservation law hardwired in the simulator.

For illustration, consider a code that simulates

ot oz

u  OF) _ s e0,1], teo] (12)

with proper initial and boundary conditions and F' being differentiable. c indicates
the control that acts as a source for u. If the expression of F(u) in the simulator
is not accessible by the user, adjoint can not be implemented directly. However,
F may be partially inferred from a discretized space-time solution of u for a given
c. To see this, let the discretized solution be u = {u(t;, z;) }i=1,.. M, j=1,-,~, Where
0<ti<ty<- -+ <ty <land0< 1z <29 < -+ < zy <1 indicate the time
and space discretization. Given u, the ‘9“ and a“ can be sampled by finite difference.

Because (1.2) can be written as

Oou dF Ou
— 1], te 0,1 .

S+, se], teln,] (1.3)
away from the shock wave, the samples of a" and 3;; can be plugged into (1.3) to

obtain samples of dF The reasoning remains intact at the shock wave, where ‘“5 in

F

(1.3) is replaced by the finite difference form A - according to the Rankine-Hugoniot

condition. Based upon the sampled 5~ 4F and AF , the unknown flux function F' can be
approximated up to a constant for values of u that appeared in the solution, by using
indefinite integral. Let F be the approximation for F. An alternative conservation
law can be proposed
ou  OF(u)
ot ox

=c, z€][0,1], telo,1], (1.4)

that approximates the true but unknown conservation law (1.2), where @ is the

solution associated with F', in the following sense: If F' and F' are off by a constant
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dFw+ta) _ d’;;“); therefore, the solutions of (1.2) and

. i dF(u)
a,ie. F'= F +a, then —- o

I

(1.4) to any initial value problem will be the same. The gradient of any objective

function £(c) = &(u(c), ¢) can be obtained by the adjoint method [11]. The gradient

S A
%Z/(; /0 ('a—c+/\) dzxdt , (1.5)

where A, the adjoint solution, satisfies

is

ox 0 (/\_di) o€

In (1.6), € and % are defined on the solution u of (1.3) [11]. Similarly, the gradient

du
dé B 1 rl ag 5

of £(c) = £(i(c), 0) is
where ), the adjoint solution, satisfies

N O (-dF o€

V=== 1.8

ot T ox ( du) ou (18)
In (1.8), %—IZ and % are defined on the solution @ of (1.4). If the two solutions, u and 4,
are the same, and if ‘é—f = % on the solution, then the adjoint solutions, A and A will

be the same. As a result, the gradients, (1.5) and (1.7), will be the same. Therefore

% can drive the optimization constrained by (1.2). A simulator for the approximated
conservation law is named “twin model” because it behaves as an adjoint-enabled
twin of the original simulator. If a conservation law has a system of equations and/or
has a greater-than-one spatial dimension, the above simple method to recover the
flux function from a solution will no longer work. Nonetheless, much information
about the flux function can be extracted from the solution. Given some additional

information of the conservation law, one may be able to recover the unknown aspects

of the flux function. The details of this topic are discussed in Chapter 2.

I call a simulator gray-box if it meets two conditions:
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1. The adjoint is unavailable, and the adjoint is impractical to be implemented

into the source code.
2. The full space-time solution of relevant flow quantities is available.

My thesis considers gray-box simulators whose flux functions contain unknown algebraic
dependence on the state, and whose boundary conditions, initial conditions, source
terms, and differential operators in the flux functions are known. For example, a
Navier-Stokes flow simulation can have an unknown state equation; in other words,
the pressure term contains an unknown algebraic dependence on the state. Another
example is a reservoir simulation whose phase velocities are governed by Darcy’s law
[4], which can contain unknown algebraic dependence on the phases’ saturations. In
contrast, a simulator is named open-box if condition one is violated. For example,
OpenFOAM [61] is an open-source fluid simulator where adjoint can be implemented
directly into its source code, so it is open-box by definition. Open-box simulators enjoy
the benefit of efficient gradient computation brought by adjoint and thereby are not
within the research scope of my thesis. If condition one is met, but two is violated,
a simulator is named “black-box”. For example, Aspen [62], an industrial chemical
reactor simulator, provides neither the adjoint nor the full space-time solution. Black-
box simulators are simply calculators for the objective function. Due to the lack of
space-time solution, adjoint can not be enabled using the twin model. Gray-box
simulators are ubiquitous in many engineering applications. Examples are Fluent
[106] and CFX [107] for computational fluid dynamics, and ECLIPSE (Schlumberger),
PSim (ConocoPhillips), and MORES (Shell) for petroleum reservoir simulations. My

thesis will only investigate gray-box simulators.

My thesis aims at reducing the number of expensive iterations in the optimization
constrained by gray-box simulators. Motivated by the adjoint gradient computation,
a mathematical procedure will be developed to estimate the adjoint gradient by
leveraging the full space-time solution. Also, my thesis will investigate how the

estimated gradient can facilitate a suitable optimization algorithm to reduce the

24



number of iterations. Finally, the iteration reduction achieved by my approach will

be assessed, especially for problems with many control parameters.

Instead of discussing gray-box simulators in general, my thesis only focuses on
simulators with partially unknown flux function, while their boundary condition,
initial condition, and the source term are known. For example, one may know that the
flux depends on certain variables, but the specific function form of such dependence
is unknown. This assumption is valid for some applications, such as simulating a
petroleum reservoir with polymer injection. The flow in such reservoir is governed
by multiphase multicomponent porous medium transport equations [4]. The initial
condition is usually given at the cquilibrium state, the boundary is usually described
by a no-flux condition, and the source term can be modeled as controls with given
flow rate or wellbore pressure. Usually, the flux function is given by Darcy’s law which
involves physical models like the permeability' and the viscosity?. The mechanism
through which the injected polymer modifies the rock permeability and flow viscosity
can be unavailable. Thereby the flux is partially unknown. The specific form of
PDE considered in my thesis is given in Section 1.2. It is a future work to extend
my research to more general gray-box settings where the initial condition, boundary

condition, source term, and the flux are jointly unknown.

1.2 Problem Formuiation

Consider the optimization problem

¢* = argmax £(u,c)
Crmin <C<Cmax
M N T (1.9)
£(c) Zzzwijf(uij,czti,wj)%/ /f(u, c;t, x)dzdt
i=1 j=1 o Ja

1The permeability quantifies the easiness of liquids to pass through the rock.
?The viscosity quantifies the internal friction of the liquid flow.
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where u and u are the discretized and continuous space-time solutions of a gray-box
conservation law simulator. « and u depend on the control variables ¢. We assume &
to be a twice differentiable function. The spatial coordinate is z € 2 and the time is
t€[0,T]. ¢=1,---,M and j =1,--- , N are the indices for the time and space grid
points. f is a given function that depends on u, c, ¢, and z. w;;’s are the quadrature
weights for the integration. ¢ € R¢ indicates the control variable. ¢y, and cpax are

elementwise bound constraints.

The gray-box simulator solves the partial differential equation (PDE)

Ou
5% + V- (DF(u)) = q(u,c), : (1.10)

which is a system of k equations. The initial and boundary conditions are known.
D is a known differential operator that may depend on u, and F is an unknown
function. Although the state variables that F' depend on are known, the algebraic
form of such dependence is unknown. q is a known source term that depends on v and
c. The simulator for (1.10) does not have the adjoint capability, and it is infeasible to
implement the adjoint method into its source code. But the full space-time solution
u is provided. The steady-state conservation law is a special case of the unsteady

one, so it will not be discussed separately.

For example, consider a 1-D scalar-state convective equation

ou 0O

4+ ZF(u) = .11
can be described by (1.10). The flux function F' is known to depend on the local
value of the state variable u, but the algebraic form of the dependence is unknown.
In this case, F' represents the entire unknown flux function while D equals 1. If
F(u) = 1u?, (1.11) is the Burger’s equation; If F(u) = 1—+(7f—2_u)—2, (1.11) is a Buckley-

Leverett equation [3].
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Another example can be the compressible, viscous, adiabatic Navier-Stokes equation

p pu pv
8 pu 8 PUZ + P — Oux 6 puv Ozy
“ < + = =0,
It | py | 97 PUV — Oy Iy pv* +p— oy,
pE UW(Ep+p) — Opptt — Oayv V(Ep+p) — gyt — oy
(1.12)
where
o — 28u 2 (Ou 4 ov
zz = H r 3\0zr Oy
2

0
ov ou Ov

Let p, u, v, E, U, and p be the density, Cartesian velocity components, total energy,
internal energy, and pressure. The pressure depends on the density and energy, but
the algebraic form of the dependence is unknown. In this example, F'(u) corresponds
to the pressure equation p = p(p,U), and D corresponds to the known components

of the flux functions.

My thesis does not accomodate the PDEs that contain unknown source terms or
flux functions with unknown differential operators, thus limiting the applicability of
my thesis. It is a future research topic to extend the methods developed in this thesis

for such PDEs.

My thesis focuses on reducing the number of gray-box simulations in the optimization,
especially for problems where d, the dimensionality of the control variable, is large. I
assume that the computational cost is dominated by the repeated gray-box simulation,
while the cost of the optimization algorithm is relatively small. Chapter 2 develops

a mathematical procedure, called the twin-model method, which enables adjoint
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gradient computation by leveraging the full space-time solution. Based on previous
research [66, 67, 71, 72, 74, 76, 77|, Chapter 3 develops an optimization algorithm
that takes advantage of the estimated gradient to achieve iteration reduction. The
utility of the estimated gradient for optimization is analyzed both numerically and

theoretically.

1.3 Literature Review

Given the background, I review the literature on derivative-free optimization and
gradient-based optimization, in which the Bayesian optimization method is particularly
investigated. In addition, I review the adjoint method because it is an essential
ingredient for Chapter 2. Finally, I review methods for adaptive basis construction,

which is useful for the adaptive parameterization of a twin model.

1.3.1 Review of Optimization Methods

Optimization methods can be categorized into derivative-free and gradient-based
methods [41], depending on whether the gradient information is used. In this section,

I review the two types of methods.

Derivative-Free Optimization

Derivative-free optimization (DFO) requires only the availability of objective function
values but no gradient information [41]; thus, it is useful when the gradient is unavailable,
unreliable, or too expensive to obtain. Such methods are suitable for problems

constrained by black-box simulators.

Depending on whether a local or global optimum is desired, DFO methods can be
categorized into local methods and global methods [41]. Local methods seek a local
optimum which is also the global optimum for convex problems. A local method is

the derivative-free trust-region method [47]. The derivative-free trust-region method
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introduces a surrogate model that interpolates the objective evaluations [48, 51]. The
surrogate model is cheap to evaluate and presumably accurate within a trust region:
an adaptive neighborhood around the current iteration [46, 47]. At each iteration, the
surrogate is optimized in a domain bounded by the trust region to generate candidate

steps for additional objective evaluations [46, 47].

Global methods seek the global optimum. Example methods include the branch-
and-bound search [52], evolution methods [53], and Bayesian methods [71, 73, 91].
The branch-and-bound search sequentially partitions the entire control space into a
tree structure and determines lower and upper bounds for the optimum [52]. Partitions
that are inferior are eliminated in the course of the search [52]. The bounds are usually
obtained through the assumption of the Lipschitz continuity or statistical bounds for
the objective function [52]. Evolution methods maintain a population of candidate
controls, which adapt and mutate in a way that resembles natural phenomenons such
as natural selection [54, 56] and swarm intelligence [55]. Bayesian methods model the
objective function as a random member function from a stochastic process. At each
iteration, the statistics of the stochastic process are calculated and the posterior, a
probability measure, of the objective, is updated using Bayesian metrics |71, 72|. The
posterior is used to pick the next candidate step that best balances the exploration
of unsampled regions and the exploitation around the sampled optimum [73, 82, 69].

Details of Bayesian optimization methods are discussed in Section 1.3.1.

Because many real-world problems are non-convex, global methods are usually
preferred to local methods if the global optimum is desired [41]. Besides, DFO
methods usually require a large number of function evaluations to converge, especially
when the dimension of control is large [41]. This issue can be alleviated by incorporating

the gradient information [66, 74]. The details are discussed in the next subsection.
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Gradient-Based Optimization

Gradient-based optimization (GBO) requires the availability of the gradient values
[60, 83]. A gradient value, if it exists, provides the optimal infinitesimal change of
control variables at each iterate and thus is useful in searching for better control.
Similar to DFO, GBO also can be categorized into local methods and global methods
[60]. Examples of local GBO methods include the gradient descent methods [84,
104], the conjugate gradient methods [85, 86|, and the quasi-Newton methods [40,
42]. The gradient descent methods and the conjugate gradient methods choose the
search step in the direction of either the gradient [84, 104] or a conjugate gradient
[85, 86]. Quasi-Newton methods, such as the Broyden-Fletcher-Goldfarb-Shannon
(BFGS) method [40], approximate the Hessian matrix using a series of gradient
values. The approximated Hessian allows a local quadratic approximation to the
objective function, which determines the search direction and stepsize by the Newton’s
method [40]. In addition, some local DFO methods can be enhanced to use gradient
information [58, 59]. For instance, in trust-region methods, the construction of local
surrogates can incorporate gradient values if available [58, 59]. The usage of a gradient
usually improves the surrogate’s accuracy, thus enhancing the quality of the search

step and thereby reducing the required number of iterations [58, 59].

Global GBO methods search for the global optimum using gradient values [60,
83]. Some global GBO methods can trace their development to corresponding DFO
methods. For example, the stochastic gradient-based global optimization method
(StoGo) (87, 88] works by partitioning the control space and bounding the optimum
in the samelway as the branch-and-bound method [52]. But the search in each

partition is performed by gradient-based algorithms such as BFGS [40].

My thesis is particularly interested in the gradient-based Bayesian optimization
method [75]. In this method, the posterior of the objective function assimilates both

the gradient and function values in a CoKriging framework [66, 75]. The details of
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my treatment arc discussed in Section 1.3.1 and Chapter 3. It is reasonable to expect
that the inclusion of gradient values results in a more accurate posterior mean and
reduced posterior uncertainty, which in turn reduces the number of iterations required
to achieve near-optimality. The effect of iteration reduction is analyzed numerically

in Chapter 3.

A property of the Bayesian method is that the search step can be determined using
all available objective and gradient values [71, 82|. Also, given the current knowledge
of the objective function which is represented in Bayesian probability, the search
step is optimal under a particular metric such as the expected improvement metric
[71, 82]. The advantage of such properties can be justified when the objective and
gradient evaluations are dominantly more expensive than the overhead of optimization
algorithm [71]. Besides, my thesis proves that the Bayesian optimization method is
convergent even if the gradient values are estimated inexactly, which is discussed in
Section 3.3. The conclusion of Section 3.3 reveals that, under some assumptions of
the objective and the inexact gradient, a Bayesian optimization algorithm caﬂ find

the optimum regardless of the accuracy of the gradient estimation.

To achieve the desired objective valuation, GBO methods generally require fewer
iterations than DFO methods for problems with many control variables [60, 83].
GBO methods can be efficiently applied to optimization constrained by open-box
simulators because the gradient is efficiently computable by the adjoint method
[11, 60], which is vintroduced in the next subsection. My thesis extends GBO to
optimization constrained by gray-box simulation by estimating the gradient using

the full space-time solution.

Bayesian Optimization

Similar to other kinds of optimization, Bayesian optimization aims at finding the
maximum of a function £(-) in a bounded set C C R? [71, 72, 82]. However, Bayesian

optimization distinguishes from other methods by maintaining a probabilistic model
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for € [71, 72, 82]. The probabilistic model is exploited to make decisions about
where to invest the next function evaluation in C [71, 72, 82]. In addition, it uses all

information of available evaluations, not just local evaluations, to direct the search

step [71, 72, 82].

