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Abstract

Many fluid flows in engineering are turbulent and require the use of computational
fluid dynamics (CFD) for design purposes. Optimization with CFD has largely been
limited to low-fidelity simulation methods, such as Reynolds Averaged Navier Stokes
(RANS), due to current computational capabilities. However, RANS has been shown
to lack sufficient accuracy for certain flows. This thesis presents CFD simulation of
a 180 degree U-bend square duct using low-fidelity steady RANS and high-fidelity
wall-resolved Large Eddy Simulation (LES) models. The LES solution is shown to
match experimental results, whereas the RANS solution is not sufficiently accurate.
A process for training a RANS eddy viscosity field using the LES solution is provided.
This approach is based on solving an inference problem by comparing the RANS cal-
culations to the LES solution and tuning cell-based turbulent viscosity values. This
multi-fidelity framework is intended to highlight that high-fidelity solutions can be
used to improve even the simplest RANS turbulence models. The adjoint method
is used for efficient gradient-based optimization of the turbulent viscosity on a U-
bend channel to minimize the velocity solution error. Other objective functions are
explored to check the uniqueness of the optimized turbulent viscosity. Sensitivity of
the optimized result to the numerical convection scheme is presented to help provide
insight for future optimization of turbulence models. The optimized turbulent vis-
cosity is also used on a modified U-bend channel to demonstrate the applicability of
the method on new geometries.
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Chapter 1

Introduction

1.1 DMotivation

Most fluid flows in nature and engineering applications involve turbulence. Fluid
flows can be accurately described by the Navier-Stokes equations with proper bound-
ary conditions. However, there is no general solution to the Navier-Stokes equations
and thus most flow solutions must be obtained through numerical simulation. Fully
resolving turbulence using the Navier-Stokes equations requires unsteady simulations
with extremely fine spatial and temporal discretization. This method is known as
direct numerical simulation (DNS) and is computationally very expensive. Many
computational methods have been introduced to reduce the computational cost by
modeling part or all of the turbulence as additional terms to the Navier-Stokes equa-
tions. Large eddy simulations (LES) directly solve for the larger turbulent struc-
tures but model the smallest scales of turbulence and therefore do not require spatial
discretization as fine as that required for DNS. LES, by nature, is also unsteady
and three-dimensional, and still relatively expensive. Methods based on solving the
Reynolds averaged Navier-Stokes (RANS) equations fully model the effect of turbu-
lence. RANS can be run steady-state to provide a statistically-averaged flow field for
a significant reduction in computational cost versus LES and DNS.

The price of reduced computational cost is often reduced accuracy. For simpler

flows, such as channel flow and free shear flow that is inhomogeneous in one direction,
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even the most basic RANS turbulence models can produce good results. However,
it is known that for more complex flows the mean flow fields obtained with RANS
turbulence modeling show substantial discrepancies to experimental data, especially
in cases with flow separation [32]. Although these limitations are known, RANS is
the most popular Computational Fluid Dynamics (CFD) method in industry. This
is due to the relatively inexpensive cost in which simulations may take only several
hours. LES has been shown to produce more accurate results compared to RANS
on complex three-dimensional flows and can provide solutions that agree well with
experimental data without the additional cost of performing DNS [1].

Optimization with CFD is a fast growing area and is being embraced by the design
community to improve existing products and aid engineers in design space exploration
to find improved solutions to problems involving fluid flows. Optimization with CFD
requires many design iterations and using LES or DNS for the flow field solution for
each design iteration is prohibitively expensive today due to computational resource
and schedule constraints. Recently, due to continued growth in computer capabilities,
LES has become more common but is still mostly used for research and single-run
applications. Thus, most CFD optimization has been performed with RANS models
despite the inaccuracies with complex flows.

The motivation for this work is to improve the accuracy of RANS models for use
in optimization of complex flows. The desire is to obtain accuracy similar to time-
averaged LES solutions with computational cost closer to that of RANS simulations.
This would allow for more accurate flow solutions which would in turn lead to im-
proved designs with minimal impact to cost and schedule. The approach is to train a
RANS model with a higher fidelity time-averaged solution (LES, DNS, or experimen-
tal data). The turbulent, or eddy, viscosity field of the low-fidelity (RANS) simulation
is modified in order to match the velocity field of the high fidelity simulation.
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1.2 Background and Approach

1.2.1 Applicable Scenarios

The multi-fidelity approach briefly discussed in Section 1.1 is applicable to complex
flows where RANS predictions break down. This includes wall-bounded flows or
flows with high curvature containing significant secondary flows as well as flows with
separation or strong rotation. A higher fidelity simulation, such as LES or DNS,
can accurately represent the physical flow field of these complex flows. One such
flow scenario where RANS can breakdown is in the internal flow of cooled gas turbine
airfoils, further discussed in the following section. The internal cooling circuit of many
turbine airfoils have 180° bends which feature large streamline curvature, secondary
flow, and separation and recirculation zones. This specific case is used as the test

case for this research.

1.2.2 Turbine Airfoil Internal Cooling

Gas turbine engines, either land-based or aero-purposed, operate based on the Bray-
ton cycle. The cycle involves compression, constant pressure combustion, and expan-
sion. The turbine is responsible for expansion of the high-pressure, high-temperature
gases. Turbines often contain multiple stages, especially in turbofan, turboprop, and
turboshaft configurations. Each turbine stage consists of stationary airfoils called
vanes or nozzles and rotating airfoils called blades. Through each stage, energy is
extracted and converted to rotational, mechanical energy and the pressure and tem-
perature of the gases are reduced. One method to improve overall cycle efficiency is to
increase peak cycle temperature. Internal cooling of airfoils in the early turbine stages
allows for significant turbine inlet temperature increases and therefore improved ef-
ficiency over uncooled turbines, despite the use of high-pressure air taken from the
cycle after compression as the source of cooling air. The goal is to maximize blade
life while minimizing cooling flow and therefore reducing the penalty to engine per-

formance. Air-cooled turbine airfoils can have complex internal flow networks which
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work the cooling air to maintain airfoil durability. Many times, the cooling air is
routed to the airfoil external flow through cooling holes. This cooling also helps en-
velope areas of the blade external surface with a film of cooler air, providing reduced
exposure to the extreme gas-path temperatures. Much research and design effort is
invested in internal cooling circuit configurations to maximize the effectiveness of the
cooling flow and minimize the cooling flow demand from the primary gas-path flow

to minimize the impact to engine performance.

Figure 1-1 shows an example of a turbine blade. The blade is also shown transpar-
ent exposing the internal cooling circuit. These cooling configurations are known as
"serpentine" cooling, due to the winding nature of the cooling cavities. The serpen-
tine cooling configurations contain tip and root-turns which are essentially 180° tight
radius bends. These turns, or bends, are a significant contribution to pressure drops
within the cooling circuit. In order to ensure the cooling flow exits through cooling
holes properly, the pressure internally must be greater than that of the external local
pressure. Excessive pressure drop from the turn can restrict the positioning of film
cooling holes or minimize the amount of additional heat transfer possible. A miscal-
culation of the internal flow pressures could also lead to hot-gas ingestion, which can

quickly fail a turbine airfoil and perhaps the engine.

External Shown Transparent

Figure 1-1: Example turbine blade shown with internal passages.
Original figure courtesy of Lindstrom [19]
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A component of this research to demonstrate the accuracy of standard RANS
and LES approaches on an idealized smooth-wall square duct with a 180° U-bend to
motivate the need for improved RANS turbulence modeling. The idealized U-bend
square duct is used to model the highlighted serpentine turn in Figure 1-1, which
is typical of cooled turbine airfoils. The square duct models cavities near the mid-
chord region of the airfoil, where the chord-wise length of the cavity is approximately
the same as the airfoil thickness as shown in the blade section view of Figure 1-2a,
highlighted in blue. Figure 1-2b displays the idealized square duct model domain,

which is the same geometry used by Verstraete et al. [39)].

OQ%%Q. S .

(a) Airfoil cross-section (b) Idealized duct model

Figure 1-2: Section of turbine airfoil and idealized duct model

The effect of rotation is ignored to reduce complexity of the flow simulations.
Including the effect of rotation would not change the process of optimization presented
in this thesis. The duct is also smooth-walled. Heat transfer enhancement features,
such as turbulators, were not included as these features can be added to increase heat

transfer as necessary and again would not change the process presented in this thesis.

1.2.3 Approach

As mentioned in Section 1.1, the approach taken in this research to demonstrate
accurate and fast results for complex flow is to train a low-fidelity model with a
higher-fidelity solution. The low fidelity model used is a RANS based solver. The
high-fidelity solution can be obtained from LES and DNS solutions. For this research,

time-averaged wall-resolved LES is used as the high-fidelity solution.
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In Chapter 3, the LES vs RANS performance is compared to experimental data
on a U-bend square duct to show the accuracy of the two methods. The optimiza-
tion is then performed on a U-bend channel, in which the time-averaged results can
be collapsed to 2D. The channel is used instead of the square duct to reduce the
computational cost and allow for a 2D RANS simulation.

A generic eddy viscosity RANS turbulence model following the Boussinesq ap-
proximation is used for the low-fidelity simulations. The Boussinesq approximation
relates the turbulence stress to the mean flow, and introduces the concept of eddy
viscosity. The eddy viscosity in the low-fidelity solver is inferred through optimiza-
tion instead of being computed by additional transport equations performed in other
popular turbulence models, such as the k-¢ or k-w models. This approach is discussed
in detail in Section 2.3.4.

In this optimization, the eddy viscosity field is the design variable. The objective is
to minimize the velocity field difference between the low and high fidelity simulations.
The eddy viscosity is allowed to vary throughout the domain with each cell having a
unique value. This creates a large number of design variables with a single objective.
For this reason, adjoint-based gradient methods are used for optimization of eddy
viscosity. Adjoint-based methods have the ability to handle a very large number
of design variables efficiently. This optimization will be known as "training" of the
low-fidelity model.

In the future, more sophisticated eddy viscosity field definition - perhaps based on
local flow parameters and non-dimensional spatial position relative to key geometry
features - could be used in conjunction with shape optimization. This is further

discussed in Section 6.2.

1.3 Previous Research

The square duct U-bend geometry in this thesis is modeled after the geometry used
by Verstraete et al. [39]. Verstraete et al. optimized the shape of the U-bend region to

minimize the pressure drop across the bend using a metamodel-assisted differential
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evolution algorithm and the k-e RANS turbulence model. Experimental measure-
ments were performed on the baseline and optimized geometry in part two of their
research [3]. It was observed that the simulation did not adequately capture the tur-
bulence generated by the U-bend, but matched the overall experimental pressure drop
measurements well. Cheah et al. [2] used laser-Doppler anemometry to investigate
the impact of rotation on 180° U-bend ducts. Schabacker et al. [35] and Son et al. [36]
used particle image velocimetry (PIV) to characterize the flow field. The experiments
by Son et al. also investigated the impact of smooth vs turbulated ducts. All studies
showed that for sharp bends, thus high curvature, separation occurs along the inner

wall in the post-bend region.

Saha and Acharya [33,34] explored several geometry modifications to reduce the
pressure drop across the bend, such as increasing the inner bend radius by creating a
bulb, or the use of turning vanes to reduce the separation. Metzger et al. [24] varied
the duct width, the outer wall corner radii, and the duct height at the bend peak. The
latter, called the clearance height, was found to have a large impact on the pressure
drop. Liou et al. [20] explored the impact of the inner wall thickness and found that

a thicker wall reduced the separation zone due to reduced turbulence levels.

Turbulence modeling has been a highly active area of research since the introduc-
tion of computers. More recently, the use of higher fidelity results, such as DNS or
experimental data, to improve RANS models has gained interest. Some approaches
have used the data directly to replace the Reynolds stress term to fully close the
RANS equation without the use of additional modeling. Poroseva et al. [30] showed
that the use of DNS data directly to represent all unknown terms in the RANS equa-
tions for channel flow and boundary layer simulations can lead to nonphysical results.
The error was attributed to uncertainty in the statistical data collected from DNS,
as the erroneous results were reproduced on multiple reliable RANS solvers. In fact,
this process was proposed as a tool for uncertainty quantification in DNS data [29].
Poroseva et al. also investigated the impact of time-averaging of the DNS data and
has shown there is a systematic error in the DNS independent of time-averaging [31].

This indicates that direct prescription of unknown terms in the RANS equation may
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never produce an accurate result. Similar solution errors using DNS results were
found by Wang [43], in which the direct usage of the Reynolds stress from DNS for
RANS channel flow did not produce the DNS time-averaged velocity profile. However,
when a simple eddy viscosity model was used in which the spatial distribution of the
eddy viscosity was derived from the DNS Reynolds stress and DNS velocity gradient,
the resulting RANS velocity profile was in excellent agreement with the DNS profile.
This suggests there is some error in the DNS statistical data and that the RANS
solution is very sensitive to these errors.

Another approach to improving RANS models is the use of high fidelity results
or data to reduce the modeling error or solution error. Using a simple eddy-viscosity
model, Dow [4] used adjoint-based optimization to minimize the solution error to
infer the error of the turbulent viscosity field for turbulent channel flow. Tracey
et al. [38] used machine-learning to replace parts of the Spalart-Allmaras (SA) tur-
bulence model source terms using flat plate simulations as the training data. The
machined-learned SA produced fairly good results on low angle of attack airfoils and
channel flow when compared to higher fidelity solutions. However, when using a
learned model to replace all the source terms, the model struggled with some new
channel flow cases. Duraisamy et al. [5] showed the potential of inverse modeling and
machine learning techniques by creating functional forms of the RANS closure, rather
than tuning model parameters, to improve predictive models. Wang et al. [41] used
machine learning techniques to reconstruct the Reynolds stress by utilizing DNS of
a periodic hill. The learned model was used on different hill domains and showed
very good agreement of the Reynolds stress with higher fidelity solutions and showed

improvement over standard RANS models.
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1.4 Thesis Objectives and Contributions

The objective of this research is to show that high fidelity simulations can be used to
reduce the solution error of RANS models through the use of optimization to estimate
the Reynolds stress. As discussed earlier, using the higher fidelity data directly to
replace model unknowns can lead to instabilities and erroneous solutions. Using the
high fidelity data to reduce modeling error has also been shown to lead to significant
solution errors. The method utilized in this research is more stable, as the high fidelity

data is used to reduce the solution error by tuning the existing turbulence model.

Primary contributions of this thesis:

e An assessment of the accuracy of RANS and LES methods is provided for
complex internal flows. The square duct test case used has many complex flow
features in which the LES was shown to provide adequate results. In contrast,
common RANS models are not sufficiently accurate. Both the k-¢ and k-w SST
RANS models are shown to miss on the flow field and turbulent kinetic energy

for the test case.

e High fidelity simulations can be used to tune even the simplest turbulence mod-
els to significantly reduce the solution error. In this work, LES solutions are
used to train an eddy viscosity turbulence model by tuning a single RANS tur-
bulence model parameter: the turbulent viscosity. The turbulent viscosity is
inferred to minimize the mismatch between the RANS and time-averaged LES

velocity field instead of direct prescription of the Reynolds stress term.

e The optimized turbulent viscosity can be dependent on the optimization frame-
work. The use of the velocity mismatch as the solution error is shown to be
the most successful approach. It is recommended to use higher order convective
schemes and to use the log of the turbulent viscosity as the control parameter

to allow for unbounded optimization.
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1.5 Thesis Structure

The remainder of this thesis is presented in the following manner:
Chapter 2:

Chapter 2 focuses on the methods used to perform the research presented in
Chapter 3 and 4. Gradient based optimization, using the adjoint method, is presented
for the RANS training procedure. Turbulence modeling background, along with the
specific RANS training procedure, is also provided.

Chapter 3:

Chapter 3 investigates the numerical results of a 180° U-bend square duct sim-
ulation using LES and RANS modeling methods. The results are also compared to
available experimental data of the same geometry. LES is shown to be an accurate
computation tool, whereas standard RANS models are not adequate tools to predict

the complex dynamics present in this example.
Chapter 4:

A 180° U-bend channel is used as a new test case to demonstrate a method of
improving a RANS turbulence model using LES solutions. The time-averaged LES
solution is used to train an eddy viscosity RANS turbulence model. The results of
the optimized model are compared to standard k-w SST RANS model and the time-
averaged LES solution. Sensitivity of the optimization results to various objective
functions is provided. The method of bounding the turbulent viscosity is also explored
to help identify areas of the simulation where the eddy viscosity model could be

breaking down.
Chapter 5:

The U-bend geometry from Chapter 4 is modified by reducing the middle wall

thickness to create a smaller bend radius. The optimized turbulent viscosity from
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Chapter 4 is mapped onto the new geometry and rerun to explore the applicability of
the HIFIR model to new geometries. The results are compared to LES and k-w SST
RANS solution obtained with the new geometry.

Chapter 6:

Chapter 6 provides a summary of the thesis and offers suggestions for future

research.
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Chapter 2

Methods

2.1 Optimization Methods

2.1.1 Gradient Based Optimization

Optimization is the minimization or maximization of some function relative to some
set. The process results in the selection of a set of input, or design, variables that
provide an optimal solution. Often the function is non-linear and the optimization
procedure is iterative.

Gradient based optimization methods are more efficient than gradient-free meth-
ods for smooth, differentiable functions when the gradient information is available.
The gradient information aids in the selection of new input variables for the subse-
quent iterations. The iterative Newton method is an effective gradient-based method
that uses the gradient and Hessian information to drive the objective to a minimum.
The Newton method is centered around a quadratic approximation for a function
f(x) for inputs around z; at iteration i. If f is assumed to be twice differentiable,

the Taylor expansion can be written as

flz+6z) = f(z) + 62TV f(z) + %&CT(sz(x))éx (2.1)

where it is desired that f(z + dz) < f(z) for a minimization problem. The gradient

V f at iteration ¢ is denoted as g; and the Hessian V2f at iteration ¢ is rewritten as
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H;. The quadratic approximations @) at iteration ¢ is rewritten in Equation 2.2.

Qi(67) = F(z:) + 627 g + %&L’THi(Sx (2.2)

It is desirable to minimize the local quadratic approximation, thus the first deriva-
tive of () is set to zero as shown in Equation 2.3. This can be rearranged to obtain

the value of dx shown in Equation 2.4.

dx = —H g (2.4)

This provides a good search direction to select the next set of inputs, ;.1 = x;+0z.
Since the gradient and Hessian can change at the next iteration, the step size is scaled
by o as shown in Equation 2.5. The value of « is set to obtain a f(x,,;) that is

sufficiently smaller than f(z;) by using line search methods.

Tiy1 = Ly — (I(Hi_lgi) (25)

For large problems, it is often impractical to obtain the Hessian. In this research,
only the gradient is obtained using the adjoint method and is further discussed in
Section 2.2. Therefore, a quasi-Newton method, in which approximations of the Hes-
sian are calculated, is a good option for performing the optimization. The Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm is a popular qausi-Newton optimization
method.

2.1.2 L-BFGS method

The BFGS method is named after the four authors who independently developed
the algorithm in 1970. As mentioned, the BFGS algorithm only requires gradient
information at every iteration. The Hessian approximation starts as the identity

matrix and is updated using previous step gradient and position information. An
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alternative method is to use only a small number of recent position and gradient
information to recreate and update the Hessian to reduce memory requirements and is
known as the L-BFGS algorithm (L for limited memory). This method avoids storage
of the dense n by n Hessian matrix, where n is the number of deg‘rees of freedom. With
these modifications, the L-BFGS algorithm is a very efficient algorithm for large-scale
problems. For this research the L-BFGS-B method from the Python Scipy.minimize
package is used to perform the optimization.

For the turbulent viscosity training optimization, the number of degrees of freedom
(DOF) is the number of cells in the mesh since each cell’s turbulent viscosity is tuned
to minimize the objective function. A 2D problem could have over 10,000 cells and a

3D problem can have over a million cells, making the L-BFGS method a necessity.

2.2 The Adjoint Method

2.2.1 Introduction

Often, simulations are performed where the solution is used to calculate a desired
quantity, such as the pressure drop or the flow-rate in a fluid simulation. A discretized
partial differential equation (PDE) is solved of the form F(z, s), where z is the solution
vector and s is the design parameter or control variable. An objective function J =
J(z) is then computed based on the solution of the PDE. Many times, the gradient
0J/0s, the gradient of the objective function with respect to the design or control
parameters, is also desired for sensitivity studies or for gradient-based optimization.

One method of approximating this gradient is to evaluate the objective functions
by perturbing each design variable independently and approximating the gradient
using finite differences as shown in Equation 2.6.

0J _ J((x(s; + 6s;) — J(x(s:))

With n design variables, computing the sensitivity gradient using finite differences

requires n+1 evaluations of the objective function. Each objective function requires
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solving the PDE, which can take considerable amount of time for fluid simulations.
The number of degrees of freedom, n, can also be very large depending on the problem.

In this research, the number of design variables for the turbulent viscosity training
matches the number of cells, which is approximately 40,000 for the 2D case. Each
simulation can vary between 10 and 60 minutes depending on initial conditions. Using
finite differences, it could take over a year to compute the sensitivity gradient 8J/9s.

