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Abstract

This thesis posits that understanding the controls on microbially-mediated marine biogeo-
chemical cycling requires a mechanistic description of microbial activity in biogeochemi-
cal models. In the work here, the diverse microbial community is resolved using metabolic
functional types, which represent metabolisms as a function of their underlying redox chem-
istry and physiology.

In Chapter 2, I use a simple model to predict the limiting oxygen concentration of aer-
obic microbial growth in an ecosystem. This limiting concentration is in the nanomolar
range for much of the parameter space that describes microbial activity in marine environ-
ments, and so anticipates the recent measurements of oxygen to nanomolar concentrations
or lower in anoxic zones. Anaerobic metabolisms should become favorable at this limiting
concentration. The model provides a parameterization for dynamic oxygen depletion and
limitation, without a prescribed critical oxygen concentration.

In Chapter 3, I extend the above analysis to determine the full set of conditions required
for favorable anaerobic metabolism. Resource ratio theory is used to explain the competitive
exclusion of anaerobic metabolisms in oxygenated environments as well as the stable co-
existence of aerobic and anaerobic metabolisms when oxygen is limiting. The onset of this
coexistence is a function of the relative availability of oxygen and a mutually required sub-
strate. Results hypothesize the likelihood of coexisting aerobic and anaerobic metabolisms
at limiting oxygen concentrations, which is consistent with observations. These dynamics
are demonstrated in an idealized oxygen minimum zone model.

In Chapter 4, I use a mechanistic description of nitrification to explain the location
and intensity of the primary nitrite maximum. First, competition with phytoplankton
excludes nitrification from the sunlit layer of the ocean, resulting in peak nitrification at
depth, as widely observed. Second, differences in the metabolisms of the microbial clades
responsible for the two steps of nitrification explain why nitrite accumulates consistently
as an intermediate. The model provides a dynamic resolution of nitrification in the ocean.
It predicts that nitrification is favorable in sunlit waters where phytoplankton growth is
limited by light or by a substrate other than reduced inorganic nitrogen.

Thesis Supervisor: Michael J. Follows
Title: Professor of Oceanography
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"Nothing is less real than realism. It is only by selection, by elimination, by emphasis,
that we get at the real meaning of things."

-Georgia O'Keeffe
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Chapter 1

Introduction

1.1 Overview

Global biogeochemical cycles are mediated by the metabolisms of small living organisms.
Microorganisms - or, microbes, defined operationally as living organisms too small to see
with the naked eye - control significant portions of the fluxes of oxygen, carbon, and ni-
trogen between ocean, atmosphere, and land. Microbes produce half of the atmosphere's
oxygen supply, with land-based plants responsible for the other half, and are responsible
for almost all of the heterotrophic activity of both ocean and land. Understanding the con-
trols on these fluxes, and thus the microbial activities that allow larger organisms to eat,
breathe, and otherwise survive on planet earth, is an overarching goal. Since parts of these
biogeochemical cycles involve elements relevant to the climate system, such as carbon diox-
ide and nitrous oxide, understanding how microbes operate at large scales is also important
for understanding how biogeochemical cycles and the climate system change over time.

This thesis aims to expand knowledge about the controls on biogeochemical cycling
in the ocean. It hypothesizes that the activity of microbes within an ecosystem is suffi-
ciently predictable to provide insight into the formation of large-scale features, such as
anoxic oxygen minimum zones and patterns of nitrification. The predictability results from
an assumption that much of the large-scale function of the microbial community can be
understood by reducing that activity to its underlying chemistry and to the physiology of
a microbial cell. The interactions of diverse microbial populations with each other and the
environment results in the geochemical distributions that we observe. With mechanistic de-
scription of microbial growth and respiration, simple modeling provides new insights into
these distributions, with connections to rates of microbial activity and the biogeography of
the microbial communities.

1.2 Microbial ecosystems as diverse, complex, and predictable

This thesis aims to understand the impacts of microbial activity on marine biogeochemical
cycles. First, how certain are we that this understanding is even a reasonable goal? How do
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we know that microbial activity should impact ecosystems in ways that are consistent and
that we expect will continue over time - i.e., in ways that are predictable?

Microbial systems are notoriously diverse and complex (Delong and Pace 2001). We are
currently unable to predict microbial activity accurately and precisely in most environments
at the level of detail that we observe the system (Widder et al. 2016). Much of the rapidly
expanding sequencing data remains to be understood, particularly in natural environments
(DeLong and Karl 2005; Hood et al. 2007; van der Heijden et al. 2008). Of course, the mate-
rialist perspective of science contends that all biological activity is ultimately deterministic,
slave to the fundamental laws of physics. But the incredible complexity of the intermediate
steps between physical laws and the biology that we observe prohibits the prediction of bi-
ological activity from 'first principles.' This is in contrast to the laws of fluid dynamics that
can be used to predict much of the circulation of the atmosphere and ocean. Thus, climate
models can estimate the distributions oxygen and nitrous oxide in the ocean as a function of
this theoretically-predicted circulation, but must parameterize the microbial processes that
form and consume them.

Even if complete prediction was possible, observations of microbial activity in natu-
ral environments are limited. Much of the microbial world remains unknown, and its un-
earthing has been a relatively recent phenomenon (Kirchman and Williams 2000). The ma-
jority of bacterial and archaeal species in natural environments have not been isolated in
culture (Hug et al. 2016; Zinger et al. 2012). Without an ability to study most organisms in
detail, can we meaningfully understand their impact on the environment?

Environmental sequencing technologies have resulted in a huge expansion of informa-
tion about these uncultivated species in situ (Ward 2002; DeLong and Karl 2005; Armbrust
and Palumbi 2015). With genetic information from over 1000 uncultivated organisms, Hug
et al. (2016) have created a modified version of the tree of life, which emphasizes that
the uncultivated Bacteria and Archaea contain the bulk of genetic diversity, with Eukary-
otes exhibiting much lower diversity, reflecting their "comparatively recent evolution" (Hug
et al. 2016). Sequencing data has provided enormous amounts of information about micro-
bial activity - enzymatic capabilities, gene expression, metabolites, etc. - and linking this
knowledge about organisms to ecosystems and the environment is progressing (Martiny
et al. 2006; Green et al. 2008; Zinger et al. 2012; Barberdn et al. 2014; Sunagawa et al.
2015; Widder et al. 2016). However, quantitative data is still limited, and it remains an
open question of how new knowledge will be integrated into ecosystem models (Hood et al.
2007; Coles and Hood 2016).

In parallel, laboratory research is progressing our understanding of microbial ecosys-
tem dynamics at smaller scales, and developing principles that can be extended to natural
environments. For example, we have learned that the growth of Prochlorococcus - the most
abundant primary producer in the ocean - is improved when cultivated alongside particular
heterotrophs (Sher et al. 2011; Biller et al. 2016). This and similar findings has led to the
perspective that the microbial community is best characterized by both positive and neg-
ative interactions at the very small scales relevant to microbial cells (Azam and Malfatti
2007).
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A question arising from this emphasis on the significance of small-scale interactions
is whether diverse microbial communities impact the ecosystem in consistent ways. Does
diversity result in different ecosystem function for the same conditions? I.e., will micro-
bial ecosystems in different locations respond to changes in the environment in ways that
allow for the prediction of the bulk properties of that environment, such as oxygen and
macronutrient distributions? How much of the small-scale detail can be bypassed?

Seemingly random processes govern microbial growth: it has been proposed that
stochasticity of genetic processes leads to this 'noise' in microbial activity Elowitz et al.
(2002). With extremely careful control of a laboratory system, however, Frentz et al. (2015)
was able to replicate microbial activity, and provide evidence that external conditions cause
the observed fluctuations, and not genetic variation. Thus, Frentz et al. (2015) concluded
that microbial systems have the potential to be determined by macroscopic laws.

This thesis contends that microbial community impact as a whole, in contrast with the
species composition of the community, is largely consistent. Questions about the resilience
and stability of the structure of microbial community composition itself are a subject of
active research (e.g. Allison and Martiny 2008). Evidence suggests that rather than cre-
ating unpredictable environments, the microbial community as a whole converges to carry
out predictable biogeochemical activity. For example, Martiny et al. (2013) have shown that
ecologically significant traits are phylogenetically conserved, implying a consistency of mi-
crobial control on ecosystem function. This is related to an understanding that ecological
interactions have the ability to shape the diversity of microbial communities. Genetic muta-
tions and deletions happen quickly enough to allow for horizontal gene transfer to dominate
bacterial evolution (Croucher et al. 2016), implying that evolution occurs on timescales sim-
ilar to ecological interactions. Thus, the microbial community at any location should be able
to optimize the exploitation of available resources.

1.3 Organisms as dissipators of chemical energy

An alternative perspective to the small-scale approach to microbial ecology emphasized
by Azam and Malfatti (2007), one that instead embraces bulk properties at the expense of
micro-scale detail, is attempting to understand the ecosystem 'from the outside in' (Linde-
man 1942; Vallino and Algar 2016). How can ecosystem function as a whole - both abiotic
and biotic components - be related to the chemical gradients that organisms appropriate for
energy?

For example, organic matter has a high chemical potential compared to C0 2 , and a
heterotrophic metabolism exploits this potential energy by respiring it (Vallino 2010). This
energy is then used for cell synthesis and maintenance. The efficiency of this conversion of
energy can be generally represented by the yield y of biomass with respect to organic matter
substrate (del Giorgio and Cole 1998).

In one sense, it is often anticipated that organisms evolve and adapt to maximize this
efficiency (Pirt 1965; del Giorgio et al. 2011). Organisms that can grow and reproduce more
quickly in the environment have the potential to competitively exclude other organisms
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(Hutchinson 1961; Tilman 1982). In the arms race for survival, an organism seems to benefit
from a more efficient use of substrate and thus a larger y. This assumption - that an organism
is best fit by maximizing its yield - has been shown to not be universally true; in some
environments it appears an organism is more fit by maximizing its growth rate at the expense
of an efficiency, such as in fermentation, or by utilizing organic carbon less efficiently than
other elements (Pfeiffer et al. 2001; Carlson et al. 2007; Lipson 2015).

On the other hand, the Second Law of Thermodynamics requires that gradients in chem-
ical potential be reduced over time. Respiration by living organisms increases the entropy
of the environment by dissipating concentrated sources of chemical energy, e.g., convert-
ing organic matter to CO 2 (Meysman and Bruers 2007; Vallino 2010). In simple terms of
the yield y, this CO 2 production is roughly (y - 1). From this perspective, the lower the
efficiency of an organism, and thus the lower the yield, the more energy is dissipated. The
respiration of organisms thus functions to carry out the reduction of chemical potential as
predicted by the Second Law, which is an especially efficient mechanism given that yields
are generally low in natural environments. (Average values for the open ocean and for nat-
ural environments as a whole are estimated as y = 0.14 t 0.14 and y = 0.3, respectively
(Robinson 2008; Sinsabaugh et al. 2013).

How can we relate this seeming paradox - the explanations for both a maximum and a
minimum y? With the laws of thermodynamics governing the physical world, why hasn't
biology evolved so that (y - 1) approaches zero? (Or in other words, why is there biology?)
One explanation is that an optimum amount of biomass exists to maximize the production
of energy, with an optimum y to maximize the rate of overall energy dissipation by the
respiration of organisms in the biotic and abiotic system as a whole (Meysman and Bruers
2007, 2010; Vallino 2010; Vallino and Algar 2016). From this maximum entropy perspec-
tive, when considering the earth as a system, biomass functions as the enzyme necessary
for the optimal dispersal of incoming solar energy into more dissipate forms of chemical
energy.

Taking this principle one step further, Maximum Entropy Production (MEP) theory
contends that biota is able to produce more entropy in the earth system than would otherwise
occur abiotically (e.g., via combustion), and that the rate at which entropy is produced is
maximized when integrated over a period of time (Meysman and Bruers 2007; Dewar 2010;
Meysman and Bruers 2010; Vallino 2010; Kleidon et al. 2010). In this way, Meysman and
Bruers (2007) and Vallino (2010), among others, have aimed to anticipate the activity of
the ecosystem as a whole from the chemical potential of available substrate, computing the
free energies of the chemical reactions to estimate individual yields and rates of synthesis.
This approach is not without criticism (Volk 2007; Volk and Pauluis 2010), namely because
the physical theory of maximum entropy production was derived to explain the activity of
gas molecules in a vaccuum, and has not yet reached consensus in the physics community
(Dewar and Maritan 2014), and so the application of it to organisms in an ecosystem may
be characterized as an overextension of a still-developing theory.

While MEP theory has its challenges, an intermediate organizing principle for microbial
ecosystems is to focus just on the tendency for organisms to exploit the chemical potential in
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an environment (Vallino et al. 1996). Indeed, all organisms must acquire chemical energy
from reduction-oxidation reactions to carry out their metabolisms (Madigan et al. 2013;
Rittman and McCarty 2001). Theoretical microbiologists aim to calculate the free energy
acquired by a redox reaction, such as the oxidation of organic matter to CO 2 with oxygen
as an electron acceptor, and balance that energy yield against the energetic demands of the
cell, such as cell synthesis, to energy budget for that metabolism (e.g. Heijnen and Roels
1981; Russell and Cook 1995; VanBriesen 2002; Jol et al. 2010; Roden and Jin 2011; van de
Leemput et al. 2011; LaRowe et al. 2012). This is, in essence, the way that civil engineers
have approached the prediction of microbial activity of bioreactors in water treatment plants
(Rittman and McCarty 2001): with theoretical energy budgets of diverse metabolisms, they
have anticipated the dominant metabolisms that will occur as a function of the substrates
in the reactor. In relating the microbial activity to the chemical equations underlying these
metabolisms, they have been able to quantitatively relate microbial growth to the rates of
conversion of the substrates to the end-products. Variations of this approach have been
extended to a natural aquatic environments with success Dick and Shock (2013); Algar and
Vallino (2014); Preheim et al. (2016).

This thesis follows the spirit of this approach in organizing the diverse marine micro-
bial metabolisms by their underlying redox reactions, and thus relating microbial growth
to ambient nutrient concentrations. In this sense, it considers the ocean as a giant biore-
actor. A difficulty is estimating the free energies of reactions in natural environments, and
so the pluralistic approach here instead incorporates observed efficiencies of metabolisms
and substrate yields. The theoretical approach here does not predict the rates of growth and
respiration, and so observations of kinetics and bulk rates are incorporated. In the absence
of comprehensive quantitative information about microbial activity, this approach provides
a theoretical grounding principle for its description in the ocean, as a tangible way to build
a model of the ocean in which microbially-mediated processes are represented mechanisti-
cally through growth and respiration.

1.4 Marine biogeochemistry and microbial ecology: Main links and big ques-
tions

Moving towards a general hypothesis that we can somewhat anticipate large-scale microbial
function in an environment by analyzing the chemical potential of the environment, and
translating that into the redox reactions fueling microbial metabolisms, we next turn to the
reasons for doing so. What is it that we want to know?

The work here aims to answer questions about large-scale marine biogeochemical dy-
namics, with more attention to microbial process than is typical for the field. Connecting
marine microbial processes with large-scale ocean circulation does require some degree of
simplification of those processes. In general, more attention has been given in such models
to the phytoplankton responsible for the primary production in the sunlit surface ocean, as
well as their small zooplankton predators, than to smaller groups of microbes (Hood et al.
2007; Follows and Dutkiewicz 2011). Phytoplankton functional type models and their mod-
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ifications have provided great insight into how environment-organism interactions set the
biogeography and diversity of phytoplankton (Le Quere et al. 2005; Follows et al. 2007;
Barton et al. 2010; Dunne et al. 2012; Clayton et al. 2013; Dutkiewicz et al. 2014). How-
ever, the 'other half' of production - the remineralization of organic matter back into its
inorganic counterparts - is typically more crudely parameterized in biogeochemical mod-
els. For example, the 'Martin curve,' and its modifications, parameterizes remineralization
of organic matter with depth with prescribed coefficients tuned to reflect observations of
the particle flux from sediment traps in the deep ocean (Martin et al. 1987; Buesseler et al.
2007; Buesseler and Boyd 2009).

Zooplankton as well as heterotrophic bacteria play a significant role in this reminer-
alization, but heterotrophic bacteria are not often represented in large models explicitly,
although there are of course exceptions (Fasham et al. 1990; Le Quere et al. 2005). This
lack of representation is historical, in that we have previously assembled more knowledge
about phytoplankton (and zooplankton), and also practical, in that representing the growth
at daily or weekly timescales below the thermocline requires integrating model equations
at daily timescales for thousands of years, which has been computationally very expensive,
time-consuming, and also perhaps unhelpful given the lack of comprehensive observations
of activity in the dark ocean. However, as computers become faster and microbial datasets
expand, microbial ecological modeling is turning towards opening up the 'black box' of
remineralization (Allison and Martiny 2008; Bouskill et al. 2012; Reed et al. 2014; Bowen
et al. 2014; Preheim et al. 2016).

The specific questions in this thesis involve the growth and respiration associated with
organic matter remineralization and its consequences, rather than the complexities of the

degradation of organic matter itself. The questions focus generally on the microbial meta-
bolisms that have the potential to affect and be affecting by changes to the climate system.
Unlike the land ecosystem, the carbon budget of the marine ecosystem as a whole is not
believed to be currently changing as a result of increased atmospheric carbon dioxide or
warming (IPCC 2014), since primary production in the ocean is not carbon limited. Models
do predict a change in ecosystem structure on shorter timescales (Dutkiewicz et al. 2013,
2015), and long term effects of changes in temperature are anticipated (Matsumoto et al.
2007). Work here is also relevant for understanding the distributions of nitrogen, which
proximally limits about half of the primary production in the surface ocean (Moore et al.
2013).

Deoxygenation and the transition to anaerobic metabolisms

First, the work here contributes to an improved understanding of the effects the projected de-
oxygenation of the oceans due to global warming (IPCC 2014). Deoxygenation is expected
as a consequence of the decrease in solubility of oxygen in warming waters, at the approx-
imate rate of about 5 pM less oxygen per degree temperature increase, and should lead to
significant decreases in ocean oxygen content over the next century (Keeling et al. 2010).
This effect takes place at the air-sea interface, where waters warm, and so will take hun-
dreds or thousands of years to affect the oxygen in the its least ventilated areas. However,
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depending on the location, the oxygen minimum of the water columns in some locations
may be affected by deoxygenation over the decadal timescales that govern the thermocline.
In much of the tropical Pacific ocean, for example, oxygen reaches relatively low concentra-
tions (tens of pM) that are relevant for the viability of larger animal growth and respiration
(Paulmier and Ruiz-Pino 2009; Stramma et al. 2010); fish hypoxia can set in as high as
60pM (Keeling et al. 2010). Thus, deoxygenation could contract the habitat for fish and
other marine animals (Deutsch et al. 2011, 2015). Given human dependency on fisheries,
deoxygenation could potentially affect human society in decadal or centurial timescales
(Stramma et al. 2010), and so, understanding the biogeochemical and physical interactions
that control oxygen distributions is important for anticipating such changes.