Consider the case when the objective function evaluation is available. Bayesian
optimization begins by assuming that the objective function is sampled from a stochastic

process |71, 72, 82]. A stochastic process is a function

fiCxQoR

, (1.14)
(c,w) = fle,w)

where for any ¢ € C. w is a random variable that models the stochastic dependence
of f. f(c,-) is a random variable defined on the probability space (2,3, P). The
objective function £ is assumed to be a sampled function from the stochastic process
&(-) = f(-,w*), where w* € Q is deterministic but unknown. My thesis will use the

notations £(-), f(-,w), and f(-,w*) interchangeably when the context is clear.

A stationary Gaussian process is a type of stochastic process that is used ubiquitously
in Bayesian optimization [89]. For any given w and any finite set of N points
{c; € C}X |, a stationary Gaussian process f(-, -) has the property that { f(c;, )}f\il are
multivariate Gaussian distributed; in addition, the distribution remains unchanged if
c;’s are all added by the same constant in C. The Gaussian process is solely determined

by its mean function m(c) and its covariance function K(c,c’) [89]

m(c) =E, [f(c’w)]

(1.15)
K(e,d) = B, [(f(e;w) = m(0)) ((¢w) = m(e) ],

for any ¢,/ € C, which is denoted by f ~ N(m,K). Conditioned on a set of

samples {&(c1),- - ,€(cn)}, the posterior is also a Gaussian process with the mean
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and covariance [89]

() = m(e) + K(e. ) K e €)™ (Elen) = mien)) (1.16)

K(C, C/) = K(C7 C,) - K(Ca Qn)K(Qn’ Qn)—lK(Qm Cl)

where Cp = (Cl’ T ’CN)v f(gn) = (5(61), e >§(CN))T’ m(gn) = (m(cl)’ e ’m(CN))Ta

K(c,c,) = K(c,,c)T = (K(c,c1),--- , K(c,cn)), and

K(Cl,Cl) K(Cl,CN)
K(c,,c,) = ' : :

=n)=n

K(CN, 01) ce K(CN, CN)

Without prior knowledge about the underlying function, m(-) is usually modeled as a
constant independent of ¢ [89]. In many cases, the covariance are assumed isotropic,
indicating that K(c,c') only depends on the Ly norm ||c — ¢/|| [89]. There are many
choices for K, such as the exponential kernel, the squared exponential kernel, and
the Matérn kernels, each embeds different degrees of smoothness (differentiability)
for the underlying function. For a survey of various covariance functions, I refer to

the Chapter 4 in [89]. Among such choices, the Matérn 5/2 kernel [90]

A _ A2 A
K(c,d) = o (1 4 Yolle=dll | Sle = ) exp (—M> o (117)

L 3L2 L

has been recommended because it results in functions that are twice differentiable,
an assumption made by, e.g. quasi-Newton methods, but without further smoothness
[71]. My thesis will focus on using the Matérn 5/2 kernel. Notice the parameters
L and o, known as the hyperparameters, are yet to be determined. They can be
determined by the posterior maximum likelihood estimation (MLE) or by a fully-
Bayesian approach [71, 82]. Irefer to the reference [71] for the details and a comparison
of these treatments. My thesis will focus on MLE due to its simpler numerical

implementation.

33



Based on the posterior and the current best evaluation cpest = argmaX.e, &(e),
Bayesian optimization introduces an acquisition function, a : C — R*, which evaluates
the expected utility of investing the next sample at ¢ € C [69, 71, 72, 82, 91]. The
location of the next sample is determined by an optimization cyy; = argmax.. a(c)
[69, 71, 72, 82, 91]. In most cases, a greedy acquisition function is used, which
evaluates the one-step-lookahead utility [69, 71, 72, 82, 91]. There are several choices

for the acquisition function, such as

e the probability of improvement (PI) [91],
apy(c) = ®(¥(c)), (1.18)
e the expected improvement (EI) [72, 73],
agi(c) = o(c) (v(c)2(¥(c) + N (¥(c))) , (1.19)
e and the upper confidence bound (UCB) [69],

aycs(c) = p(c) + ka(c), (1.20)

with a tunable parameter x > 0,

where p,0 are the posterior mean and variance, v(c) = o~ !(c) (u(c) — &(cvest))s
and ®, N indicate the cumulative and density functions for the standard normal
distribution. My thesis will focus on the EI acquisition function, as it behaves better
than the PI and requires no extra tunable parameters [71]. Because (1.19) has a
closed-form gradient, the acquisition function can be maximized by a global GBO

method, e.g., StoGo [88], to obtain its global maximum.

Although my thesis only focuses on bound constraints as shown in (1.9), Bayesian
optimization can accommodate more general inequality and equality constraints [97].

The constraints can be enforced by modifying the objective, such as the penalty
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method [92], the augmented Lagrangian method [93], and the barrier function method
[94]. They also can be enforced by modifying the acquisition function, such as the
recently developed expected improvement with constraints (EIC) method [95], and
the integrated expected conditional improvement (IECI) method [96]. See Chapter 2

of [97] for a detailed review of constrained Bayesian optimization.

In addition to function evaluations £(c, ), Bayesian optimization admits gradient
information [66, 74]. In Chapter 3, I investigate the scenario where the gradient
evaluations are inexact [77]. The Bayesian optimization method developed in my

thesis allows both the exact function evaluation and the inexact gradient evaluation.

1.3.2 The Adjoint Method

Consider a differentiable objective function constrained by a conservation law PDE
(1.10). Let the objective function be &(u,c), ¢ € R¢, and let the PDE (1.10) be
abstracted as F(u,c) = 0. F is a parameterized differential operator, together with
boundary conditions and /or initial conditions, which uniquely define a u for each c.
The gradient % can be estimated trivially by finite difference. The ¢th component of

the gradient is given by

(%)‘ ~ %(f(U+AuiaC+5ei) —&(u,0)), (1.21)
where
]:(ua C) =0, .F(’U,+ Aui,c—i—&ei) =0. (1,22)

e; indicates the ith unit Cartesian basis vector in R%, and § > 0 indicates a small
perturbation. Because (1.22) needs to be solved for every de;, so that the corresponding
Awu; can be used in (1.21), d+1 PDE simulations are required to evaluate the gradient.

As explained in Section 1.3.1, d can be large in many control optimization problems.
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Therefore, it can be costly to evaluate the gradient by finite difference.

In contrast, the adjoint method evaluates the gradient using only one PDE simulation
plus one adjoint simulation [11]. To see this, linearize F(u,c) = 0 into a variational

form

6F = =—bu+ —bc =0, (1.23)

which gives

du OF\ ' oF
Using (1.24), % can be expressed by

d§ 9 du L 23
dc~ Bude ' dc

-1

_ _9¢ (OF oOF N 8§, (1.25)
Ou \ Bu dc | de

%3

- _ T__ )

=N T

where A, the adjoint state, is given by the adjoint equation

() ()

Therefore, the gradient can be evaluated by (1.25) using one simulation of F(u,c) = 0

and one simulation of (1.26) that solves for A.

Adjoint methods can be categorized into continuous adjoint and discrete adjoint
methods, depending on whether the linearization or the discretization is executed first
[15]. The above procedure, (1.23) through (1.26), is the continuous adjoint, where F
is a differential operator. The continuous adjoint method linearizes the continuous
PDE F(u,c) = 0 first and then discretizes the adjoint equation (1.26) [11]. In (1.26),
(%—i)T can be derived as another differential operator. With proper boundary and/or
initial conditions, it uniquely determines the adjoint solution A. See [19] for a detailed

derivation of the continuous adjoint equation.
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The discrete adjoint method [17] discretizes F(u, c) = 0 first. After the discretization,
u and ¢ become vectors u and c. u is defined implicitly by the system Fy(u,c) =0,
where F; indicates the discretized difference operator, a nonlinear function whose
output is of the same dimension as its first input w. Using the same derivation as

(1.23) through (1.26), the discrete adjoint equation can be obtained
0F\" ae\"
OFa\" N (98 (1.27)
ou ou
which is a linear system of equations. (%i)T is derived as another difference operator
which is a square matrix. It contains the discretized boundary and initial conditions,

and uniquely determines the discrete adjoint vector A, which subsequently determines

the gradient
de __,r0F O

de dec Oc’ (1.28)

See Chapter 1 of [20] for a detailed derivation of the discrete adjoint.

The adjoint method has seen wide applications in optimization problems constrained
by conservation law simulations, such as in airfoil design [12, 13, 14|, adaptive mesh
refinement [20], injection policy optimization in petroleum reservoirs [2], history
matching in reservoir geophysics [15], and optimal well placement in reservoir management

[16].

1.3.3 Adaptive Basis Construction

The unknown function F' in (1.10) can be approximated by a linear combination of
basis functions [24]. An over-complete or incomplete set of bases can negatively affect
the approximation due to overfitting or underfitting [25]. Therefore, adaptive basis

construction is needed.
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Consider the problem of function approximation in a bounded domain. Square-
integrable functions can be represented by the linear combination of a set of basis
functions [24], {#i}ien, such as the polynomial basis, Fourier basis, and the wavelet

basis [102].

F() =) oigi(), (1.29)

ieN
where ¢;’s are linearly independent basis functions, «;’s are the coefficients, and 3
indices the basis. For a rigorous development of function approximation and basis

functions, I refer to the book [24].

For example, a bivariate function can be represented by monomials (Weierstrass

approximation theorem {105])

2 2 2 2 2,2
1a Ui, Uy, Uz, UU2, U U2, Uy, ULUg, Uiy, * - .

on any real interval [a, b].

Let A be a finite non-empty subset of N, F' can be approximated using a subset

of bases,

F()~ Zai¢i(')a (1.30)

icA
where {¢; }:c4 is called a basis dictionary [31]. The approximation is solely determined
by the choices of the dictionary and the coefficients. For example, in polynomial
approximation, the basis dictionary can consist of the basis whose total polynomial
degree does not exceed p € N [26]. Given a dictionary, the coefficients for F' can be

determined by the minimization [26]

F - Zai¢i

icA

o = argmin
acRIAl

: (1.31)

Ly
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where || - ||z, indicates the L, norm®. My thesis parameterizes the twin-model flux
F and optimizes the coefficients, so the twin model serves as a proxy of the gray-box

model. The details are discussed in Section 2.2.

If the dictionary is pre-determined, its cardinality can increase as the number of
variables increases, and as the basis complexity increases [26]. For example, for the d-
variate polynomial basis, the total number of bases is dP if one bounds the polynomial

degree of each variable by p; and is (p J(;d) if one bounds the total degree by p [26].

In many applications, one may deliver a similarly accurate approximation by using
a much smaller subset of the dictionary as the bases than using all the basis functions
in the dictionary [26, 28, 31, 44]. To exploit the sparse structure, only significant bases
shall be selected, and the selection process shall be adaptive depending on the values
of function evaluations. There are several methods that adaptively determine the
sparsity, such as Lasso regularization [44], matching pursuit [31], and basis pursuit
[28]. Lasso regularization adds a penalty A", , |a;| to the approximation error,
where A > 0 is a tunable parameter [44]. The larger A is, the sparser the basis
functions will be. In this way, Lasso balances the approximation error and the number
of non-zero coefficients [44]. Matching pursuit adopts a greedy, stepwise approach
[31]. It either selects a significant basis one at a time (forward selection) from a
dictionary [32], or prunes an insignificant basis one at a time (backward pruning)
from the dictionary [33]. Basis pursuit minimizes |||z, subject to (1.29), which is

equivalently reformulated and efficiently solved as a linear programming problem [28].

Conventionally, the dictionary for the sparse approximation needs to be predetermined,
with the belief that the dictionary is a superset of the required bases for an accurate
approximation [35]. This can be problematic because the required bases are unknown
a priori. To address this issue, methods have been devised that construct an adaptive

dictionary [34, 35, 36]. Although different in details, such methods share the same

3Usually p = 1 [28] or 2 [29, 31].
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approach: In the beginning, some trivial bases are given as inputs. For example, the
starting basis can be 1 for a polynomial basis [34]. The starting bases serve as seeds
from which more complex bases grow. I refer to [34, 35, 36] for more details of the
heuristics. Then a dictionary is built up progressively by iterating over a forward step
and a backward step [34, 35, 36]. The forward step searches over a candidate set of
bases and appends the Signiﬁcant ones to the dictionary [34, 35, 36]. The backward
step searches over the current dictionary and removes the insignificant ones from
the dictionary [34, 35, 36]. The iteration stops only when no alternation is made to
the dictionary or when a targeted accuracy is achieved, without bounding the basis
complexity a prior [34, 35, 36]. Such approach is adopted in my thesis to build up

the bases for F. The details are discussed in Section 2.3.

1.4 Thesis Objectives

Based on the motivation and literature review, we find it useful to enable adjoint
gradient computation for gray-box conservation law simulations whose flux functions
have an unknown algebraic dependence on the state variables. We also need to exploit
the estimated gradient to optimize more efficiently, especially for problems with many

control variables. To summarize, the objectives of my thesis are

1. to develop an adjoint approach that estimates the gradient of objective functions
constrained by gray-box conservation law simulations with unknown algebraic

dependence in the flux functions, by leveraging the space-time solution;

2. to assess the utility of the estimated gradient in a suitable gradient-based

optimization method; and

3. to demonstrate the effectiveness of the developed procedure in several numerical

examples, given a limited computational budget.
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1.5 Outline

My thesis is organized as follows. Chapter 2 describes a method to estimate the
gradient of an objective function constrained by a gray-box simulation, at a cost
independent of the dimensionality of the gradient. This is achieved through first
training a twin model and then applying the adjoint method to the trained twin
model. To train a twin model, two metrics, the solution mismatch and the integrated
truncation error, are presented, and the relationship between the two metrics is
studied. Then we present a method to parameterize the unknown component of the
twin model. Using the two metrics and the parameterization, a twin-model algorithm
is developed to approximate the unknown components in the twin model. Finally,
the twin-model algorithm is demonstrated by several numerical examples. Chapter
3 develops a global optimization method by using the estimated gradient obtained
from the twin-model algorithm in Chapter 2. The gray-box objective function and
the estimated gradient are modeled as unknown realizations of Gaussian processes.
Based on the Gaussian process model, a Bayesian optimization algorithm is developed
that leverages the estimated gradient for more efficient optimization. Its convergence
properties are studied. Finally, the twin-model Bayesian optimization algorithm is
demonstrated by several numerical examples. Chapter 4 summarizes the thesis and

my contributions and proposes several directions of future works.
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Chapter 2

Estimate the Gradient by Using the

Space-Time Solution

This chapter develops a method to estimate the gradient by using the space-time

solution of gray-box conservation law simulations.

Chapter 1 considered a code that simulates a conservation law (1.2) with an
unknown F,
Ou  OF(u)

e 1 t 1
8t+ o c, z€][0,1], te]o0,1],

with proper initial and boundary conditions, for a control variable c. Such simulator is
named gray-box, and its discretized space-time solution is named gray-box solution.
It is explained that F' can be approximated up to a constant for values of u that
appeared in the gray-box solution, by utilizing the gray-box solution. Therefore, a
twin model that simulates (1.4),
o N OF ()
ot ox

=c, z€]0,1], tel0,1],

can be obtained, where F is the approximated flux. It is also explained that the

adjoint method can be applied to the twin model to estimate the gradient of any
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objective function with respect to c. Finally, it is envisioned that the adjoint gradient
of the twin model can drive the optimization of the objective function constrained by

the gray-box model.

