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Abstract

In this thesis, we analyze the effect of the correlations in neural activity on the
information that is encoded in and can be decoded from a population of neurons.
Various noise models describing these correlations are considered - in particular, we
use models that take into account the pairwise correlations and other, simpler models
that assume shared global additive and/or multiplicative noise factors. The perfor-
mance of these models on firing rate prediction (encoding) and population decoding
are studied. Our analyses show a significant beneficial effect of pairwise correlations
on encoding models, with much of this benefit being explained by the global noise
models. However, the effects of correlations on decoding vary among our datasets,
providing an empirical justification to the theoretical results suggesting correlations
can be either helpful or harmful to decoding.
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help address whether decoding strategies implemented within the brain have to take

correlations into account, or whether factors that affect correlations - such as training

or attention - would have a large effect on decoding accuracy.

From the encoding perspective, we can ask whether we can improve the prediction

accuracy by using the firing rates of other neurons in the population as features, and

how doing so compares to the standard method of predicting neural behavior from

stimulus properties.

The remainder of this chapter summarizes the properties of the datasets we use

in our analyses and describes the brain regions from which they were recorded. In

Chapter 2, we define and quantify the correlations within the recorded populations.

In Chapter 3, we examine the effect of correlations on population decoding, and in

Chapter 4, we use correlations within encoding models.

1.1 The Ventral Stream

In our analysis, we use multielectrode recordings from three different areas of the

visual cortex: V1, V4, and the inferior temporal cortex (IT). These three regions are

part of the ventral stream, which is thought to play an important role in visual object

recognition.

V1 Area V1 represents the first stage of visual processing within the cortex. Stan-

dard models for neurons in V1 are based on the early work of Hubel and Wiesel (1962).

They documented simple cells in V1, many of which were tuned to respond to bars at

particular orientations and at particular locations within the visual field. They also

discovered some cells, which they labeled as complex, which also responded to bars at

particular orientations, but displayed tolerance to the precise location of the bar. A

proposed model of this is that complex cells achieve invariance by pooling inputs from

simple cells. Simple and complex cells in V1 have been modeled computationally, e.g.

by the feedforward, hierarchical HMAX model (Riesenhuber and Poggio, 1999). This

model contains a layer of computational units that have the orientation and location

14



Chapter 1

Introduction

Multielectrode arrays can record the spiking activity of hundreds or thousands of neu-

rons within a localized brain region simultaneously. Techniques for analyzing such

data include the creating of encoding models, which predict a neuron's firing rate from

external variables, and decoding models, which do the opposite - using the population

of neural responses to predict the external variable (Dayan and Abbott, 2005). In the

study of neurons in the visual cortex, the external variable would typically correspond

to which image was being presented to the animal at that time. Apart from under-

standing the computations performed by various brain regions, multielectrode array

technology along with decoding analysis also has applications in neural prosthetics,

for example allowing humans to gain a degree of control over robotic limbs.

The firing rates measured on a given electrode show significant variability from

trial to trial; a widespread finding on multielectrode data is that this trial by trial

variability is actually correlated across different electrodes. In this thesis, we examine

the effects of correlations on the neural analysis methods described above.

The analysis of correlations has implications for population decoding from a prac-

tical perspective in order to choose decoding algorithms that optimize for decoding

accuracy as well as efficiency, since algorithms that ignore correlations might be more

computationally efficient. It can also be used to examine whether the correlations'

effects are significant enough that decoding on non-simultaneous recordings could

produce misleading results. From the perspective of understanding the brain, it can

13



IT is based more on shape similarity than semantic similarity.

1.2 Datasets

Table 1.1 summarizes the data used in our analyses, which were from a total of four

different microelectrode arrays - with two from different regions of the same animal's

visual cortex. For all datasets, the features used for analysis are the multiunit firing

rates on each electrode, or recording site, during a 150ms time bin. The time bin

is fixed for all data recorded from a particular array, and was chosen to maximize

population decoding accuracy. Sample images from the different stimulus sets used

with the arrays are shown in Figure 1-1.

Table 1.1: Summary of Multi-electrode Array Recordings

Stimulus Set Num. Stimuli Date Num. Stimulus Repetitions
Array 1 - V1, 131 recording sites
Drifting Gratings 8 50
Array 2 - V4, 32 recording sites

Jan 27 25
Color 48 Feb 04 48

Feb 05 48

Feb 13 34
Objects 105 Mar 10 55

Mar 10 55

Jan 23 37
Jan 26 36

Natural Images 100 Jan 28 48
Feb 03 36
Feb 06 50

Array 3 - V4, 96 recording sites, and
Array 4 - IT, 110 recording sites

Aug 21 29
Natural Images 300 Sep 01 49

Sep 02 49

16



selective properties of simple V1 cells, referred to as the S1 layer. Units in the next

layer, known as C1, correspond to complex VI cells, and have responses equal to the

maximum of its input S1 units. The S1 units that are inputs to a given C1 unit are

tuned to similar orientations but at slightly shifted locations, thus allowing the C1

unit to capture the invariance properties of complex VI cells.

V4 V4 was early on characterized as a color processing area; however, further studies

have demonstrated the shape-selective properties of V4 neurons, which are more

complex than those of VI neurons and might aid in figure-ground segmentation (Roe

et al, 2012). V4 neurons can be receptive to differences in the curvature of object

boundaries (Pasupathy and Connor, 2001). In terms of computational modeling, a

spectral receptive field that computes responses as a linear function of the orientation

and spatial frequency power spectrum of the stimulus has been used to replicate the

properties of V4 neurons (David et al, 2006). The HMAX model is also thought to

have layers that have similar properties to V4 neurons. In addition to the S1 and C1

layers, there is also a S2 layer which uses inputs from C1 units to exhibit selectivity

for features that are more complex that just oriented bars, and a C2 layer whose units

perform max operations over sets of S2 units to achieve invariance in a way analogous

to C1 units. Cadieu et al (2006) fit parameters of a C2 unit to different V4 neurons

to model the shape selectivity properties of the neurons.

IT The inferotemporal cortex is the highest purely visual area in the ventral stream.

Studies have found neurons in this area that respond to specific objects, such as

faces, with specificity as well as invariance - i.e., the face-tuned neuron might respond

similarly to faces of various sizes and positions. Representational similarity analysis

(Kriegeskorte et al, 2008) has also been used to show that IT neurons' responses

are based on object category - for example, responses to animate and inanimate

objects are highly dissimilar. These properties were not explained by computational

features such as the C1 and C2 layers of the HMAX model. However, more recent

computational analysis by Baldassi et al (2013) suggests that the representation in

15



For the V4 data, the firing rate between 50 and 200 ms after the stimulus onset

was used; for IT, we used the firing rate between 100 and 250 ms after stimulus onset.

The optimal time windows for decoding - and therefore the time windows used in our

analyses - are different for areas V4 and IT because IT is further along the ventral

stream than V4.

ADOU

Figure 1-1: Row 1: Sample stimuli from the Color stimulus set used with Array 2.

Row 2: Sample stimuli from the Object stimulus set used with Array 2. Row 3:

Sample stimuli from the Natural Image stimulus sets used with Arrays 2, 3, and 4.

18



Chapter 2

Response Stability and

Correlations

In this chapter, we first examine the similarity of the multielectrode recordings across

different recording sessions, which we refer to as stability. Next, we describe and

quantify the various types of correlations between neuron pairs that are present in

the data before using them for decoding and firing rate prediction in the next chapters.

We quantify correlations in terms of both the signal correlation, the similarity of two

sites' stimulus tuning, and noise correlation, the similarity of deviations of average

stimulus responses, and also assess how stable the correlations are between different

recording sessions.

For results in this and future chapters, recording session data is referred to using

the array number (either Al, A2, A3, or A4), and the stimulus set. For example, the

string "A2Color1" represents the first recording session for which the Color stimulus

set was used with Array 2. For a list of all recording sessions and their corresponding

arrays and stimulus sets, see Table 1.1.

2.1 Stability

One concern when using a multi-electrode array for multiple days of recording is

whether the responses recorded by a unit remain stable over time. A lack of stability

19



This is a somewhat simplified approach to quantifying stability in that it treats

each neuron independently; correlations between neurons and the stability thereof is

the focus of the following section.