The adjoint method provides an efficient way to compute the gradient that is
independent of the number of design variables. In fact, the cost is usually compara-
ble to the cost of solving the PDE for xz once, which would take less than an hour
in the above example. The basic process is discussed in the next section and the

implementation in the code is discussed in Section 2.2.3.

2.2.2 Formulation

In this research, the physics are governed by PDEs. The governing equation is solved
iteratively and has the form shown in Equation 2.7, where s is a set of control variables
or parameters, = is the corresponding solution to the PDE using s, and k is the

iteration.

T4l = F(.’Ek, S) (27)

When the solution has converged, the output is essentially equal to the previous

solution, zx.; = xx = x. The governing equation can be rewritten as

z—F(x,s)=0. (2.8)

The objective function J is a function of the solution z, as shown below.

J = J(z) (2.9)

In order to obtain the sensitivity of the objective function to the control param-

eters, the above non-linear equations must be linearized. It is known a small change
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in parameter s causes a small change in the solution z, which in turns causes a small
change in the objective J. Using linearization, these small changes are characterized
using the chain rule in Equations 2.10 and 2.11 for the governing equation and the

objective function, respectively.

oF OF

ox — %&v - g&s =0 (2.10)
o0J .
0] = bz (2.11)

Since the variation of the linearized governing equation is zero, then

oF OF
T - S — — = 2.12
o) (53: e o s 53) 0 (2.12)
is also zero for any vector ¢. Equation 2.12 can then be added to the perturbed

linearized objective function and rearranged to produce

Y S OF . OF

(8 o[ OF OF
R

which is valid for any ¢. The key is to select a particular ¢ so that the first term on

(2.13)

the right hand side of Equation 2.13 is zero. This equation, shown in Equation 2.14,

is known as the adjoint equation.

0J o rfOF\ _
5 To ¢ <%>-0 (2.14)

Solving the adjoint equation for ¢ reduces Equation 2.13 to

_ _r(9F\
§J = —¢ (68>03 (2.15)

which can be rearranged to obtain the sensitivity gradient shown below.

0 _ o (OF
5 =% (63) (2.16)
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As shown above, once the adjoint equation is solved for ¢, the gradient can be
directly computed. This overall process requires one original PDE solve and one
additional solve of the adjoint equation. The computational cost of solving the adjoint
equation is roughly the same as the cost of the original PDE. The adjoint method is
a powerful tool for obtaining sensitivities of large systems as the cost of obtaining the
gradient information is not dependent on the number of control parameters.

There are a number of ways to implement the above process in practice. In the con-
tinuous adjoint method, the adjoint equation can be written out in continuous form,
then discretized similar to the governing PDE and solved numerically. In the discrete
adjoint, the adjoint equation is formulated using the already discretized governing
equations. In this research, an automatic differentiation tool is used to compute the
discrete adjoint automatically by computing derivatives to functions in the computer
code and following a path of dependencies to obtain the sensitivity of one variable to

another. This method is explained in the following section.

2.2.3 Automatic Differentiation

Automatic differentiation (AD) is a technique to evaluate the derivative of functions
automatically by a computer program using the chain-rule repeatedly. This is possible
since all computer programs are sequences of elementary arithmetic operations, such
as addition, subtraction, multiplication, and division, and elementary functions, such
as log, exp, sin, and cos.

There are two main multiple AD methods: source code transformation and opera-
tor overloading. Source code transformation requires minimal changes to the original
code as a compiler is used to transform the source code of mathematical operations to
a code of automatic differentiation operations. This method can result in faster perfor-
mance yet is generally more difficult to implement compared to operator overloading.
In addition, source code transformation may not be possible in some programming
languages, whereas operator overloading is theoretically possible in any language. In
operator overloading, each variable is assigned to a new class or object type in which

AD can be performed along with the original source code operations.
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A Python utility called numpad written by Wang [42] utilizes operator overloading
to perform the automatic differentiation to compute the gradients needed for opti-
mization. The numpad tool automatically determines if forward or reverse mode AD
should be used based on the dimensionality of the system. The reverse mode is much
more efficient when the number of input parameters are greater than the quantity of
output variables.

In this research, the reverse mode is used. The source code of interest is the itera-
tive flow solver, which may require a significant amount of iterations to converge. The
reverse mode requires the storage of the full primal flow solver simulation operations
in memory which could prohibit the calculation of the gradient when many iterations
of the flow solver are needed. In order to work-around this limitation, only one itera-
tion of the primal solver is stored and used to compute the gradient after the solution
is converged. Knowledge of the adjoint equation is then used to remove dependen-
cies to other input variables iteratively, akin to solving the full reverse mode of a
fully stored primal solution, to obtain the true gradient of interest. This low-memory

process is shown in detail in Appendix A.

2.3 Turbulence Modeling

2.3.1 Introduction

As mentioned in Chapter 1, there is no general solution to the Navier-Stokes equa-
tions. Specific solutions to simple flow problems can be obtained analytically. How-
ever, theoretical analysis and prediction of turbulence has been the fundamental prob-
lem of fluid dynamics. The major difficulty of turbulent flow is the chaotic nature
of turbulence phenomena which also has an infinite amount of scales, or degrees of
freedom. Turbulent flow is also rotational and three-dimensional.

Turbulent flow can often be characterized by different sized eddies, or local swirling
motion whose characteristic dimension is the local turbulence scale. The range of

turbulence scales in the flow is bounded by dimensions of the flow field (such as
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the channel width in duct or channel flow) and by the diffusive action of molecular
viscosity [37]. This leads to a wide and continuous spectrum of scales. Only at the
smallest scales can the turbulent velocity fluctuations be smoothed out by molecular
interaction, in which turbulent energy is dissipated into heat. The smallest scales
are usually many orders of magnitude smaller than the largest scales, and the ratio
of small to large scales decreases rapidly as the Reynolds number is increased. It is
observed that kinetic energy is transferred from larger to smaller eddies, creating an
energy cascade in which the energy is ultimately dissipated into heat.

The small scale motions occur on a smaller time scale than that of the relatively
slow dynamics of the larger eddies, and therefore can be assumed to be independent
of the mean flow characteristics [44]. Thus, the rate of energy transferred from larger
scale turbulence structures should be equal to the energy dissipated into heat and is
key to Kolmogorov’s universal equilibrium theory introduced in 1941. As discussed
by Tennekes and Lumley [37], the small scale motion is governed by the dissipation
rate at which large structures supply energy to the smaller structures, €, and the
kinematic viscosity v. By dimensional analysis, the following length and time scales
of the smallest turbulence structures can be formed and are known as the Kolmogorov

microscales.

n= (V3/E)l/4 (2.17)

7= (v/e)"? (2.18)

For over a century, a mathematical description of turbulence has been an area of
active research. Boussinesq sought to approximate the turbulent stresses by mimick-
ing the molecular gradient diffusion process and introduced the concept of eddy, or
turbulent, viscosity in 1877. Many of today’s most common turbulence models are
built on the Boussinesq approximation.

In 1895, Reynolds used a statistical approach to express all quantities of the

governing equations in mean and fluctuating components. This is the basis of the
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Reynolds-averaged Navier-Stokes (RANS) modeling approach. The time-averaged
momentum equations are identical to the instantaneous equations except for the ad-
dition of a new term which is the correlation of fluctuating velocities. This term is
known as the Reynolds stress tensor or turbulent stress. In order to compute all mean
flow properties, a prescription for computing the Reynolds stress is needed. This is
known as the closure problem and is discussed in Section 2.3.2. Many models exist

to approximate the Reynolds stress.

The RANS equations can be solved steady-state to approximate the statistically-
averaged flow field. RANS simulations model all scales of turbulence. Since all
unsteady terms are either removed or approximated by use of Reynolds averaging
and closure models, RANS approaches are relatively fast to converge and inexpen-
sive. Thus, RANS modeling has become the most popular method of approximating
turbulent flows in industry. The use of mean properties to approximate the Reynolds
stress is not a physical but mathematical relationship; therefore this representation

of turbulence is liable to produce inaccurate results.

The RANS turbulence models are used to model all scales of turbulence. However,
since majority of the turbulent energy is tied to the larger eddies, a more accurate
representation of the flow can be obtained by resolving these larger eddies. By low-
pass filtering the Navier-Stokes equations the larger scales of turbulence are directly
solved, or resolved. The smallest scales, which are the most expensive to solve due
to the required spatial discretization, are modeled similar to RANS. This method is
known as large eddy simulation and is further discussed in Section 2.3.3. The concept
was first introduced by Smagorinsky in 1963 and further explored by Deardorff. The
turbulence models for the small scales are known as sub-grid scale (SGS) models.
Similar to RANS turbulence modeling, many SGS models exist and provide various
levels of accuracy and cost.

The most accurate and expensive form of turbulence simulation is direct numerical
simulation (DNS). As the name of the method suggests, all aspects of the flow are
derived by directly solving the full unsteady Navier-Stokes equation for all turbulent

length scales larger than the Kolmogorov scale. The simulation mesh must be made
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fine enough to capture the small scale structures. This requires extremely fine spatial
and temporal discretization resulting in substantial increases in computational cost.

An actual comparison between LES and DNS costs on a backward facing step at
a Reynolds number of 5100 showed that the LES required 2.7% of the number of grid
points needed for the DNS (1.72e3 vs 9.4e6 cells) [17,25,44]. This corresponded to
computer time of only 2% compared to the DNS. Both methods resulted in similar
solutions and had good agreement with experimental data.

A more recent evaluation between LES and DNS performed on a periodic hill
at a Reynolds number of 10,600 showed similar grid size differences [1]. The fully
wall-resolved LES case required 5.58 million cells, only 2.8% of the 200 million cells
required by DNS. A wall-modeled LES case - in which the cells at the wall can be
made larger in conjunction with wall functions - further reduced the grid size to 1.18
million cells. The DNS and wall-resolved LES compared well to experimental results.
The wall-modeled LES did not compare as well as the wall-resolved LES, but was
also reasonably accurate.

DNS has many benefits but is primarily used for research purposes due to the
computational costs. Precise details of turbulence parameters can be calculated at
any point in the flow. This aids in development and validation of LES and RANS
turbulence models. In addition, instantaneous results can be generated that may not
be measurable by experimentation. When properly set-up, DNS can be used in place
of experimentation for low Reynolds number flows and is often regarded as being as

accurate as results of well-designed experiments. In general, both LES and DNS are

considered high fidelity CFD methods.

2.3.2 Reynolds Averaged Navier Stokes (RANS)

The RANS equations can be derived by substituting instantaneous terms with mean
and fluctuating components, as shown in Equation 2.19 for a velocity component,
where the overbar denotes the mean quantity and the prime symbol denotes the fluc-
tuating quantity. The mean quantity can be obtained using spatial, time, or ensemble

averaging, depending on the flow. For this paper, time averaging is appropriate since
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the turbulent flow field, on average, does not vary with time.

ui (X,t) = T;(x) + ui(x, t) (2.19)

The incompressible Navier-Stokes equations are in shown in Equations 2.20 and 2.21,

Ou;
T 2.20
o, 0 (2.20)

6ui 0 8]) + 6’7’@'

9 () = 2.
ot t P () = 5, + 5, (221)

0

where ¢ is time, the vectors u; and z; are velocity and position, p is pressure, p is
density, and 7;; is the viscous stress tensor. The viscous stress tensor is defined in
Equation 2.22 where p is the molecular viscosity and 8;; is the mean strain-rate tensor,

defined in Equation 2.23.

Tij = 2/48;; (2.22)

1 8uz 8uj
=5(5m + 32) (229

By substituting in mean and fluctuating terms in place of the instantaneous values,
the Reynolds-Averaged Navier-Stokes equations are obtained and shown in Equation

2.24 and 2.25.

Uy

gxi =0 (2.24)
U; 5 _ 0P 0Ty
o0 e+ 7) = - 2 O (229

It can be seen that the RANS equations are identical to the instantaneous Navier-
Stokes equations with mean terms in place of instantaneous terms except for a new
correlation term wju’. This term is the time-averaged rate of momentum transfer due

to the turbulence. Equation 2.25 can be rearranged to move the correlation term
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to the right hand side with the viscous stress tensor. Dividing through by density

and substituting for the viscous stress tensor, the incompressible RANS momentum

equation is rewritten in Equation 2.26.
ou; 0

L % + —(?-(21/@ — ulu) (2.26)

177

The correlation term —ujuj

is known as the specific Reynolds stress tensor. In
order to compute all mean flow properties, a prescription of the Reynolds stress tensor
is required since the fluctuating velocity components do not exist. This is where
turbulence modeling comes into play. RANS turbulence models use mean flow values
to estimate the Reynolds stress tensor in order to close the equations and provide a
numerical solution.

There are many RANS turbulence models that approximate the Reynolds stress
with a wide range of computational complexity in existence today. The most popular
models are based on the Boussinesq approximation which is shown in Equation 2.27,

where v, is known as the turbulent, or eddy, viscosity, and k is the turbulent kinetic

energy.

2

The turbulence-generated eddy viscosity is modeled to alter the local property
of the fluid and mimic the relationship of stress and rate of strain similar to that
found in laminar flows. It is important to keep in mind that molecular viscosity is
a property of the fluid whereas turbulence is a characteristic of the fluid flow. The
family of models that use this approximation are known as eddy viscosity models.

The most popular eddy viscosity models use additional transport equations to
calculate the turbulent viscosity. Most industrial RANS codes are based on two-
equation models, such as the k-w and k-¢ models. Both of these models have a
transport equation for the turbulent kinetic energy k. The k-¢ model also has a
differential equation for e which is the turbulence dissipation rate per unit mass.

The turbulent viscosity is then obtained using Equation 2.28, where C,, is one of the
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model coefficients. The full k-e model can be found in Wilcox’s book on turbulence

modeling [44].

vy =C,k* e (2.28)

The k-w model has a differential equation for k similar to that of the k-¢ model.
The second differential equation is for w, which is the specific dissipation rate per
unit turbulent kinetic energy. The turbulent viscosity is then obtained using Equation
2.29, where @ is the dissipation limited by an expression based on the mean strain-rate

tensor. The full k-w model can also be found in Wilcox’s book.

& =

(2.29)

vy =

In 1994, Mentor introduced a two-equation model that essentially blends the k-
w and k-¢ models called the k-w shear stress transport (SST) model [23]. Due to
superior near-wall behavior of the k-w model, the SST model takes the form of the
k-w model in the inner parts of a boundary layer. This also allows the use of the
model without the need for wall functions. The SST model behaves more like the
k-¢ model away from the walls and is thought to avoid the sensitivity to free-stream
turbulence seen in the k-w turbulence model. The model is more robust and intended
for engineering applications due to improved handling of adverse pressure gradients
compared to other inexpensive turbulence models. The k-w SST model is the baseline

RANS turbulence model used in this research.

2.3.3 Large Eddy Simulation (LES)

As mentioned earlier, the larger scale turbulent motions are typically much more en-
ergetic than the small scale motions. In order to improve the accuracy of simulations,
these large structures must be resolved. The small scale turbulence is relatively weak
and has small contribution to the overall Reynolds stress. Due to this, the small scale
structures can be filtered out and modeled instead of directly resolving their motion.

Since the large eddies are computed, this method is known as Large Eddy Simulation.
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Due to the fact that the smallest structures are modeled, the minimum cell size
can be made much larger than the Kolmogorov length scale leading to smaller overall
cell count and larger allowable timestep sizes. The LES governing equations can be
obtained by filtering the Navier-Stokes equations to compute only large scale compo-
nents of the velocity field. A spatial filter of the velocity is shown in Equation 2.30
for a general filter kernal G(z, ),

(x) = / Gz, €)us(€)de (2.30)

which leads to

U =T +u (2.31)

where u; is the resolved velocity and wu; is the sub-filter velocity. There are several
common forms of the filter kernel, such as the Gaussian and Fourier cut-off filters. A
simple and popular filter kernel is the top-hat or box filter shown in Equation 2.32,

which is a local volume average.

1 A3, i — & A i/2
Clogny= LA Imm sl <A/ (2.32)

0, otherwise
As shown, the filter is also a function of the filter width, A. Since the filter size
A can be associated with the local grid size, the sub-filter quantities are commonly
known as "sub-grid" features, regardless of the filter type used. The filtered incom-
pressible Navier-Stokes equations can be obtained using Equation 2.31 to substitute
resolved and sub-grid quantities in place of the total (all scale) values. The resulting

equation has very similar form to the RANS equations.

on;
el (2.33)
ou; 0 1 0p J _



The difficulty arises in dealing with the wu; term. Following Leonard [18], the filtered

advection term is split into two terms as shown in Equation 2.35.

T =+ 7 (2:35)

The filtered Navier-Stokes equation can be rewritten as

om 9, . 19p 0 or5e®
— (T =—-= — 5 — 2.
ot + c%vj (UZ UJ) P 6371 + 21/6.’1&']’ % 8:@ ( 36)

where TS‘-GS is the sub-grid scale stress tensor and is comprised of several components

shown in Equation 2.37.

Tz-SjGS = Lij + Cij + R,‘j
where
L= 0 —% u (2.37)

S e
Cij = Wu; + uju;

Rij = uiu;
The L;;, C;j, and R;; are known as the Leonard stress, cross-term stress, and SGS
Reynolds stress. The Leonard stress can be computed from the resolved scales, but
the remaining two terms must be modeled. The most common SGS models model the

deviatoric part of SGS stress tensor while using an eddy viscosity model. Smagorinsky

first proposed an eddy viscosity SGS model in the form of

1 _
7508 — gr,f,f*s = 2U;3;; (2.38)

v =C2N*\/5; &; (2.39)

where 3;; is the resolved mean strain rate and C; is the Smagorinsky constant which
is usually set to 0.2. It is known that C; is not constant and may be a function
of the Reynolds number and other parameters dependent on the type of flow [6].

For complex flows, a single constant may not be sufficient. Another issue with the
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Smagorinsky model is that the turbulent viscosity does not tend to zero approaching a
wall boundary. One work around is to use the Van Driest damping function to reduce
the near-wall turbulent viscosity by adjusting the near-wall Smagorinsky constant as

shown in Equation 2.40,

02 =C2(1— eV /A%)? (2.40)

where y+ is the distance from the wall in viscous wall units and A+ is a constant
usually set to 25. The distance from the wall in wall units is defined in Equation 2.41.

The friction, or shear, velocity is defined in Equation 2.42, where 7,, is the shear stress

at the wall.
L Yur
= 241
Y V (2.41)
Tw
Uy = 4 | — 2.42
p (2.42)

Despite these issues, the Smagorinsky model has been widely used. The in-
let boundary condition simulation discussed in Section 3.4 utilized the standard
Smagorinsky model with the Van Driest wall damping function.

In 1991, Germano [8] built on the Smagorinsky model by introducing a dynamic
model that adjusts the model parameter automatically in different areas of the flow
field. The procedure essentially filters the resolved velocity %; using a "test filter"
broader than that used in the LES SGS model to obtain a very large scale field ;.
By comparing the two resolved scales, the model parameter can be determined at
every spatial point at any timestep, allowing the LES to automatically compute C,
as the simulation evolves. The dynamic model allows the near wall turbulent viscosity
to asymptotically approach zero without the use of wall functions. Dynamic models
have been shown to be more accurate than the standard Smagorinsky model when
compared to DNS [44]. The test filter dynamic modeling concept can be used with
any sub-grid scale model and has been adapted to more complicated SGS models.

The dynamic methods add additional computation time due to the test filtering
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and computation for the model parameters. In 2004, Vreman introduced an eddy
viscosity model suitable for engineering applications that is computationally similar
to the Smagorinsky model. The model has been shown to be more accurate than the
Smagorinsky model and as good as the standard dynamic model for turbulent mixing
layers and turbulent channel flow [40]. The model uses the filter width and first-order
derivatives of the resolved velocity field and has the ability to reduce the turbulent
viscosity near the wall without the use of wall functions. Unlike the Smagorinsky
model, the Vreman SGS model is also able to handle transitional flows.

Due to the improvements over the Smagorinsky model without significant addi-
tional computational cost or wall functions, the Vreman SGS model is used for all

U-bend simulations in this thesis.

2.3.4 Low Fidelity (RANS) Training

In this research a simple eddy viscosity model based on a prescribed turbulent vis-
cosity scalar field is introduced. There are no additional transport equations and
thus this eddy viscosity model can be considered a zero-equation model. The last
term in the Boussinesq approximation from Equation 2.27 is ignored because k is not
readily available, similar to the Spalart-Allmaras turbulence model. The Reynolds

stress tensor approximation is shown in Equation 2.43.

— wu; = 21,5 (2.43)

Substituting Equation 2.43 into the incompressible RANS equation produces Equa-
tion 2.44. It can be seen that the turbulent viscosity is treated in similar fashion as
the kinematic viscosity, which creates an effective viscosity shown in Equation 2.45.

ou; 0

+—(WF)——laﬁ+—a—
ot ox; 'Y pdx,  Ox;

(20 + 1)55) (2.44)

Vepf =V + 14 (245)
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The turbulent viscosity is treated as a scalar field and can have a unique value for
each cell of the mesh. The turbulent viscosity is obtained through optimization with
a higher fidelity simulation. The high fidelity simulation output mean velocity field
is the desired quantity to match in the lower fidelity RANS simulation. Therefore,
the objective function is based on the mismatch between the velocity fields of the two
simulations and the optimization is to minimize the objective function by adjusting

the spatial turbulent viscosity field. The objective function is shown in Equation 2.46.