The above example involves only one equation and one-dimensional space. This
chapter develops a more general procedure suitable for systems of equations and for

problems with a spatial dimension greater than one.

2.1 Approach

This section discusses the general approach for training a twin model. In particular,
the metric of solution mismatch is presented. We then study what aspects of F'
can be inferred by using the metric for a special case of conservation laws. Besides,
another metric, the integrated truncation error, is proposed. The latter metric has
less theoretical backup but can be cheaper to evaluate and useful in practice, which
will be demonstrated in Section 2.4. The relationship of the two metrics is studied.

Finally, we discuss the method to minimize the two metrics.

Consider a gray-box simulator that solves the PDE (1.10),

ou
5 TV (DF() = q(u,0),

a system of k equations, for u(t,z) with t € [0,7] and z € Q. The PDE has
an unknown flux F, but known source term ¢, and known initial and boundary
conditions. Let its discretized space-time solution be w. My thesis introduces an
open-box simulator solving another PDE, namely the twin model,

ot

i V- (DF(%)) = q(i,c), (2.1)

which is also a system of k£ equations with the same source term and the same initial
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and boundary conditions. Equation (2.1) differs from (1.10) in its flux. For simplicity,
let the solution of the open-box simulator, w, be defined on the same spatial grid

points and time steps of the gray-box simulator.

The metric used to measure the difference of the twin model and the gray-box
model is the solution mismatch. The solution mismatch is defined to be
Mu(F) = ZZwU”'&ij _uij“ y (22)

=1 j=1

which approximates
T
/ / at, z) — u(t, )| dz dt. (2.3)
0 Q

In (2.2),i=1,---, M are the indices for time grid, and j = 1,--- , N are the indices
for the space grid. ||-]| is the norm of the state vector. w;;’s are the quadrature weights
defined for (2.3). For example, if a uniform Cartesian space-time grid is used, the
quadrature weights equal a constant. Notice that M, depends solely on F through
the twin-model solution @ if the quadrature weights and the gray-box solution are

given.

Given a function space S, I propose to infer a flux F such that M, is minimized,

F* = argmin M,, . (2.4)
FGSF
The choice for Sr will be discussed later in Section 2.2. By setting the F in (2.1) to
be F*, one obtains a trained twin-model equation
ou

5tV (DF* (@) = g(i,c), (2.5)

Let &* be the space-time solution of the twin model governed by (2.5). Given F* o
depends on c. The gradient of any objective function £(@*, ¢) with respect to ¢ can

be obtained by applying the adjoint method to the trained twin model. The gradient
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% can drive the gradient-based optimization of £(u,c), where u is the gray-box

space-time solution.

The key to inferring F' is to leverage the gray-box space-time solution. Compared
with the surrogate modeling of the output £ [98], the advantage of the twin-model
approach lies in the usage of the big data, the space-time solution, generated from
gray-box PDE solvers. The usage of the big data may lead to the more accurate
modeling of F' and more accurate predictions of £ with fewer runs of the gray-box

simulation.

For example, the following theorem illustrates what aspect of F' can be inferred

from the gray-box solution for a special form of (1.2),

% + V- (F(u)) =q(u,c),

where the spatial dimension is one and the source term is zero.

Theorem 1. Consider two PDFEs

ou  OF(u)
a + o = 0, and (26)
ou  OF(m)
5t + e 0, (2.7)

with the same initial condition w(0,x) = ug(x). The spatial domain is (—oc, o). The
function ug is bounded, differentiable, Lipschitz continuous with constant L,,, and has
a finite support. F and F are both twice-differentiable and Lipschitz continuous with

constant L. Let

Buz{u

be a non-empty and measurable set. We have:

u = up(x) for z € R that satisfies

%lzwﬂ,}gﬂ%.

For any € > 0, there exist 6 > 0 and T > 0 such that
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dF dF

o if lu(t,z) —u(t,z)| <6 for allw € R and t € [0,T], then |5 — 5| < € for all
u € B,.
Proof -

We prove false the contradiction of the theorem, which reads:

For any 6 > 0 and T > 0, there exist € > 0, and F, F satisfying the conditions stated
df _ dF

du du

in theorem 1, such that ||i — ulle < 6 and >¢€ on B,.
o0

We show the following exception to the contradiction in order to prove it false.
dF _ dF
du

For any e > 0 and any F, F' satisfying o

> € on By, we can find § > 0 and
T > 0 such that ||& — ul|e > 0. The idea is to construct such an exception by the
method of lines [100].

Firstly, assume there is no shock wave for (2.6) and (2.7) for ¢ € [0, T]. Choose a

segment in space, [zo — A, zo] with 0 < A < I+ that satisfies

e uy(z) € B, for any z € [1g — A, zo);

dF

o |G (uo(xo)) — %(UO(%))I > €

o 2o — A+ % (up(zg — A))T = a0 + %(UO)T =z*.

Without loss of generality, we assume ‘fi—i > 0 and % > 0 for {u)u = uw(z), = €

[xo — A, xo]}. Using the method of lines, we have
dF
U T, To — A+ %—(Uo(l‘o - A))T = UO(ili(] — A) y

and ~
dF
U (T, Zo + d—-(uo(il'o))T) = uo(xo) .
U
Therefore
|a(x*, T) — u(z*, T)| = |uo(zo) — uo(zo — A)| > YA =4,
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by using the definition of B,,.

Set T = (uo(xo A)) i) , we have

dF dF
Iu — (uo(zo — A)) — EE(UO(ZEO))
dF dF dF dF

- %(UO(SEO)) - %(Uo(l‘o)) -+ %(Uo(zo — A)) — %—(uo(:po))
dF dF @F

= %(UO(CEO)) - @(Uo(xo)) =+ F(UD(:EO — A) - UO(IL’o))
dF dF

> d—(uo x0)) — %(uo(-’fo)) - L,LrA

>e—LyLpA =¢€p >0

by using the mean value theorem. Therefore T’ < ~ < 00. So we find a § = yA and

a T < oo that provides an exception to the contradlctlon of the theorem.

Secondly, if there is shock wave within [0,77] for either (2.6) or (2.7), we let T*
be the time of the shock occurrence. Without loss of generality, assume the shock
occurs for (2.6) first. The shock implies the intersection of two characteristic lines.
Choose a A > 0 such that |4E (ug(z)) — %€ (ug(z — A))|T* = A. Using the mean

value theorem, we have

A S 1
PE (yo(z) —up(z — A))  Lulr

) 1 A
T:mm{LuLK’ E—A-} ,

no shock occurs in ¢ € [0,T]. Since the theorem is already proven for the no-shock

T* =

Thus, if we choose

- scenario, the proof completes. n

In this theorem, B, consists of the value of u that appear in the initial condition

up(z). Also, on such value of u, the initial condition must satisfy ’%I >~>0. An
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example of B, is given in Figure 2-1. The initial condition ug and its derivative %Q
are indicated by the solid blue and the green dashed lines. Given the value of v, B,
is shown on the right vertical axis which consists of values of u that appear in uy and

satisfy |42| > v > 0.

dUQ
U
dx
By
g l — / “ \ )
___,-}, — l‘ "r
T

Figure 2-1: An illustration of B, defined in Theorem 1. The blue line is ug

and the green dashed line is %ﬂ. B, is the set of ug where the derivative

% has an absolute value larger than ~y. The left y-axis is %Q, and the

right y-axis is ug. B, represented by the bold blue line on the right y-axis,
is the domain of w in which the error of the inferred flux can be bounded

by the solution mismatch.

Several observations can be made from Theorem 1. First, if the solutions of (2.6)

and (2.7) match closely, i.e. |a(t,z) — u(t,z)| < 0, then the derivatives of their flux
dF _ dF
du

functions must match closely in By, i.e. |5~

< €. Second, only the derivatives

aF _

of the fluxes are guaranteed to match, i.e., |5~

%‘ < ¢, rather than the fluxes
themselves. If F or F' is added by a constant, the solution of the gray-box or the
twin-model will not change. Third, the conclusion can only be drawn for values of
u which appeared in the initial condition (u € {ug(x) for all x € R}), and where the
initial condition has large enough slope (l%‘ﬂ >y > O). Generally speaking, it is

reasonable to expect that F is only inferable (up to a constant) in the domain of
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u covered by the gray-box solution, which will be demonstrated in the numerical

examples in this chapter.

If the twin model uses implicit time marching schemes, the minimization of
M, can be expensive because the computation of M, requires solving a system
of equations at every time step [101]. To reduce the computational cost, we introduce

another metric: the integrated truncation error. Define

= % +V- (DF )) —q(u,c), (2.8)

to be the residual of (2.1) by replacing @ with u. Let 7 be the discretized residual
obtained by plugging the discretized gray-box solution into the twin-model simulator.

The integrated truncation error is defined to be

(B =SS wllrl (29)

i=1 j5=1

/OT/Q |7 || dzdt . (2.10)

In (2.9), 4, j, w;; are defined in the same way as in (2.2).

which approximates

We study the relationship between M, and M,,. A sufficient condition is studied
under which M, can be bounded by M,.

Theorem 2. Consider a scalar-state gray-boxr model whose one-step time marching
18

Hil RNI—)RN, ui.—)uiH.:’Hiui., ’i=1,"',M—1, (211)

and a twin model whose one-step time marching is

Gi: RY = RY, ;. = 1. = Getty., i=1,---,M—1. (2.12)

50



The solution mismatch is defined by (2.2)
Mu(F) =37 iy (i — uyg)”
=1 j=1

Assume At =ty —t; = -+ = tyy — ty—1 and wiy; = w; for all ,j. The integrated

truncation error is defined by (2.9),

M
MT(F) = Zzwij‘l'?j y
i=1 j=1
where
1
Tij = At (ui+1j - (Qui.)j) . (2.13)
If G; satisfies
IGia — Gidlly < Blla — bl (2.14)
for any a,b € RN and for all i, then
My <1+ B84+ ACM, (2.15)
where
w1
lol|2, = o7 v (2.16)

wN

for any v € RY.

Proof:
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The integrated truncation error can be written as
3 M N 1
M (F) =" ij@ (wis1; — (Gui);)?
M
1 T
= Z -—2(Ui+1. - Qul) W(“H—l‘ - Q’ul)
M
1
=> Az . = Gui. I3y
X1
Mo ‘ ,
= Z A (M = GH ) uo |y, -

Similarly, the solution mismatch can be written as

M

D110 =G wod[ly,

i=1

<

2.

Ez
I

Fig 2-2 gives an explanation of M, and M, by viewing the simulators as discrete

time dynamical systems.

Using the equality

gi _ Hz — (gz _ gi—lH) + (gi—lz}{ _ gi-—ZHZ) 4ot (gr}_ti—l _ Hz) , ie N,
and triangular inequality, we have

(161G — GM1H)ug |3, + (GM2GH — GM*HPuo. B +--- + [IGHM ™ — HM Yuo |y

+NGM 26 - M Huo Iy -+ INGHM T2 = HM  Nuo |y

+11(G = H)uo.[I3y
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.__—-""-—_
Twin model solution

twin model with restarts I
e p————
Gray-box solution

Uo

ts ti & b L t

Figure 2-2: State-space trajectories of the gray-box model and the twin
model. M, measures the difference of the twin model trajectory (blue)
with the gray-box trajectory (red). M., measures the difference of the

twin model trajectory with restarts (green) and the gray-box trajectory
(red).

Therefore,

Mu - AtQMT S

(1(GM=16 — 6™ Hyuo i}y + 16M2GH — G2 H2)uo I}y +- -+ l(GGHM 7 — GHM Muo. Iy |

FIEM G - GV o f 4+ I(GGHM T — GHM Puo Iy

\ + 119G — GH)uo Iy

Under the assumption

IGa — Gb|1%, < Blla— b3,

and its implication

IG'a—Gb|;, < Billa—bl}y, i€N,

23




we have

[ BM1)(G - H)uo. |13 + BM2|(GH — H)uo |3y o+ BI(GHM2 — WMy |2,
+BM2(G - H)uo 3y +- o+ BIGH™ ™ — H  2uo |3y

+

My—AP M, <4

\ +BII(G — H)uo I3y )

Reorder the summation, we get

[ BY1(G = H)uo. iy + BY2(G - Huollly  +:-+BIG — H)uo iy

Mu=BEM, < | +BM2NGH oy -+ + BI(GH — Huo

+ BI(GHM2 — HM N yu [

Therefore,

My — APM, < (B + M2+ + B) A M,

If 3 is strictly less than 1, then

thus completes the proof. [

The theorem implies that, if the one-step time marching operator of the twin
model is Lipschitz continuous, as given by (2.14), then the solution mismatch can be
bounded by the integrated truncation error. Unfortunately, if the Lipschitz constant
B > 1 and if the number of time steps M > 1, then (1+ 8+ ---+ SM~1) can be
large. Thus a small M, does not always guarantee a small M,,. Therefore, for twin
models that have 8 > 1 and M > 1, if computational budget allows, we recommend
minimizing M, instead of M, for training a twin model. Despite the theoretical flaw,

M can be useful in practice when minimizing M, is too computationally expensive.

Let M denote either M, or M,. The minimization of M can be solved by

o4




gradient-based methods. For M = M., the adjoint method can be applied to
compute d—dj\—;’zl to drive the optimization. For M = M,, the adjoint method can
be applied to compute the gradient of @ with respect to £. Therefore, the gradient
of M with respect to F' can be obtained through (2.2) according to

dIM  dM da

—_— = —— 2.17
dF du dF (2.17)

The remainder of this chapter is organized as follows. Section 2.2 discusses the
choices of the function space Sp in (2.4). A choice of the basis functions, the sigmoid
functions, is introduced to parameterize . By using a fixed set of basis functions,
the twin model is demonstrated in a numerical example. Section 2.3 develops an
algorithm that adaptively constructs the basis functions. Section 2.4 demonstrates
the algorithm in several numerical examples. Finally, Section 2.5 summarizes the

chapter.

2.2 Choice of Basis Functions

As discussed in Section 1.3.3, F' can be parameterized by a linear combination of
basis functions. First, consider the case when F is univariate. There are many types
of basis functions to parameterize a univariate function, such as polynomial basis,
Fourier basis, and wavelet basis [102]. Based on the observations from Theorem 1, F'
and I are expected to match only on a domain of u where the gray-box space-time
solution appears and has large enough slope. Therefore, an ideal parameterization
should admit local refinements so F' can match F better at some domain locally.
Another observation from Theorem 1 is that F' can only be estimated up to a constant.
This section presents a choice of the parameterization for F that takes into account

such considerations.
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Meyer wavelet

0.8
0.6
0.4
0.2

0

—2 -1 0 1 2

Figure 2-3: An example mother wavelet, the Meyer wavelet.

A parameterization that allows local refinements is the wavelet parameterization
[102]. The wavelet is a set of basis functions developed for multiresolution analysis
(MRA) [102]. MRA introduces an increasing sequence of closed function spaces
{Vi}iez,

VoV cee,

[102]. For univariate MRA, Vs satisfy the following properties known as self-similarity

[102]:

flu)eVie f(2u) €Vin, jEZ

f(u)EV-@f(u—i)EV-, JEZ,ne{0,£1,£2,---}.
7 23 J

The function space V; is spanned by a set of orthonormal bases called the wavelet
[102]
Gin(w) =27$(Du—n), ne{0,+1,42,---}, (2.18)

where ¢ is called the mother wavelet. The equation (2.18) is called the self-similar
property because any basis gaAﬁm can be obtained through a translation and a dilation
of the mother wavelet ¢, where j is called the dilation parameter and 7 is called the
translation parameter. An example mother wavelet, the Meyer wavelet, is shown in

Figure 2-3.