2.2 Correlations

Signal correlation Signal correlation is a measure of the correlation between two

neurons' average responses to a set of stimuli, and is given by the correlation coefficient

between the mean responses to each stimulus:

sc(i j) -- k (2.1)

~3(r?-i ri)2  )(-j:k -j

k k

where rik is the mean response of site i to stimulus k, and ri is the mean response of

site i to all stimuli (i.e. ri = I ri).
k

Figure 2-2 shows a histogram of signal correlations computed for each pair of

sites. For all recording sessions, the mean signal correlation is positive. Array 1 has

the highest mean signal correlation, and it also has many pairs for which the signal

correlation is close to 1. This may be because there are only 8 unique stimuli, and

these stimuli - oriented gratings - represent the features to which neurons in that area

(Vi) are tuned. Arrays 3 and 4 have the next highest mean signal correlations, but

the signal correlations for Arrays 2, 3, and 4 have similarly shaped distributions.

We can examine the stability of signal correlations across the different days of

recording by computing the correlation coefficient of the signal correlations values of

all pairs of neurons on those two days.

Figure 2-4 shows the results, which indicate that while neuron pairs with a high

signal correlation on one recording session with a particular stimulus set are likely to

have a high signal correlation on another recording session with the same stimulus set,

they are not likely to have a high signal correlation with another stimulus set. Signal

correlations with the Color stimulus set, in particular, have a very low correlation

22



1.2.1 Array 1: V1

Recordings from an electrode array with 131 recording sites were taken from V1. The

stimuli shown were drifting grating patterns, with 8 possible grating orientations.

1.2.2 Array 2: V4

Data was collected from area V4 of the primate visual cortex. The stimuli were shown

as a rapid serial presentation, with each stimulus being shown for 200 ms each and

no time in between subsequent stimulus presentations. Multiple stimulus sets were

shown, and included a set of colors of varying hue and luminance, a set of objects on

a plain background, and natural images.

Noise Rejection A preprocessing step we took on this dataset was to reject de-

tected waveforms that appeared to be noise rather than an actual spike. To do this,

we used a straightforward outlier rejection procedure in which any waveform with a

value in any dimension that was greater than p75 + 2.5IQR or less than P25 - 2.5IQR,

where pi is the ith percentile and IQR is the interquartile range for the dimension,

was classified as noise. However, because the spurious waveforms could influence the

computed percentiles and interquartile ranges, we computed those values only using

waveforms which conformed to a standard spike shape - with the global minimum

occurring before the global maximum and no other local extrema in between. After

the percentile and IQR statistics were computed from this subset, all waveforms were

taken as possible waveforms when performing the outlier rejection procedure.

1.2.3 Arrays 3 and 4: V4 and IT

For these datasets, a set of natural images was presented in a rapid serial presentation

format, with stimuli being presented for 100ms each with a 100ms gap in between,

while separate arrays recorded from areas V4 and IT. Three hundred natural images

were presented as stimuli while Arrays 3 and 4 were recording; these included the one

hundred natural images used as stimuli for Array 2, and two hundred others.

17



could indicate that the array has drifted and is recording from a different neuron or

set of neurons. Assessing stability can help determine whether data from a multi-

electrode array can be pooled across days, or whether model parameters learned

on one day can be applied to data on another day. This has implications for the

use of chronically implanted multi-electrode arrays in brain-machine interfaces, and

determining how long we can rely on a trained brain-machine interface to produce

valid results.

Multiple metrics have been used to quantify stability. Dickey et al (2009) com-

puted stability scores both based on the correlation between average spike waveforms

recorded by a single unit on consecutive days and the similarity of the interspike

interval histogram of a unit's recordings on consecutive days. These scores were used

to identify a stable subset of neurons that were also more likely to be stable in the

future. Jackson and Fetz (2007) also use the correlation between waveforms recorded

by the same unit on different days as a measure of stability, but note that different

neurons can have similar waveforms, and thus this method may not always pick up

on instability that results from an electrode recording from a different neuron.

Since the decoding and encoding models we employ in Chapters 3 and 4 us firing

rates within a certain time interval as features, we also compute stability on the level

of firing rates. We quantify stability by comparing each recording site's mean firing

rates to each stimulus, computing the distance between a site's vector of stimulus

means on two different days. To compute the distance between two stimulus mean

vector, we use two different distance metrics:

" Euclidean distance, which will be high if the mean responses to each stimulus

remained the same on two different days

" Correlation distance (1 minus the correlation coefficient between the two vec-

tors) which would remain high even if the stimulus means didn't stay exactly

the same, but were all subjected to the same additive and/or multiplicative

noise constants.

Our method takes advantage of the fact that stimulus modulates firing rate in different

20



ways for different neurons, which can also help avoid the problem that waveform-based

methods face of different neurons having similar waveforms.

The plots in Figure 2-1 indicates, for each recording site, the distances between the

stimulus response vectors on the two different days, using the two different distance

metrics.

Both Arrays 2 and Arrays 4 show many sites with high correlation distance sta-

bility. There are also clusters of sites on these arrays with relatively high correlation

distance stability, but low Euclidean distance stability. In these cases, it is possible

that the location of the recording site remained relatively stable, but that there was

a change in the overall means or variances of the neurons' firing rates. Many of Array

3's recording sites, on the other hand, show low stability according to both distance

metrics.

Figure 2-1: Stability of mean stimulus responses. We plot stabilities for each pair of

subsequent recording sessions with the same stimulus set. To quantify stability, we

compute both the Euclidean distance and correlation distance between each record-

ing site's mean firing rates to each stimulus on the two different days. Each point

represents a recording site plotted against these two distance metrics.
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Figure 2-4: Signal correlation similarity across different image sets. The similarity
between two days is computed as the correlation coefficient between the sets of signal
correlations.

Arri :

Nat2-26,1.ii
Cdfor1-27Janw.

NaM3-P&Jan
Nat4-03Feti

Cakir?-04F.t
cotor3-0Feb

NatI Na12 cioLrl Na1J Na14 r. ore I Irk Nt I

Array 3 Array 4

Natl-21Aug Nal -2A

Nat2-01ep -NWt2-01S -

Nd13-02J2Sept - Nat3-02Sp

Nati Nat2 Nat3 Nati Na12 NaI3

Our data in Figure 2-5 shows positive noise correlations on average, with most

recording sessions showing similar distributions except for Array 1, whose units ex-

hibited very low noise correlations. The mean noise correlations for the other arrays

generally agree with the noise correlation values of .1-.2 found in the literature (Cohen

and Kohn, 2011)

We can look at the stability of noise correlations in an analogous manner to signal

correlations. We create a vector of noise correlations of all neuron pairs for two

recording sessions, and then compute the correlation coefficient between these two

vectors. From Figure 2-7, we can see that, for Array 2, the noise correlation stability

is high, even for different stimulus sets. There does appear to be a mild effect of

stimulus set, however. As one example, recording Nat4 and Nat5 have a higher noise

correlation stability that either Nat4 and Color2 or Nat4 and Color3, even though

the Color2 and Color3 recording sessions occurred in between Nat4 and Nat5. For

Arrays 3 and 4, on the other hand, noise correlation stability is relatively low.
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Figure 2-2: Signal correlations
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Figure 2-3: Distribution of signal correlations for each recording session

with signal correlations in either the Object or Natural Image stimulus sets. However,

signal correlations with the Natural Image set have a moderate correlation with signal

correlations in the Object set. For Arrays 3, the signal correlation similarity between

different days with the same stimulus set is relatively low compared to the other

arrays; however, this is not as surprising given the low response stability demonstrated

in Figure 2-1.

Noise correlation Noise correlation describes the relationship between two neu-

rons' deviations from their average stimulus responses.

