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Abstract

Successful man-machine interaction requires justification and transparency for the
behavior of the machine. Artificial agents now perform a variety of high risk jobs
alongside humans: the need for justification is apparent when we consider the millions
of dollars that can be lost by robotic traders in the stock market over misreading online
news [9] or the hundreds of lives that could be saved if the behavior of plane autopilots
was better understood [1]. Current state of the art approaches to man-machine
interaction within a dialog, which use sentiment analysis, recommender systems, or
information retrieval algorithms, fail to provide a rationale for their predictions or
their internal behavior.

In this thesis, I claim that making the machine selective in the elements considered
in its final computation, by enforcing sparsity at the Machine Learning stage, reveals
the machine's behavior and provides justification to the user. My second claim is
that selectivity in the machine's inputs acts as Occam's Razor: rather than hindering
performance, enforcing sparsity allows the trained Machine Learning model to better
generalize to unseen data.

I support my first claim concerning transparency and justification through two
separate experiments that are each fundamental to Man-Machine interaction:

" Recommender System: Interactive plan resolution using Uhura and user profiles rep-
resented by ontologies,

" Sentiment Analysis: Text climax as support for predictions.

In the first experiment, I find that the trained system's recommendations agree better
with human decisions than existing several baselines which rely on state of the art
topic modelling methods that do not enforce sparsity in the input data.

In the second experiment, I obtain a new state of the art result on Sentiment
Analysis and show that the trained system can now provide justification by pinpoint-
ing climactic moments in the original text that influence the sentiment of the text,
unlike competing approaches.
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My second claim about sparsity's regularization benefits is supported with another
set of experiments, where I demonstrate significant improvement over non-sparse
baselines in 3 challenging Machine Learning tasks.

Thesis Supervisor: Brian C. Williams
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

A common pitfall of existing Machine Learning algorithms that support Man-Machine

interaction is their lack of justification and transparency. In this thesis, I claim

that enforcing sparsity at the Machine Learning stage of the Artificial Intelligence

collaborative system provides justification and greater transparency. I also claim

that making the system's inputs sparse acts as a regulariser for Machine Learning

algorithm, allowing the trained system generalize better to unseen data.

My thesis is structured as follows: in this introductory chapter I motivate the use

of collaborative Man-Machine systems, next I provide a definition of the Man-Machine

interaction problem within this thesis, then provide an overview of my approach and

summarise my results. In the end of the chapter, I introduce current state of the art

approaches to this problem and where they fall short on providing transparency and

justification for their behavior.

In the second chapter I describe in further detail the problem of Recommendation

within Man-Machine interaction, and present my approach. Next, I explain the ex-

periment on which I compare agreement between human recommendations and those

made by my system and several baseline systems, and summarise my results.

In the third chapter, I present my approach to Sentiment Analysis, and I describe

the model's architecture and the details of the experiment. I then summarise my

results by comparing the proposed approach to several ablations and the current

state of the art.
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In the fourth chapter, I introduce a set of experiments that support my sec-

ond claim about sparsity improving generalization performance. Here, I describe in

greater detail how sparsity can be systematically applied to existing state of the art

approaches for Natural Language Processing, and I present three separate benchmark

tasks: Sentiment Analysis, Paraphrase Detection, and Synthetic Question Answering,

on which I show improved performance over several baselines. I conclude this chapter

with a discussion of results.

In the fifth and final chapter, I summarise my findings and discuss areas of future

work.

1.1 Motivation

Collaboration between Man and Machine is a fundamental pillar of Artificial In-

telligence and an integral part of many industrial and commercial applications of

intelligent agents. A key factor in the success of these systems is the ability for the

human and machine to communicate: in machine assisted stock trading [9], path plan-

ning [115], vehicle fleet management [2], manufacturing [14], airborne or underwater

surveys [13, 73], content curation [30, 31, 60, 3], or content summarization [5, 111],

interaction between the human and Artificial Intelligence can help diagnose issues

early on, replan, or consider more options than either actor could on their own.

Several obstacles remain for effective collaboration between the two actors: current

Machine Learning algorithms fail to provide justification for their behavior, thereby

removing crucial feedback for the human participant, while over-solicitation of the

human has been shown to lead to information overload and lower performance [68,

38, 39]. Successful collaboration will require the machine to strike a balance between

transparency and abstraction.
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1.2 Problem Statement

A mixed-initiative system is one in

which both humans and machines

can make contributions to a

problem solution, often without

being asked explicitly.

Jaime Carbonell, Sr. [15]

The Man-Machine interaction problem in this thesis is as follows: both actors

participate in solving a particular planning or decision-making tasks in a mixed-

initiative manner [15, 69, 2].

The inputs in this problem are a series of higher-level goal states specified by the

human participant:

* "I want to have dinner and be home by 8PM," or

* "What is the sentiment in the sentence: fast but dull ."

During the planning phase of the problem, the man and the machine exchange

information either by requiring additional details from the human:

0 "Would you prefer Italian or Japanese food this evening?",

or by making the machine describe its decision process:

* "because you enjoyed Lemongrass yesterday, and Wild Ginger is also asian-

fusion and spicy, I recommend you go there," or

* "fast is positive, but interrupts this emotion, and finally dull renders the sentence

negative."

The final output of the collaborative system can be a plan that can be passed

to an executive, a classification label among several classes, or a sentence in Natural

Language:
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" "Leave in 15mn, arrive by 7PM at Wild Ginger, eat there, leave at 7:45PM and

be home by 8PM," or

* "The sentiment is negative with probability 0.8."

In summary, the Man-Machine interaction problem is defined here as a collabora-

tive effort between a human and a machine to analyze task relevant information: as

input the machine receives contextual information such as a user profile or map, along

with a natural language description of the desired goal state. During the analysis

stage, the machine describes its decision process and can ask for additional informa-

tion from the human using a dialogue or graphical interface. Finally, after analysis,

a plan that can be given to an executive, a classification label, or Natural Language

response is produced by the machine.

The specific problem I aim to address within this thesis is the lack of transparency

during the decision process of the machine. As a remedy, I introduce a User Profile

that has as its central representation an ontology, and a Machine Learning training

strategy to produce models that give a visual description for the parts of their input

they attend to, letting the inference process of the machine be human understandable.

1.3 Approach Overview

In this thesis, I introduce two key pieces to add transparency to the machine's decision

process during the Man-Machine collaboration problem:

" Ontological User Profile: a more expressive representation of user preference

based on an ontology of the options available to a user.

" Occam's Gates: a method for enforcing sparsity in the inputs to a Recur-

rent Neural Network which leads to an Occam's Razor behavior in the trained

system.

In this section, I will first describe in greater detail how these two pieces are

achieved and integrated within a mixed initiative system, and second summarize my

main results.

22



1.3.1 Ontological User Profile

To achieve greater transparency during collaborative planning with a machine, I add

an Ontological User Profile. This type of User Profile captures a human's preferences

in a hierarchical manner to encode information about inheritance, entailment, and

separability.

In order to describe the benefits of this addition, I will first describe the previous

behavior and architecture of the mixed initiative planning system (before I add the

new User Profile) and second explain how the User Profile, in combination with a

semantic candidate generator, provides greater transparency and expressivity in the

collaboration.

1.3.1.1 Present Uhura

CDRU
Plan

Human Uhura

relaxations

Human understandable constraint relaxations

Figure 1-1: The Uhura Man-Machine planning system that communicates back
human-understandable plan modifications, relaxations, to the human actor in best
first order.

The goal of the Man-Machine planning system Uhura [14] is to collaboratively pre-

pare a plan, and interactively relax constraints until the plan is temporally consistent.

In order to suggest possible relaxations to the human actor, the planner makes use

of the Conflict Directed Relaxation with Uncertainty algorithm (CDRU) [114]. This

23



algorithm resolves over-constrained temporal problems by finding relaxable temporal

constraints that can be modified to restore plan consistency. The relaxations are

suggested to the human in best first order by using a conflict-directed search strategy

in CDRU that is similar to Conflict Directed A* [113]. The CDRU algorithm is in-

tegrated in Uhura through a dialogue system that receives the human's original plan

and sends back the plan relaxations given by the conflict-directed search (Figure

1-1).

1.3.1.2 Semantic Relaxation Uhura

CDRU (Semantic Relaxation)

Plan

Semantic Memory

Human Uhura alternate options

relaxations

1. Human understandable constraint relaxations

2. Human understandable alternatives from User Profile

Figure 1-2: The Semantic Relaxation Uhura Man-Machine planning system that ex-
tends the present Uhura to include a Semantic Memory. This memory stores in an
ontology user preferences and suggests, during plan relaxations, alternate options.

I add an Ontological User Profile to Uhura to achieve greater transparency and

expressivity in a Man-Machine planning system. This User Profile gives the system

an ability to describe in human-understandable terms how alternative options were

suggested by the planning system and perform recommendations over new domains,

24
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even in the absence of prior user information.

The addition of the User Profile modifies the architecture to include a Semantic

Memory as visible in (Figure 1-2). This change has two significant effects:

o Profile Learning: The user's responses during interaction allow the machine

to learn a model of the user's preferences with human understandable features,

and

o Ranking and Domain Extension: The User Profile gives the Uhura system

more expressivity and power by allowing ranking of options based on the learnt

preferences and an ability to carry over this learnt metric to new choices dis-

covered outside of the original plan, for instance to choices found by crawling

online reviews.

1.3.1.2.1 Profile Learning

To obtain human-understandable features in a User Profile, responses from the user

to the relaxation and alternate options concerning a choice y are stored with the

choice's corresponding node ny in the user's ontology. The ontology can be used to

perform inference that incorporates hierarchical information about the options, and

also to describe the decisions of the machine using previous user actions as supporting

examples.

1.3.1.2.2 Ranking and Domain Extension

With a model of user preferences, it is now possible to rank the candidate relaxations

proposed by CDRU not only according to their intrinsic cost in terms of deviation

from the original plan, but also according to the agreement between a candidate

solution and the best estimate of the user's preference ontology. This metric allows

the Uhura system to rate higher choices that share the same parents or neighbors as

those previously approved by the user.

The memory's "semantic" aspect enables the planning system to dynamically add

new choices to a plan and provide a metric to compare these previously unseen choices
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to those considered by the user so far. I am able to compare choices semantically

through the use of a a new topic model I introduce. The topic model takes review

text and available metadata and produces a vector representation for each choice.

The distance between the resulting vectors can then be used to detect topical or

stylistical similarity between choices.

Moreover, the topic model can be learnt once and applied later to new review

text without retraining. The learnt distance between vectors is still meaningful when

applied to vectors produced for late-comers: the system is therefore capable to in-

corporate new choices online. This modification removes the restriction that the

relaxations proposed by the CDRU algorithm be contained in the original tempo-

ral problem: choices can now be dynamically instantiated from online reviews, and

embedded using the same topic modelling algorithm used initially.

1.3.2 Occam's Gates

Occam's Gates, an objective function to enforce sparsity in the inputs of a Recurrent

Neural Network, is the second piece I propose to add transparency in the collaboration

between Man and Machine. Learning from sequential data, such as speech or text, is

at the heart of many communication and interaction tasks in mixed initiative systems.

Recurrent Neural Networks (RNN) have emerged as a very powerful family of models

that are able to process and keep track of long term dependencies in sequential data,

enabling machines to detect temporal patterns in speech, language, or actions.

I modify the objective function used to train RNNs to include gates controlling

information flow to the network, along with a penalty on the activation of the gates

to encourage selectivity in the network. The trained networks can then produce a

visual explanation for the temporal regions that were attended to, giving insight into

the information flow in the system.
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1.3.2.1 Occam's Gates Operation

To understand how Occam's Gates improve the transparency of machines that use

RNNs as sequence learning machines, I will first describe briefly their operation,

before defining more formally my approach.

