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Abstract

Many design applications can be formulated as an optimization constrained by conservation
laws. Such optimization can be efficiently solved by the adjoint method, which
computes the gradient of the objective to the design variables. Traditionally, the
adjoint method has not been able to be implemented in "gray-box" conservation
law simulations. In gray-box simulations, the analytical and numerical form of
the conservation law is unknown, but the full solution of relevant flow quantities
is available. Optimization constrained by gray-box simulations can be challenging for
high-dimensional design because the adjoint method is not directly applicable.

My thesis considers the gray-box models whose flux functions contain unknown
algebraic dependence on the state variables. I develop a twin-model method that
estimates the adjoint gradient from the gray-box space-time solution. My method
utilizes the gray-box space-time solution in order to infer the unknown components
of the flux. The solution is used to train a parameterized, adjoint-enabled conservation
law simulator such that a metric of solution mismatch is minimized. After the
training, the twin model can estimate the gradient of the objective function by
the adjoint method, at a cost independent of the dimensionality of the gradient.
Also, an adaptive basis construction procedure is presented for the training to fully
exploit the information contained in the gray-box solution. The availability of the
estimated gradient enables more efficient optimization. My thesis considers a Bayesian
optimization framework, in which the objective, the true gradient, and the error in
the estimated gradient are modeled by Gaussian processes. Building upon previous
research, a twin-model-enhanced Bayesian optimization algorithm is developed. I
show that the algorithm can find the optimum of the objective function regardless
of the gradient accuracy if the true hyperparameters of the Gaussian models are given.

The twin-model method and the twin-model-enhanced optimization are demonstrated
in several gray-box models: a Buckley-Leverett equation whose flux function is unknown,
a steady-state Navier-Stokes equation whose state equation is unknown, and a porous
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media flow equation governing a petroleum reservoir whose componentwise mobility
factors are unknown. In these examples, the twin model is shown to accurately
estimate the gradients. Besides, the twin-model-enhanced Bayesian optimization can
achieve near-optimality within fewer iterations than without using the twin model.
Finally, I explore the applicability of the twin-model method in an example with
1000-dimensional control by using a gradient descent approach. The last example
implies that the twin model may be adopted by other optimization frameworks to
improve convergence, which indicates a direction of future research.

Thesis Supervisor: Qiqi Wang
Title: Associate Professor of Aeronautics and Astronautics

Committee Member: Karen Willcox
Title: Professor of Aeronautics and Astronautics

Committee Member: Youssef Marzouk
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Chapter 1

Background

1.1 Motivation

A conservation law states that a particular property of a physical system does not

appear or vanish as the system evolves over time, such as the conservation of mass,

momentum, and energy. Mathematically, a conservation law can be expressed locally

as a continuity equation (1.1),

F = q, (1.1)
(9t

where u is the conserved physical quantity, t is time, F is the flux that depends on

u, and q is the source term that also depends on u. Many equations fundamental to

the physical world, such as the Navier-Stokes equation, the Maxwell equation, and

the porous medium transport equation, can be described by (1.1).

Optimization constrained by conservation laws is present in many engineering

applications. For example, in gas turbines, the rotor blades can operate at a temperature

close to 2000K [10]. To prevent material failure due to overheating, channels can be

forged inside the rotor blades to circulate coolant air whose dynamics are governed by

the Navier-Stokes equation [7]. The pressure used to drive the coolant flow is provided

by the compressor, resulting in a penalty on the turbine's thermo-dynamic efficiency
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[8]. Engineers are thereby interested in optimizing the coolant channel geometry in

order to suppress the pressure loss. In this optimization problem, the control variables

are the parameters that describe the channel geometry. The dimensionality of the

optimization is the number of control variables, i.e., the control's degree of freedom.

Another example is the field control of petroleum reservoir. In the petroleum reservoir,

the fluid flow of various phases and chemical components is dictated by porous

medium transport equations [4]. The flow can be passively and actively controlled

by a variety of techniques [1], such as the wellbore pressure control, the polymer

injection, and the steam heating [5]. The pressure, injection rate, and temperature

can vary in each well and during every day over decades of continuous operations.

The dimensionality of the optimization is the total number of these control variables.

Driven by economic interests, petroleum producers are devoted to optimizing the

controls for enhanced recovery and reduced cost.

Such optimization has been revolutionized by the numerical simulation and optimization

algorithms. On the one hand, conservation law simulation can provide an evaluation

of a candidate control that is cheaper, faster, and more scalable than conducting

physical experiments. On the other hand, advanced optimization algorithms can

guide the control toward the optimal with reduced number of simulation 140, 41,

42, 50, 54, 55, 56, 72]. However, optimization based on conservation law simulation

can still be overwhelmingly costly. The cost is two-fold: First, each simulation at a

given control may run for hours or days even on a high-end computer. Such expense

in time is usually a result of using high-fidelity physical models, complex numerical

schemes, and large-scale space-time discretization schemes. Second, optimization

algorithms generally take many iterations of simulation on various controls. The

number of iterations required to achieve near-optimality usually increases with the

control variables' degree of freedom [601. The two costs are multiplicative. The

multiplicative effect compromises the impact of computational efforts among field

engineers.
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Fortunately, the cost due to iteration can be alleviated by adopting gradient-based

optimization algorithms [60]. A gradient-based algorithm requires significantly fewer

iterations than a derivative-free algorithm for problems with many control variables

[19, 60, 41]. Gradient-based algorithms require the gradient of the optimization

objective to the control variables, which is efficiently computable through the adjoint

method [11]. The adjoint method propagates the gradient from the objective backward

to the control variables through the path of time integration [11] or the chain of

numerical operations [18]. To keep track of the back propagation, the simulator source

code needs to be available. However, many industrial simulators do not have the

adjoint capability because their codes were developed without the adjoint technique

in mind. The implementation of the adjoint method in these legacy simulators can be

a major undertaking. For example, PSim, a reservoir simulator developed and owned

by ConocoPhillips, is a multi-million-line Fortran-77 code that traces its birth back

to the 1980's. Implementing adjoint directly into the source code is not preferable

because it can take a tremendous amount of brain hours. Besides, the source code

and its physical models are only accessible and modifiable by the computational

team inside the company. For the sake of gradient computation, PSim has been

superseded by adjoint-enabled simulators, but it is hard to be replaced due to its

legacy usage. The legacy nature of many industrial simulators hinders the prevalence

of the adjoint method and gradient-based algorithms in many real-world problems

with high-dimensional control.

Despite their legacy nature, most simulators for unsteady conservation laws can

provide the discretized space-time solution of relevant flow quantities. For example,

PSim provides the space-time solution of pressure, saturation, and concentration for

multi-phase flow. Similarly, most steady-state simulators can provide the spatial

solution. Thus, the discussion will focus on the unsteady case because a steady-state

simulator can be viewed as a special case of unsteady-state simulators where the

solutions remain the same over many time steps.
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My thesis considers the conservation laws whose flux functions have an unknown

algebraic dependence on the state variables. The adjoint gradient computation may

be enabled by leveraging the space-time solution. The discretized space-time solution

provides invaluable information about the conservation law hardwired in the simulator.

For illustration, consider a code that simulates

+u = , E [0,1], tE [0,1] (1.2)
a t ax

with proper initial and boundary conditions and F being differentiable. c indicates

the control that acts as a source for u. If the expression of F(u) in the simulator

is not accessible by the user, adjoint can not be implemented directly. However,

F may be partially inferred from a discretized space-time solution of u for a given

c. To see this, let the discretized solution be u = {u(ti,xj)}i=1,..,M, j=1,..-,N, where

0 < ti < t 2 < ... < t < I and 0 < x, < 2 < ... < xN < I indicate the time

and space discretization. Given u, the a and u can be sampled by finite difference.

Because (1.2) can be written as

Du d Fu _

+ = C , X E [0, 1] , t C [0, 1] (1.3)at du ax

away from the shock wave, the samples of a and 2 can be plugged into (1.3) to

obtain samples of !. The reasoning remains intact at the shock wave, where ! in

(1.3) is replaced by the finite difference form 2 according to the Rankine-Hugoniot

condition. Based upon the sampled ! and 4, the unknown flux function F can be

approximated up to a constant for values of a that appeared in the solution, by using

indefinite integral. Let P be the approximation for F. An alternative conservation

law can be proposed

a c, E [0,1], tE [0,1], (1.4)
at ax

that approximates the true but unknown conservation law (1.2), where ii is the

solution associated with P, in the following sense: If F and F are off by a constant
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a, i.e. F = F + a, then dFTu) = d(F(u)+a) dFu); therefore, the solutions of (1.2) anddu du du

(1.4) to any initial value problem will be the same. The gradient of any objective

function c(c) = (u(c), c) can be obtained by the adjoint method [11]. The gradient

is

< + A dxdt , (1.5)

where A, the adjoint solution, satisfies

aAa(AdF>8
A+ a =F- a . (1.6)

at ax du au

In (1.6), L and 2 are defined on the solution u of (1.3) [11]. Similarly, the gradient

of (c) (i(c), c) is

-- = -- + ( dxdt , (1.7)
dc 0 0 ac

where A, the adjoint solution, satisfies

a a dF a
at x du Ou(

In (1.8), d and L are defined on the solution ft of (1.4). If the two solutions, u and f,

are the same, and if d =dF on the solution, then the adjoint solutions, A and A will

be the same. As a result, the gradients, (1.5) and (1.7), will be the same. Therefore

can drive the optimization constrained by (1.2). A simulator for the approximated

conservation law is named "twin model" because it behaves as an adjoint-enabled

twin of the original simulator. If a conservation law has a system of equations and/or

has a greater-than-one spatial dimension, the above simple method to recover the

flux function from a solution will no longer work. Nonetheless, much information

about the flux function can be extracted from the solution. Given some additional

information of the conservation law, one may be able to recover the unknown aspects

of the flux function. The details of this topic are discussed in Chapter 2.

I call a simulator gray-box if it meets two conditions:
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1. The adjoint is unavailable, and the adjoint is impractical to be implemented

into the source code.

2. The full space-time solution of relevant flow quantities is available.

My thesis considers gray-box simulators whose flux functions contain unknown algebraic

dependence on the state, and whose boundary conditions, initial conditions, source

terms, and differential operators in the flux functions are known. For example, a

Navier-Stokes flow simulation can have an unknown state equation; in other words,

the pressure term contains an unknown algebraic dependence on the state. Another

example is a reservoir simulation whose phase velocities are governed by Darcy's law

[4], which can contain unknown algebraic dependence on the phases' saturations. In

contrast, a simulator is named open-box if condition one is violated. For example,

OpenFOAM 1611 is an open-source fluid simulator where adjoint can be implemented

directly into its source code, so it is open-box by definition. Open-box simulators enjoy

the benefit of efficient gradient computation brought by adjoint and thereby are not

within the research scope of my thesis. If condition one is met, but two is violated,

a simulator is named "black-box". For example, Aspen [621, an industrial chemical

reactor simulator, provides neither the adjoint nor the full space-time solution. Black-

box simulators are simply calculators for the objective function. Due to the lack of

space-time solution, adjoint can not be enabled using the twin model. Gray-box

simulators are ubiquitous in many engineering applications. Examples are Fluent

[106] and CFX [107] for computational fluid dynamics, and ECLIPSE (Schlumberger),

PSim (ConocoPhillips), and MORES (Shell) for petroleum reservoir simulations. My

thesis will only investigate gray-box simulators.

My thesis aims at reducing the number of expensive iterations in the optimization

constrained by gray-box simulators. Motivated by the adjoint gradient computation,

a mathematical procedure will be developed to estimate the adjoint gradient by

leveraging the full space-time solution. Also, my thesis will investigate how the

estimated gradient can facilitate a suitable optimization algorithm to reduce the
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number of iterations. Finally, the iteration reduction achieved by my approach will

be assessed, especially for problems with many control parameters.

Instead of discussing gray-box simulators in general, my thesis only focuses on

simulators with partially unknown flux function, while their boundary condition,

initial condition, and the source term are known. For example, one may know that the

flux depends on certain variables, but the specific function form of such dependence

is unknown. This assumption is valid for some applications, such as simulating a

petroleum reservoir with polymer injection. The flow in such reservoir is governed

by multiphase multicomponent porous medium transport equations [4]. The initial

condition is usually given at the equilibrium state, the boundary is usually described

by a no-flux condition, and the source term can be modeled as controls with given

flow rate or wellbore pressure. Usually, the flux function is given by Darcy's law which

involves physical models like the permeability and the viscosity2 . The mechanism

through which the injected polymer modifies the rock permeability and flow viscosity

can be unavailable. Thereby the flux is partially unknown. The specific form of

PDE considered in my thesis is given in Section 1.2. It is a future work to extend

my research to more general gray-box settings where the initial condition, boundary

condition, source term, and the flux are jointly unknown.

1.2 Problem Formulation

Consider the optimization problem

c* argmax (u, c)
Cmin C Cmax

M N T1-9)

(C) = Y, wij f(Ui, c; ti, X) j f(u C; t, X)dxdt
i=1 j=1

'The permeability quantifies the easiness of liquids to pass through the rock.
2 The viscosity quantifies the internal friction of the liquid flow.
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where u and u are the discretized and continuous space-time solutions of a gray-box

conservation law simulator. u and u depend on the control variables c. We assume

to be a twice differentiable function. The spatial coordinate is x E Q and the time is

t E [0, T]. i = 1, . . , M and j = 1, - - - , N are the indices for the time and space grid

points. f is a given function that depends on u, c, t, and x. wij's are the quadrature

weights for the integration. c E Rd indicates the control variable. cmin and cmax are

elementwise bound constraints.

The gray-box simulator solves the partial differential equation (PDE)

au + V - (DF(u)) = q(u, c), (1.10)at

which is a system of k equations. The initial and boundary conditions are known.

D is a known differential operator that may depend on u, and F is an unknown

function. Although the state variables that F depend on are known, the algebraic

form of such dependence is unknown. q is a known source term that depends on u and

c. The simulator for (1.10) does not have the adjoint capability, and it is infeasible to

implement the adjoint method into its source code. But the full space-time solution

u is provided. The steady-state conservation law is a special case of the unsteady

one, so it will not be discussed separately.

For example, consider a 1-D scalar-state convective equation

+ aF(u) = c, (1.11)

can be described by (1.10). The flux function F is known to depend on the local

value of the state variable u, but the algebraic form of the dependence is unknown.

In this case, F represents the entire unknown flux function while D equals 1. If

F(u) = jIu2, (1.11) is the Burger's equation; If F(u) = U) (1.11) is a Buckley-

Leverett equation [3].
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Another example can be the compressible, viscous, adiabatic Navier-Stokes equation

p pu Pv

9 p( ' PU2 + p -u7X + PUV -oPy Pu Li xx=0,

at P ax PUVaxy ay PV 2 +P - O-yy

pE u(Ep + p) - axuu- OXYv v(Ep+ p) - oxyu - oryvj

(1.12)

where

au 2 (au av
Oa=pt 2 --- _+ax 3 ax ay)

av 2 Ou av
O-yy =p2 + . (1.13)

ay 3 ax ay)
(au av

a ax)J

Let p, u, v, E, U, and p be the density, Cartesian velocity components, total energy,

internal energy, and pressure. The pressure depends on the density and energy, but

the algebraic form of the dependence is unknown. In this example, F(u) corresponds

to the pressure equation p = p(p, U), and D corresponds to the known components

of the flux functions.

My thesis does not accomodate the PDEs that contain unknown source terms or

flux functions with unknown differential operators, thus limiting the applicability of

my thesis. It is a future research topic to extend the methods developed in this thesis

for such PDEs.