E: Z(rikm - 'rik) (rjkm - rk
nc(i, j) = riz - k 2

k m

(2.2)

: Z(rgi -- rik)2
k

Here, rikm is the response of neuron i to stimulus k on its mth presentation, and rik

is the mean response of neuron i to stimulus k.
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Figure 2-7: Noise correlation similarity across different image sets. The similarity
between two days is computed as the correlation coefficient between the sets of noise
correlations.
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decoding and prediction of the neural code (e.g. Maynard et al (2010)). To an-

alyze the extent to which correlations are dependent on stimulus, we can compare

stimulus-specific noise correlations on different days, where the stimulus-specific noise

correlation to stimulus k is given by the correlation coefficient between all responses

to that stimulus:

ssnk (i, j)= (2.3)
T3 rikrn -rik )2>~jm rk 23

m m

We can then examine whether there are any patterns in a neuron pair's stimulus-

specific noise correlations that are stable across days by creating, for each pair of

neurons, a vector of all stimulus-specific noise correlations for two different recording

days, and then correlating these two vectors. We then obtain a set of stimulus specific

noise correlation stabilities.
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Figure 2-5: Noise Correlations

AIGratings A2Coorl
mean: 0.080 mean: 0.221

4000 100

2000 j 50

0.1 0
1 0 1 -1 0 1

A2Na I A2Nat2
mean: 0.199 mean. 0.213

100 100

50 so

1 0 1 1 0 1

A3Nal? A3N*3
mean. 0.146 mean: 0.367

1500 1500

1000 1000

boo 500

0 0? 04 00 .5 1

Figure 2-6: Distribution
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of noise correlations for each recording session

Relationship between signal and noise correlation A positive relationship

between signal correlation and noise correlation has been well documented in the

literature (Gu et al, 2011; Cohen and Maunsell; 2009). We find a similar trend in

our datasets. Plots of signal correlation vs. noise correlation and their corresponding

line-of-best-fit slopes are shown in Figure 2-8. Again, the exception is Array 1, which

had low noise correlations and also a very low slope. Among the recording session

with Array 2, the Color stimulus sets tend to have a lower slope than either the

Object or Natural Image sets.

A positive relationship between signal and noise correlation is thought to have a

deleterious effect on population coding (Averbeck et al, 2006); this will be discussed

more in Chapter 3.

Stimulus-modulated correlations There is some evidence that noise correlations

might in fact depend on the stimulus - thus making them stimulus-modulated corre-

lations. If correlations are stimulus-modulated, it would have implications for both
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Figure 2-9: Correlation of Stimulus-Specific Noise Correlations. For each subsequent

pair of recording sessions with the same stimulus set, a histogram of all sites' correla-

tions between stimulus-specific noise correlations on the two different days is shown.

All pairs of days show a higher average correlation value than in a trial-shuffled pop-

ulation.
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these distributions are all greater than 0 (p < .05) indicating that there may be some

stimulus-modulated correlations. The means are also all significantly greater (p < .05)

than the means obtained when performing the same analysis on a pseudopopulation.

Another way of assessing the dependence of correlations on stimulus is by examin-

ing the second-order interaction terms - firing rates from two sites multiplied together.

Because the information about the stimulus in the firing rates of single neurons might

contribute to the eta squared value of the interaction terms, we compute interaction

terms by multiplying together the z-score of the two sites' firing rates (after subtract-

ing out the stimulus mean and dividing by the stimulus standard deviation). We can

compare the average eta squared values of the interaction terms to the values when

we use a pseudopopulation. Eta squared is a measure of effect size - it measures the

proportion of variance in the interaction terms that is explained by the stimulus. We

find that the interaction terms show a small effect of stimulus according to Cohen's

criteria (where .01 represents a small effect); furthermore, the eta squared values are

significantly greater without shuffling that with shuffling (p < .05), indicating that

the interaction terms do carry information about the stimulus (Figure 2-10).
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Figure 2-8: Relationship between signal and noise correlations. For each recording
session, the slope of the line of best fit is indicated.
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If correlations are not stimulus-modulated, we would expect the stimulus-specific

noise correlations to be randomly distributed around the standard (non-stimulus-

specific) noise correlation for a given pair of neurons, so there should be no relationship

between the order of stimulus-specific noise correlations across different days. If there

is a positive correlation between the stimulus-specific noise correlations, it would

indicate that the stimulus modulates the noise correlation between a pair of neurons

in predictable ways that possible encode information.

For each pair of sites, we compute the correlation of all stimulus--specific noise

correlations between two subsequent days of recording the same stimulus set. Fig-

ure 2-9 shows a histogram of these correlations for all pairs of neurons. The means of

27

z

z



30



everywhere else:

C" = AC + (1 - A)S (3.2)

where the regularization parameter A ranges from 0 to 1 (0 meaning no regularization,

and 1 being equivalent to the diagonal covariance classifier).

To regularize the variable covariance classifier, we interpolate the class-specific

covariance matrix Ck with the overall full covariance matrix C.

Creg = ACk + (1 - A)C (3.3)

Because regularization introduces another free parameter, A, to the classifier, we

must ensure that A is estimated from data separate from the data on which it is

tested. We do this by dividing the training set itself up into cross-validation folds;

the regularization parameter that maximizes the accuracy on cross-validation within

the training set is then used when evaluating the test set.

Global noise model classifiers These classifiers also compute Vternplate for each

stimulus from the training set. However, instead of computing a covariance matrix

to model correlations between pairs of neurons, they assume that all neurons in the

population are subject to the same noise constant(s).

Max correlation coefficient (MCC)

Maximizes the Pearson product-moment correlation coefficient between Vtest

and vteCTpIate. Because the correlation coefficient between vtet and Vtermplate is

equivalent to the correlation coefficient between avtest + b and vtemplate, this

classifier assumes linear noise, and is invariant to changes in location and scale.

Max uncentered correlation coefficient (MUCC)

Maximizes the correlation coefficient between vt,,t and v k mplate without sub-

tracting off mean, This is equivalent to the cosine of the angle between the two

vectors. Because the angle between Vtest and kfmplate is equivalent to the angle

between avtest and Vemplate, this classifier assumes multiplicative noise, and is
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Chapter 3

Noise Correlations and Population

Decoding

The amount of information carried by noise correlations, and the information lost

by ignoring them, is the topic of this chapter. Our study is an empirical one, in

which information is quantified by decoding accuracy. As outlined by Averbeck et al

(2006), the effect of correlations on the decoding accuracy can be examined from two

different perspectives. The first asks whether a population with no correlations - that

is, not simultaneously recorded - has more or less information than a simultaneously

recorded population. This helps address the validity of decoding analyses done on

non-simultaneously recorded populations. The second perspective looks at how much

information is lost when using a classifier that ignores correlations, and has more to

do with potential decoding strategies that can used by downstream neurons in the

brain to read out information from neural populations. For example, if a classifier

that ignores correlations loses little accuracy, it is plausible that the brain's readout

mechanism also does not have to take correlations into account.

3.1 Population Decoding

In neural population decoding, we use the responses of a population of neurons to

predict which stimulus was being presented at a given time. We define a neural
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response to be the firing rate within a time interval. We concatenate the firing rates

of all sites into a feature vector, with a length equal to the number of recording sites.

The feature vectors and stimulus labels are used to train a classifier, which can then

be used to predict the stimulus of a new feature vector.

To assess accuracy, we run cross validation - dividing the data into folds, then

repeatedly holding one fold out while training a classifier on the remaining folds

and testing the classification accuracy on the held-out fold. The number of folds is

typically set equal to the number of presentations of each stimulus, and each fold

contains one repetition of each stimulus. The entire cross validation procedure is

repeated with different fold partitions 2-10 times, depending on the dataset, and

results are averaged together to ensure the accuracies converge.

To run decoding, we used the Neural Decoding Toolbox (Meyers, 2013).

3.1.1 Classifiers

In each of our classifiers, the training set responses to a given stimulus k are sum-

marized by a vector containing the means of each site's responses to that stimulus,

which we refer to as the template vector vkemplate. For some classifiers, the variance

in each dimension or covariances between all dimensions are also used. To classify a

new feature vector vtest, we compute the distance between it and each of the template

vectors. The predicted label is the stimulus whose template is closest according to

the given distance metric.

Gaussian maximum-likelihood classifiers These classifiers assume the neural

responses for a particular stimulus are given by a multivariate Gaussian distribution.