Definition 1.1. Recurrent Neural Network (RNN)

A Recurrent Neural Network is an artificial neural network with an ability to

update its internal state. The internal state is modified by connections between neu-

ronal units that form a directed cycle. These networks are defined by a state update

mechanism that operates at every timestep t in a sequence of inputs {x1, ... ,

which we denote fRNN ()-

The state update mechanism takes as input the previous state ht_ 1, and the

current input Xt, to produce a new state ht:

fRNN(xt, ht 1) - ht.

In order to make the behavior of the RNN more transparent, I impose a sparsity

penalty on the amount of information the network used at every timestep t. To

control the flow of information to the RNN, I use a gating function that takes the

previous RNN state and current input and produces a scalar value in the range 0 - 1:

g(ht-I, xt) = gt. The scalar gating value, gt, is element-wise multiplied with the input

at the current time step xt, allowing the network to ignore with gt = 0, or attend to

gt = 1, a timestep's input.

The new gated state update function for an RNN, with a state update function

fRNN-), now becomes:

fupdated(Xt, ht-1) fRNN(g(xt, ht 1 ) 0 xt, ht_ 1).

The original training objective for the overall network, J, is augmented to enforce

sparsity in the outputs of the gating function g through a sparsity penalty weight

Asparse:
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J*-J+ Asparse * 9 (1.1)

1.3.2.2 Occam's Gates for Justification

Once trained, an RNN that uses Occam's Gates now produces gating values, {gi, ... , 1,}

for every timestep of an input sequence, {x1,... , x,}, which can be used in several

ways to make the behavior of the machine more understandable to the human actor:

" The gating values act as a highlighter, pinpointing temporal regions where in-

formation from the input affected the network's predictions and behavior.

* The gating values can serve to subsample a long input stream to filter out

unnecessary or superfluous portions to form a summary sequence.

" The ratio of active versus inactive gates describes in qualitative terms the signal

to noise ratio of a sequence.

* The firing location of the gates serves as an early warning signs for overfitting

and other issues with a network: for instance, when these locations no longer

correlate with information units found by humans.

1.3.3 Main Results

In my experiments, I validate the effectiveness, gained transparency, and added per-

formance of the Ontological User Profile and Occam's Gates.

1.3.3.1 Ontological User Profile

I compare the recommendations made by Uhura with an Ontological User Profile

with those made by other topic modelling approaches and find that the proposed

approach produces better agreement with human judges. I make this observation in

an experiment where Mechanical Turk workers must select among several restaurant
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options { . ... , on}, the best one to recommend for a person who likes several other

restaurants {ri, ... , rk }. I compare the decisions made by the workers with the rec-

ommendations made by Uhura by initialising the user profile with the restaurants

{ri, . . , rk}, and ranking the options {Oi,... , on}. I compare the Ontological User

Profile in Uhura with several state of the art topic modelling strategies, which do

not make use of the hierarchical nature of the choices, or cannot combine the review

data with the metadata found online. I find that using an Ontological User Profile

built from online reviews improves agreement with humans by 6.4% (from 36.11% to

43.52%) over competing approaches.

1.3.3.2 Occam's Gates

The justification process used in Occam's Gates has several key findings and outcomes

for sequence learning tasks and transparency in the behavior of the machine.

1.3.3.2.1 Sentiment Analysis

Representing sentiment as a gated, justifiable process, with each timestep's prediction

updating the current best prediction rather than replacing it, improves prediction

accuracy and provides a visual description for the areas of a text containing emotional

signal. A model trained with the gating procedure outperforms a baseline by 7.03%

on 5-class accuracy and 5.73% on binary accuracy, and exceeds the current state of

the art by 1.3% on 5-class accuracy, and 0.83% on binary accuracy.

1.3.3.2.2 Sequence Learning

Occam's Gates (OG) are also systemically applicable to other problems; I compare

several baseline architectures to gated ones. The gated systems trained with OG

consistently outperform their non-sparse baselines:

o Sentiment Analysis: Models trained with OG improve by 5%, with the per-

formance difference growing with model size. This ability to train larger models
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suggests that OG acts as an implicit regularizer by communicating the problem

structure.

* Paraphrase Detection: Models trained with OG improve by 18% on Para-

phrase Prediction recall, and follow a similar trend with respect to model size

than the one seen in Sentiment Analysis.

* Question Answering and Fact Reading: (bAbI dataset) The performance

of LSTMs with OG improves on 17 out of the 20 tasks. For some tasks, the

performance of LSTMs with OG now matches that of the more sophisticated

Memory Networks, simply through the addition of a sparsity penalty.

1.3.3.3 Summary

In summary, I find that enforcing sparsity either through a User Profile that incorpo-

rates hierarchical knowledge about the options, or at the Machine Learning stage by

training Recurrent Neural Networks to be sparse in their use of input data, or selective

in their updates to their predictions, adds transparency to the machine's behavior,

provides better agreement with human behavior, and improves the performance on

sequence learning tasks, and establishes a new state of the art result in Sentiment

Analysis.

1.4 Related Work

Man-Machine interaction is a well studied problem. Here,'I provide an overview

of existing approaches to this problem and describe how they relate to the work

presented in this thesis.

1.4.1 Temporal Constraint Relaxation

Joint planning of actions between a human and a machine requires the ability to

construct, modify, and detect problems within plans (temporal problems). The work

presented in this thesis builds upon an existing system with this capability, Uhura [14].
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Uhura uses the Conflict Directed Relaxation with Uncertainty algorithm, (CDRU,

[114]) to recover temporal consistency in over-constrained temporal problems with

uncertain durations: whenever no execution strategy [100] or event schedule [21] can

be found that satisfies all its constraints. The CDRU algorithm finds constraints

within the over-constrained problem that can be continuously relaxed or removed in

order to recover temporal consistency.

Unfortunately, Uhura and other approaches to joint planning between man and

machine only consider a static number of temporal options as changes to recover

consistency within the plan. Here, I present an approach that adds a candidate

generator to Uhura to provide alternate options that resolve consistency through the

use of Semantic Relaxation.

This candidate generation algorithm extends the original work on temporal con-

straint relaxation, through the use of a user profile as a candidate generator for

alternate solutions. The user profile is learnt through previous constraint relaxations

and dialogue with a human. The history of the user profile serves to rank and propose

new options to the relaxation algorithm. This modification to the system allows it

to consider a dynamic number of options to recover consistency, thereby increasing

the robustness and flexibility of the plan relaxation to deal with new and unexpected

situations.

1.4.2 Recommender System

The candidate generation algorithm introduced in this thesis to support Semantic

Relaxation in Uhura relies on a Recommender System to generate, update, and use a

user profile.

In a typical setting, Recommender Systems rely on user preferences or action

history to rank different options, however in the case of planning, the choices are

generated on the fly. Moreover, due to the use of a candidate generator in Uhura, the

recommender system must be able to rank new options as well. The work presented in

this thesis thus combines research from two different types of recommender systems:
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* Warm Start, where past knowledge about user behavior is available to the

recommender system, or

I Cold Start, where little or no past user behavior exists: the system learns from

the ground up.

The choices shown to a human actor in the collaboration form a mix of warm and

cold start situations.

1.4.2.1 Warm Start

Ensemble techniques making use of matrix factorization has shown great success in

the presence of extensive prior user data [82, 91, 7].

In cases with more limited recommendation domains, where finer granularity in

the preference of users is required, the Conditional Preference [12] or Probabilistic

Conditional Preference [17] representation allows inference while making use of more

advanced rules about user behavior.

1.4.2.2 Cold Start

In cold-start situations where no or limited prior user data is available, techniques

which make use of item-to-item similarity are used [70, 83, 91]. The user profile in

these instances is constructed by grouping or weighing the representations for the

items that the user interacts with.

Also relevant to cold-start recommendation is research on infant concept learning,

a subject of significant research within the Cognitive Science field [50, 96, 97, 98],

which can be reformulated to rank different choices in a Recommender System without

requiring prior user information.

The original goal of the infant concept learning body of work is to understand

the generative model or "theory" that governs the actions of an infant or human.

By reformulating this work for use in a Recommender System, it is possible to rank

different "theories" that explain a user' preferences: in The Discovery of Structural

Form, Tenenbaum and Kemp demonstrate that different underlying topologies for
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describing observation data lead to different predictive models for human behavior.

In the case of categorical information, such as plants, animals, and other entities that

share traits in a genealogical manner, the authors find that representing observations

about the world using an ontology better correlates with human behavior.

1.4.2.3 Ontological User profiles

Current Recommender Systems either rely exclusively on user-to-user information, or

item-to-item similarity, while those that combine both pieces of information do not

make use of the ontological structure of the items.

Recent work on a hybrid matrix factorization and item-to-item similarity models

[54] has been shown to dynamically give the best of both cold and warm start systems

depending on the availability of user data, however this system cannot make use of

the categorical or ontological relationships between items, which play a critical role

in inferring human behavior [50].
In this thesis, I present an extension to the work of Kemp et al. for use in rec-

ommender systems, which allows hybrid recommender systems to leverage structural

information, while also overcoming the need for a predefined ontology. I provide a

methodology for representing user preferences within the framework of The Discovery

of Structural Form and ranking options, and finally introduce a new topic modelling

algorithm that permits the generation of ontologies using only web-scraped data con-

taining reviews for the items under recommendation.

1.4.3 Sentiment Analysis

A key component in dialogue systems is the ability for the machine to detect and react

to the user's emotional state. There exists several channels through which a machine

can attempt to predict the user's emotional state: voice [19], facial expressions [32],

or diction [87]. In this thesis I focus on detecting emotional state through diction by

analysing text.

Early approaches to predicting the polarity of a body of text relied on n-gram
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and other hand engineered features of phrases and obtained strong results over longer

texts [71] . However these techniques' performance severely degrades when the text

is short, has spelling or grammatical mistakes, or uses slang and shorthand [87, 107].

1.4.3.1 Tree, Recurrent, and Convolutional Neural Networks

An alternative representation of text and sentences, which raised the binary classifi-

cation accuracy to 88% from 60%, was the use of syntactic parse trees to shape the

architecture of a neural network [86, 87, 43, 42, 40, 41]. In the work of [65, 59], the

authors make specific mention of quadratic forms as instrumental for capturing the

effects of negation and reinforcement in human language within syntactic parse trees.

Following the work on syntactic parse trees, several other successful representa-

tions of sentences for sentiment analysis have emerged including convolutional neural

networks applying filters over the temporal domain of a sentence, using recurrent

neural networks, or even using recurrent neural networks over a tree (Tree-LSTM)

[94], with the ability to control how the information from multiple children arriving

at a node is combined.

1.4.3.2 Attentional Networks

Finally the Dynamic Memory Network [55] is particularly relevant to the framework

I introduce here: in their approach, each word in a sentence gets processed by a

gate which selects what to include into its episodic memory. This external memory

structure permits the network to perform multiple passes through the text before

making a prediction, allowing for an iterative solution to emerge. The authors of

[55] compare their technique to several baseline RNN, such as stacked-LSTMs, and

find that the episodic memory provides an additional 1.5% accuracy on fine-grained

sentiment classification. This result supports the claim that attentional neural net-

works can construct or mimic the effect of syntactic parse trees without requiring this

information during training.
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1.4.3.3 Justification

Current state of the approaches do not provide a way of understanding the underlying

decision process of the machine when estimating the sentiment of a text. While the

work on attentional neural networks demonstrated in [55, 94] gives the system an

ability to focus and control a memory structure, the gating mechanisms do not map

directly to the prediction task: the area of attention of the network is not human-

understandable.

There has been effort towards making the focus of a neural network human-

understandable for Sentiment Analysis, as in the work of [45], however their approach

is achieved by post-processing and is separate from the machine's decision process. In

their work, the authors trained convolutional neural network to predict the sentiment,

and present a method for "un-pooling" the convolutional filters to recover which n-

grams and words in a sentence affect the final prediction. While the recovered words

and n-grams indicate portions that were attended to, the way by which these words

or n-grams are composed is not available.