J(u(ve)) = [[u(ve) — uniri|f, (2.46)

The minimization can then be written as

min [|u(v,) — uniri |t st 1y 20 (2.47)

For physical reasons, the turbulent viscosity must be non-negative, which is equiv-
alent to non-negative turbulent kinetic energy and dissipation rate. Following Dow [4],
the optimization can be simplified by updating log(v;). This leads to an unconstrained
optimization since log(v;) automatically enforces the non-negativity requirement. The
L-BFGS optimization algorithm is used in concert with gradient information obtained
by the adjoint method. Automatic differentiation is used to obtain the sensitivity gra-
dient. The gradient used to drive the optimization is calculated by simply multiplying

the turbulent viscosity by the adjoint sensitivity gradient as shown in Equation 2.48

oJ oJ

s = g (2.48)

The training optimization is demonstrated on a 180° U-bend channel in Section

4.3 with time-averaged LES as the high-fidelity solution.
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Chapter 3

Simulation of a 180° U-bend Square
Duct

3.1 Introduction

As discussed in Chapter 1, the square duct 180° U-bend is an approximation of
turbine airfoil serpentine cooling passages. This geometry has also been selected
due to existing experimental data by Coletti and Verstraete [3]. The objectives are
to highlight areas where RANS methods break-down and show why LES can be
considered an accurate representation. This supports the current motivation, which
is to use high fidelity simulations, such as LES, to guide designs containing complex
internal flows. This chapter discusses the details of the LES and RANS simulations
and compares the solutions to experimental data to validate the use of LES to capture

the proper fluid dynamics.

3.2 Large Eddy Simulation

3.2.1 Fluid Solver

The large eddy simulation results are generated using OpenFOAM’s pisoFoam incom-

pressible LES solver [26]. This solver is based on the "pressure-implicit with splitting
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of operators" (PISO) algorithm developed by Issa [14]. This pressure-based algorithm
is suitable for unsteady simulations and can maintain a stable calculation without the
use of under-relaxation.

A sub-grid scale (SGS) model is implemented based on the Vreman eddy-viscosity
SGS model [40]. The Vreman SGS model has desirable properties and is well-suited
for engineering applications. One such property is that the sub-grid turbulent vis-
cosity tends to zero approaching a wall without the use of wall damping functions.
Another desirable property is that the model is less complicated than dynamic mod-
els and similar in complexity to the standard Smagorinsky SGS model. On several
test cases the Vreman model has been shown to provide more accurate results over
the standard Smagorinsky model and is comparable to the accuracy obtained with
dynamic Smagorinsky models [40,45].

The SGS filter cut-off used for the LES is OpenFOAM’s cubeRootVolDelta. This
is a top-hat filter based on the inverse of the cube root of the local cell volume and is
a common filter used in finite volume implementations of LES.

The divergence scheme is based on a second order limited linear differencing
method. The gradient and Laplacian operators utilize a second order central dif-
ferencing Gaussian integration method. All interpolation is based on second-order
central differencing. The time discretization scheme is second order implicit back-
ward Euler.

The momentum equations are solved using OpenFOAM’s preconditioned bi-conjugate
gradient (PBiCG) solver with a diagonal incomplete LU (DILU) preconditioner. The
same solver is used for SGS turbulence parameters. It was found that the most ef-
fective method of solving the pressure correction equation was with the use of the
generalized geometric-algebraic multigrid (GAMG) solver with a diagonal-incomplete
Cholesky (DIC) smoother.

The bulk velocity, Uy, through the duct and the fluid density are set to unity
and the Reynolds number of 40,000 is achieved by setting the kinematic viscosity to

2.5e-5. Boundary conditions used in the simulation are shown in Table 3.1.
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R = 3.1
== V (3.1)
Table 3.1: Boundary conditions for LES duct
Parameter Inlet Outlet Walls
velocity, u mapped zero-gradient Z€ero
pressure, p zero-gradient ZETo zero-gradient
SGS turbulent kinetic energy, ksas 0.004 zero-gradient ZEero
SGS turbulent viscosity vggs zero-gradient | zero-gradient | zero-gradient

The inlet velocity boundary condition is mapped from an unsteady pre-simulation
and is discussed in detail in Section 3.4. The sub-grid scale turbulent kinetic energy
of 0.004 at the inlet corresponds to 5% turbulence intensity converted to turbulent ki-
netic energy based on the fully developed smooth duct relation shown in Equation 3.2
below, where I is the turbulence intensity. A 5% turbulence intensity was measured

experimentally in Coletti and Verstraete’s rig [3].

k= g(U,,J)2 (3.2)

The flow field is initialized with zero velocity. The simulation is run sufficiently
long to ensure well converged time-averaged fields. The initial start-up transient is
not included in the time averaging. The time-averaging technique is explained in

detail in Section 3.2.3.

3.2.2 Spatial and Temporal Discretization

The duct cross-section is a square with a side length and thus hydraulic diameter, d,
of 1. The domain consists of a straight inlet section of 5 d;,. The bend section has
an inner radius of 0.26 d,. The straight exit section has a length of 6 d;,. Figure 3-1

shows multiple views of the domain.
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Top View

3D View

Figure 3-1: Domain geometry used for square duct U-bend LES

A structured hex mesh of size 150 x 150 x 265 is created using OpenFOAM'’s
blockMesh utility. The cell sizes are selected to meet LES best practices. In order to
sufficiently resolve the wall velocity profile, a y+ of 1, or one wall unit from the wall
boundary, is the first cell target size. It is also desirable to have 3 cells within 5 wall
units to resolve the viscous sublayer at the walls. The wall unit, defined in Equation
3.3, is based on the mean flow solution in the inlet section of the U-bend where 7, is
the wall shear, p is the fluid density, and v is the fluid kinematic viscosity.

17

wall unit = — = v, /2 (3.3)
Ur T

A graded mesh is used in the spanwise direction from all four walls. A grading
ratio (ratio of largest to smallest cell) of 50 over a span of 75 cells results in a cell
expansion factor of 1.054, below the target maximum of 1.15. The largest spanwise
cell size in the middle of the duct is approximately 26 wall units square. The resulting
spanwise cell count is 150 x 150.

The cell size in the streamwise direction is approximately 50 wall units in the
straight sections. The streamwise cell size in the bend section ranges from 13 to 66
from the inner to the outer wall. The last d), of the exit section consists of a sponge
region. The sponge region contains expanding cells in the streamwise direction which

allow for out-going flow features to leave the computation domain without reflecting
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any signature back into the domain. A grading ratio of 5 is used to produce a cell
expansion factor of 1.53. The total streamwise cell count is 265, with 100 cells in
each straight section, 60 cells in the bend section, and 5 cells in the sponge region.
The overall mesh cell count is 5,962,500. Multiple views of the mesh are in shown in

Figures 3-2 and 3-3.

(a) Spanwise mesh topology (b) top view of mesh in bend region

Figure 3-2: Views of the U-bend mesh

Top View

Regular
Mesh

Sponge
Region

Figure 3-3: Top view of LES mesh sponge region

The mesh results in an average first cell size of approximately y— = 0.5 and the
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first three cells are within a y+ of 4 for majority of the duct. As shown in Figure 3-4,
the largest instantaneous y+ is near the start of the bend at the inner wall where y+

reaches approximately 2 to 3 due to the local acceleration.

y+ Distribution from final timestep
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Figure 3-4: Instantaneous y+ from final timestep of LES

It is worth noting that as part of a mesh sensitivity study, an alternate mesh was
made roughly twice as coarse and compared to the fine mesh. The coarse mesh had
a size of 76 x 76 x 210, or about 1.2 million cells, for an 80% reduction in overall
size. The coarse mesh solution displayed excess low-momentum fluid at the outer
wall, increased post-bend velocities, and well over-predicted turbulent kinetic energy
in the bend region. The fine mesh compared well to available experimental data and
the results are further discussed in Section 3.6.

The spatial discretization is performed first, then the timestep size, At, is set
to ensure accuracy and stability. The CFL, or Courant-Friederichs-Levy, number is
shown for a one dimensional case in Equation 3.4 and is often used as a check of the
stability. If the CFL number is larger than 1, fluid particles move across multiple cells
in one timestep and can cause instability for explicit schemes. In this case, despite
the use of an implicit scheme which can handle a CFL > 1, it is desired to have the
maximum CFL number around unity.

At

I i .
CF u/_\a: (3.4)
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A constant timestep size of At = 0.001 seconds is used for the simulation. The
instantaneous CFL number is calculated for all cells at every timestep. The peak
CFL number occurs at the inner wall of the bend due to high fluid velocity and the
small cell size. On average, the max instantaneous CFL number at each timestep is
approximately 1.6, but does periodically reach values as large as 2.2. The full domain

average CFL is approximately 0.04.

3.2.3 Mean Field: Time-Averaging

The initial condition for the flow field is set to zero velocity, creating a start-up
transient. Time-averaging from the start of the simulation would lead to erroneous
results due to the start-up. Therefore, monitors are used throughout the domain to
track local flow parameters and determine when time-averaging can begin. Figure
3-5 shows the monitoring point locations on a slice at z/d, = 0.5 and the associated
data from the first 30 seconds of the simulation. Figure 3-6 shows the velocity field

during the first 15 seconds of the start-up.
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Figure 3-5: Instantaneous velocity monitor point data over the first 30 seconds of
simulation
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Figure 3-6: Instantaneous velocity magnitude at 1 second intervals during start-up,
shown at z/d, = 0.5

The start-up transient is mostly limited to a single flow-through unit (FTU), or
about 12 seconds at all points in the domain. One FTU is the time needed for the
fluid to flow through the whole domain and is based on the overall mean duct length
and the bulk velocity. Time averaging is started after 20 seconds, or 1.6 FTU, to
completely avoid the start-up.

Again, monitors are used to evaluate the quality of the mean field over time. Figure
3-7 shows the time-averaged local velocity magnitude normalized by the local mean
value at the end of the full simulation. It can be seen that a reasonable mean field
is obtained after approximately 10 FTU, but at least 17 FTU are needed to obtain
a mean fleld within 0.5%. Figure 3-8 shows the mean field at different intervals of
time-averaging and changes are most visually noticeable in the post-bend region. A
time-averaging duration of 230 seconds (18.6 FTU) is used to obtain a mean field.
Mean flow parameters include the velocity components, pressure, Reynolds stress

components, sub-grid turbulent kinetic energy, and sub-grid turbulent viscosity.
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Normalized Mean Local Velocity vs Time

12 Point
@ —1
3115
& 11 2
= 3
z 1.05
& 4
o 1
[T} —5
>
0.95
3 —s
= 09
g 7
5 0.85 2 4 6 8 10 12 14 16 18FTU &
= 0.8 i } } } f | i } i
0 20 40 60 80 100 120 140 160 180 200 220 240 3
Duration of Time Averaging [sec] 10

Figure 3-7: Normalized local mean velocity as a function of time-averaging duration
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Figure 3-8: Mean velocity field after different durations of time-averaging, shown at
Z / dh = (.5.

3.2.4 Parallel Computing

The domain is decomposed to 32 CPU cores using OpenFOAM'’s decomposePar func-
tion. The built-in OpenFOAM "scotch" utility is used as the decomposition method
to minimize the number of subdomain interfaces, and thus minimize the commu-
nication between the separate subdomains. The simulation is conducted on MIT’s
Voyager cluster in the Aerospace Computational Design Lab. The full 250 second

simulation, including the start-up transient, requires about 9 days to complete. Once
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the simulation is finished, the full domain is reconstructed for all output timepoints

and copied to a local desktop computer for further post-processing.

3.3 RANS Simulation

3.3.1 Fluid Solver

The RANS simulation results are generated using OpenFOAM’s simpleFoam steady-
state incompressible solver. This solver is based on the "semi-implicit method for
pressure linked equations" (SIMPLE) algorithm developed by Patankar and Spalding
[27,28]. This iterative pressure-based algorithm is widely used in industrial codes.
Due to the strong coupling between pressure and velocity, some under-relaxation on
the pressure and velocity correction terms is needed for stability. The OpenFOAM
default of 0.3 and 0.7 are used for the pressure and velocity, respectively.

The k-w shear stress transport (SST) turbulence model already available in Open-
FOAM is used for the RANS simulation. As mentioned in Section 2.3.2, this two-
equation model is robust for wall bounded flows and thus has become increasingly
popular in industrial codes.

A bounded upwind differencing method is utilized for convection terms and a cen-
tral differencing method is used for diffusion terms. The gradient and Laplacian op-
erators are based on a second order central differencing Gaussian integration method.
All interpolation is based on second-order central differencing. The momentum equa-
tions are solved using OpenFOAM’s Gauss-Seidel iterative solver. The same solver is
used for the k and w transport equations. Similar to the LES, the pressure correction
equation is solved with a generalized geometric-algebraic multigrid (GAMG) iterative

solver with a diagonal-incomplete Cholesky (DIC) smoother.

3.3.2 Simulation Detalils

The LES mesh topology is also used for the RANS simulation. The domain is identical

to that of the LES domain, except for the elimination of the sponge region. The overall
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mesh is of size 150 x 150 x 260, which is more than adequate for the RANS method.
The kinematic viscosity, density, and bulk velocity from the LES are used to maintain
a Reynolds number of 40,000.

The boundary conditions are similar to those used in the LES and are shown in
Table 3.2. One difference is that now the turbulent kinetic energy and turbulent
viscosity apply to all scales since the turbulence is fully modeled. The wall boundary
TKE is set to a very small number instead of zero to prevent any divide by zero errors.
The specific dissipation is initially set to unity, but is solved throughout the domain
through its own transport equation. OpenFOAM'’s omega wall function is used to
calculate the near-wall behavior. The turbulent viscosity is calculated everywhere in

the domain using the TKE and specific dissipation.

Table 3.2: Boundary conditions for RANS duct simulation

Parameter Inlet Outlet Walls
velocity, u mapped zero-gradient Z€ero
pressure, p zero-gradient Zero zero-gradient
turbulent kinetic energy, k 0.004 zero-gradient le—11
specific dissipation, w uniform 1 uniform 1 | omegaWallFunction
turbulent viscosity, v; calculated calculated calculated

The velocity inlet boundary condition is mapped from the time-averaged outlet
solution from the same pre-simulation used for the LES. The flow field is initialized
with a uniform value of zero. After 6000 iterations, the velocity residual is converged
to a value of approximately le-5 for all components, and the pressure residual is
stabilized at a value of approximately le-4. The simulation is run on a single core on
a local computer and requires approximately 40 hours to complete. Minimal post-
processing is needed since the final iteration of the steady state simulation corresponds

to the mean solution.
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3.4 Pre-simulation for Unsteady Inlet Boundary
Condition for LES

3.4.1 General Approach

In order to provide the proper level of turbulence and unsteadiness in the inlet sec-
tion of the duct, a LES pre-simulation is used. The pre-simulation consists of a
periodic straight square duct with the same spanwise mesh topology as the full U-
bend simulation. The pre-simulation is initialized with a RANS flow solution and
is run sufficiently long to generate realistic turbulent structures. The timestep size
matches that of the full U-bend simulation to allow for direct mapping of the outlet
solution from the pre-simulation onto the inlet of the full U-bend. The pre-simulation
is run beforehand and the output is stored at every timestep to generate a database
of inlet velocity fields. This method ensures an inlet that is unsteady, has the proper
level of turbulence intensity and structure, and satisfies the Navier-Stokes equation.
This is particularly important as the dynamics in the inlet section of the duct can
impact the behavior of the flow in the bend region and beyond. This was noticed
when comparing the U-bend simulations with the unsteady, mapped inlet to that of
a uniform velocity inlet boundary condition. Figure 3-9 shows the general procedure

of mapping to the U-bend inlet.
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Pre-Simulation

Full U-Bend Simulation

Database

Figure 3-9: Pre-simulation method to create an unsteady inlet boundary condition.

3.4.2 Turbulence Model and Key Parameters

The inlet pre-simulation is run using OpenFOAM’s pisoFoam LES solver with the
standard Smagorinsky sub-grid scale model. In order to drive the sub-grid scale
turbulent viscosity to zero at the walls, the Van Driest function is utilized. The bulk
velocity is set to unity and the kinematic viscosity is set to 2.5e-5 to obtain a Reynolds
number of 40,000, similar to the full U-bend simulation.

As mentioned, the pre-simulation is initialized from a RANS square duct solution.
Any reasonable initial condition can be used, such as w, = 1 in all cells. Since the
Reynolds number is large enough, the initially steady flow is able to become unstable
and create turbulent structures. The structures start out as numerical fluctuations
and grow to fully turbulent flow. The simulation is monitored to observe when the
flow field has statistically converged to turbulent duct flow. The RANS solution
initialization is used as it already has a velocity profile that is close to the time-
averaged solution, and thus can result in a usable solution in less time. The pre-
simulation is then restarted and the outlet velocity data is then extracted at every

timepoint.
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3.4.3 Domain and Mesh

The pre-simulation domain consists of a square duct with a side length of 1 dj, and a
duct length of 2md;,. The same spanwise mesh topology of 150 x 150 cells from the
full U-bend simulation is selected for direct mapping to avoid interpolation errors.
For the streamwise direction, 125 cells are used to provide the same cell size as the
full U-bend simulation. The overall cell count is 2,812,500 cells, just under half of the

full U-bend simulation.

The periodic inlet-outlet boundary condition (BC) for the pre-simulation is created
by continuously mapping the velocity outlet solution to the inlet. The inlet velocity
field at each timestep is forced to meet a bulk velocity of unity and is used to drive

the simulation instead of specifying a pressure gradient.

3.4.4 Database and Inlet Mapping

The timestep size of 0.001 seconds is used to match that of the full U-bend simulation.
The pre-simulation is run for 250 seconds, or 250,000 timesteps. At each timestep,
the nodal velocity components are stored in a text file. The surfaceSampling function
in the controlDict file is used to save the velocity components from the outlet plane.
The data is stored for the 22,801 points in the square section (151 x 151). Each file
size consists of about 730 kB. The entire 250 second database requires a total storage

of approximately 180 GB.

The full U-bend simulation is set-up to read from the database and select the
proper file to use for the inlet velocity BC. This is achieved using the timeVary-
ingMappedFixed Value boundary condition. Reading from the inlet database increases

the full U-bend simulation duration by approximately 6% compared to a fixed inlet

BC.
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3.4.5 Square Duct Result Comparisons to Previous Research

The pre-simulation is also time-averaged to explore features of the flow-field. Figure
3-10 shows the instantaneous and time-averaged outlet velocity magnitude on the
same scale. The mean peak, or centerline velocity U,, is approximately 1.3 times the
bulk velocity, U,. One notable observation is that the secondary velocity produced
due to the presence of the corners pushes mean axial flow towards the corner along the
corner bisectors. This creates the bulging of the mean axial flow toward the corners.
This behavior is seen in previous simulations and experiments of square channels and

is explained in detail by Gessner [9].
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(a) instantaneous velocity (b) mean velocity

Figure 3-10: Pre-simulation outlet plane velocity field

Figure 3-11 shows the secondary flow behavior. Figure 3-11a has the vectors of the
in-plane flow overlaid on the mean axial flow contours. As discussed, the secondary
flow travels from the center part of the section towards the corners. The secondary
flow then travels along the walls and recirculates back towards the center of the duct.
This same recirculation was reported by Huser and Biringen [13|, Gavrilakis [7], and
Madabhushi and Vanka [21]. Figure 3-11b shows the absolute value of the secondary
velocity magnitude normalized by the mean centerline velocity. The peak secondary
velocity is approximately 1.8% of the centerline velocity along the corner bisector.

The peak along the wall is approximately 1.6% of U..
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(a) secondary flow vectors plotted on  (b) secondary flow normalized by center-
mean axial flow for 1/4 section line velocity

Figure 3-11: Pre-simulation outlet plane secondary velocity

The secondary flow contours and the ratio to the centerline velocity compare
well to other square duct analyses. The mean flow characteristics are compared in
Table 3.3, in order by the bulk Reynolds number. The current analysis shows a
centerline velocity and secondary velocities slightly larger than expected based on the
comparable Reynolds number experiments of Melling [22] and Hoagland [12]. Aside
from the current analysis, the table indicates that there may be a weak function of

U./U, to the Reynolds number.