The distance between vtemplate and vtet is then quantified by the equation

(Vtest - Vtmemate)C-(tSt - temate) (3.1)

which appears in the exponent of the equation for the Gaussian probability density

function. By altering the nature of the covariance matrix C, different distance metrics,
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Figure 2-10: Eta-Squared values of interaction terms. Each histogram shows the
distribution of eta-squared values for all neuron pairs' interaction terms.
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2.3 Conclusion

Our finding on signal and noise correlations match the general trends found in the

literature of positive correlations on average, and a positive relationship between

signal and noise correlation. We also investigate the stability of recorded responses

and correlations across different days of recording. The finding of dependence of

signal correlation stability on stimulus set is a new one; explaining this phenomenon,

possibly in terms of the tuning curves of neurons, is left for future work. We find

some evidence for noise correlations that are modulated by stimulus; they will be

investigated further in the context of population decoding in the following chapter.
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and thus different classifiers, are obtained.

Full covariance classifier

Minimizes the Mahalanobis distance between Vtest and vkmpiate. Uses a full co-

variance matrix, which is the same for each stimulus, for C. The full covariance

matrix is the average of the stimulus-specific covariance matrices, and therefore

only reflects noise correlations.

Diagonal covariance classifier

Minimizes standardized Euclidean distance between vt,, and kemplate (Euclidean

distance with each dimension normalized by its standard deviation). This is

equivalent to computing a diagonal covariance matrix with the average stimulus-

specific variance of each dimension as the diagonal elements, which is the same

for each stimulus (or, alternatively, computing the full covariance matrix as

described above and then setting all non-diagonal elements to zero).

Variable covariance classifier

Minimizes the Mahalanobis distance between vtest and vmpat. Uses a different

full covariance matrix Ck for each stimulus, which just takes into account the

noise correlations specific to that stimulus. This classifier is used to understand

whether stimulus-modulated correlations are helpful for population decoding.

Regularization While previous work on population decoding with Gaussian maxi-

mum likelihood classifiers typically employs cross-validation to ensure that results are

not due to overfitting the training set, no studies to our knowledge employ regular-

ization in these classifiers to actually help prevent overfitting. Classifiers with many

parameters are most susceptible to overfitting - modeling noise rather than meaning-

ful information in the training set in a way that does not generalize to the test set -

so we use regularization on the full covariance and variable covariance classifiers.

To regularize the full covariance classifier, we do not use the raw covariance matrix

estimate C in the full covariance classifier, but instead interpolate it with a simpler

covariance matrix - a diagonal matrix S with variances on the diagonal and zeros
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1. A - the decoding accuracy using a full covariance matrix decoder on simultane-

ous data

2. Adiag - the decoding accuracy using a diagonal covariance matrix decoder on

simultaneous data

An alternative way to compute AAdiag is to compute A the same way, but to

compute Adia, as the decoding accuracy using a full covariance matrix decoder that

is trained on shuffled data, but evaluated on the original unshuffled data (Averbeck

et al, 2006). This is because the full covariance classifier, when trained on shuffled

data, should end up with a diagonal covariance matrix because of the lack of noise

correlations in the data. We will refer to this as Method 2 for computing Adiag, and

the diagonal classifier as Method 1.

Theoretically, AAdiag should always be positive. The full covariance classifier

has the same parameters as the diagonal covariance classifier does for modeling the

data and many more; therefore, it should not do worse than the diagonal covariance

classifier. In practice, however, we may see negative values of AAdiag when performing

cross validation or testing accuracy on data that was not used to train the classifier.

A negative value would indicate that the full covariance classifier is overfitting its

training set, modeling noise that does not generalize to the test set.

3.1.4 Z\Ashuffled and AAdiag

Ashuffled and Adiag are computed in strikingly similar ways. Since using a full covari-

ance classifier on shuffled training data is theoretically equivalent to using a diagonal

covariance classifier, the difference between AsahufId and Adiag lies only in the testing

data. The classifier for computing Asshffezd is tested on shuffled data; the classifier

for Adiag is tested on unshuffled data.

Despite these similarities, Averbeck et al (2006) show that depending on the data,

there may not be a strong relationship between the two values. A particular dataset

may have a high value of Adiag, but a negative value of Ashuffecd. This is also explored

empirically by Averbeck and Lee (2005), who, when performing decoding with small
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On the other hand, other studies show that positive noise correlations result in neg-

ative values of Alshuffled only when the stimulus correlations are positive, but positive

values of As-huffled when stimulus correlations are negative. Poort and Roesfelma

(2009) show that these opposing effects essentially cancel each other out as population

size increases, resulting in an overall negligible effect of noise correlations. Similarly,

Gu et al (2012) found that training animals to do a task decreased noise correlations,

but that since the change in noise correlation was not related to the signal correla-

tion, these changes did not significantly affect decoding accuracy. Averbeck and Lee

(2006) found that populations of size 3-8 show larger effects of correlations than pairs

of neurons, with AAshuffled values ranging from roughly -2% to 2.5% on populations

where decoding accuracies typically ranged from 70-100%. However, the mean of the

AAshuffled values was close to zero.

Finally, a theoretical study of Fisher Information by Abbott and Dayan (1999)

found that for some noise models, positive correlations actually increase the infor-

mation in the population. Noise models examined in this study included additive,

multiplicative, and a limited-range model in which noise correlation is higher for

pairs of neurons with more similar tuning curves. For the additive and multiplicative

models, correlations increase information as long as the neurons are diversely tuned,

meaning that they do not all respond most strongly to the same few stimuli. However,

for limited range correlations, higher noise correlations tend to decrease information.

Since neurons with more similar tuning curves have a higher signal correlation, this

agrees with the finding that positive noise correlations are harmful for information

coding when there are also positive signal correlations.

Previous work on AIdiag tends to show that this value is small and often insignif-

icant for pairs of neurons, but can have a significant effect at larger population sizes.

For example, Nirenberg et al (2001) claimed, based on computations of AIdia, with

neuron pairs, that retinal ganglion cells are largely independent encoders. However,

Averbeck and Lee (2006) and Stevenson et al (2010) both demonstrated empirically

that the values of Aldiag increase with population size. Stevenson (2010) studied

the effect of correlations by using Gibbs sampling to estimate the joint probabil-
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invariant to changes in scale, but not location.

Min parallel distance (MPD)

Minimizes the distance between the parallel lines x(t) = vtemplate + t and y(t) =

vtest + t. This classifier explicitly assumes additive noise; it is invariant to

changes in location, but not scale.

3.1.2 Decoding with pseudopopulations: AAshufied

We can use neural population decoding as a tool to discover how much information

is encoded by noise correlations. Specifically, we can compare the decoding accura-

cies when using a dataset of simultaneously recorded neurons to a dataset of non-

simultaneously recorded neurons. In practice, to control for the neurons and stimulus

set, we can artificially create a population of non-simultaneously recorded neurons by

performing the following shuffling procedure: for all trials on which a given stimulus

was presented, randomly and independently shuffle each neuron's responses on those

trials, and repeat for each stimulus. This so-called pseudopopulation theoretically

has no noise correlations.

If we define A to be the decoding accuracy with the simultaneous population and

Ashuffled to be the decoding accuracy with the shuffled population, then the difference

A - Ashuffled, or AAshuffled, is representative of the amount of information that noise

correlations encode. AAshuffled can either be negative or positive (Averbeck et al,

2006). Note also that when computing A and Ashuffled, a classifier that actually takes

correlations into account (e.g., the full covariance decoder) should be used.

3.1.3 Decoding with a suboptimal classifier: AAdiag

A complementary approach to studying correlations in neural population decoding

is to consider, on population data the loss in decoding accuracy when a suboptimal

decoder (i.e., one that ignores any correlations between neurons) is used. This differ-

ence is termed AAdiag, named as such because it can be thought of as the difference

between:
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provement in absolute decoding accuracy for many of the recording sessions. The

Array 3 data's optimal A value, however, shows an average 12.5% improvement over

the standard full covariance classifier. Moreover, the optimal value of A is relatively

stable across days. Thus for some datasets its seems that regularization can allow us

to gain benefits from correlation information without overfitting the training set, po-

tentially preventing theoretically unsound results such as a negative value of AAdiag.