In this thesis, I introduce a method for providing justification within sequence

prediction tasks through a new machine learning framework which uses intermediate

predictions as part of its state. The trained system outputs the evolution of its

prediction as a sequence is read in, giving a clear indication for which portion of the

input were climactic and led to changes in the prediction.

1.4.4 Recurrent Neural Network Regularization

The work presented here on Occam's Gates resembles research done in Machine Learn-

ing on regularizing Recurrent Neural Networks.

RNN regularization has recently been shown to be achievable using Dropout [90]

by regularizing a subset of the recurrent connections in deep RNNs [116, 75]. Previ-

ously, it was shown that weight decay regularization only provided small improvement

[27] and dropout noise was detrimental when applied to all connections due to the

compounding of errors over time [6].

35



In this thesis, I show that these kinds of regularization techniques can be combined

and solved deterministically by penalizing gate activations within RNNs.

1.4.5 Question Answering

Within the Man-Machine interaction, both actors communicate through a series of

questions and answers in natural language. Question Answering has been extensively

studied in support of mixed-initiative systems. In this thesis, I build upon several

techniques developed to support question answering for dialogue systems.

1.4.5.1 Factoid Question Answering

In Factoid Question Answering, the goal is to correctly select or combine previously

stored facts and return them when given the matching question. Research in this

domain has moved from more rigid approaches like DARPA's Airline Travel Informa-

tion System (ATIS), which used slots to detect travel related information in spoken

language, to sets of rules and patterns that governed a dialog in [34, 2], to grammar

and regular expression rules that allowed systems to answer on a broader of topics

as demonstrated through the START system [48, 49, 47]1 and the TREC question

answering tracks[106].

The question answering system supporting the dialogue interface within the inter-

active plan resolution component of Uhura [14] uses a slot-based system to correctly

match statements from a user to fields required by the machine for the task.

There exists several shortcoming with fact based question answering which I at-

tempt to address in this thesis:

* Application domain is fixed in advance by the slots, rules, or database used.

9 Responses are based on templates or are fixed.

e Slot-based techniques fail when the returned text contains misspellings or a

different phrase structure than expected.2

lhttp: //start . csail.mit . edu/index. php
2 For instance, if the response contains extra information.
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1.4.5.2 Fact Reading and Question Answering

More recently, there has been renewed effort into constructing systems that can answer

questions over children's or real world stories by jointly training a system to collect

information and respond to questions. This integrated approach aims to address

several of the issues with fact-based QA by allowing adaptation to new fact databases,

and producing responses without pre-defined templates.

The performance of this systems is hard to measure exactly because the set of

allowable responses is greater or infinite. Several benchmark datasets have emerged

as robust measures of performance on this task which narrow the vocabulary or use

multiple choice responses:

" MC Test : this dataset [78] is a collection of children's stories aimed at a

reading level of a 7 year old or lower, which assess coreference and general

reasoning skills, while requiring a basic understanding of English.

" bAbI Tasks : Facebook's bAbI datasets [110] test a variety of skills from

navigation to induction, through the use of synthetic stories with associated

questions.

With the introduction of these datasets, several new models have been developed that

are capable of creating and recalling memories to produce textual output, allowing

them to be more robust to the limited training data and minimal supervision found

there [76, 110, 11, 109, 55, 92].

1.4.5.3 End-to-End Question Answering

Finally, early attempts to training end-to-end systems capable of maintaining a con-

versation have shown promise at generating believable responses. In the work of

[103, 89, 84], systems trained to produce or respond to dialog from movie scripts,

support lines, and subtitles, can successfully use this training to engage in new dia-

logues. However, those systems are constructed without fixed personalities or goals,

and hence tend to drift or forget earlier interactions, as the conversation goes on.
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1.4.5.4 Justification

The move towards fact reading QA systems and end-to-end training has resulted in

more robust systems that are able to cope with more limited training data, larger

vocabularies, and make use of more advanced reasoning to solve queries, however

this has also made the resulting systems more opaque. Improvements in robustness

are attributed to the use of word embeddings [74, 63, 110, 10], and Recurrent Neu-

ral Networks [76, 55, 92, 103, 89, 84], both techniques that make use of distributed

representations, where the precise flow of information is obscured by the high dimen-

sionality of the representations.

There have been efforts towards making the behavior of these neuronal architec-

tures comprehensible by humans such as the episodic memory found in the DMN

[55], where the system highlights the facts that it is using to answer in the order

they are processed, giving the human an ability to visualize the reasoning process of

the machine. However, enabling visualization of the reasoning process in the DMN

requires fact supervision: extra labels in the training dataset that indicate whether a

fact is relevant. This type of annotation is currently only found in the bAbI dataset,

and thus severely limits the ability for DMN-like approaches to output their reason-

ing process. Another line of work relies on a Softmax Attention model augmenting

recurrent neural networks to look back upon a second series of hidden states to ex-

tend its memory, as demonstrated in [80], where this approach was successfully used

to improve entailment detection using an attentional neural architecture. While this

approach does not require fact supervision, it does not provide a way of controlling

how sparse the model's attention should be. This lack of constraint often leads the

model to produce diluted attentions that lack interpretability.

In this thesis, I present an augmented objective function that removes the need

for fact supervision while still allowing the machine to provide a visual description of

the information it selected in its computation of an answer. This method relies on

the use of input gates called Occam's Gates that control the flow of information into

the Neural Network. The addition of a sparsity penalty on the activation of these
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gates to the original classification objective function now makes it possible to train a

network to use these gates to follow an Occam's Razor principle: the system is taught

to be selective in its choice of facts, and to output a visual description of the portions

of the input that were chosen by the machine. The proposed method is general, and

can be systematically applied to other sequence learning tasks, and I demonstrate its

effectiveness on 3 different sequence learning tasks.
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Chapter 2

Ontological Recommender

Two significant challenges in existing mixed-initiative planning systems are extensi-

bility and interpretability. Current state of the art approaches to recommendation of

choices and options within these systems focus on the warm start situation, where a

wealth of prior user data exists, however this information is often unavailable or dif-

ficult to keep up to date. Another challenge within current recommendation systems

is the lack of transparency in their decision process.

In this chapter, I present joint work with Peng Yu on an Ontological User Profile

that gives the mixed-initiative planning system, Uhura, an ability to learn from prior

user experience online, reason about preferences hierarchically, justify decisions, and

dynamically introduce new choices and rank them using a previously learnt user

preference.

This chapter is structured as follows: in the first section I describe our approach,

starting with a description of the modified Uhura system, then I introduce the Seman-

tic Memory module that interfaces between the user profile and the plan resolution

algorithm (CDRU [114]), and finally I describe how the extended system operates

using Semantic Relaxation. In the second section, I introduce an experiment that

provides empirical validation for the effectiveness of our approach by comparing the

system's recommendations with humans', and in a third section I provide our results,

which I analyze in a fourth section.
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2.1 Approach

The introduction of an Ontological User Profile involves several modifications of the

architecture of the mixed initiative system to allow profile learning, option ranking

respecting their hierarchy, an ability to justify recommendations, and dynamic acqui-

sition of new choices.

In order to describe each of these changes, I will first provide an overview of the

main architectural changes before I go into further detail into each sub-component.

2.1.1 Architecture

The modified Uhura architecture adds two new components: a Reader Module, and

a Semantic Memory, to a modified Planner Module (CDRU [114]).

1. Reader Module: The Reader Module uses a topic model to obtain vector rep-

resentations of choices from their associated online reviews and metadata. The

resulting vectors can be used to compare options categorically, and stylistically,

or to inform the User Profile.

2. Semantic Memory : The Semantic Memory contains an ontology for each

user the system keeps track of. The ontology is constructed as a weighted tree

with the different choices available to a user as leaves. The relationship between

child and parent nodes in the ontology follow an "is-a" relationship: neighbors

and parents are thereby semantically similar. At each node a label holding

the user's preference can be in three states: {likes, dislikes, unknown}. The

Semantic Memory uses these labels to rank other choices and provide candidate

solutions to the Planner Module during relaxation.

3. Planner Module : The Planner Module using a modified CDRU algorithm

called Semantic Relaxation to recover temporal consistency in temporal prob-

lems given by the user. To recover consistency, this module performs continuous

relaxation of temporal constraints, along with dynamic introduction of alterna-

tives by querying the Semantic Memory.
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Figure 2-1: Reader Module: a shallow neural network where a word window and the
distributed representation for an item serve to predict the metadata for the item.

2.1.2 Reader Module

In order to combine user behavior and raw information collected about recommend-

able items, our system's reader module uses a topic modelling algorithm to induce a

topology over choices. As a result of this topology, categorical and stylistical similar-

ities between choices can be used for ranking and justifying the machine's decision.

This methodology allows us to make the system more transparent by creating a

meaningful distance between items, which, as we will later show in our experiments,

better corresponds to human judgment than methods using explicit or implicit fea-

tures separately.

An ideal recommendation system should find a replica for what a user wants if the

original is unavailable. Meeting this demanding criteria is often impossible, except in

the case of mass produced goods, movie sequels, or chain restaurants; in the remainder

of cases, recommendation relies on understanding the underlying motivation and using

this as a search criteria. It is hard to extract in an unsupervised fashion from a

description of an item what is attractive about it. On the other hand, there has been

success in the Natural Language Processing community on topic modelling to derive

a distance that encodes the semantic proximity between documents [57, 118, 56, 33].

Inspired by these advances, we constructed our Reader Module as a shallow neu-

ral network (Figure 2-1) similar to the one described in [57] that learns a vector
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representation for an item.

To learn this representation we perform an autoregressive task: using a randomly

selected window of words, {w1, ... , Wk}, from the reviews of an item, along with the

vector representation of this item xitem, we predict the metadata {tI, ... , itn. We

project each word in the window into a word vector of dimension d, and through

back-propagation we learn the parameters for Xitem and the embedding matrix E for

the words, {Embed(wi, E),... , Embed(wk, E)}.

The parameters for this network are as follows, with k the size of the word window,

n the number of possible metadata values (both binary and categorical), and Xitem

with dimensionality ditem: Winear an (ditem + k - d) x n matrix, b a bias vector with

dimension n. The equations for this network are as follows:

T

Embed(wi, E)

Embed(wk, E)

Xitem

flinear(y) = y * Winear + b.

The feed forward connections between word vectors, item representation xitem, and

the predicted labels, can be extended to contain higher order interactions through the

use of a quadratic form through the use of an additional tensor, Wquad, with dimension

(ditem + k - d) x (ditem + k -d) x n:

fquad(Y) = fiinear(Y) + Y - (Y - Wquad)T.

We define the probability of a binary label t, being true as follows, with o(.) the

logistic function:

P(t4ly) = C7-(finear,quad (Y)i) -
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For categorical labels, we define the probability of the i-th label being present in

a group of m categorically exclusive labels, with indices ci, . . . , cm to be as follows:

P(c ly) = Softmax(finear,quad(Y)ci,...,Cm.

Our error function in this network is the Kullback-Leibler divergence between the

presence of a label and its predicted probability under the model. After training, the

resulting item vectors are used as inputs to the Semantic Memory.

2.1.3 Semantic Memory

The Semantic Memory is a representation of a user profile that uses an ontology to

keep track of user behavior and rank options using the discovered preference. In order

to describe the operation of this module I will first provide background on its origins

in The Discovery of Structural Form, then explain how the representation is modified

for use in our recommender system, and conclude with an example.

2.1.3.1 Background

Representation of human beliefs, and in this case preferences, using an ontology

was shown to be an effective representation in Cognitive Science research on Infant

Concept Learning [50], when using a distance metric on graphs called the Commute

Distance [105], where graph nodes are close if they share many connecting paths

more than if they only have a single short path. In this sub-section, I will give

some background Infant Concept Learning research relevant to the Semantic Memory,

followed by an overview and example of Commute Distance applied to an ontology

similar to the one used for user preferences.