Table 3.3: Square duct mean flow comparison

Reference Rey, | U./Uy | max(Usee/U.)
Gavrilakis, 1992, DNS 4,410 1.33 1.4%
Madabhushi and Vanka, 1991, LES 5,810 | 1.28 2%
Huser and Biringen, 1993, DNS 10,600 = -
Current Analysis, LES 40,000 | 1.30 1.8%
Melling and Whitelaw, 1976, Experiment | 42,000 | 1.24 1%
Hoagland, 1960, Experiment 43,800 | 1.23 1.5%

The outlet plane average turbulence intensity from the simulation is approximately
4.2% which is close to the pipe flow correlation result of 4.25% for a Reynolds number
of 40,000 and also compares well to the 5% measured experimentally for the square

duct at the same Reynolds number.
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3.5 U-bend CFD Results

Due to the 3D nature of the geometry, the results are shown on 2D slices throughout
the domain. Figure 3-12 shows a comparison of the mean velocity magnitude from
the RANS simulation and the time-averaged LES. The slice is taken at half the height
of the duct in the z direction, or z/d,, = 0.5. This is also the plane of symmetry. The
peak velocity at the bend is similar between the two simulations. The LES and RANS
results show separation at approximately the same location along the inner wall of
the bend, denoted by the letter "S". The separated and recirculating flow from the
RANS solution seems to penetrate into the duct further from the wall at all points.
The flow eventually reattaches downstream in the straight section of the duct. The
estimated reattachment location is noted in the figure by the letter "R". The RANS

solution is showing a reattachment point further from the bend.
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Figure 3-12: Mean velocity magnitude RANS vs LES comparison at z/d,=0.5

Since the flow separates and cannot follow the contour of the bend, the flow
essentially impinges onto the outer wall just beyond the exit of the bend region. This
leads to a local velocity increase as the flow is redirected toward the duct exit. The
LES and RANS solutions show a similar local velocity magnitude peak in this area,
however, there is a difference in the location of the local maximum. The LES peak is

approximately 0.2 d, from the wall, whereas the RANS peak is just under 0.1 d;, from
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the wall. Downstream, the inner wall low velocity region migrates towards the middle
of the duct in the RANS solution. The LES solution shows increasing uniformity as
expected, with a velocity gradient from the outer wall to the inner wall.

Figure 3-13 shows two cross-sections through the duct in the bend region for the
instantaneous and mean velocities. Section A is taken half way into the bend. At
this point, both the LES and RANS solutions show separation at the inner wall.
Both simulations show the largest amount of separation is at the plane of symmetry.
The RANS separation zone height at Section A is smaller than that of the LES but
extends further into the duct. Both the LES and RANS show peak velocities at the
inner wall, close to the corners with the top and bottom wall. Section B shows a
larger difference between the two solutions. The instantaneous LES solution hints
at two counter-rotating vortices in the recirculation zone at the inner wall. There
is a clear plane of symmetry in the instantaneous and mean velocity field. Again,
the separation zone is largest at the plane of symmetry. The RANS solution shows
an interesting structure where the low velocity region penetrates further into the
duct and mushrooms. The gradient near the outer wall is similar between the two

simulations.

LES, instantaneous LES, mean RANS
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Figure 3-13: Velocity comparison at two bend sections
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Two sections downstream of the bend were looked at in detail to investigate the
complex flow structures that are created. These sections are shown in Figure 3-14,
which have the in-plane, or secondary flow, velocity vectors overlaid onto the mean
velocity field. Section C is taken at 0.44 dj, from the top of the inner bend, which cor-
responds approximately to the center of the recirculation zone from the LES solution
in the z/d), = 0.5 slice. Section D is taken half-way into the exit section, or 2.5 d}, from
the bend exit. Section C is similar in nature to Section B, and the secondary flow
in the separation zone can be seen. The LES has the center of these vortices much
closer to the walls than the RANS simulation. These weaker secondary flow vortices
are part of the recirculation due to the separation from the bend, and propagate
upstream. The outer high velocity region also shows two counter-rotating vortices
propagating downstream that pushes flow towards the outer, top, and bottom walls.

Section D is taken beyond the reattachment point. The full section has streamwise
flow out of the page, or downstream. The two outer vortices from Section C have
grown to fill the whole domain. This secondary flow generation can be explained by
convection of the boundary layer vortex lines present upstream which are normal to
the flow. As described by Greitzer, Tan, and Graf [11], these vortex lines become
stretched and skewed due to differential velocity around the bend to produce stream-
wise components. Smaller vortical structures can be seen in each corner due to the
sharp corners. These corner secondary flows are also counter-rotating compared to

the large vortices.
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Section C

Section D

Figure 3-14: Secondary flow vectors overlaid on mean velocity at two post-bend
sections

The total turbulent kinetic energy from the LES is obtained by combining the
resolved and sub-grid TKE. The sub-grid TKE is calculated at every timestep using
the sub-grid model and time-averaged similar to the velocity field. The resolved TKE
is one half of the trace of the Reynolds stress tensor. The Reynolds stress tensor terms
are also calculated at every timestep and time-averaged. The full TKE is calculated

using Equation 3.5.

1/—
TKE = TKEsqgs + TKE, es0ivea = TKEsgs + 5 (u’2 +v? + ’LU’Z) (3.5)

Figure 3-15 shows the mean TKE from the LES solution. The sub-grid scale
TKE has similar contours to the resolved TKE, but is an order of magnitude or
more smaller than the resolved TKE. Figure 3-15 also shows the ratio of the sub-grid
scale TKE to the resolved TKE. Only a portion of the bend region shows over 10%
contribution from the sub-grid scale model. This is in a region with low TKE and is

another indication of adequate grid size.
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Figure 3-15: Time-averaged LES turbulent kinetic energy
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The RANS simulation calculates the total TKE as part of the k-w SST turbulence
model. Figure 3-16 compares the total TKE between the two simulations on the same
scale from a slice at z/d, = 0.5. The RANS solution has a much lower level of TKE,

especially in the shear layer along the separation streamline.

RANS LES

0.16

-_'—;0.12

Figure 3-16: Turbulent kinetic energy comparison from RANS and LES
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3.6 Comparison to Experimental Data

3.6.1 Mean Velocity Magnitude

As mentioned, the U-bend geometry is selected in order to compare to existing exper-
imental data. Coletti et al. captured instantaneous two dimensional velocity fields
at different planes using particle image velocimetry (PIV) at a sampling frequency
of 2 hz. The mean velocity and root-mean-square of the velocity fluctuations were
obtained by averaging 1000 image pairs. In addition, Coletti et al. also performed a
RANS simulation using the k-e turbulence model. Figure 3-17 shows a comparison
between the PIV results and the various analytical results at z/d, = 0.5. The k-¢
RANS simulation under-predicts the post-bend velocity near the outer wall and the
size of the separation. The outer wall boundary layer is also smaller than that of
the PIV. The k-w SST RANS simulation improves on the velocity magnitude in the
bend and post-bend, but still does not accurately capture the separation shown in the
experiment. The LES result best matches the PIV data. There is good agreement in

peak velocities, outer wall velocity profile, and post-bend separation.

Experiment, PIV RANS, k-g RANS, k-w SST LES, Vreman SGS
Coletti et al Coletti et al Hayek Hayek
2013 2013 2017 2017
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Figure 3-17: Time-averaged velocity magnitude comparison at z/d,=0.5

Figure 3-18 has a close-up of the PIV and LES results. Qualitatively, the LES
post-bend flow characteristics, such as the streamline curvature and the recirculation

zone, compare well to the the experimental data. The center of the recirculation
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zone from the inner wall (in the x direction) is approximately 0.23 d;, and 0.26 d,
for the PIV and LES results, respectively. The center is approximately 0.39 d), for
the PIV and 0.44 d,, for the LES in the y direction from the peak of the inner wall.
The recirculation zone covers about 40% of the duct width in the PIV measurements
compared to 44% from the time-averaged LES results. The area where the LES and
PIV differ most is the reattachment point. The reattachment point from the LES is
approximately 2.1 d,, from the top of the inner wall. The experimental results show

a reattachment point at approximately 1.6 dj,.
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Figure 3-18: Bend region mean velocity magnitude comparison at z/d;,=0.5

Figure 3-19 compares the experimental data at z/d, of 0.03 to the analytical
results. Again, the LES best matches the PIV data, yet slightly over-predicts the
velocity magnitude in the post-bend region. The k-¢ RANS result under predicts the
separation and shows lower velocity magnitude in the post-bend region. The k-w SST
over-predicts the outer wall velocity deficit and the post-bend flow field contours are

substantially different than the PIV results.
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Figure 3-19: Mean velocity magnitude comparison at z/d,=0.03

Figure 3-20 compares the streamlines of the PIV and LES results at z/d;, of 0.03.
The recirculation zone is much smaller in this near-wall plane. Again, the LES and
PIV results compare well in streamline curvature. It is believed that the kinks in the
streamlines in the pre-bend region are due to multiple PIV images stitched together,
which is evident from slight discontinuities. The LES reattachment point of 1.56 d,
from the top of the inner wall is again further downstream than the PIV experimental

results, which is approximated to be at 1.3 d.
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(a) PIV (b) LES

Figure 3-20: PIV vs LES time-averaged velocity magnitude comparison at z/d;,=0.03
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3.6.2 Turbulent Kinetic Energy

The differences between the LES and RANS simulations are especially highlighted
when comparing the turbulent kinetic energy. Following Coletti [3], the in-plane
TKE is calculated and normalized by the bulk velocity as shown in Equation 3.6 in
order to have a direct comparison to the experimental data. Since the PIV data is

two dimensional, the out-of-plane TKE is assumed to be equal to half the in-plane

TKE.

TKE _ 3(u?+v7)
TKEx = 02 =4 72 (3.6)

The same in-plane normalization method is used here for direct comparison. Figure

3-21 shows the TKEx field in the bend region of a slice at z/d;, of 0.5.

Experiment, PIV RANS, k-& RANS, k-w SST LES, Vreman SGS
Coletti et al Coletti et al Hayek Hayek

2017

Figure 3-21: Time-averaged TKE# shown at z/d,=0.5

The turbulence production in the post-bend region is largely missed with the k-e
model. The k-w SST solution is closer to the PIV data in the post-bend region, but
does not capture the outer wall increase in TKE as the LES does due to Gortler
instability. The LES result compares well once again to the PIV data, though the

post-bend inner wall TKE is slightly larger than that measured in the experiment.
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3.7 Conclusion

The 180° U-bend square duct is a simple geometry, yet it is clear the dynamics of
the flow field are quite complex. The flow features generated in this simulation are
typical of wall bounded flows. It is shown that RANS does not capture the proper
level of turbulence and generates incorrect velocity and pressure fields. Time-averaged
large eddy simulation matches well to the experimental geometry and is an adequate
analytical representation of the flow field. The LES is accurate and can be considered

a high-fidelity solution.
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Chapter 4

Optimization of the Turbulent
Viscosity for a 180° U-bend Channel

4.1 Introduction

It is shown in Chapter 3 that standard RANS turbulence models do not properly
capture the physics in some complex internal flows. The LES does a decent job of
matching the experimental data for a U-bend square duct. However, using LES for
geometry optimization is currently prohibitively expensive. The desire is to improve
an eddy viscosity RANS turbulence model by using the high-fidelity LES solution.
In order to do this, the LES is initially solved on the same geometry as the RANS
simulation. Using an optimizer, the turbulent viscosity field is inferred to minimize the
velocity mismatch between the high-fidelity (LES) and low-fidelity (RANS) solutions.
The resulting RANS model is a new geometry-specific turbulence model that does not
use any transport equations to solve for the eddy viscosity. This high-fidelity trained

RANS turbulence model is abbreviated as HIFIR.

In this chapter, a U-bend channel is used to allow the use of a 2D RANS solver to
reduce the computational cost. The separation in the bend region and the recirulation
zone are also present in the U-bend channel scenario. A three-dimensional domain is

still required for the LES.
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4.2 Fluid Solvers

4.2.1 High Fidelity Solver

The high-fidelity solver used for the U-bend square duct discussed in Section 3.2 is
used again for the U-bend channel. OpenFOAM’s pisoFoam solver is utilized with
the Vreman SGS turbulence model. The geometry is shown in Figure 4-1. The total
channel width, H, is set to unity. Cyclic boundary conditions are used at the top and
bottom surfaces of the domain. The domain height is set to 7H. A study of doubling
the domain height to 2rH was found to change the local mean velocity by less than
2%. The post-bend unsteady flow structures were sufficiently captured with the 7H
height and matched those of the taller domain. The domain height sensitivity study

is provided in Appendix B.

Top View 3D View

el Top & Bottom:
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. e !
T—) y 1

Figure 4-1: Domain geometry used for U-bend channel LES

The mesh topology from the square duct case is also used for the channel. The
same 150 cell count and expansion factors are used across the channel width. The
spanwise cell size in the periodic direction is set to be approximately 25 wall units,
similar to the max spanwise cell size from the square duct case. This requires 126
cells in the periodic direction with uniform spacing. The streamwise mesh topology is
identical to the square duct case, including the sponge region, resulting in 265 cells.
The overall cell count is 150 x 126 x 265, or approximately 5 million cells. This is

approximately 16% smaller than the square duct mesh size.
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The bulk Reynolds number of 40,000 is obtained by setting the density to unity
and the kinematic viscosity to 2.5e-5. The bulk Reynolds number is based on the
total channel width, H, and bulk velocity of unity in order to match the kinematic
viscosity of the square duct simulation. The boundary conditions are similar to that
of the square duct case, but with the addition of cyclic boundary conditions on the

top and bottom surfaces. The boundary conditions are shown in Table 4.1.

Table 4.1: Boundary conditions for LES channel

Parameter Inlet Outlet Walls Top, Bottom
U mapped zero-gradient Z€ero cyclic
P zero-gradient Zero zero-gradient cyclic
kscs 0.004 zero-gradient ZEero cyclic
Vsas zero-gradient | zero-gradient | zero-gradient cyclic

Similar to the square duct, an unsteady inlet boundary condition database is
created. The pre-simulation domain has a size of 1H width x 7H periodic height x
27H length, with cyclic boundary conditions at the top and bottom surfaces similar to
the U-bend channel case and the mapped outlet-to-inlet boundary condition discussed
in Section 3.4. A RANS solution is mapped onto the domain as the initial condition
of the pre-simulation. The simulation is run sufficiently long to generate physical

turbulent structures before storing the output velocity fields into the database.

The same 0.001 second timestep size is used for the U-bend simulation in order to
maintain the sufficiently low CFL numbers, since the cell sizes are similar to that of
the square duct. Due to the similar FTU, the start-up transient behavior follows that
of the square duct case. The start-up is fully captured within the first 20 seconds, at
which point the time-averaging is initiated. The simulation is run for a total of 250
seconds, resulting in over 18 FTU of time-averaging. Since the channel is periodic, the
long time average flow field is essentially two-dimensional. The time-averaged LES
solution is also collapsed along the z axis to produce a 2D mean field. The simulation

is performed on 32 cores and requires about 8 days to complete.
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4.2.2 Low Fidelity Solver

The low-fidelity solver is a custom-written, 2D structured, steady state incompressible
RANS finite-volume flow solver based on the SIMPLE method developed by Patankar
28] but on a collocated grid following the formulation provided by Ferziger and
Peric [6]. The solver is written in the Python programming language in order to
incorporate the existing automatic differentiation code, numpad, written by Wang [42]
for optimization purposes. The flow solver has the ability to handle non-uniform grids
by use of a collocated mesh.

As discussed and first introduced in Section 2.3.4, the RANS model is based on a
general eddy viscosity model in which each cell’s turbulent viscosity can be modified.
This allows for assignment of the turbulent viscosity throughout the domain via an
optimizer to match the velocity field of a high fidelity output.

The mesh topology from the high-fidelity simulation is directly utilized for the low-
fidelity solver. Since the solver is 2D, just the 150 spanwise cells and 260 streamwise
cells are used. The 5 cell sponge region is not needed, resulting in 39,000 cells in
total. The Python mesh is shown in Figure 4-2, which is identical to any z slice of

the LES mesh without the sponge region.

Figure 4-2: Mesh used for low-fidelity solver

The solver is setup to use a first-order upwind or an upwind/central differencing
blended scheme for the convective fluxes. A local weighting factor based on the local

Peclet number is used to blend between fully central differencing (CDS) and fully
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upwind differencing schemes (UDS). This is done to stabilize the solver by adding
some diffusion with upwinding, which is required due to the high Reynolds number,
and thus high Peclet number. The Peclet number is the ratio of the strengths of
convection to diffusion, and is shown in Equation 4.1. There must be a balance
between accuracy and stability, as too much blending with UDS can cause excessive
diffusion and overly smooth the solution. Appendix D discusses various Peclet-based
UDS/CDS blending schemes. A hyperbolic tangent blending function based on the
local Peclet number is used for the low-fidelity simulations. The central differencing
scheme is used for diffusive terms, which is the standard approach.
F pu ulAzx

_ e— = e 4.
pe D p/éx v+ (41)

The boundary conditions imposed on the 2D U-bend simulation are similar to
those used for the LES simulation. The boundary conditions are provided in Table
4.2. The inlet boundary condition is the time-averaged profile from the pre-simulation
used to generate the unsteady inlet boundary condition for the LES case. This is
done to maintain consistent boundary conditions between the high and low-fidelity
simulations.

Table 4.2: Boundary conditions for 2D Python RANS simulation

Parameter Inlet Outlet Walls
U mapped zero-gradient Z€ero
P zero-gradient Z€ero zero-gradient
Uy zero-gradient | zero-gradient Zero

Although the turbulent viscosity field is modified by an optimizer, it is recom-
mended to start with a turbulent viscosity field that is somewhat realistic. A good
initial condition is a simulation using a two-equation turbulence model on the same
mesh. The turbulent viscosity field from the k-w output is used as the starting point.
If the initial eddy viscosity values are too low, the simulation can become unstable.
Some amount of upwinding can be used to make the solver more robust and stable.

After every iteration of the solver, the residuals of the two momentum equations

and continuity equation are calculated. The convergence of the simulation is deter-
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mined by the reduction in these residuals. Once the residuals are sufficiently reduced,
usually to a value of 1e-5 or le-6, the simulation is stopped and the solution from the
last iteration is considered the converged solution. This residual control of the solver
is typical of steady state CFD solvers.

Due to the smaller size of the 2D simulations, the momentum and pressure correc-
tion equations are solved using Python’s direct sparse linear solver. Python iterative
solvers were found to take more computational time. For a 2D simulation containing
nearly 40,000 cells, each primal flow solver iteration requires about 1 second using
one 3.50 GHz CPU. About 2000 to 4000 iterations are needed to obtain a good so-
lution, and thus most primal simulations require about 1 hour. The Python code is
approximately 10 times slower than OpenFOAM’s simpleFoam SIMPLE solver, which
is based on compiled C++ code and utilizes iterative solvers. Parallel capability and
iterative linear solvers are future improvements needed before extending the Python
solver to three dimensions.

The Python SIMPLE solver was benchmarked in laminar mode (uniformly zero
turbulent viscosity) on a 2D lid-driven cavity case at Reynolds numbers of 100 and
1000 based on the lid velocity and the size of the square cavity. The solver was shown
to converge to existing benchmark solutions as the mesh was refined. The solver was
also benchmarked to OpenFOAM for a laminar U-bend channel, which had nearly

identical results. Benchmarking is discussed in further detail in Appendix C.

4.3 Low-Fidelity Training Setup - HIFIR Model

The training of the low-fidelity RANS solver is performed by optimization of the tur-
bulent viscosity field. The RANS solver is the primal solver, in which the velocity
and pressure fields are converged for a set of boundary conditions and input turbulent
viscosity field. The output of the primal solver is then used to calculate the objective
value. The primal output is also the initial condition to the adjoint calculations. Re-
verse mode automatic differentiation is used to obtain the initial sensitivity gradient,

or Jacobian, required to minimize the objective value. The iterative adjoint calcula-
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tions discussed in Appendix A are used to converge the Jacobian. One primal solve
followed by an adjoint solve produces both the objective function and Jacobian and
is treated as one outer, or optimization, iteration.

Python’s built-in optimizer (scipy.optimize.minimize) is used to drive the opti-
mization using the L-BFGS method. The primal and adjoint solvers are wrapped
into one function that is called by the minimizer. The objective value as well as the
Jacobian, velocity, pressure, and turbulent viscosity fields are stored for each overall
function evaluation to track progress and provide restart capability in the event of an
unexpected termination of the optimization. In addition, the residuals of each primal

and adjoint solve are stored and plotted for monitoring purposes.

4.3.1 Objective Functions

The objective function is based on the squared L2 norm of the velocity mismatch and

is shown in Equation 4.2 where the subscript 7 denotes the local cell.

J(u(r)) = [lu(vs) — wmillfa = > (w — wime:)? (4.2)

B
Since the velocity field is a vector with x and y components, the squared L2 norm

objective is implemented as
J = ((u_x - u_x_HiFi)**2) .sum() + ((u_y - u_y_HiFi)**2).sum() )

in the Python code. The squared L2 norm is a common error, or cost, function used
for optimization and is the primary objective function used in the training.

Several other objective functions are formulated to investigate the impact of the
objective function on the optimization path and solution. The L1 norm, known as
the "Manhattan" distance, can also be used on the velocity mismatch and has the

following form.