Based on the results, we find that even with regularization, estimating a different

covariance matrix for each stimulus set does not improve decoding accuracy, despite

some evidence suggesting the existence of stimulus-modulated correlations we saw in

Chapter 2. This result is different from that of Maynard et al (2010), who found that

when decoding arm movement direction from the primary motor cortex, the variable

covariance model improved 11 percent over the model that didn't take into account

correlations (diagonal covariance), compared to a 5 percent improvement for a regular

full covariance classifier. However, we have relatively few repetitions of each stimulus

with which to estimate a stimulus-specific covariance matrix; it is possible that with

more stimulus repetitions, the results reported here may change.

A Ashuffied In Figure 3-2, for each day of recording, we plot A and Asuf fled when

evaluated using cross validation. We find that for all arrays recording from V4,

Ashf fled is less than A. This means that those results agree with the theoretical

findings of Abbott and Dayan (2005) claiming that noise correlations can be beneficial

for some noise models. However, with Array 4, which recorded from IT, there are

mixed results for the sign of AAsahffyde.

We also include results with the regularized versions of the full covariance classi-

fiers. However, unlike in Figure 3-1, we now use cross validation within the training

set to find the optimal value of A to be applied to the test set. Though there are gen-

erally slight increases in both A and AshLffled when using regularization, AAShfcfled

remains approximately the same.
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populations of neurons, point out groups with seemingly unrelated A shffled and Adiag

values.

The assumption that shuffled populations exhibit no noise correlations is inpor-

tant for the computation of Ashuffled and Adiag (Method 2). However, given a limited

amount of stimulus presentations, this assumption may not be valid. To address this

question, we compare both methods for computing Adiag as well as the results when

using regularization, which should only use correlations to the extent that they are

useful.

3.2 Related Work

While some previous studies also examine the effect of correlations on decoding ac-

curacy, many use information-theoretic measures to compute measures analogous to

A, Ashuffled, and Adiag, which we will refer to in general as I, Ishuffled, and Idiag.

In cases where only two different stimuli were used, measures such as d-prime, a

measure of the separability of Gaussian distributions, have been used to compute

Aldiag and AIhafefled. However, as shown by Averbeck and Lee (2006), these values

are strongly predictive of the values computed when using classification accuracy to

measure information.

There have been mixed results on AIshuffled in previous work. Averbeck, Latham,

and Pouget (2006) approach the study of noise correlations from a theoretical per-

spective, and suggest that positive values of correlations will result in negative values

of Alshuffled. They show how even small effects of correlations can get magnified as

the population size grows. Cohen and Maunsell (2009) also found that attention re-

duces noise correlations, and this noise correlation reduction is primarily responsible

for better discriminability in neural populations in the attended condition. Stevenson

et al (2010) study a variety of datasets and perform decoding with a simulated popu-

lation of independent neurons with the same tuning properties, finding that it results

in a 25% improvement over the actual data with a decoder that takes correlations

into account.

37



ity distribution, instead of using a Gaussian classifier, and compare it to decoding

when treating neurons as independent encoders. Compared to the decoder that treats

neurons as independent, the one that takes correlations into account results in im-

provements between 4.8% and 10.3% at population sizes of 65-100 neurons. Another

empirical study made at larger population sizes (12-16 neurons) was done by May-

nard et al (1999), who found that taking interactions into account improved accuracy

of decoding of movement direction in the primary motor cortex by about 5%. They

also found that some of the correlations were stimulus-modulated, so using a variable

covariance classifier provided additional significant improvements over the standard

full covariance classifier.

3.3 Results

In this section, we show the results of decoding analyses for the computation of A,

Asif fled, and Adiag. We also perform other analyses including examine the effect of

population size on these values. For Array 1, to which only 8 stimuli were displayed,

decoding results are near 100% with the full population; thus, we generally only show

results as a function of population size for this dataset.

As in other chapters, the different recording sessions are denoted by both the

array number and stimulus set, as presented in Table 1.1. For example, the recording

session "A2Colorl" represents the first recording session using the Color stimulus set

with Array 2.

Regularization Figure 3-1 shows the results of incorporating regularization into

the full covariance and diagonal covariance classifiers on simultaneous data. Decod-

ing accuracies when using the regularized form of the covariance matrix are shown

for varying values of A For some values of A regularized full covariance classifier,

this decoding accuracy is better than either the full or diagonal covariance classifiers.

However, the improvement is small on average - only about 4% relative improvement

over the standard full covariance classifier. This amounts to less than a percent im-
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Effect of Population Size As with AsAhffled, we also look at the effect of pop-

ulation size on AAdiag. For recording sessions that have larger values of AAdiag (in

particular, the recording sessions with Array 2), the values of AAdiag at very small

population sizes are often still fairly close to zero, consistent with others who studied

the use of suboptimal decoders using small population sizes and found no significant

effect (e.g. Averbeck and Lee, 2006; Nirenberg et al, 2001).

In the Array 1 data, both A and Adiag level off as the population size increases,

A levels off at a near perfect decoding accuracy (approximately 99.9%), while Adiag

levels off at only 99%. Though this is still a good decoding accuracy, it is interesting

that it doesn't increase even as the population size does; it seems that in order to

gain the final one percent of decoding accuracy on this dataset, correlations need to

be taken into account.

We can also note that the phenomenon found with Adiag in Array 3 and Array 4,

where shuffling the training data does not produce the same results as using a diagonal

covariance matrix for computing Adiag, is less pronounced at smaller population sizes.

This supports the idea that the ratio between the number of presentations of each

stimulus and the number of recording sites might play a role.

Relationship between AAsshffled, AAdiag, and Signal and Noise Correlations

Though AAshuffln d and AAdiag, are computed in similar ways, they need not be re-

lated. In Figure 3-6, we plot the values of AAscuf fled against AAdiag, with both values

normalized by A. In the plot, different colors and point shapes represent different

arrays and stimulus sets. Though the only difference between Ashuffled and Adiag is

the testing data (it is shuffled for Asahffled and unshuffled for Adiag), there is only a

weak relationship between AAsahffled/A and AAdiag/A. With Arrays 3 and 4, where

AAdiag/A is close to zero over a wide range of values of AAshuffled/A, including both

positive and negative values. For most points, AAshuffled/A is greater than AAdiag/A.

Since A is the same for a given datapoint's values of AAsahffled/A and AAdiag/A, this

is equivalent to saying that for most points Ashuffled is less than Adiag.

Additionally, some have claimed possible relationships between AAshuffled and
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Effect of Population Size We also consider the effect of population size on

AAshuffled, to address the differing claims found in the literature. While some claim

that small values of AI in small populations can get magnified as the population

size grows (Averbeck et al, 2006), others have claimed that differing values of AI

essentially get canceled out when adding more neurons to the population (Poort and

Roesfelma, 2009).

For many of the recording sessions, AAshuffled is near 0 at small population sizes,

which agrees with the small effects of correlations found by studies which only looked

at smaller populations (e.g. Averbeck and Lee, 2006). In the Array 1 data, which

we did not look at in Figure 3-2, the values of AAshuffled remain fairly small at all

population sizes, with a possible decrease in AAshuffled at a population size of around

10 before both A and Ashuffled converged to nearly perfect decoding accuracy.

AAdiag In Figure 3-4, we compare the use classifiers that ignore correlations to

classifiers that take them into account. When comparing the full covariance and

diagonal covariance classifiers, Array 2's data shows an average relative loss of 20%

in decoding accuracy. For Arrays 3 and 4 on the other hand, the relative differences

are less than 2%, though this increases if A, reg is used in place of A. In particular,

the relative losses for Array 3 when comparing Adiag to A, reg range from 8-15%, for

Array 4 they are between 1-4%, and for Array 2 they increase only slightly to 20.8%.