The effect of deoxygenation for which the work here is directly relevant is the potential
change in the rates of anaerobic activity in marine anoxic zones. Oxygen has been depleted
to nanomolar concentrations or lower by aerobic respiration in these zones (Fig. 1.1) (Lam
and Kuypers 2011; Ulloa et al. 2012), and an open question is whether or not further loss
of oxygen will lead their expansion (Stramma et al. 2008; Gnanadesikan et al. 2012; IPCC
2014; Cabr6 et al. 2015; Long et al. 2016). Anaerobic processes result in denitrification -
the loss of fixed nitrogen to nitrogen gas (N 2) and the potent greenhouse gas nitrous oxide
(N 2 0) (Devol 2008; Ward 2013). Thus, the transition from aerobic to anaerobic microbial
respiration controls rates of denitrification, but this transition has not been quantitatively
understood. Chapters 1 and 2 here provide insight into this transition.

Nitrification and its relationship to the biological pump

A second area of emphasis in this work, also involving the marine nitrogen cycle, is relevant
for understanding the structure of marine ecosystem production and the biological pump.
The biological pump refers to the increase in dissolved inorganic nutrients with depth, and is
a consequence of the remineralization of exported organic matter at depth (Volk and Hoffert
1985). This sequestration of nutrients at depth leads to an enhanced storage of carbon in the
ocean of roughly 100 pmol kg-1 (Williams and Follows 2011). Though this is roughly only
about a 5% increase of the total carbon inventory from the carbon storage due to air-sea
equilibration, but globally integrated, is about three times higher than the carbon stored in
the atmosphere (Williams and Follows 2011). An active area of research is to develop a
more mechanistic understanding and quantification of the export production that enables
this sequestration (Siegel et al. 2016).

The work here relates to the inverse of this export production, the 'new production'
that occurs due to the upwelling of nutrients from depth (Dugdale and Goering 1967). The
amount of organic matter exported to depth must be balanced by this new production over
large time and space scales (Eppley and Peterson 1979). New production was once defined
as that fueled by nitrate, the most oxidized form of dissolved inorganic nitrogen (DIN),
since the bulk of primary production in the mixed layer is fueled by ammonium (Dugdale
and Goering 1967). This latter 'regenerated' productivity is that which occurs due to local
cycling of photosynthesis and respiration within the mixed layer, fueled by ammonium.
However, observations of nitrification - the microbially-mediated oxidation of ammonium
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Figure 1.1: (a) Dissolved oxygen at 300m depth, and along the 10'S transect in the South Pa-

cific Ocean (Data: WOA 2013). (b) Oxygen measured by Thamdrup et al. (2012) with the STOX

(Switchable Trace amount OXygen) sensor (circles) and a STOX-calibrated conventional oxygen

sensor (lines) in the Eastem South Pacific along the west coast of South America. As in Thamdrup
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ations), and locations with one measurement (open circles) have a detection limit of 10 nM. Error
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Figure 1.2: Observed nitrite and nitrate concentrations along three transects in the ocean (Data:
GLODAPv2, accessed with Ocean Data View).

to nitrate - in the euphotic zone and/or mixed layer have complicated these traditional
definitions (Ward 1987; Dore and Karl 1996a; Ward 2005; Clark et al. 2008; Cavagna et al.
2015; Fripiat et al. 2015). Yool et al. (2007) have demonstrated the impact of accounting
for nitrification in estimates of new production.

How much nitrification occurs in the euphotic zone versus at depth, and why? Chapter 3
provides insight into the controls on nitrification in the ocean. Nitrification typically peaks
at depth, just below the euphotic zone (Zafiriou et al. 1992; Dore and Karl 1996b; Ward
2008; Mackey et al. 2011; Santoro et al. 2013). Because nitrite is an intermediate product in
the two-step nitrification process, understanding what forms the primary nitrite maximum
(PNM) - the accumulation of nitrite at the base of the euphotic zone in stratified water
columns - serves as a focusing feature for understanding nitrification more generally Fig.
1.2). Though ubiquitous in the ocean, the PNM is still not well understood (Lomas and
Lipschultz 2006; Santoro et al. 2013), and Chapter 3 proposes the processes that form it.

Nitrification is also relevant to microbial feedbacks to the climate system, since the
greenhouse gas N 20 is a known byproduct of nitrification in the oxygenated ocean, in addi-
tion to denitrification in anoxic zones (Ward 2008; Babbin et al. 2015). Though work here
does not specifically target N 20 formation or consumption, insights on the controls on ni-
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Figure 1.3: Schematic of a metabolic functional type, modeled as a function of the partitioning of
electrons into the fraction f used for biomass synthesis vs. that used for respiration.

trification and denitrification are indirectly relevant for predicting marine N 20 emissions.

Changes to the distribution of nitrification due to warming-induced changes in water col-

umn stratification, for example, could potentially affect the amount of N 20 that escapes the

water column into the atmosphere.

The work here aims to provide a mechanistic understanding of the relationship between

ocean circulation and the microbial processes that result in oxygen depletion, denitrifica-

tion, and nitrification. Simple microbial ecosystem models quantitatively link growth and

respiration to ocean circulation to better understand the cycling of oxygen and nitrogen in

the ocean.

1.5 Approach: Microbial metabolic functional types

This work organizes the metabolisms carried out by marine microbes into metabolic func-

tional types. The approach is inspired conceptually by the labelling of microbes as the

"engines that drive biogeochemical cycles" by Falkowski et al. (2008), and practically by
field of environmental biotechnology, which has long embraced the thought of microbes as

engines in bioreactors (Rittman and McCarty 2001). Each functional type is defined by a

particular set of redox reactions that underlies a metabolism, such as photoautotrophy, aer-

obic heterotrophy, all combinations of the subsets of heterotrophic denitrification, ammonia

oxidation, and nitrite oxidation (Fig. 1.3).

The details of functional type development for particular metabolisms are contained

within the appendices of the following chapters. Here, an overview of the strategy and

general assumptions are presented. The aerobic heterotrophic functional type serves as an

example for the overview, since along with photoautotrophy, it represents the dominant

metabolism in the earth system.

Functional type stoichiometry

First, an equation for the stoichiometry of a metabolism is described by its underlying reac-

tions, following the methodology of Rittman and McCarty (2001). The description consists

of three half-reactions: biomass synthesis, oxidation of an electron donor, and reduction
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of an electron acceptor. The ratio of anabolism and catabolism is represented by the frac-
tion f of electrons fueling cell synthesis vs. respiration for energy (Fig. 1.3). For aerobic
heterotrophy, organic matter (OM) provides the elements and electrons for both the synthe-
sis of biomass (B) and energy production, and oxygen serves as the electron acceptor, as
(neglecting water and charge balance with bicarbonate for simplicity):

__ 1-f f (COM CBf" n2+ nBf\
OM+ 0 2 --- B+ CO2+ NH (1.1)

dom 4 dB \dOM dB doM dB (

where d is the number of electron equivalents for generic organic matter composition
CcHhOON,, that correspond to the oxidation states of its inorganic constituents (below as
d = 4c + h - 2o - 3n). In this formulation, the electron fraction f is assumed the same for
both carbon and nitrogen utilization, but observations show that bacteria may preferentially
respire carbon and utilize nitrogen more efficiently (Goldman et al. 1987). The description
could account for this by including multiple values of f, one for each substrate.

Theoretically, the fractionation of electrons f can be calculated from the free energies
of the redox reactions, along with estimates of the energy costs of cell synthesis and main-
tenance. This approach works well in some environments such as bioreactors (Rittman and
McCarty 2001), but less so in natural environments: in the following chapters, the the-
oretical f consistently overestimates the efficiencies gathered from marine observations.
One reason for the theoretical overestimate could be the underestimate of the costs of cell
synthesis in oligotrophic environments, particularly if more energy is required to access nu-
trients at low concentrations. Another reason could be the overestimation of the free energy
available in marine organic matter; the theoretical calculations are all based on an assump-
tion of that free energy, which was assumedly tuned for water treatment plants, and so may
not hold across widely varying environments. A third reason is that the assumption of the
inefficiencies of energy conversion (i.e. that which is lost to heat within cells) is largely
uncertain even in the bioreactor environments, and so serves as a tuneable parameter even
for the theoretical calculations.

In sum, even the theoretical calculations of the electron fractionation involve uncer-
tainty, and are tuned to match observations. This work foregoes these theoretical estimates
entirely and instead assigns efficiencies inferred from observations. For example, compila-
tions of bacterial growth yields are assigned as the yields for the aerobic heterotroph. These
yields are 0.14 0.14 and 0.19 0.16 mol C synthesized per mol C consumed for the open
and coastal ocean, respectively, which are significantly lower than theoretically predicted
yields of about 0.5 for marine organic matter stoichiometry (Rittman and McCarty 2001;
Robinson 2008).

For the heterotroph, this assigned organic matter yield, yom, relates to f asyom = OMf,
and so yom = f when assuming the same stoichiometry for both the organic matter sub-
strate and microbial biomass. Assuming the average stoichiometry of marine organic mat-
ter (CI 06H17504 2N16 ; Anderson 1995) for both gives a ballpark values for the heterotrophic
metabolism as:

467((1-y2)
OM+ 4) 02 yoB+ 106(1 - yo)CO2+ 16(1 - yo)NH+ (1.2)
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Thus, yOM -+ 0 represents the traditional biogeochemical description of organic matter rem-
ineralization where bacteria biomass is neglected as an intermediate pool. Here, the C:O
ratio of remineralization implied by neglecting B is 106.4 = 0.9, which is the value of the467-.,whcistevleote
respiratory quotient as estimated by (Williams and del Giorgio 2005).

Functional types as populations

With the stoichiometry of the metabolism determined, a functional type is then represented
as a population with biomass B, as in typical ecological population models, with a differen-
tial equation describing its rate of change as a function of its growth rate P and its loss rate
L:

DB
Dt = gB-LB (1.3)

where the substantial derivative D/Dt includes the diffusive flux as function of the diffusive
coefficient K as V - (R(VB), and advective fluxes as functions of velocity - as V - (dB). The
growth rate is calculated as the minimum product of the rate of uptake p of each required
substrate and its yield, following Liebig's Law of the Minimum. For the heterotroph, either
organic matter or oxygen limits the growth rate as:

p =minpOMyOM, p0 2Y0 21 (1.4)

Thus, an assumption here is that the yield and the growth rate are correlated with respect to
any one substrate, which is often but not always the case, as discussed above.

The uptake of any substrate is then described using observed kinetic parameters when
available and appropriate. The uptake of oxygen is modeled assuming a diffusive limitation;
this assumption is explored at length in Chapter 2. The uptake of all other substrates, in-
cluding organic matter, is described using a Michaelis-Menten saturating form, defined by a
half-saturation constant and maximum uptake rate. For dissolved inorganic nitrogen, these
parameters are taken from the literature. For organic matter, the uptake parameters are not
represented mechanistically, but rather inversely incorporate estimates of marine bacterial
growth rates (see Appendix 4.A.3).

Lastly, the loss rate L of the functional type populations is modeled as a combination of
both consumption by grazers and a general linear mortality rate meant to implicitly include
the losses due to viruses. Much remains unknown about these loss rates for microbial pop-
ulations, though Taniguchi et al. (2014) provide useful size-based quantitative estimates.
An overall value for L can be inferred from mean bacterial growth rates, since for a sta-
ble population at steady state, loss rates must balance growth rates. Bacterial growth rates
at the surface vary substantially, but on average range from about 0.1 to 1 day-' (Duck-
low 2000), with 0.1 day- 1 as a calculated average (Kirchman 2016). Subsurface pelagic
bacterial growth rates are also on average 0.1 day' (Aristegui et al. 2009).

Benefits and limitations

In general, using these metabolic functional types to describe prokaryotic function aims to
aggregate the diverse, mixed community of many species that may be carrying out that same
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metabolism. Such aggregation has been deemed a useful strategy for representing the bio-
geochemical impacts of the microbial community (Shapiro and Polz 2014), and particularly
so for that of the phytoplankton community (Mutshinda et al. 2016).

However, the approach has its limitations. Perhaps most significantly, it involves a
choice about which metabolisms occur within a single population, and which are dispersed
among more than one population. Chapter 3 demonstrates that this choice does not always
affect the overall estimates of the environment: in a model, a facultatively anaerobic pop-
ulation results in the same ambient nutrient concentrations and total biomass as discrete
aerobic and anaerobic populations. But this not always the case: Chapter 4 makes the as-
sumption that the two steps of nitrification are carried out by distinct populations, which is
justified both with observations and theory (Costa et al. 2006; Ward 2008). If the model had
assumed that the two steps occurred within a single population, it would not have predicted
the accumulation of nitrite in the environment. Additionally, the versatility and mixotrophy
of microbial metabolisms - nitrite oxidizers in particular - is increasingly appreciated (Qin
et al. 2014; Daims et al. 2016), and including such mixotrophic lifestyles is believed to
have consequences for overall ecosystem function since such lifestyles modify the fitness
of populations in their environments (Ward and Follows 2016).

The population modeling approach also fails to incorporate another common charac-
teristic of prokaryotic communities: the capacity for dormancy and survival in a starved
state with little activity (Ducklow 2000). In the models here, the biomass of the microbial
functional type varies linearly with the production rates. However, in real communities, a
smaller fraction may be active: evidence suggests that less than 10% to more than 75% of
the microbial community may be inactive (Ducklow 2000). This complicates the compar-
isons of modeled biomass and activity rates with observations, and may be one explanation
for underestimates of biomasses or overestimates of activity rates.

While there are benefits and limitations to the metabolic functional type approach in
general, the work presented in the next chapters use the approach as customized for the
specific questions considered. The conclusions made in each are presented with their asso-
ciated specific limitations. The work shows that representing microbial activity mechanis-
tically and explicitly, despite these general uncertainties, is able to provide insight into the
dynamics of oxygen depletion, the transition to anaerobic metabolisms, and the formation
of the primary nitrite maximum.

1.6 Outline of thesis

This thesis posits that answering the following questions requires a mechanistic description
of the microbial processes involved within a physical model of the environment.

Chapter 2: Why is oxygen depleted to nanomolar concentrations in marine anoxic
zones?

When aerobic microbes deplete oxygen sufficiently, anaerobic metabolisms activate, driv-
ing losses of fixed nitrogen from marine oxygen minimum zones. Recently developed tech-
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nology has lowered the detection limit for in situ oxygen measurements by three orders of
magnitude, to 1-10 nM, and its deployment has revealed large regions in the ocean at or
below these concentrations (Fig. 1.1). These observations imply that microbial activity is
able to access oxygen at these levels, yet previous theory and observations suggested much
higher critical oxygen concentrations. Simple modeling links microbial growth and respira-
tion to the supply of oxygen in an environment, and provides an explanation for these obser-
vations. A generic aerobic metabolic functional type is considered, and results are relevant
for diverse aerobic microbial populations. The model predicts the limiting concentration of
oxygen for the aerobic functional type as a function of its size, its oxygen demand, its pop-
ulation turnover rate, and the ambient temperature. These limiting concentrations vary, but
are largely in the nanomolar range, and so the model anticipates the observed nanomolar
concentrations.

Chapter 3: What governs the transition from aerobic to anaerobic metabolisms in
marine anoxic zones? What enables their coexistence?

The transition from aerobic to anaerobic metabolisms in the ocean is qualitatively well un-
derstood, but quantitative description is necessary for understanding how fixed nitrogen loss
might change over time. What conditions allow for the favorability of anaerobic metabol-
isms? Observations have suggested the coexistence of aerobic and anaerobic metabolisms
in low oxygen environments as well as in the laboratory. How can we explain this co-
existence from an ecological perspective? Resource competition theory is used to explain
the sustained coexistence of aerobic and anaerobic metabolisms, as well as a description
of the threshold for the onset of favorable anaerobic metabolism. Two metabolic functional
types are considered: an aerobic and an anaerobic (denitrifying) heterotroph. In Addendum
1, the interactions of four additional types are included. This set of six metabolisms repre-
sents the minimum set of metabolisms currently understood to control the rates of nitrogen
loss in anoxic zones. In Addendum 2, we connect the resulting theoretical descriptions to
datasets of the whole ocean, in an attempt to identify the domain of favorable anaerobic
metabolisms.

The main chapter defines the transition from exclusive aerobic activity to the sustain-
able coexistence of aerobic and anaerobic metabolisms as a function of the relative avail-
ability of oxygen and organic matter. Addendum 1 shows that this theoretical framework
can also explain the coexistence of aerobic nitrification and anaerobic ammonium oxidation
(anammox). It also proposes a detailed description of the transition from multiple aerobic
to multiple anaerobic functional types as a function of oxygen supply, and one of the in-
termediate states is compared to recent observations. Addendum 2 predicts a volume of the
ocean where anaerobic activity should be steadily sustainable, although the uncertainty in
the oxygen and POC flux climatologies prevent precise quantitative prediction.
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Chapter 4: What forms the primary nitrite maximum?

In the stratified water columns in the ocean, a small concentration of nitrite accumulates
at the base of the sunlit surface layer: the primary nitrite maximum (PNM; Fig. 1.2). We
still do not understand its formation, which highlights a gap in our understanding of the

controls on marine photosynthesis, which is often limited by nitrogen. A long-standing
hypothesis has been that sunlight inhibits the activity of chemoautotrophic nitrifiers, the
microorganisms seemingly responsible for formation of the PNM, but this fails to explain

why nitrification has also been observed in sunlit waters. To date, no robust explanation
exists for why the two steps of nitrification are consistently decoupled, which is required
for the accumulation of nitrite as an intermediate product. Two metabolic functional

types are developed that represent the two steps of nitrification. The redox chemistry
and size-based assumptions of affinity differentiate the two nitrifier types, which are then
included in a microbial ecosystem model to gain insight into the controls on nitrification in
marine environments and the formation of the PNM. The model shows that both differences
between the two nitrifying metabolisms contribute to a larger subsistence concentration
of nitrite for the nitrite oxidizer than for that of ammonium for the ammonia oxidizer,
and so result in an accumulation of nitrite. Subsistence concentrations also explain why
nitrification peaks at depth. Phytoplankton, with lower subsistence concentrations of DIN
than nitrinfiers, are able to competitively exclude nitrifiers when their growth is limited

by nitrogen, such as at the surface. Nitrification becomes sustainable at depth where
phytoplankton are light-limited.

Finally, in the Appendix, we comment upon a way to circumvent the inherent error of the
resolution of the cell quota in a population model.
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Chapter 2

A theoretical basis for a nanomolar
critical oxygen concentration

The work in this chapter is based upon the following publication: Zakem, E. J., and M. J.
Follows. 2016. A theoretical basis for a nanomolar critical oxygen concentration. Limnolol-
ogy and Oceanography.