J(u(n)) = |lu(n) — umiril|Ls = Z |ui — wi miFi (4.3)
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Python’s numpy absolute value function is not recognized as a differentiable function

by the numpad AD tool and thus the L1 norm objective is rewritten as

N
llu(vt) — umiri|lL ~ Z ((uz — ui,HiFi)2 + 6)0'5 (4.4)

where € is a small number, i.e. le-12, to ensure the term within the square root is
never zero so that the objective function can be differentiated. The same squared L2
and L1 norm based objective functions can also be used on the pressure mismatch
instead of using the velocity mismatch. The form of these equations are essentially
the same, but only have one component since the pressure is a scalar (no x and y

components).

Additionally, in order to check the robustness of the system and ability to deal
with limited data, an objective function based only on an inlet and outlet velocity
profile is utilized. The idea is that the full domain velocity and pressure fields may
not be measurable with some experimental methods.

The baseline squared L2 norm objective function results are shown in Section
4.4. The impact to the solution with the use of the alternate objective functions are

discussed in Sections 4.6, 4.8, and 4.9.

4.3.2 Bounding of Control Parameter

The baseline optimization is an unbounded optimization made possible by the use
of log(1;) as the control parameter. As discussed in Section 2.3.4, this automatically
enforces the non-negativity of the turbulent viscosity field. In the interest of observing
where the eddy viscosity model breaks down and predicts negative values of the
turbulent viscosity, the unbounded optimization is also performed with the turbulent

viscosity directly as the control parameter. The results are discussed in Section 4.7.
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4.4 Baseline Optimization of the Turbulent Viscosity

4.4.1 Adjoint Accuracy and Optimization Convergence

To estimate the accuracy of the gradient, the Jacobian calculated by the numpad
reverse mode automatic differentiation is compared against a finite difference pertur-
bation calculation. Since the gradient and the turbulent viscosity are both non-linear
fields, the two methods are compared using the change in objective value for a given
perturbation in the turbulent viscosity. The change in objective value is obtained

using the following equations.

0Jrp = J(u(vy + 61y)) — J (u(vy)) (4.5)

8Jap = 5%2 (4.6)

3I/t i

The results of the two methods are compared in Table 4.3. The change in objective
value is based on a change in the turbulent viscosity field by 0.01%. The comparison
in the table is provided at an early iteration of the optimization, where the gradient

is still relatively large, and at a later iteration where the gradient is much smaller.

Table 4.3: Comparison of change in objective value

Method 0J, early iteration | 4J, later iteration
Finite Difference (FD) -.253 .0061
Adjoint (AD) -0.291 (+15.4%) .0009 (-86%)

As shown, there is a significant difference in the change in objective value between
the two methods. The finite difference is known to be correct, thus there is some error
in the adjoint sensitivity. This is not due to the low-memory calculation defined in
Appendix A as that shows the same gradient calculation as the full-memory adjoint
calculation. The error may be inherent to the numpad tool and/or the solver source
code, yet is still unknown at this time. The direction of the gradient matches that

of the finite difference, but the adjoint gradient seems to decrease more rapidly in
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magnitude as the optimization progresses and may lead to a solution that is not the

true minimum.

Despite the error in the adjoint calculation of the Jacobian, the Python L-BFGS
optimizer steadily reduces the objective value as shown in Figure 4-3. The adjoint
gradient still provides a useful search direction for the optimizer and successfully

reduces the solution error substantially.

The optimization path does show several spikes in the objective value due to
large changes in the turbulent viscosity where the optimizer was driven by a poor
adjoint calculation or took a step too large. The optimizer recovers quickly after
each such event. The k-w SST solution is used as the initial condition to the HIFIR

optimization.
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Figure 4-3: Convergence of objective value
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4.4.2 Velocity and Pressure Fields

In this section the final iteration of the optimization is compared to the LES and
standard k-w SST solutions. The velocity magnitude fields of the three solutions are
shown in Figure 4-4. The optimized HIFIR solution shows very similar contours to
the LES and improves on the k-w SST solution in a number of ways. The size of
the recirculation zone is easily visible in Figure 4-5, which shows the x-component of
the velocity field. The recirculation zone corresponds to the positive velocity in the
post-bend region. The LES and HIFIR solution have a smaller recirculation zone and

enhanced mixing near the domain exit compared to the k-w SST solution.

Figure 4-4: Comparison of velocity magnitude field
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Figure 4-5: Comparison of x-velocity field

Another region that shows noteworthy improvement is along the outer wall. The
k-w SST solution contains a lower velocity along the outer wall, especially just down-
stream of the bend inlet. In fact, the k-w SST solution has a small recirculation zone
at the bend inlet outer wall that can be seen in the y-component velocity field in Fig-
ure 4-6. The HIFIR and LES solutions do not show the small outer wall separation.

Otherwise, the y-component velocity field is similar between the three solutions.

LES HIFIR

Figure 4-6: Comparison of y-velocity field
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The pressure field comparison is shown in Figure 4-7. One observation is that
the LES and HIFIR results have a lower inlet pressure which means the pressure
drop across the bend is smaller since the outer pressure is set to zero as a boundary
condition. The pressure drop is further discussed in Section 4.4.6. Both RANS results
show more straight pressure contours in the post-bend region, whereas the LES still
has some curvature in the contours. The k-w SST result also shows a higher pressure

in outer bend region and in the eye of the recirculation zone.
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Figure 4-7: Comparison of pressure field

Another visualization of the solution difference can be obtained with the use of
velocity profiles at discrete locations throughout the domain. The streamwise velocity
profiles at several sections are shown in Figure 4-8. The geometry is reoriented as the
outlet section of the domain is of more interest. The HIFIR solution nearly matches
the LES profiles at all sections. The outlet section profiles show some minor oscillation
of the HIFIR solution around the LES profile. The HIFIR result is clearly a large
improvement over the k-w SST solution. The outer wall velocity deficit of the SST is
evident in the mid-bend profile. The SST profile is reasonably matched to the LES at
the bend exit but starts to increase in error as the mixing is under-predicted, leading

to a less-uniform velocity profile.
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Figure 4-8: Velocity profile at various bend sections

The accuracy of the solution can be quantified by using the same squared L2
norm calculation utilized for the objective value. Both the velocity and pressure
mismatch with the LES solution are computed and shown in Table 4.4 for the k-w
SST and HIFIR solution. The squared L2 norm values show that the HIFIR solution
is substantially closer to the time-averaged LES result, supporting the qualitative

comparison in the figures above.

Table 4.4: Velocity and pressure mismatch from LES

Simulation | Velocity | Pressure
k-w SST 955.4 404.9
HIFIR 5.5 52.1

4.4.3 Turbulent Viscosity Field

As known, the control parameter of the optimization is the turbulent viscosity. Al-
though the velocity field is significantly improved with the HIFIR model, the method
is of little value if the turbulent viscosity is unrealistic. The turbulent viscosity from
the time-averaged LES is extracted to provide a sanity check. The LES turbulent
viscosity is obtained using Equation 4.7. The derivation of this expression and im-

plementation in OpenFOAM is provided in Appendix E.
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The cell-centered values of the turbulent viscosity ratio from the LES, k-w SST,
and HIFIR results are shown in Figure 4-9. The turbulent viscosity ratio is defined
as the ratio of the turbulent to kinematic viscosity, v;/v. The k-w SST turbulent
viscosity is clearly under-predicted. The HIFIR result is much closer to the LES
extracted eddy viscosity and shares many characteristic features. The outer wall
shows increased turbulent viscosity compared to the SST result. The HIFIR result
also shows a gradual increase of the turbulent viscosity in the post-bend recirculation
and shear region, similar to the LES result. Overall, the turbulent viscosity from the

HIFIR method generally agrees with the LES and is a reasonable result.

LES HIFIR k-w SST

Figure 4-9: Comparison of turbulent viscosity ratio field

The figure above is showing only positive values of the turbulent viscosity, which
covers the full range of values for the RANS simulations. However, the LES extracted
turbulent viscosity contains some negative values. The negative values show areas
where the Boussinesq approximation breaks down and may highlight where small
scale structures transfer some energy into larger scales, which is known as back-

scatter. Figure 4-10 shows the LES extracted turbulent viscosity ratio with negative
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values. The right sub-figure displays the regions of negative values in blue.

Full Field Negative Regions

Figure 4-10: LES turbulent viscosity ratio field and associated negative regions

The peak negative ratio values in each region have magnitudes of one or two orders
larger than the kinematic viscosity. The pre-bend negative region corresponds to the
area of accelerating flow going into the bend. The post-bend negative region near the
outer wall corresponds to the peak velocity region outside of the recirculation. Both
of these high velocity regions, and the post-bend inner wall negative region, suggest
anisotropy in the Reynolds stress and a deviation from the Boussinesq approximation.
Although the negative values are large in magnitude, the regions of negative viscosity

are relatively small compared to the domain size.

4.4.4 Reynolds Stress and Turbulent Kinetic Energy

Production

The HIFIR method does not use a transport equation for the turbulent kinetic
energy and therefore the turbulent kinetic energy term is not computed. However, the
production of the turbulent kinetic energy can still be calculated using the Boussinesq
approximation to obtain the Reynolds stress components. The production of the

turbulent kinetic energy is the conversion of kinetic energy from the mean flow into
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the turbulent fluctuating flow and is caused by shear in the mean flow. The production
term of the turbulent kinetic energy transport equation is shown in Equation 4.8 and

1s expanded out for a general 2D case.

— o —dJdu —Oov —/O0u Ov
= 2 — 220 2T T .
P;; Uil " U v u'v ( - + ) (4.8)

With LES, the Reynolds stress components can be directly computed and stored
during the simulation. The mean velocity gradients can be computed from the time-
averaged velocity field as a post-processing step. The production term is then also
calculated as a post-processing operation. For the RANS simulations, the Reynolds
stress components are approximated using the Boussinesq approximation. The mean
velocity gradients are also computed as a post-processing step in the RANS simulation
as this is not normally stored. The TKE production is shown for the three simulation

methods in Figure 4-11.

LES HIFIR k-w SST

Figure 4-11: Comparison of TKE production

As shown in the above figure, the HIFIR model displays greater production in the
outer bend region and in the post-bend shear region compared to the k-w SST result.
The high post-bend production zone of the k-w SST solution is narrower than the

LES yet decays at a lower rate downstream. The HIFIR result resembles a smoothed
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out LES solution, but shows some additional production near the inner wall of the
bend similar to the k-w SST, which is due to the local gradient. This is not seen in
the LES despite a similar gradient as the Reynolds stress terms are not calculated
based on mean gradients.

The shear component of the Reynolds stress tensor, v/, is shown in Figure 4-12.
Similar to the TKE production, the LES and HIFIR results show a larger magnitude of
the shear stress in the post-bend region, but this decays more quickly when compared
to the k-w SST result. The HIFIR model also shows an increase in the Reynolds stress
in the outer bend region and is even larger than the LES result. Both RANS results
do not show as strong of a negative shear stress in the high velocity region separating

from the bend inner wall.

LES HIFIR

X

Figure 4-12: Comparison of u/v’ Reynolds stress component

4.4.5 Reattachment Location

Since the optimizer is trying to minimize the velocity mismatch, it is not surprising
the reattachment location is greatly improved with the optimized turbulent viscosity
field. The reattachment location can be estimated by finding where the wall shear

stress along the inner wall is zero. The wall shear stress is calculated by
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where the velocity gradient is calculated using the velocity of the first node off the
wall and the distance from the wall. For this simulation the dynamic and kinematic
viscosity are the same (i = v) since the density is set to unity. The first node
corresponds to a distance of 0.0005 H, or 0.05% of the full channel width, which
should provide a reasonable value for the wall shear stress. The wall shear stress
along the inner wall is interpolated to find where the shear stress is zero. The wall
shear stress along the inner wall is shown in Figure 4-13 as a function of the streamwise
distance from the bend exit. The sign convention is such that negative wall shear
stress corresponds to flow back toward the U-bend and is part of the recirculation

region.
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Figure 4-13: Wall shear stress along inner wall in straight exit channel

As expected, the HIFIR prediction and time-averaged LES agree well. There is
a significant difference between the LES and k-w SST prediction. The interpolated

value that approximates the reattachment point from the bend exit is shown in Table

4.5 for each simulation.

95



Table 4.5: Approximate reattachment location

Simulation | Location | % Error
LES 2.3TH -
k-w SST 3.42H +44.7%
HIFIR 2.44H +3.2%

4.4.6 Pressure Drop Across U-bend

For an incompressible flow, the velocity and pressure are strongly coupled. It is
expected that as the velocity mismatch is reduced, the pressure mismatch should
also be reduced. This is supported by the reduction in pressure mismatch shown in
Table 4.4. The improved HIFIR pressure field is shown in Figure 4-7, but it is not
straightforward how much the pressure drop prediction is improved. As mentioned in
Chapter 1, the pressure drop across the U-bend is critical for design purposes. The
pressure drop for the U-bend channel is calculated by comparing the mass-averaged
pressure at an inlet and outlet section. The inlet section is selected to be at a distance
of 2H from the bend inlet, which is prior to any significant streamline curvature and
is nearly straight turbulent channel flow. Multiple exit sections are taken after the
bend, ranging from 2H to 5H from the bend exit to not only capture the pressure
drop due to the bend, but also the impact of mixing and pressure recovery further
downstream. The section locations are shown in Figure 4-14. The results are shown

for the various inlet and outlet section combinations in Table 4.6.

N

v

Flow ——> 2H

»

«<—5H |«<-4H <« 3H 2H

Figure 4-14: Sections used for pressure drop locations
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Table 4.6: Pressure drop comparison at various inlet and outlet planes

Inlet/Outlet | LES | k-w SST HIFIR
oH / 21 1.00 | 1.22 (+22.5%) | 0.94 (-5.4%)
2H /3H | 0.76 | 0.98 (+29.1%) | 0.71 (-6.9%)
2H /4H | 0.67 | 0.83 (+25.0%) | 0.63 (-6.0%)
2H /5H | 0.63 | 0.75 (+18.9%) | 0.60 (-5.4%)

4.5 Sensitivity to Convection Scheme

The results shown with the HIFIR model thus far have been based on a hybrid
upwind / central differencing scheme using a smooth hyperbolic tangent blending
function for the convective flux. This section explores the impact to the convection
scheme by repeating the baseline optimization with a first-order upwind scheme. The
optimization convergence from the same initial condition is shown for the hybrid and
upwind scheme in Figure 4-15. The objective value initially converges faster with the
upwind scheme, but stagnates around a value of 35 to 40, whereas the hybrid method
steadily converges to an objective value below 6. In this section, the baseline result
from Section 4.4 is referred to as the "Hybrid" HIFIR solution and the new upwind

solution is simply labeled as "Upwind".
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Figure 4-15: Convergence of objective value with upwinding
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The comparison of the velocity magnitude field between the time-averaged LES
and the two HIFIR convection scheme solutions is shown in Figure 4-16. The upwind
solution generally agrees well with the hybrid and LES solution. The upwind solution
is noticeably different in the high velocity areas as the contours are more rounded

due to the more dissipative scheme.

Figure 4-16: Comparison of velocity magnitude field for upwind and hybrid schemes

The pressure field comparison is provided in Figure 4-17. The pressure field of
the upwind scheme is visually closer to the LES solution than the hybrid result.
The contours at the bend inlet, in the bend outer wall region, and around the low
pressure zone of the upwind solution better resemble the time-averaged LES solution.
However, both hybrid and upwind solutions do not reproduce the pressure contour

curvature in the post-bend region of the domain.
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Figure 4-17: Comparison of pressure field for upwind and hybrid schemes

The streamwise velocity profiles at various bend sections from the upwind solution
is shown in Figure 4-18. The LES and hybrid profiles are also shown for comparison.
The upwind solution agrees well with the LES and hybrid solution except near the

bend exit. The bend exit velocity profile is shown in detail in Figure 4-19.

Streamwise Velocity Profile
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Figure 4-18: Velocity profile at various bend sections for upwind and hybrid schemes
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Streamwise Velocity Profile at Bend Exit
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Figure 4-19: Velocity profile at bend exit for upwind and hybrid schemes

The hybrid solution nearly passes through the LES solution. The upwind solution
is smoothed out and not able to obtain the same velocity gradient throughout the
section due to the dissipation in the scheme. This is believed to be the reason for the
stagnating objective value, as the solution can’t be improved at this location. This
is evident when looking at the turbulent viscosity ratio shown in Figure 4-20. The
turbulent viscosity is nearly zero at this location and therefore the diffusion is simply
due to the kinematic viscosity and the diffusion from the first order upwind scheme.
Due to the diffusion from the scheme itself, the post-bend zone of the turbulent
viscosity is slightly narrower, yet is generally similar to the hybrid solution. The high
turbulent viscosity streaks in the post-bend region are believed to form to drive the
velocity to best match the LES field in the shear region at the edge of the recirculation

zone.
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Figure 4-20: Comparison of turbulent viscosity ratio field for upwind and hybrid
schemes

The wall shear stress is shown in Figure 4-21. The shear stress distribution of the
upwind scheme is not as smooth as the other distributions and is likely due to the
streaks of the turbulent viscosity in the region that drives a better least-squares fit
of the velocity field. Despite the wavy stress distribution, the reattachment location
agrees well with the LES and is slightly better than that obtained with the hybrid

scheme. The interpolated reattachment point is provided in Table 4.7.
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Figure 4-21: Wall shear stress along inner wall in straight exit channel for two con-
vection schemes

Table 4.7: Approximate reattachment location for pressure reduction method

Simulation | Location | % Error
LES 2.37TH -
Hybrid 2.44H +3.2%
Upwind 2.40H +1.6%

The pressure drop across the U-bend for the upwind scheme is provided in Table
4.8 and is compared to the hybrid scheme and the reference LES result. Although the
upwind scheme solution has a higher mismatch with the velocity field, the pressure
drop with the upwind solution is closer to the LES result. This supports the visual

conclusions made earlier based on the pressure field plots.

Table 4.8: Pressure drop comparison with two HIFIR convection schemes

Inlet /Outlet | LES | Hybrid Upwind
oH / 2H 1.00 | 0.94 (-5.5%) | 0.99 (-0.9%)
2H /3H | 0.76 | 0.71 (-7.1%) | 0.75 (-0.8%)
2H /4H | 0.67 | 0.62 (-6.4%) | 0.67 (+1.2%)
20 /5H | 0.63 | 0.65 (-5.4%) | 0.65 (13.3%)
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Even with the improved pressure drop predictions, the solution error is higher
with the upwind scheme in terms of both velocity and pressure mismatch with the

LES result. The squared L2 norm values are shown in Table 4.9.

Table 4.9: Velocity and pressure mismatch from LES for upwind

Simulation | Velocity | Pressure
Hybrid 5.5 52.1
Upwind 38.6 57.7

In summary, the convection scheme does show a difference in the velocity and
pressure fields and has an impact to the optimized turbulent viscosity. The upwind
scheme introduces some artificial dissipation and thus requires less turbulent viscosity
is some regions. The impact of the convection scheme to the solution is expected to
be reduced with higher-order schemes as the truncation errors are also reduced. Even
with the use of pure upwind, the optimized solution is a reasonable match and the
resulting turbulent viscosity field is not largely different from the more accurate hybrid

scheme.

4.6 Sensitivity to Objective Function Norm

The objective function for the baseline optimization in Section 4.4 is based on the
squared L2 norm of the velocity mismatch and is shown again in Equation 4.10, where
¢ is the local cell. In this section, the optimization is repeated using an objective

function based on the L1 norm of the velocity mismatch shown in Equation 4.11.

N
JLp2 = Z(Uz — Uy miFi) (4.10)
N
Ju1 = Z ((wi — wimiFs)® + 6)0'5 (4.11)

i
It can be seen that the individual cell errors using the L1 norm is essentially the

square root of the squared L2 norm. Minimizing the L1 error will tend to produce
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solutions that have many small and insignificant residuals and few large residuals. In
contrast, since the L2 norm penalizes larger residuals more heavily, the solution is
expected to produce very few large residuals but at the expense of more small but
significant residuals. The L2 error minimization will therefore produce a smoother
optimized solution.

For the back-to-back study, both L1 and L2 based objective function minimiza-
tions utilized the same k-w SST initial condition and hybrid convection scheme. The
objective convergence of the L1-based method is shown in Figure 4-22. The objective
is reduced substantially in several iterations but then stagnates around a value of
1400 for an overall reduction in error by less than one order of magnitude from the

initial condition.

5000 T

4500

4000}

3500

3000}

2500

L1 Norm Objective Value

2000 -

1500}

. .‘v.. . R 4

0 10 20 30 20 50 60
Function Evaluation

1000

Figure 4-22: Convergence of objective value for L1-based objective function

In order to compare the L1 and L2-based methods directly, the velocity mismatch
at each iteration from the L1-based optimization is used to calculate the squared L2
velocity solution error. These solution errors from the L1-based method are shown
in Figure 4-23. The convergence of the L1-based method outperforms the L2-based
method over the initial 20 iterations, but then stagnates around an objective value of
100. This corresponds to an average error of approximately 3 — 4% when assuming

the error is uniform across all cells. The L2-based method continues to converge to
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an objective value around 5, corresponding to an average error of less than 1%.
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Figure 4-23: Convergence comparison of L1 and L2 objective function based on
squared L2 solution error

Since the reference LES data does not contain any outliers and is smooth, the L2-
based optimization will provide a better overall fit. The L1 norm based optimization
is found to have poor convergence compared to the L2 based optimization. All other

studies in this chapter utilize the squared L2-based objective function.