We also examine both methods of computing AAAdig, and find that they can lead

to significantly different results, in particular in Arrays 3 and 4. For both these ar-

rays, the number of repetitions of each stimulus is significantly less than the number

of neurons, meaning that the artificial trial-shuffled pseudopopulation will have tri-

als in which multiple firing rates may have come from the same trial in the original

simultaneous population. These residual correlations that are present in the pseu-

dopopulation might have affected decoding results when the classifier is trained on

the pseudopopulation. In any case, using a diagonal covariance classifier to compute

Adiag appears to be a more consistent option.
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rately classify data from a different recording session. For each stimulus set, we train

a classifier on data from the each recording session with that stimulus set, and evalu-

ate the accuracy on data from the other recording sessions. The results are shown in

Figure 3-8. The accuracies stay fairly stable over many days, even though we might

expect that a classifier which uses many parameters such as the full covariance clas-

sifier would have a greater risk of overfitting one day's data. The stability provides

more evidence that the structure of noise correlations stay relatively constant across

days and weeks of recording.

Alternative classifiers While comparing the full and diagonal covariance classi-

fiers can illustrate the effect of a decoder that ignores correlations altogether, we can

ask similar questions about other classifiers which are often used for population de-

coding and which assume a particular global model of correlated noise - specifically,

the MPD classifier, which assumes global additive noise, the MUCC classifier, which

assumes global multiplicative noise, and the MCC classifier, which assumes global lin-

ear noise. The use of such classifiers is validated by the average positive correlations

seen between neurons. By assuming a simpler noise model, they perform an implicit

sort of regularization that may provide accuracy improvements without requiring a

search over values of regularization parameter.

In effect, when using these classifiers, we are replacing Adiag with AnoiseModel, where

noiseModel is the particular type of noise assumed by the classifier. AAnoiseModel is

then the amount of information that is gained or lost by assuming this noise model

when decoding. Because the MCC, MUCC, and MPD classifiers are not a strict subset

of the full covariance classifier (as is the diagonal covariance classifier), AAnoiseMo&l

is not constrained to be positive.

The results in Figure 3-9 show that with Array 2, the full covariance matrix

usually significantly outperforms any of the global noise model classifiers. Of the

global noise model classifiers, the MCC, which assumes linear noise, usually performs

best. The data in Array 4 shows similar results, although the difference between the

full covariance classifier and the alternative classifiers is not as drastic. Furthermore,
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the magnitude of noise correlations or the slope of the line that best fits the relation-

ship between signal and noise correlations (with signal correlations on the x axis).

Here, we examine the correlation between these different metrics. For this analysis,

instead of using the raw values for AAshuffled and AAdiag, we normalize them by di-

viding both by A. Still, comparing values on disparate values and stimulus sets may

produce misleading results. Therefore, instead of computing the correlations for all

datasets together, we compute them for all datasets with a given array/stimulus set

combination, and then average the correlations for all array/stimulus set combina-

tions to obtain the final correlation value. The correlations for specific array/stimulus

set combinations are computed with Spearman's rank correlation coefficient, which

assesses how well the relationship between two variables can be fit with a monotonic

function. By using Spearman's rank correlation coefficient instead of the standard

Pearson's r that measure linear correlation, our analysis only depends on the relative

values of these different metrics, and not their absolute magnitudes.

Using this method, we find that there are moderate to strong positive relationships

between AAshuffed/A, the mean signal correlation, the mean noise correlation, and

the signal-noise slope (all correlations greater than .45). The strongest relationship

is between the signal-noise slope and AAshf fled/A, which is shown in Figure 3-7.

Qualitatively speaking from these results, only the A2 Color datasets show a non-

monotonic relationship between signal-noise slope and AAshuffled/A. Other theoret-

ical findings suggest that a higher signal-noise slope should cause the correlations to

be more harmful - that is, AAsyhffled/A should decrease (Gu et al, 2011; Averbeck

et al, 2006); our results here appear to contradict this.

On the other hand, AAdiag/A has only weak correlations with the four other met-

rics, and the signs of these correlations are mixed (all absolute values of correlations

are less than .25).

Stability of classifiers In Chapter 2, we examined the stability of responses, sig-

nal correlations, and noise correlations across days of recording. We can extend that

analysis by looking at whether a classifier learned on one day's data can use to accu-

43



which does not use any correlations, the classifier that computes A should be able to

ignore correlations to an extent in order to prevent overfitting.

We also compared the Gaussian maximum likelihood classifiers to simpler ones

based on global noise models. These have the advantage of still allowing for cor-

relations, but not requiring a full covariance matrix. Computing the inverse of the

full covariance matrix, as required by the distance equation, is a costly operation;

in the regularized version, the search for an optimal regularization parameter also

significantly increases the run time of this classifier. From this practical perspective,

using one of the global noise model classifiers might provide the benefits of correla-

tions without the computational overhead of the (possibly regularized) full covariance

classifier.
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Figure 3-1: Decoding accuracy of regularized classifiers as a function of regularization
parameter. For the regularized full covariance classifier, a parameter value of 0 is
equivalent to the standard, unregularized full covariance classifier, 1 to the diagonal
covariance classifier. For the regularized variable covariance classifier, a parameter
value of 0 is equal to the unregularized variable covariance classifier, 1 to the full
covariance classifier. -
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Figure 3-4: A and Adiag for each recording session, using the two methods of com-
puting Adiag, - Method 1, using the diagonal covariance classifier, and Method 2,
training the full covariance classifier on shuffled data and testing on unshuffled data.
A computed with the regularized full covariance classifier is also shown.
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for Array 4, the diagonal covariance classifier that assumes no correlations actually

outperforms the global noise model classifiers. Array 3 shows yet another trend, with

the global noise model classifiers - in particular the MPD classifier - outperforming

the full covariance classifier.

3.4 Discussion

In our study of AAshuffled, AAdiag, and other noise models, we find that results often

vary widely between different arrays and stimulus sets. An important future direction

would be to try to explain and/or reconcile these differences.

In this chapter, we also compare the two methods of computing Adiag and find

that on the datasets with a high number of recording sites relative to the number of

presentations of each stimulus, there is a significant difference between the two. This

is possibly because the standard shuffling procedure does not remove all correlations;

when the number of recording sites exceeds the number of presentation of each stim-

ulus, the created pseudopopulation will never be able to have trials such that each

firing rate came from a different trial in the original simultaneous recordings. This

suggests that when computed AAdiag, one should compare a full covariance classi-

fier with a diagonal covariance classifier. This also has potential implications for the

computation of AAshuffled, since Ashuf fled is also trained on shuffled data which may

actually contain residual correlations that affect the value of Ashuffled.

We also employ a regularized version of the full covariance classifier to prevent

overfitting, and find that it results in only very slight improvements except with Array

3. Even so, we can assess the validity of reporting results with regularization. The

regularized full covariance is essentially created by interpolating the parameters from

a full covariance classifier (used to compute A) and a diagonal covariance classifier

(used to compute Adiag). Is it fair, then, to instead use the regularized full covariance

classifier to compute A? An interpretation which supports the use of the regularized

classifier to compute A is that the regularized classifier can be though of as only

taking useful correlations into account. As long as it is being compared to a classifier
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Figure 3-2: A and Ashuffled for each recording session are shown, along with A, reg
and Ashuffled, reg which are analogous to A and Ashu fled but are computed using the
regularized full covariance classifier.
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Figure 3-3: Effect of population size on AAsu ed
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Figure 3-6: Relationship between AAshuffled/A and AAdiag/A for each recording
session. The different colors represent different arrays.
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Figure 3-5: Effect of population size on AAdiag. Both methods of computing Adiag are
shown: Method 1 - using a diagonal covariance classifier on simultaneous recordings,
and Method 2 - using a full covariance classifier on data
been shuffled to destroy correlations.
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Figure 3-9: Alternative classifiers. Decoding accuracies are shown with classifiers that

assume a global noise model: MPD (additive noise), MUCC (multiplicative noise),
MCC (additive+multiplicative noise)
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Chapter 4

Encoding with Correlation

Information

A commonly used method to characterize single neurons is by creating an encod-

ing model - a mapping from stimulus to the neuron's response, in the form of a

spatiotemporal receptive field (Abbott and Dayan, 2005). However, with the use of

multielectrode recordings, we can also use the simultaneous activity of other neurons

as inputs into the model (Paninski, 2004). This can both improve the prediction

model, help to assess the relative contributions of both types of data, and give an

idea of the functional connectivity of the neural population. It provides a comple-

mentary perspective to the decoding perspective in the analysis of the importance of

correlations in a neural population.