2.1 Overview

When aerobic microbes deplete oxygen sufficiently, anaerobic metabolisms activate, driv-
ing losses of fixed nitrogen from marine oxygen minimum zones. Biogeochemical models
commonly prescribe a 1-10 pM critical oxygen concentration for this transition, a range
consistent with previous empirical and recent theoretical work. However, the recently de-
veloped STOX sensor has revealed large regions with much lower oxygen concentrations, at
or below its 1-10 nM detection limit. Here, we develop a simplified metabolic model of an
aerobic microbe to provide a theoretical interpretation of this observed depletion. We frame
the threshold as O, the subsistence oxygen concentration of an aerobic microbial metabol-
ism, at which anaerobic metabolisms can coexist with or outcompete aerobic growth. The
framework predicts that this minimum oxygen concentration varies with environmental and
physiological factors, and is in the nanomolar range for most marine environments, consis-
tent with observed concentrations. Using observed grazing rates to calibrate the model, we
predict a minimum oxygen concentration of order 0.1-10 nM in the core of a coastal anoxic
zone. We also present an argument for why anammox may be energetically favorable at a
higher oxygen concentration than denitrification, as some observations suggest. The model
generates hypotheses which could be tested in the field, and provides a simple, mechanis-
tic, and dynamic parameterization of oxygen depletion for biogeochemical models, without
prescription of a fixed critical oxygen concentration.
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2.2 Introduction

Anaerobic processes in marine oxygen minimum zones (OMZs) are one of the major loss
pathways for fixed nitrogen in the ocean (Ward 2013). With predicted marine deoxygena-
tion and the open question of whether or not OMZs may expand due to global warming
(IPCC 2014), establishing theory for the controls on aerobic vs. anaerobic processes is
timely. Qualitatively, the mechanisms that form OMZs and lead to fixed nitrogen loss are
well understood: in productive areas of the ocean, enhanced aerobic respiration in poorly
ventilated subsurface waters depletes oxygen (Devol 2008). When oxygen is sufficiently
low, anaerobic metabolisms become energetically competitive pathways, resulting in the
accumulation of metabolic products such as nitrogen gas (N 2) and nitrous oxide (N 20)
(Devol 2008; Ulloa et al. 2012; Wright et al. 2012). In OMZs, two pathways- heterotrophic
denitrification and chemoautotrophic anaerobic ammonium oxidation (anammox)- account
for the majority of fixed nitrogen loss (Ward 2013).

Studies of microbial processes in aquatic oxygen minimum zones have revealed com-
plex biogeochemical habitats (Lam and Kuypers 2011; Wright et al. 2012). Microbial com-
munity composition exhibits structure along the oxygen gradient between end-member fully
oxic and fully sulfidic environments (Gonsalves et al. 2011; Ulloa et al. 2012; Jayakumar
et al. 2013; Hawley et al. 2014). In the oxycline, as oxygen sharply depletes by up to five or-
ders of magnitude (Fig. 2.1), microbial communities have been observed to be more diverse
than in the anoxic cores (Jayakumar et al. 2009; Zaikova et al. 2010; Bryant et al. 2012),
though not always (Stevens and Ulloa 2008). Organic matter supply to the subsurface that
varies in time and space creates a dynamic oxycline (Ward 2008), which may support this
diversity, with competitive exclusion operating progressively with depth as environmental
conditions stabilize (Hutchinson 1961).

Devol (1978) noted that predicting the oxygen concentration of the switch between
aerobic and anaerobic respiration is crucial for accurate OMZ modeling. He conducted
an exhaustion curve experiment with bacterial isolates from anoxic marine areas to deter-
mine average growth-limiting oxygen concentrations of about 1-4 pM, at the limits of then-
current sensors. Many biogeochemical models prescribe a critical oxygen concentration in
this range or higher, setting the transition to nitrate reduction and denitrification (e.g. Najjar
et al. 2007; Anderson et al. 2007; Deutsch et al. 2011; Bianchi et al. 2012; Suntharalingam
et al. 2012; Gnanadesikan et al. 2012; Gutknecht et al. 2013). Brewer et al. (2014) proposed
a theoretical basis for a critical oxygen concentration of this magnitude by considering the
energy available from external oxygen and nitrate. Their analysis shows a higher energetic
yield from the use of nitrate as an electron acceptor once oxygen drops to about 10 pM,
with nitrate concentration at 40 pM. They interpret this as an upper-bound oxygen concen-
tration for the onset of anaerobic nitrate reduction, pertinent when respiration is limited by
the supply of an electron acceptor.

The recent development of the STOX (Switchable Trace amount OXygen) sensor has
lowered the detection limit for dissolved oxygen measurements in the ocean from about
1 pM to 1-10 nM, and its deployment has revealed that large volumes of OMZ water have
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Figure 2.1: Oxygen measured by Thamdrup et al. (2012) with the STOX (Switchable Trace amount
OXygen) sensor (circles) and a STOX-calibrated conventional oxygen sensor (lines) in the Eastern
South Pacific along the west coast of South America. As in Thamdrup et al. (2012), locations with
multiple measurements (solid circles) include error bars (standard deviations), and locations with
one measurement (open circles) have a detection limit of 10 nM. Error bars that intersect with the
y-axis signify error to or below zero. Oxygen was consistently below 10 nM at the core of the anoxic
zone at five sites, with nine total casts (blue), and varied from 10-50 nM at one site, with two casts
(red).
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oxygen concentrations at or below these limits (Fig. 2.1; Revsbech et al. 2009; Jensen et al.
2011; Kalvelage et al. 2011; Thamdrup et al. 2012; Tiano et al. 2014). Though recent stud-
ies show the bulk of anaerobic activity occurring at the STOX detection limit, they also
reveal denitrification and anammox at much higher concentrations (up to 10s of pM) both
sporadically (Dalsgaard et al. 2012; De Brabandere et al. 2014) and consistently (Kalvelage
et al. 2011). It is not clear whether these latter observations can be explained by favor-
able anaerobic metabolisms at these concentrations, by micro-anoxic zones within particles
(Karl et al. 1984; Woebken et al. 2007; Klawonn et al. 2015; Kalvelage et al. 2015), exper-
imental effects (De Brabandere et al. 2012), or dispersal processes.

The STOX-enabled observations imply feasible aerobic growth at nanomolar levels of
oxygen. Stolper et al. (2010) demonstrated aerobic growth of E. coli down to 3 nM oxygen
in the laboratory, with data fit to a Monod model of oxygen-dependent growth with a half-
saturation (K,.) value of 120 20 nM. Complementary studies of OMZ microbes have used
the STOX sensor and careful development of tanoxic conditions to provide evidence of a
nanomolar threshold between aerobic and anaerobic metabolism. Dalsgaard et al. (2014)
demonstrated that oxygen suppresses denitrification rates, with 50% inhibition at about
200 and 300 nM for N 2 and N 20 production, respectively. Complimentarily, Tiano et al.
(2014) found that aerobic respiration continues until oxygen is depleted to nanomolar levels,
with apparent K, values of 10-200 nM. Gong et al. (2016) also measured varying K,,
values of 30-60 nM for marine bacteria, some of which decreased to below 10 nM with
changes in cell physiology. Dalsgaard et al. (2014) observed a 50% inhibition of anammox
at much higher concentrations- almost 900nM oxygen. Other observations also suggest that
anammox tolerates higher oxygen concentrations than heterotrophic denitrification (Jensen
et al. 2008; Kalvelage et al. 2011; Dalsgaard et al. 2012).

The physiological basis for these very low limiting oxygen concentrations is linked to
underlying enzymatic affinities (Gong et al. 2016). Using spectrophotometric methods to
indirectly measure oxygen, high-affinity terminal oxidases for oxygen have been identified
with half-saturation K,, values of 3-8 nM, which have been found to yield less energy per
oxygen molecule than the low-affinity oxidases with K,, around 200 nM (Bott and Niebisch
2003; Morris and Schmidt 2013). Most anaerobes are thought to be facultatively so, switch-
ing between oxygen and other terminal electron acceptors such as nitrate or nitrite (Zumft
1997), and may or may not encode the high-affinity terminal oxidases (Morris and Schmidt
2013). Those that do not may switch their cellular machinery away from aerobic growth
at a higher oxygen concentrations. Yet oxygen depletion to nanomolar detectability limits
is widespread in marine oxygen minimum zones (e.g. Revsbech et al. 2009; Jensen et al.
2011; Kalvelage et al. 2011; Thamdrup et al. 2012; Tiano et al. 2014), and metagenomic
analysis shows that the high-affinity oxidase is widespread in nature (Morris and Schmidt
2013), with both metagenomic and metatranscriptomic analysis showing its significance in
the ETSP (Kalvelage et al. 2013, 2015). Hence the use of oxygen even at these very low
levels must be a viable strategy in many environments, including OMZs.

Why is the minimum of dissolved oxygen in the ocean at or below nanomolar con-
centrations? In this study, we present a theory for a dynamic lower oxygen limit for aerobic
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microbial growth. Assuming that aerobic prokaryotes control the minimum oxygen concen-
trations in the dark pelagic water column, we model a generic aerobic prokaryotic cell, and
relate the uptake of oxygen to its physiological demand. The framework is also sufficiently
general to reflect chemoautotrophic, heterotrophic, and facultatively anaerobic metabol-
isms. We employ resource competition theory to frame the critical oxygen concentration
as the minimum necessary to sustain an aerobic microbial population in a given environ-
ment, and suggest that the transition to energetically favorable anaerobic growth begins at
this subsistence concentration, 0*. It follows that the ambient oxygen concentration is then
maintained at 0* as anaerobic activity becomes significant, if no other sinks for oxygen
are present. 0* is not a fixed concentration, but varies as a function of predatory and other
loss rates, cell size, temperature, and the yield of biomass synthesis with respect to oxygen.
The quantitative model shows that a wide range of conditions correspond to a nanomolar
minimum oxygen concentration, with tenths to hundreds of nanomolar also plausible.

2.3 Derivation of O0

We first consider how the supply of oxygen limits the growth of the generic aerobic func-
tional type. We can calculate an oxygen-limited growth rate go, (t 1 ) by relating the uptake
rate of oxygen into a cell, Po2 (mol 02 cell-' t- 1 ), to the yield of biomass with respect to
oxygen, yo 2 (mol C synthesized mol 02 1), and an estimate of the carbon quota of the cell,
Q (mol C cell- 1 ), as:

/p02 = Po2 yo2 Q' (2.1)

The oxygen yield yo, represents the moles of biomass synthesized per mole of oxygen
respired for an aerobic heterotroph or chemoautotroph. Fig. 2.4(a) shows estimates of y-

as the oxygen demand (mol 02 mol C synthesized- 1 ), calculated as the ratio of bacterial
respiration to bacterial production from the global database of community and bacterial
respiration (http://web.pml.ac.uk/amt/data/respiration.xls; version: Jan 22, 2015; Robinson
and Williams 2005), which assumes a respiratory quotient of one (I mol 02 consumed = I
mol CO 2 produced). The median oxygen demand is 5.4 mol 02 mol - C (mean 11 16 mol

02 mol C-1). The oxygen yield and organic matter yield (often referred to as the growth
efficiency) of a heterotroph can also be related theoretically, based on mass and electron
balance. We describe this prognostic approach in Appendix 2.A. 1.

Michaelis-Menten kinetics are used to describe the uptake of substrates, with the form
dictated by a combination of factors, including diffusion through a molecular boundary
layer, the density of porters, and/or the characteristics of the internal enzymes which utilize
the substrate (Armstrong 2008; Fiksen et al. 2013). In Appendix 2.A.2, we show that at
low oxygen concentrations and with high-affinity capabilities, the Michaelis-Menten model
reduces to a linear, diffusive parameterization of transport across the molecular boundary
layer (Gerard 1931; Gong et al. 2016), as:

Po2 = 47rrDO2 (2.2)
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where r is the cell radius, D is the temperature-dependent diffusion coefficient for oxygen
in seawater, and 02 is the external concentration of oxygen. We consider this diffusive limit
an appropriate description of a mixed microbial community, independent of K.. values.
(Fig. 2.5; see Appendix 2.A.2 for discussion).

Resource competition theory then provides an ecological context. In a steady-state envi-
ronment, a population has grown sufficiently to reduce a limiting resource, R, to its subsis-
tence concentration, R* (Tilman 1982). We evaluate the subsistence concentration of oxygen
of the aerobic microbial functional type as the balance of oxygen-limited growth and loss
rates. The rate of change of the biomass, B, neglecting physical transport and mixing terms,
varies as a function of its growth p and losses L, as:

dB
- = pB-LB (2.3)
dt

where L represents all forms of loss and mortality, including maintenance metabolism (Pirt
1965), grazing, viral lysis and programmed cell death.

We make a steady-state assumption (B = 0), which is approximately true for condi-
tions in which pB ~ LB, and B < pB. Then combining equations 2.1, 2.2, and 2.3, and
including a more explicit description of the cell carbon quota (Q = q7r3 , where q is a
given volumetric carbon content of the cell; 18.3 fmol C pm- 3 from Bratbak and Dundas
1984) gives an expression for the subsistence oxygen concentration 0*:

Lqr2  (2.4)

which is also the steady-state environmental concentration, given no other sinks of oxy-
gen. This expression is general, and relevant for an oxygen-limited microbial community
with high-affinity capabilities (Appendix 2.A.2). 0 is thus the concentration governing the
viability of the aerobic metabolism at the population level.

Following resource ratio theory of Tilman (1982), once oxygen is depleted to 0, coex-
istence of aerobic and anaerobic growth is feasible. We would not expect to observe energet-
ically favorable anaerobic activity at oxygen concentrations higher than 0*, but aerobic and
anaerobic metabolism can co-exist to varying degrees when oxygen is at this concentration.
For a facultative anaerobic population, we can consider this variation as the fraction of the
population's respiration as a whole that utilizes oxygen vs. alternative electron acceptors.

2.4 Estimating O0

Parameter space for Q* across marine environments

The subsistence concentration 0* for an aerobic microbe is not a constant; it is a function
of the parameters in Eqn. 2.4: losses L, cell size (here assuming a spherical cell with ra-
dius r), the oxygen yield y02, and temperature (via the diffusion coefficient D for oxygen
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Figure 2.2: O as a function of (a) cell radius r and oxygen demand (y- ), (b) losses L and temper-

ature T (via D, the diffusion coefficient for oxygen in seawater), and (c) the C:N stoichiometry of

organic matter substrate and biomass composition. Unless varying, parameters are set as best esti-

mates for marine oxygen minimum zones: L = 0.1 d-, T = 12'C, r = 0.25 pm, and y- = 7 mol

02 mol - C.
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in solution). What is the plausible range of 0 in marine environments? Syntheses of ob-
servations that characterize most marine environments inform values for these parameters,
and we illustrate the resulting range of reasonable 0* values in Fig. 2.2.

0* increases linearly with oxygen demand y-. In Fig. 2.2(a), we illustrate 0* for y-
for 0-100 mol 02 mol -1 C synthesized, representing a range in growth efficiency of 1-
0.01, respectively, assuming average marine stoichiometries (Appendix 2.A.1). Mean bac-
terial growth efficiencies from the database of Robinson (2008) for open ocean and coastal
regions (0.14 and 0.19, respectively) correspond to oxygen demands of 5-14 mol 02 mol
-1 C synthesized (Appendix 2.A. 1), though none of the data come from oxygen minimum
zones. We note that 0* has an asymptotic relationship with growth efficiency (Eqn. 2.8),
once oxygen demand converges to zero as cell growth approaches perfectly efficient syn-
thesis from organic substrate.

In Fig. 2.2(a), we also illustrate O over the range in the size of marine heterotrophic
bacteria: 0.15-0.5 pm in radius (Sherr and Sherr 2000). 0* increases quadratically with cell
radius for a constant cellular carbon density q (18.3 fmol C pm- 3; Bratbak and Dundas
1984). Seawater temperature ranges from below 00C in the deep ocean to over 30'C at the
surface; we illustrate 0* for 0-40'C, which coincides with about a threefold variation in D
of 1.1-3.6 x 10-5 cm 2 s-1 (for a salinity of 35; www.unisense.com/files/PDF/Diverse/Sea-
water & Gases table.pdf, accessed Jan. 7, 2016). 0* thus decreases slightly as temperature
increases (Fig. 2.2b).

A relevant range for losses can be estimated from mean bacterial growth rates, since for
a stable population at steady state, loss rates must balance growth rates. Bacterial growth
rates at the surface vary substantially, but on average range from about 0.1 to 1 day-1 (Duck-
low 2000), with 0.1 day-] as a calculated average (Kirchman 2016). Subsurface pelagic
bacterial growth rates are also on average 0.1 day- 1 (Aristegui et al. 2009). Since observa-
tions in OMZs are lacking, we illustrate 0* across a wider range of loss rates, from 10-3
to 10 day- 1 , which represents population doubling times of two years to two hours, respec-
tively (Fig. 2.2b). 0* increases linearly with loss rates.

Across the parameter space illustrated in Fig. 2.2, 0* varies from less than 0.1 to a few
hundred nanomolar. Large values coincide with high oxygen demands, large cell sizes, and
high loss rates. We next explore a more targeted parameter space.

Using observations to predict O in an OMZ

For predictions of 0*, total rates of losses- to grazing, viruses, maintenance, and cell death-
are key (Fig. 2.2), yet poorly constrained for heterotrophic microbes in subsurface marine
environments. Here, we use a dataset that specifically provides these loss rates for aerobic
microbes to more carefully predict the minimum oxygen concentration in the core of an
anoxic zone.

We calculate 0* from Eqn. 2.4 for a site in the coastal upwelling region off of northern
Chile using the observations of Cuevas and Morales (2006) of temperature and the spe-
cific grazing rates on bacteria by heterotrophic nanoflagellates (Fig. 2.3a,b). The diffusion
coefficient for oxygen D was calculated as a function of temperature using a linear fit to
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published values for 2-25'C seawater (www.unisense.com/files/PDF/Diverse/Seawater &

Gases table.pdf, accessed Jan. 7, 2016; A2 = 0.998). To increase the uncertainty of our esti-

mate, we calculate O with and without the contribution of an additional 0.1 day- 1 loss rate,

representing other mortality or maintenance. This gives two estimates of loss rates that dif-

fer by a factor of two (Fig. 2.3b). Cuevas and Morales (2006) infer that grazing rates fully

compensate for bacterial production rates in the anoxic core below 40m, which suggests

that additional mortality is in fact negligible.

Oxygen (pM)
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Figure 2.3: Predicted 0* from measured vertical distributions of (a) temperature, oxygen, and (b)
the specific grazing rate on bacteria by heterotrophic nanoflagellates at a coastal upwelling site off

Iquique, Chile (20.06'S, 70.190 W) (Cuevas and Morales 2006). 0 is calculated with and without

an additional loss rate of 0.1 day-'. For both estimates, (c) calculations reflect the average coastal

growth efficiency of 0.19 (lines) with uncertainty due to its standard deviation of 0.16 (shaded re-

gions). Measured oxygen concentrations (a and c) are omitted below the detection limit of 1 pM.