2.1.3.1.1 Infant Concept Learning

Recommendation without prior user information relies on excellent knowledge trans-

fer from item-to-item similarity to user-to-user similarity. Recommendation within

this new context is now zero-shot learning, a holy grail of artificial intelligence. For-
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tunately, children from a very young age are adept at this. Indeed, humans can early

on distinguish their parents from others, develop speech and motor skills without

strong supervision, but rather through the use of mirror neurons and an excellent

generalization ability [25, 79].

In Kemp and Tenenbaum's framework, they explain how humans can generalize

far away from what they have witnessed by forming theories. They hypothesize that

humans have a strong prior belief on the underlying generative structure of the data

they observe. In other words, each example refines an existing and carefully thought-

out view of the world. They provide evidence within their work [98, 50, 96, 97] for the

ability of their model to make similar predictions to those of a human when asked to

fill blanks within a set of observations. For instance, in [51], the authors ask human

subjects what gene an animal possesses, and they find that using taxonomy trees as

the structure in their model yields high correlation (r = 0.9), while a diffusive or

"web" structure has slightly negative correlation (r = -0.09). Similar observations

are made about which structural form best explain how humans reason about the

presence of diseases and places.

2.1.3.1.2 Commute Distance

The inference procedure described in The discovery of structural form [51] uses the

Commute Distance, a metric defined on graphs useful for predictions. The Commute

Distance [105] or Resistance Distance [53] is a graph metric which takes into account

not only the distance between graph nodes but also the number of different paths

connecting them. This metric enables the parametrization of a multivariate Gaussian

from a graph using its Laplacian A.

Following the approach taken by Zhu et al. [120], the authors of [51] define

an observation vector ' ~ K(0, K) on a graph S, with nodes N, node-degree D,

adjacency matrix A, and K the covariance matrix for the random variable , with o

the variance for the binary observation at every node:
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A = Laplacian(S) = diag(D) - A

K =A + 1 2

y ~ N(0, K).

(2.1)

(2.2)

(2.3)

This model enables inference over a graph and makes use of the structure to inform

the covariance matrix for the random variable WY.

Example 2.1. Predicting the state of tree nodes

2
3

1

1

Degree Matrix

1 1
1 1 1

1
1

Adjacency Matrix
O Tree vertex

cNI Leaf

Figure 2-2: An example graph S with 5 vertices, including 3 leaves.

Let us consider the following example that demonstrates the effect of Commute

Distance for making inference on simple ontology: consider a tree with 5 vertices, and

3 leaves (Figure 2-2). The goal is to compute the likely state l1,12,13 of the leaves on

the tree (11,2,3 E {O, 1}), given our current observation of the green leaf having value

1.
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Figure 2-3: With the initial observation that the green node is 1, the most likely state
for the remaining leaves is computable from the joint probability derived from the
Laplacian.

Following the steps in equation 2.1 the covariance matrix K corresponding to

this tree can be obtained, shown in (Figure 2-3). The red box in (Figure 2-3) is

the submatrix corresponding to the covariance between the leaves of the tree. I can

estimate the likelihood of both the blue leaf and the green leaf being 1, and compare

it to the likelihood of the red and blue leaf being 1. As shown in the figure, having

both the green and the blue leaves be 1 at the same time is more likely.

2.1.3.2 Semantic Memory Operation

Formally, the semantic memory is defined as a weighted directed graph, with labels at

every node of the tree. A subset of the nodes of the graph are recommendable items,

while the remainder encode an "is--a" ontological relationship between nodes. At

every recommendable node in the tree, the label can be in 3 states: {liked, disliked,

unknown}. In the example semantic memory shown in (Figure 2-4), only leaves are

recommendable items.

Example 2.2. Planning a trip

Let us consider the following example: a man and a machine are having a dialog

to plan a trip in Seattle. The semantic memory in this example is illustrated in

(Figure 2-4). In this example, the human expresses interest in going to Loving Hut,

48



Restaurants

EJ burger

Thai-u-up

Veggie Grill

Plum Vegan Bistro Loving Hut

Teriyaki Ist
El Camnion

KafeeKlatsch
Zaccagni's Fogon Cocina Mexicana Plurh Burgers La Pasadita

Curb Jumper Street Eats El Naranjo

Shinn's Place Sunrice Deli Seoul Taqueria El Asadero

El Sabroso El Taquerie La Fondita

Figure 2-4: Hierarchical Cluster using the learnt distance of a subset of the restaurants
collected. Here we note that the bottom right contains a mexican subtree (with its
root marked with a double circle), while all vegetarian restaurants ( Veggie Grill,Loving
Hut, and Plum Vegan Bistro) are part of the same subtree.
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a vegetarian restaurant. The semantic memory remembers this observation inside the

tree.

During a future dialog between the man and the machine, memories concerning

what restaurants were liked and disliked with affect how recommendations are ranked

using the relationship between items to control the re-ranking. In this example,

following the logic described in (2.1.3.1.2), Plum Vegan Bistro and Veggie Grill will

be most highly ranked due to their proximity to a leaf that was observed to be liked.

In this example, let us suppose that Loving Hut is closed, and Plum Vegan Bistro

is 30 minutes away from where the person is situated, while Veggie Grill is only

15 minutes away. If time were no object, then the semantic memory would rank

Plum Vegan Bistro highest. If during the dialog the Planner Module learns about

a temporal constraint preventing this longer trip, then the semantic memory would

eliminate this option from its tree, leaving Veggie Grill as the top option.

2.1.4 Semantic Relaxation

Through Semantic Relaxation, the Planner Module performs constraint relaxation

on a large set of options that were not encoded in the original problem and obtains

candidate solutions that are highly rated using a user's profile.

2.1.4.1 Background

This component acts as a candidate generator for a temporal relaxation algorithm,

Conflict Directed Relaxation with Uncertainty (BDCR). The BCDR algorithm enu-

merates preferred continuous relaxations to resolve over-subscribed conditional tem-

poral problems [115].

In prior work, the BCDR algorithm was incorporated as part of a trip advisor to

help rental car users to make decisions between alternative trip destinations, duration

of stay, and length of reservations. If the travel plan given by a user is over-subscribed,

that is, no feasible choices exists that can meet all temporal constraints in the problem,

the advisory system suggests trade-offs between destinations and trip durations to

50



restore the feasibility of the user's plan. The BCDR approach was later extended

with a controllability model, Conflict-Directed Relaxation with Uncertainty (BDRU)

[114], for solving problems with temporal uncertainty, which are often encountered in

real-world scenarios. However, both of these algorithms only work with a static set

of choices and objective function defined by the user beforehand.

With Semantic Relaxation, the relaxation algorithm's set of solutions can be ex-

tended to include new options generated using the Semantic Memory, ranking candi-

dates with the help of the user's preferences and behavior.

2.1.4.2 Conflict Resolution

The temporal relaxation algorithm uses a conflict-directed search strategy for enu-

merating alternative solutions. It was first introduced by Conflict-directed A* [112]

for hardware diagnosis problems with discrete domain variables. The BCDR algo-

rithm extenas it to handle continuous variables and constraints, and later the CDRU

algorithm extends the conflict learning and resolution process to account for uncer-

tain durations. Given an uncontrollable temporal problem, CDRU can explain the

cause of failure as conflicting sets of choices and constraints, and enumerates preferred

continuous relaxations that restore the controllability.

Our integration is implemented based on the CDRU algorithm, which has two

major steps:

9 Conflict Learning: Given an uncontrollable temporal problem, detect and ex-

tract conflicts using a dynamic controllability checking algorithm. This step

remains unchanged in our integration: a conflict is defined as a mixed set of

constraints and choices that are not dynamically controllable.

e Conflict Resolution: Given a set of conflicts, compute preferred relaxations to

their constraints and choices to eliminate these conflicts. We fold in semantic

relaxation in this step: in addition to continuously relaxing the bounds of tem-

poral constraints, we will also query the semantic relaxation generator to supply
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additional domain assignments. These new domain assignments will deactivate

one or more constraints, and hence resolve the conflicts.

2.1.4.3 Candidate Generation Integration

The CDRU algorithm uses the resolutions to unresolved conflicts to expand the search

tree. Previously, there were two options for resolving a conflict: alternative assign-

ments and constraint relaxations. In our integration of semantic and temporal relax-

ations, a third option is added to represent the additional conflict resolutions from

the semantic relaxation generator. The three options are attempted in the following

order:

" Change assignments to deactivate constraints.

" If no alternative assignments exists for some variables, query the Semantic Mem-

ory for additional domain assignments, which can also deactivate constraints

and resolve conflicts.

" Finally, compute continuous temporal relaxations by relaxing the temporal

bounds of requirement constraints or tightening the temporal bounds of contin-

gent constraints.

The conflict resolution process, implemented in Function EXPANDONCONFLICT

(Algorithm 2.1), is separated into two stages. The first stage (Line 3-12) computes

discrete resolutions to conflicts using alternative assignments. We look for alternative

values in the variable domains that can deactivate one or more constraints in the

conflict, and use them to generate new candidates. If no such assignment can be found,

we query the semantic relaxation generator to supply additional domain assignments

as alternatives to resolve the conflict (Line 7).

The input to the semantic relaxation generator is a pair: the domain assignment

to be relaxed (a) and the number of additional options (1 in our implementation). If

an alternative can be found, the generator will return it and its utility, which is the

likelihood that the user will prefer it.
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Algorithm 2.1: Function EXPANDONCONFLICT

Input: A candidate to expand Cand(A, Rs, RT, Cc0nt) and an unresolved conflict
currCFT.

Output: A set of new candidates newCands that extend Cand.
Initialization:

1 newCands <- {};
2 CFTs <- Cc0rt U {currCFT}; conflicts to be resolved continuously;

Algorithm:
3 for a E currCFT do
4 Aalter =alterUGETALTERNATIVES(a) UGETALTERNATIVES (label (a));
5 end
6 if Aaiter == then
7 Aalter AaiterUGETSEMANTICRELAXATION(a, 1)

UGETSEMANTICRELAXATION(label (a), 1);

8 end
9 for aextend E Aalter do

10 Candnew <- (A U { aextend }, R, Cr , Ccont)
11 newCands <- newCands U Candneu ;
12 end
13 (Er, Eu, Nvaiue) <-EXTRACTCONSTRAINTS(CFTs);
14 fobs ' ZEErUEu fe (e);

15 (Re, Ru) <-OPTIMIZE(fobj, (Er, E., Nvaiue));
16 if Re $ null OR Ru # null then
17 Candnew - ( A, Re, Ru, Cr, Ceont);
18 newCands - newCands U Candnew;

19 end
20 return newCands;

For example, for a conflict that involves the assignment Lunch Lemongrass,

we can resolve the conflict using its alternative in the domain of variable Lunch:

Lunch=Wild Ginger. If none of the these assignments is available, the semantic

relaxation generator will compute an additional domain assignment that are similar

to the existing ones, such as Lunch-Lotus Asian. This assignment will then be used

to resolve this conflict and extend the search tree.