4.7 Impact of Bounds on Turbulent Viscosity

As shown earlier, the LES turbulent viscosity is negative in some regions. For the
RANS simulation, if the turbulent viscosity value is allowed to drop to a negative
value with greater magnitude than the kinematic viscosity, the diffusion term will
switch signs and will lead to a diverging result due to negative effective viscosity,
Verf = i+ < 0. When the turbulent viscosity is a small negative number, specifically
1 > —v, the effective viscosity is greater than zero. This can still lead to instability
of the primal solver as the local Peclet number is increased in regions where the

turbulent viscosity is reduced below zero.
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In order to avoid local negative turbulent viscosity, the control parameter has
been based on the log of the turbulent viscosity for all studies. The turbulent viscos-
ity itself can be used as the control parameter in the optimization, but this method
would require bounding to ensure non-negativity, whereas using log(v;) can be un-
bounded. However, to explore where the optimizer predicts negative values of the
turbulent viscosity, the optimization is restarted from the optimized solution by using
the unbounded turbulent viscosity as the control parameter. A previously optimized
solution is selected as the starting point since a poor initial condition will lead to a
nonphysical solution before any insight of the turbulent viscosity field can be gained.

The solution from the hybrid and upwind convective scheme is restarted with the
new control parameter. The optimizer is restarted and run for one iteration. The
resulting turbulent viscosity field is shown in Figure 4-24 and compared to the negative
regions from the LES extracted turbulent viscosity. The figure highlights regions with
negative turbulent viscosity in blue. It should be noted that the flow solver diverges

with the resulting turbulent viscosity field with both convective schemes.
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Figure 4-24: Negative regions of turbulent viscosity shown in blue
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Both the upwind and hybrid schemes show some negative viscosity along the inner
and outer walls. A sliver of negative viscosity is generated near the inner bend along
the edge of the separation zone. This is more pronounced in the upwind solution,
which makes sense as the optimizer is attempting to compensate for the numerical
dissipation at this location. However, this region is still small relative to the LES
solution. The negative viscosity observed in the LES solution at the bend inlet is not
reproduced.

This study shows that the non-negativity constraint is essential for optimization.
However, the unbounded optimization in this section demonstrates that the Boussi-

nesq approximation is not globally valid.

4.8 Use of Pressure Mismatch for Objective

Function

All studies thus far have been based on minimizing the velocity solution error. The
optimization is repeated in this section using the squared L2 norm of the pressure
mismatch as the objective function. The convection scheme used is the hybrid scheme
from the baseline optimization. The same initial condition is used for both the velocity
and pressure mismatch methods. The reduction of the objective value of the pressure
mismatch method is shown in Figure 4-25. The optimization stagnates at an objective
value of around 30. In this section, the baseline optimization from Section 4.4 is

referred to as the "velocity mismatch reduction method".
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Figure 4-25: Convergence of objective value for pressure mismatch reduction

The comparison of the velocity magnitude field between the time-averaged LES
and the two mismatch reduction methods is shown in Figure 4-26. The pressure
mismatch reduction solution shows similar traits to the k-w SST solution in Section
4.4. In particular, the outer wall in the bend region shows lower velocity and the

post-bend region displays less mixing as the velocity contours are more straight.

LES U Mismatch P Mismatch

Figure 4-26: Comparison of velocity magnitude field for two mismatch reduction
methods
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The pressure field comparison is shown in Figure 4-27. Due to the nature of
the pressure mismatch reduction method, the solution is visually closer to the LES
solution than the velocity mismatch reduction solution. The contours at the bend
inlet and in the bend agree well with the LES solution. The post-bend region shows
similar contours to that of the velocity mismatch method. This indicates that the
curved pressure contours of the LES solution can’t be reproduced using turbulent

viscosity adjustments, even with the pressure mismatch as the objective function.
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Figure 4-27: Comparison of pressure field for two mismatch reduction methods

The streamwise velocity profiles at various bend sections from the two mismatch
reduction methods are shown in Figure 4-28. The pressure mismatch solution gen-
erally matches the LES and velocity mismatch profiles, but is not as smooth and

appears to be more noisy.
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Figure 4-28: Velocity profile at various bend sections for two mismatch reduction
methods

The turbulent viscosity ratio field comparison is provided in Figure 4-29. The re-
sulting turbulent viscosity of the pressure mismatch reduction method is significantly
different from the LES and velocity mismatch reduction solutions and is more similar
in contour to the k-w SST solution from Figure 4-9. The increase in turbulent vis-
cosity in the bend outer wall region is absent with the pressure mismatch reduction

method.

LES U Mismatch P Mismatch

Figure 4-29: Comparison of turbulent viscosity ratio field for two mismatch reduction
methods

110



The wall shear stress along the inner wall in the post-bend region is shown in
Figure 4-30. The two mismatch reduction methods show smooth curves, but the
pressure mismatch reduction method produces wall shear values that are about 1 to
1.5 times greater in magnitude than the LES solution away from the reattachment
point. The interpolated reattachment point for the two mismatch reduction methods
is shown in Table 4.10. The reattachment point with the pressure reduction method

is further downstream than both the LES and velocity mismatch reduction method.
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Figure 4-30: Wall shear stress along inner wall in straight exit channel for pressure
reduction method

Table 4.10: Approximate reattachment location for pressure reduction method

Simulation | Location | % Error

LES 2.37TH -
U Mismatch 2.44H +3.2%
P Mismatch 2.66H +12.4%

The pressure mismatch reduction method leads to a better prediction on the
pressure drop across the bend due to the reduced pressure solution error vs LES.

The pressure drop across the bend at various sections is shown in Table 4.11. The
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pressure reduction method provides a pressure drop prediction within approximately
2% of the LES and is an improvement over the prediction with the velocity mismatch

method.

Table 4.11: Pressure drop comparison for pressure mismatch reduction

Inlet /Outlet | LES | U Mismatch | P Mismatch
2H / 2H 1.00 | 0.94 (-5.5%) 1.00 (-0.1%)
2H / 3H 0.76 | 0.71 (-7.1%) 0.74 (-2.1%)
2H / 4H 0.67 | 0.62 (-6.4%) | 0.66 (-1.1%)
2H / 5H 0.63 | 0.65 (-5.4%) | 0.63 (-0.1%)

As expected, the pressure mismatch method has a smaller squared L2 norm so-
lution error than the velocity mismatch method for the pressure solution. However,
the velocity solution error is significantly larger with the pressure mismatch method.

The squared L2 norm solution errors are shown in Table 4.12.

Table 4.12: Solution error for the velocity and pressure mismatch reduction methods

Simulation Velocity | Pressure
U Mismatch Reduction Method 5.5 52.1
P Mismatch Reduction Method 249.3 26.4

4.9 Impact of Limited Experimental Data on

Optimization

All studies to this point have been based on objective functions that use the
full domain solution to compute the solution error. As a way to check how the
optimization fares with limited data, an objective function based only on an inlet and
outlet velocity profile mismatch is constructed. In some experiments, full domain
data may not be measurable. For example, a multi-holed traverse probe can be used

to scan along a channel section upstream and downstream of the U-bend to measure
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the velocity profile. For this study, the inlet section profile is taken a distance of
4H from the domain inlet, or 1H upstream of the bend entrance. The exit section
profile is taken at a distance of 2H from the domain exit, or 3H downstream of the
bend exit. The inlet section is prior to any significant streamline curvature. The exit
plane is downstream of the recirculation zone and reattachment point. For this case,
the squared L2 norm objective function is used, but only the cell values at the two
sections are used for the velocity mismatch.

The baseline optimization from Section 4.4 is labeled as the "full domain" solution,
as the optimization makes use of the velocity mismatch in all cells. The study case
using only limited profile data is referred to as the "inlet /outlet" case. Both cases use
the standard k-w SST solution as the initial condition. Due to the large reduction
in control parameters, the optimization convergence with the limited data is well

behaved. As shown in Figure 4-31 the convergence is steady and nearly exponential.
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Figure 4-31: Convergence of objective value for the limited inlet/outlet data case

The velocity field of the optimized solution using the limited inlet /outlet data is
compared to the full domain data optimization and the time-averaged LES in Figure
4-32. The inlet and outlet sections where the velocity mismatch is calculated is shown

as white lines in the velocity plot. Areas outside of the inlet and outlet section are

113



blind to the optimizer and the influence is felt within 1 channel width, resulting
in poor match elsewhere in the domain. The inlet/outlet case shows several visual
differences with the LES solution. The outer wall region in the bend shows excessively
low velocity. The peak post-bend velocity is also lower than the LES and full domain
data case. The recirculation zone is also longer in size. The contours show artificial
kinks in the velocity field where the outlet section profile data is taken from as the

optimizer minimizes the objective value.

Full Domain Inlet/Outlet

Figure 4-32: Comparison of velocity magnitude field for the limited inlet /outlet data,
case

The pressure field is shown in Figure 4-33. Visually, the pressure field of the
inlet/outlet case does not show as much overall mismatch as observed in the velocity
fields. However, the low pressure zone corresponding to the recirculation is smaller

in size and magnitude.
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Figure 4-33: Comparison of pressure field for the limited inlet /outlet data case

The solution error is more evident by plotting the velocity profiles at various sec-
tions throughout the domain, as shown in Figure 4-34. The outer wall velocity deficit
is clear in the mid-bend section. The solution is well matched at the outlet section,
which is 3H from the bend exit. The velocity profiles corresponding to this section
are plotted in further detail in Figure 4-35. At this section alone, the inlet/outlet
case performs better than the full domain case and matches the LES data reasonably
well. This is expected as the full domain case attempts to minimize the solution error

across all cells, whereas the inlet/outlet case is solely focused on the two sections.
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Streamwise Velocity Profile
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Figure 4-34: Velocity profile at various bend sections for the limited inlet /outlet data
case
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Figure 4-35: Velocity profile at a distance of 3H from bend exit

The turbulent viscosity ratio field displays how the optimizer attempts to reduce

the objective value at the two sections shown in white in Figure 4-36. Only the
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turbulent viscosity in and near the region of the sections used in the objective function
are modified. The influence does extend further upstream as a local increase in the
turbulent viscosity is produced in the separation area. No change is observed in outer
bend wall as scen in the full domain case. The resulting turbulent viscosity field

displays oscillations around the outlet section.

LES Full Domain Inlet/Outlet

Figure 4-36: Comparison of turbulent viscosity ratio field for the limited inlet /outlet
data case

The wall shear stress along the inner wall of the straight exit section is shown
in Figure 4-37. The shear stress distribution is significantly wavy. The distribution
shows a near flat section at the outlet section corresponding to a distance of 3H from
the bend exit where the optimizer artificially matches the local shear stress of the
LES. The shear stress is otherwise incorrect at all other locations. The reattachment
point is further downstream than that of the two other solutions and is provided in

Table 4.13.
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Wall Shear Stress Along Inner Wall
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Figure 4-37: Wall shear stress along inner wall in straight exit channel for the limited
inlet /outlet data case

Table 4.13: Approximate reattachment location for the limited inlet /outlet data case

Simulation | Location | % Error

LES 2.37TH -
Full Domain 2.44H +3.2%
Inlet /Outlet 2.7TH +16.9%

Based on the pressure field shown earlier, it is not a surprise that the pressure
drop prediction is worse than the full domain case. The error, shown in Table 4.14,

is over double the error from the full domain case.

Table 4.14: Pressure drop comparison for limited inlet/outlet data

Inlet /Outlet | LES | Full Domain | Inlet/Outlet
2H /2H | 1.00 | 0.94 (-56.5%) | 0.85 (-14.9%)
2H /3H | 0.76 | 0.71 (7.1%) | 0.65 (-14.9%)
9H /4H | 0.67 | 0.62 (6.4%) | 0.58 (-13.6%)
2H / 5H 0.63 | 0.65 (-5.4%) | 0.56 (-11.3%)

The overall full domain solution error of the two cases is shown in Table 4.15.

The squared L2 norm error with the limited inlet/outlet data is excessively high and
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worse than the standard k-w SST result shown earlier in Table 4.4.

Table 4.15: Solution error for the limited inlet/outlet vs full domain data

Simulation | Velocity | Pressure
Full Domain 5.5 52.1
Inlet/Outlet 1627 643

In summary, the use of limited data significantly impacts the overall solution
error. This is due to the turbulent viscosity formulation that is only a function
of space. Since the adjusted turbulent viscosity is more local to the sections used
for the objective function, the solution is dependent on the initial condition. A
more sophisticated turbulence model that can be trained based on flow parameters
is believed to significantly improve the accuracy when using limited data. This is

further discussed in Chapter 6.

4.10 Conclusion

In this chapter, it is shown that the HIFIR approach is capable of substantially de-
creasing the solution error using a prescribed turbulent viscosity on a U-bend channel.
The most successful approach explored is an optimization framework based on the
squared L2 norm of the velocity mismatch coupled with the use of the log of the
turbulent viscosity as the control parameter to guarantee positive turbulent viscosity
values and allow an unbounded optimization. The use of limited data is not recom-
mended with the current prescribed turbulent viscosity approach as the total solution

error is dependent on the initial condition.
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Chapter 5

Performance of HIFIR model on

Adjusted Geometry

5.1 Introduction

The turbulence model introduced in Chapter 4 is a simple eddy viscosity model and
has been shown to be effectively tuned to match a high fidelity simulation. One
limitation with this high-fidelity trained RANS (HIFIR) model is that the turbulent
viscosity is prescribed and is only a function of space. To demonstrate the perfor-
mance of this method on new geometries, the HIFIR model is solved on an adjusted
U-bend geometry using the optimized turbulent viscosity from the baseline case in
Chapter 4. The U-bend studied in this chapter has a middle wall thickness half of
that used in Chapter 4 and further discussed in Section 5.2.

LES and k-w SST RANS simulations are also performed on the new U-bend ge-
ometry for comparison. Section 5.3 details the LES solutions between the two bend
geometries. The HIFIR result on the adjusted bend geometry is compared to the LES
and k-w SST solution in Section 5.4.
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5.2 Geometry Adjustment and Simulation Methods

5.2.1 New U-bend Geometry

The middle wall thickness of the adjusted U-bend is half of the original thickness, as
shown in Figure 5-1. The channel width of H and the straight channel length of 5H is
unchanged. The thinner middle wall essentially creates a tighter bend, as the mean
bend radius is reduced from 0.75H to 0.625H. The mesh topology and cell count used

for the adjusted U-bend is the same as the original bend.

Original Adjusted

05H

Figure 5-1: Domain geometry used for U-bend channel LES

5.2.2 Simulation Methods

The LES on the adjusted bend geometry is executed in the same manner used in
Chapter 4. The first 20 seconds are attributed to the start-up transient. After this
point, the next 230 seconds are time-averaged and collapsed (averaged) along the
spanwise z-direction to compute a mean 2D field. The boundary conditions are not

changed from the original U-bend simulation. The adjusted U-bend flow solution is
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also obtained using the standard k-w SST RANS model in OpenFOAM. Again, the
simulation setup is identical to that used in Chapter 4, with the exception of the
mesh and geometry itself.

In Chapter 4, the HIFIR model solution is part of an optimization problem to find
the turbulent viscosity field and requires the use of a higher fidelity result. Here, the
previously optimized solution from the original U-bend geometry is used. Since the
mesh topology and cell count are the same, the turbulent viscosity field is mapped -
directly cell-to-cell onto the new mesh. The RANS fluid solver is then converged with

this prescribed turbulent viscosity field to obtain the solution.

5.3 LES Solution Comparison

In this section, the time-averaged LES solution of the original and adjusted U-bend
is compared to estimate the true sensitivity of the thinner middle wall and tighter
bend radius. The velocity and pressure fields are shown in Figure 5-2 for both bend
geometries. The adjusted bend geometry results in larger separation. The larger
recirculation zone reduces the effective width of the channel and increases the post-
bend peak velocity. The increased velocities and larger separation results in more
loss. This is evident by the increase in inlet pressure with the adjusted geometry.
The exit pressure is zero for both simulations, and thus the adjusted U-bend requires
higher pressure to drive the flow as the pressure drop is greater across the bend. The

pressure in the eye of the recirculation zone is also lower with the adjusted geometry.
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Velocity Magnitude Pressure
Original Adjusted Original Adjusted

Figure 5-2: Comparison of LES velocity magnitude and pressure field for the two
U-bend geometries

Several key observations from the pressure and velocity fields are shown in Table
5.1. The pressure drop in the table is based on the drop in pressure from an inlet
section at 2H from the bend inlet to an outlet section at 5H from the bend exit
(domain exit). The reattachment point is the point of zero wall shear stress along the

inner wall of the post-bend straight section, measured from the bend exit.

Table 5.1: Comparison of LES solution for several parameters on the two U-bend
geometries

Parameter Original | Adjusted | Change
Peak Inner Bend Velocity 2.09 2.33 +11%
Peak Post-Bend Velocity 1.89 2.29 +21%
Pressure Drop 0.63 1.07 +70%
Reattachment Point 2.37 H 3.03 H +28%

The extracted turbulent viscosity ratio, v4/v, and the computed mean turbulent
kinetic energy from the normal Reynolds stress components are shown in Figure 5-3
for the two geometries. The form of the turbulent viscosity field is similar between the
two solutions, but the adjusted geometry shows larger values of turbulent viscosity and

more coverage in the post-bend region. The straight inlet channel section and outer
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bend wall region both show similar turbulent viscosity values in the two solutions.
The turbulent kinetic energy (TKE) in the bend region is also similar between the
two solutions. The post-bend TKE is much larger with the adjusted geometry, which

supports the larger pressure loss due to energy transfer into fluctuating velocities.

Turbulent Viscosity Turbulent Kinetic Energy
Original Adjusted Original Adjusted

Figure 5-3: Comparison of LES turbulent viscosity ratio and TKE for the two U-bend
geometries

Although the geometry adjustment is relatively subtle, the thinner middle wall
leads to a substantial increase in the pressure drop and turbulence. The overall
contours are similar in form between the two simulations and both display the same
key features, such as Gortler instability at the bend outer wall and separation and
reattachment along the inner wall. This makes the adjusted geometry a good test

case for the HIFIR model.

5.4 HIFIR Solution on Adjusted U-bend Geometry

In this section, the HIFIR solution with the previously optimized turbulent viscosity

is compared to the LES and k-w SST solutions on the adjusted U-bend geometry.
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5.4.1 Velocity and Pressure Fields

The velocity magnitude is shown in Figure 5-4 for the three solution methods. The
HIFIR model shows a lower post-bend peak velocity and is likely due to a later
separation point along the inner wall causing less blockage downstream. The HIFIR
model shows contours closer to the LES solution at the outer bend wall and near the
domain exit compared to k-w SST solution. The k-w SST solution shows a longer
recirculation zone and peak velocity contour island similar to the results in Chapter

4, characteristic of reduced mixing.

HIFIR

Figure 5-4: Comparison of velocity magnitude field for the adjusted U-bend

The pressure field is shown in Figure 5-5. The HIFIR model shows a smaller
pressure drop due to the lower inlet pressure, whereas the k-w SST solution over
predicts the pressure drop. The post-bend contours of the k-w SST better match the
LES solution.
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LES HIFIR k-w SST

Figure 5-5: Comparison of pressure field for the adjusted U-bend

The overall solution error between the two RANS solutions and the LES are
computed using the squared L2 norm of the velocity and pressure mismatch. The
solution error is provided in Table 5.2. The HIFIR solution has almost double the
error compared to the k-w SST solution. Both solutions are relatively poor, but this
shows that the HIFIR model optimized on one geometry may not directly apply to a

similar, but adjusted, geometry.

Table 5.2: RANS solution error for the adjusted U-bend geometry

Simulation | Velocity | Pressure
k-w SST 1027 1269
HIFIR 1719 2365

5.4.2 Velocity Profiles

The streamwise velocity profile at various sections along the domain is provided in

Figure 5-6. The inlet sections are similar between all three solutions. The HIFIR
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result better matches the LES in the outer bend region and does not show the ve-
locity deficit seen with k-w SST. The HIFIR profiles near the inner wall in the bend
region and immediately after the bend show clear discrepancies with the LES solu-
tion. However, further downstream, the HIFIR profiles are better matched to the

LES solution.

Streamwise Velocity Profile

7
[ E=

Figure 5-6: Velocity profile at various bend sections for the limited inlet/outlet data
case

The velocity profile at the bend exit is shown in detail in Figure 5-7. The k-w
SST solution nearly matches the LES solution, but deviates near the inner wall. The
HIFIR result is incorrect nearly everywhere, with only a match to LES very close
to inner wall. Moving away from the inner wall, the recirculation zone width with
HIFIR is clearly smaller as the velocity becomes positive at a shorter distance off the

wall. The peak velocity is also under-predicted due to the less blockage.