We then calculate 0* for r = 0.25 pm (which gives 14 fg C cell' with the cellular car-

bon density (q) of Bratbak and Dundas (1984), close to the midpoint for the estimated 10-20

fg C cell-' from Ducklow 2000) and using the coastal marine average growth efficiency and

its standard deviation of 0.19+0.16 (Robinson 2008) to estimate the oxygen demand (Ap-

pendix 2.A. 1). The model uncertainty (shaded areas) corresponds to the resulting range in

oxygen demand of 3-35 mol 02 mol C-1. Because growth using the high-affinity oxidases

required to utilize oxygen at low levels is presumably less efficient than that represented

by the average, we may expect better predictive power of the higher end of this range (and

higher resulting 0).
The model predicts O consistently below 25 nM, and decreasing slightly with depth

(Fig. 2.3c); though temperature and grazing rate both decrease with depth, their opposing

influence (as illustrated in Fig. 2.2b) leads to a smaller net impact on 0*. In the "anoxic"

core, below 40m, the model predicts a mean Q* concentration of 0.5-3 nM, just at and below

the STOX sensor detectability. The range in oxygen demand results in the model uncertainty

of 0.2-24 nM, with the high end representing the highest oxygen demand (corresponding to

a growth efficiency of 0.03). This prediction could be partially tested, to the few nanomolar

detection limit, by deployment of the STOX sensor at this location.
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Beyond marine environments

Since low oxygen environments are not constrained to the marine realm, this model may
have broader application. We compare marine estimates to the parameters documented by
Stolper et al. (2010) for the growth of E. coli to 3 nM oxygen at 37'C, human body tem-
perature. We find that the apparent half-saturation (K,,) values of bacteria in OMZs and E.
coli in optimal laboratory conditions can be more than an order of magnitude different: <10
nM and 120 nM, respectively (Gong et al. 2016; Stolper et al. 2010). Yet in both environ-
ments, oxygen is depleted to a few nanomolar or less (Thamdrup et al. 2012; Stolper et al.
2010). In Appendix 2.A.2, we demonstrate how the diffusive supply of oxygen similarly
limits prokaryotic growth in the deep ocean and in optimal laboratory conditions, despite
the different K. values, since apparent K, values reflect maximum rates. This suggests that
this framework is sufficiently flexible to represent the limiting oxygen concentration for a
variety of microbial populations growing at a variety of rates across environments.

2.5 Discussion

Summary of results

We hypothesize that the limiting oxygen concentration for aerobic respiration in an aquatic
environment is O, the subsistence oxygen concentration for an aerobic prokaryotic popu-
lation, and that 0* represents the minimum oxygen concentration in that environment. This
anticipates the observed nanomolar oxygen concentrations in the ocean's oxygen minimum
zones (e.g. Revsbech et al. 2009; Jensen et al. 2011; Kalvelage et al. 2011; Thamdrup et al.
2012; Tiano et al. 2014). As the threshold for sustainable aerobic growth, O is also the
concentration at which external oxygen is maintained as diverse suites of anaerobic meta-
bolisms activate, excepting the presence of other sinks for oxygen. This minimum oxygen
concentration varies as a function of environmental factors as well as cell physiology: 0*
increases with losses to mortality and predation, decreases with temperature, and increases
with oxygen demand and cell size (Fig. 2.2). Plausible estimates for these factors in marine
environments suggest that 0* may vary substantially- up to tens or hundreds of nanomolar
for rapid microbial population turnover rates or high oxygen demand- but is largely in the
nanomolar range. Using grazing rates on bacteria measured by Cuevas and Morales (2006)
in a coastal anoxic zone, we predicted an 0* concentration of order 0.1-10 nM.

Implications of a flexible, nanomolar 0* for diverse species and environments

0* as the minimum oxygen concentration in "anoxic" marine zones. We hypothesize
that O is likely to represent the minimum ambient oxygen concentration of essentially
anoxic pelagic marine zones. When 02 = 0, aerobic respiration is at the edge of being a
non-viable metabolism for the microbe in its environment. Once oxygen is depleted to 0*,
either coexistence with or competitive exclusion by an anaerobic metabolism is possible
(Tilman 1982). The theory anticipates both in an anoxic zone: that aerobic respiration will
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maintain the O concentration while anaerobic metabolisms also operate, and that diverse
anaerobic metabolisms may operate exclusively at the core of the zone.

In anoxic zones, 02 = 0 only if no other process is capable of further depleting oxy-
gen. Sulfide oxidation in sulfidic environments could potentially scavenge oxygen to lower
levels (Preisler et al. 2007; Canfield et al. 2010), thus excluding aerobic respiration entirely.
Also, we have so far considered the 0* of strictly aerobic growth. If aerobic respiration and
denitrification occur simultaneously in cells (Chen and Strous 2013), lowering a popula-
tion's demand for oxygen relative to biomass synthesis, the 0* of that aerobic-anaerobic
hybrid activity would be lower. Thus a hybrid metabolism would potentially further deplete
oxygen as long as it remains energetically favorable. In these ways, the 0* of strictly aer-
obic growth represents an upper bound on the lowest oxygen concentration in an oxygen
minimum zone.

O varies across environments. The O framework reflects variation among steady-state
environments, and provides an explanation for how the minimum oxygen concentration
may differ among sampling sites and times, and between different organisms adapted to
various conditions. We might anticipate that the limiting oxygen concentration decreases
with depth if bacterial grazing by nanoheteroflagellates, for example, decreases with depth.
On the other hand, such an effect on O may be dampened or cancelled out by a decrease
in growth efficiency with depth, since it is plausible that bacteria may optimize carbon
utilization rather than their growth efficiency in the 'oligotrophic' deep ocean (del Giorgio
and Cole 1998).

At one site in the Eastern South Pacific OMZ, oxygen was consistently measured by the
STOX sensor at 10-50 nM, in contrast to nine other casts at five sites, in which oxygen was
below the detection limit (Fig. 2.1; Thamdrup et al. 2012). The authors point to a perturba-
tion in the hydrography at this site as evidence of an injection of water from another source,
probably by mixing. We may consider this higher oxygen concentration as indicative of aer-
obic activity. However, our analysis suggests that this 50 nM concentration may be the O
concentration of the intruding water body, and thus it might also be undergoing anaerobic
activity. Fig. 2.2 shows that 50 nM is a plausible O concentration, reflecting, for example,
a microbial population subject to a low growth efficiency, and thus higher oxygen demand,
due to a less nutritious food source or some other energetic limitation. Simultaneous sam-
pling for the presence of anaerobic activity could test this hypothesis. This case exemplifies
how the theory of a dynamic oxygen threshold can impact interpretation of observations:
we do not expect one fixed limiting oxygen concentration for all environments.

An argument against a 10 pM threshold. Our results are quantitatively different from
Brewer et al. (2014), who propose that nitrate should offer more free energy than oxygen
once oxygen is depleted to about 10 pM, assuming nitrate concentrations of about 40 pM.
They conclude that this could represent the conditions for the onset of nitrate reduction. On
one hand, Brewer et al. consider a case for which 0* theory does not apply: when growth
is not limited by the electron donor (such as organic matter), but rather by the electron
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acceptor. This initially poses the question of whether or not these two theories are com-
plementary, i.e., that a 10 pM onset for nitrate reduction and a nanomolar lower limit for
aerobic respiration together represent a window for the energetically favorable coexistence
of both.

Further analysis suggests not, with two lines of reasoning. First, the framework of
Rittman and McCarty (2001), which serves as a base for O theory (Appendix 2.A.1),
poses that for this electron acceptor-limited case, the relevant comparative rates are the
uptake rates of substrate into the cell relative to the yields of biomass for those substrates.
These would be P02yo 2 for oxygen (as in Eqn. 2.1) and PNO3YNO3 for nitrate. Brewer et al.
consider diffusive supply rates for both oxygen and nitrate. But the fact that oxygen is a
small, uncharged molecule that can passively diffusive into cell, in comparison to nitrate,
which requires enzyme-controlled, active transport suggests that these two uptake rates dif-
fer significantly and consistently. In this way, the framework of Brewer et al. is relevant
from a geochemical, but not microbial, perspective. From the microbial perspective, we
consider O and a similarly-calculated NO* star to be the comparable limits, and expect O
to be consistently lower than NO* due to the diffusive-uptake advantage of oxygen.

Second, Brewer et al. consider the electron acceptor-limited case, and we can further
demonstrate that oxygen and nitrate concentrations of order 10 pM should not limit most
marine microbial growth, and thus that this case is rare. The model developed here quanti-
tatively links external concentrations to growth. For oxygen to pose an energetic limitation
to growth at 10 pM, growth rates would have to be at least about 50 d-1, and over 100
d-1 for average efficiencies (Fig. 2.5). This could limit the >140 d-1 growth rate of the
fastest-growing marine heterotrophic bacteria, Vibrio natriegens (Maida et al. 2013; Kirch-
man 2016). But for most populations, organic matter processing or other internal constraints
results in much lower rates (about 1 d-1 maximum, 0.1 d- 1 on average; Kirchman 2016).
We conclude that a 10 pM oxygen threshold can only be reconciled for the very fastest
heterotrophic bacteria.

Potential for a higher O for chemoautotrophic metabolisms. We might assume that
the aerobic heterotrophic metabolism, due to a lower respiratory requirement per unit bio-
mass, can draw down oxygen to a lower concentration than aerobic chemoautotrophs, such
as nitrifiers, that undergo energy-intensive carbon fixation. This would imply that the switch
from aerobic to anaerobic chemoautotrophy occurs at a higher oxygen concentration than
the switch (within facultative cells) from aerobic to anaerobic heterotrophy. For example,
we can consider the competition for ammonium between chemoautotrophic aerobic and
anaerobic ammonia oxidation (i.e., the first step of nitrification and anammox), with the
former using oxygen and the latter using nitrite as a terminal electron acceptor. All else
being the same, the difference in 0* between nitrification and heterotrophy scales linearly
with any difference in their oxygen demand (Eqn. 2.4): if the nitrifying population requires
ten times more oxygen than the heterotrophic population to sustain the same rate of biomass
turnover, its 0* will be ten times higher than that of heterotrophy. If this is 50 nM instead of
5 nM, for example, we might expect to see anammox occurring once oxygen is depleted to
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50 nM, as it begins to favorably coexist with (and potentially eventually outcompete) nitri-
fication at this higher 0*, even as oxygen continues to be depleted to 5 nM by heterotrophs.
This is consistent with observations that anammox occurs at higher levels of oxygen than
does heterotrophic denitrification (Jensen et al. 2008; Kalvelage et al. 2011; Dalsgaard et al.
2012, 2014).

However, FUssel et al. (2012) and Kalvelage et al. (2013) observe aerobic nitrification
throughout oxygen minimum zones, suggesting that the 05 of nitrifiers may be compara-
ble to that of heterotrophs. The smaller cell size of ammonia-oxidizing archaea (Martens-
Habbena et al. 2009) or lower predation rates could allow for a comparable or even lower
0*. If this is the case, limitation by ammonium or nitrite, rather than oxygen, may govern
chemoautotrophic dynamics.

Broad application. The theory here applies to oxygen minimum zones as well as to E.
coli in the laboratory (Stolper et al. 2010): a simple, mechanistic model links oxygen-
limited microbial growth to nanomolar oxygen concentrations (Appendix 2.A.2). While
Stolper et al. (2010) similarly conclude that the limiting oxygen concentration should in-
crease with cell size, as postulated by Fenchel and Finlay (1995), we suggest that other
factors are also important. This consistency for two very different environments demon-
strates a predictable limitation for aerobic microbial growth in diverse environments, and a
broadly applicable model.

Limitations of 05 theory

The steady-state assumption vs. a dynamic oxycline. The results here define 0* for a
steady state with respect to the growth of microbial populations. This approximation is valid
for environments in which microbial metabolisms operate on much shorter timescales than
physical changes in the environment, and thus control nutrient distributions. Departure from
this steady state- such as from a pulse of quickly sinking organic matter- frees the threshold
from the definition of 0*. In this way, 0* best describes the core of the anoxic zone, and
not necessarily the diverse transition zone of a dynamic oxycline (Ward 2008; Bryant et al.
2012; Zaikova et al. 2010).

Additionally, when local dispersal rates exceed microbial growth and loss rates, anaero-
bic cells may be swept away from their ideal 0* conditions but still carry out denitrification
or other anaerobic metabolisms while adjusting their cellular machinery to their new sur-
roundings. Depending on these adjustment timescales, such dispersal may allow for the
documentation of 'immigrant' anaerobic activity at higher concentrations (Clayton et al.
2013). Anoxic micro-environments inside particles (Karl et al. 1984; Woebken et al. 2007;
Klawonn et al. 2015; Kalvelage et al. 2015) or methodological difficulties (De Brabandere
et al. 2012) may also explain observations of anaerobic activity at tens of micromolar oxy-
gen concentrations (e.g. Dalsgaard et al. 2012; De Brabandere et al. 2014; Kalvelage et al.
2011).
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Other impacts on growth efficiency. If the efficiency of aerobic growth decreases as
oxygen decreases, O will increase as oxygen decreases. Alternatively, if a facultative cell
can acquire energy using oxygen and a form of nitrogen simultaneously, then O could
decrease with decreasing oxygen, as nitrogen assumes a portion of the respiratory require-
ment. The model here is suitably general to incorporate either or both of these effects: as
written, the model considers the oxygen yield (mole of biomass synthesis per moles of
oxygen utilized) as an independent variable. One could instead consider it as a dependent
variable (Y02 = f[021), if this relationship is known.

However, if yo 2 decreases to the point that anaerobic metabolism becomes more effi-
cient than aerobic, O theory no longer applies. For example, if the reduced efficiency of the
high-affinity terminal oxidase system for oxygen utilization translates into a lower growth
rate than that enabled by nitrate or nitrite utilization, the latter will be a more competitive
strategy. Evaluating this difference in growth rate (i.e., how varying amounts of translo-
cated protons of different oxidases relate to the competitive ability of aerobic and anaerobic
cells at low oxygen concentration) would provide crucial insight, given that denitrification
is much less efficient than its redox potential would suggest, for both bioenergetic as well as
other kinetic reasons (Chen and Strous 2013). The fact that the STOX sensor has revealed
large volumes of water at or below a few nanomolar concentrations suggests that utilization
of oxygen to these low levels is a competitive strategy at those locations.

Utility of O theory for future observational and modeling work

The STOX sensor technology has already demonstrated nanomolar levels of oxygen in
OMZs, and its attainable 1-2 nM detection limit could distinguish among oxygen con-
centrations within much of the predicted range for various environments. In this way, a
sampling strategy could aim to analyze whether or not the minimum oxygen concentration
actually does vary with the physiological and environmental parameters as predicted by
the theory developed here. For example, concurrent measurements of temperature, bacte-
rial production, bacterial respiration, and grazing rates on heterotrophic prokaryotes would
enable a quantitative prediction of O (Eqn. 2.4) that the STOX sensor could then test. Con-
versely, the precision of STOX measurements could be used in combination with a subset
of these measurements to infer one of the physiological or environmental parameters, such
as total loss rates for anoxic bacterial populations.

We understand O as the concentration at which energetically favorable anaerobic ac-
tivity begins. Including the aerobic microbial functional type in a biogeochemical model
would allow for the depletion of oxygen to nanomolar concentrations without prescribing
a critical oxygen concentration. Including nitrification, anammox, and intermediate steps
of heterotrophic denitrification as additional functional types would further predict rates
of fixed nitrogen loss and other nitrogen cycle dynamics. Our approach thus points to a
means of dynamically modeling the feedbacks between diverse microbial metabolisms and
nutrient distributions in anoxic zones in global biogeochemical models.
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2.6 Conclusions

We develop a theory for the depletion of oxygen to nanomolar concentrations in marine
oxygen minimum zones. We hypothesize that the minimum oxygen concentration in many
aquatic environments is the subsistence concentration, 0*, of the bulk aerobic microbial
population. For environments under steady microbial control, we expect anaerobic meta-
bolisms to be energetically favorable while this minimum concentration is maintained. The
resulting model predicts that this threshold concentration varies with loss rates, cell size,
growth efficiency, and temperature, and that the parameters describing marine environments
constrain it largely to the 0.1-10 nanomolar range. The theory presented supports the un-
derstanding that the smallest microbes tolerate the lowest oxygen concentrations, and thus
inhabit low oxygen environments. The model also leads to a hypothesis for why anammox
may be favorable at a higher oxygen concentration than denitrification, which is implied
by some observations. Consistency with the growth of E. coli in optimal laboratory con-
ditions suggests that the framework and its nanomolar predictions apply broadly, spanning
diverse microbes and environments. The model thus predicts the essentially anoxic oxy-
gen concentrations observed in OMZs, reconciling theory with observations, and provides
testable hypotheses for future field work. In general, the description of the aerobic microbial
metabolism exemplifies a simple, mechanistic parameterization of the interactions between
microbial communities and nutrient distributions suitable for global marine biogeochemical
modeling, absolving the need for a prescribed critical oxygen concentration.
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2.A Appendix

2.A.1 The oxygen yield of an aerobic heterotroph

Here, we theoretically link the oxygen yield yo 2 of a heterotrophic microbe to the organic
matter yield yOM, often termed the bacterial growth efficiency (hereafter, referred to as
'growth efficiency'). This allows us to use observed growth efficiencies to estimate oxygen
demand. To proceed, we define an aerobic heterotroph with the set of redox reactions that,
to first order, underlies its metabolism, following the methodology of Rittman and McCarty
(2001). The description consists of three half-reactions: organic matter decomposition, bio-
mass synthesis, and the reduction of oxygen. Organic matter provides the elements and
electrons for both the synthesis of biomass and energy production, and oxygen serves as
the electron acceptor. We thus describe the metabolism as the combination of cell synthesis
and energy production, partitioned by the fraction f of electrons going into the former vs.
the latter. The aerobic heterotrophic metabolism is then represented by the sum of the three
half-reactions, partitioned by f, and as a function of the stoichiometry for organic matter
(OM) and biomass (B), as (neglecting water):

1__COHoOoomNnom 
+ I 02

doM 4

f CCBHhH~oBN B (COM CBf Co2+ noM nBf NH+ (2.5)
dB + doM dB doM dB (

where d is the number of electron equivalents for the generic organic composition
CCHhOoNn that correspond to the oxidation states of its inorganic constituents, here as
d = 4c + h - 2o - 3n. The oxygen yield (mol C synthesized mol 02 ) is then defined in
terms of f as:

4f (2.6)y02 = dB(1 -_f) .6

The growth efficiency (mol B mol - OM, or, mol C synthesized mol - C consumed) then
relates to f as:

yu doMYOM =dmf (2.7)
dB

and so yom = f when assuming the same stoichiometry for both the organic matter substrate
and microbial biomass. With the above, we can then express the oxygen yield in terms of
the growth efficiency as:

Yo 2 o
yod2 = 4y (2.8)

dom (I -- yom d)

which allows us to explore the relationship between the growth efficiency, organic matter
stoichiometry, prokaryotic biomass stoichiometry, and the oxygen yield.