As discussed at the beginning of this chapter, only the derivative of F, rather
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than F' itself, can be inferred. If % is parameterized by the wavelet bases, F shall

be parameterized by the indefinite integrals of the wavelets, i.e.
u ~
bialt) = [ ialutia
)

¢;n’'s are sigmoid functions, which satisfy

d¢j,n _ 1
du _¢’
and
0, u > —o0
¢jm(u) =
1, u — oo

due to the normality of the wavelet.

Let

then

) Qu—n U u
s@u—n = [ = [ b —mdi = [ bifuraw

-0

(2.19) and (2.23) show that ¢;, satisfies the self-similarity property

¢j,n(“):¢(2ju_77)7 JEZaTIGZ’

where ¢ is called the mother sigmoid.

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

There are many choices of sigmoid functions for ¢. My thesis will use the logistic

sigmoid function as the mother sigmoid,

(2.25)



integral of wavelet and tanh sigmoid

0.8
0.6
0.4
0.2

—2-10 1 2
Figure 2-4: Red line: the integral (2.19) of the Meyer wavelet. Black line:
the logistic sigmoid function.

If F is univariate, the logistic sigmoids ¢jn's, for j € Z and n € Z, are used as
the bases. If F' is k-variate, the basis can be formed by the tensor product of the
univariate basis [105] (@j,m, " s @jomes fOr J1 € Z,m € Zy--+ jx € Zymy € Z). In

other words, the basis can be

Gim(ur, - uk) = Pjim (1)« B my () (2.26)
where j = (j1, - ,j%) € Z*, n = (m,- -+ ,mx) € ZF. To sum up, F' can be expressed
by

F= Y ajntin, (2.27)
JeLk mezk

where «’s are the coeflicients of the bases.

A compact representation of the sigmoid bases is introduced. A univariate basis

function,

Gin(u) =9(Qu—mn), jeZ,nel,

can be represented by a tuple (j,n), where j is the dilation parameter, and 5 is
the center of the basis. Similarly, a k-variate basis function, ¢;, in (2.26), can be
represented by a tuple (3, n) = ((j1,--- , Jx), (M, ,m)). Thus, a sigmoid function
can be visualized by a point in a 2k-dimensional space, which is illustrated in Figure

2-ba through 2-5d for the univariate case.



1.0

10

2 L B B O B B ) 0.8 2 L B B B BN O 08
0.6 ‘ 0.6

j1 e o o o o J} ¢ i e o o o o '," ¢

0.4 0.4

0 . . . w2t ° . . . 92 [ /] ;

/.'/‘ e ,‘. A ~ /" s . A “./‘ ,'.’ /'/;
15 10 ©5 00 05 10 L5 U5 -0 -05 00 05 10 15 15 10 05 00 05 1o 1s °U5 10 05 oo o5 10 15
n/2’ 2 n/2? w
(a) (0,0) (b) (0,-1)

10 —— — 10

2 esesececcsce o8 / 2| eeesessse o F,f‘..
0.6 ', 0.6 /

Jj e o o o o Jj1 e o o o o o

b / / 05 o4 ru/

0 . ° ® o2 -".:": j 0 . ° . o2 /J /
0.0 k= _— et Y E—— o

15 10 05 00 05 10 15 -ls -10 -05 00 05 10 15 15 10 ©5 00 05 10 1.5 15 -10 -05 00 05 10 15

n/2’ u n/2! U
(c) (1,0) (d) (1,1)
Figure 2-5: An illustration of the tuple representation of univariate sigmoid
functions.

There are an infinite number of bases involved in this expression, making it
infeasible to be implemented on the computer. To address this issue, a systematic

procedure for choosing a suitable subset of the bases will be presented in Section 2.3.

In the remaining part of the section, a numerical example is given to illustrate
the inference of F' by using the sigmoid parameterization. Consider a gray-box model

solving the 1-D Buckley-Leverett equation [3]

2

du 0 U
L e e R (2.28)
F

with the initial condition u(0, z) = ug(z) and the periodic boundary condition u(t,0) =
u(t,1). c is a constant control variable. The Buckley-Leverett equation models the
two-phase porous media flow where u stands for the saturation of one phase, and 1 —u
stands for the saturation of another phase. Therefore 0 < ug(x) < 1 for all = € [0, 1].

¢ € R is a constant-valued control. F is assumed unknown and is inferred by a twin
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model. The twin model solves

ou 0 =, _

with the same ¢ and the same initial and boundary conditions. A second-order finite
volume scheme is used to simulate both the gray-box model (2.28) and the twin

models (2.29). Parameterize F by the sigmoid bases (2.2)

F= Y ajbin, ' (2.30)

(JmEACZXZ
where A is a finite set that contains the tuples representing the basis functions.
(2.30) differs from (2.27) in that a finite number of basis functions are used so the
parameterization can be implemented on the computer. In this example, the set 4
is chosen manually, such that the Buckley-Leverett flux can be well approximated.
The chosen basis are (j,7) for j =3, 7 =0,1,---,8, which are shown in Figure 2-6.

The topic of how to algorithmically choose a suitable set of basis will be discussed in

Figure 2-6: The bases chosen manually for the numerical example of
Buckley-Leverett equation.

Section 2.3.

—_

basis

The twin model is trained to minimize M,. To avoid overfitting in (2.4), we

consider applying an L, regularization on e. In other words, F is inferred by solving

60



the following minimization problem,

M N

g " 2

= argimin ZZwij (uij = uij) + A ”C!”Ll 5 (231)
4n€R \iz1 j=1

where & = {a;i};ea Iz, is the Ly norm, and @ is the twin-model space-time

solution that depends on the value of @. A > 0 is a tunable parameter for the L,

regularization. As the value of A increases, more entries in a will be suppressed to

zero [44].

The value of X should be determined by maximizing the out-of-sample fit, such as
the k-fold cross validation [38]. Given a basis dictionary, the k-fold cross validation
proceeds in the following three steps: In the first step, the gray-box solution wu is
shuffled randomly into k disjoint sets {w1, wa, -+ ,ux}. An illustration for k = 3 is

shown in Figure 2-7.

T

Figure 2-7: The discretized gray-box solution is shuffled into three sets,
each indicated by a color. Each block stands for the state variable on a
space-time grid point.

In the second step, k& twin models are trained so that their space-time solutions

match all but one sets of the gray-box solutions, as shown in (2.32), where 7; indicates
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the ith twin model.

Ty = TrainTwinModel(us, us, - -+ , ug)
T, = TrainTwinModel(wy, u3, - , u)

, (2.32)
Ty = TrainTwinModel(u;, Ug, -+ , Ug_1)

where each equation requires solving (2.31).

In the third step, each trained twin model is validated by computing the solution

mismatch on the remaining set of the gray-box solution, as shown in (2.33).

M. = SolutionMismatch (T}, u,)

M? = SolutionMismatch (T, us)

(2.33)
Mﬁ = SolutionMismatch (7}, uy)
A should be chosen to minimize the mean value of validation errors
Mu=%(M}L+M§+---+M§). (2.34)

(2.31) is solved by the L-BFGS method [42], using the NLopt package [43]. An
example of training the twin model is shown in Figure 2-8. Figure 2-8 (a) shows the
gray-box solution used to train the twin model. Figure 2-8 (b) shows the trained twin
model solution by using the same initial condition. Figure 2-9 shows the gray-box

flux F' and the trained flux F, as well as % and Z—’Z.

In addition, the trained twin model is simulated using out-of-sample initial conditions

which are different from the initial condition of the training solution. Two example
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gray-box and twin-model solutions are shown in Figures 2-10 and 2-11. The solutions
use the same second-order finite volume scheme and the Crank-Nicolson time marching
scheme. In Figure 2-10, the domain of the gray-box solution is [0.1,0.3], which is
contained in the domain of the training solution, [0, 0.48]. Therefore, it is reasonable
to expect that the gray-box and the twin-model solutions match closely. In contrast,
the domain of the gray-box solution in Figure 2-11 is [0.05,0.9]. The domain is not
contained in the domain of the training solution, and a larger solution mismatch is

observed.

(b)

Figure 2-8: (a) Gray-box solution used to train the twin model. (b) Trained
twin-model solution by using the same initial condition as in the gray-box

solution.
1
F
00— 4, A — 1
(a) (b)

Figure 2-9: (a) Gray-box model’s flux F' (red) and the trained twin-model
flux F (blue). (b) %€ (red) and %E (blue)
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0.28

{0.16

(b)

Figure 2-10: (a) Gray-box solution. (b) Out-of-sample solution of the
trained twin model by using the same initial condition as in (a). Because
the domain of solution is contained in the domain of the training solution,
the twin model and the gray-box model produce similar solutions.

(b)

Figure 2-11: (a) Gray-box solution. (b) Out-of-sample solution of the
trained twin model by using the same initial condition as in (a) . Because
the domain of solution is beyond the domain of the training solution, a
large deviation of the twin-model and gray-box solutions is observed.
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After training the twin model, the adjoint method can be applied to the twin

model to obtain the gradient of an objective function £ to c. The gradient %
approximates d«f_(dwz_,g) for the value of ¢ on which the twin model is trained. Consider

the objective function

£(c) z/; (u(l,m;c) _ %)2 . (2.35)

=0

Figure 2-12 shows the objective function, evaluated using the gray-box model and
the trained twin model, where the twin model is trained at ¢ = 0 with the solution
shown in Figure 2-8 (a). It is observed that the gradients of £ match closely at ¢ =0

where the twin model is trained.

0.8
g Gray-box model
k3] Twin model
=0.6
N
2 =
-+ =
004 g
.QJ g
vy .
[5) [
0.2 =
-15 -1.0 -0.5 0 0.5
C

Figure 2-12: Objective function £ evaluated by either the gray-box model
and the trained twin model.

Because F is trained by the gray-box space-time solution, and because the gray-
box space-time solution depends on the initial condition ug(x), it is expected that the
trained F depends on ug(z). Figure 2-13 shows the training results using the gray-
box solutions of three different initial conditions at ¢ = 0. Some observations can be
made: 1) As expected, the inferred F can differ from F by a constant, which can be
observed by in Figure 2-13 (d), (e), and (f); 2) ‘fi—i matches 2 only in a domain of u
where the solution appears, as indicated by the green areas in Figure 2-13 (g), (h),
and (i); 3) % does not necessarily match 4 outside the green area; the issue can be

seen clearly in Figure 2-13 (c), (f), and (i); 4) In some regions of u, the bases are too
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coarse. The issue appears in Figure 2-13 (g), where 42 exh1b1ts a wavy deviation from
%. At such regions of u, the basis dictionary may be enriched by additional bases to
enable a more accurate approximation of F. Addressing these issues in a systematic

way is crucial to the rigorous development of the twin-model method. This topic is

discussed in the next section.

_7

0 0.4 0.8
u u

(9) (i)

Figure 2-13: (a,b,c) Three different initial conditions used to generate
the gray-box space-time solution. (d,e,f) compares the trained F ( blue)
and the Buckley-Leverett F' (red). (g,h,i) compares the trained dF (blue)
and the Buckley-Leverett % 4E (red). The green background h}ghhghts the
domain of u where the gray—box space-time solution appears.

0.4

2.3 Adaptive Basis Construction

This section addresses the problem of adaptively choosing a finite set of basis functions

for the parameterization of F. Assume all candidate basis functions form a countable
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set, Algorithm 1 outlines an iterative approach to constructing the basis dictionary.
Starting from an initial set of basis functions, the basis dictionary is built up progressively
by iterating over a forward step and a backward step [34, 35, 36]. The forward step
searches over a candidate set of bases, and appends the most useful bases to the
dictionary. The backward step searches over the current dictionary, and removes the
unnecessary bases from the dictionary. The iteration stops only when no alteration
is made to the dictionary or when a criterion, such as a targeted approximation
accuracy, is achieved. My thesis applies this approach to the adaptive construction

of the bases for the parameterization of F.

Input: Solution u, Basis selection A

1: loop

2: A’ < Enrich A by the “best” basis.
3: if Q(A") > Q(A) then

4: A— A

5: else

6: break

7: end if

8: A’ + Delete the “worst” basis from A
9: if Q(A") > Q(A) then
10: A A

11: end if

12: end loop

13: a  argmin, M (F(A, a), u)

Output: A, a.
Algorithm 1: The outline of the algorithm for training a twin model with an
adaptive basis. A indicates the basis dictionary. a indicates the bases’ coeflicients.
Starting from an initial dictionary, the algorithm iterates over the forward and
the backward step to adaptively construct the dictionary and find the optimal
coeflicients. As explained in the previous section, the solution mismatch is a function
that depends on u and F, where F depends on the dictionary A and its coefficients
Q.

Some components of the algorithm require measuring how significant a basis is
in training a twin model. Two criteria are needed. The first criterion determines
which basis shall be chosen as the candidate basis to add to or delete from the

dictionary, based on a metric of the significance of the basis. The second criterion
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determines whether the current dictionary contains too few or too many bases, based
on whether the approximation is sufficiently accurate. The two criteria are developed

in this section.

To define the first criterion, a formulation is developed to efficiently assess the
significance of a candidate basis. Given a basis dictionary A, define the minimal
mismatch

M*(A) = min M Z Ajnbin | (2.36)
a s €RIA A
(FmeA
where M can be either the solution mismatch M, or the integrated truncation
error M,. Given the gray-box solution, the minimal mismatch is a function of
A. Let &y = {a],}(mea be the optimal coefficients that solves (2.36), and let
l:"j‘ = Z(j,n)e AQf n®in. Consider appending A by an additional basis | = (j;,m,),
and let A’ be the appended basis dictionary. The minimal mismatch for the appended

basis dictionary A’ is

M(A)= min M| > ajndia], (2.37)

o 4 ERIAIFL .
A (G meA

If the coefficients for the bases A’\(j,, ;) are set to be a* while the coefficient for
the basis (j;, n;) is set to be 0, then M(A") = M*(A). Therefore, M*(A') < M*(A).

The appension of an additional basis never increases the minimal mismatch.

Consider setting the coefficients of A’ to be {a}, €}. For ¢ — 0, apply first-order

approximation, we have

M Z a;,n¢j,n -M Z a;,n¢j,n+6¢l
(GmeA (G:meA (2.38)

~ - / % o)) du | €.
uerk dF Fx
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The absolute value of the coefficient for e,

[
ucRk dﬁ

is the rate of change of M by perturbing the coefficient of ¢;, which estimates the

si(A) = ¢ du

A

(2.39)

significance of the appended basis [37]. If there are multiple candidate bases, their
significance can be sorted by (2.39).