My thesis focuses on reducing the number of gray-box simulations in the optimization,

especially for problems where d, the dimensionality of the control variable, is large. I

assume that the computational cost is dominated by the repeated gray-box simulation,

while the cost of the optimization algorithm is relatively small. Chapter 2 develops

a mathematical procedure, called the twin-model method, which enables adjoint
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gradient computation by leveraging the full space-time solution. Based on previous

research [66, 67, 71, 72, 74, 76, 77], Chapter 3 develops an optimization algorithm

that takes advantage of the estimated gradient to achieve iteration reduction. The

utility of the estimated gradient for optimization is analyzed both numerically and

theoretically.

1.3 Literature Review

Given the background, I review the literature on derivative-free optimization and

gradient-based optimization, in which the Bayesian optimization method is particularly

investigated. In addition, I review the adjoint method because it is an essential

ingredient for Chapter 2. Finally, I review methods for adaptive basis construction,

which is useful for the adaptive parameterization of a twin model.

1.3.1 Review of Optimization Methods

Optimization methods can be categorized into derivative-free and gradient-based

methods [41], depending on whether the gradient information is used. In this section,

I review the two types of methods.

Derivative-Free Optimization

Derivative-free optimization (DFO) requires only the availability of objective function

values but no gradient information [411; thus, it is useful when the gradient is unavailable,

unreliable, or too expensive to obtain. Such methods are suitable for problems

constrained by black-box simulators.

Depending on whether a local or global optimum is desired, DFO methods can be

categorized into local methods and global methods [411. Local methods seek a local

optimum which is also the global optimum for convex problems. A local method is

the derivative-free trust-region method [47]. The derivative-free trust-region method
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introduces a surrogate model that interpolates the objective evaluations [48, 51]. The

surrogate model is cheap to evaluate and presumably accurate within a trust region:

an adaptive neighborhood around the current iteration [46, 47]. At each iteration, the

surrogate is optimized in a domain bounded by the trust region to generate candidate

steps for additional objective evaluations [46, 471.

Global methods seek the global optimum. Example methods include the branch-

and-bound search [521, evolution methods [53], and Bayesian methods [71, 73, 911.

The branch-and-bound search sequentially partitions the entire control space into a

tree structure and determines lower and upper bounds for the optimum [52]. Partitions

that are inferior are eliminated in the course of the search [52]. The bounds are usually

obtained through the assumption of the Lipschitz continuity or statistical bounds for

the objective function [52]. Evolution methods maintain a population of candidate

controls, which adapt and mutate in a way that resembles natural phenomenons such

as natural selection [54, 56] and swarm intelligence [55]. Bayesian methods model the

objective function as a random member function from a stochastic process. At each

iteration, the statistics of the stochastic process are calculated and the posterior, a

probability measure, of the objective, is updated using Bayesian metrics [71, 72]. The

posterior is used to pick the next candidate step that best balances the exploration

of unsampled regions and the exploitation around the sampled optimum [73, 82, 69].

Details of Bayesian optimization methods are discussed in Section 1.3.1.

Because many real-world problems are non-convex, global methods are usually

preferred to local methods if the global optimum is desired [41]. Besides, DFO

methods usually require a large number of function evaluations to converge, especially

when the dimension of control is large [411. This issue can be alleviated by incorporating

the gradient information [66, 74]. The details are discussed in the next subsection.
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Gradient-Based Optimization

Gradient-based optimization (GBO) requires the availability of the gradient values

[60, 83]. A gradient value, if it exists, provides the optimal infinitesimal change of

control variables at each iterate and thus is useful in searching for better control.

Similar to DFO, GBO also can be categorized into local methods and global methods

[60]. Examples of local GBO methods include the gradient descent methods [84,

1041, the conjugate gradient methods [85, 86], and the quasi-Newton methods [40,
42]. The gradient descent methods and the conjugate gradient methods choose the

search step in the direction of either the gradient [84, 104] or a conjugate gradient

[85, 86]. Quasi-Newton methods, such as the Broyden-Fletcher-Goldfarb-Shannon

(BFGS) method [40], approximate the Hessian matrix using a series of gradient

values. The approximated Hessian allows a local quadratic approximation to the

objective function, which determines the search direction and stepsize by the Newton's

method [40]. In addition, some local DFO methods can be enhanced to use gradient

information [58, 59]. For instance, in trust-region methods, the construction of local

surrogates can incorporate gradient values if available [58, 59]. The usage of a gradient

usually improves the surrogate's accuracy, thus enhancing the quality of the search

step and thereby reducing the required number of iterations [58, 59].

Global GBO methods search for the global optimum using gradient values [60,

83]. Some global GBO methods can trace their development to corresponding DFO

methods. For example, the stochastic gradient-based global optimization method

(StoGo) [87, 88] works by partitioning the control space and bounding the optimum

in the same way as the branch-and-bound method [52]. But the search in each

partition is performed by gradient-based algorithms such as BFGS [40].

My thesis is particularly interested in the gradient-based Bayesian optimization

method [75]. In this method, the posterior of the objective function assimilates both

the gradient and function values in a CoKriging framework [66, 75]. The details of
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my treatment are discussed in Section 1.3.1 and Chapter 3. It is reasonable to expect

that the inclusion of gradient values results in a more accurate posterior mean and

reduced posterior uncertainty, which in turn reduces the number of iterations required

to achieve near-optimality. The effect of iteration reduction is analyzed numerically

in Chapter 3.

A property of the Bayesian method is that the search step can be determined using

all available objective and gradient values [71, 82]. Also, given the current knowledge

of the objective function which is represented in Bayesian probability, the search

step is optimal under a particular metric such as the expected improvement metric

[71, 82]. The advantage of such properties can be justified when the objective and

gradient evaluations are dominantly more expensive than the overhead of optimization

algorithm [71]. Besides, my thesis proves that the Bayesian optimization method is

convergent even if the gradient values are estimated inexactly, which is discussed in

Section 3.3. The conclusion of Section 3.3 reveals that, under some assumptions of

the objective and the inexact gradient, a Bayesian optimization algorithm can find

the optimum regardless of the accuracy of the gradient estimation.

To achieve the desired objective valuation, GBO methods generally require fewer

iterations than DFO methods for problems with many control variables [60, 83].

GBO methods can be efficiently applied to optimization constrained by open-box

simulators because the gradient is efficiently computable by the adjoint method

[11, 60], which is introduced in the next subsection. My thesis extends GBO to

optimization constrained by gray-box simulation by estimating the gradient using

the full space-time solution.

Bayesian Optimization

Similar to other kinds of optimization, Bayesian optimization aims at finding the

maximum of a function (-) in a bounded set C C Rd [71, 72, 82]. However, Bayesian

optimization distinguishes from other methods by maintaining a probabilistic model
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for [71, 72, 82]. The probabilistic model is exploited to make decisions about

where to invest the next function evaluation in C [71, 72, 82]. In addition, it uses all

information of available evaluations, not just local evaluations, to direct the search

step [71, 72, 82].

Consider the case when the objective function evaluation is available. Bayesian

optimization begins by assuming that the objective function is sampled from a stochastic

process [71, 72, 82]. A stochastic process is a function

f : C x Q+R ,(1.14)

(c,w) - f(c, w)

where for any c E C. w is a random variable that models the stochastic dependence

of f. f(c, -) is a random variable defined on the probability space (Q, E, P). The

objective function is assumed to be a sampled function from the stochastic process

(-) = f(-, w*), where w* E Q is deterministic but unknown. My thesis will use the

notations (-), f(., w), and f(-, w*) interchangeably when the context is clear.

A stationary Gaussian process is a type of stochastic process that is used ubiquitously

in Bayesian optimization [89]. For any given w and any finite set of N points

{ci E C} 1, a stationary Gaussian process f(-,-) has the property that {f (ci, -)}_ are

multivariate Gaussian distributed; in addition, the distribution remains unchanged if

ci's are all added by the same constant in C. The Gaussian process is solely determined

by its mean function m(c) and its covariance function K(c, c') [89]

m(c) = E [f (c, w)]

K(c, c') = E [(f (c, W) - m(c)) (f (c', w) - m(c'))]

for any c, c' E C, which is denoted by f ~ K(m, K). Conditioned on a set of

samples {(c 1 ), - - , (cN)}, the posterior is also a Gaussian process with the mean
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and covariance [89]

ni(c) = m(c) + K(c, c)K(c, c.)- 1 ( (cf) - m(cf)) (1.16)

k(c, c') = K(c, c') - K(c, c,)K(c., c)--K(cf, c')

where c, (ci, - - -, CN), (C) = ((cl), - - - , (CN) )T, m(c) = (m(C), - ,m(CN) )T

K(c, cf) = K(cn, c)T = (K(c, cl), -.- , K(c, CN)), and

K(ci, cl) ... K(ci, CN)

K(c.,c.) = I-.
K(CN, C1) ... K(CN, CN)

Without prior knowledge about the underlying function, m(.) is usually modeled as a

constant independent of c [89]. In many cases, the covariance are assumed isotropic,

indicating that K(c, c') only depends on the L2 norm 1|c - c'|| [89]. There are many

choices for K, such as the exponential kernel, the squared exponential kernel, and

the Matern kernels, each embeds different degrees of smoothness (differentiability)

for the underlying function. For a survey of various covariance functions, I refer to

the Chapter 4 in [89]. Among such choices, the Matern 5/2 kernel [90]

( \/'c - c'II 5|Ic - c'' 2'5||c -c'H'
K(c, c') = . 1 + L + 3L 2  exp K L ' (1.17)

has been recommended because it results in functions that are twice differentiable,

an assumption made by, e.g. quasi-Newton methods, but without further smoothness

[71]. My thesis will focus on using the Matern 5/2 kernel. Notice the parameters

L and -, known as the hyperparameters, are yet to be determined. They can be

determined by the posterior maximum likelihood estimation (MLE) or by a fully-

Bayesian approach [71, 82]. I refer to the reference [711 for the details and a comparison

of these treatments. My thesis will focus on MLE due to its simpler numerical

implementation.

33



Based on the posterior and the current best evaluation Cbest = argmaxcEc (c),

Bayesian optimization introduces an acquisition function, a : C R+, which evaluates

the expected utility of investing the next sample at c E C [69, 71, 72, 82, 91]. The

location of the next sample is determined by an optimization CN+1 = argmaxcEC a(c)

[69, 71, 72, 82, 91]. In most cases, a greedy acquisition function is used, which

evaluates the one-step-lookahead utility [69, 71, 72, 82, 91]. There are several choices

for the acquisition function, such as

* the probability of improvement (PI) [91],

apI(c) = P(y(c)), (1.18)

* the expected improvement (EI) [72, 731,

aEI (C) = u(c)(y(c)<(y(c)) +A(y(c))) , (1.19)

" and the upper confidence bound (UCB) [69],

aUCB(C) = A(C) + KU(c) , (1.20)

with a tunable parameter r > 0,

where p, u are the posterior mean and variance, -y(c) = -- (c) (Pi(c) - (Cbest)),

and 41,V indicate the cumulative and density functions for the standard normal

distribution. My thesis will focus on the El acquisition function, as it behaves better

than the PI and requires no extra tunable parameters [71]. Because (1.19) has a

closed-form gradient, the acquisition function can be maximized by a global GBO

method, e.g., StoGo [88], to obtain its global maximum.

Although my thesis only focuses on bound constraints as shown in (1.9), Bayesian

optimization can accommodate more general inequality and equality constraints [97].

The constraints can be enforced by modifying the objective, such as the penalty
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method [921, the augmented Lagrangian method [93], and the barrier function method

[94]. They also can be enforced by modifying the acquisition function, such as the

recently developed expected improvement with constraints (EIC) method [95], and

the integrated expected conditional improvement (IECI) method [96]. See Chapter 2

of [97] for a detailed review of constrained Bayesian optimization.

In addition to function evaluations (c), Bayesian optimization admits gradient

information [66, 74]. In Chapter 3, I investigate the scenario where the gradient

evaluations are inexact [77]. The Bayesian optimization method developed in my

thesis allows both the exact function evaluation and the inexact gradient evaluation.

1.3.2 The Adjoint Method

Consider a differentiable objective function constrained by a conservation law PDE

(1.10). Let the objective function be (u, c), c E Rd, and let the PDE (1.10) be

abstracted as F(u, c) = 0. F is a parameterized differential operator, together with

boundary conditions and/or initial conditions, which uniquely define a u for each c.

The gradient / can be estimated trivially by finite difference. The ith component ofdc

the gradient is given by

- ~~ -(WU + Aui, C + 6ei) -((U, 6)) (1.21)
dc) i 6

where

Y(u, c) = 0, E(u +AUi, C + 6ei) = 0. (1.22)

ei indicates the ith unit Cartesian basis vector in R d, and 6 > 0 indicates a small

perturbation. Because (1.22) needs to be solved for every 6ei, so that the corresponding

Au, can be used in (1.21), d+1 PDE simulations are required to evaluate the gradient.

As explained in Section 1.3.1, d can be large in many control optimization problems.
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Therefore, it can be costly to evaluate the gradient by finite difference.

In contrast, the adjoint method evaluates the gradient using only one PDE simulation

plus one adjoint simulation [11]. To see this, linearize F(u, c) = 0 into a variational

form

6F= u + -6c = 0, (1.23)au ac

which gives

-- = - - - (1.24)
dc Ou ac

Using (1.24), 9 can be expressed by

d _ du a
dc audc ac

-1 0c &(1.25)

-AT a + a
Dc Dc

where A, the adjoint state, is given by the adjoint equation

A_ = ( (1.26)
au au

Therefore, the gradient can be evaluated by (1.25) using one simulation of F(u, c) = 0

and one simulation of (1.26) that solves for A.

Adjoint methods can be categorized into continuous adjoint and discrete adjoint

methods, depending on whether the linearization or the discretization is executed first

[15]. The above procedure, (1.23) through (1.26), is the continuous adjoint, where F

is a differential operator. The continuous adjoint method linearizes the continuous

PDE F(u, c) = 0 first and then discretizes the adjoint equation (1.26) [11]. In (1.26),

) can be derived as another differential operator. With proper boundary and/or

initial conditions, it uniquely determines the adjoint solution A. See [19] for a detailed

derivation of the continuous adjoint equation.
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. The discrete adjoint method [17] discretizes F(u, c) = 0 first. After the discretization,

u and c become vectors u and c. u is defined implicitly by the system Yd(u, c) = 0,

where T d indicates the discretized difference operator, a nonlinear function whose

output is of the same dimension as its first input u. Using the same derivation as

(1.23) through (1.26), the discrete adjoint equation can be obtained

X = (,,) )(1.27)
au Tu '

which is a linear system of equations. (.d )T is derived as another difference operator

which is a square matrix. It contains the discretized boundary and initial conditions,

and uniquely determines the discrete adjoint vector A, which subsequently determines

the gradient

S-A + . (1.28)dc ac ac

See Chapter 1 of [20] for a detailed derivation of the discrete adjoint.

The adjoint method has seen wide applications in optimization problems constrained

by conservation law simulations, such as in airfoil design [12, 13, 14], adaptive mesh

refinement [20], injection policy optimization in petroleum reservoirs [2], history

matching in reservoir geophysics [15], and optimal well placement in reservoir management

[16].

1.3.3 Adaptive Basis Construction

The unknown function F in (1.10) can be approximated by a linear combination of

basis functions [241. An over-complete or incomplete set of bases can negatively affect

the approximation due to overfitting or underfitting [25]. Therefore, adaptive basis

construction is needed.
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Consider the problem of function approximation in a bounded domain. Square-

integrable functions can be represented by the linear combination of a set of basis

functions [24], {#i}iEN, such as the polynomial basis, Fourier basis, and the wavelet

basis [102].

F(.) = aii(-) , (1.29)
iEN

where #j's are linearly independent basis functions, ai's are the coefficients, and i

indices the basis. For a rigorous development of function approximation and basis

functions, I refer to the book [24].