Fig. 2.4b (blue line) illustrates the inverse oxygen yield (the oxygen demand) as a func-
tion of growth efficiency when assuming the average stoichiometry of marine organic matter
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(C10 6H]750 42NI 6 from Anderson 1995) for both the organic matter substrate and microbial

biomass, for which the full metabolism is represented as:

467(1 -YOM) 0

C106H 175042N 16 + 4 02

-- YOMCl 6HI75042N 6 + 106(1 -yoM)CO2+ 16(1 -yoM)NHj (2.9)

In comparison, the data from the bacterial respiration database of Robinson and Williams

(2005) fall exactly on a line because of the recursive relationship between growth efficiency

and oxygen demand (Fig. 2.4b). This line is very close to the theoretically predicted line

because of the underlying assumption that total carbon demand equates to the sum of the

respiration and production (i.e., the respiratory quotient of one CO 2 produced per mole 02
consumed; Robinson 2008). Also plotted Fig. 2.4b are the resulting curves for a high C:N

of organic matter substrate (com = 160; C:N = 10), and a low C:N of biomass (CB = 80;
C:N = 5). Both show a higher oxygen demand for a particular growth efficiency, since both

mandate a decrease in the C:N from organic matter to biomass composition, and thus less

efficient use of the substrate. As yom approaches zero, the oxygen demand for these varying

stoichiometries approaches a positive constant, a model artifact reflecting the excess carbon

in the organic matter source. The effect of this varying stoichiometry on 0* is illustrated in

Fig. 2.2c.
This model of prokaryotic metabolism, while simplified, demonstrates the electron-

balanced relationship between bulk organic matter usage and the oxygen yield (Fig. 2.4).

As ballpark estimates, the average growth efficiency of the open and costal oceans of

0.14+0.14 and 0.19 0.16, respectively (Robinson 2008), corresponds to an average oxy-

gen demand of about 7-14 mol 0- mol-1 C synthesized, with the lower end corresponding

to the curves exhibited by the data and by the assumed equal stoichiometries of organic

matter and biomass, and the higher end to the varying stoichiometries. The lowest reported

growth efficiency of 0.01 (del Giorgio and Cole 1998) corresponds to 100-200 mol 02
mol-1 C synthesized. We illustrate the resulting sensitivity of 0* to a wide range in oxygen

demand in Fig. 2.2a.
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Figure 2.4: (a) The observed bulk oxygen demand (y-) against bacterial production, with color in-
dicating the associated growth efficiency (BGE) from the bacterial respiration database of Robinson
and Williams (2005). (b) The observed and theoretical oxygen demand against growth efficiency for
a heterotrophic microbe, for varying stoichiometries of marine organic matter (C:Nom) and micro-
bial biomass (C:NB). The recursive relationship between calculations of oxygen demand and growth
efficiency result in the data lying exactly on a curve close to the blue curve.
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2.A.2 Comparing Michaelis-Menton and diffusive models of oxygen uptake

The uptake of oxygen, Po2, or of any substrate S, can be understood either as a diffusive

process or as a saturating Michaelis-Menton (MM) function (p = pi"axKs (s). Armstrong
(2008) develops a model of substrate uptake that combines both, normalized to uptake per
cell in Bonachela et al. (2011) as:

02
P0= nx -p (2.10)o 2 -Pnwx k -+ p,,, / (47rrD) +02

where Pwx is a maximum uptake rate and kp is the half-saturation constant representing
the concentration near the cell surface, r is the cell radius, D is the temperature-dependent
diffusion coefficient for oxygen in seawater, and 02 is the external concentration of oxy-
gen. We would expect to measure a bulk half-saturation constant ks = kp + pwx/(47rD)
in experiments or samples (Fiksen et al. 2013). Here, we neglect reduced permeability of
oxygen through the cell wall and membrane given estimates of their insignificant effects on
the order of the diffusion coefficient (Stewart 1998; Kihara et al. 2014). Armstrong (2008)
includes the non-spherical influence and advective influence around the cell with Phi and
the Sherwood number as D = FDShDo, though estimates that for small cells, the Sherwood
number (which is similar to the Peclet number) should be close to one. If most marine bac-
teria are close to spherical, cD should also be close to one. Here, we leave as D for simplicity,
noting the ability to include these effects.

We can anticipate a cell's switch to a high-affinity terminal oxidase system: all else the
same, reducing kp increases the affinity for oxygen. Yet, as kp and 02 become small, the

middle term in the denominator dominates, and the expression reduces to a diffusion-limited

uptake rate for a spherical cell (Gerard 1931):

Po 2diff= 4rrDO2  (2.11)

Comparing the two models of oxygen-limited growth (Eqn. 2.1 with Eqn. 2.10 or 2.11)

scales their convergence for real values, and justifies the reduction of the coupled model to

the diffusive model (Fig. 2.5). We parameterize both models with the values approximating

microbial growth in a marine oxygen minimum zone (r = 0.25 pm, y- = 7 mol 02 mol

-1 C, T = 12'C; blue lines). The coupled model requires two additional inputs: a half-

saturation constant kp of 3 nM, the minimum for high-affinity oxidases (Morris and Schmidt

2013), and pW,, computed as ynwXy1 Q with a maximum growth rate P,,x of 1.1 day-,
the average growth rate for heterotrophic bacteria in seawater cultures, which is an order

of magnitude larger than the estimated bulk average growth rate (Kirchman 2016). The

two functional forms converge at low oxygen- approximately the computed value of the

middle term in the denominator, 20 nM. This demonstrates how the diffusive supply of

oxygen begins to limit growth at nanomolar concentrations. We can thus explain why 3-8

nM is the ks range for the high-affinity oxidase of an aerobic microbe (Morris and Schmidt

2013); we might expect that prokaryotes have adapted their cellular machinery as such as a

competitive strategy to reach the diffusive limit.

47



In comparison, Fig. 2.5 (black lines) also illustrates the parameters of Stolper et al.
(2010) for the growth of E. coli to 3 nM oxygen: a yield of 0.51 mol C mol 021, and
T = 370C, human body temperature. We again plot both the coupled and diffusive models
of oxygen-limited growth, with a 0.25 pm radius cell for the diffusion model, and with
the Monod model as fit by Stolper et al. (2010): ks = 120 nM and pa,, = 0.4 h-1. The
convergence of the two models again illustrates how diffusive supply ultimately describes
oxygen-limited growth. The measurements of Stolper et al. (2010) thus provide explicit
demonstration that diffusive limitation serves as the maximum affinity.

The diffusive limitation is similar for both parameterizations, despite the fact that the
reduction to the diffusion model is justified at an order-of-magnitude higher oxygen concen-
tration for the faster growing E. coli. This difference is reflected in the order-of-magnitude
different half-saturation values for marine bacteria (order 10 nM; Gong et al. 2016) and
for Stolper et al.'s E. coli (120 nM). We suggest that apparent half-saturation values vary
substantially for the same underlying diffusive limitation because they ultimately reflect in-
ternal growth constraints. Since ks values are intrinsically linked to maximum rates, they
alone are not useful indicator of a cell's competitive ability to use a substrate; rather, the
affinity (p,,.,/ks) is the indicative parameter by which one can compare different popu-
lations across environments (Fiksen et al. 2013). We understand the diffusive supply rate
47rrD as the "maximum uptake affinity" (Thingstad et al. 2005; Fiksen et al. 2013). We
assume that given low oxygen supply, a portion of the aerobic population will optimize
their affinity for oxygen. In short, O should represent the limiting oxygen concentration
for diverse aerobic microbial communities in diverse environments.
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Figure 2.5: The two models of microbial growth rates as a function of external oxygen concen-

tration: the coupled Michaelis-Menton model of Armstrong (2008) (Eqn. 2.10, solid lines) and its

reduced diffusive version (Eqn. 2.2/2.11, dashed lines). Blue lines indicate the estimate for aver-

age marine microbial growth (r = 0.25 pm, y-l = 7 mol 02 mol -1 C, T = 12C, Ynax = 1.1

day-', kp = 3 nM), and black lines for the results of Stolper et al. (2010) (r = 0.25 pm, y02 = 0.51,
T = 37 0C, ynx = 9.6 day-1, ks = 120 nM). The shaded region indicates the uncertainty of the

diffusive model due to a range in oxygen demand of 2-110 mol 02 mol ~1 C.
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Chapter 3

The transition to aerobic-anaerobic
coexistence in marine oxygen
minimum zones

The work in the main section of this chapter was completed in collaboration with Mick
Follows and Amala Mahadevan. The work in Addendum 2 was done in collaboration with
Jonathan Lauderdale, who guided the calculations of transport, and Reiner Schlitzer, who
provided the gridded POC flux estimate.

3.1 Overview

The transition from aerobic to anaerobic metabolisms in the ocean is qualitatively well
understood, but quantitative description is necessary for understanding how fixed nitro-
gen loss might change over time. Here, we describe this transition mechanistically as the
outcome of the competition of aerobic and anaerobic microbial metabolisms. In a simple
ecological model, greater efficiency of biomass production when oxygen is used as an elec-
tron acceptor rather than nitrate or nitrite allows for the competitive exclusion of anaerobic
metabolisms in oxygenated environments. We use a resource ratio theory approach to de-
fine a threshold for the onset of anaerobic metabolism as a function of the relative supply of
oxygen and an electron donor (here, organic matter), rather than as a specific oxygen con-
centration. At this threshold, coexistence of aerobic and anaerobic metabolisms is sustained
at the limiting oxygen concentration. The ratio of aerobic to anaerobic biomass and activity
declines with decreasing oxygen supply, which is consistent with observations of aerobic
and anaerobic sulfur bacteria in a laboratory. The model suggests the likelihood of stably
coexisting aerobic and anaerobic metabolisms at the periphery of oxygen minimum zones
(OMZs) in anoxic conditions. Coexistence in the core of an anoxic zone may also be favor-
able, with a small, sustainable aerobic population consuming trace amounts of oxygen. We
demonstrate these dynamics in a two-dimensional idealized OMZ model.

In Addendum 1, we demonstrate the analogous dynamics of coexistence of anammox
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and the two steps of aerobic nitrification in particular, without any forced oxygen inhibition.
We then analyze the interactions of the six main metabolisms (half aerobic, half anaerobic,
half heterotrophic, half chemoautotrophic) understood to control the N cycle in oxygen
minimum zones. This demonstrates the transition of the three aerobic to the three anaerobic
metabolisms as oxygen decreases, and the convergence of the rates of anammox and den-
itrification to the chemically-determined theoretical ratio, thus aligning geochemical and
population ecology approaches to understanding OMZ dynamics. In Addendum 2, we cal-
culate the transition in the real ocean to identify the anaerobic domain. We find that data is
insufficient for it to be quantitatively meaningful.

3.2 Introduction

Oxygen minimum zones in the ocean result from a combination of physical and biological
processes: high levels of aerobic respiration in areas with poor ventilation leads to oxygen
depletion (Devol 2008; Paulmier and Ruiz-Pino 2009; Brandt et al. 2015). In Fig. 3.1a, the
isopycnals along the 1 0'S transect in the Pacific ocean show an upward slope in the east,
indicating the upwelling currents that supply nutrients to the surface and fuel primary pro-
ductivity, and also show a lack of outcropping of denser waters. Respiration of the sinking
organic matter to these areas depletes oxygen, with microorganisms able to access oxygen at
its lowest concentrations. When sufficiently depleted, and while inorganic nitrogen remains
abundant, diverse anaerobic microbial metabolisms utilize inorganic nitrogen species for
energy, which can lead to the loss of fixed nitrogen from these zones (Ulloa et al. 2012;
Wright et al. 2012; Ward 2013). Deoxygenation of the oceans due to global warming is
expected (IPCC 2014), and understanding the controls on anaerobic vs aerobic processes
is necessary to anticipate its consequences. What quantitatively defines the transition to
anaerobic metabolism?

Observations of microbial activities suggest the coexistence of aerobic and anaerobic
metabolisms in low oxygen environments. Aerobic nitrification has been shown to co-occur
with anaerobic ammonium oxidation (anammox), nitrate reduction, and/or denitrification
(Lipschultz et al. 1990; Lam et al. 2007; FUssel et al. 2012; Kalvelage et al. 2013; Peng
et al. 2015). Many of these co-occurrences are measured where oxygen is in the nanomolar
range or undetectable, though observations show anaerobic activity occurring at higher (I-
10 micromolar) oxygen concentrations (Dalsgaard et al. 2012; De Brabandere et al. 2014;
Kalvelage et al. 2011). Observed co-occurring aerobic and anaerobic metabolisms may re-
flect the physical mixing of cells away from the environments in which they can survive and
sustain a population, or may indicate a steady co-existence of the two metabolisms. Are the
co-occurrences sustainable co-existences, or a product of physical transport?

In a laboratory, van den Ende et al. (1996) observed the coexistence of aerobic and
anaerobic sulfur bacteria when oxygen was limiting, with the ratio of the aerobic to anaer-
obic biomass decreasing with oxygen supply. How can we explain this co-existence? Re-
source competition theory articulates conditions for the sustained coexistence of two meta-
bolisms (Tilman 1982; Ward 2013; Dutkiewicz et al. 2014); we here examine this theory as
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Figure 3.1: Oxygen concentration and potential density anomaly contours (kg m- 3 ) at 10 S in the

Pacific ocean (Data: WOA 2013).

applied to aerobic and anaerobic microbial metabolisms in pelagic oxygen minimum zones.

Though diverse heterotrophic and chemoautotrophic N-cycling metabolisms populate

oxygen minimum zones, with their interactions critically determining the fate of fixed ni-

trogen (Ward 2013; Penn et al. 2016), the chemical energy for all originates from exported

organic matter. Therefore, the supply of two substrates - oxygen and organic matter - can

be thought of as the dominant control on pelagic OMZ formation (Babbin et al. 2014).

Examining the interactions of microbial heterotrophs is thus a relevant case study for un-

derstanding the transition of aerobic to anaerobic respiration.

Here, we define two microbial metabolisms - aerobic and anaerobic heterotrophy - as

an exemplary pair competing for a shared substrate, organic matter. We analyze the inter-

actions of the two metabolisms as two functional type populations, and also as occurring

within one facultatively anaerobic population. We determine the conditions that allow for

their coexistence, and develop a precise definition for the threshold for the transition to

favorable anaerobic activity.

3.3 Simplified microbial metabolisms of 02 depletion and fixed N loss

In general, we pose the aerobic-anaerobic transition as the change in the outcome of the

competition between aerobic and anaerobic microbial metabolisms for a substrate. We here

describe a heterotrophic pair: an aerobic heterotroph (Bo), reducing oxygen for energy, and

an anaerobic heterotroph BN, reducing dissolved inorganic nitrogen (DIN) to elemental ni-

trogen (written as N 2 , though a small part of N loss can be as the potent greenhouse gas

N 2 0; Ward 2013). Both use organic matter (OM) as the source of electrons and chemical

energy for (ultimately) biosynthesis. We describe each metabolism with its substrate de-

mand and respiration products in terms of yields y (mol biomass B synthesized per mol
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substrate required), as:

1 1 71
OM+ -0 2 -+Bo + - I DIN (3.1)

YOMO Y0 2  YOMO

S1 (1 N1
OM+ DIN ->BN + - 1 DIN-+ N 2  (3.2)

YOMN YDIN ( YOMN 2 YDIN

where organic matter and biomass here are considered in units of nitrogen. Though these
balanced metabolisms do not accurately represent the stoichiometry of N loss in anoxic

environments, because the discretized steps of denitrification and anammox are also key
(Koeve and Kahler 2010; Babbin et al. 2014; Penn et al. 2016), they are useful for illustrat-
ing the connections of microbial growth and denitrification rates in the model results.

We assume that anaerobic heterotrophy is less efficient than aerobic heterotrophy. We
use the average coastal marine bacterial growth efficiency aerobic heterotrophy of 0.19
0.16 mol C synthesized mol C - consumed compiled by Robinson (2008) to inform the
organic matter yields. We assign a slight difference in yields: yOMo = 0.2 mol B mol OM-1
for the aerobe and yoMO = 0.19 for the anaerobe; the relative difference in yield does not
qualitatively affect the model solutions. The only assumption integral to model results is
that yoMo > yoMN. We later discuss the implications for the results if yoMO < yoMN at low
oxygen.

3.4 The virtual chemostat model

To examine the dynamics of aerobic and anaerobic metabolisms in an environment, we first
analyze the metabolic functional types as a continuous culture in a virtual chemostat. Oxy-
gen, organic matter, and DIN of specified concentrations (O2in, OMi, DINin) flow into the
volume at a given rate (the dilution rate K, here as 0.1 d- 1), with an equal rate of outflow.
We assume abundant DIN availability (DINi, = 30 pM, a typical nitrate concentration sur-
rounding pelagic oxygen minimum zones). Biomass and nutrients (in units of PM N except
for 02) are modeled with the expressions for their rates of change with time, defined by
incoming nutrient supply, nutrient uptake, growth rate, and excretion of waste respiration
products, and chemostat outflow as:

dBo

dt =Bo(go-K) (3.3)

dBN

dt = BN(PN - K) (3.4)

dOM 1
= K(OMin - OM) - poBo - -pNBN (3.5)

dt YOMO YOMN

=O K(O2in - 02) - -oBo (3.6)
dt y02

dDIN ( )(
= IC(DINin - DIN) + - 1poBo+( -I) - - PNBN (3.7)

dt yoM0 yoMN YDIN
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where = ic for equilibrated model solutions. Growth of the aerobe is limited by either
organic matter or oxygen. Growth of the anaerobe is effectively limited only by organic
matter because of abundant DINin. We assume a growth rate p as the product of the uptake
rate and yield, and the limiting growth rate as the minimum product for the aerobe. We
describe the uptake of organic matter with a saturating Michaelis-Menten form, and the
uptake of oxygen with a diffusive limitation (Zakem and Follows 2016). This gives the
growth rates of BO and BN as po and PN, respectively, as:

(M 3D(38po = min oun (OMV , YO 2  2 021 (3.8)
[YMW (OM+ Kom qrcell

OMMN = OMNHmaX (OM+ K) (3.9)

with maximum specific uptake rate V,fla, ((mol OM / mol biomass) d--1) and half-saturation
constant Kom (pM N), the temperature-dependent diffusion coefficient for oxygen in solu-
tion D, cell radius rel1, and volumetric carbon content of a cell q (18.3 fmol C pm- 3 from
Bratbak and Dundas 1984). The parameters to describe the uptake of organic matter are not
well-known, but presuming that both types have the same limitation by organic matter (i.e.,
the same parameters) allows us to proceed with the dynamics despite the uncertainty. Here,
we use parameters that result in an organic matter-limited growth rate that is consistent with
the observed bulk rates in the ocean of about 0.1 d-' (Kirchman 2016). (See Table 3.1 for
parameter values.)

The rate of denitrification is here estimated for illustration as linearly related to anaero-
bic biomass, as IN NBN (nM N d- 1) assuming the demand for DIN as an electron acceptor

by considering the underlying redox reactions for NO- reduction to N 2 and Redfieldian

stoichiometry (Anderson 1995), denitrification remineralization ratio rof 104:106 of
Gruber and Sarmiento (1997) (See Appendix 3.A.2 for detail on denitrification stoichiom-
etry).