In practice, (2.39) is not computable for all the candidate bases (j,n) for j € Z*
and 1 € Z*, because the number of bases is infinite. Therefore, at every iteration in
Algorithm 1, (2.39) shall only be evaluated on a finite number of bases. To address
this issue, we define the neighborhood of a sigmoid basis. For univariate basis, the

neighborhood of (j,7) is defined to be a set of the sigmoid bases

NMGm={0G+1,m), Gnt1)}. (2.40)

The neighborhood contains three basis functions: one basis (j + 1,7) whose dilation
parameter is incremented by one; and two basis (j,7 £ 1) whose dilation parameter
keeps the same but the translation parameter is shifted by £1. For illustration, the
neighborhood of (0,0) is shown in Figure 2-14a. The definition can be extended to
the multivariate sigmoid. The neighborhood of a multivariate sigmoid is defined to

be

N[(Jﬂ?)] ZN[((]la 7jk)v<7717"' ’nk))]

={((]'1+1,"' k) () )s o (G g+ 1) tns ) )y (2.41)

(G de), mEL o me)), - (G, ,]'k)»(ﬂl"",ﬂkil))},

which consists of k bases whose dilation parameters are shifted by 1, and 2k bases
whose translation parameters are shifted by £1. In addition, define the neighborhood

of a set of sigmoid functions to be the union of the neighborhoods of all member
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Figure 2-14: Neighborhood for univariate bases. (a) Neighborhood (blue)
of a single basis (red). (b) Neighborhood (blue) of several bases (red).
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bases minus the set itself, (2.42). The neighborhood of a set of sigmoid functions is

illustrated in Figure 2-14b.

N[(jlan1)7 ) (jn’nn)]

(2.42)
= (N[(lenl)]uUN[(Jn’nn)]>\{(.71’nl)’ ’(jn’nn)} :

Using the definition of the neighborhood and the significance metric, we can
determine which basis to add and delete in the Algorithm 1. To add a basis, the
basis significance, (2.39), is computed for all the bases in the neighborhood of the
current dictionary. At each iteration, the basis with the largest significance will be
considered for addition. Similarly, to delete a basis, the basis significance is computed
for all the bases in the current dictionary. At each iteration, the basis with the smallest

significance will be considered for deletion.

Another criterion is needed to determine whether a basis shall indeed be added
or removed. To develop this criterion, the technique of k-fold cross validation can be
applied. The k-fold cross validation is discussed in Section 2.2, where k twin models
are trained and validated on randomly shuffled disjoint sets of the gray-box solution.

The mean value of validation errors (2.34),

M==(M;+My+--+ My)

| =

can be used to measure the performance of the basis dictionary. A basis shall be

added to or removed from the dictionary only if such action reduces M.

Based on the above developments, Algorithm 2 gives the details needed in Algorithm
1 to adaptively construct the basis dictionary. The main part of the algorithm is
the forward-backward iteration that determines which and whether a basis is added

or deleted in the dictionary, by using the metric M and the significance s. The
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metric M and the significance s can be defined either according to the solution
mismatch M,, or according to the integrated truncation error M,. We suggest
M due to less computational cost when the twin model uses implicit numerical
schemes. The algorithm starts from training a twin model using an arbitrary basis
dictionary A. The main part of the algorithm iterates over a forward step (line 3-9)
and a backward step (line 11-19). The forward step first finds the most significant
candidate in the neighborhood of the current dictionary according to (2.39). If the
addition indeed reduces the cross-validation error, the candidate is added to the
dictionary; otherwise, it is rejected. If the basis is added, the coefficients are updated
by minimizing the solution mismatch, which can be implemented by the Broyden-
Fletcher-Goldfarb-Shannon (BFGS) algorithm [40]. The backward step finds the most
significant candidate in the current dictionary for deletion. If the deletion reduces
the cross-validation error, the candidate is removed from the dictionary. If the basis
is indeed deleted, the coeflicients are updated by BFGS again. The iteration exits
when the most significant addition no longer reduces the validation error. In the end,
the coeflicients are tuned to minimize the solution mismatch M., which ensures that
M., is minimized. The output of the algorithm is the basis dictionary A and the

coefficients a4.
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Input: Initial basis dictionary A, Validation error My = oo, Gray-box solution u .

1: Minimize solution mismatch a4 < argmin, M (Z(j,n)e A ozj,n@-,,,)

2: loop
3:

10:

11:
12:

13:
14:
15:

16:

17:

18:
19:

I*  argmax s;(A) , A+ AU{I*}
leN(A)

Cogpute_ﬂ by k-fold cross validation.
if M < Mg then

My~ M, oy + argmin M Z O nbim
«

(GmeA

else

A A\{l"}

break
end if
g* « argmin s,(A)
geA

if g* # [* then

A« A\{g"}

Cor@ute_ﬂ_ by k-fold cross validation.
if M < M, then

Mo — M, oy« argmin M Z 0 mPim

@ (Gm)eA

else

A AU{g*}

end if
end if

20: end loop

21:

a4 + argmin M, g 0 mPin
(87 .
(dmeA

Output: A, ay4.
Algorithm 2: Training twin model with adaptive basis construction.
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2.4 Numerical Results

This section demonstrates the twin model on the estimation of the gradients for

several numerical examples.

2.4.1 Buckley-Leverett Equation

Section 2.2 applies a sigmoid parameterization to the gray-box model governed by

the Buckley-Leverett equation (2.28)

2

%+i(_u__)_
ot Or\1+2(1—u)? -

In this section, the same problem is studied but using the adaptive basis construction

u2

T2 is assumed unknown

developed in Section 2.3. The flux function F(u) = ; =

and is going to be inferred. The gray-box and the twin models use the same second-
order finite volume scheme and Crank-Nicolson time marching scheme. The initial
dictionary, A, is selected to contain a single basis (1,0). The choice of the initial
dictionary is not unique. We choose (1,0) because it has a low resolution and is

centered inside [Umin, Umax] Of the gray-box solution.

Figure 2-15 shows the selected bases for the three solutions in Figure 2-13, respectively,
obtained by algorithm 2. AS [tmin, Umax| shrinks, the resolution of the bases increases.
Figure 2-16 shows the dictionary and % at each forward-backward iteration for

solution 3 (Figure 2-15c¢).

Consider a time-space-dependent control ¢ = ¢(t, z) in (2.28)

ou 3(_u_)zc,

ot~ az\112(1 - u)?
and (2.29)
oun 0 -,
5 + %F(u) =c.
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Figure 2-15: The basis dictionary for the three solutions in Figure 2-13.
The iteration starts from the initial basis (1,0).

6 2.5
5 5 2.0 e
4 | & '
. ‘ O 1.5
J 3f | q:;: | #
":_: | o
2 | «§ 1.0 T =
i //’ .
1 Los5f - \“\_\
0 | 7 ) | = - T
0 02040608 1 0%5705 02 04 06 08 1.0 1.2
3 u
(a) Iteration 1
6 2.5
& 820 ’
4 s
o B 1.5]
i3 @
£ 1.0 il
2 z / g
=
1t 'S 05 A N
| ey :
O|L e /

2

0 02 0.4”'016 08 1 00

u
(b) Iteration 2

75

%2 00 02 04 06 08 1.0 1.2



B
w

[
(=]

derivative of flux

ot
o

—
o

[E

o

0.0

0 02 04 06 08 1
) 0

2

.2 0.0 0.2 04 06 0.8 1.0 1.2
u

(c) Iteration 3

[38]
w

28]
o

-
w

[

o

derivative of flux

o
3

o

0 02 04 06 08 1 0

2

.90‘

04 06 08 1.0 1.2
U

2 0.0 02

(d) Iteration 4

derivative of flux
(8]
o

[y
(4]

N W ke e
—
o

|
3

—_
=
[&)]

o

— | et

0.0

0 02 0;4.” 0.6 0.8

Y

02 00 02 04 06 08 1.0 1.2

u

(e) Iteration 5

76



O = N W e U O]

.

derivative of flux

0.2 0;4” 06 0.8 1
37

1.0 |

™ N

0.0 ——===_ o
0.2

00 02 04 06 08 1.0 1.2
U

(f) Iteration 6

derivative of flux

0.2 0.4H 06 08 1
5

L od
W

[:%]
(=]

=
o

—
o

=
w

o ,,/ \\
0.0 —— ==

0.2 0.0 0.2 04 0.6 0.8 1.0 1.2
u

(g) Iteration 7

derivative of flux

0.2 0.4, 06 08 1
2

[3e]
o

o]
o
N\

[
w

—
o

o
W

0.0 —== —
%2 00 02 04 06 08 1.0 1.2
u

(h) Iteration 8

77



6 | 2.5
5 | 5 20
4 | &
o |8 1.5
i3 @
= 1.0 v
2| g | g ‘\
1 g 0.5 | / \
= e py \\
%6 02 04 06 08 1 0.0 E il >
e 0.2 0.0 02 0.4 06 0.8 1.0 1.2
2 u
(i) Iteration 9
6 2.5
| |
5 | - .
| = 28
4 = .
) | © 1.5i
5 3 12|
|2 1.0 .
2| | B /N
1 Z 05 7
| = M ’/"/ \\
06 63 6406 08 1 0oL —— S\
vl Uty AR R 202 0.0 02 04 06 0.8 1.0 1.2

24

U

(j) Iteration 10

Figure 2-16: The basis dictionary at each forward-backward iteration when
the initial condition is chosen as Figure 2-13c. In the left figure, the red
dots indicate the bases in the dictionary, while the blue crosses indicate
the deleted basis. In the right figure, the red line indicates the derivative
of the true flux, while the blue line indicates the derivative of the trained

flux.
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The gradient of &, (2.35),

0= (u(l,x;@ - %) da,

can be estimated by the trained twin model. The estimated gradients are compared
with the true adjoint gradients of the gray-box model, and the errors are shown in
Figure 2-17. The adaptive basis construction improves the accuracy of the gradient
estimation. Table 2.1 shows the error in the estimated gradient for the three solutions.

The error in the estimated gradient is given by

N

where £ is the objective function evaluated by the gray-box model, and € is the

1/2

5 2
af _BS dxdt

de dc

objective function evaluated by the twin model. We compare the result by using the

manually chosen bases in Figure 2-6 and by using the bases constructed adaptively.

(a) Solution 1 (b) Solution 2 (c) Solution 3

; . G . dg d
Figure 2-17: Error of the estimated gradient, ’E — EE‘? for the three

solutions. The basis dictionary is constructed adaptively.

Solution 1 | Solution 2 | Solution 3
Manual basis | 2.5 x 1073 | 6.6 x 107 | 7.3 x L=
Adaptive basis | 4.2 x 10781 15%x107% | 8.9 x 1077

79



Table 2.1: Error of the estimated gradients for the three solutions. The
adaptively constructed bases reduce the estimation error.

2.4.2 Navier-Stokes Flow

Consider a steady-state, compressible, viscous, adiabatic flow in a 2-D return bend
channel driven by the pressure difference between the inlet and the outlet. The
geometry of the return bend is given in Figure 2-18. The return bend is bounded by
no-slip walls. The inlet static pressure and the outlet pressure are fixed. The inner
and outer boundaries of the bending section are each generated by six control points

using quadratic B-spline.

15[ Inlet

ol

utlet

|
o
u
T

EEm=

=10

-1.5¢ .

Figure 2-18: Return bend geometry and the mesh for the simulation. The
control points for the inner and outer boundaries are indicated by the red
dots.

The flow is governed by the Navier-Stokes equations. Let p, u, v, F, and p be the

density, Cartesian velocity components, total energy, and pressure. The steady-state
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Navier-Stokes equation is [6]

pu o
9 pus+p L+ 9 P v =0, (2.43)
Iz UV — Oy 9y pv* +p — oy
uw(Ep+ p) — 0zztt — 00 V(Ep + p) — Ogyu — Oy

where

ov 2 (0u Ov

The Navier-Stokes equation requires an additional equation, the state equation, for

closure [6]. The state equation has the form

b :p(va)’ (245)

where U denotes the internal energy per unit volume [6],

U=p (E - %(u2 + vz)) . (2.46)

Many models have been developed for the state equation, such as the ideal gas
equation, the van der Waals equation, and the Redlich-Kwong equation [103]. We
assume the true state equation in the gray-box simulator is unknown. The state
equation will be inferred from the gray-box solution. Let p. be the steady-state
density, %o = (Uoo,Voo) be the steady-state velocity, and E, be the steady-state

energy density. The steady-state mass flux is

6 = _/ poouooloutlet dy - / poouoolinlet dy (247)
outlet inlet
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The goal is to estimate the gradient of £ to the red control points’ coordinates.

Two state equations are tested: the van der Waals equation and the Redlich-

Kwong equation [6, 9],

- 1)U
Duydw = %d)—p - avdwp2
vaw
(v—1)U arpp°/? ’ (2:48)
DPrk = -

1=bup (v = DU)2(1+ brep)

where we set aygy = 10%, bygw = 0.1, @, = 107 and b, = 0.1.

In both the gray-box and the twin models, we use the same second-order finite
volume scheme for discretization and a pseudo-time marching scheme to solve for the

steady-state solution. The solution mismatch, (2.2), is given by

M :wp/ |[)oo—poo|2d:1:+'wu/ |ﬂoo—uoo|2d:c
Q Q

. 2
+wU/lz7°o—voo|2dw+wE/‘EOO~EOO\ dz
Q Q

where w,, wy, w,, and wg are non-dimensionalization constants. Figure 2-19 shows
the gray-box solution and the solution mismatch after training the twin model. The
selected bases in the dictionary, represented by (ju, j,, v, 7,), are listed in Table 2.2
and 2.3. They are also shown in Figure 2-20 on a (7%, 7#) plane. Figure 2-21 shows
the cross-validation error M, at each forward-backward iteration. Figure 2-22 shows
the trained state equation and its error. The convex hull of (Uw, peo) is shown by the

red dashed line. Because the state equation is expected to be inferable only inside the

domain of the gray-box solution, a large deviation is expected outside the convex hull.
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Figure 2-19: Left column: Example gray-box solution for a given geometry.
Right column: Solution mismatch after training a twin model.

(1,1,5,2) (1,162) (1,1,6,1) (2,1,91) (2,1,10,1)
(2,1,11,2) (2,1,11,1) (2,1,10,0) (2,1,12,2) (2,2,9,3)
(2,2,10,2) (2,2,10,3) (2,2,11,3) (2,2,10,1) (2,2,11,4)
(2,2,10,4)

Table 2.2: List of the dictionary for the van der Waals gas, (Ju, Jp, MU, 1p)-

(1,1,5,2) (L,1,62) (1,1,6,1) (1,1,6,0) (2,1,9,1)
(2,1,10,1) (2,1,11,2) (2,1,11,1) (2,1,10,0) (2,1,12,2)
(2,1,13,2) (2,2,10,2) (2,2,10,3) (2,2,11,3) (2,2,12,3)
(2,2,10,1) (2,2,11,4)

Table 2.3: List of the dictionary for the Redlich-Kwong gas, (Ju, 1p, v, 1p)-

The trained twin model enables the adjoint gradient estimation. Figure 2-23 shows
the estimated gradient of £ to the control points’ coordinates. It also compares the
estimated gradient with the true gradient. The error of the gradient estimation is

given in Table 2.4.
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(a) Van der Waals state equation. (b) Redlich-Kwong state equation.

Figure 2-20: The basis dictionary for the state equations, plotted on the
(57",%, 2%"’;) plane. The circles represent the bases that have jy = 1, 7, = 1.
The squares represent the bases that have jy = 2,j, = 1. The dots

represent the bases that have jy = 2, j, = 2.
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Figure 2-21: Cross-validation error M, at each forward-backward
iteration. The y-axis is scaled by a constant, so that M, at the first
forward-backward iteration equals 1.
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(b) Redlich-Kwong

Figure 2-22: State equation for the van der Waals gas, and for the Redlich-
Kwong gas. Left column shows the trained state equation; right column
shows the error of the state equation. The trained state equation is
added by a constant, so the pressure matches the pressure of the gray-
box equation at U = 2.6 and p = 0.7. The dashed red line shows the
convex hull of the gray-box solution.
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(a) Gradient of £ to the control points
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Figure 2-23: Comparison of the estimated gradient and the true gradient
for the Redlich-Kwong gas. The result for the van der Waals gas is visually

indistinguishable to this plot.
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Gas Interior control points Exterior control points

van der Waals | 0.13 0.04 0.05 0.32 0.16 0.15 0.07 0.02

Redlich-Kwong | 0.32 | 0.03 0.07 0.50 0.40 0.12 0.06 0.05

Table 2.4: Error of the gradient estimation, in percentage.