For example, a bivariate function can be represented by monomials (Weierstrass

approximation theorem [105])

1, u1 , uf, u2 U2l2, U 2 U , , 21U , U - - -

on any real interval [a, b].

Let A be a finite non-empty subset of N, F can be approximated using a subset

of bases,

F(.) ~ aiq0(i), (1.30)
iEA

where {i}ieA is called a basis dictionary [31]. The approximation is solely determined

by the choices of the dictionary and the coefficients. For example, in polynomial

approximation, the basis dictionary can consist of the basis whose total polynomial

degree does not exceed p E N [26]. Given a dictionary, the coefficients for F can be

determined by the minimization [26]

Ci* = argmin - i , (1.31)
aERIAI iGA L
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where 11 - |IL indicates the Lp norm3 . My thesis parameterizes the twin-model flux

P and optimizes the coefficients, so the twin model serves as a proxy of the gray-box

model. The details are discussed in Section 2.2.

If the dictionary is pre-determined, its cardinality can increase as the number of

variables increases, and as the basis complexity increases [26]. For example, for the d-

variate polynomial basis, the total number of bases is dP if one bounds the polynomial

degree of each variable by p; and is (Pd) if one bounds the total degree by p [26].

In many applications, one may deliver a similarly accurate approximation by using

a much smaller subset of the dictionary as the bases than using all the basis functions

in the dictionary [26, 28, 31, 44]. To exploit the sparse structure, only significant bases

shall be selected, and the selection process shall be adaptive depending on the values

of function evaluations. There are several methods that adaptively determine the

sparsity, such as Lasso regularization [44], matching pursuit [31], and basis pursuit

[28]. Lasso regularization adds a penalty A E Iai I to the approximation error,

where A > 0 is a tunable parameter [44]. The larger A is, the sparser the basis

functions will be. In this way, Lasso balances the approximation error and the number

of non-zero coefficients [44]. Matching pursuit adopts a greedy, stepwise approach

[31]. It either selects a significant basis one at a time (forward selection) from a

dictionary [32], or prunes an insignificant basis one at a time (backward pruning)

from the dictionary [33]. Basis pursuit minimizes ||cHL, subject to (1.29), which is

equivalently reformulated and efficiently solved as a linear programming problem [28].

Conventionally, the dictionary for the sparse approximation needs to be predetermined,

with the belief that the dictionary is a superset of the required bases for an accurate

approximation [35]. This can be problematic because the required bases are unknown

a priori. To address this issue, methods have been devised that construct an adaptive

dictionary [34, 35, 36]. Although different in details, such methods share the same
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approach: In the beginning, some trivial bases are given as inputs. For example, the

starting basis can be 1 for a polynomial basis [341. The starting bases serve as seeds

from which more complex bases grow. I refer to [34, 35, 361 for more details of the

heuristics. Then a dictionary is built up progressively by iterating over a forward step

and a backward step [34, 35, 36]. The forward step searches over a candidate set of

bases and appends the significant ones to the dictionary [34, 35, 361. The backward

step searches over the current dictionary and removes the insignificant ones from

the dictionary [34, 35, 36]. The iteration stops only when no alternation is made to

the dictionary or when a targeted accuracy is achieved, without bounding the basis

complexity a prior [34, 35, 36]. Such approach is adopted in my thesis to build up

the bases for P. The details are discussed in Section 2.3.

1.4 Thesis Objectives

Based on the motivation and literature review, we find it useful to enable adjoint

gradient computation for gray-box conservation law simulations whose flux functions

have an unknown algebraic dependence on the state variables. We also need to exploit

the estimated gradient to optimize more efficiently, especially for problems with many

control variables. To summarize, the objectives of my thesis are

1. to develop an adjoint approach that estimates the gradient of objective functions

constrained by gray-box conservation law simulations with unknown algebraic

dependence in the flux functions, by leveraging the space-time solution;

2. to assess the utility of the estimated gradient in a suitable gradient-based

optimization method; and

3. to demonstrate the effectiveness of the developed procedure in several numerical

examples, given a limited computational budget.
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1.5 Outline

My thesis is organized as follows. Chapter 2 describes a method to estimate the

gradient of an objective function constrained by a gray-box simulation, at a cost

independent of the dimensionality of the gradient. This is achieved through first

training a twin model and then applying the adjoint method to the trained twin

model. To train a twin model, two metrics, the solution mismatch and the integrated

truncation error, are presented, and the relationship between the two metrics is

studied. Then we present a method to parameterize the unknown component of the

twin model. Using the two metrics and the parameterization, a twin-model algorithm

is developed to approximate the unknown components in the twin model. Finally,

the twin-model algorithm is demonstrated by several numerical examples. Chapter

3 develops a global optimization method by using the estimated gradient obtained

from the twin-model algorithm in Chapter 2. The gray-box objective function and

the estimated gradient are modeled as unknown realizations of Gaussian processes.

Based on the Gaussian process model, a Bayesian optimization algorithm is developed

that leverages the estimated gradient for more efficient optimization. Its convergence

properties are studied. Finally, the twin-model Bayesian optimization algorithm is

demonstrated by several numerical examples. Chapter 4 summarizes the thesis and

my contributions and proposes several directions of future works.
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Chapter 2

Estimate the Gradient by Using the

Space-Time Solution

This chapter develops a method

solution of gray-box conservation

Chapter 1 considered a code

unknown F,

to estimate the gradient by using the space-time

law simulations.

that simulates a conservation law (1.2) with an

&u &F(u)au+ =cu x E [0, 1], t E [0, 11,at ax

with proper initial and boundary conditions, for a control variable c. Such simulator is

named gray-box, and its discretized space-time solution is named gray-box solution.

It is explained that F can be approximated up to a constant for values of u that

appeared in the gray-box solution, by utilizing the gray-box solution. Therefore, a

twin model that simulates (1.4),

+ x =c, E [O,1, tE [O,1],at ax

can be obtained, where F is the approximated flux. It is also explained that the

adjoint method can be applied to the twin model to estimate the gradient of any
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objective function with respect to c. Finally, it is envisioned that the adjoint gradient

of the twin model can drive the optimization of the objective function constrained by

the gray-box model.

The above example involves only one equation and one-dimensional space. This

chapter develops a more general procedure suitable for systems of equations and for

problems with a spatial dimension greater than one.

2.1 Approach

This section discusses the general approach for training a twin model. In particular,

the metric of solution mismatch is presented. We then study what aspects of F

can be inferred by using the metric for a special case of conservation laws. Besides,

another metric, the integrated truncation error, is proposed. The latter metric has

less theoretical backup but can be cheaper to evaluate and useful in practice, which

will be demonstrated in Section 2.4. The relationship of the two metrics is studied.

Finally, we discuss the method to minimize the two metrics.

Consider a gray-box simulator that solves the PDE (1.10),

au + V - (DF(u)) = q(u, c),at

a system of k equations, for u(t, x) with t E [0, T] and x E . The PDE has

an unknown flux F, but known source term q, and known initial and boundary

conditions. Let its discretized space-time solution be u. My thesis introduces an

open-box simulator solving another PDE, namely the twin model,

aii + -(D P(i)) = q(, c) , (2.1)
ati

which is also a system of k equations with the same source term and the same initial
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and boundary conditions. Equation (2.1) differs from (1.10) in its flux. For simplicity,

let the solution of the open-box simulator, ft, be defined on the same spatial grid

points and time steps of the gray-box simulator.

The metric used to measure the difference of the twin model and the gray-box

model is the solution mismatch. The solution mismatch is defined to be

M N

i=1 j=1

which approximates

jf j fI(t, X) - u(t, X) 1 dx dt. (2.3)
0

In (2.2), i = 1,-. , M are the indices for time grid, and j = 1,--- , N are the indices

for the space grid. l- 11 is the norm of the state vector. wij's are the quadrature weights

defined for (2.3). For example, if a uniform Cartesian space-time grid is used, the

quadrature weights equal a constant. Notice that Mu depends solely on P through

the twin-model solution ft if the quadrature weights and the gray-box solution are

given.

Given a function space SF, I propose to infer a flux F such that Mu is minimized,

= argmin Ms. (2.4)
PESF

The choice for SF will be discussed later in Section 2.2. By setting the F in (2.1) to

be F*, one obtains a trained twin-model equation

+ V - (DP*(f)) = q(fi, c) , (2.5)
at

Let ft* be the space-time solution of the twin model governed by (2.5). Given F*, i*

depends on c. The gradient of any objective function ((t*, c) with respect to c can

be obtained by applying the adjoint method to the trained twin model. The gradient
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d(i*,c) can drive the gradient-based optimization of (u, c), where u is the gray-box

space-time solution.

The key to inferring F is to leverage the gray-box space-time solution. Compared

with the surrogate modeling of the output f98], the advantage of the twin-model

approach lies in the usage of the big data, the space-time solution, generated from

gray-box PDE solvers. The usage of the big data may lead to the more accurate

modeling of F and more accurate predictions of with fewer runs of the gray-box

simulation.

For example, the following theorem illustrates what aspect of F can be inferred

from the gray-box solution for a special form of (1.2),

19t + V - (F(u)) = q(u, c) ,at

where the spatial dimension is one and the source term is zero.

Theorem 1. Consider two PDEs

au &F(u)
+ ax 0 , and (2.6)

at ax

S+ =Fi) 0 (2.7)
at ax

with the same initial condition u(0, x) = uo(x). The spatial domain is (-oc, oc). The

function uO is bounded, differentiable, Lipschitz continuous with constant Lu, and has

a finite support. F and F are both twice-differentiable and Lipschitz continuous with

constant LF. Let

Bu -{u u = uo(x) for x E R that satisfies duo 0, }c R.
dx

be a non-empty and measurable set. We have:

For any E > 0, there exist 6 > 0 and T > 0 such that
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* if I|(t, x) - u(t,x)| < 6 for all x E R and t E [0,T], then dPdu

u E Bu.

Proof:

We prove false the contradiction of the theorem, which reads:

- I < e for all

For any 6 > 0 and T > 0, there exist e > 0, and F, F satisfying the conditions stated

in theorem 1, such that |I| - u||x < 6 and d - > e on Bu.

We show the following exception to the contradiction in order to prove it false.

For any c > 0 and any F, P satisfying -F > e on Bu, we can find 6 > 0 and

T > 0 such that flu - ullo > 6. The idea is to construct such an exception by the

method of lines [1001.

Firstly, assume there is no shock wave for (2.6) and (2.7) for t G [0, T]. Choose a

segment in space, [xo - A, xO] with 0 < A < L , that satisfies

* uo(x) E Bu for any x c [xo - Axo];

* 1 ( ) - F (UO(X0)) > E;

* XO - A + ! (uo(xo - A)) T = X + d((o) T - x*.

Without loss of generality, we assume - > 0 and d >du -u

[x0 - A, xo] }. Using the method of lines, we have

u (T xo-A+ df (uo(xo - A))T)

0 for {u Iu = uo(x) , x E

= uo(Xo - A),

ft (T
dF

Xo + d (uo(xo))T)
du

= uo(Xo) .

Therefore

Iii(x*, T) - u(x*, T)| = Iuo(xo) - uo(xo - A) ;> yA - 6,
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by using the definition of B,.

SetT= we have

dF 
dF

dF d
- -di--(UO (X0)) - F(OX)

du du
- dF (UO (X0)) - dF (UO(XO))

dF dF
> -(uo(Xo)) - - (UO (XO))

dF dF
+ d (UO (XO - ) (UO (X0))

d2F
+ du 2 (UO(XO - A) - uo(xo))

- LuLFA

>c - LULFA EF > 0

by using the mean value theorem. Therefore T < - < oo. So we find a 6 = -yA and

a T < oo that provides an exception to the contradiction of the theorem.

Secondly, if there is shock wave within [0, T] for either (2.6) or (2.7), we let T*

be the time of the shock occurrence. Without loss of generality, assume the shock

occurs for (2.6) first. The shock implies the intersection of two characteristic lines.

Choose a A > 0 such that |(uo(x)) - dF(uo(x - A)) T* = A. Using the mean

value theorem, we have

A 1T* = __ > I

d+ (Uo() - Uo(X -A)) L.LF

Thus, if we choose

T = min
LuLK IE

no shock occurs in t E [0, T]. Since the theorem is already proven for the no-shock

scenario, the proof completes. U

In this theorem, Bu consists of the value of a that appear in the initial condition

uo(x). Also, on such value of u, the initial condition must satisfy | > -y > 0. An
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example of B, is given in Figure 2-1. The initial condition uO and its derivative d

are indicated by the solid blue and the green dashed lines. Given the value of -Y, Bu

is shown on the right vertical axis which consists of values of u that appear in uO and

satisfy I du > > 0.

du0 dUu
dx

0

BU

x

Figure 2-1: An illustration of B, defined in Theorem 1. The blue line is uo

and the green dashed line is duO. Bu is the set of uO where the derivative

dug has an absolute value larger than -. The left y-axis is d, and the
dx lage Iy -al
right y-axis is uO. Bu, represented by the bold blue line on the right y-axis,

is the domain of u in which the error of the inferred flux can be bounded

by the solution mismatch.

Several observations can be made from Theorem 1. First, if the solutions of (2.6)

and (2.7) match closely, i.e. Ii(t, x) - u(t, x)| < 6, then the derivatives of their flux

functions must match closely in Bu, i.e. d -dF < c. Second, only the derivatives

of the fluxes are guaranteed to match, i.e., dP - d < E, rather than the fluxes

themselves. If F or P is added by a constant, the solution of the gray-box or the

twin-model will not change. Third, the conclusion can only be drawn for values of

u which appeared in the initial condition (u E {uo(x) for all x C R}), and where the

initial condition has large enough slope (I d > > 0). Generally speaking, it is

reasonable to expect that F is only inferable (up to a constant) in the domain of
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u covered by the gray-box solution, which will be demonstrated in the numerical

examples in this chapter.

If the twin model uses implicit time marching schemes, the minimization of

Mu can be expensive because the computation of Mu requires solving a system

of equations at every time step [101]. To reduce the computational cost, we introduce

another metric: the integrated truncation error. Define

au
T = at + V - (DP(u)) - q(u, c) , (2.8)

to be the residual of (2.1) by replacing ii with u. Let r be the discretized residual

obtained by plugging the discretized gray-box solution into the twin-model simulator.

The integrated truncation error is defined to be

M N

M47 (F) = E wij11Tij11 2 ,(2.9)
i=1 j=1

which approximates

TJ Ir12 dxdt. (2.10)
0 2

In (2.9) 1, j, wij are defined in the same way as in (2.2).

We study the relationship between M, and Mu. A sufficient condition is studied

under which Mu can be bounded by M,.

Theorem 2. Consider a scalar-state gray-box model whose one-step time marching

is

ai : RN moe Nwhose e- ~ Ui+ mariui. , i 1, M - 1, (2.11)

and a twin model whose one-step time marching is

9,1 : RN - N, I f. -+ f4+1. = gifni. , i =1, --- ,M - 1 . (2.12)
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The solution mismatch is defined by (2.2)

M N

A u i ij - ij 2
i=1 j=1

Assume At = t2- t1 = = tM - tM-- and wij = wj for all i, j. The integrated

truncation error is defined by (2.9),

M N

M(F) =wijij

i=1 j=1

where
1

i = (ui+1 j - (gui-)j) . (2.13)

If 9i satisfies

||!9a- g b||2w - ||a - b||2 , (2.14)

for any a, b C RN and for all i, then

M < (1+ + -- + M-1) At 2M , (2.15)

where

W1

||V|12w V VNI (2.16)

NN
for any v E RN

Proof:
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The integrated truncation error can be written as

M Nk I
MT-=(F) = =

i=1 j=1

M

i=1
2(U+1- -- TW(U+1.