Most anaerobic denitrifiers are thought to be facultatively aerobic, switching between
oxygen and other terminal electron acceptors such as nitrate or nitrite (Zumft 1997). With a
parallel model, we compare the results with one bulk facultatively aerobic microbial popu-
lation that grows at whichever metabolism allows a higher growth rate at each time step (it
grows aerobically if po > pN). We integrate the solutions numerically in time with an ex-
plicit Euler forward scheme until an equilibrium solution is reached, independent of initial
conditions. We then calculate steady state solutions to find the sensitivity to the incoming
concentrations of oxygen and organic matter.

Resource subsistence concentrations

We anticipate that the aerobe will competitively exclude the anaerobe in oxygenated envi-
ronments by comparing their subsistence concentrations of organic matter. At the subsis-
tence concentration, the growth of a population is limited by that resource in a steady-state
environment (Tilman 1982). If more than one population requires that resource, in the case
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Table 3.1: Chemostat model parameters.

Parameter Symbol Value Units

Aerobic organic matter yield Yom() 0.2 mol BO / mol OM

Anaerobic organic matter yield YOMN 0.19 mol BN / mol OM

Aerobic oxygen yield yo 2  
4
YM() dB mol BO / mol 02

dom (igu ) M

Anaerobic oxygen yield YDIN 
5YoMN d mol BN / mol DIN

doM(I-oMN TO-)

Dilution rate K 0.1 d-

Maximum specific uptake rate of OM Vnax I (mol OM / mol B) d-'

OM half-saturation Kom 0.1 PM OM

Diffusion coefficient for oxygen in solution D 2.5 x 10-5 cm 2 s--I

Cellular carbon quota q 18.3 fmol C pm-3

Cell radius rel 0.25 pm

Ratio of oxygen to organic matter demand of BO r YOMO /yo 2  mol 02 / mol OM

that all are limited by that resource, the population with the lowest subsistence concen-

tration can exclude the others. For the chemostat model, these subsistence concentrations
can be calculated from Eqns. 3.8 and 3.9 assuming a steady state (P = C). The subsistence

concentrations of organic matter for the aerobic and anaerobic types are:

omK = (3.10)
YOMoVinax - K

OMk = Kom (3.11)
YOMNVIWX - K

where YOMV"naX represents the maximum growth rate of the organic matter-limited popula-

tion. These concentrations differ only by the yield. since yomo > yomN, OM5 < OM*, and

the aerobic type can competitively exclude the anaerobic type when both are limited by

organic matter.

The aerobic type can also become oxygen-limited at its subsistence concentration of
oxygen, O:

22

* = qr2 , (3.12)
3yO2 D

With the assumed diffusive limitation to growth, O is consistently in the nanomolar range
(Zakem and Follows 2016). Realistically, the anaerobic type could also become limited by
its electron acceptor (which is often nitrate or nitrite in OMZs), though we do not consider

this case in this study.
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Figure 3.2: Solutions of the virtual chemostat for varying oxygen supply for two versions of the

model: discrete aerobic and anaerobic populations, and one facultatively anaerobic population. Fac-

ultative biomass equals the sum of the two discrete populations. Respiration rates were identical for

both versions. The dashed black lines indicate 0 = 1.

Chemostat simulations

Fig. 3.2 shows the steady-state solutions of the chemostat model as a function of the in-

coming oxygen concentration 02in. At high oxygen, the anaerobic type is competitively

excluded. This exlusion occurs dynamically, without a prescribed oxygen inhibition or

threshold as is common in other types of models. Organic matter is depleted to OM , the

subsistence concentration of the aerobic population, which is lower than the concentration

necessary to support the anaerobic population. Even though the growth rate of the anaer-

obic type is only slightly lower than that of the aerobic type, multiple cycles of growth

result in this competitive exclusion. This result reflects our assumption that oxygen is the

more efficient oxidant, and simply anticipates the reason that, along with oxygenic primary

production, aerobic metabolism is the dominant metabolism from a global perspective.

As oxygen supply becomes low, a threshold is crossed, and anaerobic metabolisms be-

come sustainable. Past this threshold, aerobic metabolism is limited by oxygen, and is only

able to oxidize a proportional amount of organic matter, and so cannot deplete organic mat-

57



ter to OM9 . Thus, the anaerobic metabolism can access the remaining organic matter and
sustain its population; organic matter in this case is depleted to the slightly higher OMk.
Throughout this domain of coexistence, oxygen is maintained at the subsistence concentra-
tion of the aerobe, O. Incorporating both metabolisms into one facultative population gives
identical results: solutions show identical total biomass and respiration rates, with oxygen
concentration slightly wavering due to the discrete aerobic and anaerobic metabolisms.

The ratio of the aerobic to anaerobic biomass and respiration decreases as oxygen sup-
ply decreases, which matches the observations of aerobic and anaerobic sulfur bacteria
of van den Ende et al. (1996). Total biomass remains relatively constant in the chemo-
stat model; the steady state total biomass concentration can be calculated from Eqn. 3.5 as
BTt = (OMin - OM*)YOM. Since YOMN < yoMo, when biomass is predominantly anaerobic,
BT, is slightly lower. The slope of the decrease in aerobic biomass - and thus of the increase
in anaerobic biomass - is linearly related to the decrease in oxygen supply, since from Eqn.
3.6, BO = (02in - O)yo 2 at steady state. This linearity reflects the constant yields and the
constant input of organic matter; in reality, varying yields and availability of organic matter
would complicate predictions of biomass.

These results thus suggest that the observed co-occurring aerobic and anaerobic activity
in oxygen minimum zones could indicate a steady coexistence, and not just reflect physi-
cal transport. The model hypothesizes that this coexistence could be a consistent feature of
the periphery of anoxic zones, with oxygen concentration maintained at its lowest levels
(O) throughout the domain. The fact that a small aerobic population remains sustainable
in the model at very low oxygen supply also suggests the potential for very low (perhaps
undetectable) aerobic activity within the core anoxic zone, if trace amounts of oxygen are
produced there. Such trace aerobic activity may be more likely to be carried out by a fac-
ultatively anaerobic population; facultative capability as modeled expands the niche of the
population, and so is perhaps the most fit for surviving in environments with fluctuating
oxygen supply.

3.5 Condition for stable coexistence

What is the threshold that marks the transition to the accumulation of anaerobic biomass in
Fig. 3.2? Following Tilman (1982), Ward (2013), and Dutkiewicz et al. (2014), we formal-
ize the relative supply rates of organic matter and oxygen that determine whether aerobic
heterotrophy competitively excludes anaerobic heterotrophy, or whether the two coexist.
From Eqns. 3.5 and 3.6, we derive the expression for the conditions required to allow both
aerobic and anaerobic biomass to exist. We call the quantity dictating this threshold 0 (see
Appendix 3.A.1 for derivation). For the chemostat, 4 is:

r(O2in -0*)_
2= r (3.13)

IC(OMin-OMk)

where r is the ratio of oxygen to organic matter demand of the aerobic heterotrophic meta-
bolism: r = yoMO /yo 2 (mol 02 utilized per mol OM utilized). If 4 > 1, more oxygen is sup-
plied than is required to consume all of the organic matter supplied. If 4 = 1, oxygen and
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organic matter are supplied in almost exact proportion to the aerobic heterotroph's needs:
just a trace amount of organic matter remains (the difference between OMk and OM ),
which a trace anaerobic population can access. If $ < 1, significantly more organic matter
is supplied than can be processed by the aerobe, and so a significant anaerobic heterotrophic
population is sustained. Thus, 4 = 1 is the threshold at which anaerobic metabolism can co-
exist with aerobic.

A generalized expression for $, relevant for marine environments, considers the fluxes
of oxygen and organic matter to and from a given location. It again incorporates the limiting
oxygen concentration O in the form of the outgoing flux of oxygen Fo-Ot. Because Q* is
in the nanomolar range, a good approximation of 4 results from neglecting this outgoing
flux. In contrast, the subsistence concentration of organic matter in natural environments is
unclear; particulate and dissolved organic matter exist at relatively high concentrations in
the water column, and additional sources and sinks of OM, such as the literal sinking of
POM, make such a subsistence concentration meaningless for understanding this threshold.
An alternative relationship results by considering the divergence of OM at any location,
and whether or not sufficient oxygen is supplied to that location to allow for solely aerobic
respiration. This generalized 4 is then:

F - FO0i OUt -1 Fo2 in 1(3.14)$ =- r ~ - r (.4
FOMin - FOMut V-OM

where the latter represents the approximation when 0* is at nanomolar concentrations. In
the model results presented here, neglecting Fo-Out results in an indistinguishable value of
4. In natural environments, the components of r, yo 2 and yOMO, should vary significantly.
However, if we assume that as organic matter yield decreases, oxygen demand increases,
then r is relatively stable across a wide range in these yields. When considering aerobic
respiration of organic carbon, r-1 is similar to the often-discussed "respiratory quotient,"
which varies with specific substrates over a range of about 0.7 to 1.3 mol CO 2 produced per
mol 02 consumed, and a value of the respiratory quotient of one is often assumed (Robinson
2008).

In Fig. 3.3, we plot the threshold I 1 with solutions for varying organic matter and
oxygen supply, following Tilman's graphical approach to resource competition (Tilman
1980). Both aerobic and anaerobic biomass (and respiration) increase with increasing or-
ganic matter input. As this input increases, the threshold oxygen supply also increases.
Thus, the model suggests that knowing the oxygen concentration and/or supply in the ocean
alone is insufficient for predicting the existence of anaerobic metabolisms; it is the relative
availability that matters.

The horizontal and vertical lines in the plot indicate OM* and O concentrations, respec-
tively. The theoretical approach suggests that the supply of oxygen or organic matter below
these subsistence concentrations inhibits a sustainable population. In previous work, we ar-
gue that O can be considered the limiting concentration for mixed microbial communities
(Zakem and Follows 2016). An analogous limiting concentration of organic matter, OM*,
may not be quantifiable in natural environments. A relevant limitation by organic matter
includes both the physical and biological sinks of organic matter at a particular location.
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Figure 3.3: Solutions for the virtual chemostat model for varying organic matter and oxygen supply.

The solid white line (0 = 1) indicates the onset of the sustainable coexistence. The dashed white lines

indicate substistence concentrations of oxygen (for the aerobic population) and organic matter (for

both populations; the lower concentration corresponds to the aerobic population).

3.6 Idealized OMZ model

The chemostat set-up dictates that population growth rates equal its dilution rate. What is

the outcome of the interactions of aerobic and anaerobic populations in the water column,

where microbial growth rates are independent from ocean circulation, and sinking POM

decouples oxygen supply from organic matter supply?

To investigate the model in a more realistic environment, we subject the aerobic and

anerobic heterotrophic functional types in an idealized model of an oxygen minimum zone.

A two-dimensional overturning circulation aims to crudely simulate the S. Pacific OMZ as

shown in Fig. 3.1. A closed flow field with a width of 10,000 km and a height of 2000 m is

forced with wind stress mimicking the climatological mean over the Pacific Basin at I O'S.

The resulting flow field simulates intense eastern coastal upwelling, with dispersed down-

welling in the west (Fig. 3.4). A mixed layer is simulated with a vertical mixing coefficient

that attenuates with depth. See Appendix 3.A.2 for more detail on the model, all equations,

and parameter values.

Oxygen equilibrates across the air-sea interface at a monthly timescale, estimated from

an air-sea gas transfer coefficient of Kg (3 x 10-5 m S1; Williams and Follows 2011) and

an equilibration depth of 100 m, and with a constant saturation concentration of 212 pM

(the saturation concentration for 25'C and a salinity of 35). Sinking organic matter re-

sults from light- and nutrient-limited oxygenic export production, bypassing resolution of a

phytoplankton population for simplification. One grazing population represents small zoo-

plankton bacteriovores and can consume both aerobic and anaerobic functional types. A

parameterization of zooplankton oxygen consumption allows for implicit zooplankton mi-

gration in and out of oxygen minimum zones (Escribano et al. 2009; Wishner et al. 2013;

Bianchi et al. 2014), and allows for grazing within the anoxic core: oxygen demand by the

zooplankton at a given location is spread vertically above and below that location, weighted

by the oxygen concentration at that location, with zero weight if 02 is below a critical

oxygen concentration for zooplankton (here, 8 pM).
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Figure 3.4: Schematic of the 2D idealized basin-wide OMZ model showing the resulting steady-

state DIN concentration, indicating the intensified upwelling in the east (right) of the domain.
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Figure 3.5: Idealized OMZ 2D model solutions of oxygen, aerobic heterotrophic abundance (Bo),

and anaerobic heterotrophic abundance (BN). The white contour (# = 1) in (a) indicates the domain

of sustainable coexistence of favorable anaerobic activity.

Simulations

The 2D steady-state solutions of oxygen and microbial abundance (assuming a conversion

of 0.2 fmol N cell-) are illustrated in Fig. 3.5 (see Appendix 3.A.2 for OM, DIN, and zoo-

plankton solutions). Where upwelling supplies nutrients to the surface, export production is

enhanced, providing more sinking organic matter input to the unventilated zone below. This

mimicks the oxygen climatology of the 10 S transect in Fig. 3.1. There, the aerobic meta-

bolism depletes oxygen to O (Fig. 3.6), and simulates the sharp oxycline characteristic of

pelagic anoxic zones (Ulloa et al. 2012).
This depletion creates the habitat for the anaerobic population and denitrification. The

N loss gives the characteristic profile of nitrate in OMZs, evidence of the depletion of nitrate

within the anoxic zone (Fig. 3.6). Some organic matter sinks below this anoxic zone, and

due to sufficient oxygen supply there, fuels a deep aerobic population for an additional few

hundred meters.

The computed value of 4 (Eqn. 3.15) is plotted in Fig. 3.7a. The I = 1 line is predicts
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Figure 3.6: Profiles through the anoxic zone of the idealized OMZ model. The dashed black lines

indicate 4 = 1.

the boundaries of the emergent region of anaerobic metabolism in Fig. 3.5c and Fig. 3.7c,d.

Since we assign the 02 and organic matter demands (i.e., r), $ < 1 predicts the anaerobic

domain with good skill. The 4 = 1 threshold represents the onset of the coexistence of the

anaerobic metabolism, and so it precisely isolates the sustainable anaerobic domain, but not

exclusive anaerobic activity. 77% of the organic matter consumed within the 0 < I area

is respired anaerobically, with most of the aerobic activity at the periphery of the zone.

Additionally, physical transport results in some anaerobic cells being mixed into the oxy-

genated waters above the anoxic zone; thus, low rates of denitrification occur at relatively

high oxygen concentrations (tens of micromolar) in the oxycline because of this transient

population.

3.7 Discussion

We used resource ratio competition theory to suggest that aerobic and anaerobic meta-

bolisms can co-exist when oxygen supply is low in marine environments. Throughout the

domain of coexistence, aerobic metabolisms should maintain the ambient oxygen at their

subsistence concentration, 0*. We developed an expression which which to predict sustain-

able anaerobic activity, 4 (Eqn. 3.15), where 4 = I represents the onset of the theoretical

coexistence.

These results anticipate the observations of van den Ende et al. (1996) for aerobic and

anaerobic chemoautotrophic sulfur bacteria competing for sulfide. In their experiment, the

ratio of aerobic to anaerobic biomass also decreases with decreasing oxygen supply, with

simultaneous measurements of activity directly indicating their coexistence. As implied by

the model here, oxygen was below detectability during the period of coexistence. The model

here thus provides the theory for these laboratory observations, and hypothesizes a similar

result for aerobic and anaerobic metabolisms in pelagic OMZs.

The model suggests the likelihood of simultaneous aerobic and anaerobic activity at

varying ratios in OMZs, as has been observed (Lipschultz et al. 1990; Lam et al. 2007;

FUssel et al. 2012; Kalvelage et al. 2013; Peng et al. 2015), with ambient oxygen at its lowest
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Figure 3.7: Idealized OMZ 2D model solutions of 4, oxygen, and denitrification, with the , 1
line overlaid in white in (b) and (c).

levels. The model also suggests a potential for undetectable rates of aerobic metabolism
occurring deeper in the anoxic zone, depleting any trace oxygen supply.

The model hypothesizes almost exclusively aerobic activity in anoxic conditions at the
very periphery of an anoxic zone. Just at the onset of coexistence (4 at and just less than 1),
in theory, aerobic metabolisms remain dominant, with trace anaerobic activity able to utilize
trace amounts of surplus substrate. Observations and theory have indicated that aerobic
microbial growth is sustained at nanomolar concentrations of oxygen or lower (Thamdrup
et al. 2012; Tiano et al. 2014; Zakem and Follows 2016; Bristow et al. 2016a). Results here
provide an additional ecological explanation for significant levels of aerobic metabolism
(heterotrophic or chemoautotrophic) at these lowest levels of oxygen in the ocean.

The speculation that aerobic metabolism remains sustainable in anoxic zones depends
upon the assumption that it remains a more efficient competitor for a substrate. However, if
oxygen poses an additional thermodynamic limitation on the efficiency of the metabolism
(so that for heterotrophs, yomo < yoMN, and so OM6 > OMkg at low oxygen), then aerobic
metabolism would end more abruptly when this transition occurs. However, in reality, deni-
trifying heterotrophs are usually facultatively anaerobic (Zumft 1997). Even if strict aerobic
heterotrophic populations are competitively excluded at low oxygen concentrations, facul-
tative metabolisms may be able to exploit their expanded niche and occasionally respire
aerobically.

In the expression for 4, we approximate that the outgoing flux of oxygen, Fogout, is
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negligible. This is a legitimate approximation when O is at nanomolar concentrations, but
what if the relevant minimum oxygen concentration is much higher, at 10s of micromo-
lar, as has been suggested by observations and modeling for the onset of nitrate reduction
(Kalvelage et al. 2011; Penn et al. 2016)? If this is the case, and, following Penn et al.
(2016), call this concentration O{I', then the numerator in 0 is F 2 in - FOrt,,, and so the

value of 0 is lower. This enlarges the projected domain of anaerobic activity.
The threshold 0 = 1 is relevant for a steady-state environment. This steady state assump-

tion is valid when the rates of growth and mortality of the population are well-balanced, and
so the biomass of the population is not changing quickly. However, bloom-like conditions,
such as a pulse of sinking organic matter, could also explain the co-occurrences of aerobic
and anaerobic activity.

Here, we present the aerobic-anaerobic transition using a pair of metabolisms. In reality,
a diverse suite of heterotrophic and chemoautotrophic aerobic and anaerobic metabolisms
control organic matter cycling and N loss in pelagic OMZs. Examining the interactions
among these diverse metabolisms is beyond the scope of this work, though it is a logical
next step for progressing our understanding of anaerobic activity and N loss in the ocean.

3.8 Conclusions

We use ecological theory to develop a precise description of the transition from aerobic
to anaerobic metabolisms in the ocean. Theory suggests that it is not the concentration of
oxygen that determines this transition, but the relative availability of oxygen and organic
matter. We define the threshold for the transition from exclusively aerobic metabolism to
the coexistence of aerobic and anaerobic metabolisms.