In this chapter, we perform firing rate prediction with two classes of models:

* Global noise models, which predict firing rate as the mean stimulus response

with multiplicative and/or additive noise factors that are shared across neurons

for a given trial

" Correlation models, which predict firing rate based on the behavior of other

neurons, and optionally the mean stimulus responses

We find that both models improve firing rate predictions, with the much simpler

global noise model achieving nearly the same degree of improvement as the correlation
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Figure 3-8: Accuracy of classifier trained on one day and tested on others. For each

stimulus set, a classifier is trained on data from the first recording session for that

array/stimulus set combination and tested on all other recording sessions with the

same array and stimulus set. The accuracies shown for the first recording session of

each stimulus set are the standard single-session cross-validation accuracies.
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model.

4.1 Encoding Model and Related Work

We use linearized discrete reverse correlation for our encoding models. Our predic-

tions are described by the equation:

Pikm = Tka (4.1)

where Pikm is the predicted firing rate in presentation m of stimulus k for site i,

Xkm is a column vector of independent variables for presentation m of stimulus k,

(e.g. stimulus information or firing rates of other neurons), and ao is a column vector

representing the learned set of coefficients for site i (for example, when stimulus

information makes up the independent variables, a. is the receptive field).

It has been shown that the reverse correlation solution for ao is equivalent to the

linear least squares estimate (Lesica 2009).

a = C-IXrj (4.2)

where ri is the vector of firing rates for all trials for site i, a' is the receptive field

estimate, X is the a matrix with columns being different values of Xkm, and C, is the

independent variable covariance matrix. Xri is known as the spike-triggered average.

There are, however, different ways for dealing with the fact that the covariance

matrix C, is often non-invertible. Many of these involve computing a pseudo-inverse,

in which some dimensions are forced to zero if the stimulus variance along that di-

mension is smaller than a noise threshold. David et al (2006) and Theunissen et al

(2001), who both use stimulus information to predict firing rates, use cross validation

to choose the optimal value for this threshold.

Other variations on this method include linear-nonlinear models (Paninski, 2004;
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same additive noise constant:

add add (4.5)Pikm - -ik akin

The multiplicative model is similar, but assumes a multiplicative constant instead:

mult = amup (4.6)
Pikm = kin Pik

The linear model contains both the additive and multiplicative constants:

linear 'mult add (4.7)
Pikm a/km Pik akin

Note that while other work learns a stimulus-response function to model the contri-

bution of the stimulus to firing rate, our use of the mean firing rate in response to

a particular stimulus should always preform better than such models in terms of the

mean squared prediction error.

We use a cross validation in which a portion of neurons are held out to train and

test the global noise models. However, the stimulus mean for each neuron is computed

after excluding the particular trial for which the model is being learned.

In Figure 4-1 we see that for Array 2, the more complicated linear model, with

two noise parameters instead of 1, outperforms both of the other models. For the

other arrays, however, all global noise models perform about equally. For Array 2,

there is some correspondence with the results using global noise models for decoding

in that the linear model (for decoding, the MCC classifier represented linear noise)

tends to perform better than the other global noise models. However, the decoding

results also showed the additive noise model consistently performing better for data

from Array 3, which is not reflected in the results for encoding.

Though this noise model is simplistic, we can also examine whether the noise

carries information about stimulus identity. To do this, we compute the eta-squared

values of the multiplicative and additive factors with the stimulus label for each trial.

Based on the very low eta-squared values, we do not find find an effect of the stimulus
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spherically asymmetric).

4.2 Results

In this section, we report our results for firing rate prediction when using a global

noise model and when using other neurons as independent variables.

While other studies report results in terms of the correlation coefficient between

the predicted and mean responses, we report normalized root mean squared errors

(NRMSE) so as to not ignore multiplicative or additive noise in the predictions. To

compute the NRMSE, we divide the root mean squared error of the predicted values

by the mean of all observed values.

Like in Chapters 2 and 3, the name of each recording session contains its array

number and stimulus set. For example, the name "A2Colorl" is used for the first

recording session on which the Color stimulus set was used with Array 2.

4.2.1 Global Noise Models

We first examine simple noise models, in which a particular neuron's firing rate is pre-

dicted by its mean response to the stimulus plus a constant additive factor (additive

model), multiplicative factor (multiplicative model), or both (linear model). These

factors are shared across all neurons. While these models are simple, the effects of

such models on information decoding were analyzed by Abbott and Dayan (1999).

Additionally, as discussed in the previous chapter, some commonly used classifiers

assume global noise models. Therefore, we perform encoding based on such noise

models as well.

The baseline model simply predicts the firing rate for site i to presentation m of

stimulus k as the mean response to a stimulus, Pik:

PTda r fik (4.4)

The additive model assumes all neurons' firing rates on presentation mn share the
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Figure 4-2: Normalized root mean squared errors of instantaneous correlation model.
Mean squared errors for each recording day when predicting firing rate with the
stimulus mean, the firing rates of others neurons, and both. We also evaluate the
model using the noise present in other neurons, where noise is computed by taking
the z-score of a firing rate with respect to the stimulus mean and standard deviation.
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mean plus the noise of other neurons performs nearly identically to using the stimulus

mean plus firing rates of other neurons, indicating that it is noise rather than signal

correlations that help improve the encoding models. Another thing to note is that

the model that includes both the mean stimulus response and other neurons' firing

rates only improves slightly over the best global noise model we computed, which

used both the mean stimulus response and trial-specific additive and multiplicative
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Stevenson et al, 2012; Calabrese et al, 2011), governed by the equation

Pikm = f (Xkm T i) (4-3)

where f is what is known as a static non-linearity, usually an exponential function.

Paninski (2004) describes this method and conditions on the nonlinearity f for which

certain efficient estimation algorithms are possible. Calabrese et al (2011) compare

this reverse correlation method to a generalized linear model. Stevenson et al (2012)

use firing rate prediction to examine the relative effects of neural connectivity and

stimulus tuning in explaining the behavior of neurons. They claim that at population

sizes of roughly 10-30 neurons, models using the activity of other neurons begin to

outperform the tuning curve models. Vidne et al (2011) also using linear-nonlinear

firing rate prediction, with a model that includes the stimulus, the target neuron's

firing history, the past behavior of other recorded neurons, and random variables

that represent common noise inputs into the set of recorded neurons. When applying

their analysis to retinal ganglion cells, they find that the past behavior of other

recorded sneurons does not have much importance to the model, while the other

independent variables do. In their work, the effect of the stimulus is modeled by

a stimulus spatio-temporal filter. As they point out, the physical interpretation of

instantaneous correlations such as these are unclear; as a result, their model only

includes the past responses of other recorded neurons. The common noise input is

meant to represent the instantaneous neural correlations.

Another modification is to use regularization to prevent overfitting. Overfitting

can result in low prediction quality on new data due to a model being tuned too well

to the data on which it was learned. In this vein, Stevenson et al (2012) employ an

Li-penalty in some of their models to penalize high values of the coefficients a, and

David et al (2006) compute a shrinkage filter to achieve a similar goal.

Finally, Lesica et al (2009) describe additional modifications of the method to ac-

count for the statistical properties of natural stimuli - for example, that the intensities

of natural stimuli are not symmetrically distributed around the mean (i.e. they are
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Figure 4-1: Normalized root mean squared errors of global noise model. Errors for
each recording day when assuming a no noise (mean), additive noise (add), multi-
plicative noise (mult), or both additive and multiplicative noise (linear)
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4.2.2 Prediction with Correlations

As discussed in Paninski (2004), the independent variables used to predict firing rate

can in fact be the firing rates of other neurons - which can be used to examine the

functional connectivity of a neural population (Stevenson et al, 2012). The corre-

sponding model (where "firing rates of other neurons" is abbreviated "fron") is:
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where bi is the baseline firing rate for site i.

To evaluate the improvement gained by incorporating the behavior of other neu-

rons compared to the stimulus mean, we use a model (abbreviated "mean, from")

that incorporates both:

pmeanfron = Pik + S aijri, (4.9)
ij

Since pi represents the stimulus mean, we do not need to include a term for a baseline

firing rate. As with the global noise models, we use the stimulus mean as a lower

bound on the amount on the mean squared error provided by a receptive field estimate.