M

-i
M

i=1

M

i 2

Similarly, the solution mismatch can be written as

Mu(F) =

Fig 2-2 gives an explanation of Mu and MT by viewing the simulators as discrete

time dynamical systems.

Using the equality

9i H = gi-17H) + (gi- 1,- _ gi-2,H2) +... + (g1hi- - Hi) i E N,

and triangular inequality, we have

j(gM-1g _ gM-1l )U j2 + M-2 _M-2 2)UO- W

+ -WM+ ii -g-g -,)o 1

- +(gM- 1 _M)UO.W

+... + 1 (g.JM- 2 _ RM-1)UO.- 2

+ 11(g - 7)UO.1w
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U

UO

to

Twin model solution

twin model with restarts

Gray-box solution

t i t 2 t3 tMl tM t

Figure 2-2: State-space trajectories of the gray-box model and the twin
model. M, measures the difference of the twin model trajectory (blue)
with the gray-box trajectory (red). M, measures the difference of the
twin model trajectory with restarts (green) and the gray-box trajectory
(red).

Therefore,

4- At 2 A

|1(gM-lg - gM-1iH )UO I- + 1 (gM- 2 g7j gM- 2w 2 )UOf-2 + M-
2 

_ 1)-

+ |(gM- 2
g gM-

2 7)UO- 1W +. + 1(g!;WM- 3 _ gjM-2)U 0 -11W

+ 1(gg - ) W

Under the assumption

||9a - gb| <3||a - b||2

and its implication

19a - ib 2w < 3i|a - b||2w, i ( N,

53

I i

11--10'



we have

Mu--,t2 MT -

#3M -1jg - 7N)uIw + / M - 2  __2) - W + (HM-2 _ 1M-1)u- 12

+ /3M-211(g - 7H)uo.II12~ + + I(gh3 Hn- Nw 2 )U

+ 1 j(g _ 7)u. 12

Reorder the summation, we get

Mu-At2Mr <

(3M - 111(g - %)u-IW + 3M - 2 1(g ~- 1i)uo' IW +* + '-3- . (9 - 7 )uo. W

+ OM-2 11(gt _ -H 2)Uo. 112 +. + 11 (!;W - H2)uo. 11 2

+ 3ii(g-HM - 2 - "M-1)uO 112

Therefore,

Mu - At 2Mr < (3M-1 + OM-2 + ... + ) At22 M

If / is strictly less than 1, then

At 2

S- #MT

thus completes the proof.

The theorem implies that, if the one-step time marching operator of the twin

model is Lipschitz continuous, as given by (2.14), then the solution mismatch can be

bounded by the integrated truncation error. Unfortunately, if the Lipschitz constant

# > 1 and if the number of time steps M > 1, then (1 + / + - - - + M1) can be

large. Thus a small MT does not always guarantee a small Mu. Therefore, for twin

models that have # > 1 and M > 1, if computational budget allows, we recommend

minimizing Mu instead of Mu for training a twin model. Despite the theoretical flaw,

M, can be useful in practice when minimizing Mu is too computationally expensive.

Let M denote either Mu or M,. The minimization of M can be solved by
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gradient-based methods. For M = MT, the adjoint method can be applied to

compute d to drive the optimization. For M = Ms, the adjoint method can

be applied to compute the gradient of ft with respect to P. Therefore, the gradient

of M with respect to P can be obtained through (2.2) according to

dM= dM d.t (2.17)
dP d& dF

The remainder of this chapter is organized as follows. Section 2.2 discusses the

choices of the function space SF in (2.4). A choice of the basis functions, the sigmoid

functions, is introduced to parameterize F. By using a fixed set of basis functions,

the twin model is demonstrated in a numerical example. Section 2.3 develops an

algorithm that adaptively constructs the basis functions. Section 2.4 demonstrates

the algorithm in several numerical examples. Finally, Section 2.5 summarizes the

chapter.

2.2 Choice of Basis Functions

As discussed in Section 1.3.3, F can be parameterized by a linear combination of

basis functions. First, consider the case when F is univariate. There are many types

of basis functions to parameterize a univariate function, such as polynomial basis,

Fourier basis, and wavelet basis [102]. Based on the observations from Theorem 1, F

and F are expected to match only on a domain of u where the gray-box space-time

solution appears and has large enough slope. Therefore, an ideal parameterization

should admit local refinements so F can match F better at some domain locally.

Another observation from Theorem 1 is that F can only be estimated up to a constant.

This section presents a choice of the parameterization for F that takes into account

such considerations.
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Figure 2-3: An example mother wavelet, the Meyer wavelet.

A parameterization that allows local refinements is the wavelet parameterization

[102]. The wavelet is a set of basis functions developed for multiresolution analysis

(MRA) [102]. MRA introduces an increasing sequence of closed function spaces

---C V_1 C VO C VI C---,

[1021. For univariate MRA, V's satisfy the following properties known as self-similarity

[1021:

f (u) E Vj f (2u) E Vj+1, j E Z

f (U) E Vj 4= f (U - n) E Vj, j E Z, q E {0, 1, 2, 1 .

The function space Vj is spanned by a set of orthonormal bases called the wavelet

[102]

(2.18)

where 4 is called the mother wavelet. The equation (2.18) is called the self-similar

property because any basis O4,, can be obtained through a translation and a dilation

of the mother wavelet 5, where j is called the dilation parameter and q is called the

translation parameter. An example mother wavelet, the Meyer wavelet, is shown in

Figure 2-3.

As discussed at the beginning of this chapter, only the derivative of F, rather
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than F itself, can be inferred. If y- is parameterized by the wavelet bases, F shall
du

be parameterized by the indefinite integrals of the wavelets, i.e.

(2.19)

0,'s are sigmoid functions, which satisfy

du
(2.20)

and
= 0, U --

1, U - 00
(2.21)

due to the normality of the wavelet.

Let

#(U) = j (U')du' (2.22)

then

0(2 3'a - -q) = j-O q(2ju' - ,)du' =
23 u-7

(2.19) and (2.23) show that #j,, satisfies the self-similarity property

O5,, (u) = #(2iu -T) , jEZ, 17C2,

where # is called the mother sigmoid.

There are many choices of sigmoid functions for #. My thesis will use the logistic

sigmoid function as the mother sigmoid,

1
#b(u) = 1+e (2.25)

57

(2.23)

(2.24)
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integral of wavelet and tanh sigmoid

1
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0.6
0.4
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-2 -1 0 1 2

Figure 2-4: Red line: the integral (2.19) of the Meyer wavelet. Black line:
the logistic sigmoid function.

If F is univariate, the logistic sigmoids #j,4's, for j E Z and r/ E Z, are used as

the bases. If F is k-variate, the basis can be formed by the tensor product of the

univariate basis [105] (#j,7, I - - , , for ji E 2, E E 2, - ,J E Z, rk C 2). In

other words, the basis can be

j,,(U,-- , U) =#5q1,l 1(ui) -# ( , (2.26)

where j = (j , jA) E Zk, , = (T1,- , 1k) E Zk To sum up, F can be expressed

by

F = a 0j,,,, (2.27)
jezk ,ezk

where a's are the coefficients of the bases.

A compact representation of the sigmoid bases is introduced. A univariate basis

function,

#j,,(u) = 0(2u-), j E Z ,r E Z,

can be represented by a tuple (j, r1), where j is the dilation parameter, and 2L is

the center of the basis. Similarly, a k-variate basis function, #0j,, in (2.26), can be

represented by a tuple (j, 7r) = ((ji, ... , jA), (r7 1, .... , .)). Thus, a sigmoid function

can be visualized by a point in a 2k-dimensional space, which is illustrated in Figure

2-5a through 2-5d for the univariate case.
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Figure 2-5: An illustration of the tuple representation of univariate sigmoid

functions.

There are an infinite number of bases involved in this expression, making it

infeasible to be implemented on the computer. To address this issue, a systematic

procedure for choosing a suitable subset of the bases will be presented in Section 2.3.

In the remaining part of the section, a numerical example is given to illustrate

the inference of F by using the sigmoid parameterization. Consider a gray-box model

solving the 1-D Buckley-Leverett equation [3]

u + U2 - (2.28)
at ax 1 + 2(1lu)

F

with the initial condition u(0, x) = uo(x) and the periodic boundary condition u(t, 0) =

u(t, 1). c is a constant control variable. The Buckley-Leverett equation models the

two-phase porous media flow where u stands for the saturation of one phase, and 1-u

stands for the saturation of another phase. Therefore 0 <u o(x) < 1 for all x E [0, 1].

c E R is a constant-valued control. F is assumed unknown and is inferred by a twin
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model. The twin model solves

aft a
-9 XFii) =l (2.29)

with the same c and the same initial and boundary conditions. A second-order finite

volume scheme is used to simulate both the gray-box model (2.28) and the twin

models (2.29). Parameterize P by the sigmoid bases (2.2)

P= Z
(j,77)EACZxZ

(2.30)

where A is a finite set that contains the tuples representing the basis functions.

(2.30) differs from (2.27) in that a finite number of basis functions are used so the

parameterization can be implemented on the computer. In this example, the set A

is chosen manually, such that the Buckley-Leverett flux can be well approximated.

The chosen basis are (j, r1) for j = 3, n = 0, 1, .- - , 8, which are shown in Figure 2-6.

The topic of how to algorithmically choose a suitable set of basis will be discussed in

Section 2.3.

1

20.5

0 0.5
U

1

Figure 2-6: The bases chosen manually
Buckley-Leverett equation.

for the numerical example of

The twin model is trained to minimize M,. To avoid overfitting in (2.4), we

consider applying an L1 regularization on a. In other words, F is inferred by solving
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the following minimization problem,

M N

a* = argmin Z wi (i% - uij)2 + A |aIItL) , (2.31)
a~j,9ER (= =

where a = {Oaj,k}(k)EA, HIL1 is the L1 norm, and i is the twin-model space-time

solution that depends on the value of a. A > 0 is a tunable parameter for the L1

regularization. As the value of A increases, more entries in a will be suppressed to

zero [44].

The value of A should be determined by maximizing the out-of-sample fit, such as

the k-fold cross validation [38]. Given a basis dictionary, the k-fold cross validation

proceeds in the following three steps: In the first step, the gray-box solution u is

shuffled randomly into k disjoint sets {ui, U2,.-. , Uk}. An illustration for k = 3 is

shown in Figure 2-7.

U00 U01

x
Figure 2-7: The discretized gray-box solution is shuffled into three sets,
each indicated by a color. Each block stands for the state variable on a
space-time grid point.

In the second step, k twin models are trained so that their space-time solutions

match all but one sets of the gray-box solutions, as shown in (2.32), where T indicates
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the ith twin model.

Ti = TrainTwinModel(u 2, U3 , - - , Uk)

T2 = TrainTwinModel(u 1 , U3 ,- - , Uk) ()

Tk = TrainTwinModel(ui, U 2 , --- ,U-)

where each equation requires solving (2.31).

In the third step, each trained twin model is validated by computing the solution

mismatch on the remaining set of the gray-box solution, as shown in (2.33).

M = SolutionMismatch (Ti, ui)

A42 = SolutionMismatch (T2 , U 2 )U (2.33)

Mk =SolutionMismatch (Tk, Uk)

A should be chosen to minimize the mean value of validation errors

1
M _= (M4 + M2 +-- + Mk) .(2.34)

(2.31) is solved by the L-BFGS method f42], using the NLopt package [43]. An

example of training the twin model is shown in Figure 2-8. Figure 2-8 (a) shows the

gray-box solution used to train the twin model. Figure 2-8 (b) shows the trained twin

model solution by using the same initial condition. Figure 2-9 shows the gray-box

flux F and the trained flux P, as well as d and F.

In addition, the trained twin model is simulated using out-of-sample initial conditions

which are different from the initial condition of the training solution. Two example
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gray-box and twin-model solutions are shown in Figures 2-10 and 2-11. The solutions

use the same second-order finite volume scheme and the Crank-Nicolson time marching

scheme. In Figure 2-10, the domain of the gray-box solution is [0.1, 0.3], which is

contained in the domain of the training solution, [0, 0.48]. Therefore, it is reasonable

to expect that the gray-box and the twin-model solutions match closely. In contrast,

the domain of the gray-box solution in Figure 2-11 is [0.05,0.9]. The domain is not

contained in the domain of the training solution, and a larger solution mismatch is

observed.

1

0.4

0.3

t t
0.2

0.1

0 '0
0 x 1 0 x

(a) (b)

Figure 2-8: (a) Gray-box solution used to train the twin model. (b) Trained

twin-model solution by using the same initial condition as in the gray-box
solution.

11

dF
F du

du

0 U1 0 u1
(a) (b)

Figure 2-9: (a) Gray-box model's flux F (red) and the trained twin-model

flux F (blue). (b) i (red) and d (blue)
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1

0.28

0.22
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Figure 2-10: (a) Gray-box solution. (b) Out-of-sample solution of the
trained twin model by using the same initial condition as in (a). Because
the domain of solution is contained in the domain of the training solution,
the twin model and the gray-box model produce similar solutions.
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0.45
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Figure 2-11: (a) Gray-box solution. (b) Out-of-sample solution of the
trained twin model by using the same initial condition as in (a) . Because
the domain of solution is beyond the domain of the training solution, a
large deviation of the twin-model and gray-box solutions is observed.
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After training the twin model, the adjoint method can be applied to the twin

model to obtain the gradient of an objective function to c. The gradient d (fc)
dc

approximates d (,c) for the value of c on which the twin model is trained. Consider

the objective function

((c) L u(1, x; c) - dx. (2.35)

Figure 2-12 shows the objective function, evaluated using the gray-box model and

the trained twin model, where the twin model is trained at c = 0 with the solution

shown in Figure 2-8 (a). It is observed that the gradients of ( match closely at c = 0

where the twin model is trained.

0.8
Gray-box model0
Twin model

0.6

0.4

0.2
-1.5 -1.0 -0.5 0 0.5

C

Figure 2-12: Objective function ( evaluated by either the gray-box model

and the trained twin model.

Because F is trained by the gray-box space-time solution, and because the gray-

box space-time solution depends on the initial condition uo(x), it is expected that the

trained P depends on uo(x). Figure 2-13 shows the training results using the gray-

box solutions of three different initial conditions at c = 0. Some observations can be

made: 1) As expected, the inferred P can differ from F by a constant, which can be

observed by in Figure 2-13 (d), (e), and (f); 2) d matches 4 only in a domain of u

where the solution appears, as indicated by the green areas in Figure 2-13 (g), (h),

and (i); 3) d does not necessarily match ! outside the green area; the issue can be

seen clearly in Figure 2-13 (c), (f), and (i); 4) In some regions of u, the bases are too
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coarse. The issue appears in Figure 2-13 (g), where T exhibits a wavy deviation from

F. At such regions of u, the basis dictionary may be enriched by additional bases to

enable a more accurate approximation of F. Addressing these issues in a systematic

way is crucial to the rigorous development of the twin-model method. This topic is

discussed in the next section.
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Figure 2-13: (a,b,c) Three different initial conditions used to generate
the gray-box space-time solution. (d,e,f) compares the trained F (blue)
and the Buckley-Leverett F (red). (gh,i) compares the trained ! (blue)
and the Buckley-Leverett - (red). The green background highlights the
domain of u where the gray-box space-time solution appears.

0.8

2.3 Adaptive Basis Construction

This section addresses the problem of adaptively choosing a finite set of basis functions

for the parameterization of F. Assume all candidate basis functions form a countable
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set, Algorithm 1 outlines an iterative approach to constructing the basis dictionary.

Starting from an initial set of basis functions, the basis dictionary is built up progressively

by iterating over a forward step and a backward step [34, 35, 361. The forward step

searches over a candidate set of bases, and appends the most useful bases to the

dictionary. The backward step searches over the current dictionary, and removes the

unnecessary bases from the dictionary. The iteration stops only when no alteration

is made to the dictionary or when a criterion, such as a targeted approximation

accuracy, is achieved. My thesis applies this approach to the adaptive construction

of the bases for the parameterization of P.