2.4.3 Polymer Injection in Petroleum Reservoir

Water flooding is a technique to enhance the secondary recovery in petroleum reservoirs,
as illustrated in Figure 2-24. Injecting pure water can be cost-inefficient due to low
water viscosity and high water cut. Therefore, the water-solvent polymer can be

utilized to increase the water-phase viscosity and to reduce the residual oil.

Water
Injection Well
l

Production Well
|1

Figure 2-24: Water flooding in petroleum reservoir engineering (from
PetroWiki). Polymer solved in the water phase can be injected into the
reservoir to enhance the production of oil.

Consider a reservoir governed by the two-phase porous media flow equations

d

— (pa®Sa) + V- (pata) =0, a € {w,o0}

o (2.49)
3] , ;
ot (PudSwc) +V - (cpup) =0
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for z € Q2 and t € [0, T], where the phase velocities are given by the Darcy’s law

Uo = —Mykio K - (Vp — puwgVz), «a€ {w,o}
. (2.50)
77qu = _waker . (Vp - pwgvz)

w, o indicate the water and oil phases. p is the phase density. ¢ is the porosity. S
is the phase saturation where S,, + S, = 1. c is the polymer concentration in the
water phase. vy, Vo, Vyp are the componentwise velocities of water, oil, and polymer.
K is the permeability tensor. k, is the relative permeability. p is the pressure. z
is the depth. g is the gravity constant. The mobility factors, M,, M,,, M., model
the modification of the componentwise mobility due to the presence of polymer (oil,

water, polymer).

The mobility factors depend on S, p, and ¢, but the algebraic form of the dependence
can be proprietary and unknown. In this example, we are going to infer such

dependence.

PSim, the industrial simulator aforementioned in Section 1.1, is used as the gray-
box simulator, where we use the upwinding scheme and the IMPES time marching
[4], i.e. implicit in pressure and explicit in saturation. Its solution, S, ¢, and P
can be used to train the twin model. The twin model is implemented in MRST, an
open-source reservoir simulation toolbox [109]. We use the upwinding scheme and
the fully implicit time marching to simulate the twin model. The solution mismatch

is defined by

T T T
M, = wg, / / |Sw — Su|?dedt + wc/ / lc — &2 dxdt + wp/ / lp — p|*dzdt
o Ja o Ja o Ja

(2.51)

where wg, , w., and w, are non-dimensionalization constants.

Consider a reservoir setup shown in Figure 2-25, which is a 3D block with two
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injectors and one producer. The permeability is 100 milli Darcy, and the porosity
is 0.3. A constant injection rate of 10°ft®/day is used at both the injectors. The
reservoir is simulated for ¢ € [0,50]day. To select the basis dictionary for the twin
model, the truncation errors for the three equations in (2.49) are minimized separately
by using the forward-backward iteration. Figure 2-26 shows the trained mobilities for
oil, polymer, and water. Tables 2.5 through 2.7 list the basis dictionary for the three
mobilities. Figure 2-27 shows the truncation error at each forward-backward iteration
for the three mobilities. The solution of S, is illustrated in Figure 2-28 for the
untrained twin model, the gray-box model, and the trained twin model, respectively.

After the training, the twin-model solution matches the gray-box solution closely.

Producer

Figure 2-25: The geometry of the petroleum reservoir.

(-2,-2,-2,-1,0,0) (2,-2,-2,0,0,1) (-2,-2,-2,0,1,2)
(-2,-2,-2,0,1,3) (-2,-1,-2,0,0,0) (-2,-1,-2,-1,1, 1)
Gg,-1,92 0,0,1) (24,9208 11 2-120L2
(-2,-1,-2,0,1,3)  (-2,-1,-1,0,0,0) (-2,-1,-1,0,0,1)
G ool =1 0 0.4 B8 L oL, -10 8 (-1 -1 008
(-2,-1,-1,0,1,2)  (-2,-1,-1,0,1,3) (-2,-1,-1,0,2,3)

Table 2.5: (jp, Jsws Jes Thps Msw» M) for M.

89



c 0.5

0.1 0.0
(a) Oil mobility.

1.0

c 0.5' L

0.1 0.0

(b) Polymer mobility.

900
800
700
600
500
400
300
200
100

-100

(c) Water mobility.

Figure 2-26: The trained mobilities M,, M,, My
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(-2, -2, -2, -1, 0, 0)
(-2,-1,-2,0, 0, 0)
(-2, -1,-2,0, 1, 1)
(-2,-1,-2, 0,2, 3)
(-2,-1,-1,0, 1, 1)
(-2,-1,-1,0, 1, 2)
(-2, -1,-1, 0, 1, 4)
(-2, 0,-1, -1, 1, 0)
(-2,0,-1,-1, 0, 1)
(-2,0,-1,0,0,2)
(-2,0,-1,0, 2, 4)

Table 2.6:

(-2, -2, -2, -1, 0, 0)
(-2,-2,-2,0, 1, 2)
(-2, -1,-2, 0, 0, 0)
(-2, -1,-2,0, 1, 1)
(-2, -1,-2,0, 1, 3)
(-2,-1,-1,-1, 0, 1)
(-2,-1,-1,-1, 1, 2)
(-2,-1,-1,0, 1, 3)

(-2, -2, -2, 0, 0, 0)
(-2,-1,-2,-1, 1, 1)
(:2,-1,-2,0, 1, 2)
(-2, -1, -1, 0, 0, 0)
(-2, -1, -1, -1, 1, 2)
(-2,-1,-1,0, 1, 3)
(-2,-1,-1, 0, 2, 4)
(-2, 0, -1, 0, 0, 0)
(:2,0,-1,0,1, 1)
(-2,0,-1,0, 1, 2)
(-2, 0,0, -1, 0, 2)

(-2, -2, -2, 0, 0, 1)
(-2, -1, -2, 0, 0, 1)
(-2,-1,-2,0, 1, 3)
(-2, -1, -1,-1, 0, 1)
(-2, -1, -1, 0, 0, 2)
(-2,-1,-1, 0, 2, 3)
(-2, -1, -1, 0, 2, 5)
(-2,0,-1,0, 1, 0)
(-2,0,-1,0, 3, 1)
(-2,0,-1,0, 1, 3)

(jpvjsWujwnpvnsWanc) for wa-

(-2, -2, -2, 0, 0, 0)
(-2,-2, -2, 0, 1, 3)
(-2, -1, -2, -1, 1, 1)
(-2,-1,-2,0,1, 2)
(-2, -1, -1, -1, 0, 0)
(-2,-1,-1,0,0,1)
(-2,-1,-1, 0,0, 2)
(-2,-1,-1,0, 2, 3)

(-2, -2, -2, 0, 0, 1)
(-2, -1, -2, -1, 0, 0)
(-2,-1,-2,0, 0, 1)
(-2, -1, -2, 0, 2, 2)
(-2, -1, -1, 0, 0, 0)
(-2, -1,-1,0, 1, 1)
(-2,-1,-1,0, 1, 2)

Tab/e 2.7 (jp:jsW,jc, 77p, Tsw » 770) fOI‘ Mw-

Let the objective function be the residual oil at 7" = 50 days,

£ = / 0o(T)$5,(T) de.
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The gradient of £ with respect to the time-dependent injection rate is computed. The
gradient estimated by the twin model is shown in Figure 2-29, where the red and blue
lines indicate the gradient for the two injectors. In comparison, the star markers show

the true gradient at day 2, 16, 30, and 44, evaluated by finite difference. Clearly, a



1e0
x oil equation
+ polymer equation
« water equation

le-1

=
le-2
le3%~"10 20 30 40

iteration

Figure 2-27: Relative cross-validation error at each forward-backward
iteration. The x axis is the number of iteration, and the y axis is the
integrated truncation error for M, of the three equations in (2.49).

rate increase at the injector 1 leads to more residual oil reduction than the injector 2.
This is because the injector 2 is closer to the producer, where a larger rate accelerates
the water breakthrough that impedes further oil production. It is observed that the
estimated gradient closely matches the true gradient which is computed by finite

difference. The error is given in Table 2.8.

Error [t=004|t=032|t=0.6|1¢=0.88
Inj 1 1.7 1.0 0.6 0.2
Inj 2 2.2 1.9 0.7 0.2

Table 2.8: Error of estimated gradient at day 2, 16, 30, and 44, in
percentage.

2.5 Chapter Summary

This chapter develops a method for gradient estimation by using the space-time
solution of gray-box conservation law simulations, at a cost independent of the dimensionality
of the gradient. The key to inferring F is to leverage the gray-box space-time

solution. My method uses the big data, the gray-box space-time solution, to estimate
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—300)
1000 ™.

1000

0

(a) Untrained twin model.

~300
1000
1000
0
~300) il
1000 s
1000

0
(c) Trained twin model.

Figure 2-28: Isosurfaces of S, = 0.25 and S,, = 0.7 at t = 30 days. After
the training, the twin-model solution matches the gray-box solution.
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—0.2 ¥

—0.24 ¢

grad

—0.28¢

0'1'0'2'0;3'014'0'50

Figure 2-29: Gradient of & with respect to rates at the two injectors. The
lines indicate the gradients estimated by the twin model, while the stars
indicate the true gradient evaluated by finite difference.

the unknown component in the gray-box model and to estimate the gradient. The
twin model is an adjoint-enabled conservation law simulator, and can be trained
to minimize a metric measuring its difference against the gray-box simulator. Two
metrics, the solution mismatch and the integration truncation error, are proposed. To
enable the training computationally, a sigmoid parameterization is presented. Then
the twin model method is demonstrated in the Buckley-Leverett equation by using
a set of manually chosen bases. To further exploit the information contained in
the gray-box solution, an adaptive basis construction procedure is presented. The
adaptive procedure iterates over a forward step and a backward step to append and

delete basis in the basis dictionary.

The proposed twin-model algorithm is demonstrated on a variety of numerical
examples. The first example is the Buckley-Leverett equation, whose flux function is
inferred. The trained twin model accurately estimates the gradient of an objective to
the source term. The second example is the steady-state Navier-Stokes equation in
a return bend, whose state equation is inferred. The inferred state equation allows
estimating the gradient of mass flux to the control surface geometry. The third
example is the petroleum reservoir with polymer injection, where the mobility factors

are inferred. The gradient of the residual oil to the injection rate is estimated. With
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the aid of the estimated gradient, the objective can be optimized more efficiently,

which will be discussed in the next chapter.
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Chapter 3

Leveraging the Twin Model for

Bayesian Optimization

This chapter develops a Bayesian optimization framework to solve (1.9),

¢® = argmax &(u,c)
Cmin<€<Cmax

M N r ,
5(0)Zzzwijf(uij,c;ti,ﬂﬁj)%/o /Qf(u,c;t,x)dmdt

i=1 j=1

where £ is the objective function that is twice differentiable, w is the gray-box solution,
c is the control variables, ¢ = 1,--- ,M, j = 1,--- , N are the indices for the time
and space grid, and w;;’s are the quadrature weights. In the following context, we
assume £ to be twice differentiable. As discussed in Section 1.3.1, the advantage of
Bayesian optimization is that it uses all the information available from previous
evaluations. This advantage can be valuable in our context where the gray-box
simulation is expensive. The estimated gradient, provided by the twin model, is
utilized to improve the optimization performance. The goal is to reduce the number
of gray-box simulations required to achieve the desired objective evaluation, as well as
to reduce the overall computational cost. The chapter is organized as follows. Section
3.1 discusses the Bayesian modeling of the objective function and its gradient. The

modeling is used to develop a Bayesian optimization algorithm in Section 3.2. The
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convergence properties of the algorithm are investigated in Section 3.3. Finally, the

algorithm is demonstrated in Section 3.4 in several numerical examples.

3.1 Modeling the Objective and Gradient by Gaussian

Processes

Assume the gray-box simulator evaluates the objective function £ accurately. The
adjoint gradient estimated by the twin model may not equal the true gradient for
several reasons. For example, the gray-box solution can be under-resolved if the
space-time grid is too coarse, thus limiting the accuracy of the inference of F. In
addition, the simulators for the twin and gray-box models may use different numerical
schemes, so the twin-model solution may not equal the gray-box solution even if
F = F. Similarly, the F' that minimizes the solution mismatch may not equal
F. Because of the errors in estimating F, an error is introduced in estimating the
gradient. It is difficult to identify and separately quantify the various sources of
errors in the estimated gradient. Instead, I model the gradient error as a whole

without distinguishing the sources of errors.

Let V¢ be the true gradient of £, ¢ be the twin-model estimated gradient, and £g;
be its ith component. We model the relationship between V¢ and &g by [63, 64, 65]

gﬁi = V& + 6, (3.1)
fori =1,---,d, where € = (€1, -, €;) models the error in the estimated gradient,
where ¢;’s are functions that depend on the control variable.

Gaussian processes are adopted to model the terms in (3.1). In particular, I made
the following assumptions.

1. € is a realization of a stationary Gaussian process with mean p, and covariance
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kernel K(-,-);

2. €, -+ ,€q are realizations of zero-mean stationary Gaussian processes with covariances

Gi(+,+), -+ ,Ga(-, ), respectively;

3. The gradient errors, €;’s, are independent with the objective,

cov [€(c1), €i(c2)] =0, (3.2)

forall ¢j,co € R, i =1,--- ,d;

4. The components of the gradient error are pairwise independent,
cov [e;(c1), €j(c2)] =0,

for all c1,co € R% and 5 # 7;

5. The covariances are isotropic, i.e., K(c1,c2), Gi(ci,c2), -+ Ga(cr,c2) only
depend on ||01 —~ C2HL2.
1

Suppose £ and £ have been evaluated on ¢, Based upon the assumptions

above, the joint distribution of £(c), £(c,), and &g(c,) is multivariate normal and is

given by
£(c) W K(c,e) v w
£e) |[~N||u|.| ¥ D H , (3.3)
£5(cn) 0 wl H" E+G
where
v=(K(cc1), -, Kleen)), (3.4)
w= (V,K(c,c1), -, VeyK(c,en)) (3.5)
K(ci,c1) -+ K, en)
D = ' : , (3.6)
K(en, ) -+ K(en,cn)

!The notations are consistent with Section 1.3.1. The objective and estimated gradient
evaluations are assumed to be collocated, which will be shown in Section 3.2.
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VclK(Cl,Cl) VCNK(Cl,CN)

vclK(CNacl) T VCNK(CNacN)

Ve, Vo K(cy, ) -+ Vg VC},K(cl, cy)
Ve, VC}\,K(CN’ cll) T vCN vcﬁvK(cNa ClN)

G(Cl,Cl) cer G(Cl,CN)
a-| - | (3.9)
G(CN, 01) co G(CN, CN)
where G/(c;, ¢;) is the covariance matrix of €(c;) and €(c;) given by
G(Ci, Cj) = di&g(Gl(Ci, Cj), e ,Gd(Ci, Cj)) N i, _] = ]., o ,d. (310)

The derivation of (3.7) and (3.8) can be found in [74}.