Note that during the expansion of the search tree, we need to create an additional

search node for each ExpandOnVariable and ExpandOnConflict step, which reserves

space for semantic relaxation. For example, while we expand on variable Lunch, an

1 Lemongrass, Wild Ginger, and Lotus Asian are the names of assignments to Lunch corresponding
to different restaurants in Seattle.
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Lunch = Wild Giner

Lunch = Lemongrass

Root NOT Lunch = Lemongrass
NOT Lunch = Wild Ginger

Figure 2-5: Reserving space for semantic relaxation using an additional search node

Lunch = Wild Ginger Duration: [0,180]- [0,

Lunch = Lemongrass Duration: [0,1801-[-,250 ]

r Root TNOT Lunch = Lemongrass
NOT Lunch = Wild Ginger

Figure 2-6: Resolving conflict using temporal relaxation

.Lunch = Wild Ginger-Drto:[,8]+020

L cunch = Lemongrass-: uain 010-020
Root NOT Luch=Lemnrs Lunch = Lotus Asian|

NOT Lunch = Wild Ginger <NOT Lunch = Lotus Asian

Figure 2-7: Resolving conflict using semantic relaxation

additional search node, -,Lunch = Lemongrass, ,Lunch = WildGinger, is created

(Figure 2-5). When both domain assignments of variable Lunch are evaluated to

be infeasible (Figure 2-6), we extend this node to create new candidates generated

from semantic relaxation (Figure 2-7). Similarly, an additional node of ,Lunch =

LotusAsian is created next to Lunch = LotusAsian in case we need to further relax

the domain of Lunch.

The second stage (Line 13-19) implements the third conflict resolution option:

continuously relaxing temporal constraints. This stage remains unchanged in our

integration. The key idea is that if the amount of modification we applied to the

constraints in a conflict exceeds the magnitude of its negative cycle's value, this cycle

will be eliminated and the conflict is then resolved. This allows us to formulate

the problem of computing preferred continuous relaxations as a linear optimization

problem. The variables in this problem are the modifications we should apply to

the temporal bounds of relaxable constraints. If the LP is feasible and a solution is
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returned by the optimizer (Line 15), we use the solution to construct a new candidate.

Finally, this candidate and the candidates generated in the first stage will be returned

by function EXPANDONCONFLICT to the main CDRU algorithm in [114].

2.2 Experiment

To test that our recommendation system's decisions align with humans, we simulate a

trip planning scenario where our system helps plan a trip with a human. To validate

the quality of our learnt ranking metric and the effectiveness of our approach, we

compare restaurant recommendations for a user made by human subjects with those

made by our system, when both are given the same background information about

the user.

I will first describe how we construct the Semantic Memory, then describe our

experimental protocol when collecting human recommendations, and finally explain

our evaluation method.

2.2.1 Semantic Memory

2.2.1.1 Dataset

In our experiment, we learn an ontology similar to the one shown in (Figure 2-

4) by collecting reviews and metadata for all restaurants in Seattle listed on Yelp

in December 2014. After collection and removal of duplicates we obtain information

about 6122 restaurant documents. We convert all metadata to a binary feature vector

with 198 dimensions. This feature vector has 188 independent category features, and

2 sets of 5 mutually exclusive labels: pricing: 0$ to 4$, and rating: 1 to 5 stars.

2.2.1.2 Reader Module

We learn item embeddings for each restaurant by predicting the associated metadata

using the Reader Module shown in (Figure 2-1), with the restaurant's item vector

and a random word window from the associated review text. Through cross validation
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on held out word windows we find that a word and item embedding dimension of 20

works best. We train our network using stochastic gradient descent with the AdaGrad

update rule [22], until prediction error for metadata using the held-out word windows

stops decreasing.

2.2.1.3 Hierarchical Clustering

T-sne projection of Seattle Yelp restaurants

other
**. vietnamese
. . thai
P *. tradamerican

.s Go see. italian
- *e. emexican

9see chinese
*** mediterranean

so 4 WA 04

*., % f 0

%'A ..6 ,y x 5 o& * 

Figure 2-8: 2D projection obtained via T-SNE[99] of the distributed representation
for all Seattle restaurants present in Yelp. The clusters in the figure correspond
to places with semantically similar cuisines or with overlapping vocabulary in their
reviews.
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T-sne projection of Seattle Yelp restaurants, with log occurence of word spicy
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Figure 2-9: A second 2D projection obtained via T-SNE[99] of the distributed rep-
resentation for all Seattle restaurants present in Yelp. In this figure, the intensity
of the color of the dots corresponds to the log occurrence of the word "spicy". The
bottom half of the learnt embedding space correlates with the presence of spicy food,
a feature only made available through review text.

The learn item vectors for each restaurant visible in (Figure 2-8) and (Figure 2-9)

are then clustered using average hierarchical clustering [88, 58]. We use the resulting

binary tree to find the Laplacian, A, and the covariance matrix K for inference and
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ranking. A real example output of this clustering algorithm using a small subset of

our data is visible in (Figure 2-4).

2.2.2 Experimental Protocol

We conduct our experiment with human subjects on Mechanical Turk by simulating

a recommendation situation with past user behavior. Each worker is asked to recom-

mend one of 3 restaurants in a list after reading a description of the restaurant and

viewing the same metadata as our system. The worker also receives a description of

the places liked by the person they are a recommending a restaurant to. Additionally,

we ask the workers to select the rationale for their decision among cuisine, rating,

price, or style.

To generate recommendation instances we simulate a user using simple rules con-

cerning rating, price, categories, or value= rating-price. Using those rules we select

4 places at random which all match a particular rule's criteria (e.g. must have rating

greater than 3 stars, category must be Italian, etc..), and 2 that do not fit the rule.

We then present 3 of the rule-conforming restaurants as part of the user's description,

and keep the remaining passing and 2 rule-breaking restaurants as options for workers

to choose from.

We generate 108 unique instances using 9 different rules, and show each instance

to 5 different workers.

2.2.3 Evaluation

We evaluate the performance of our approach by comparing the agreement between

the majority of human responses and the recommendations made using different learn-

ing algorithms. We compare our approach to several baselines, along with Paragraph

Vector Distributed Memory [57], a state of the art information retrieval and semantic

hashing model, and probabilistic-LSA [37], a powerful topic modelling technique for

obtaining summary vectors from documents We use as our baseline Logistic Regres-

sion and RBF-kernel SVMs [18] with the top 10,000 dimensions from Term-Frequency

58



Inverse Document Frequency (TF-IDF) [81] vectors as inputs. Using the learnt em-

beddings and representations for items from each technique we construct different

"Semantic Memories" for each, and rank each recommendation instance's options,

and pick the top one.

2.3 Results

Table 2.1: Comparison of model agreement with majority of human judges.

% time model agrees with majority
Learning Method Overall Price Cuisine Rating Value
Logistic Reg. w/. TF-IDF 33.33 41.67 31.94 25.00 41.67
SVM w/. TF-IDF 25.00 25.00 26.39 8.33 33.33
P-LSA [37] 31.48 41.67 33.33 33.33 8.33
PVDM [57] 36.11 16.67 38.89 25.00 50.0
Object LM 40.74 33.33 43.10 25.00 50.0
Object LM + Quadratic 43.52 50.0 44.44 33.33 41.67

The percent agreement between the majority of human's recommendations and the

compared approaches is shown in (Table 2.1). Results for baselines and alternate

learning algorithms are in the upper half of the table. Results for the proposed

learning method are shown in the lower half of the table. In the columns of the table

we show agreement results for all instances, and recommendation instances that were

constructed using specific rules.

In all cases we find that our approach outperforms or matches existing techniques

when comparing alignment with human judgment.

2.4 Analysis

The use of a richer representation was not only beneficial from a user interaction point

of view, but also improved performance of the system by allowing the combination of

explicit and implicit features.
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2.4.1 Semantic Memory

In our experiment we find that a combination of explicit and implicit features im-

proves agreement with human judgment by significant amount (6.4% overall) (Table

2.1). Moreover, using this technique we were able to construct a representation that

can provide a rationale for a machine's recommendation by using a human under-

standable metric. In particular, we find that information only available from the

implicit features in the review text is reflected in the learnt item topology: spicy food

is not one of the explicit categories, yet a cluster of "spicy" places is found (Figure

2-9) bridging Mexican and asian cuisine clusters in (Figure 2-8).

2.4.2 Semantic Relaxation

In our experiment with Semantic Relaxation, with the modification to CDRU that

uses a Ontological User Profile to suggest alternative solutions, we open the possibility

for more work on making the objective function of constraint relaxation algorithms

dynamic.

Today, the Semantic Relaxation algorithm serves only as a candidate generator,

however, an exciting area of research would be to learn how to richly couple the

original objective with semantic constraints so that richer and more complex queries

can be made by the user and enforced by the planner.
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Chapter 3

Sentiment Analysis

Human language is indissociable from emotion. In order for a computer to under-

stand the way we speak or communicate it must have an ability to comprehend or

appreciate the underlying tone. Depending on context "Okay" may signify agreement,

resignation, or simply acknowledgment. Understanding the differences between these

cases is crucial for a digital personal assistant to interact in a meaningful way with

humans.

In this chapter, I will present a novel machine learning framework, Memory Back-

pack (MB), that establishes a new state of the art results on the Stanford Sentiment

Treebank, a challenging Sentiment Analysis benchmark task. Moreover, unlike com-

peting approaches, the MB gives a visual explanation for its predictions.

3.1 Approach

My proposed framework, MB, is a neural network that makes iterative changes to its

prediction. A penalty is added to the objective function for each update, encouraging

the network to commit and only make changes when new information is present. In

Chapter 4 of this thesis, I provide a more in-depth analysis and discussion of this

penalty function, Occam's Gates, which encourages sparse activation of gates and

favours an Occam's Razor solution to emerge during training.

This framework resembles the work of [87] where a quadratic form controls the
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flow of information between different nodes of a tree, and the episodic memory in

[55], where a network uses gates to update its states, before making a prediction.

3.1.1 Network Architecture

The network receives as input a sequence of words or vectors S = [S,... , sn] and

must output a probability distribution or target state tfinal . As the sequence is read

the network produces intermediate states t1 , .. , tfinai. The network is defined by two

key components:

1. a processing module, which takes the previous network state and current

input {ti_1, si}, and forms a candidate prediction ti,

2. a memory gate, that takes the previous prediction and current input {tsi, sJ},

and the candidate state i, and combines them into a new state tj as a linear

combination of the candidate and past state using a gating scalar value gi E

[0, 1]):

tj = iI (D gi + (1 - gi) 0 ti_1.

This framework has two key features:

1. The memory gate captures climactic moments as information sources.

2. Activation of input and memory gates act as highlighters, which indicate the

network's attention, and gives clues about the location of new information in

the source sequence.

3.1.2 Sentiment Analysis Network Architecture

The specific module instantiation when performing Sentiment Analysis is as follows:

3.1.2.1 Processing Module

For Sentiment Analysis the processing module used for making predictions is a

bidirectional LSTM [27], which allows each step of the prediction to make use of the
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f ast but dull

ry3 ry2 ry1

Figure 3-1: A bidirectional LSTM that uses input gates to control what subset of the
input is passed on for later processing.

sentence context in both directions (Figure 3-1).

At each step of reading the forward and backward states of the bidirectional

LSTM are fed to a reader LSTM that fuses the observations. The hidden state

of this reader LSTM is projected using an affine map into a 5 class probability

distribution normalised using exponential normalization (Softmax). The network

diagram is shown in (Figure 3-2) with input gates between words and LSTM states

f Y1,2,3, ryi, 2 ,3 } omitted for clarity.

3.1.2.2 Memory Gate

Predictions at every timestep are linearly combined with past predictions via a mem-

ory gate. The memory gate's purpose is to control how much of the new prediction

should replace the previous prediction by outputting an interpolation value between

0 and 1, with 1 signifying that the previous prediction should be entirely replaced.

The specific equations for the memory gate are identical to those provided earlier

(Section 4.1.1). In this instance, a quadratic gating function (Section 4.3) was
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fast but dull

yi,1 Y2,1 y3, 1

ry3 ry2 ryi

81 8 2 33

A AA
to( t1 (++) t2 ( ) t3 (-)

Figure 3-2: The sentence "fast but dull" is passed to a bidirectional LSTM. The
forward and backward states of the network are processed by a left to right reader
LSTM (S1,2,3). The reader produces predictions ti, 2,3 which are gated and fused with
the previous predictions to,1, 2.

chosen after selection via hyper parameter search on a held-out validation dataset.