Input: Solution u, Basis selection A
1: loop
2: A' +- Enrich A by the "best" basis.
3: if Q(A') >- Q(A) then
4:A - 4

5: else
6: break

7: end if
8: A' +- Delete the "worst" basis from A
9: if Q(A') >- Q(A) then

10: A - A'
11: end if

12: end loop

13: a +- argmin .M (P(A, a), u)

Output: A, a.
Algorithm 1: The outline of the algorithm for training a twin model with an
adaptive basis. A indicates the basis dictionary. a indicates the bases' coefficients.
Starting from an initial dictionary, the algorithm iterates over the forward and
the backward step to adaptively construct the dictionary and find the optimal
coefficients. As explained in the previous section, the solution mismatch is a function
that depends on u and P, where F depends on the dictionary A and its coefficients
a.

Some components of the algorithm require measuring how significant a basis is

in training a twin model. Two criteria are needed. The first criterion determines

which basis shall be chosen as the candidate basis to add to or delete from the

dictionary, based on a metric of the significance of the basis. The second criterion
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determines whether the current dictionary contains too few or too many bases, based

on whether the approximation is sufficiently accurate. The two criteria are developed

in this section.

To define the first criterion, a formulation is developed to efficiently assess the

significance of a candidate basis. Given a basis dictionary A, define the minimal

mismatch

M*(A)= min M ai,70ill) , (2.36)
QAERIA ~7E

where M can be either the solution mismatch M or the integrated truncation

error M,. Given the gray-box solution, the minimal mismatch is a function of

A. Let a*4 = {a, }(,,17)EA be the optimal coefficients that solves (2.36), and let

= Z(j,j)eA a>,4j, 7. Consider appending A by an additional basis = (j1, rn),

and let A' be the appended basis dictionary. The minimal mismatch for the appended

basis dictionary A' is

m*(A') = min M a,,# O ,, , (2.37)
aIERIA(l

If the coefficients for the bases A'\(jl, m7) are set to be a*, while the coefficient for

the basis (j, 'r7) is set to be 0, then M(A') = M*(A). Therefore, M*(A') < M*(A).

The appension of an additional basis never increases the minimal mismatch.

Consider setting the coefficients of A' to be {a*, e}. For c - 0, apply first-order

approximation, we have

(j,)EA (j,)EA(238)

- # d q5du~ 6.
k dM
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The absolute value of the coefficient for e,

si(A) = [ dM 1 du (2.39)
JuERk dF pA

is the rate of change of M by perturbing the coefficient of q1, which estimates the

significance of the appended basis [37]. If there are multiple candidate bases, their

significance can be sorted by (2.39).

In practice, (2.39) is not computable for all the candidate bases (j, 77) for j E Z k

and q C Zk, because the number of bases is infinite. Therefore, at every iteration in

Algorithm 1, (2.39) shall only be evaluated on a finite number of bases. To address

this issue, we define the neighborhood of a sigmoid basis. For univariate basis, the

neighborhood of (j, TI) is defined to be a set of the sigmoid bases

'[(j, r)] = {(ji+ 1, r), (j, r 1)} . (2.40)

The neighborhood contains three basis functions: one basis (j + 1, q) whose dilation

parameter is incremented by one; and two basis (j, r/ 1) whose dilation parameter

keeps the same but the translation parameter is shifted by 1. For illustration, the

neighborhood of (0, 0) is shown in Figure 2-14a. The definition can be extended to

the multivariate sigmoid. The neighborhood of a multivariate sigmoid is defined to

be

M [(j, A)]= [ ((ji, -- jk), (771, - TO-,ak

= ( (ji + 1, - - O - , (T11, --7-,7k) ),---,( (JIi, -k + 1) ,(771, ---,r )), (2.41)

( (Ui - -) -* * Ik) ,(11 t I, -- ,O r )), -- ' ' () -A i ) , (7711, * , rlki ) ,

which consists of k bases whose dilation parameters are shifted by 1, and 2k bases

whose translation parameters are shifted by 1. In addition, define the neighborhood

of a set of sigmoid functions to be the union of the neighborhoods of all member
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Figure 2-14: Neighborhood for univariate bases. (a) Neighborhood (blue)
of a single basis (red). (b) Neighborhood (blue) of several bases (red).
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bases minus the set itself, (2.42). The neighborhood of a set of sigmoid functions is

illustrated in Figure 2-14b.

_/ [(il 71), .. I (ja, n )]

= ( [(ii, ni)]U ... U [(i , 77)]) {(i, 71), - - (in7 77)}. (2.42)

Using the definition of the neighborhood and the significance metric, we can

determine which basis to add and delete in the Algorithm 1. To add a basis, the

basis significance, (2.39), is computed for all the bases in the neighborhood of the

current dictionary. At each iteration, the basis with the largest significance will be

considered for addition. Similarly, to delete a basis, the basis significance is computed

for all the bases in the current dictionary. At each iteration, the basis with the smallest

significance will be considered for deletion.

Another criterion is needed to determine whether a basis shall indeed be added

or removed. To develop this criterion, the technique of k-fold cross validation can be

applied. The k-fold cross validation is discussed in Section 2.2, where k twin models

are trained and validated on randomly shuffled disjoint sets of the gray-box solution.

The mean value of validation errors (2.34),

M= -I(M1 +MA2+--+MAe)k

can be used to measure the performance of the basis dictionary. A basis shall be

added to or removed from the dictionary only if such action reduces M.

Based on the above developments, Algorithm 2 gives the details needed in Algorithm

1 to adaptively construct the basis dictionary. The main part of the algorithm is

the forward-backward iteration that determines which and whether a basis is added

or deleted in the dictionary, by using the metric M and the significance s. The
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metric M and the significance s can be defined either according to the solution

mismatch M,, or according to the integrated truncation error MT. We suggest

M due to less computational cost when the twin model uses implicit numerical

schemes. The algorithm starts from training a twin model using an arbitrary basis

dictionary A. The main part of the algorithm iterates over a forward step (line 3-9)

and a backward step (line 11-19). The forward step first finds the most significant

candidate in the neighborhood of the current dictionary according to (2.39). If the

addition indeed reduces the cross-validation error, the candidate is added to the

dictionary; otherwise, it is rejected. If the basis is added, the coefficients are updated

by minimizing the solution mismatch, which can be implemented by the Broyden-

Fletcher-Goldfarb-Shannon (BFGS) algorithm 140]. The backward step finds the most

significant candidate in the current dictionary for deletion. If the deletion reduces

the cross-validation error, the candidate is removed from the dictionary. If the basis

is indeed deleted, the coefficients are updated by BFGS again. The iteration exits

when the most significant addition no longer reduces the validation error. In the end,

the coefficients are tuned to minimize the solution mismatch M., which ensures that

MA is minimized. The output of the algorithm is the basis dictionary A and the

coefficients aA.
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Input: Initial basis dictionary A, Validation error M0 = oc, Gray-box solution u

1: Minimize solution mismatch aA <-- argmin, M aj,n, 1,)
2: loop
3:

1* < argmaxsi( A)
leA/(A)

Compute M by k-fold cross validation.
if M < M0 then

A +- A{l*}

0 +- M , aA +- argmin M ay,,77
a(jo)GA

else

A +-- A\{ l*}

g* & argmin sg(A)
gEA

if g* # 1* then

A & A\{g*}

Compute M by k-fold cross validation.
if M < M0 then

aA +- argmin M
a

(j,7)EA Ai 7 )

else

A - AUfg*1

end if
end if

aA <- argmin M
a ( aj ,, ,

Output: A, aA.
Algorithm 2: Training twin model with adaptive basis construction.
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2.4 Numerical Results

This section demonstrates the twin model on the estimation of the gradients for

several numerical examples.

2.4.1 Buckley-Leverett Equation

Section 2.2 applies a sigmoid parameterization to the gray-box model governed by

the Buckley-Leverett equation (2.28)

au a1 _2
i= c

at Ox (I+ 2(1- ) ,

In this section, the same problem is studied but using the adaptive basis construction
U2developed in Section 2.3. The flux function F(u) = 1+2(U)2 is assumed unknown

and is going to be inferred. The gray-box and the twin models use the same second-

order finite volume scheme and Crank-Nicolson time marching scheme. The initial

dictionary, A, is selected to contain a single basis (1, 0). The choice of the initial

dictionary is not unique. We choose (1,0) because it has a low resolution and is

centered inside [umin, Umax] of the gray-box solution.

Figure 2-15 shows the selected bases for the three solutions in Figure 2-13, respectively,

obtained by algorithm 2. As [Umin, Umax] shrinks, the resolution of the bases increases.

Figure 2-16 shows the dictionary and d at each forward-backward iteration fordTu

solution 3 (Figure 2-15c).

Consider a time-space-dependent control c = c(t, x) in (2.28)

au a a u 2

at ax + 2(1-u)2

and (2.29)

at ax )
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Figure 2-15: The basis dictionary for the three solutions in Figure 2-13.

The iteration starts from the initial basis (1, 0).
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Figure 2-16: The basis dictionary at each forward-backward iteration when
the initial condition is chosen as Figure 2-13c. In the left figure, the red
dots indicate the bases in the dictionary, while the blue crosses indicate
the deleted basis. In the right figure, the red line indicates the derivative
of the true flux, while the blue line indicates the derivative of the trained
flux.
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The gradient of , (2.35),

(c) j u(1, x; c) - )2 dx,

can be estimated by the trained twin model. The estimated gradients are compared

with the true adjoint gradients of the gray-box model, and the errors are shown in

Figure 2-17. The adaptive basis construction improves the accuracy of the gradient

estimation. Table 2.1 shows the error in the estimated gradient for the three solutions.

The error in the estimated gradient is given by

~1 2 1/2

d< <d dxdt
0 0 dc dc

where is the objective function evaluated by the gray-box model, and is the

objective function evaluated by the twin model. We compare the result by using the

manually chosen bases in Figure 2-6 and by using the bases constructed adaptively.

1 10- 1 10 1 / 101

10-2 10-2 10-2

lo-3 10o- 3  i-

tt t
10- 4  10-- 104

010- 10 10-5

010 O 1 0 1

(a) Solution 1 (b) Solution 2 (c) Solution 3

Figure 2-17: Error of the estimated gradient, d -- , for the three

solutions. The basis dictionary is constructed adaptively.
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Solution 1 Solution 2 Solution 3

Manual basis 2.5 x 10-3 6.6 x 10-4 7.3 x 10-

Adaptive basis 4.2 x 10-6 1.5 x 10-6 8.9 x 10-7



Table 2.1: Error of the estimated gradients for the three solutions. The
adaptively constructed bases reduce the estimation error.

2.4.2 Navier-Stokes Flow

Consider a steady-state, compressible, viscous, adiabatic flow in a 2-D return bend

channel driven by the pressure difference between the inlet and the outlet. The

geometry of the return bend is given in Figure 2-18. The return bend is bounded by

no-slip walls. The inlet static pressure and the outlet pressure are fixed. The inner

and outer boundaries of the bending section are each generated by six control points

using quadratic B-spline.

1.5-

1.0-

0.5-

.0.0
0utlet

-1.0-

-1.5 -

-3

Inlet

I I I I I I I~I

-2

Figure 2-18: Return bend geometry and the mesh for the simulation. The
control points for the inner and outer boundaries are indicated by the red
dots.

The flow is governed by the Navier-Stokes equations. Let p, u, v, E, and p be the

density, Cartesian velocity components, total energy, and pressure. The steady-state
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Navier-Stokes equation is [6]

a
Dx

u(Ep

Pu

pU2 + p - xx

puv - ax

+ p) - O-XXU -

Oau

o-xyv

Pv

PZLV -xy= 0, (2.43)
PV2 + P - Oyy

v(E p+ p) - Oxyu - oYYVJ

where

OXx = P 2 au

ax 3 Dx

-YY = 2
ay 3 9x

aou Ov\
O-Y =yA +

Dv

y))
Dv
+ ).
Dy11

(2.44)

The Navier-Stokes equation requires an additional equation, the state equation, for

closure [6]. The state equation has the form

(2.45)p = P(U, p) ,

where U denotes the internal energy per unit volume [6],

U=P( E- 1(U2 + V2)) (2.46)

Many models have been developed for the state equation, such as the ideal gas

equation, the van der Waals equation, and the Redlich-Kwong equation [1031. We

assume the true state equation in the gray-box simulator is unknown. The state

equation will be inferred from the gray-box solution. Let p, be the steady-state

density, uc = (u0, vO) be the steady-state velocity, and Em, be the steady-state

energy density. The steady-state mass flux is

pOul outlet dy = fiet POCU0 inlet dy
= - outlet
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The goal is to estimate the gradient of to the red control points' coordinates.

Two state equations are tested: the van der Waals equation and the Redlich-

Kwong equation 16, 91,

Pvdw - )U - avdwp
1vd 1-ab5/2 

(2.48)
(y - 1)U arkp5 /2  (

Prk 1- brkP (( - 1)U) 1/ 2 (1 + brkP)

where we set avdw = 104, bvd= 0.1, ark = 10' and brk = 0.1.

In both the gray-box and the twin models, we use the same second-order finite

volume scheme for discretization and a pseudo-time marching scheme to solve for the

steady-state solution. The solution mismatch, (2.2), is given by

M =W, P - Poo2 dx + w Ioo uOO12dx

+W W I O - VO|2 dx +WE - E.1 dX ,

where w,, wu, w, and WE are non-dimensionalization constants. Figure 2-19 shows

the gray-box solution and the solution mismatch after training the twin model. The

selected bases in the dictionary, represented by (jiu, jP, r g, 77P), are listed in Table 2.2

and 2.3. They are also shown in Figure 2-20 on a (1%-, -jP) plane. Figure 2-21 shows

the cross-validation error M, at each forward-backward iteration. Figure 2-22 shows

the trained state equation and its error. The convex hull of (UO, px) is shown by the

red dashed line. Because the state equation is expected to be inferable only inside the

domain of the gray-box solution, a large deviation is expected outside the convex hull.
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Figure 2-19: Left column: Example gray-box solution for a given geometry.

Right column: Solution mismatch after training a twin model.

(1, 1, 5,2) (1,1,6,2 ) (1,1 1) (2,1,9,1) (2,1,110,j)

(2,1,11,2) (2,1,11,1) (2,1,10,0) (2,1,12,2) (2,2,9,3)

(2,2,10,2) (2,2,10,3) (2,2,11,3) (2,2,10,1) (2,2,11,4)

(2,2,10,4)

Table 2.2: List of the dictionary for the van der Waals gas, (ju, jp, 7u, 7p).

(1,1,5,2) (1,1,6,2) (1,1,6,1) (1,1,6,0) (2,1,9,1)

(2,1,10,1) (2,1,11,2) (2,1111) (2,1,10,0) (2,1,12,2)

(2,1,13,2) (2,2,10,2) (2,2,10,3) (2,2,11,3) (2,2,12,3)

(2,2,10,1) (2,2,11,4)

Table 2.3: List of the dictionary for the Redlich-Kwong gas, (Ju, Jp, nuI 7p).

The trained twin model enables the adjoint gradient estimation. Figure 2-23 shows

the estimated gradient of to the control points' coordinates. It also compares the

estimated gradient with the true gradient. The error of the gradient estimation is

given in Table 2.4.

83

0

0

0

flpn~itv
-- I

4 -3 -2 -1 0 1 2
Densitv

S8.1
x

5.4

2.7

0
1.8

1.2 X

0

5.76

3.84 X

1.92

0

2

F n~rriv

0

E7S

2

.
1.0-
1.5 ) ,

y 0.0
-0.5 -
-1.0-
-1.5

-4 -3 -2 -1 0 1

-



1.2

1.0

0.8

0.6

0.4

0.2

0.0

cn
0)

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
internal energy

(a) Van der Waals state equation.
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(b) Redlich-Kwong state equation.