An idealized model of OMZ circulation simulates this domain of aerobic-anaerobic co-
existence as a consequence of the interactions between aerobic and anaerobic populations.
The model serves as a means by which to understand oxygen depletion and nitrogen loss
dynamically, without oxygen inhibition of anaerobic metabolisms imposed. Results provide
an ecological explanation for the observations of co-occurring aerobic and anaerobic activ-
ity in OMZs, including the observations of significant aerobic activity at the lowest oxygen
concentrations.
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3.9 Addendum 1: The ecology of nitrogen loss in marine oxygen minimum
zones

3.9.1 Overview

Here, we extend the analysis of aerobic and anaerobic interactions to a wider range of meta-
bolisms. We first compare the six metabolisms currently understood to dominate nitrogen
cycling in pelagic oxygen minimum zones (OMZs). We examine their interactions, again in
a virtual chemostat. We first demonstrate that both steps of aerobic nitrification can coexist
with anaerobic ammonium oxidation (anammox), which may explain the observations of
nitrite oxidation in anoxic zones. We then analyze the steady-state distributions of all six
metabolisms as a function of organic matter and oxygen supply. In general, the distribu-
tions of metabolisms match observed environments: all aerobic metabolisms dominate at
high oxygen, and all anaerobic metabolisms dominate at low oxygen. The ratio of anam-
mox to denitrification at low oxygen supply matches the theoretical ratio estimated from
geochemistry, which shows that describing the system with ecological interactions is con-
sistent with that geochemistry. Results provide an organized framework for interpreting the
ecology of the diverse N-cycling metabolisms in OMZs.

We then make two additional points, which call for further investigation. First, a steady-
state solution during the transition from aerobic to anaerobic metabolisms (at intermediate
oxygen supply) has similar characteristics to the recently observed system in the Bay of
Bengal by Bristow et al. (2016b): anammox dominates nitrogen loss, and oxygen remains
at a concentration higher than the lowest observed. The model system matches some, but not
all, of the observed dynamics, and we discuss the relevance for understanding the observed
system as on the verge of transitioning to a more anaerobic system as a consequence of the
projected marine deoxygenation. Second, due to this discrepancy, we compare the model
results when aerobic heterotrophy is assumed to end at a critical oxygen concentration,
following the conclusions of previous work that facultative anaerobes may not use oxygen
at all once oxygen becomes low. If this is the case, then aerobic nitrifiers, rather than aerobic
heterotrophs, become the viable aerobic metabolism at the lowest oxygen concentrations.
We discuss the knowns and unknowns of the resulting models.

3.9.2 Questions

Diverse heterotrophic and chemoautotrophic metabolisms characterize the microbial com-
munity in and around oxygen minimum zones. When oxygen is abundant, as in most of the
ocean, microbial metabolisms other than photoautotrophy can be divided into three types:
heterotrophic oxidation of organic matter, for which ammonium is one of the waste prod-
ucts, ammonium oxidation to nitrite, and nitrite oxidation to nitrate. When oxygen is suffi-
ciently depleted, anaerobic metabolisms become favorable, as described in the main text. In
pelagic OMZs, nitrogen-cycling anaerobic metabolisms are most significant, since nitrate
(the most favorable electron acceptor after oxygen) remains abundant. Anaerobic ammonia
oxidation (anammox) and denitrification are known to dominate the losses of fixed nitro-
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gen (Ward 2013). Sulfur-cycling metabolisms are understood to be less significant than in
coastal waters, although cryptic sulfur cycling may occur in the open ocean (Canfield et al.
2010). The subsets of the heterotrophic denitrification reaction (NO3 -+ NO2 -* N 20 -4

N 2) are understood to be carried out by different organisms (Devol 2008). Considering just
two discrete reactions - nitrate reduction to nitrite, and denitrification of nitrite to N 2 - is a
justifiable simplification of the system for two reasons: N 20 excretion is much smaller than
N 2 formation, and nitrite accumulates to order 10 pM in anoxic zones potentially because
of a decoupling of these two steps (Babbin et al. 2017). Dissimilatory nitrate reduction to
ammonium (DNRA) is generally understood to be less relevant in pelagic OMZs (Babbin,
personal communication). Anaerobic nitrite oxidation may be a newly appreciated signifi-
cant metabolism (Babbin et al. 2017).

A minimum of six metabolisms can therefore describe the current understanding of N
cycling in and around anoxic zones (Devol 2008; Ward 2013): aerobic oxidation of organic
matter, dissimilatory nitrate reduction, denitrification, aerobic ammonia oxidation, aerobic
nitrite oxidation, and anammox. Observations consistently show co-occurrences of many
of these metabolisms, at varying levels of oxygen concentrations (Devol 2008; FUssel et al.
2012; Kalvelage et al. 2013; Babbin et al. 2017). Which subsets of the metabolisms can
steadily coexist, and why?

Chemoautotrophic anammox accounts for a significant portion of fixed nitrogen loss in
OMZs (Ward 2013). The ratio of anammox to heterotrophic denitrification varies among
studies (Bulow et al. 2010; Dalsgaard et al. 2012; De Brabandere et al. 2014). A theo-
retically calculated fraction of anammox to total N loss of about 30% has been shown to
be consistent with observations when integrated over time (Koeve and Kahler 2010; Ward
2013; Babbin et al. 2014). Does a model of the ecological interactions of populations car-
rying out these metabolisms show this same fraction? I.e., do denitrifying and anammox
functional types converge to a steady state at which the fraction of N loss from each type
matches the theoretical ratio?

Also, what determines the variance from this theoretical fraction? Can the model ex-
plain environments that differ from this pattern? For example, recently, Bristow et al.
(2016b) measured only anammox contributing to nitrogen loss (little or no denitrification
was measured) in the Bay of Bengal. One theory for the varying significance of anammox
versus denitrification is that anammox operates more consistently at lower rates and den-
itrification more sporadically at higher rates, perhaps responding to time-varying supplies
of organic matter (Ward 2013; Kalvelage et al. 2013). Another is that anammox dominates
at the periphery of oxygen minimum zones, which has been clearly observed in other envi-
ronments (Babbin et al. 2017), and is consistent with laboratory experiments that show that
anammox tolerates higher oxygen concentrations than heterotrophic denitrification (Jensen
et al. 2008; Kalvelage et al. 2011; Dalsgaard et al. 2014). Are the areas of enhanced anam-
mox in peripheral transition zones due to transience, or can anammox be sustained without
denitrification in a steady-state environment?

Furthermore, the observations of Bristow et al. (2016b) from the Bay of Bengal show
oxygen concentrations seemingly maintained at intermediate concentrations: a few hundred
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nanomolar on average. This, combined with the above hypothesis that anammox tolerates
higher oxygen concentrations than denitrifi cation, led the authors to speculate that the Bay
of Bengal represents an environment at a 'tipping point.' They speculate that if oxygen was
removed from the system, denitrification would then become favorable, resulting in higher
total losses of fixed nitrogen from the environment. Can a microbial ecosystem model ex-
plain this 'tipping point' state?

3.9.3 Approach: Six interacting metabolisms in OMZs

Here, we develop a microbial ecosystem model relevant for pelagic oxygen minimum zones,
and thus relevant for answering the above questions. We resolve six metabolic functional
types fundamental to N cycling in OMZs. Rather than using only observed parameters from
cultured species, we describe the types more fundamentally as being driven by their un-
derlying chemistry. This allows for a predictive model that complements, rather than solely
extends, observed metabolisms and nutrient distributions. The ability of each functional
type population to sustain itself is the currency of the model, determining the presence of
that population, with the respiration rates of each population giving the rates of activity that
can be compared to observed rates. The ecological model links metabolisms to the interac-
tions - both competitive and syntrophic - that regulate the sustainability of each functional
type. This modeling framework allows us to formally examine these ecological interactions.

3.9.4 Metabolic functional types

We resolve the six microbial metabolic functional types that are understood to be most sig-
nificant to N cycling in and around oxygen minimum zones (Ward 2008): aerobic heterotro-
phy (BHetO), nitrate-reducing heterotrophy (BHetNO3 ), denitrifying heterotrophy (BHetN02 )'
aerobic ammonia oxidation (BAOO), aerobic nitrite oxidation (BNOO), and anaerobic ammo-
nia oxidation (anammox) (Banx). We here do not consider dissimilatory nitrate reduction
to ammonium (DNRA) or anaerobic nitrite oxidation, but we provide the tools with which
the ecology of these (and other) metabolisms could also be examined. We define these
metabolic types as follows with nitrogen as the currency, with the amount of each required
substrate and respiration product expressed in terms of yields. The values for each yield are
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listed in Table 3.3).
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For simplicity of the expressions, we neglect water and charge balance (from bicarbonate),
and consider ammonium and ammonia interchangeably.

We then estimate the values for all of the yields using the redox reactions underlying
each of these metabolisms, using an approach similar to that used for bioreactors in wastew-
ater treatment plants (Rittman and McCarty 2001). We determine the fraction of electron
flow that partitions biomass synthesis and respiration using a combination of theory and
observed yields from the growth of real organisms (see Appendix 3.A.3 for detail). Fig. 3.8
illustrates the resulting stoichiometries assumed for the remainder of this study (yields are
also listed in Table 3.3). Large uncertainties accompany each of these values, due to varia-
tion in the costs of biomass synthesis, the assumed electron fraction of each metabolism, the
efficiency of the transfer of energy from one chemical form to another, and versatilities of
real metabolisms. Thus, these yields should be understood as ballpark values for the meta-
bolisms. We consider where departures from these ballpark values will impact the outcome
of the interactions throughout this study.

We make two main assumptions when assigning the electron fractions. First, we assume
that anaerobic heterotrophy is less efficient than aerobic heterotrophy; this assumption and
the yields themselves are the same as in the main text. Second, we assume that the electron
fraction is the same for all of the chemoautotrophs, which is a plausible assumption know-
ing nothing else about the metabolisms. Observations show that this fraction is lower for
marine nitrifiers than wastewater nitrifiers (about 0.03; see Chapter 3 for detail), and only
wastewater anammox stoichiometry has been documented to our knowledge (Strous et al.
1998). In light of these observations, we opt to use the same efficiency of 0.03 for anam-
mox as well as both steps of aerobic nitrification. We test that the solutions do not depend
qualitatively on this assumption: assuming the stoichiometry of Strous et al. (1998) does
not impact the fitness of the anammox relative to each of the nitrifiers.

In Table 3.2, we list the R* concentrations for each substrate for each metabolism using
the yields and the parameters for uptake listed in Table 3.3, and assuming a constant loss
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Figure 3.8: Ballpark values for the stoichiometries of the six metabolic functional types as a function

of their underlying redox chemistry and estimation of the efficiency of each reaction. The three

heterotrophs have roughly the same efficiency, with the aerobic heterotroph slightly more efficient.

The three chemoautotrophs all have the same efficiency, and so differences between them reflect

only the redox reactions. Biomass B is in units of nitrogen.

rate of 0.1 d- (the dilution rate for the chemostat model). As in the main text, we assume a

Michaelis-Menton form for the uptake of organic matter and DIN and a diffusive limitation

for the uptake of oxygen. To simplify the interpretation of the model, we assume the same

uptake parameters for organic matter for all heterotrophs, and the same uptake parameters

for all species of dissolved inorganic nitrogen for all metabolisms that use DIN.

The interaction matrix

Table 3.2 represents the matrix of all possible competitive and syntrophic interactions in the

model. All metabolisms that have the potential to be limited by any one substrate (all red

squares in any column) have the potential to compete with one another for that substrate,

and the estimated values of R* provide a first-order estimate of the relative competitive abil-

ity of each. For example, three metabolic types - heterotrophic denitrifiers, nitrite-oxidizers,

and anammox - require nitrite. The values that we assign for the yields and uptake parame-

ters result in an ordering of the subsistence concentration for nitrite, from low to high (i.e.,

of the affinity for nitrite), as first denitrifiers, and then anammox, and then nitrite-oxidizers.

Table 3.2 also indicates the substrates that are produced by each metabolism with a filled-in

blue square: thus, for any column, a metabolism that requires that substrate has a possibil-

ity for a cross-feeding dependency on any metabolism that provides that substrate. Using

nitrite again as an example, nitrite-oxidizers have the potential to co-exist with ammonium-

oxidizers in oxygenated environments (as in Chapter 3), as well as with nitrate reducers in

OMZs. This complex network prevents any simple prediction of the outcome of the system,

and thus a model allowing for all of these interactions in an environment becomes a useful

tool.
We next turn to a simple virtual chemostat model to examine the solutions of this com-

plex network as a function of the supply rates of substrate. We again solve for equilibrium

functional type biomasses and nutrient concentrations (See Appendix 3.A.3 for Equations).
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Table 3.2: The interaction matrix of the six metabolisms. Red squares indicate substrate require-
ments, with the R* concentration computed for the virtual chemostat model overlaid. Blue squares
indicate waste metabolic products. For each column, all organisms requiring that substrate (all red
squares in the column) can potentially compete with one another. Each pair of red and blue within a
column has the potential for a syntrophic, cross-feeding interaction.

02 OM NH NO- NO- N 2

R* KOM L KuN 4 L KNO 2 L KNO3 L

SoMm-L )N4 VnlrNH 4 -L o2VmxNO2  3 m"xNO 3

BHetO I nM 0.10 M

BHtNO 3  0.11 PM 10 nM

BHetNO, 0.11 PM 6 nM

BAOO 7 nM 30 nM

BNOO 7 nM 160 nM

BxII 77 nM 73 nM
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Table 3.3: Ballpark values for yields, presented as the inverse of the yields, y-1, and uptake param-
eters for estimations of R* in Table 3.2. Organic matter OM and biomass B are in units of nitrogen.

(See Table 3.1 for oxygen uptake parameters and Appendix 3.A.3 for derivation of yields.)

Parameter Symbol Type Value Units

Yields

Oxygen demand y)'01( BHetO 26 mol 02 / mol B

y2A1U( BAOO 162

YO2N(_ ) BNOO 162
Organic matter demand YOMI BHC,O 5.0 mol OM / mol B

YOMN BHetNO3  5.3

YOMN BHetNO2  5.3

Ammonium demand YNA BAOO 112 mol NH+ / mol B

YN I Banx 112-223

Nitrite demand YN I BHetNO, 37 mol NO- / mol B

Y 2 -N()} BNOO 334

Y_ Banx 136-216

Nitrate demand VNO BHetNO3 55 mol NO- / mol B

Uptake

Max specific uptake of OM VmaOm 1 (mol OM /mol B) d-

OM half-saturation KOm 0.1 pM OM

Max specific uptake of DIN VmaxNH 4 , VmaxNO 2 VmaxNOi 60 (mol DIN / mol B) d-

DIN half-saturation KNH 4 ,KNO 2,KNO 3  0.13 pM N

Loss rate L ( = Dilution rate ic) 0.1 d
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3.9.5 Stable coexistence of nitrification and anammox

Analogous to the heterotrophic metabolisms in the main text, we analyze just the aerobic
and anaerobic chemoautotrophic metabolisms competing for and cross-feeding with the
three inorganic nitrogen species. We solve the system for three functional types - aerobic
ammonia-oxidizers, aerobic nitrite-oxidizers, and anammox (BAOO, BNOO, and Banx) - and

for three incoming nutrients: oxygen, nitrite, and ammonium.
Fig. 3.9 illustrates the resulting steady-state solutions for varying incoming concentra-

tions of oxygen and ammonium. Incoming nitrite concentration is fixed at 5 PM, simulating
the core of an anoxic zone where nitrite is presumably supplied by heterotrophs. The sys-
tem is dependent on nitrite, and thus Fig. 3.9 is an incomplete description of the solutions.
However, the concepts for understanding the full set of solutions, which are function of
nitrite supply as well as of oxygen and ammonium supply, are evident.

As with the anaerobic heterotroph, anammox is competitively excluded when oxygen
is abundant, without any prescribed oxygen inhibition. Coexistence of the aerobic nitri-
fiers and anammox is again established once a threshold of relative supply rates is crossed.
Where coexistence occurs, oxygen is held at the O of the aerobic nitrifiers. Ammonium
is held at the NH* of anammox, indicating that anammox is limited by ammonium. Nitrite
is abundant throughout the anaerobic domain, indicating that nitrite is not limiting in this
illustrated subset of the solution space. The resulting steady state concentration of nitrite
decreases as ammonium supply increases since the metabolisms are able to utilize a larger
share of the nitrite when more ammonium is supplied.

This result demonstrates a three-way, unintuitive dependency: in a pair-wise competi-
tion, anammox could competitively exclude nitrite-oxidation even when oxygen supply is
high because of its lower subsistence concentration for nitrate (Table 3.2). Thus, it is the
aerobic ammonia oxidizing population that competitively excludes anammox when oxygen
supply is large. Once oxygen is low enough for the anammox population to sustain itself, it
cannot metabolize all of the nitrite available because of its requirement for ammonia. Thus,
nitrite oxidation is able to steadily coexist with anammox and the ammonia oxidizers.

Because of the large differences in yields, (1/112 and 1/222 for NH* for AOO and anam-
mox, respectively, and 1/333 and 1/212 for N02 for NOO and anammox, respectively),
which translate into the large differences in R* (Table 3.2), we expect that these relative
competitive abilities to be robust for variations in these yields and uptake parameters. If
instead anammox follows the stoichiometry of Strous et al. (1998) in marine environments,
which would mean that it is significantly more efficient at acquiring electrons than aero-
bic nitrification, then it would be a very close competitor for ammonia against the aerobic
ammonia-oxidizers. As long as aerobic ammonia oxidizing population has a lower R* than
anammox for for ammonium, this does not change the results quantitatively. The extremely
low affinity of ammonia-oxidizers measured by Martens-Habbena et al. (2009) also con-
tributes to their fitness, and represents a further reason to suspect that ammonia oxidizers
will outcompete anammox for for ammonium.

In summary, these results thus anticipate that aerobic nitrification may continue at sig-
nificant rates once oxygen is depleted to limiting concentrations. Coexistence with anam-
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Figure 3.9: Solutions for the three chemoautotrophic metabolisms in the virtual chemostat model for
varying organic matter and ammonium supply. Incoming nitrite concentration is fixed at 5 pM, and
so nitrite only limits the growth of the aerobic nitrite oxidizers when oxygen is abundant. Aerobic
nitrifiers and anaerobic anammox coexist when oxygen supply is low.

mox is sustainable: anammox is able to access the DIN that the aerobic nitrifiers cannot

access due to their oxygen limitation. This potentially explains the observations of nitrite

oxidation in anoxic zones and the co-occurrences of nitrite oxidation and anammox (FUssel

et al. 2012; Kalvelage et al. 2013; Bristow et al. 2016b; Babbin et al. 2017).

3.9.6 Syntrophic coexistence of six metabolisms

Fig. 3.10 shows the steady state model results of the interaction of all six metabolic types

in the chemostat as a function of varying oxygen concentration. Incoming organic matter

concentration is fixed at 1 pM; organic matter supply controls the magnitudes of biomasses

and rates, but not the relative distributions of the metabolisms. As in the main text, incoming

nitrate concentration is fixed at 30 pM to avoid nitrate limitation.

Syntrophic interactions explain the coexistence of the aerobic metabolisms at high oxy-

gen supply, and of the anaerobic metabolisms at low oxygen. At high oxygen supply, the

three anaerobic types are competitively excluded, and both NH* and NO2 are maintained

at the subsistence concentrations of the aerobic AOO and NOO populations, respectively.