3.1.3 Vocabulary Expansion

During evaluation of the model over new data, previously unseen words do not have

a vector representation. The specific way this is handled becomes important when

considering real world text where slang, misspellings, or typos, introduce many miss-

ing words. For example, in the held out validation set of the Stanford Sentiment

Treebank, 61.3% of sentences contain at least one word that does not appear in the

training set. In my experiments, I compared two different strategies for coping with

these cases, described below.
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3.1.3.1 Unknown Word Symbol

Unseen words are replaced with a special unknown word symbol, <UNK> [16]. To learn

a vector representation for <UNK>, rare words in the training data are replaced in the

sentences by <UNK> with some chosen probability p. During training, this approach

allows <UNK>'s word vector parameters to be learnt. During evaluation, unseen words

are substituted by <UNK> and inherit a proxy embedding.

3.1.3.2 Expansion

Another strategy is to learn a mapping, f : Epre-trained -4 Ebackpack, between a larger

set of pre-trained word vectors, Epre-trainea, and those ones trained by MB, Ebackpack.

This mapping would allow me to use pre-trained word vectors for a missing word

Wmissing, Embed(wmissing, Epre-trained) ~ Wmissing, and convert them into their equiva-

lent in the trained embedding space:

f(Pmissing) = Wmissing,converted.

To learn this mapping, I follow the approach taken [52, 64], where they find a

linear mapping between word spaces parametrised by a matrix, Wtransiator, and an

offset, btransiator, such that:

V1 = Wtranslator - V+ btranslator,

where V' E Ebackpack and V' E Epre-trained.

3.2 Experiment

In this thesis, I compared my approach with others on a benchmark sentiment analysis

task, the Stanford Sentiment Treebank (SST) [87]. This dataset is a collection of

11,855 sentences extracted from movie reviews that specifically tests the effects of

negation, emphasis, and rare words. Each sentence has a sentiment annotations
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from 5 classes: {terrible, bad, neutral, good, terrific}, for the 215,154 unique sub-

phrases obtained after parsing each sentence using the Stanford Parser. My results

are compared with the current state of the art [94, 55], along with two baseline

architectures: a bidirectional LSTM, and a unidirectional LSTM. The model and its

baselines were implemented using Dalil, an open-source deep learning framework.

3.2.1 Training

Training is performed using the provided train-validation-test split of the dataset.

Because the MB does not make use of syntactic parse trees, the labeled trees are

converted to phrases during training using the same strategy as [94]2: the full sentence

along with a random sample of labeled spans is extracted from the original tree, and

each is treated as a separate training example.

Specific model hyper parameters are selected using grid search with the validation

set. The best configuration found uses pre-trained 300 dimensional word vectors from

Glove [74], LSTMs with 150 memory cells, and gradient descent using the AdaGrad

update rule with a learning rate of 0.05, and an L2 weight regularization of 0.00013.

Early stopping is performed when accuracy stops increasing on the validation set.

3.2.2 Evaluation

The model is evaluated by looking at the prediction accuracy for the label of the root

of the trees in the test set. Two separate evaluations are performed: 5-class (a.k.a.

fine-grained accuracy): { terrible, bad, neutral, good, terrific}, and binary accuracy: {
negative, positive}.

lhttps ://github. com/JonathanRaiman/Dali
2https: //github. com/stanfordnlp/treelstm/
3Interestingly the best hyperparemeters for MB are the same as those used by [94] in their baseline

architectures.
4Binary accuracy is measured by grouping all negative sentences and positive sentences, and

skipping neutral sentences.
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3.3 Results

In this section, I present results comparing the MB with state of art approaches,

and also provide examples for the visual explanations provided by MB over unseen

sentences.

3.3.1 Comparison

Table 3.1: Comparison of Root Accuracy on the Stanford Sentiment Treebank

Model Binary 5-class

LSTM (mine) 83.0% 43.78%

MV-RNN [86] 82.9% 44.4%

Bidirectional LSTM (mine) 83.4% 44.5%

RNTN [87] 85.4% 45.7%

DMN [55] 88.3% 50.3%

Tree-LSTM [94] 86.9% 50.6%

Memory Backpack

MB + mapping 89.07 51.45%

MB 89.13% 51.53%

Memory Backpack Ensemble

3xMB + mapping 89.02 51.86%

3xMB 89.02 51.90%

Results for root accuracy using the LSTM and bidirectional LSTM, along with state

of the art results can be found in the upper portion of (Table 3.1), with MB re-

sults shown in the lower two tables. The bottom table contains results obtained by

averaging the predictions from 3 MB models initialized with different random seeds.

The MB outperforms the bidirectional LSTM baseline by 5.73% on binary accu-

racy, and 7.03% on 5-class accuracy.
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The MB attains 51.9% fine-grained root accuracy and 89.13% binary accuracy,

establishing a new state of the art for Sentiment Analysis on the Stanford Sentiment

Treebank. The MB outperforms to the best of my knowledge all other approaches,

including the current 5-class state of the art [94], and the current binary state of the

art [55].

As visible in the table, the addition of a mapping for vocabulary expansion slightly

reduces the accuracy for binary and fine-grained accuracy in the single model case,

and has no negative impact on binary accuracy for the ensemble case.
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Figure 3-3: Root accuracy initially drops as a function of sentence length,
around 45%.
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We can additionally observe the effect of unknown words and sentence length on

the MB's performance in (Figure 3-3) and (Figure 3-4). Longer sentences reduce

the accuracy of the system, while unknown words have a more severe impact.

3.3.2 Visual Explanation

The MB differs from any of its counterparts in its ability to provide an explanation

for the prediction performed by the machine.

3.3.2.1 Sentiment Reversal Visual

Neutral Positive Positive Neutral Neutral Negative

Memory
Gate

I really liked the beginning of this movie but the story was really very bad
Time

Figure 3-5: An example of MB switching emotional state from positive to negative
with sentence progression

Let us take as an example a sentence from the context of movie reviews: "I really

liked the beginning of this movie, but the story was really very bad.", with the output

of MB shown in (Figure 3-5). In the figure, the first 5 rows indicate the probability

under MB of the sentence at this point of the reading belonging to a particular

sentiment class (e.g. row 1 corresponds to the probability of being terrible/--, and

row 5 corresponds to terrific/++). The bottom row is the interpolation value mi

shown earlier in (Figure 3-2). This bottom row corresponds to the intensity of the

update to the MB's memory (a value of 1 completely replaces the current prediction,

while 0 keeps its unchanged).
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In this example, the gate (lowest row) is at its peak at 4 points: "I", "liked",

"but" , "bad." At those points in the reading of the story the trained MB model picks

up on changes in the emotional state of the sentence:

1. At "I" the sentence has just begun, the model switches from a uniform distri-

bution to one with its maximum on neutral.

2. At "liked" the first positive word in the sentence is picked up.

3. At "but" the initially positive state of the system (still present at ",") switches

to neutral, reflecting the reversion.

4. At "bad" the negative information is incorporated into the prediction, and the

neutral prediction switched to negative.

3.3.2.2 Real world example: Apollo Landing

By observing the behavior of MB on an example from a different domain [8] than

its training data, a better picture of the strength and weaknesses can be obtained.

Words between two asterisks *WORD* were unknown to MB and projected using the

method described in (3.1.3.2).

+

++

Memory
Gate

'4,
'4

0

0

~0

'44,

Figure 3-6: Sentiment Analysis over text in a separate domain. Words between
asterisks were not seen during training, yet the network still reacts appropriately.
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Memory
Gate

Figure 3-7: Sentiment Analysis over text in a separate domain. The words "desola-
tion" and "Armstrong" were not seen during training, yet the name is kept neutral
and desolation is detected as being negative

In the examples shown above, areas that are sentiment-rich also correlate with

areas of tension and celebration in this scientific achievement.

3.4 Analysis

The Memory Backpack is a general machine learning framework for processing se-

quences. It is unique in its ability to provide control and visualization of the flow of

information to the prediction. On a challenging Sentiment Analysis dataset, a single

trained model establishes a new state of the art accuracy for binary and fine-grained

accuracy without any linguistical data or parse trees, while also providing for every

example a visual explanation supporting the prediction made.

In this experiment several conclusions and observations can be drawn concerning

the importance of a memory gate, vocabulary expansion, and the importance of an

interpretable output.

3.4.1 Memory Gate

In my experiments I find that the use of a memory gate allowing the current prediction

of the system to be part of the state improves the performance of RNNs by 5.73%

on binary accuracy, and 7.03% on 5-class accuracy. It supports the claim that the

ability to explicitly model and capture changes in the prediction improves accuracy.
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3.4.2 Vocabulary Expansion

Surprisingly, the vocabulary expansion strategy rather than improving performance

over unseen words, instead has a slightly negative impact on prediction accuracy(-

0.04% on fine-grained accuracy, and -0.05% on binary accuracy) (Table 3.1). One

possible conclusion from this is that. pre-trained word vectors found in Glove [74] al-

ready contain sufficient information for Sentiment Analysis. Secondly, it appears that

the new location of word vectors after training does not provide sufficient information

to beneficially project non re-trained vectors and construct an informative mapping.

I leave further investigation into which projection method might work best as future

work.

3.4.3 Interpretability

The MB is unique in its representation of internal state that remains interpretable

by humans all along processing. As visible in (Figure 3-5), as a sequence of words

is read, the emotional memory of the network is far from constant: on the contrary,

changes in tone or direction of the text are reflected at each timestep.

.1
Gate

Figure 3-8: Sentiment Analysis over text in a separate domain. The long sentence
and lack of clear sentiment markers causes indecision in the network reflected by the
oscillation around neutral.
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Gate

Figure 3-9: Sentiment Analysis over text in a separate domain. Words outside of the
training data, which carry different meaning for movie reviews, like "cold" cause the
network to view the sentence as negative.

It is also important to understand the failure modes of the system more directly. A

weakness of MB is visible in longer and more neutral sentences such as (Figure 3-8)

and (Figure 3-9), where the predicted distribution is undecided, causing oscillation

and unpredictable behavior from the gates.

In order to achieve true Man-Machine interaction, it is crucial that the machine's

behavior is visible to the human to create trust and collaboration through a deeper

understanding.

3.4.4 Comparison

Thure3r of the memory updates is a fundamental difference between the DMN and

the MB: in my framework, memory is used to store the current "emotional state" of

the system, and is thus relatable to the output and interpretable by a human at

every word read from the sentence. Memory in the DMN stores recurrent neural net-

work state snapshots, which are not immediately relatable to sentiment predictions .

Moreover, the DMN's reliance on multiple reads of a sentence disconnects memory

updates from specific moments in the sentence. While the memory representation

in the MB helps with interpretation, it constrains updates to the prediction to only

be sentiment label probability distributions, thus long term state is only stored us-

ing the hidden units of LSTM cells. This representation, modelling the state of the

5These memories, however, serve at a later stage of the computation to output a sentiment label
i n english using a separate decoder RNN.
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Sentiment Analysis system as directly containing predictions, appears to provide a

stronger representation for the sub modularity of this signal in human language. This

additional structure might explain the improved performance of MB over the DMN

and Tree-LSTM (Table 3.1).

3.4.5 Conclusion

In this chapter, I introduced Memory Backpack, a machine learning framework that

allows visualization and interpretation of a recurrent neural network through the use

of sparsity and gating mechanisms, and achieves a new state of the art result.

The underlying framework is general and can be applied to other sequence pre-

diction problems where suddens changes and events in the sequence are the source of

information.
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Chapter 4

Occam's Gates

Pluralitas non est ponenda sine

necessitate.

Plurality must never be posited

without necessity.