Moving downstream, the HIFIR solution matches better and is shown in detail in
Figure 5-8. The k-w SST solution shows the same behavior seen in Chapter 4, where
the profile is not as uniform as the LES result. The better agreement of the HIFIR
model at this location is due to the minimal change in the turbulent viscosity since

it is farther from the bend and is dominated by the shear mixing.
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Figure 5-8: Velocity profile at the domain exit
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5.4.3 Reattachment Location and Pressure Drop

Despite the larger overall solution error, the wall shear at the inner wall is better
predicted with the HIFIR model and is shown in Figure 5-9. As shown in Section
5.3, the difference at the inner wall in the post-bend region did not show a signifi-
cant change in the turbulent viscosity, therefore the previously optimized turbulent
viscosity field is still reasonable along the inner wall. The reattachment point from

the HIFIR model is therefore more accurate than the k-w SST and is shown in Table

9.3.
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Figure 5-9: Wall shear stress along inner wall in straight exit channel for adjusted
U-bend

Table 5.3: Approximate reattachment location for the adjusted U-bend

Simulation | Location | % Error
LES 3.03H -
k-w SST 4.26H +40.4%
HIFIR 3.20H +5.6%

The pressure drop comparison is provided in Table 5.4. Overall, the k-w SST
and HIFIR models miss by about the same magnitude, but in opposite directions.
The HIFIR model under-predicts the pressure drop by about 22% compared to the

reference LES solution.
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Table 5.4: Pressure drop comparison for limited inlet/outlet data

Inlet/Outlet | LES | k-w SST HIFIR
2H /2H | 1.82 | 2.00 (+10.3%) | L.41 (-22.6%)
OH /3H | 1.38 | 1.69 (+22.6%) | 1.06 (-22.9%)
OH /4H | 1.16 | 1.46 (+25.6%) | 0.91 (-21.8%)
2H /5H | 1.07 | 1.31 (+22.3%) | 0.85 (-21.0%)

5.4.4 Turbulent Viscosity Field

The turbulent viscosity ratio of the three methods is shown in Figure 5-10. The LES
turbulent viscosity is obtained by the extraction process discussed in Appendix E.
The HIFIR turbulent viscosity is the mapped turbulent viscosity from the baseline
optimization on the original U-bend geometry. The k-w SST viscosity is solved by
using the k and w transport equations. Visually, the HIFIR solution still looks rea-
sonable, but it is believed that the post-bend region would show increased values of
turbulent viscosity and cover a wider portion of the channel if the training is repeated.
Similar to the original U-bend, the k-w SST turbulent viscosity is relatively low and
the zone of appreciable turbulent viscosity is narrow. This lines up with the higher

non-uniformity in the velocity profiles at the domain exit.

LES HIFIR k-w SST

Figure 5-10: Comparison of turbulent viscosity ratio field for the adjusted U-bend
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5.5 Conclusions

A relatively small change to the middle wall thickness has been shown to have a
significant impact to the flow solution based on the back-to-back LES comparison.
Using the well-matched HIFIR solution from Chapter 4 for the prescribed turbulent
viscosity on the new geometry results in an inaccurate solution and is in some ways
worse than the k-w SST solution. Although for a given geometry a turbulent viscosity
can be inferred to provide an accurate solution, this turbulent viscosity should not be
directly used on new geometries. Improvements to the high-fidelity training method
to allow successful transfer of the learned model to new geometries are suggested in

Chapter 6.
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Chapter 6

Summary, Conclusions, and Future

Research

6.1 Summary and Conclusions

In Chapter 3, standard RANS is shown to be inaccurate on a 180° U-bend square
duct. This geometry is an idealization of a turbine blade internal serpentine cooling
passage. A large eddy simulation on the same geometry is shown to provide accurate
results and is validated based on PIV experimental data. The issue is that the LES
requires computational resources on the order of 10,000 times that needed for the
RANS simulation in terms of CPU-hours. The desire is to develop a framework to
obtain LES-accurate solutions with the computational expense much closer to that
of RANS to allow usage of these tools in the design process.

In Chapter 4, the LES and standard RANS models are rerun on a 180° U-bend
channel. This geometry enables the use of a 2D domain for the RANS solutions. The
RANS model is again unable to produce accurate results throughout the domain.
A simple eddy viscosity RANS turbulence model based on a prescribed turbulent
viscosity is also infroduced. The high-fidelity LES result is used to train, or infer,
the turbulent viscosity field to reduce the solution error. Although this new model
(referred to as HIFIR for high-fidelity trained RANS) is basic and primitive, it ad-
equately matched the LES result. This shows that high-fidelity simulations can be
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used to train even the simplest turbulence models to improve solutions over current
two-equation models.

In Chapter 5, the channel U-bend geometry is modified to reduce the middle wall
thickness. The HIFIR, standard RANS, and LES methods are used to obtain solutions
on the adjusted geometry. It is shown that the optimized turbulent viscosity from
the original geometry cannot be simply remapped onto a new geometry to obtain an
accurate solution. Although the overall solution error is worse than a standard k-w
SST solution, the stationary optimized turbulence model of the HIFIR approach still

better predicts the reattachment location and outlet velocity profile.

6.2 Future Research

The work presented here should also be extended to three dimensions to study more
complex geometries. For this to be possible, a parallel solver is needed. The errors ob-
served in the adjoint sensitivities also need to be corrected to improve the convergence
of the optimization.

The key finding from this research is that high-fidelity simulations can successfully
be utilized to train simple RANS turbulence models to produce realistic and accurate
solutions. The method used in this thesis is based on an eddy viscosity model where
the turbulent viscosity is simply inferred as part of an optimization problem. This
formulation is adequate to show that even a basic turbulence model can be tuned, but
is not well suited for usage on new geometries without repeating the training process.

Future research should be directed to repeating the training process presented
here but with superior turbulence models based on flow parameters. The HIFIR
process can be used to tune coefficients of standard turbulence models by minimizing
the solution error in order to allow usage of the trained model on new geometries.
But perhaps the most promising path forward is the use of machine learning to
construct new turbulence models based on flow parameters and features, such as

the velocity gradients, distance from the wall, etc. In this research, the form of the
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turbulence model is based on the Boussinesq approximation. With machine learning,
the functional form of the Reynolds stress closure term can be reconstructed. Using
machine learning to generate a turbulence model by minimizing the velocity solution
error would allow application of the trained model to new geometries. The use of
a model based on flow parameters to obtain the turbulent viscosity or the Reynolds
stress could also enable the use of limited experimental data as well as full LES and
DNS simulations for training.

The ability to obtain solutions closer in accuracy to LES and DNS results with
the efficiency of RANS is promising and will soon allow improved optimization with

CFD in industry and the design process.
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Appendix A

Low-Memory Calculation of

Sensitivity Gradient

The automatic differentiation method used for the calculation of the gradient of the
objective function to the design variable is discussed in Section 2.2.3. In order to re-
duce the memory requirements, only one iteration of the flow solver is stored. This is
done by first fully converging the forward simulation. The simulation is then restarted
using the converged results and run for one iteration. This appendix provides the spe-

cific procedure to calculate the gradient correctly using only one iteration.

The objective function is the velocity mismatch between the low-fidelity and high-

fidelity solution, shown again in Equation A.1.

J(u(v)) = llu(ve) — umiril|f2 (A1)

For simplicity, the input velocity and pressure fields will be referred to as general
inputs z in the equations below. The subscript k is used to denote the solver iteration.
The flow solver function, denoted as S, outputs the updated velocity field as shown

in Equation A.2.

Tg+1 = S(xk, Vt) (A2)
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The objective function is a function of the velocity fields.

J = J(xk) = J(S(zk-1, 1)) (A.3)

For a converged solution, the output solution should match the previous solution,

such that z; = xx = z. Therefore, the governing equation can be rewritten as

z—S(z,1)=0. (A.4)

Following the derivation of the adjoint equation from Section 2.2.3, the adjoint equa-

tion has the following form.

v [0S\ dJ
=5 (52) - 5 (A5)

As can be seen, ¢7, is dependent on itself. Substituting the right-hand side of Equa-

tion A.5 in for ¢ on the left hand size, the adjoint equation becomes

oS\ aJ\[8S\ aJ 8S\* aJas 8J
r_ [0 (O2) _ 9\ (o0 OJ _ pfO5) _0OJOS5 0OJ
9= <¢ (aw) 81:)(8:6) oz ¢ (8:6) 0rdx Oz (4.6)
This process can be repeated many times to create an infinite series, as shown in

Equation A.7.

OS\*™ 8J 08708 8J[8S\? aJ [0S\ "
T T -~y _Zv _FLE~ T bl . R e
=9 (81’) (ax) T Ou (63:) (A7)

The above equation can be solved iteratively. The first term can be ignored since

(0S/dz)* approaches zero as k approaches infinity. The infinite series can then be

approximated as

r_ 0] 8J38 8J<BS)2__ aJ(aS)k

O =%z mrar oz\oz) 7 2u\sm (A-8)

The series can be used to obtain the desired gradient by substituting ¢ into the
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gradient equation from Equation 2.16.

8J _ , 8S _0JOS  0JdSaS aJ(as>2as 6J<as>’“as (A.9)

o - Ty " Gwon, " 0w0zdn, " 0z\9z) o T az\az) o

The components of the above series can be obtained using automatic differentiation
and an iterative procedure. Using the numpad AD tool, a Jacobian can be computed
using the .diff function. For example, A.diff(b) is equal to 0A/0b. Equation A.10 is
the first term of the series and is obtained from the reverse mode AD of the single

iteration of the primal solver.

J(S(z, 1)) _ 0J 08

(A.10)

As shown, this term alone is not the full gradient. Similarly, the gradient of the

objective function to the solution z is obtained using the .diff function.

J(S(z, 1)) _ 0J 08

J.diff(vy) = 7, = 25 o,

(A.11)

A new term, denoted J, is shown in Equation A.12 is used to obtain the remaining

terms.

J(S(z,1s))  0JOS

J = e = 9. (z, 1) (A.12)

The two gradients in Equation A.12 are constants based on the input solution z;.
The final term z in the above equation is the solution after the one stored primal

iteration. By taking the derivative in respect to the solution, the new term becomes

0J oS 0S

(A.13)

This term is shown to be the second term of the series. After two iterations, the gra-
dient 0J/0v, is the sum of Equation A.10 and A.13. Each remaining term is obtained
by redefining J as J and recalculating J.diff(+;) and adding to the gradient 9. /Oy
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from the previous iteration. These iterations are called adjoint iterations and are part
of the adjoint simulation. Similar to the primal simulation, the adjoint simulation is
run until the changes to the gradient are sufficiently small and has thus converged to

a usable value.

The above procedure is implemented in the Python code to reduce the amount of
storage needed from the primal solver. The objective function and calculation of
the gradient in Python are shown below and provide a starting point for the adjoint

simulation.

J = ( ((u_x - u_x_HiFi)**2).sum() + ((u_y - u_y_HiFi)*%2).sum() )

dJ_dnut = J.diff(nut).toarray() .reshape(nut.shape)

The the infinite series is then approximated using iterations with the following terms.
In the code, the solution z referenced in the above equations covers the velocity

component fields and the pressure field. For a 2D simulation, three terms exist.

dJ_dux = J.diff(u_x_0).toarray() .reshape(u_x.shape)

I

dJ_duy = J.diff(u_y_0).toarray().reshape(u_y.shape)

dJ_dp = J.diff(p_0) .toarray().reshape(p.shape)

J = ( (u_x * dJ_dux).sum() + (u_y * dJ_duy).sum() + (p * dJ_dp).sum() )
dJ_dnut_additional = J.diff(nut).toarray() .reshape(nut.shape)

dJ_dnut += dJ_dnut_additional

The above additions are performed in a while loop to grow the series. In order to
watch the convergence, the residuals are computed as shown below. The residuals
are simply the additional terms at the end of the series at that iteration. As the
residuals are sufficiently reduced, the gradient is less dependent on the initial velocity
and pressure fields used for the flow solver and provide an answer closer to the true

gradient.

140



ux_adjoint_res = np.linalg.norm(np.ravel(value(dJ_dux)))

uy_adjoint_res = np.linalg.norm(np.ravel(value(dJ_duy)))

p_adjoint_res = np.linalg.norm(np.ravel(value(dJ_dp)))

The above method is compared with the full memory version, where all primal solution
iterations are stored then used in reverse mode AD. A comparison between the two
methods are based on the change in the objective value for a 0.01% change in the
turbulent viscosity. Memory restrictions allow less than 100 iterations for the full-
memory version. The low-memory version compares very well to the full-memory
results for the first 30 iterations as shown in Table A.1. After several thousand
adjoint iterations, the error in the low-memory version is expected to still be several

orders of magnitude smaller than the gradient since the corrections are based on the

governing equations.

Table A.1: Full vs Low-Memory Adjoint Comparison of §J

Iterations Full Low-Memory | Difference
1 6.90476e-3 6.90476e-3 0
5 2.86797e-2 2.86797e-2 -1.3e-8
10 4.84980e-2 4.84979¢-2 -6.3e-8
20 7.55330e-2 7.55328e-2 -2.2e-7
30 9.51488e-2 9.51485e-2 -3.4e-7
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Appendix B

Periodic Domain Height Sensitivity
Study for LES of U-bend Channel

The spanwise height of the U-bend channel is important since turbulent flows are not
periodic and care must be taken to make sure the periodic boundaries are spaced far

enough apart as to not corrupt the solution with artificial periodic structures.

Previous research of turbulent straight channel flow using DNS, such as that per-
formed by Kim et al. [15], have used spanwise periodic domains sizes as low as 2rh,
or 7H, where h is the half-channel height and H is the full channel height. There
has been limited research performed on channels with 180° U-bends, where additional
turbulent spanwise structures are created due to the bend. These structures include
Gortler-Taylor vortices on the highly-concave outer wall and counter-rotating sec-
ondary flow structures due to flow around the bend. Laskowski [16] performed DNS
of serpentine passage which consisted of a periodic channel with two U-bends. The

spanwise domain height was set at 37h, or 1.57H.

Gortler vortices are secondary flows that appear in boundary layer flow along
a concave wall. Instability arises when the boundary layer thickness is comparable
to the radius of curvature. The onset of Gortler vortices can be predicted by the
Gortler number, which is the ratio of the centrifugal effects to the viscous effects in

the boundary layer. The Gortler number is given as
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where Uy, is the far field velocity, € is the momentum thickness, v is the kinematic
viscosity, and R is the radius of curvature of the wall. Instability occurs when G >
0.3. For this research, the U-bend channel flow will form Gortler vortices due to the

strong outer wall curvature. Figure B-1 shows the region of Gortler instability.

Region of
Gortler Instability

Figure B-1: Instantaneous velocity showing region of Gortler instability

The domain height of the U-bend channel is studied to ensure the Gortler vortices
are properly captured without imposing artificial periodic characteristics. This is also
true for the secondary vortex structures created by the bend. The periodic height of
mH and 27H are studied to investigate the sensitivity on the periodicity. The domain

sizes are shown in Figure B-2.

3D View

Top View 3D View Case 2
Case 1 :

Top & Bottom:
Cyclic Surfaces \
Top & Bottom:

Cyclic Surfaces

Figure B-2: Domain geometry used for periodic height study
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The same mesh topology is used in both simulations. The streamwise cell count is
identical between the two meshes and corresponds to a wall unit size of approximately
50 in the straight duct section and ranges from 13 to 66 in the bend region. The
spanwise periodic direction uses the same uniform cell size of approximately 25 wall
units. A comparison of the overall mesh size and simulation duration on 32 cores is

shown in Table B.1.
Table B.1: Domain Height Grid

Parameter Case 1: 7H Case 2: 27H
Mesh Resolution 265 x 150 x 126 | 265 x 150 x 252
Cell Count 5,008,500 10,017,000
Simulation Duration 6d 13h 10d 19h

The simulations were run in similar fashion, using the same time-step and time-
averaging duration. The instantaneous velocity magnitude results are shown in Figure
B-3. Three spanwise sections are shown for both cases side by side by simply stacking
the mH sections to match the 2wH height. Section A is taken 3/4 through the bend,
Section B is at the bend exit, and Section C is taken 2.5 H from the bend exit.

Section A Section B Section C

i oy, Cnd e g

|
o T e i T i g e *,,..ﬂ..m.h\.w L
|

Figure B-3: Instantaneous velocity magnitude at three sections

As shown in Section A, the Gortler vortices along the outer wall are relatively
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small and on the same order of size as the boundary layer. This is sufficiently smaller
than the domain height. The periodic domain heights utilized are not expected to
influence the time-averaged solution in the outer wall region. Section B and C show
larger structures created by the separation along the inner bend. These structures
are closer to the size of the channel width H and thus more likely to be impacted by
the periodic domain height.

Visually, the instantaneous field is similar in structure in all three sections shown.
Section C contained the largest structures and Figure B-4 specifically shows the span-
wise components of the velocity magnitude. The instantaneous and time-averaged
plots again shown comparable patterns and sizes of the turbulent structures. The

time-averaged results are obtained by averaging over 14 flow-thru units.

Instantaneous Time-Averaged

- 0.14

-0.12

Figure B-4: Spanwise velocity magnitude at Section C

The impact of the periodic height on the time-averaged is obtained by first col-
lapsing the time-averaged results in the homogeneous periodic spanwise direction.
The comparison between the two solutions are shown in Figure B-5. The delta plot
shows the absolute difference in the solution. The percent difference plot highlights
a sliver of high difference along the edge of the recirculation zone as the velocity here

is nearly zero.
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The outer wall region is shown to have around 1% error, validating the minimal
impact of the domain height to the Gortler instability. The post-bend region shows
higher error due to the larger vortical structures, but is still under 3% error. A similar

comparison is shown in Figure B-6 for the pressure field.

Delta % Difference

Case 1l Case 2
c1-C2

2rH ci1-C2

2,142
1.928
1714
1.500
1.285
1.071
0.857
0.643
0.429
0.214

0.000

Figure B-5: Time-averaged velocity comparison between the two periodic height cases

Case 1 Case 2 Delta % Difference

ntH 2nH ci-c2

0.913

0.682

0.451

0.219

-0.012

-0.243

-0.474

-0.706

-0.937

-1.168

-1.400

Figure B-6: Time-averaged pressure comparison between the two periodic height cases
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The largest error is in the recirculation region and shear layer and is about 4%
locally. The post-bend region otherwise has an error of about 2%. Again, slivers of
higher error show up in the percent difference plot where the pressure field are near
zero in value.

Overall, the 7H periodic height has been shown to be sufficiently tall to obtain
reasonable accuracy. The computational cost savings is substantial, especially for the
insignificant difference in the time-averaged solution. The U-bend LES simulations

performed in Chapter 4 and 5 are based on the mH periodic height.
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Appendix C

Benchmarking of Python 2D

Incompressible Flow Solver

The low-fidelity solver used in this research is a steady-state 2D incompressible flow
solver written in the Python programming language based on the SIMPLE algorithm.
The flow solver has been benchmarked to several standard cases. This appendix
covers benchmarking of the Python solver performed on laminar channel flow, a lid-
driven cavity, and a laminar U-bend channel. The results are compared to the exact
solution of the Navier-Stokes equation in the channel flow case, available data for the
lid-driven cavity at specific Reynolds numbers, and by comparison to OpenFOAM

for the laminar U-bend channel case.

C.1 Laminar Channel

A common benchmark for laminar incompressible flow is laminar straight channel
flow. This is unidirectional flow between two infinite parallel plates. A sketch of the

straight channel is shown in Figure C-1.
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Stationary No Slip Wall

Stationary No Slip Wall
Figure C-1: Sketch of straight channel flow

The Navier-Stokes equations reduce to a closed form exact solution since the axial
flow is only dependent on position from the wall, y, the pressure gradient, dp/dx, and

the viscosity p as shown in Equation C.1.

dp 5%u
prater v (C.1)

Integrating the above equation and including boundary equations, the velocity profile

can be written as

_ldp

— 2 —
U= (y* — Hy) (C.2)

where H is the full channel width and y is the distance from the bottom wall. The
equation indicates that the velocity profile is parabolic. It can be shown that the
peak velocity at the channel center is 1.5 u,,,, the average or bulk velocity.

The flow simulation is setup to be driven by a prescribed pressure gradient. The
inlet and outlet are treated as cyclic boundaries. Only 5 cells are used in the stream-
wise direction, while 60 cells are used in the spanwise direction. The grid is uniform in
each direction. The flow simulation utilizes the central differencing scheme (CDS) for
both the convection and diffusion terms in the momentum equations. This is possible
as the diffusion terms are strong enough to stabilize the central scheme at the low

Reynolds number. The pressure gradient is solved to obtain a bulk velocity of unity,
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and thus a Reynolds number of 1 based on the full channel height H, or 0.5 based
on the half channel height h. The velocity profile from the simulation is compared to

the exact solution in Figure C-2.

i Velocity Profile
: T T T T T T I
: : : : — Exact
¥ i[e o Python
o1 | O Sare— i ............ g b et e
0.6}
<
>
0.4} T— e e
0.2 kv ............. Frisennnases ............ b ............. Tt SRR

0'?).0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 16

Figure C-2: Python velocity profile vs exact solution for a laminar channel

The flow solver results agree well with the exact parabolic solution. The resulting
pressure gradient from the Python solver is 12.22 compared to the exact solution of 12
in order to obtain a bulk flow of unity. The peak to bulk velocity from the simulation
is 1.497. This solution error compared to the exact solution will decrease as the grid

is refined.