Figure 2-20: The basis dictionary for the state equations, plotted on the

(, -5P) plane. The circles represent the bases that have ju = 1, j = 1.
The squares represent the bases that have ju = 2, j1 = 1. The dots
represent the bases that have ju = 2, j,7 = 2.

5 10 15 20 25 30 35
number of forward-backward iteration

Figure 2-21: Cross-validation error M, at each forward-backward
iteration. The y-axis is scaled by a constant, so that M, at the first
forward-backward iteration equals 1.
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(a) Van der Waals
1.1 1.32 1.1 2eo

1.24 leO

0.9 1.16 0.9

n g so0lutio.8

07100 0.7 6e-2

0.92 2e-2
0.5- 084 0.5

0.76 4e-3

2.4 2.6-3. 2.8 .. 2 2.4 2.6 2.8 3.0 3.2 le-3
.2 24262.8 3. 3.2.6 .

internal energy internal energy

(b) Redlich-Kwong

Figure 2-22: State equation for the van der Waals gas, and for the Redlich-

Kwong gas. Left column shows the trained state equation; right column

shows the error of the state equation. The trained state equation is

added by a constant, so the pressure matches the pressure of the gray-

box equation at U =2.6 and p = 0.7. The dashed red line shows the

convex hull of the gray-box solution.
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(a) Gradient of to the control points
for the Redlich-Kwong gas. The wide

gray arrow is the gradient evaluated by
the gray-box model, while the thin black
arrow is the true gradient.
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(b) Boundary perturbed according to
the gradient. The blue dashed line is

obtained by the true gradient, while the

red dashed line is obtained by the twin-

model gradient.

Figure 2-23: Comparison of the estimated gradient and the true gradient
for the Redlich-Kwong gas. The result for the van der Waals gas is visually
indistinguishable to this plot.
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Gas Interior control points Exterior control points

van der Waals 0.13 0.04 0.05 0.32 0.16 0.15 0.07 0.02

Redlich-Kwong 0.32 0.03 0.07 0.50 0.40 0.12 0.06 0.05

Table 2.4: Error of the gradient estimation, in percentage.

2.4.3 Polymer Injection in Petroleum Reservoir

Water flooding is a technique to enhance the secondary recovery in petroleum reservoirs,

as illustrated in Figure 2-24. Injecting pure water can be cost-inefficient due to low

water viscosity and high water cut. Therefore, the water-solvent polymer can be

utilized to increase the water-phase viscosity and to reduce the residual oil.

Water
Injectioni Welt Production Well

Water

Figure 2-24:
PetroWiki).

Water flooding in petroleum reservoir engineering (from
Polymer solved in the water phase can be injected into the

reservoir to enhance the production of oil.

Consider a reservoir governed by the two-phase porous media flow equations

a- (paosa) + V - (Paa) = 0 ,at
a(pw pSwc)+V- (cpif ) = 0

at POO+V W
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for x E Q and t E [0, T], where the phase velocities are given by the Darcy's law

Vce = -MckrcK - (Vp - pegVz), a E (w, o}
. (2.50)

'wp = -MwpkrwK - (Vp - p, gVz)

w, o indicate the water and oil phases. p is the phase density. # is the porosity. S

is the phase saturation where Sw + So = 1. c is the polymer concentration in the

water phase. vW, vo, vWP are the componentwise velocities of water, oil, and polymer.

K is the permeability tensor. k, is the relative permeability. p is the pressure. z

is the depth. g is the gravity constant. The mobility factors, Mo, M., M.,, model

the modification of the componentwise mobility due to the presence of polymer (oil,

water, polymer).

The mobility factors depend on S,, p, and c, but the algebraic form of the dependence

can be proprietary and unknown. In this example, we are going to infer such

dependence.

PSim, the industrial simulator aforementioned in Section 1.1, is used as the gray-

box simulator, where we use the upwinding scheme and the IMPES time marching

[4], i.e. implicit in pressure and explicit in saturation. Its solution, S., c, and p

can be used to train the twin model. The twin model is implemented in MRST, an

open-source reservoir simulation toolbox [109]. We use the upwinding scheme and

the fully implicit time marching to simulate the twin model. The solution mismatch

is defined by

MU = WS |T J - I S2dxdt +W j fc - 12dxdt +wp f L |p - p12dxdt,

(2.51)

where wsw, we, and w, are non-dimensionalization constants.

Consider a reservoir setup shown in Figure 2-25, which is a 3D block with two
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injectors and one producer. The permeability is 100 milli Darcy, and the porosity

is 0.3. A constant injection rate of 10 6 ft 3 /day is used at both the injectors. The

reservoir is simulated for t C [0, 50]day. To select the basis dictionary for the twin

model, the truncation errors for the three equations in (2.49) are minimized separately

by using the forward-backward iteration. Figure 2-26 shows the trained mobilities for

oil, polymer, and water. Tables 2.5 through 2.7 list the basis dictionary for the three

mobilities. Figure 2-27 shows the truncation error at each forward-backward iteration

for the three mobilities. The solution of S, is illustrated in Figure 2-28 for the

untrained twin model, the gray-box model, and the trained twin model, respectively.

After the training, the twin-model solution matches the gray-box solution closely.

Producer

1000 0

-300ft
1000 ft

0

Figure 2-25: The geometry of the petroleum reservoir.

(-2, -2, -2, -1, 0, 0) (-2, -2, -2, 0, 0, 1) (-2, -2, -2, 0, 1, 2)

(-2, -2, -2, 0, 1, 3) (-2, -1, -2, 0, 0, 0) (-2, -1, -2, -1, 1, 1)

(-2, -1, -2, 0, 0, 1) (-2, -1, -2, 0, 1, 1) (-2, -1, -2, 0, 1, 2)

(-2, -1, -2, 0, 1, 3) (-2, -1, -1, 0, 0, 0) (-2, -1, -1, 0, 0, 1)

(-2, -1, -1, 0, 1, 1) (-2, -1, -1, -1, 1, 2) (-2, -1, -1, 0, 0, 2)

(-2, -1, -1, 0, 1, 2) (-2, -1, -1, 0, 1, 3) (-2, -1, -1, 0, 2, 3)

Table 2.5: (jpIjsw, jcI,7pIsw, I7c) for M.
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(a) Oil mobility.
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(b) Polymer mobility.
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(c) Water mobility.

Figure 2-26: The trained mobilities M0 , M, M.p.
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(-2, -2, -2, -1, 0, 0)

(-2, -1, -2, 0, 0, 0)

(-2, -1, -2, 0, 1, 1)

(-2, -1, -2, 0, 2, 3)

(-2, -1, -1, 0, 1, 1)

(-2, 1, -1, 0, 1, 2)

(-2, 1, -1, 0, 1, 4)

(-2, 0,1-1,1-1, 1,1 0)

(-2, 0, -1, -1, 0, 1 )

(-2, 0, -1, 0, 0, 2)

(-2, 0, -1, 0, 2, 4)

Table 2.6:

(-2, -2, -2, -1, 0, 0)

(-2, -2, -2, 0, 1, 2)

(-2, -1, -2, 0, 0, 0)

(-2, -1, -2, 0, 1, 1)

(-2, -1, -2, 0, 1, 3)

(-2, -1, -1, -1, 0 1)

(-2, -1, -1, -1, 1,1 2)

(-2, -1, -1, 0, 1,7 3)

Table 2.7:

(-2, -2, -2, 0,

(-2, - 1, -2, -1,1

(-2, -1, -2, 0,

(-2, 1, -1, 0,

(-2, -1, -1, -1,

(-2, -1, -1, 0,7

(-2, -1, -1, 0,

(-2, 0, -1, 0,

(-2, 0, -1, 0,

(-2, 0,, -1, 0

(-2, 0, 0,1-1,1

0,

1,

1,

0,

1,

1,

2,

0,

1,

1,

0,

0)

1)

2)

0)

2)

3)

4)

0)

1)

2)

2)

(-2, -2,

(-2, -1,

(-2, -1,

(-2, -1,

(-2, -1,

(-2, -1,

(-2, -1,

(-2, 0,

(-2, 0,

(-2, 0,

-2,

-2,

-2,

-1,

-1,

-1,

-1,

-1,

-1,

-1,

(jp, jswIjc,7/p,'swIqc) for MWP.

(-2, -2, -2, 0, 0, 0) (-2, -2, -2,

(-2, -2, -2, 0, 1, 3) (-2, -1, -2,

(-2, -1, -2, -1, 1, 1) (-2, -1, -2,

(-2, -1, -2, 0, 1,1 2) (-2, - 1, -2,

(-2, -1, -1, -1, 0, 0) (-2, -1, -1,)

(-2, -1, -1, 0, 0, 1 ) (-2, -1, -1,

(-2,7-1, -1, 0, 0, 2) (-2, -1, -I,)

(-2, -1, -1, 0, 2, 3)

(jp, jswIjc,1plsw,"Tc) for MW.

0,

0,

0,

-1,

0,

0,

0,

0,

0,

0,

0,

-1,

0,

0,

0,

0,

0,

0, 1)

0, 1)

1, 3)

0, 1)

0, 2)

2, 3)

2, 5)

1, 0)

3, 1)

1, 3)

0,

0,

0,

2,

0,

1,

1,

1)

0)

1)

2)

0)

1)

2)

Let the objective function be the residual oil at T = 50 days,

= Lpo(T)<pSo(T) dx. (2.52)

The gradient of with respect to the time-dependent injection rate is computed. The

gradient estimated by the twin model is shown in Figure 2-29, where the red and blue

lines indicate the gradient for the two injectors. In comparison, the star markers show

the true gradient at day 2, 16, 30, and 44, evaluated by finite difference. Clearly, a
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1e0
x oil equation
+ polymer equation
. water equation

1 e-1

1e-2

1 e-3'-0 10 20 30 40
iteration

Figure 2-27: Relative cross-validation error at each forward-backward
iteration. The x axis is the number of iteration, and the y axis is the
integrated truncation error for M, of the three equations in (2.49).

rate increase at the injector 1 leads to more residual oil reduction than the injector 2.

This is because the injector 2 is closer to the producer, where a larger rate accelerates

the water breakthrough that impedes further oil production. It is observed that the

estimated gradient closely matches the true gradient which is computed by finite

difference. The error is given in Table 2.8.

Table 2.8: Error of estimated gradient at day 2, 16, 30, and 44, in
percentage.

2.5 Chapter Summary

This chapter develops a method for gradient estimation by using the space-time

solution of gray-box conservation law simulations, at a cost independent of the dimensionality

of the gradient. The key to inferring F is to leverage the gray-box space-time

solution. My method uses the big data, the gray-box space-time solution, to estimate
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Error t = 0.04 t = 0.32 t = 0.6 t = 0.88

Inj 1 1.7 1.0 0.6 0.2

Inj 2 2.2 1.9 0.7 0.2
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Figure 2-28: Isosurfaces of S, = 0.25 and S, = 0.7 at t = 30 days. After

the training, the twin-model solution matches the gray-box solution.

93



-0.2

Inj2
-0.28

- 0 .3 2............... ...

0 10 20 30 40 50
t

Figure 2-29: Gradient of g with respect to rates at the two injectors. The

lines indicate the gradients estimated by the twin model, while the stars

indicate the true gradient evaluated by finite difference.

the unknown component in the gray-box model and to estimate the gradient. The

twin model is an adjoint-enabled conservation law simulator, and can be trained

to minimize a metric measuring its difference against the gray-box simulator. Two

metrics, the solution mismatch and the integration truncation error, are proposed. To

enable the training computationally, a sigmoid parameterization is presented. Then

the twin model method is demonstrated in the Buckley-Leverett equation by using

a set of manually chosen bases. To further exploit the information contained in

the gray-box solution, an adaptive basis construction procedure is presented. The

adaptive procedure iterates over a forward step and a backward step to append and

delete basis in the basis dictionary.

The proposed twin-model algorithm is demonstrated on a variety of numerical

examples. The first example is the Buckley-Leverett equation, whose flux function is

inferred. The trained twin model accurately estimates the gradient of an objective to

the source term. The second example is the steady-state Navier-Stokes equation in

a return bend, whose state equation is inferred. The inferred state equation allows

estimating the gradient of mass flux to the control surface geometry. The third

example is the petroleum reservoir with polymer injection, where the mobility factors

are inferred. The gradient of the residual oil to the injection rate is estimated. With
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the aid of the estimated gradient, the objective can be optimized more efficiently,

which will be discussed in the next chapter.
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Chapter 3

Leveraging the Twin Model for

Bayesian Optimization

This chapter develops a Bayesian optimization framework to solve (1.9),

c* = argmax (u, c)
Cmin: C Cmax

((C) = MNWij f (uig , C; ti, Xi) ~ldf f (U, C; t, X)dxdt'
i:=1 j=1

where is the objective function that is twice differentiable, u is the gray-box solution,

c is the control variables, i = 1,... , M, j = 1, - , N are the indices for the time

and space grid, and wij's are the quadrature weights. In the following context, we

assume to be twice differentiable. As discussed in Section 1.3.1, the advantage of

Bayesian optimization is that it uses all the information available from previous

evaluations. This advantage can be valuable in our context where the gray-box

simulation is expensive. The estimated gradient, provided by the twin model, is

utilized to improve the optimization performance. The goal is to reduce the number

of gray-box simulations required to achieve the desired objective evaluation, as well as

to reduce the overall computational cost. The chapter is organized as follows. Section

3.1 discusses the Bayesian modeling of the objective function and its gradient. The

modeling is used to develop a Bayesian optimization algorithm in Section 3.2. The
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convergence properties of the algorithm are investigated in Section 3.3. Finally, the

algorithm is demonstrated in Section 3.4 in several numerical examples.

3.1 Modeling the Objective and Gradient by Gaussian

Processes

Assume the gray-box simulator evaluates the objective function accurately. The

adjoint gradient estimated by the twin model may not equal the true gradient for

several reasons. For example, the gray-box solution can be under-resolved if the

space-time grid is too coarse, thus limiting the accuracy of the inference of F. In

addition, the simulators for the twin and gray-box models may use different numerical

schemes, so the twin-model solution may not equal the gray-box solution even if

F = P. Similarly, the P that minimizes the solution mismatch may not equal

F. Because of the errors in estimating F, an error is introduced in estimating the

gradient. It is difficult to identify and separately quantify the various sources of

errors in the estimated gradient. Instead, I model the gradient error as a whole

without distinguishing the sources of errors.

Let V be the true gradient of , t be the twin-model estimated gradient, and ti

be its ith component. We model the relationship between V and t by [63, 64, 651

ti = V~i + Ei , (3.1)

for i 1, ... , d, where c = (Ei, - , Ed) models the error in the estimated gradient,

where Ei's are functions that depend on the control variable.

Gaussian processes are adopted to model the terms in (3.1). In particular, I made

the following assumptions.

1. is a realization of a stationary Gaussian process with mean p, and covariance
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kernel K(., .);

2. C, , Ed are realizations of zero-mean stationary Gaussian processes with covariances

G1(, -),- , G(,-), respectively;

3. The gradient errors, Ei's, are independent with the objective,

(3.2)

for all cI, c 2 C R d, i = 1 ... 4;

4. The components of the gradient error are pairwise independent,

coV [ei(ci), Ej (c2)] = 0 ,

for all cI, c2 E Rd and i # j;

5. The covariances are isotropic, i.e.,

depend on c1 - c 2 -

K(ci, c 2 ), G,(ci, c 2 ), ... Gd(cl, c2) only

Suppose and t have been evaluated on c . Based upon the assumptions

above, the joint distribution of (c), (c), and t (c) is multivariate normal and is

given by

(c)

2(.)