Finally, we create a model that predicts firing rate based on the stimulus mean

and noise of the other neurons - that is, the z-score of rim computed using the stimulus

mean and stimulus standard deviation for neuron j (abbreviated as "mean, non"):

meanp ' rim - Pik (4.10)PikmI Pik + 1:aj jk (.0

This essentially removes any stimulus-related information from the firing rates of the

other neurons, so it can help assess whether signal or noise correlation is responsible

for any improvement in performance with models incorporating both mean and ac-

tivity of other neurons. If using the noise of other neurons performs comparably to

using the actual firing rates, it confirms that noise correlations are responsible for the

performance of these models.

For these encoding models, we apply cross validation by dividing the trials into

folds, with each fold containing data from one presentation of each stimulus (this

differs from the global noise models, in which the recording sites were divided into

folds). As is the standard cross validation procedure, each fold gets held out while

a model is trained on the remaining trials. The results when testing on the held-out

folds are averaged together.

As shown in Figure 4-2, using solely the firing rates of other neurons to predict

firing rate yields better prediction results than using just that site's mean response

to a stimulus. Using both the stimulus mean as well as other neurons' firing rates
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the improvement gained by correlations in encoding is the difference between pre-

diction accuracies in the stimulus mean + firing rates of other neurons model and

the stimulus mean model, divided by the prediction accuracy of the stimulus mean

model.

In Chapter 3, we noted positive correlations between mean signal correlation,

mean noise correlation, signal-noise slope, and (A - Ashf fled)/A, with the strongest

relationship between the two latter metrics. We find that the improvement gained

by correlations is also positively correlated with each of these values; however, its

strongest positive relationship is with the mean noise correlation. This relationship

is shown in Figure 4-4. Thus, while the effect of correlations on decoding seems more

tied to the relationship between signal and noise correlation, for encoding models it

seems to be better explained simply by the average noise correlation of a dataset.

4.3 Discussion

The goal of this chapter was to predict firing rates using the behavior of other neurons.

We find that assuming all sites are subject to the same additive and multiplicative

noise constants on a given trial improve prediction results by an average of 12.48%

over just predicting firing rate using the mean stimulus response. Taking into account

all pairwise correlations provides an improvement of 13.92% over the mean stimulus

response model. Though these results suggest that the simpler global noise model

with only 2 parameters performs nearly as well as the more expensive correlation

model, we might find that modifying the correlation model with techniques such as

regularization or log-linear modeling might improve its behavior so that there is a

larger difference between it and the global noise model. This direction is left for

future work.

The global noise models and correlation models used for encoding in this chapter

roughly correspond to the global noise model classifiers and full covariance classifier,

respectively, used in the previous chapter for decoding. However, there wasn't a strict

correspondence between the relative performance of different global noise models used
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noise factors shared among all sites. On average, using both the stimulus mean plus

other neurons' firing rates improves over using just the stimulus mean by 13.92%.

Using the linear global noise model improves over just using the stimulus mean by an

average of 12.48%, which is nearly 90% of the improvement gained by computing all

pairwise correlations.

Effect of Population Size Stevenson et al (2012) report that the firing rate of

about 10-30 other neurons, depending on the dataset, can predict the firing rate

of a particular left out neuron at a accuracy comparable to when stimulus-related

information is used to predict the neuron's firing rate. We perform a similar analysis

on our data to examine how many neurons are necessary to perform as well as the

stimulus-related information. Because our stimulus information is represented by the

mean response to the stimulus and therefore typically has lower errors than using

a stimulus filter, we might expect that more neurons would be required to achieve

this level of performance. However, we find that, depending on the recording session,

populations of fewer than 20 sites are generally sufficient to predict firing rate with

error equal to the mean stimulus response - the exception being Array 1, whose sites

had very low noise correlations. Still, in Figure 4-3 the stimulus-related information

tends to continue to improve the encoding model when both it and other neurons'

firing rates are used for most datasets - with a notable exception being the data from

Array 3.

Comparison to Decoding Analyses and Signal and Noise Correlations In

this section, we examine the relationship between the improvement in encoding mod-

els gained by correlations with metrics computed in other chapters, such as (A -

Ashuffted)/A, (A - Adiag)/A, mean signal correlation, mean noise correlation and

signal-noise slope. We use the same method of computing correlations between two

different metrics as we did in Chapter 3. The Spearman rank correlation coefficients

are computed separately for each array/stimulus set combination, and the results are

averaged together to obtain the overall correlation. The metric we use to represent
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Figure 4-3: Effect of population size on normalized root mean squared error of cor-
relation model. For most recording days, 8-20 neurons are sufficient to achieve the
same error as the stimulus mean
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for encoding and decoding, besides the fact that the linear model tended to do best

for data from Array 2. For the correlation models, though there was a positive

relationship between the benefit of correlations in decoding analyses (measured by

(A - Ashuffled)/A) and the improvement gained by using correlations in encoding

models, the former was more closely related to the signal-noise slope of a recording

session, and the latter was better explained by the mean noise correlation of that

session.
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Figure 4-4: Relationship between encoding model improvement with correlations and
mean noise correlation. Encoding model improvement with correlations is defined as
the difference between prediction errors with the the stimulus mean + firing rates
of other neurons model and the stimulus mean model, divided by the error with the
stimulus mean model.
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correlations - the global noise model. In this model, the responses on a given trial

were assumed to be given by each site's mean response to that stimulus and linear

and/or multiplicative noise constants, that were identical for all sites on that trial.

Though one array's data was best explained by the linear noise model for both de-

coding and encoding, another array's data was best explained but the additive noise

model for decoding, but was predicted by all three noise models with relatively equal

performance for encoding. Thus, the relationship between these models for encoding

and decoding is unclear and is room for future work.

Future work in both decoding and encoding might also focus on developing other

classifiers and prediction models. The full and diagonal covariance classifiers and

the linear least squared estimator are all optimized for data that follows a Gaussian

distribution. However, there are alternatives, including using Gibbs sampling to

estimate the joint distribution of the neural responses given the stimulus - as done by

Stevenson (2010) - for decoding. For encoding, a linear-nonlinear model (Paninski,

2004) is meant to reflect the fact that neural responses tend to follow a Poisson, rather

than Gaussian, distribution.

Analysis of more data might also better characterize the relationships between sig-

nal correlation, noise correlation, signal-noise slope, and the effect of correlations on

decoding and encoding models. Our finding that mean noise correlation is most pre-

dictive of improvements made by adding correlations to encoding models makes sense,

given that prediction with the stimulus mean and noise of other neurons performed

similarly to using the stimulus mean and firing rates of other neurons, indicating that

noise correlations are responsible for the improvement. However, our finding that a

higher signal-noise slope is strongly linked to a higher AAshuf f led contradicts theo-

retical results from other studies. Confirming and quantifying this relationship is an

important future direction.
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Chapter 5

Conclusion

In this thesis, we studied neuronal correlations in the contexts of both population

decoding and encoding. For population decoding, we first compared decoding accu-

racies in populations with and without correlations, finding that the results vary by

recording session. We found that recordings from V4 tended to have a significant

reduction in decoding accuracy when using shuffled data with noise correlations, but

for recordings from V1 and IT the effect was smaller, and sometimes involved a gain

in decoding accuracy on on shuffled data. More data would need to be analyzed to

answer whether this trend holds true for other recordings from these regions. We

then asked whether ignoring the correlations that do exist in the population signifi-

cantly reduces decoding accuracy. We again found mixed results, with some datasets

showing a significant difference between the two conditions and others showing a

insubstantial one.

For encoding we used models that incorporated the behavior of other neurons

(correlation information) and/or a site's mean response to a stimulus (stimulus in-

formation) to predict that site's firing rate. Using both the correlation and stimulus

information improved prediction accuracy by nearly 14% over using just the stimulus

information. For some datasets - especially those recorded on Array 3, which had a

large population size, using both correlation and stimulus information did not provide

significant improvement to a model that just used correlation information

For both encoding and decoding, we also looked at a more simplified model of
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