C.2 Lid-Driven Cavity

Another common benchmark is the laminar incompressible square lid-driven cavity.
It is often used for evaluating numerical techniques. The cavity has three stationary
walls on the sides and bottom, while the top wall moves at a constant rate. A sketch
of the lid-driven cavity is shown in Figure C.3. The no-slip condition is used for all
walls and thus the fluid velocity at the top boundary of the cavity is the velocity of
the lid.
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Cavity

No Slip Wall
No Slip Wall

No Slip Wall

Figure C-3: Sketch of square lid-driven cavity

The Reynolds number is defined in Equation C.3, where Uyq is the the lid velocity,
L is the height and width of the cavity, and v is the kinematic viscosity.

_ Uiga L

v

Re

(C.3)

The Python code is performed on several uniform meshes to show grid convergence.
The solution is compared to numerical results of Ghia et al. [10] for Re = 100 and
1000. The uniform meshes used for the grid convergence study are shown in Figure

C-4. As in the laminar channel, the cavity simulations utilize CDS for both the

convection and diffusion terms.

20 x 20 30 x 30 5050 100 x 100

Figure C-4: Uniform meshes used for lid-driven cavity grid convergence

Ghia et al. provided results along vertical and horizontal lines passing through

the geometric center of the cavity. Figures C-5 and C-6 show the results over the
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uniform grid results compared to the values from Ghia et al. for Reynolds numbers

of 100 and 1000, respectively.

i R(;.\ = 100, Vertical

1.0

Re = 100, Horizontal
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(a) u velocity profile

Uy

(b) v velocity profile

Figure C-5: Re 100: velocity profiles along (a) vertical and (b) horizontal lines passing

through cavity center

Re = 1000, Vertical Re = 1000, Horizontal
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(a) u velocity profile (b) v velocity profile

Figure C-6: Re 1000: velocity profiles along (a) vertical and (b) horizontal lines
passing through cavity center

It is clear that the finer grid converges to the results provided by Ghia et al. The
100 x 100 mesh performs well and nearly passes through each data point at both

Reynolds numbers along vertical and horizontal slices.
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A non-uniform grid is also tested to show the solution improvement possible with
the use of finer grids near the walls as well as to verify the solver capability using
non-uniform grids. The mesh utilized is a 50 x 50 grid with a constant cell expansion
ratio of 1.066 from each wall. The ratio of the largest cell size to the smallest cell size
is 5 and is known as the grading factor. The non-uniform mesh is shown along with

a 90 x 50 uniform mesh in Figure C-7.

Uniform Non-uniform

Figure C-7: 50x50 non-uniform mesh compared to a uniform mesh used for lid driven
cavity

The results using the non-uniform mesh at a Reynolds number of 1000 is shown
side-by-side with two uniform mesh results in Figure C-8. The velocity profiles are
also provided in Figure C-9 for the same three meshes to compare against the results

of Ghia et al.
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Figure C-8: Re = 1000 results for various grid sizes
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Re = 1000, Horizontal
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Figure C-9: Re 1000: velocity profiles including non-uniform mesh

As shown, the non-uniform mesh performs as expected. The non-uniform mesh
results are more accurate than the uniform mesh of the same size and are comparable
to the 100 x 100 mesh. The use of a non-uniform mesh is crucial as this allows
refinement in areas that are more important, such as near-wall regions, shear and
mixing layers, etc, and avoids the cost of an overly fine uniform mesh. The solution
dependency on Reynolds number is shown in Figure C-10 for Reynolds numbers

ranging from 1 to 1000. All four cases use the non-uniform 50 x 50 mesh.

[ ) a8 10 %%g 02 0.4 06 0 10%%4

0.2 04 [ o8 10

Re=10 Re = 100 Re = 1000

Figure C-10: Results on a 50 x 50 non-uniform mesh for Re 1 through 1000

C.3 Laminar U-bend Channel

The Python flow solver is also compared to OpenFOAM’s SIMPLE incompressible

flow solver in laminar mode for a U-bend channel. The presence of the bend is a test
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to the solver’s ability to handle angled cell faces. The Reynolds number is set to 1
based on the channel full-width and bulk velocity. The inlet boundary condition is
the exact parabolic laminar channel solution. Both simulations use the same mesh.
The velocity magnitude and pressure field are shown in Figure C-11 in their respective

output formats.

Velocity Magnitude Pressure
OpenFOAM Python OpenFOAM

Figure C-11: Laminar U-bend solution: OpenFOAM vs Python

A delta plot and percent difference plot of the velocity magnitude is shown in
Figure C-12 for the cell values. The largest difference occurs about at about 0.2H
from the inner and outer wall. As shown, the error is within 4%, and that is due to
the near zero value near the wall where a small difference is amplified. The center
regions of the flow have an error closer to 0.1%. The overall pressure drop predicted
by OpenFOAM from 1 full channel width from the domain inlet to 1 full channel
width from the domain exit is 126.06. The Python solver predicts a pressure drop of
125.95, within 0.1% of the OpenFOAM solution.
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Delta Plot Percent Difference
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Figure C-12: Delta and percent difference plots for laminar U-bend

The deviation from a laminar channel occurs only in and near the bend. The
streamwise velocity profile is shown halfway through the bend and at the bend exit

in Figure C-13, where y/H of 0 is at the inner wall.

Profile Midway Through Bend Profile at Bend Exit
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(a) Velocity profile half way through bend (b) Velocity profile at bend exit

Figure C-13: Streamwise velocity profiles at two bend sections

The Python solver shows good agreement to the OpenFOAM reference solution.
Overall, the solver is shown to perform accurately and as expected for various laminar

benchmark scenarios.
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Appendix D

Convection Schemes for RANS Solver

In this research, the Python flow solver utilizes the central differencing scheme (CDS)
for low Reynolds number or laminar flows. As the Reynolds number is increased the
ratio of convection to diffusion is increased. This is captured by the Peclet number,

shown in Equation D.1

e PU _ ulAx

oplér v+ (D-1)

where Az is the local grid size. At high Peclet numbers, generally greater than 2,
the central differencing scheme can lead to instabilities. One method to stabilize the
solution is the use of the upwind differencing scheme (UDS). One downside to the
UDS is that it has a first order Taylor series truncation error, as opposed to the second
order error associated with CDS. As a result, the solution can be overly smoothed
due to high numerical dissipation.

The Python flow solver utilizes a 5 point stencil operator for the momentum
equations, using only cell center values based on the nearest neighbors. In order to
maintain a simple 5 point stencil and to minimize computational cost, larger stencil
higher-order differencing methods, such as the Quadratic Upstream Interpolation
for Convective Kinematics (QUICK) scheme, are not used. Hybrid methods, which
blend the upwind and central schemes, can be used to stabilize the solution. Hybrid

scheme exploit the favorable characteristics of both upwind and central schemes. They
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minimize the artificial diffusion required to improve convergence. However, hybrid
schemes are also only first order accurate.

There are several methods of blending the upwind and central schemes. The
Python solver has been setup to handle various blending methods by use of a general
weighting function between the UDS and CDS interpolated cell face values for any

variable ¢, as shown in Equation D.2.

¢ =¢cps + (1 —v)dups (D.2)

D.1 Zonal Blending

D.B. Spalding introduced a piecewise blending method in the early 1970s in which
the second order accurate CDS scheme is used at low Peclet numbers (between -2 and
2) and UDS otherwise. Using the general blending framework, the Spalding hybrid

method can be written as

1 ,if |Pe| <2
Y= (D.3)
0 ,if |Pe|>2

where the Peclet number is calculated at the cell faces. The piecewise function es-
sentially splits the simulation into discrete zones based on the Peclet number and is
therefore referred to as the zonal method in this thesis. The threshold value of 2 is
based on fitting the piecewise function to the exact exponential interpolation to cell
faces in 1D.

As shown in Figure D-1, the turbulent U-bend flow at a Reynolds number of
40,000 has many regions with Peclet numbers greater than 2. The near-wall regions
have local Peclet numbers over 30 due to the low local viscosity since the turbulent
viscosity approaches zero. The bend region also has high Peclet numbers above 100

where the local velocity is high coupled with moderate to low turbulent viscosities.
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Figure D-1: Example plot of local Peclet number for turbulent U-bend channel

For the turbulent U-bend case, the use of full CDS is unstable and some amount
of upwind blending is needed. The Spalding hybrid scheme essentially produces the
same result as full upwind differencing. This zonal method can be generalized to
any threshold Peclet number, Pey,. The high Peclet zones above the threshold do
not necessarily have to be fully upwinded. The blending factor v can be non-zero
in order to reduce the amount of diffusion introduced with upwinding. The general

formulation is shown in Equation D 4.

1 ,if|PE|SPCth
v = (D.4)

Yo if |P€| > Pet,h

where v, is the user-prescribed blending factor above the threshold Peclet number.
Figure D-2 shows the blending factor as a function of the local Peclet number for the

Spalding hybrid scheme and the general zonal method with Pey, — 30 and ~, = 0.5.
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Zonal Blending
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Figure D-2: Zonal blending: plot of blending factor as a function of Peclet number

The use of a non-zero blending factor allows the user to set the value to obtain

just enough stability for proper convergence yet retain near-CDS accuracy, as full

first-order upwind can be excessively diffusive. Figure D-3 shows the solution of the

Python solver using different threshold Peclet numbers and blending factors compared

to a higher-order OpenFOAM reference solution. Both OpenFOAM and Python use

the same mesh, turbulent viscosity field, and boundary conditions.

IPelp=2 |Pelr, =30 |Pelw =30 |Pe| =50
Yo=0.5 Yo=0.8 Yo =0.9 Yo=0.8

OpenFOAM

Figure D-3: Zonal blending: plot of velocity magnitude field for various blending

parameters

The convergence of the above solutions is shown in Figure D-4. As shown, the

residuals show some oscillation and this is believed to be due to the fact that some

cell face Peclet numbers oscillate around the threshold value and therefore switch

back-and-forth between full CDS and some UDS / CDS blending. This can cause
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some issues when the converged solution is used for adjoint calculations to obtain
sensitivity information as the adjoint solver essentially reverses through the solution
convergence. Using smooth blending functions can reduce these oscillations. The
follow sections introduce smooth methods to improve convergence.
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Figure D-4: Zonal blending: plot of convergence for various blending parameters

D.2 Global Blending

As shown in the previous section, the zonal method can create oscillations in the
solution convergence. One method to minimize the oscillations is to use a smooth
blending method. The simplest blending method is one that is not a function of
Peclet number, but a simple global blending factor. Similar to the treatment of the
high Peclet regions of general zonal method, the blending factor is user prescribed
and usually close to 1 to minimize the artificial smoothing of the solution. Often,
only a small amount of upwind blending is needed. Ferziger and Peric [6] discuss
the use of 10% upwinding, thus a 7 of 0.9, to stabilize an example compressible flow
solution that would otherwise be unstable. In this research, it was found that a

blending factor of 0.95 is sufficient to obtain a stable solution, but the convergence
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does start to show some oscillations. Lower values, such as 0.9, provide a good

compromise between upwind and central schemes. Figure D-5 shows the solution of

the Python solver using different global blending factors compared to the reference

solution. Figure D-6 shows the convergence of the residuals for the various blending

values. The convergence is smoother than that obtained with the zonal method and

can help stabilize the adjoint solver as well.

OpenFOAM vy =0(UDS) y=05

Figure D-5: Global blending: plot of velocity magnitude field for various global blend-

ing factor
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Global blending: plot of convergence for various global blending factor
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D.3 Exponential Blending

There are several downsides to the global blending method. The minimal amount
of UDS blending is obtained with some trial and error. In addition, the blending is
applied to all cell faces. As shown in Figure D-1, the turbulent U-bend channel has
much higher Peclet numbers in the streamwise directions and thus global blending is
overly diffusing the spanwise direction. These issues can be resolved by formulating
a local blending factor as a smooth function of the local Peclet number.

A logical start is the exponential blending method described by Patankar [27].
As mentioned before, the linear interpolation between two cells to an interfacing cell
face can be written as an exponential function of the Peclet number for 1D. The
blending scheme is nearly CDS at Peclet numbers around zero, and approaches fully
upwinding around a Peclet number of 10. This relationship is used as a basis of a

smooth exponential blending factor, as shown in Equation D.5.

eO.5a|Pe| -1
Y= 2( ealPe|—1 )
where, (D.5)

10
Pey,

a =

The above equations approximate Patankar’s exponential blending scheme when
the threshold Peclet number is set to 10. The threshold Peclet number is user spec-
ified and can be increased to reduce the upwinding at lower Peclet numbers. The
exponential blending method is shown in Figure D-7 as a function of the local Peclet
number. Again, there is some user control with the threshold Peclet number. The
scheme does allow a smooth method to calculate local blending factors in order to

increase the amount of upwinding only in areas that require additional diffusion.
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Figure D-7: Exponential blending: plot of blending factor as a function of Peclet
number

Figure D-8 shows the solution of the Python solver using different threshold Peclet
numbers compared to the reference solution. Figure D-9 displays the convergence
associated with the solutions in Figure D-8. The convergence also has the smooth
behavior shown with the global blending method yet has the benefit of adaptive
blending factors based on the local flow and grid. The convergence is similar despite

the wide range of threshold Peclet numbers.

OpenFOAM |Pely, =10  |Pe|y, =30 |Pe|, =50 |Pel|y, =100

Figure D-8: Exponential blending: plot of velocity magnitude field for various blend-
ing parameters
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Figure D-9: Exponential blending: plot of convergence for various blending parame-
ters

D.4 Hyperbolic Tangent Blending

The exponential blending factor has the attractive property of calculating local blend-
ing factors smoothly. However the blending factor immediately drops below 1 for any
local absolute Peclet value greater than 0 and thus can penalize even low Peclet re-
gions with some upwinding. Similar to the zonal methods, it is desirable to maintain
the central difference up to a certain Peclet number. One method created as part of

this research is the use of the hyperbolic tangent function to blend smoothly between

fully CDS to a blended UDS / CDS at desired Peclet values.
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a=1-b
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d

(D.6)

The variable ¢ in Equation D.6 controls the center of the transition, where as d

controls the transition width. The local blending factor as a function of the local

Peclet is shown in Figure D-10 for an example set of parameters.

local blending factor

1.0

Hyperbolic Tangent Blending

08t
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local Peclet number
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Figure D-10: Hyperbolic tangent blending: plot of blending factor as a function of

Peclet number

Figure D-11 shows the velocity solutions corresponding to several hyperbolic tan-

gent blending parameters. The convergence of the simulations is shown in Figure

D-12. The convergence is again smooth and generally well-behaved.
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Figure D-11: Hyperbolic tangent blending: plot of velocity magnitude field for various
blending parameters
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Figure D-12: Hyperbolic tangent blending: plot of convergence for various blending
parameters

The hyperbolic tangent blending method provides full control of central to up-
wind blending to handle a large range of Peclet numbers. The convergence shows
favorable characteristics due to the smooth transition between the fully central and
blended regions. One downside is some knowledge of the flow should be known to take

advantage of the method and apply proper prescription of the blending parameters.
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Appendix E

Turbulent Viscosity Extraction from

LES

E.1 Derivation

As discussed in Section 2.3.3, the Large Eddy Simulation (LES) uses a turbulence
model only for the smaller sub-grid scales of turbulence. The sub-grid scale models
used in this research are based on the Boussinesq approximation, and therefore a
sub-grid scale turbulent viscosity is generated. A resolved scale turbulent viscosity
is not produced as the resolved scale turbulence is directly computed. However,
the Boussinesq approximation can be used to calculate a resolved scale turbulent
viscosity. The extracted turbulent viscosity can provide insight into the validity of
the Boussinesq approximation and can be a sanity check for the optimized RANS

turbulent viscosity.

The Boussinesq approximation is shown in Equation E.1. The Reynolds stress

—u;u; components are computed and stored during the LES. The mean strain rate
tensor, §;;, is obtained using the gradient of the mean velocity field. Turbulent kinetic
energy, k, is obtained by taking the trace of the Reynolds stress. Although the overbar

is omitted on the velocity components, all velocities in this appendix are mean values.
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- U;’U,; = 21/,581‘]' — gk(s

i (E.1)

=3 (axj * ax,.) (E2)
1

k= 3 (u’2 + v2 4 w’2) (E.3)

The turbulent viscosity can be obtained by solving a least squares problem.

S 2 2
min( —uiul — 20,555 + gk&ij) (E.4)

The minimum is found by obtaining the critical point,

] 2\’ —— 2

which can be easily solved since the equation is linear and has only one unknown.

The above can be rearranged to obtain the resolved turbulent viscosity.

/ /% —'— ké@]szj (E 6)
25;%; '

Vt=

The total turbulent viscosity can then be obtained by added the resolved and sub-grid
scale terms.

2 N
—u ’U,]Sw =+ gkéﬁsi]—

Vv = +7 E.7
t 25, 5, 't SGS (E.7)
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E.2 Implementation in Paraview

The OpenFOAM LES is setup to store all six components of the Reynolds stress
tensor, time-averaged velocity field, time-averaged sub-grid turbulent kinetic energy,
and time-averaged sub-grid turbulent viscosity using the field Average function in the

controlDict file. The Reynolds stress components are stored as scalar fields

UPrime2Mean_XX, UPrime2Mean_YY, UPrime2Mean_ZZ,
UPrime2Mean_XY, UPrime2Mean_XZ, UPrime2Mean_YZ

The mean velocity is stored as a vector field
UMean
and the subgrid turbulent kinetic energy and turbulent viscosity as scalar fields

kMean

nuSgsMean

The final time-averaged results are read into Paraview, the standard visualization
tool for OpenFOAM. The velocity gradients are obtained from the mean velocity field
using the "Compute Derivatives" filter in Paraview. This generates the nine gradient

components

VectorGradient_0, VectorGradient_1, VectorGradient_2,
VectorGradient_3, VectorGradient_4, VectorGradient_5,

VectorGradient_6, VectorGradient_7, VectorGradient_8,

where VectorGradient _0 = 0u/0z, VectorGradient _1 = dv/dz, VectorGradient 2 =
Ow/0x, VectorGradient _3 = du/dy, VectorGradient 4 = dv/dy, VectorGradient 5
= O0w/dy, VectorGradient_6 = du/dz, VectorGradient 7 = Ov/dz, VectorGradi-
ent_8 = Ow/0z. The components of Equation E.7 can now be computed using the
"Calculator" utility in Paraview. The turbulent kinetic energy, called k _tot, is cal-

culated by
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k_tot = 0.5*(UPrime2Mean_XX + UPrime2Mean_YY + UPrime2Mean_ZZ) + kMean

where the time-averaged sub-grid scale turbulent kinetic energy is added to the cal-
culated resolved field to obtain the total. The term 4;;3;; in Equation E.7 reduces to

S:, which is expanded to

T—l %4_@ +1 ?24_?2 _,_1 8_’1,g+6_w _%_‘_@4_8_11) (E8)
“i=9\or "oz) "2\5y Tay) "2\3: "8z) "oz "oy os '
and is calculated in Paraview by

Sii = VectorGradient_0 + VectorGradient_4 + VectorGradient_ 8

The first term in the numerator of Equation E.7 can be expanded to

S —0u —O0v —Ow
wUS; = u?—— + v?— +w?—

ox Jy 0z

w8 (22 (2 v
Oy Ox 0z Ox

and is calculated in Paraview by

RSij = UPrime2Mean_XX*VectorGradient_0

+ UPrime2Mean_YY*VectorGradient_4

+

UPrime2Mean_ZZ*VectorGradient_8

+

UPrime2Mean_XY*(VectorGradient_3 + VectorGradient_1)

+

UPrime2Mean_XZ* (VectorGradient_6 + VectorGradient_2)

+

UPrime2Mean_YZ*(VectorGradient_7 + VectorGradient_5)

The denominator term of Equation E.7 is obtained using
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3 3
I =) 5 (E-10)
i=1 j=1

which when expanded and written in Paraview terms becomes

S51jSij = VectorGradient_0~2 + VectorGradient_4-2 + VectorGradient_8"2

+ 2*%((0.5%(VectorGradient_1 + VectorGradient_3))~2)

+

2%((0.5%(VectorGradient_2 + VectorGradient_6))"2)

+

2x((0.5*%(VectorGradient_5 + VectorGradient_7))~2)

Combining the above components, the turbulent viscosity scalar field is finally calcu-
lated by

nut = (-RSij + (2/3)*k_tot*Sii)/(2*SijSij) + nuSgsMean

The above process has been used to extract the equivalent turbulent viscosity from

the Large Eddy Simulation for comparison to the turbulent viscosity obtain from the

RANS simulations.
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