As discussed in Section 1.3.1, there are many choices for the covariance kernels
K and G, such as the exponential kernel, the squared exponential kernel, and the
Matérn kernel. In the following context, the Matérn 5/2 kernel is used. This is
because the functions simulated by this kernel are twice differentiable but without

further smoothness [71, 89, 90]. We have

5 - 5 Ci1 — C 2 5 c1 — C
K(cl,@) :Ug <1+ \/_“C1LE CQ”Lz + ” 13L€22”L2) exp (_\/—” ng 2||L2) ,

(3.11)

— 5 _ 2 _
Gi(cl762) = Uéi (1 + \/5”01 CZ”L2 + ”Cl C2”L2) exp (_ \/5”61 C2||L2

L, 3LG¢2 LGi ’
(3.12)

where o¢, 0g,’s are the standard deviation parameters, and L¢, Lg,’s are the correlation

length parameters.
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Let 6 denote the hyper parameters L¢, o¢, Lg,’s, 0g,’s, and pu. Given the samples
of £ and &g on a set of ¢’s, f can be estimated by log maximum likelihood. As
discussed in Section 1.3.1, we use ¢,, = (c1,- - , ¢,) to represent a sequence of control
variables on which £ and &g have been evaluated. The likelihood of observing &(c,)

and &g(c,) is given by

p (E(e), Eo(c)lf) = / p(E(e), Eacn), VE() 1) d(VE(C,)
/ p(E(e,), VEE)I0)p (€0 () IE(e,), VE(,); ) d(VE()) -

(3.13)
Because
(), VE(e) |0 ~ N ( (") , ( b H)) , (3.14)
0 HT E
and
£o(cn)l€(en), VE(c,); 0 ~ N (VE(e,), G) , (3.15)

the log marginal likelihood can be derived. It has the closed form

log p(&(c,), &g (cn)l0)

_fee-n) (D B\ (de)-u) 1 ( (D H
2\ &l(c) H' BE+G o (cn) 2 HT” E+G

- —Jy—(—d2+—1) log(2m) .

(3.16)

The log marginal likelihood can be optimized efficiently using GBO methods. In my
thesis, the optimization is done by the BFGS algorithm in the NLopt package [43].

Given the joint distribution (3.3) and the estimated hyperparameter 6, the posterior
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of £(c), for any ¢ € RY, can be obtained by (1.16),

m(e) = m(c) + K(c,¢,) K(cn c,) ™" (§(ca) — micy,))

K(c,d) = K(c,d) — K(c,¢,)K(c,,c,) ' K(c,, )

=n’ =n

As discussed in Section 1.3.1, the expected improvement (EI) acquisition function,
p(c), can be evaluated by using the posterior. The acquisition function can be
optimized to find the next control variable to evaluate the objective function. In
my thesis, the optimization is done by the StoGo algorithm [87, 88|, a gradient-based
branch-and-bound algorithm implemented in the NLopt package [43].

3.2 Optimization Algorithm

Based upon the developments in Section 3.1, I present the Bayesian optimization

algorithm 3. The flowchart of the algorithm is sketched in Figure 3-1.

Input: Initial guess c. Current best control ¢j. Current best objective £§. Max
iteration nypax.
Expected improvement threshold Eli,. D, =[], D¢ =[], D¢, = [].
1: for i =1 to ny,x do

2: Simulate the gray-box model on ¢, obtain £(c) and u(c).
3: Train a twin model using u(c), obtain £g(c).

4: D. = [D,,c], D¢ = [Dﬁ’f(C)L D&e = [Déevgﬁ(c)]'
5: if £(c) > & then

6: Ca «—cC

7: end if

8: Update hyper parameters by MLE.

9: C < argmax, . ..c.  log(pez(c)).

10: if per(c) < EIp, then

11: break

12: end if

13: end for

Output: ¢, &
Algorithm 3: Bayesian optimization enhanced by the gradient estimated by the
twin model method.

The algorithm starts from an initial value of the control variable ¢, then iterates
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Optimal expected
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Optimal C

> threshold < threshold

Figure 3-1: Flowchart of Algorithm 3.
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over line 2-12 to find the next candidate control. At each iteration, the gray-box
model is run at the current control variable, which provides the current objective
function &(c) and the gray-box solution u(c). The resulting gray-box solution is
used to train a twin model according to the twin-model algorithm, Algorithm 2,
which provides the estimated gradient &g(c). Using the new evaluations of £ and
&g at ¢, the hyperparameters are updated by the maximum likelihood. Then the
next candidate control variable is determined according to the expected improvement
acquisition function. If the expected improvement at the candidate control is smaller
than a threshold value, the optimization exits and reports the best control variable;

otherwise the iteration continues until the maximum number of iterations is reached.

In line 3 of Algorithm 3, a new twin model is trained at each iteration for the
current control variable. The basis dictionary for the new twin model does not need
to be constructed from scratch. The dictionary of the last iteration can be used to
provide an initial guess of the dictionary for the current twin model. The bases in
the old dictionary may be insignificant for the current twin model; therefore, they
should be pruned to give the initial guess. We present a greedy approach to pruning
the bases in Algorithm 4. The pruned dictionary is then used as the initial basis

dictionary for training the current twin model.

3.3 Convergence Properties Using True Hyperparameters

This section investigates the convergence properties of Algorithm 3. For Bayesian
optimization with only the objective function evaluation, the convergence properties
have been explored in the literature. Locatelli [73] proved that Bayesian optimization
with EI acquisition generates a dense search sequence for the 1-D optimization problem

*

¢* = argmax.p §(c), if £ is a realization of the Wiener process. Vazquez [67]
generalized the results by showing that the sequence is still dense for higher dimensional
space and for more general classes of stochastic processes. Recently, Bull [68] showed

that Bayesian optimization with EI has a convergence rate at O(n“”/ 4), where v > 0 is
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Input: A, a4 _Ef the trained twin model at 1&3 last iteration.
1: Compute M by k-fold cross validation. Mg < M.
2: while | 4] > 1 do

3:
[* + argmin s;(A), A+ A\{l"}
leN(A)
4: Compute M by cross validation.
5: if M < M, then
6: Mo «M
7 else
8: AJ{l*}, break
9: end if
10: end while
Output: A

Algorithm 4: Prune the basis dictionary of previously trained twin model. To
be consistent, the metric M is set as the same metric, either M, or M, as in
Algorithm 2.

a constant parameter controlling the kernel smoothness, and d is the dimensionality
of the control variable. Similar results have been given for UCB acquisition. N.
Srinivas [69] shows that the convergence rate for UCB is O(n~ 7@ ). However,
to the best of my knowledge, the convergence analysis found in the literature only
considers objective function evaluations but not estimated gradient evaluations. My
contribution is to extend the convergence analysis to incorporate estimated gradient
evaluations. In this section, I analyze the convergence properties of Algorithm 3. I
assume that the objective function is a realization of a zero-mean stationary Gaussian
process and assume the gradient error is a realizations of another zero-mean Gaussian
process. In addition, I assume the kernel functions and the hyperparameters of the
Gaussian processes are known. Under the assumptions in Section 3.1, I prove that the
search sequence of the control variable is dense in the search space. The conclusion
implies that the algorithm is able to find the optimal control as n,,x — 00, regardless

of the magnitude of error in the gradient estimation.

The assumptions in Section 3.1 are revisited as follows: £ belongs to the reproducing

kernel Hilbert space (RKHS) Hx generated by a semi-positive definite kernel K :
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C x C — [0,00). Let K be differentiable; then the gradients of all functions in
Hy form a RKHS Hg,, defined by the kernel Ky(cy,c) = V.,V ,K(c1,cg) for all
c1,co € C (Theorem 1 in [66]). Besides, ¢;, for i = 1,--- ,d, belongs to the RKHS

*, generated by a semi-positive definite kernel G; : C x C — [0, 00). ¢;’s are pairwise

independent. Denote the tensor product of the RKHSs by He = He ® -+ @ HE,.

Represent the stochastic dependence of £ by we, and represent the stochastic
dependence of €¢; by w!. Let (€, ¢, P¢) be the probability space for we, and let
(€, 3¢, P) be the probability space for w. We have

£ :CxQ R
(3.17)
(c,we) = &(c;we)
and
e :Cx Qi — R4
, (3.18)

(c,w?) — €(c; wé)

for i = 1,---,d. Let we = (w!,---,w?) and Q, = Q! @ --- ® Q¢ The true
objective function is {(c;wf) for wi € Q. The true estimated gradient error is
e(c;wy) for wi € Q. In other words, {(c;w;) = &(c) and e(c;w;) = €(c) for all
c € C. Conditioned on &(c,) and &g(c,), Bayesian optimization generates the next
search point deterministically. Given the initial control ¢, the search sequence can

be seen as a mapping
Q(wf)we) = (Ol(w£>we)702(w§aw6)"' ) y (319)

The search strategy C generates a search sequence C, Cy, - - in C, with the property
that C,,,; is F,-measurable, where F,, is the o-algebra generated by £(c,) and g (c,)-
At the n-th search step, the posterior mean and variance of £(c) conditioned on £(c,,)

and &g (c,) can be written as

~

gn(C; Qn) = ]Ewg,we [g(cv wE)

e €(c) Eolen)] (3.20)
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and

i) = B | (660 = £:(0))

gn,g(gn),se@n)] . (3.21)

Notice 02(c;c,) only depends on ¢,, and is independent of £(c,),&s(c,) because of

the Gaussian process assumption.

The following theorem holds.

Theorem 3. Let ®(c) = K(c,0) for all c € C, and let ® be its Fourier transform. If
there exist C > 0 and k € N, such that (1 + |7)‘2)k|<i>(17)‘ > C for allm € RY, and if
Nuax — 00 and Elyy, = 0, then ¢, is dense in C for all c;nie € C, all € € Hi and all

€€ He.

Proof-
First, we have the following lemma (Chapter 1, Theorem 4.1, [70]).
lemma 1. Let K1, K, be the reproducing kernels of functions on C with norms ||-||x,

and || - ||, respectively. Then K = K; + K; is the reproducing kernel of the space
H=Hi0H={f=fi+fo, i €M, fo € Ha}

with norm || - ||3 defined by

VfeH 2 = i ( 2 )
f £ 115 e e |l fillae + 1 fall3,

Using Lemma 1, we prove the following Cauchy-Schwarz inequality,

lemma 2.

4d . 4d . 4 : i 2¢ ..
1+ 3 1€ (c; wﬁ)”'HK + 3 IVe£(c; w&)”’HKV + 3 ; HQ(C; we)\ M, o*(c;¢p)
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To prove Lemma 2, we define a vector
u=(ug,- - ug) €U,

where U = [0, 1]¢. Define an auxiliary function

Ve, u;we, we) = <1 — Zuz> c,we) +ul [Veé(e,we) + e(c;we)] -

uy, -+ ,uq are functions from the Sobolev space W12 defined on U, equipped with

the inner product

($.0) = /u o0 + (V)T (Vo)) du

The Sobolev space is a RKHS with the kernel

Ku(¢,9) = —eXp( ¢ — b))

on U = [0,1]. Given wg and we, Y-, -;we, we) can be viewed as a realization from a

RKHS Hy, defined on C x U. Let the kernel function of Hy be

Ky :CxUCxU—-R

(Cl,ul)’ (CQ’U’?) - KJ’((Claul)» (C2au2))

Notice
Y(e, 05 we, we) = &(c, we)

is the objective function, and

(y(c, e1; we, We), - -+, Ve, ed;w@we)) = V&(c;we) + €(c; we)

is the estimated gradient, where e;,7 = 1, - - , d indicates the ith unit Cartesian basis

vector in R¢. Conditioned on the samplings £(c,) and £¢(c,), we can bound the error
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of the estimation of Y(c, 0; we,w,) by the Cauchy-Schwarz inequality [70] in H,,

A

’y(c,o;wéawe) - y(C,O c )

— ‘g(c; we) — En(c; )| S ol e )1V

Besides,

d
( Z ) cwe) +u” [VeE(e;we) + e(c;we)]
< I€(e;we)llyy,, + (Z Hulllm> 1€ (c; we)llyy,. + (Z ||u1\|,{u) 1V (50l

Hy

d
+ Z Huiei(c; wz)“,}_‘u®,’{?g
4d
= llgle. @)y, + 3 llEle, w)llay,e + IIch(c we)llpgye, + 3 Z le:(c;w) |l s

i=1

where the inequality obtained by Lemma 1. The proof for Lemma 2 completes.

Using Lemma 2, we prove
lemma 3. Let (¢,)n>1 and (a,)n>1 be two sequences in C. Assume that the sequence
(an) is convergent, and denote by a* its limit. Then each of the following conditions

implies the next one:

1. a* is an adherent point of ¢, (there erists a subsequence in ¢, that converges to

a*),
2. 0%(an;c,) — 0 when n — oo,
3. &(an;c,) — £(a*,w) when n — oo, for all £ € Hy, € € He.

The proof of Lemma 3 is the similar as the proposition 8 in [67], except that the
Cauchy-Schwarz inequality used in the paper is replaced by Lemma 2. We do not
repeat the proof but refer to [67] for the details.

Next, we show the three conditions are equivalent in Lemma 3. Using the assumption:
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There exist C > 0 and k € N*, such that (1 + |n|*)¥|®(n)| > C for all n € RY,

we have, for any £ € Hy and its Fourier transform f ,

l€llye = [+ PR dn = € [ (@] ] dn = ORIl

where W*? is the Sobolev space whose weak derivatives up to order k have a finite
L? norm [68]. Therefore, W*2? C Hy. The result can be extended to & € Hy(C)
defined on the domain C € RY because Hx(C) embeds isometrically into Hx(R?)
[80]. Besides, we have that C%° is dense in W*? (Chapter 2, Lemma 5.1 [81]), where
C is the C* functions with compact support on C. As a consequence, C° C Hg
[67]. If the condition 1 is false, then there exist a neighborhood U of a* that does not
intersect ¢,,. There exist £ € Hg that is compactly supported in U, and € = 0, such
that £(a*;c,) = 0 whereas £(a*) # 0, which violates the condition 3. Therefore, the

three conditions in Lemma 3 are equivalent.

Finally, we have:
lemma 4. (E. Vazquez, Theorem 5 [67]) If the three conditions in Lemma 3
are equivalent, Ny — 00, and Elny, = 0, then for all ¢y € C and all w € H,
the sequence ¢, generated by the Bayesian optimization with expected improvement
acquisition is dense in C.
We refer to [67] for the details of the proof and do not repeat it here. To summarize,

under the conditions in Theorem 3, ¢, is dense in the search space. [ |

Under the condition that the true hyperparameters are known, the theorem implies
that the Bayesian optimization algorithm (Algorithm 3) can find the maximum of the
objective function in the limiting case of ny., — 00 and Ely, = 0, regardless of the
error of the gradient estimation. Even if the gradient is poorly estimated, the current
best control is always close to the true optimal and the optimization won’t get stuck
at a non-optimal control. The assumption of (1 + |7|?)*|®(n)| > C in the theorem
indicates that the Fourier transform of K (-, c) has at least polynomial growth, which

is a condition satisfied by the Matern 5/2 kernel [67]. It is a future work to extend
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the theory to unknown and estimated hyper parameters.

3.4 Numerical Results

This section demonstrates the optimization algorithm on several numerical examples.

3.4.1 Buckley-Leverett Equation

Consider the same gray-box model of Buckley-Leverett equation in Section 2.4.1

2

@+_3_(__u_)_
ot 0r\1+4+2(1—u)? -

with the periodic boundary condition and the same initial condition shown in Figure

2-11. We parameterize the control ¢ by
, (3.22)

where Ly = L, = 0.15, and (t1,--- ,t5) = (21, -+ ,x5) = linspace(0,1,5). Consider

minimizing the objective

! 17 1
_ t=1,2)— = — 2 3.23
£(C) L:Q U( x) 2 + 100 ” C’L] ) ( )
with the bound constraints —1 < ¢;; <1 for¢,j=1,---,5.