J K(c, c)

0 WT

V W

D H

I E +G

(3.3)

where

v = (K(c, ci), --- , K(c, CN)) ,

w = (Vc 1K(c, cl), - - - , VCN K(c, cN))

K(ci, cl)

D

K(cN, C)

.. - K(ci, cN)

... K(CN,CN)

'The notations are
evaluations are assumed

consistent with Section 1.3.1. The objective and estimated gradient
to be collocated, which will be shown in Section 3.2.
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(3.4)

(3.5)

(3.6)

COV [ ((CI), Ci (C2)] = 0 ,



VC 1K(cN, ci)

H =

VC K(CN, ci)

(G(ci, c1)

G(CN, cI)

... VCNK(cl, cN)

..- VCNK(CN,CN)

..-. VCVC,'K(cl, c'

- VCN VC K(CN, C'N

.. - G(cl, cN)

.-. G(cN,cN)

where G(ci, cj) is the covariance matrix of E(ci) and E(cj) given by

G(ci, c) = diag(G1(ci, cj), - - - , Gd(ci, c3)) , i, j = 1, - - , d.

(3.7)

(3.8)

(3.9)

(3.10)

The derivation of (3.7) and (3.8) can be found in [74].

As discussed in Section 1.3.1, there are many choices for the covariance kernels

K and G, such as the exponential kernel, the squared exponential kernel, and the

Matern kernel. In the following context, the Matern 5/2 kernel is used. This is

because the functions simulated by this kernel are twice differentiable but without

further smoothness [71, 89, 90]. We have

K(ci, c2) =-2

Gi(ci, c2) =05,

( +.

1+

L - C2||L2  5||ci - C2||L2I

+ U 2

\/5|Ci - c211L2

LG

)
+ 5 C2 L

3 LGj 2

exp v--jj C1L

(V||ci -(c2.L 2 )

exp v/5C - C211L2

LG 3

(3.12)

where o-, -G 's are the standard deviation parameters, and L , LGj 's are the correlation

length parameters.
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Let 0 denote the hyper parameters LC, og, LGi'S, JGi 's, and p. Given the samples

of and t on a set of c's, 0 can be estimated by log maximum likelihood. As

discussed in Section 1.3.1, we use c, = (ci, - - - , c,) to represent a sequence of control

variables on which and t have been evaluated. The likelihood of observing (c)

and t (c,) is given by

P ( (C.), t (f") 10) = p(f(c.), (cn), (g) 10) d (V(c_())

= p(L(c), V ((cn) 1) P( (f.) ((f.), v((2n);0) d(V (fn)).

(3.13)

Because

(3.14)

and

(3.15)

the log marginal likelihood can be derived. It has the closed form

log p( f(c.), (f.) 1)
T

=- - ( )

2 (fnc)

N(d + 1) log(27)
2

-1

__~ (--) -log detE __
H T E+G ) 2 H T E+G

(3.16)

The log marginal likelihood can be optimized efficiently using GBO methods. In my

thesis, the optimization is done by the BFGS algorithm in the NLopt package [43].

Given the joint distribution (3.3) and the estimated hyperparameter 6, the posterior
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of (c), for any c E R , can be obtained by (1.16),

rn=(c) m(c) + K(c, c.)K(c., c)- 1 (fc) - m(c))

k(c,c') = K(c, c') - K(c, c)K(c.,c)-K(cc')

As discussed in Section 1.3.1, the expected improvement (EI) acquisition function,

p(c), can be evaluated by using the posterior. The acquisition function can be

optimized to find the next control variable to evaluate the objective function. In

my thesis, the optimization is done by the StoGo algorithm [87, 881, a gradient-based

branch-and-bound algorithm implemented in the NLopt package [431.

3.2 Optimization Algorithm

Based upon the developments in Section 3.1, I present the Bayesian optimization

algorithm 3. The flowchart of the algorithm is sketched in Figure 3-1.

Input: Initial guess c. Current best control c*. Current best objective *. Max
iteration nmax.
Expected improvement threshold EImin. D= [], D = [], D , = [].

1: for i = 1 to nmax do
2: Simulate the gray-box model on c, obtain (c) and u(c).
3: Train a twin model using u(c), obtain t(4c).
4: De = [De, c], D = [D , (c)], Dg, = [De,, (c)].
5: if (c) > * then
6: Co +- C

7: end if
8: Update hyper parameters by MLE.
9: c +-- argmaxcmi !c<cma log(pEI(c)).

10: if pEI(c) < EImin then
11: break
12: end if
13: end for
Output: c0, 0

Algorithm 3: Bayesian optimization enhanced by the gradient estimated by the
twin model method.

The algorithm starts from an initial value of the control variable c, then iterates
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Figure 3-1: Flowchart of Algorithm 3.
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over line 2-12 to find the next candidate control. At each iteration, the gray-box

model is run at the current control variable, which provides the current objective

function (c) and the gray-box solution u(c). The resulting gray-box solution is

used to train a twin model according to the twin-model algorithm, Algorithm 2,

which provides the estimated gradient t(c). Using the new evaluations of and

(t at c, the hyperparameters are updated by the maximum likelihood. Then the

next candidate control variable is determined according to the expected improvement

acquisition function. If the expected improvement at the candidate control is smaller

than a threshold value, the optimization exits and reports the best control variable;

otherwise the iteration continues until the maximum number of iterations is reached.

In line 3 of Algorithm 3, a new twin model is trained at each iteration for the

current control variable. The basis dictionary for the new twin model does not need

to be constructed from scratch. The dictionary of the last iteration can be used to

provide an initial guess of the dictionary for the current twin model. The bases in

the old dictionary may be insignificant for the current twin model; therefore, they

should be pruned to give the initial guess. We present a greedy approach to pruning

the bases in Algorithm 4. The pruned dictionary is then used as the initial basis

dictionary for training the current twin model.

3.3 Convergence Properties Using True Hyperparameters

This section investigates the convergence properties of Algorithm 3. For Bayesian

optimization with only the objective function evaluation, the convergence properties

have been explored in the literature. Locatelli [73] proved that Bayesian optimization

with El acquisition generates a dense search sequence for the 1-D optimization problem

C* = argmaxcE[0,1] (c), if is a realization of the Wiener process. Vazquez [67]

generalized the results by showing that the sequence is still dense for higher dimensional

space and for more general classes of stochastic processes. Recently, Bull [68] showed

that Bayesian optimization with EI has a convergence rate at 0(n-L/d), where v > 0 is
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Input: A, aA of the trained twin model at the last iteration.
1: Compute M by k-fold cross validation. Mo +- M.
2: while JAI > 1 do
3:

1* + argmin si (A) , A +- A\{ l*}
leA (A)

4: Compute M by cross validation.
5: if M < M0 then
6: Mo +- M
7: else

8: AU{l*}, break
9: end if

10: end while
Output: A

Algorithm 4: Prune the basis dictionary of previously trained twin model. To
be consistent, the metric M is set as the same metric, either M or M, as in
Algorithm 2.

a constant parameter controlling the kernel smoothness, and d is the dimensionality

of the control variable. Similar results have been given for UCB acquisition. N.

Srinivas 169] shows that the convergence rate for UCB is O(n2v+d(d ). However,

to the best of my knowledge, the convergence analysis found in the literature only

considers objective function evaluations but not estimated gradient evaluations. My

contribution is to extend the convergence analysis to incorporate estimated gradient

evaluations. In this section, I analyze the convergence properties of Algorithm 3. I

assume that the objective function is a realization of a zero-mean stationary Gaussian

process and assume the gradient error is a realizations of another zero-mean Gaussian

process. In addition, I assume the kernel functions and the hyperparameters of the

Gaussian processes are known. Under the assumptions in Section 3.1, I prove that the

search sequence of the control variable is dense in the search space. The conclusion

implies that the algorithm is able to find the optimal control as nmax - oc, regardless

of the magnitude of error in the gradient estimation.

The assumptions in Section 3.1 are revisited as follows: belongs to the reproducing

kernel Hilbert space (RKHS) WK generated by a semi-positive definite kernel K :

105



C x C -+ [0, oc). Let K be differentiable; then the gradients of all functions in

WK form a RKHS 7 K, defined by the kernel Kv(ci, c2 ) VC1 VC2 K(ci, c2 ) for all

ci, c 2 E C (Theorem 1 in [66]). Besides, Ei, for i = 1, - , d, belongs to the RKHS

N generated by a semi-positive definite kernel Gi: C x C -+ [0, oo). ci's are pairwise

independent. Denote the tensor product of the RKHSs byWG =- WGt 0 .. G0

Represent the stochastic dependence of by wC, and represent the stochastic

dependence of ci by w'. Let ( E, P') be the probability space for wC, and let

(, E', Pi) be the probability space for w'. We have

CxQ -(3.17)

(c, W) -(C; )

and
E : C xQ'- aRd

(3.18)
(clw) -+ c(c; W')

for i = 1,--- ,d. Let w, = (wi, ... ,W ) and Q = Q 0 -- . The true

objective function is (c; w*) for w E Q . The true estimated gradient error is

c(c; w*) for w* E Q,. In other words, (c; w*) = ((c) and E(c; w*) = E(c) for all

c E C. Conditioned on (c) and ((cs), Bayesian optimization generates the next

search point deterministically. Given the initial control cinit, the search sequence can

be seen as a mapping

_C=(, W,) = (Cl(Wo, wE), C2(wP, W),..-) , (3.19)

The search strategy C generates a search sequence C1, C2, - - - in C, with the property

that C,,+ is F-measurable, where T, is the --algebra generated by ((c) and 'g~ci)

At the n-th search step, the posterior mean and variance of (c) conditioned on

and ( (c) can be written as

(C; fn) = EWw [(cw ) cI, ((c), (() , (3.20)
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and

a ,(c;c.) = E (, (c) - n(c) fn, ((c), It (n). (3.21)

Notice o(c; c) only depends on c,, and is independent of (C), (c ) because of

the Gaussian process assumption.

The following theorem holds.

Theorem 3. Let 4)(c) = K(c, 0) for all c G C, and let 41 be its Fourier transform. If

there exist C > 0 and k e N+, such that (1 + IrA2)k |1(>7) > C for all (E R d, and if

nillx -4 oo and EImin = 0, then cn is dense in C for all cini E C, all G NK and all

E E NG -

Proof:

First, we have the following lemma (Chapter 1, Theorem 4.1, [70]).

lemma 1. Let K1, K 2 be the reproducing kernels of functions on C with norms ||

and 1| - |1W2 respectively. Then K = K1 + K2 is the reproducing kernel of the space

N = N 1 e 2 = {f = fl + f2, fi N 1, f2 E N 2 1

with norm | - defined by

Vf (EW 1 1 min {|fi 11-2 + 11 f2 1
f=fl+f 2 , fENlf 2 EN2 (f1 f2

Using Lemma 1, we prove the following Cauchy-Schwarz inequality,

lemma 2.

2

((c I ) - ((C; fn) <

1d + d(c; ) + Vc(c;wo))|| + 43 (c;wo) ) 2(c; c.)
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To prove Lemma 2, we define a vector

U = (ui, -.. - ,n)T EU

where U = [0, 1 ]d. Define an auxiliary function

Y(c, u; W , we) = (
d

1 -Zus (c, Wo) + uT [Vcg(c, W ) + E(c; We)] .

1, - - - ,Ud are functions from the Sobolev space W1 ,2 defined on U, equipped with

the inner product

JU ) + (Vq41 '(VO) du

The Sobolev space is a RKHS with the kernel

1
Ku(#1, ) = exp(--q#-- @|)

2

on U = [0, 1]. Given wo and we, Y(-, -;w, we) can be viewed as a realization from a

RKHS 7Wy, defined on C x U. Let the kernel function of 7 y be

Ky :CxU,CxU--+R

(ci, uI), (c 2 , U2) -+ Ky((ci, Ui), (c 2 , U 2 ))

Notice

Y(c, 0; W , We) = (c, Wo)

is the objective function, and

, Y(c, ed; WC, wE)) = Vc((c; Wo) + E(c; we)

is the estimated gradient, where ei, i = 1, - - - , d indicates the ith unit Cartesian basis

vector in Rd. Conditioned on the samplings (c) and tcf), we can bound the error
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of the estimation of Y(c, 0; wo, w,) by the Cauchy-Schwarz inequality [701 in JHy,

Y(c, 0; Wo, W') - Y(c, 0; c) = I(c; W) -- in(c; c) 15 a(c; c)IIy IllN

d

- u/ S(c; Wo) + uT [Vc(c; Wo) +

|(c; WO) + E H |W(c; WO)KW, +

E(c; we)]
Ry

||uill u

d

+ Ijiic

= (c, w)IInK + 4d3 (c, w)
4d

+ 4d IVTC(c; W ) II3 KV

where the inequality obtained by Lemma 1. The proof for Lemma 2 completes.

Using Lemma 2, we prove

lemma 3. Let (c.);>1 and (a)j;>1 be two sequences in C. Assume that the sequence

(an) is convergent, and denote by a* its limit. Then each of the following conditions

implies the next one:

1. a* is an adherent point of c (there exists a subsequence in cn that converges to

a*),

2. a 2 (an; c) -+ 0 when n -+ oc,

3. (an; of) -+ (a*mw) when nm o, for all E Ki , E G-

The proof of Lemma 3 is the similar as the proposition 8 in [67], except that the

Cauchy-Schwarz inequality used in the paper is replaced by Lemma 2. We do not

repeat the proof but refer to [67] for the details.

Next, we show the three conditions are equivalent in Lemma 3. Using the assumption:
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There exist C > 0 and k G N+, such that (1 + I|2)k |(q)| > C for all T1 E Rd,

we have, for any E 7 K and its Fourier transform (,

wk,2 J(1 + 2)k 2 d Cf > $(g) 1()2 d7 = C /(27r)d ' ,

where Wk,2 is the Sobolev space whose weak derivatives up to order k have a finite

L2 norm [68]. Therefore, Wk,2 C W K. The result can be extended to E 7K(C)

defined on the domain C E Rd, because NK(C) embeds isometrically into K(Rd)

[80]. Besides, we have that Cc is dense in Wk,2 (Chapter 2, Lemma 5.1 [81]), where

C, is the C' functions with compact support on C. As a consequence, C'C NK

[67]. If the condition 1 is false, then there exist a neighborhood U of a* that does not

intersect c There exist E 7 K that is compactly supported in U, and f = 0, such

that (a*; c) = 0 whereas (a*) # 0, which violates the condition 3. Therefore, the

three conditions in Lemma 3 are equivalent.

Finally, we have:

lemma 4. (E. Vazquez, Theorem 5 [67]) If the three conditions in Lemma 3

are equivalent, nmax -+ oc, and Elmin = 0, then for all ciji E C and all w E W,

the sequence cn generated by the Bayesian optimization with expected improvement

acquisition is dense in C.

We refer to [67] for the details of the proof and do not repeat it here. To summarize,

under the conditions in Theorem 3, cn is dense in the search space. U

Under the condition that the true hyperparameters are known, the theorem implies

that the Bayesian optimization algorithm (Algorithm 3) can find the maximum of the

objective function in the limiting case of nmax -+ oc and EImin = 0, regardless of the

error of the gradient estimation. Even if the gradient is poorly estimated, the current

best control is always close to the true optimal and the optimization won't get stuck

at a non-optimal control. The assumption of (1 + Jq2)k|(7)J > C in the theorem

indicates that the Fourier transform of K(., c) has at least polynomial growth, which

is a condition satisfied by the Matern 5/2 kernel [67]. It is a future work to extend
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the theory to unknown and estimated hyper parameters.

3.4 Numerical Results

This section demonstrates the optimization algorithm on several numerical examples.