Guilelmus de Ockham,

Summa totius Logicae (1495)[20]

The ability to generalize from experience is a fundamental part of an artificial

intelligence. In order to incorporate and react to new information about the world,

the machine must be able to extract reusable lessons from experience. In this chapter

I present a complimentary objective function for training Recurrent Neural Networks

(RNNs) inspired by Guilelmus de Ockham's saying, "Plurality must never be posited

without necessity" [20]. This objective function allows machines, which process se-

quential data using RNNs, to explain their decision process by pinpointing what

temporal regions of an input sequence were attended to.

The intuition behind Ockham's saying could be translated into considering that

only a subset of the information in a problem is necessary and sufficient to respond.

In a sequence learning problem this would mean that only a portion of the time steps

carry useful information. Practically, an RNN can possess input gates that include

or ignore a timestep's entire input. The behavior of these gates can be coerced to be

sparse by enriching the original objective function for the sequence learning problem
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in the following way: the sum of the activations of the gating units gi weighed by a

hyper-parameter Asparse is added to the original objective J:

J J + Asparse gi. (4.1)

This objective function change encourages the network to focus on a subset of the

inputs during inference, and thus generalize better to unseen sequences by forcing

insensitivity to minor changes in the input. I demonstrate the effectiveness of this

approach on three separate sequence learning tasks: sentiment analysis, paraphrase

recognition, and question answering.

4.1 Approach

In order to give RNNs added transparency in their decision process it is possible

to add gates to their inputs at every timestep, and apply Occam's Razor over our

training data to find in each example a minimal set of useful inputs over time. To

achieve this property, I enforce sparsity in the activation of the RNNs' input gates.

In a sentiment classification problem for instance, gates would ideally only fire for

emotionally loaded words, and stay dormant otherwise.

Because Occam's Gates relies on the addition of input gates to RNNs, I make

the assumption that the vector input at each time-step is an inseparable information

unit, like a word, image, or fact. If this assumption holds, then the network is forced

to reduce its gate usage through a penalty on the sum of the gate activations, and

a solution is found in a local optima where gates are less often active, reducing the

sensitivity to minor input variations and highlighting the location of key inputs to

the human actor.

I formalise my approach by describing how we enforce sparsity on the gate activa-

tions for Long-Short Term Memory networks (LSTM) [36], then I describe how they

are used for the different tasks considered in this chapter, and finally I explain the
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the cat sat

Y1,2 0 Y2,2 Y3, 2

Y1,1 I Y2,1 Y3,1

<START>

Figure 4-1: An RNN with gates 91, g2 , 93 controlling the intensity of the inputs.

sparsity-enforcing objective function and the different annealing regimens considered

during training.

4.1.1 Gated LSTMs

In my work I make extensive use of LSTMs, a popular RNN architecture specifically

designed to capture long range dependencies and alleviate training difficulties [72, 35].

Since their introduction in 1995, many variants have been proposed [28, 67, 26, 94, 23],

however for the purposes of this work I used the vanilla version from [28].

While LSTMs are capable of selectively remembering or forget parts of their mem-

ory and input, they lack the ability to transform uniformly their input. I extend

LSTMs to include an additional gate, goccam, that uniformly multiplies all the in-

puts simultaneously. The gates are represented using triangles in (Figure 4-1), with

LSTM states, yij, represented using circles, recurrent connections shown with hori-

zontal arrows, and input connections shown with upward arrows. The equations for

the Gated-LSTM are presented in Table 4.1, with the differences with the regular
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Table 4.1: LSTM and Gated LSTM equations. Modifications shown in red.

Description

Occam's gate

gated input

block input

input gate

forget gate

memory state

output gate

hidden state

Symbol LSTM

Yoccal) absent
'F

Zt

Zt

ft
M-t

Se

Yt

absent

tanh (Wz t + Rzg7 1 +

o- W ix-t + Rjg _. + $)

a- W0 St + RfYt1 + bf)

I + f t_

a (Woxit + ROe_1 + 0)
do 0 tanh ('t)

Gated LSTM
fat c(i; h,-1 )

S- goccam

tanh (Wzft + Rzyt 1 +

a Wjz' + Ri4t_1 + 6i)

Wf. $ + Rft _1 + bf)

identical

- (W;e' + R Oyj 1 + bo

identical

LSTM highlighted in red, with -(.) for the logistic sigmoid function, Wi,2,z,o and

Ri,zf,o for matrices, and b2,i,f,, for vectors.

The gating functions fgate(-) can take multiple forms depending on what order of

interaction between state and input is needed to control information flow. I consider

two gate functions in this thesis: a linear function of the input 't and a second

order gate capable of capturing higher-order interaction. These gating functions are

computed as follows, with z' the input to be gated at time t, and ht_ 1 the state of

the network at time t - 1:

fiinear(xt, ht- 1) -(p - xt + q' - t-1 + b),

fquad ( *t, It-1 a-( ITT - W - YT + PT - Xt -+ 4T - ht_1 -+ b).

(4.2)

(4.3)

The gates are parametrized by #, q and b when using finear(it, ht- 1), and W, p, q

and b when using fquad (, '- 1)-

4.1.1.1 Encoder-Decoder

Occam's Gates can also be applied to encoder-decoder tasks, a special sequence pre-

diction problem where the output of the machine is another sequence. In this sub-
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U

the eat sat on the mat <EOS>

Y1,2 Y2,2 Y3,2 Y4,2 Y5,2 Y6,2 Y7,2

Y1,i Y2,1 Y3,1 Y4,1 Y5,1 Y6,1 Y7,1

<START> the cat sat On the] mat

Figure 4-2: English sentence sequence forecasting using Recurrent Neural Networks

section I provide some background on the underlying representation required for this

capability, and how this can be applied for the Question Answering and Fact Reading

task I validate my approach on.

4.1.1.1.1 Background

01 02 <EOS>

YI,2 Y2,2 Y3,2 Y4,2 Y5,2

Y1,i Y2,1 Y3,1 Y4,1 Y5,1

Z I z2 <EOS>

Figure 4-3: A Sequence to Sequence Transducer

The elaboration of more complex RNNs opened the way towards models that could
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encode a sequence and decode it into something different. The RNN is taught to wait

for special boundary symbols before making predictions and output a special end of

sequence symbol when the output sequence is over. With these added representational

tools, RNNs have been trained to translate between languages [4, 55, 93, 61, 44],

produce parse trees [102, 102, 101, 23], answer questions [55, 76], or generate movie

dialogues [84, 103]. In the example shown in (Figure 4-2) the encode decoding

task is simply to predict the next word in the sequence, by adding special boundary

symbols: <START> to indicate the beginning of a phrase, <EOS> to indicate the end of

a phrase. The introduction of these boundary symbols has transformed these systems

from sequence classifiers, into sequence to sequence transducers (Figure 4-3).

4.1.1.1.2 Question Answering with RNNs

To train an RNN to answer questions, the network is taught to produce arbitrary

length sequences followed by an end symbol in response to specific question sequences.

In this chapter, I train a network to process a question sequence, read several fact sen-

tences, and finally produce a distributed vectorial representation of an answer which

is then given to a decoder RNN. The entire system is trained using back-propagation

by penalizing the Kullback-Leibler divergence between the expected output token

at timestep i ({Oi, 02} in (Figure 4-3)) with the correct sequence, with the encoder

RNN ({yi,i Y1,2, Y2,1, Y2,2, Y3,1, Y3,2} in (Figure 4-3)) trained by propagating the errors

from the decoder RNN backwards in time.

4.1.2 Training Regimens

The ultimate goal of this approach is to use sparsity to highlight the decision process

of the machine, increase robustness to minor changes in the input, while maintaining

the original power of the network. Forcing sparsity too soon can do more harm than

good: a greedy and locally optimal solution is forcing all gates to be closed. To prevent

this from happening early exploration is encouraged by progressively increasing the

sparsity penalty, Asparse. I investigate 2 different annealing regimens: a linear and
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a quadratic increase up to Amax at training epoch Tmax, as shown below with e the

training epoch:

Amax flat regimen

Asparse(e) min{(e/Tmax) - Ama, Amax} linear regimen

min{(e/Tmax) 2 - Amax, Amax} quadratic regimen

4.2 Experiment

In this section I describe the experimental setup and specific instantiation of Occam's

Gates for the three tasks.

4.2.1 Sentiment Analysis

The goal in this task is to produce the correct sentiment label from a sequence of

words.

4.2.1.1 Dataset

I perform my experiment on the Stanford Sentiment Treebank, described earlier (Sec-

tion 3.2). The dataset is composed of 11,855 syntactic parse trees with sentiment

annotation at every node in the tree. To convert these trees to word sequences, I ex-

tract all possible word spans from the trees, forming 215,154 unique sub-phrases. The

phrases are then split into training, cross validation, and testing using the provided

train-validation-test split.

4.2.1.2 Implementation

Each word is projected using an embedding matrix into a 100 dimensional vector.

Only words that appear at least twice in the training data are kept, with others

replaced by an unknown word symbol, <UNK>.
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The words vectors are read in sequence by a gated LSTM; I obtain a 5 class

sentiment distribution after projecting the last hidden vector through an affine map

and applying exponential normalization (Softmax). 3 different models are trained

with different hidden sizes: 25, 50, and 150. Dropout with probability p = 0.3 is

applied between the non recurrent connections of the LSTM [90, 116]. All models

are trained using Adadelta [117] with p = 0.95, and training is stopped early when

prediction accuracy stops increasing on the validation set.

The base error function to train this model is the Kullback-Leibler divergence

between the correct sentiment label and the correct label. I apply Occam's Gates by

adding the sum of the gate activations to the objective function Asparse (equation

4.1) (Table 4.1).

4.2.2 Paraphrase Detection

In Paraphrase Recognition the problem is it to predict whether two phrases carry

the same meaning or are unrelated. This task can either be seen as regression or

binary classification, and the goal is measured as the Pearson correlation with human

annotations or recalling correct paraphrase pairs.

4.2.2.1 Dataset

Here, I focus on paraphrase detection on the SemEval 2014 shared task 1 dataset

[62] which includes 9927 sentence pairs in a 4500/500/4927 train-validation-test split.

Each sentence is annotated with a score t E [1, 5], with 5 indicating the pair is a

paraphrase, and 1 that the pair is unrelated. I also train using paraphrase pairs from

the wikianswers paraphrase corpus [24].

4.2.2.2 Implementation

For paraphrase prediction, I employ the same setup as for sentiment analysis (Section

4.2.1), with the final softmax layer removed. Each sentence in a pair is given to a

different copy of the Gated LSTM.
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The model's error function is the squared difference between the true similarity

t E R of the sentences and the dot product of the two LSTMs' final hidden states

h1 , h2 , with gi,j the gates in sentence 1 and g2,i the gates in sentence 2:

= ( .2 - t + Asparse (gl, + 92,.
|jh1||h2| j

4.2.3 Question Answering

4.2.3.1 Dataset

In this experiment we' focus on the 20 tasks in the Facebook bAbI dataset [108],

which test different capabilities of a model, from coreference to logical induction,

and use synthetic stories with limited vocabulary. We use the first 850 examples for

training and remaining 150 for validation as suggested in [108]. Each story is made of

several delimited sentences, and multiple questions along with their correct answer.

Each question also contains a list of sentences from the story that contain information

necessary to answer the question.

4.2.3.2 Implementation

For this task we construct a model that makes use of sparsity using the fact supervision

information from bAbI, and by penalizing the activation of input gates controlling

word vector inputs. We make use of the additional fact supervision information by

using two separate Gated LSTMs for different levels of reader:

1. We use a separate fact reader for each sentence, and gate the word vectors.

The final hidden state of this reader is kept as a fact summary.

2. A story reader receives as input a sequence of fact summaries from the fact

reader. The gate from this reader controls the arrival of fact summaries.