The optimization is done by using Algorithm 3. Figure 3-2a shows the optimized
source term. Figure 3-2b shows the corresponding gray-box solution. Constrained
by a limited number of gray-box simulations, the optimized solution and objective
are examined. Figure 3-3 compares the optimized u(t = 1,z) obtained by using

the Bayesian optimization with and without the estimated gradient, after 20 gray-
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box simulations. Figure 3-4 shows the current best (minimal) objective evaluation
at each iteration. The usage of twin-model gradient makes the objective evaluation

decrease faster, especially when the number of iteration is small.

0.3

.15
0

-0.15

- v -0.3 0 :
o 02 04 06 08 10 T
X
(a) Optimized source term. (b) Optimized gray-box solution.

Figure 3-2: Optimized results for the Buckley-Leverett equation.
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Figure 3-3: A comparison of the current best u(t = 1, x) after 20 gray-box
simulations. The red line is obtained by the vanilla Bayesian optimization
and the green line by the twin-model Bayesian optimization. The cyan
dashed line is the u(t = 1, z) obtained by setting the source term to zero.
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Figure 3-4: The current best objective evaluation at each iteration. The red
line is obtained by the Bayesian optimization without using the estimated
gradient. The green line is obtained by using the estimated gradient. The
black horizontal line indicates the true optimal, which is obtained by BFGS
using the true adjoint of the Buckley-Leverett equation.

3.4.2 Navier-Stokes Flow

Consider the same Navier-Stokes flow in Section 2.4.2. Let S(c) be the area of the
return bend. S(c) is a function of the control points’ coordinates represented by c.
Let So = %W(1.252 —0.25%). The objective function is the steady-state mass flux with

a penalty term representing the difference of S and Sp,

() = f 1 pmumloutlet dy — A(S — 80)2 ’ (3.24)
outlet

where A > 0. The goal is to maximize £(¢) in a bounded domain cpin < ¢ < Chpax
shown by the blue boxes in Figure 3-5. There are four variable control points at each
boundary, where each control point has the x- and y-coordinates. Thus, the control is
16 dimensional. Figures 3-5 (a) and (c) show the initial and the optimized geometries
for the van der Waals and the Redlich-Kwong gasses. Figures 3-5 (b) and (d) show the
corresponding pressure profiles at the interior and the exterior boundaries along the
streamwise direction. The optimized geometry reduces the adverse pressure gradient

at the flow separation and thus decreases the drag and increases the mass flux.
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Figure 3-6 shows the geometry, the trained state equation, and the basis dictionary
for the first five iterations and the optimized result of the Bayesian optimization.
In this numerical example, the trained state equation and the basis dictionary are
similar at each Bayesian optimization iteration. Figure 3-7 shows the current best
objective evaluation at each iteration. The twin-model estimated gradient enables
faster improvement of the objective evaluation. Figure 3-8 shows the wall-clock
time of the optimization against the number of iterations. Although the twin model
increases the computational cost per iteration, the increased cost is offset by the faster

improvement of the objective function.
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Figure 3-5: (a) Initial guess of control points (blue dots); initial guess of
the geometry (blue line); optimized control points (red dots); optimized
geometry (red line) for the van der Waals gas. The blue squares indicate
the bound constraints for each control point. (b) Pressure along the
interior and the exterior boundaries for the initial (blue) and the optimized
(red) geometry. (c) and (d) Results for the Redlich-Kwong gas.
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Figure 3-6: Trained state equation, the error of the trained state equation,
the return bend geometry, and the basis dictionary at some iterations of
the Bayesian optimization. The gray-box model uses the Redlich-Kwong
state equation. The resolution of the bases is represented using the same
symbols as in Figure 2-20.
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Figure 3-7: Current best objective at each iteration for the van der
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the twin-model Bayesian optimization.
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Bayesian optimization without the estimated gradient. Black horizontal
lines indicate the true optimal, obtained by BFGS using the true gradient.
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Figure 3-8: Cumulative and per-iteration wall clock time, in minutes.
Although the twin-model Bayesian optimization is costlier per-iteration
due to the training of twin model, it achieves near-optimality with less
overall computational time. The gray-box model uses the Redlich-Kwong

state equation.
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3.4.3 Polymer Injection in Petroleum Reservoir

Consider a 2D horizontal reservoir governed by (2.49)

0
ot (PaSa) + V - (paila) =0, € {w,o}

% (PwdSwc) + V - (cptiyy) =0

9

and (2.50)

Uq = —Mukyo K - (Vp — ppgV2), «€ {w,o}
Vp = —Muypkr o K - (VD — ppgVz)

The permeability is heterogeneous and is shown in Figure 3-9. Five injectors are
placed along the southern boundary, and one producer is placed in the northeastern

corner. The reservoir is simulated for ¢ € [0,T = 10] day.

Time-independent control

First, consider constant-in-time injection rates at the injectors. Let the price of unit
mass oil be e‘f, which decays over time, where 7 > 0 is a constant. Let the price of

unit mass water be 0 < A < 1. Define

¢ 5
(1) = ( [ oo~ it = [ pult = 0105 = O)dx) A il

= (3.25)
which represents the price of the produced oil produced minus the price of all residual
oil at t = 0 and the price of the total water injected. pprodo is the oil phase
density at the producer, pinjuw:’s are the water phase densities at the injectors, ;o4
is the production rate at the producer, and Ii,j;’s are the injection rates at the ith
injector. The goal is to maximize £(7") with bound constraints on the injection rates

0 < Iinji < Imax. Since there are five injectors, the optimization is five-dimensional.
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Figure 3-9: Permeability of the reservoir, in 100 milli Darcy. The five
injectors are indicated by the black dots, and the producer is indicated by
the green dot.

Figure 3-10 shows the current best objective evaluation against the number of
iterates. The black line indicates the true optimal®’. The twin-model Bayesian
optimization achieves near-optimality faster than the vanilla Bayesian optimization
without using the gradient information. Figure 3-11 shows £(t) for the initial and the
optimized injection rates. The initial rates are set at I;nj; = Imax for all injectors,
which results in early water breakthrough and high water cut. Although the profit is

high at smaller ¢, it deteriorates for larger ¢ due to the water being wasted.

Time-dependent control

Second, consider time-dependent injection rates. If [0, 7] is discretized uniformly into
200 segments, each /;,j; becomes a vector with a length of 200. Thus the optimization
is 1000-dimensional. Clearly the Bayesian optimization algorithm developed in Section

3.2 is not long suitable because the large dimensionality leads to a huge covariance

*The true optimal is obtained by COBYLA [48] after running 192 gray-box simulations.
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Figure 3-10: Current best objective evaluation against the number of
iterates. The black line indicates the true optimal obtained by COBYLA
optimization [48], a derivative-free optimization method.
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Figure 3-11: £(t) for the initial and the optimized injection rates.

123



matrix3. Instead, the twin model is tested on a simple gradient descent method,
the backtracking Armijo gradient descent method [104]. The method is a gradient
descent method whose stepsize at the [th iteration is determined by Algorithm 5, the

backtracking-Armijo line search [104]

Input: Initial stepsize ag. 0 <8< 1,0< 7 < 1.
1: for I =1 to [, do

2: a1 =vop, l=101+1.
3 if &(c+a1VE) = &(c) > a1 VET - VE then
4: break
5: end if
6: end for
Output: o

Algorithm 5: Determine the stepsize in the gradient descent optimization by the
backtracking-Armijo line search [104].

Figure 3-12 shows the optimized injection rates. The first and fifth injectors, at
the southeastern and southwestern corners, are turned on first. The rate at injector 5
is particularly large, possibly because the permeability is relatively low. Once water
breaks through and a low-resistance water channel forms, the oil around the injector
5 will be more difficult to extract. Later, all injectors are turned on, and their rates
gradually decrease when the water cut increases. Figure 3-13 shows the current best
objective evaluation against the number of iterates. Using the time-dependent control,

the objective evaluation gets more improvement than the constant-rate control.

3.5 Chapter Summary

Based up previous research, this chapter develops a Bayesian framework for the
optimization problems constrained by gray-box conservation law simulations. Gaussian
process models are presented for the objective function, the true gradient, the estimated
gradient, and the gradient error. Using the Gaussian process models, the formulation

of the joint and the posterior distributions is given, where the hyperparameters are

3As aforementioned, the covariance matrix for evaluating the posterior is N(d + 1)-by-N(d + 1).
For example, after 100 iterates, the matrix becomes 10%-by-10°. The optimization algorithm can
dominate the computational cost instead of the conservation law simulation, which violates my
assumptions in Chapter 1. The problem of scaling is generally suffered by non-parametric methods.
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estimated by maximum likelihood. The developments are summarized in a Bayesian
optimization algorithm which leverages the twin-model gradient estimation. In addition,
the convergence property of the algorithm is theoretically studied. The algorithm is
guaranteed to find the optimal regardless of the gradient estimation accuracy if the
true hyperparameters are used. It is a future work to extend the theory to estimated

hyper parameters.

The proposed optimization method is demonstrated by several numerical examples.
The first example is the Buckley-Leverett equation whose flux is assumed unknown.
The objective function is optimized by adjusting the source term represented by
25 control variables. The second example is a Navier-Stokes flow in a return bend,
where the state equation is unknown. The mass flux with a penalty on the geometry is
maximized by adjusting the flow boundaries which are controlled by 16 variables. The
third example is a petroleum reservoir with polymer injections, where the mobility
factors are unknown. The profit is maximized by adjusting the constant-time injection
rates at five injectors. In all three examples, the twin-model optimization achieves
near-optimality with fewer iterations than the vanilla Bayesian optimization. Finally,
the time-dependent control is considered on the same petroleum reservoir example,
which yields a 1000-dimensional problem. Conventionally, such high-dimensional
optimization can be difficult without the adjoint gradient. The twin-model gradient

is tested to work well using a gradient descent approach.
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Chapter 4

Conclusions

In this thesis, I addressed the optimization constrained by gray-box simulations. I
enabled the adjoint gradient computation for gray-box simulations by leveraging the
space-time solution. In addition, I utilized the gradient information in a Bayesian
framework to facilitate a more efficient optimization. To conclude, this chapter
summarizes the developments and highlights the contributions of this work. I close

with suggestions for continuing work on this topic.

4.1 Thesis Summary

Optimization constrained by conservation law simulations is prevalent in many engineering
applications. In many cases, the simulator can be legacy and lack the adjoint capability.
Chapter 1 categorizes such simulators as gray-box. The gray-box scenario limits the
efficient application of gradient-based optimization methods. I motivate the need
for the adjoint gradient and explain the feasibility of estimating the adjoint gradient
in the gray-box scenario. The key is to leverage the gray-box space-time solution,
which contains information of the gray-box simulator but is usually abandoned by
conventional optimization methods. To restrict the scope of my thesis, a class of

problems is formulated where the flux functions are partially unknown.

To address this issue, an adjoint-enabled twin model is proposed to match the
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space-time solution. In Chapter 2, I develop a two-stage procedure to estimate
the gradient. In the first stage, a twin model is trained to minimize the solution
mismatch. In the second stage, the trained twin model computes an adjoint gradient
which approximates the true gray-box gradient. For a simple conservation law with
only one equation and one-dimensional space, I demonstrate theoretically that the
twin model can indeed infer the gray-box conservation law on a domain that has
large solution variation. To numerically implement the unknown part of the flux
function is parameterized by a set of bases. I argue that the sigmoid bases are
well suited for this problem because their gradients are local. The procedure is
demonstrated on a Buckley-Leverett equation using a set of sigmoids chosen manually.
- Although the estimated gradient is accurate, several limitations are observed, which
lead to the developments of adaptive basis construction. Several tools are introduced
for the adaptive basis construction, including a metric of the basis significance,
the basis neighborhood, and the cross validation. The adaptive basis construction
fully exploits the information contained in the gray-box solution and avoids the
problem of overfitting. Based upon these developments, a twin-model algorithm is
presented. The algorithm selects the basis dictionary adaptively using a forward-
backward iteration procedure, where either the solution mismatch or the integrated
truncation error can be used as the metric for basis selection. The twin-model
algorithm is demonstrated on several numerical examples: a 1D convection equation
with unknown flux function, a 2D steady-state Navier-Stokes flow with unknown state
equation, and a 3D petroleum reservoir flow with unknown mobility factors. In all
the three examples, the twin model algorithm provides an accurate estimation of the
true gradient, which represents a major contribution towards enabling the adjoint

gradient computation for gray-box simulations.

Using the twin-model gradient, optimization can be done more efficiently. Chapter
3 incorporates the twin-model gradient into a Bayesian optimization framework, in
which the objective function, the true gradient, the estimated gradient, and the

gradient error are modeled by Gaussian processes. The model provides analytical
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expressions for the posterior distributions and the acquisition function, while the
hyperparameters are estimated by maximum likelihood. I present a Bayesian optimization
algorithm that utilizes the twin-model gradient. In addition, I show that the algorithm
can find the optimal control regardless of the gradient estimation accuracy if the
true hyper parameters are used. The optimization algorithm is demonstrated on
several similar problems discussed in Chapter 2: a Buckley-Leverett equation with
source term controls, a Navier-Stokes flow in a return bend with boundary geometry
controls, and a petroleum reservoir with polymer-water injection rate controls. In all
the three examples, the twin-model optimization achieves near-optimality with fewer
iterations than the vanilla Bayesian optimization without the gradient information,
which represents another major contribution of my thesis. Finally, the twin-model
gradient is tested on a high-dimensional control problem, by employing a simple
gradient descent approach. The gradient efficiently enables the optimization of the

high-dimensional problem.

4.2 Contributions

The main contributions of this work are:

1. a twin-model algorithm that enables the adjoint gradient computation for gray-

box conservation law simulations;

2. an adaptive basis construction scheme that fully exploits the information of

gray-box solutions and avoids overfitting;

3. a Gaussian process model of the twin-model gradient and a Bayesian optimization

algorithm that employs the twin model; and

4. numerical demonstrations of the algorithms in several examples: the Buckley-

Leverett equation, the Navier-Stokes equation, and the porous media flow equation.
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4.3 Future Work

There are several potential directions of further research: A useful extension is to
consider unknown source terms. My thesis is limited to flux functions that contains
unknown algebraic dependence on the state variables. However, many industrial
simulations have unknown source terms, which are not accommodated by my method.
Being able to accommodate unknown source terms can extend the applicability of the
twin-model method. Another useful extension is to investigate the inferability of twin
models for various conservation laws. In particular, Theorem 1 may be extended to
more general problems with a system of equations and higher spatial dimension.
Besides, in the twin-model Bayesian optimization algorithm, it is of great practical
value to reuse the twin model more efficiently. My current approach uses the basis
dictionary of the twin model in the last iteration as an initial guess of the basis
dictionary in the current iteration, then re-trains the twin model. In the future, a
research direction is on how to utilize all previously trained twin models — for example,
by employing the “trust region” technique in the optimization: the same twin model
can be used multiple times at different controls inside a trust region of the control

space!, thus reducing the training cost.

Tn my thesis, the twin model is re-trained at each new control. Generally, gradient-based trust
region methods require the gradient to satisfy a property called full-linearity [50, 51]. Unfortunately,
this property is not guaranteed by the twin-model gradient. The lack of full-linearity is a key factor
that refrains me from exploring the trust-region methods in my thesis. It’s an open question on how
to introduce the trust-region framework into the optimization
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