3.4.1 Buckley-Leverett Equation

Consider the same gray-box model of Buckley-Leverett equation in Section 2.4.1

au 8 / U2 -
Ot ax~ \I + 2(l ))=c

with the periodic boundary condition and the same initial condition shown in Figure

2-11. We parameterize the control c by

5 5

c(t, X) = I cij Bij (t, X)
i=1 j=I (3.22)

Bij = exp - 2 exp - 2

where Lt = Lx = 0.15, and (ti,--- , t4) = (x1,. - -- ) = linspace (0, 1, 5). Consider

minimizing the objective

U(c)=ju(t = 1, X) + 1 (3.23)

with the bound constraints -1 < cij < 1 for i,j = 1, - , 5.

The optimization is done by using Algorithm 3. Figure 3-2a shows the optimized

source term. Figure 3-2b shows the corresponding gray-box solution. Constrained

by a limited number of gray-box simulations, the optimized solution and objective

are examined. Figure 3-3 compares the optimized u(t = 1, x) obtained by using

the Bayesian optimization with and without the estimated gradient, after 20 gray-
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box simulations. Figure 3-4 shows the current best (minimal) objective evaluation

at each iteration. The usage of twin-model gradient makes the objective evaluation

decrease faster, especially when the number of iteration is small.
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t
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-0.3 0

(a) Optimized source term.

0 0.2 0.4 0.6 0.8 1.0
x

(b) Optimized gray-box solution.

Figure 3-2: Optimized results for the Buckley-Leverett equation.
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Figure 3-3: A comparison of the current best u(t = 1, x) after 20 gray-box
simulations. The red line is obtained by the vanilla Bayesian optimization
and the green line by the twin-model Bayesian optimization. The cyan
dashed line is the u(t = 1, x) obtained by setting the source term to zero.
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Figure 3-4: The current best objective evaluation at each iteration. The red
line is obtained by the Bayesian optimization without using the estimated
gradient. The green line is obtained by using the estimated gradient. The
black horizontal line indicates the true optimal, which is obtained by BFGS
using the true adjoint of the Buckley-Leverett equation.

3.4.2 Navier-Stokes Flow

Consider the same Navier-Stokes flow in Section 2.4.2. Let S(c) be the area of the

return bend. S(c) is a function of the control points' coordinates represented by c.

Let So = -7(1.25 2 - 0.252). The objective function is the steady-state mass flux with

a penalty term representing the difference of S and So,

(c) = po outlet dy - A(S - So) 2 , (3.24)

where A > 0. The goal is to maximize (c) in a bounded domain cmin c cmax

shown by the blue boxes in Figure 3-5. There are four variable control points at each

boundary, where each control point has the x- and y-coordinates. Thus, the control is

16 dimensional. Figures 3-5 (a) and (c) show the initial and the optimized geometries

for the van der Waals and the Redlich-Kwong gasses. Figures 3-5 (b) and (d) show the

corresponding pressure profiles at the interior and the exterior boundaries along the

streamwise direction. The optimized geometry reduces the adverse pressure gradient

at the flow separation and thus decreases the drag and increases the mass flux.
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Figure 3-6 shows the geometry, the trained state equation, and the basis dictionary

for the first five iterations and the .optimized result of the Bayesian optimization.

In this numerical example, the trained state equation and the basis dictionary are

similar at each Bayesian optimization iteration. Figure 3-7 shows the current best

objective evaluation at each iteration. The twin-model estimated gradient enables

faster improvement of the objective evaluation. Figure 3-8 shows the wall-clock

time of the optimization against the number of iterations. Although the twin model

increases the computational cost per iteration, the increased cost is offset by the faster

improvement of the objective function.
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Figure 3-5: (a) Initial guess of control points (blue dots); initial guess of

the geometry (blue line); optimized control points (red dots); optimized
geometry (red line) for the van der Waals gas. The blue squares indicate

the bound constraints for each control point. (b) Pressure along the

interior and the exterior boundaries for the initial (blue) and the optimized

(red) geometry. (c) and (d) Results for the Redlich-Kwong gas.
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Figure 3-6: Trained state equation, the error of the trained state equation,
the return bend geometry, and the basis dictionary at some iterations of

the Bayesian optimization. The gray-box model uses the Redlich-Kwong

state equation. The resolution of the bases is represented using the same

symbols as in Figure 2-20.
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the twin-model Bayesian optimization. Red lines are obtained by the
Bayesian optimization without the estimated gradient. Black horizontal
lines indicate the true optimal, obtained by BFGS using the true gradient.
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Figure 3-8: Cumulative and per-iteration wall clock time, in minutes.
Although the twin-model Bayesian optimization is costlier per-iteration
due to the training of twin model, it achieves near-optimality with less
overall computational time. The gray-box model uses the Redlich-Kwong
state equation.
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3.4.3 Polymer Injection in Petroleum Reservoir

Consider a 2D horizontal reservoir governed by (2.49)

a(p-Os") + V - (pV~a) = 0 , a E {W, o}
at

- (pW#Sc) +V - (CP'Jw) = 0
at W

and (2.50)

6, = -MakroK - (Vp - pwgVz), a E {w, o}

&WP= MwkrwK - (Vp - pwgVz)

The permeability is heterogeneous and is shown in Figure 3-9. Five injectors are

placed along the southern boundary, and one producer is placed in the northeastern

corner. The reservoir is simulated for t E [0, T = 10] day.

Time-independent control

First, consider constant-in-time injection rates at the injectors. Let the price of unit

mass oil be e-I, which decays over time, where T > 0 is a constant. Let the price of

unit mass water be 0 < A < 1. Define

t t jot-5
P(t) = pprodoSoCTIproddt - po(t = 0)#So(t = )d - At pinjwilinji,

(3.25)

which represents the price of the produced oil produced minus the price of all residual

oil at t = 0 and the price of the total water injected. Pprodo is the oil phase

density at the producer, pinjwi's are the water phase densities at the injectors, Iprod

is the production rate at the producer, and Iinji's are the injection rates at the ith

injector. The goal is to maximize (T) with bound constraints on the injection rates

0 < Iinji <_ Iax. Since there are five injectors, the optimization is five-dimensional.
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Figure 3-9: Permeability of the reservoir, in 100 milli Darcy. The five
injectors are indicated by the black dots, and the producer is indicated by
the green dot.

Figure 3-10 shows the current best objective evaluation against the number of

iterates. The black line indicates the true optimal2 . The twin-model Bayesian

optimization achieves near-optimality faster than the vanilla Bayesian optimization

without using the gradient information. Figure 3-11 shows (t) for the initial and the

optimized injection rates. The initial rates are set at In.ji = Imax for all injectors,

which results in early water breakthrough and high water cut. Although the profit is

high at smaller t, it deteriorates for larger t due to the water being wasted.

Time-dependent control

Second, consider time-dependent injection rates. If [0, T] is discretized uniformly into

200 segments, each Iiji becomes a vector with a length of 200. Thus the optimization

is 1000-dimensional. Clearly the Bayesian optimization algorithm developed in Section

3.2 is not long suitable because the large dimensionality leads to a huge covariance

2 The true optimal is obtained by COBYLA [48] after running 192 gray-box simulations.
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Figure 3-10: Current best objective evaluation against the number of
iterates. The black line indicates the true optimal obtained by COBYLA
optimization [48], a derivative-free optimization method.
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matrix 3 . Instead, the twin model is tested on a simple gradient descent method,

the backtracking Armijo gradient descent method [104]. The method is a gradient

descent method whose stepsize at the lth iteration is determined by Algorithm 5, the

backtracking-Armijo line search [104]

Input: Initial stepsize ao. 0 < / < 1, 0 < -r < 1.
1: for 1 = 1 to imax do
2: ael+1 = 707, 1 = 1 .
3: if (c + ai+iV) - (c) ;> -ai+iV(T V then
4: break
5: end if
6: end for

Output: a,
Algorithm 5: Determine the stepsize in the gradient descent optimization by the
backtracking-Armijo line search [104].

Figure 3-12 shows the optimized injection rates. The first and fifth injectors, at

the southeastern and southwestern corners, are turned on first. The rate at injector 5

is particularly large, possibly because the permeability is relatively low. Once water

breaks through and a low-resistance water channel forms, the oil around the injector

5 will be more difficult to extract. Later, all injectors are turned on, and their rates

gradually decrease when the water cut increases. Figure 3-13 shows the current best

objective evaluation against the number of iterates. Using the time-dependent control,

the objective evaluation gets more improvement than the constant-rate control.

3.5 Chapter Summary

Based up previous research, this chapter develops a Bayesian framework for the

optimization problems constrained by gray-box conservation law simulations. Gaussian

process models are presented for the objective function, the true gradient, the estimated

gradient, and the gradient error. Using the Gaussian process models, the formulation

of the joint and the posterior distributions is given, where the hyperparameters are
3As aforementioned, the covariance matrix for evaluating the posterior is N(d + 1)-by-N(d + 1).

For example, after 100 iterates, the matrix becomes 105-by-10 5 . The optimization algorithm can
dominate the computational cost instead of the conservation law simulation, which violates my
assumptions in Chapter 1. The problem of scaling is generally suffered by non-parametric methods.
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estimated by maximum likelihood. The developments are summarized in a Bayesian

optimization algorithm which leverages the twin-model gradient estimation. In addition,

the convergence property of the algorithm is theoretically studied. The algorithm is

guaranteed to find the optimal regardless of the gradient estimation accuracy if the

true hyperparameters are used. It is a future work to extend the theory to estimated

hyper parameters.

The proposed optimization method is demonstrated by several numerical examples.

The first example is the Buckley-Leverett equation whose flux is assumed unknown.

The objective function is optimized by adjusting the source term represented by

25 control variables. The second example is a Navier-Stokes flow in a return bend,

where the state equation is unknown. The mass flux with a penalty on the geometry is

maximized by adjusting the flow boundaries which are controlled by 16 variables. The

third example is a petroleum reservoir with polymer injections, where the mobility

factors are unknown. The profit is maximized by adjusting the constant-time injection

rates at five injectors. In all three examples, the twin-model optimization achieves

near-optimality with fewer iterations than the vanilla Bayesian optimization. Finally,

the time-dependent control is considered on the same petroleum reservoir example,

which yields a 1000-dimensional problem. Conventionally, such high-dimensional

optimization can be difficult without the adjoint gradient. The twin-model gradient

is tested to work well using a gradient descent approach.
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Chapter 4

Conclusions

In this thesis, I addressed the optimization constrained by gray-box simulations. I

enabled the adjoint gradient computation for gray-box simulations by leveraging the

space-time solution. In addition, I utilized the gradient information in a Bayesian

framework to facilitate a more efficient optimization. To conclude, this chapter

summarizes the developments and highlights the contributions of this work. I close

with suggestions for continuing work on this topic.

4.1 Thesis Summary

Optimization constrained by conservation law simulations is prevalent in many engineering

applications. In many cases, the simulator can be legacy and lack the adjoint capability.

Chapter 1 categorizes such simulators as gray-box. The gray-box scenario limits the

efficient application of gradient-based optimization methods. I motivate the need

for the adjoint gradient and explain the feasibility of estimating the adjoint gradient

in the gray-box scenario. The key is to leverage the gray-box space-time solution,

which contains information of the gray-box simulator but is usually abandoned by

conventional optimization methods. To restrict the scope of my thesis, a class of

problems is formulated where the flux functions are partially unknown.

To address this issue, an adjoint-enabled twin model is proposed to match the
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space-time solution. In Chapter 2, I develop a two-stage procedure to estimate

the gradient. In the first stage, a twin model is trained to minimize the solution

mismatch. In the second stage, the trained twin model computes an adjoint gradient

which approximates the true gray-box gradient. For a simple conservation law with

only one equation and one-dimensional space, I demonstrate theoretically that the

twin model can indeed infer the gray-box conservation law on a domain that has

large solution variation. To numerically implement the unknown part of the flux

function is parameterized by a set of bases. I argue that the sigmoid bases are

well suited for this problem because their gradients are local. The procedure is

demonstrated on a Buckley-Leverett equation using a set of sigmoids chosen manually.

Although the estimated gradient is accurate, several limitations are observed, which

lead to the developments of adaptive basis construction. Several tools are introduced

for the adaptive basis construction, including a metric of the basis significance,

the basis neighborhood, and the cross validation. The adaptive basis construction

fully exploits the information contained in the gray-box solution and avoids the

problem of overfitting. Based upon these developments, a twin-model algorithm is

presented. The algorithm selects the basis dictionary adaptively using a forward-

backward iteration procedure, where either the solution mismatch or the integrated

truncation error can be used as the metric for basis selection. The twin-model

algorithm is demonstrated on several numerical examples: a 1D convection equation

with unknown flux function, a 2D steady-state Navier-Stokes flow with unknown state

equation, and a 3D petroleum reservoir flow with unknown mobility factors. In all

the three examples, the twin model algorithm provides an accurate estimation of the

true gradient, which represents a major contribution towards enabling the adjoint

gradient computation for gray-box simulations.

Using the twin-model gradient, optimization can be done more efficiently. Chapter

3 incorporates the twin-model gradient into a Bayesian optimization framework, in

which the objective function, the true gradient, the estimated gradient, and the

gradient error are modeled by Gaussian processes. The model provides analytical

128



expressions for the posterior distributions and the acquisition function, while the

hyperparameters are estimated by maximum likelihood. I present a Bayesian optimization

algorithm that utilizes the twin-model gradient. In addition, I show that the algorithm

can find the optimal control regardless of the gradient estimation accuracy if the

true hyper parameters are used. The optimization algorithm is demonstrated on

several similar problems discussed in Chapter 2: a Buckley-Leverett equation with

source term controls, a Navier-Stokes flow in a return bend with boundary geometry

controls, and a petroleum reservoir with polymer-water injection rate controls. In all

the three examples, the twin-model optimization achieves near-optimality with fewer

iterations than the vanilla Bayesian optimization without the gradient information,

which represents another major contribution of my thesis. Finally, the twin-model

gradient is tested on a high-dimensional control problem, by employing a simple

gradient descent approach. The gradient efficiently enables the optimization of the

high-dimensional problem.

4.2 Contributions

The main contributions of this work are:

1. a twin-model algorithm that enables the adjoint gradient computation for gray-

box conservation law simulations;

2. an adaptive basis construction scheme that fully exploits the information of

gray-box solutions and avoids overfitting;

3. a Gaussian process model of the twin-model gradient and a Bayesian optimization

algorithm that employs the twin model; and

4. numerical demonstrations of the algorithms in several examples: the Buckley-

Leverett equation, the Navier-Stokes equation, and the porous media flow equation.
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4.3 Future Work

There are several potential directions of further research: A useful extension is to

consider unknown source terms. My thesis is limited to flux functions that contains

unknown algebraic dependence on the state variables. However, many industrial

simulations have unknown source terms, which are not accommodated by my method.

Being able to accommodate unknown source terms can extend the applicability of the

twin-model method. Another useful extension is to investigate the inferability of twin

models for various conservation laws. In particular, Theorem 1 may be extended to

more general problems with a system of equations and higher spatial dimension.

Besides, in the twin-model Bayesian optimization algorithm, it is of great practical

value to reuse the twin model more efficiently. My current approach uses the basis

dictionary of the twin model in the last iteration as an initial guess of the basis

dictionary in the current iteration, then re-trains the twin model. In the future, a

research direction is on how to utilize all previously trained twin models - for example,

by employing the "trust region" technique in the optimization: the same twin model

can be used multiple times at different controls inside a trust region of the control

spacel, thus reducing the training cost.

'In my thesis, the twin model is re-trained at each new control. Generally, gradient-based trust
region methods require the gradient to satisfy a property called full-linearity [50, 51]. Unfortunately,
this property is not guaranteed by the twin-model gradient. The lack of full-linearity is a key factor
that refrains me from exploring the trust-region methods in my thesis. It's an open question on how
to introduce the trust-region framework into the optimization
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