The fact reader's gates are unsupervised, and we apply Occam's Gates using Asparse

as done for Sentiment Analysis and Paraphrase Prediction. The story reader, on the

'Joint work with Szymon Sidor.
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other hand, has supervision on which facts should be used to answer a particular

question. Using this information we penalize the log loss between the gate activations,

gis, and the supervision labels tis, weighed by Afact:

1in
Lsupervision (g) f- Afact n gi log(ti) + (1 - gi) log(1 - ti).

i=1

To train our model we project the final hidden state of the story reader into

a distribution over all the possible answer words, and minimize the negative log

likelihood of the correct answer under our model. Our final error function for this

task is the sum of gate supervision error, Lsupervision, the negative log likelihood for

the correct answer, and Occam's Gates.

Through hyper parameter search on the validation set, we find that a model with

30 memory units in each LSTM, with 6 layers each, using quadratic gates (4.3),

performs best. We train our model using Stochastic Gradient Descent using the

AdaDelta update rule [1171, with p = 0.95, and a minibatch size of 50. We perform

early stopping when the validation score stops increasing.

4.3 Results

4.3.1 Effects on performance

Occam's Gates improve generalization on Sentiment Analysis (Figure 4-4), Para-

phrase Prediction (Figure 4-6), and for 18 out of 20 bAbI question answering tasks

(Figure 4-8), (Table 4.2). This effect is especially visible as model size increases

(Figure 4-4), (Figure 4-6). We find that without a sparsity penalty increasing

model size has smaller effect, however using sparsity we manage to achieve 5% im-

provement on sentiment analysis and 18% on paraphrase prediction recall. Addition-

ally for three arg. relations bAbI problem it increases the accuracy by 14%2.

Moreover, the sparsity annealing methods described in section (Section 4.1.2)

2 We observe greater improvements on this task than the other two; coincidently, this task has
longer sentences, thus word gating has greater impact.

84



Table 4.2: Comparison of test accuracy using different models on bAbI dataset for
various tasks from [108]. Models are (left to right): LSTM baseline from [108], Stacked
Gated LSTMs, and Memory Networks. Best results for LSTMs shown in bold.

Task LSTMs Gated LSTMs MN
single supporting fact 50 100 100
two supporting facts 20 32 100
three supporting facts 20 20 100
two arg relations 61 77 100
three arg relations 70 66 98
yes-no questions 48 51 100
counting 49 76 85
lists sets 45 78 91
simple negation 64 70 100
indefinite knowledge 44 47 98
basic-coreference 72 89 100
conjunction 74 99 100
compound-coreference 94 93 100
time reasoning 27 27 99
basic deduction 21 50 100
basic induction 23 47 100
positional reasoning 51 58 65
size reasoning 52 90 95
path finding 8 8 36
agents motivations 91 96 100

show improvements over a static objective function (Figure 4-5) and (Figure 4-7).

In particular, the linear regimen improves recall by 1% for Sentiment Analysis, and

by 7% on paraphrase prediction.

Finally, we observed that the Gated-LSTMs using sparsity significantly improves

performance over the LSTM baseline from [108]. As visible in table 4.2, this approach

matches or outperforms a non sparse approach on 18 out of 20 problems. Moreover, in

(Figure 4-9), in the absence of fact selection, word sparsity helps match the perfor-

mance of true supervision. The proposed approach does not match the performance

of Memory Networks (MemNN), however it allows inspection and visualization of the

behavior of model when performing complex multi step tasks.
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4.3.1.1 Relevancy detection

The Atlanta Falcons have pick Desmond Trufnt in te 2
we got Desmond trufant from washington

1.0

0.0

-1.0

Nmmmmmmmmmmm Jeremy Lin out again in the playoffi
Smh at Jeremy Lin talkdn bout a dude fallin off

... 0.0
Figure 4-10: Gated LSTM viewing char- Figure 4-11: Gated LSTM viewing char-
acters individually. Word boundaries are acters individually. Model focuses on up-
detected as shown by the absence of yel- per case characters and ignores repeats.
low highlighting in the inter-word spaces.
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A central goal of Occam's Gates is to apply a parsimony principle to any sequence

to make the behavior of the network more transparent. A particularly salient example

of the effect of this technique is visible when using a character based recurrent neural

network. Under those conditions, the inputs at every time-step are word embeddings

for every possible character (e.g. all ASCII characters). The resulting network when

trained for paraphrase detection learns to detect word boundaries (Figure 4-10) and

ignore repetitive or superfluous characters (Figure 4-11).

Sandra journeyed to the hallway. Sandra went back to the bedroom. Mary moved to the bedroom 1.0 1.0
Mary moved to the bedroom. Mary went back to the hallway. John journeyed to the hallway. Mary
Mary went back to the office. Mary moved to the bathroom. Sandra went to the garden. C Mary
Sandra moved to the bedroom. Mary went to the hallway . John went back to the bathroom. 2 Mary
Where is Mary ? office Where is Mary ? hallway Where is Sarma? garden 10.0 Mary 0o

5 training epochs 20 training epochs 50 training epochs

Figure 4-12: Gating procedure learnt by Gated LSTMs during training for bAbI task.
We note here how the yellow word highlighting in the rightmost paragraph correspond
to informative words, while in the leftmost paragraph no particular pattern is present.
The text color indicates whether an entire sentence was kept using the fact gate. In
the middle paragraph, sentences without the character mentioned in the question are
already ignored.

A similar observation can be made regarding the search behavior discovered by

the network when performing question answering tasks from bAbI. In this scenario,

each sentence and word can be gated separately. Intuitively we would expect the

network to discover how to ignore irrelevant sentences by shutting off the gate for

the entire sentence, and for relevant sentences, shutting off irrelevant words. When

viewing the evolution of the network during training in (Figure 4-12), a strategy

emerges that is close to the one just described.

4.4 Analysis

In this chapter, I presented a complimentary objective function for training recurrent

neural networks that renders their behavior more interpretable, while also improv-

ing the performance. In experiments with Occam's Gates, I demonstrated how the

approach did not compromise performance for readability, and instead improved per-
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formance over non-sparse baselines by a large margin.

In particular, enforcing sparsity reduced overfitting allowing models with more

hidden units to be trained for Sentiment Analysis and Paraphrase Detection. In 18

of the 20 bAbI question answering tasks (Table 4.2), Gated-LSTMs trained with

Occam's Gates improved over the non-sparse baseline.

Varying the sparsity penalty during training to allow early exploration proved

beneficial by up to 7% on Paraphrase Detection recall (Figure 4-7), and 1.5% on

Sentiment Analysis (Figure 4-5). Moreover, over- and under-penalization of sparsity

are shown to be detrimental, with performance peaking at a single point (Asparse-

0.0005) during two different tasks.

88



Chapter 5

Discussion and Future Work

In this thesis, I provide evidence that in the Man-Machine interaction problem en-

forcing sparsity in the inputs of the machine sheds light on the decision process of

the system and provides a rationale for the human. In this conclusion chapter, I will

first summarize the findings, and second discuss areas of future work.

5.1 Conclusions

Through three separate experiments I find that mixed initiative systems can be more

transparent and achieve higher performance by enforcing sparsity, either through the

use of an Ontological User Profile that respects the hierarchical nature of the options

under recommendation, or by adopting a new objective function to train Recurrent

Neural Networks (RNNs) that induces an Occam's Razor behavior in their treatment

of input.

5.1.1 Ontological User Profile

Semantic Relaxation Uhura is an extension to the present Uhura mixed-initiative

planning system, which includes an Ontological User Profile that suggests alternative

relaxation solutions from a user's preferences. Unlike competing approaches, this

User Profile works under cold and warm start situations and respects the hierarchical
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nature of the options under recommendation. The addition of an ontology improves

the transparency of the system by allowing it to justify its ranking through the use

of supporting examples in past user actions.

This richer representation also makes the final system more expressive: connec-

tions between user actions are found "semantically" by considering whether two choice

nodes in the ontology share parents or siblings. Furthermore, by incorporating online

reviews and metadata into the semantic distance, new choices can be dynamically

incorporated into the recommendation by re-using the previously learnt topic model

on new data.

I demonstrated the effectiveness and validity of the approach empirically by com-

paring the recommendations by humans with those made by the Semantic Relaxation

Uhura or those made with other state of the art topic modelling methods. In this

experiment, I find that using an Ontological User Profiles generated by reading on-

line reviews improves agreement with humans by 6.4% (from 36.11% to 43.52%) over

competing approaches.

5.1.2 Occam's Gates

Occam's Gates is an augmented objective function for training RNNs to be selective

in their inputs that can be systematically applied to sequence learning tasks. Through

two separate experiments, I demonstrate the effectiveness of the approach to provide

justification for the machine's behavior, and improved performance.

5.1.2.0.1 Sentiment Analysis

Representing sentiment as an incremental, justifiable process, with each timestep's

prediction updating the current best prediction rather than replacing it, gives a visual

explanation for the regions of the input that contain emotional signal and increases

prediction accuracy. The proposed model, which uses incremental gated predictions,

outperforms a baseline by 7.03% on 5-class accuracy and 5.73% on binary accuracy,

and improves over the current state of the art by 1.3% on 5-class accuracy, and 0.83%
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on binary accuracy.

5.1.2.0.2 Sequence Learning

Occam's Gates (OG) can be systemically applied to other problems: I contrast non-

gated approaches with their OG counterparts. In my experiments, I find that all

models where OG is applied are now capable of pinpointing the temporal regions

that impacted their prediction, and consistently outperform versions where sparsity

was not enforced:

* Sentiment Analysis: A 5% improvement is observed over non-sparse models.

The performance difference grows with the number of parameters in the model,

suggesting that OG acts as an implicit regularizer by communicating that only

a subset of the temporal inputs should impact the prediction.

" Paraphrase Detection: An 18% improvement is observed on Paraphrase Pre-

diction recall. As with Sentiment Analysis, performance improves with model

size, reinforcing the notion that OG also regularizes.

" Question Answering and Fact Reading: (bAbI dataset) LSTMs trained

with OG outperform the non-gated LSTMs on 17 out of the 20 tasks. More-

over, on certain tasks, LSTM performance matches that of the more advanced

Memory Networks, through the simple addition of a sparsity penalty.

5.2 Future Work

Greater transparency in Man-Machine interaction raises several questions about fu-

ture division of labor. In the three experiments presented in this thesis, the ability

to visualize, interact, and collaborate more deeply with the machine has significant

effects on the usability of the mixed initiative systems and improves performance. In

this section, I discuss several directions for future work with respect to the Ontological

User Profile and Occam's Gates.

91



5.2.1 Ontological User Profile

Semantic Relaxation Uhura paves the way towards more dynamic objective functions

within plan relaxation, where the user's preferences can not only allow new options

to be integrated in the plan, but also modify the importance of difference constraints.

In this research, we demonstrate the feasibility of a dynamic objective function ex-

panding the set of relaxation solutions from CDRU.

In the future, there would be significant value in understanding to what extent

other parts of the objective function could become dynamic based on the environment

or user preferences, by integrating multiple user preferences jointly as was done in

Conditional-Preference networks [12, 17].

5.2.2 Occam's Gates

In this thesis I provide evidence that Occam's Gates (OG) can be systematically ap-

plied to several sequence learning tasks to construct systems that are more transparent

to the human actor, and more performant by reducing the impact of distractors.

In fact, the experiments appear to confirm that this augmented objective func-

tion communicates problem structure: I find that by modifying a baseline model, a

bidirectional LSTM, so that it incrementally constructs its prediction using gates, I

outperform more sophisticated approaches. This result suggests that OG could pro-

vide similar benefits if combined with different models or if directed at other sequence

learning tasks. With this observation in mind, there exists several directions where

OG could be further investigated:

" Computer Vision models, which make use of Recurrent Neural Networks to

control a sequence of glimpses [29, 95, 66, 46, 104, 119, 85, 77] through images,

could similarly be made more robust to distractors by applying OG.

" Mixed initiative architectures contain several black-box components responsible

for recognizing state or activities from sequential data where sparse gates could

help detect failures or communicate information flow to the human.
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