This anticipates the microbial community structure in oxygenated environments below the

euphotic zone examined in Chapter 4.

At low oxygen supply, oxygen is depleted to 0, and the three anaerobic metabolisms

become sustainable. Because the parameters chosen have resulted in a lower subsistence
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Figure 3.10: Solutions for all six metabolisms in the virtual chemostat model for varying oxygen
supply. Incoming organic matter supply is fixed at 1 AM. Two models are shown: (a) First, the
model when assuming that the emergent nanomolar oxygen limitation O limits the growth of all
aerobic metabolisms, resulting in the aerobic heterotrophs outcompeting the aerobic nitrifiers at low
oxygen. Plot (b) provides a higher resolved version of the solutions at intermediate oxygen supply,
which shares many characteristics with recent observations from the Bay of Bengal (Bristow et al.
2016b). (c) Second, the model when assuming a higher (here, 5 pM) oxygen concentration excludes
aerobic heterotrophy.
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oxygen concentration for the aerobic heterotroph (I nM) than for the aerobic nitrifiers (7
nM), oxygen is maintained at the 0* of the aerobic heterotroph. Thus, in this model, the
aerobic nitrifiers are competitively excluded by the aerobic heterotroph once oxygen limits
its growth. Aerobic heterotrophy coexists with the anaerobic metabolisms, continues to
utilize trace amounts of oxygen, as in the main text. NH* is maintained at the subsistence
concentration of the anammox population. NO accumulates due an imbalance in NO
supply and demand, which reflects that NH* is the limiting species for the community at
low oxygen supply. N 2 accumulates because of both anammox and denitrification.

3.9.7 Simulation of observed patterns of N loss

At low oxygen supply, nitrate reduction and denitrification metabolisms co-exist with anam-
mox. Their relative contributions to fixed nitrogen loss match the theoretical calculations
and observations of Babbin et al. (2014). To explain, the rates of the three metabolisms
converge to a constant ratio as oxygen supply decreases: the fraction of anammox contri-
bution to total fixed N loss is 35% in the illustrated model (Fig. 3.1Oe). This ratio reflects
the assumed stoichiometry of the biomasses, and is consistent with theoretically and em-
pirically observed ratio of about 30% (Koeve and Kahler 2010; Babbin et al. 2014; Ward
2013; Dalsgaard et al. 2014).

As anticipated by theory (Koeve and Kahler 2010; Babbin et al. 2014), the modeled frac-
tion is sensitive to the stoichiometry of the organic components, independent of the growth
rates of the populations. If the model is run with microbial C:N biomass stoichiometry of
6.6, instead of 5, assuming the average stoichiometry of marine organic matter (Ander-
son 1995) instead of bacterial biomass (Zimmerman et al. 2014), then the fraction is 29%,
which is almost exactly the theoretical value. The fraction remains the same for constant
stoichiometries even if the assumed yields for anammox are doubled, or if the heterotrophs
grow at a faster rate than anammox (accomplished by forcing a higher rate of loss on the
heterotrophs; results not shown). The model thus points out that the stoichiometry of bac-
terial biomass and remineralization itself may affect the theoretical fraction, in addition to
the stoichiometry of sinking organic matter as predicted by Babbin et al. (2014). However,
the model here assumes the same efficiency for carbon and nitrogen utilization (Goldman
et al. 1987), so more research would be needed to qualify and quantify this sensitivity.

3.9.8 Simulation of recent observations from the Bay of Bengal

Though the model and theory predict the above pattern of N loss where oxygen supply is
lowest, the model results differ when oxygen is supplied at intermediate levels. Over a small
range of intermediate oxygen supply, only anammox, and not heterotrophic denitrification,
contributes to N loss (Fig. 3.10b). This steady state regime has much in common with the
recent observations of the Bay of Bengal by Bristow et al. (2016b), which the authors con-
clude may be a 'tipping point' environment, at the brink of much more fixed N loss should
conditions change. In the sites measured in the Bay of Bengal, anammox was nitrite-limited,
nitrite oxidation was significant, little or no denitrification was measured, nitrate reduction
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was significant, and oxygen was maintained at a higher concentration: 10-200 nM.
Like these observations, oxygen is also maintained at a higher concentration in the

model at this intermediate state. The model shows this as the slightly higher O of the
aerobic nitrifiers (Fig. 3.10b), and so in the model, the ambient oxygen concentration is
controlled by the nitrifiers, rather than the heterotrophs. In this model, this concentration
is 7 nM instead of the 0.9 nM 0* of the aerobic heterotrophs, which is significantly lower
than the observed concentrations of about 100 nM Bristow et al. (2016b). The discrepancy
in magnitude could be explained by a model underestimate of the subsistence oxygen con-
centration of the nitrifiers (due to an overestimate of their efficiency, for example), or due to
a continual supply of oxygen as an alternative control on the ambient concentration in the
real environment, and thus, demonstrating an effect of physical transport that the simplified
chemostat model does not resolve. This latter effect would be analogous to the effect of
transport on setting the magnitude of the primary nitrite maximum (see Chapter 4).

Another discrepancy between model and observations is that the model does not predict
nitrate reduction at this intermediate state. Observations have suggested that nitrate reduc-
tion to nitrite occurs at ambient oxygen concentrations much higher than O, perhaps due
to anoxic activity within particles, or perhaps due to a different energetic threshold for that
transition (Kalvelage et al. 2013; Brewer et al. 2014; Penn et al. 2016). Both of these ex-
planations may explain the lack of nitrate reduction in the model. However, attempting to
remedy this difference by using a higher limiting oxygen concentration for nitrate reduc-
tion changes the model solutions drastically. When including this higher limiting oxygen
concentration, the model no longer predicts favorable anammox and no heterotrophic deni-
trification. We discuss this experiment and its results further below.

The model results suggest an interpretation of the Bay of Bengal environment. The
model hypothesizes that at the location observed by Bristow et al. (2016b), oxygen was just
low enough to limit the growth of the nitrifiers, allowing for sustainable anammox to coex-
ist, but not yet low enough to limit the aerobic heterotroph, and so denitrification does not
yet sustainably coexist. The lack of anaerobic heterotrophy results in a state where the ratio
of nitrate reduction to nitrite oxidation is not yet high enough to allow for an accumulation
of nitrite. Anammox is thus nitrite-limited, which is evident by the maintenance of nitrite at
its subsistence concentration during this period.

These model results depend on the assumption that aerobic heterotrophy more effi-
ciently utilizes oxygen than aerobic chemoautotrophy. This assumption allows for the re-
sulting higher oxygen concentration, the occurrence of anammox without denitrification,
and the nitrite-limitation of anammox. We next forego this assumption and modify the
model to include nitrate reduction at a higher ambient oxygen concentration.

3.9.9 Effects of a higher oxygen limitation for nitrate reduction

The observations of (Kalvelage et al. 2013) show the anaerobic reduction of nitrate at much
higher oxygen concentrations than direct limitation of oxygen supply to a microbial cell
predicts (Zakem and Follows 2016). Anaerobic activity within particles or an unexplained
energetic constraint on aerobic metabolism at low oxygen may explain this distinction.
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Here, we consider this in the model by forcing a higher critical oxygen concentration for
aerobic heterotrophy, and analyze the resulting ecosystem. Following the approach of Penn
et al. (2016), we allow nitrate reduction to set in at a prescribed 0 2cri, (here, as 5 AM).

Fig. 3.10c shows the results. Aerobic heterotrophy ends abruptly at 0 2crit as in Penn
et al. (2016). In contrast with Fig. 3.10a, aerobic nitrifiers are the popluations that utilize
the trace amounts of available oxygen, and oxygen concentrations are maintained at their
subsistence concentration (here, of 7 nM). Because nitrifiers are sustainable at lower oxy-
gen concentrations, anammox does not become a sustainable metabolism until much lower
concentrations. This is in contrast to observations of anammox as active at higher oxy-
gen concentrations and at the periphery of oxygen minimum zones (Dalsgaard et al. 2014;
Babbin et al. 2017). This does, however, allow for the coexistence of nitrification and den-
itrification, as has also been observed (FUssel et al. 2012; Peng et al. 2015). Thus, both
Fig. 3.10a and Fig. 3.10c are able to represent some but not all of the characteristics of
OMZ biogeochemistry.

3.9.10 Discussion

We organized the six dominant N-cycling metabolisms that occur in pelagic marine oxygen
minimum zones as metabolic functional type populations, and by doing so, have been able
to link these metabolisms to the ecological interactions that regulate the favorability of each.

First, the model establishes the conditions for the coexistence of aerobic nitrification
and anammox in anoxic zones. As in the main text, intermediate levels of oxygen supply
allow for this coexistence. Unlike the pair of heterotrophs in the main text, this three-way
coexistence was not intuitive, since aerobic nitrite oxidation seems to be less efficient at uti-
lizing nitrite than anammox. These results may explain observed nitrite oxidation in anoxic
zones (Fissel et al. 2012; Kalvelage et al. 2013; Bristow et al. 2016b; Babbin et al. 2017).

Second, the model with all six metabolisms establishes the general pattern of syntrophic
aerobic metabolisms giving way to anaerobic metabolisms as oxygen supply decreases. The
model simulates the convergence to the theoretical fraction of anammox to total nitrogen
loss at low oxygen supply. This corroborates the general assumption of the model that
the network of microbial interactions ultimately reflects the chemistry of the system: the
biogeography of N-cycling metabolisms is crudely predicted by redox chemistry.

Third, at intermediate oxygen supply, the model anticipates many of the observations
from the Bay of Bengal, which Bristow et al. (2016b) concluded also demonstrated an
environment with an intermediate oxygen supply. The model does not completely replicate
all of the observations, however. The modeled nitrite-limitation of anammox is consistent
with the observations, and the interpretation of the authors. Unlike the model, however,
observations show active nitrate reduction. This presents a puzzle for the theoretical model:
in the model, nitrate reduction without denitrification results in an accumulation of nitrite,
and so would not result in nitrite-limitation for anammox.

One explanation could be that the measured nitrate reduction actually occurs inside
particles, with the resulting nitrite somehow not accessible to the anammox population.
Unfortunately, the nitrite concentrations were not reported for the Bay of Bengal site. This
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potential for an onset of nitrate reduction at a higher ambient oxygen concentration is con-
sistent with observations (Kalvelage et al. 2013), and thus this led to the comparison of a
model with a different treatment of the way oxygen limits heterotrophic growth.

Both model versions (Fig. 3.1 Oa,c) capture some of the elements of the observed biogeo-
chemistry. Fig. 3.1Oa predicts that anammox should become sustainable in the environment
at a higher oxygen supply than heterotrophic denitrification, which matches observations of
oxygen inhibition in anammox in the laboratory as well as observations showing a higher
fraction of anammox to total N loss at the periphery of an anoxic zone, where oxygen
supply is presumeably higher (Dalsgaard et al. 2014; Babbin et al. 2017). Fig. 3.10c, on
the other hand, predicts the continuation of nitrite oxidation at very low levels of oxygen,
which simulates the measurements in the core of an anoxic zone by FUssel et al. (2012).

Previous modeling also anticipates a higher fraction of anammox at the periphery of
the anoxic zone, but for different reasons. Penn et al. (2016) simulate anammox dominating
N loss at the periphery because hetetrotrophic denitrification is excluded at the low levels
of oxygen in the periphery by aerobic nitrite oxidation. In their model, chemoautotrophic
aerobic nitrifiers win the competition for nitrite against heterotrophic denitrifiers. This is
due to a prescribed lower half-saturation constant for nitrite uptake and lower rate of mor-
tality: using their parameters (their Table Sl), R* for NO for the nitrite-oxidizing bacteria
and the heterotrophic denitrifiers is 0.02 and 0.25 pM, respectively, in that model. I.e., the
subsistence concentration of the heterotrophic denitrifiers is over an order of magnitude
higher than that of the chemoautotrophic nitrifiers. Our parameterization has assumed the
opposite: that the heterotrophs are better competitors for nitrite.

Whether or not in the real ocean heterotrophic denitrifiers or chemoautotrophic nitrifiers
are better competitors for nitrite, and whether this varies across environments, thus remains
an open question. Here, we provide the tools with which to identify this competitive ability:
R* incorporates the half-saturation constant as well as the mortality rates to comprehen-
sively predict this ability. This particular comparison - the R* for nitrite for denitrifiers and
nitrifiers - should serve as a sharp focus for more research on the ecological dynamics of N
loss, since the outcome critically determines the fate of fixed nitrogen.

Is Fig. 3.1Oa or Fig. 3.1 Oc a more realistic simulation? In order to answer this question,
more observations may be required. It remains to be seen whether the abrupt end to aerobic
heterotrophy, as in Fig. 3.10c, occurs in the ocean. Facultative anaerobes may choose to
respire only with nitrate or nitrite as an electron acceptor once oxygen reaches a low, but
not absolutely limiting, concentration. Or, facultative anaerobes could continue to utilize
low levels of oxygen when available, as in the models in the main text. Testing for the
activity of aerobic heterotrophy in anoxic marine zones could determine which scenario is
realistic.

Similarly, it remains unknown whether anaerobic nitrite oxidation may explain the doc-
umented nitrite oxidation in anoxic zones. Though the models here demonstrate the plau-
sibility of aerobic ammonium and nitrite oxidation occurring at low (nanomolar) levels of
oxygen, it is unclear whether these chemoautotrophic nitrifiers may be competitively ex-
cluded by aerobic heterotrophs, in the case that aerobic heterotrophy does proceed at the
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lowest oxygen concentrations. If that competitive exclusion occurs, as anticipated by the
default model result here (Fig. 3.10a), then the anaerobic nitrite oxidation as proposed by
Babbin et al. (2017) seems a plausible explanation for the observations of FUssel et al.
(2012).

One explanation is that real OMZs consist of a combination of both model results,
reflecting a heterogeneous environment. Dynamics within particles may decouple the ecol-
ogy from that of the ambient environment, resulting in greater diversity of metabolism than
simulated in the models here.

In sum, the theoretical model here is able to provide insight into many, but not all, of the
observed patterns of nitrogen loss in marine anoxic zones. Future research on the ecology
surrounding sinking particles could provide further insight. Unaccounted for versatility of
metabolisms, such as mixotrophy, as well as novel metabolisms, such as anaerobic nitrite
oxidation, may also prove to play central roles in the nitrogen cycling in oxygen minimum
zones.
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3.10 Addendum 2: Calculation of 0 for the ocean

3.10.1 Overview

In the main text, we developed an expression which which to predict the domain of sus-
tainable anaerobic activity, 4, where 4 = 1 represents the onset of the coexistence of aer-
obic and anaerobic metabolisms. Here, we extend this analysis to the real ocean. We use
data-based estimates of oxygen, transport, and the particulate carbon flux to calculate 4 in
three dimensions in the ocean below the euphotic zone. This calculation has the potential
to estimate an upper bound on the volume of ocean where anaerobic metabolism should be
steadily favorable. However, uncertainties in the datasets prohibit a meaningful quantifica-
tion of this volume and of the implied maximum global rate of N loss. Nevertheless, we
here demonstrate the calculation as an example of how to carry out such a quantification
with more accurate and precise data.

3.10.2 Approach: Calculating 4 in the ocean

We hypothesize that the volume encircled by 4 = 1 represents an upper bound on the do-
main of steady anaerobic activity in the ocean. We use the expression for 4 from Eqn. 14 in
the main text, taking the approximation that 0* is at nanomolar concentrations, as:

0 = -0in r-1 (3.15)
V -OM

where r is the ratio of oxygen to organic matter demand of the aerobic heterotrophic meta-
bolism: r = yoM0 /Y0 2 (mol 02 utilized per mol OM utilized). Uncertainties in 4 result from
measurement error and sampling bias of the datasets, the assumption of r, and the assump-
tion that 0* is negligible.

We calculate the gross fluxes of oxygen in the ocean with estimates of oxygen and ocean
circulation, and relate them to the gridded inverse model of the POC flux as estimated by
Schlitzer (2002). We use the WOA 2013 climatology of dissolved oxygen concentration,
incorporating the correction scheme of Bianchi et al. (2012) for the systematic overestimate

of 02. This does not account for sampling bias and interpolation that also contributes to a
systematic overestimate of 02 in the oxygen minimum zones in particular. For ocean cir-
culation, we use the OCCA state estimate from Forget (2010), which gives a dynamically
plausible inverse estimate of advective and diffusive flows using comprehensive observa-
tions. The inverse of the ratio r is similar to the respiratory quotient, which is estimated to
be about 0.9 mol CO 2 produced per mol 02 consumed for algal material (Robinson 2008),
though can vary from 0.7 to 1.3 for specific substrates. This range is consistent with the
modeled stoichiometries here (see Appendix Fig. 3.14). We consider an average r of 1/0.9
= 1.1 with 10% uncertainty for the ocean on average. We incorporate the 35% uncertainty
of the POC flux estimate (Schlitzer 2002), which contributes the most uncertainty to the
calculation.

Fig. 3.11 shows the components of 4' at 270m: the incoming transport (d-) calculated
as the gross fluxes from the OCCA estimate (Forget 2010), the oxygen concentration, the
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resulting incoming flux of oxygen (Fo2 n), and the divergence of the POC flux (V -POC).
This transport rate (Fig. 3.11 a) can be thought of as the 'dilution rate,' representing the rate
of supply of oxygen and other dissolved nutrients. The parameterization schemes for along-
isopycnal eddy transport and mixing are accounted for in this estimate. If microbial rates are
significantly faster than this rate, microbial metabolisms should fully control the resulting
nutrient concentrations. The 0.01 d-1 contour is overlaid on the plot in white. Oxygen
minimum zones are all within this contour, quantifying the lack of ventilation there. We can
infer that microbial rates are likely to dominate the fluxes of nutrients in these zones.

The incoming oxygen flux Fo2in was computed as the sum of all incoming fluxes of
oxygen at the faces of each grid box (i.e., the transport routines were altered to isolate just
these 'positive,' incoming fluxes.) The divergence of the organic matter flux is estimated just
as the vertical divergence of the POC flux; horizontal transport of dissolved organic matter
is neglected. Fig. 3.1lc-d show that incoming oxygen is low in oxygen minimum zones,
and the divergence of the POC flux (i.e., the inferred consumption of POC at that location)
is large in the equatorial Pacific. Both of these effects should contribute to resulting low
values of 4 at this location.

3.10.3 Results and discussion

Fig. 3.12a shows the resulting values of 4 at the 300m depth. In Fig. 3.12b, the contour
4 = 1 is plotted on top of the oxygen climatology. Three contours are plotted, corresponding
to the average values of the POC divergence, as well as its 35% uncertainty. The 4 < I
area encircles the oxygen minimum zones.

The 4 = 1 contour predicts the onset of aerobic and anaerobic coexistence, and not
exclusively anaerobic activity. If all of the organic matter consumed in the volume with 4 <
1 were oxidized anaerobically, assuming the bulk estimate denitrification remineralization
ratio rJ:C. of 104:106 of Gruber and Sarmiento (1997), a calculated average of 58 Tg N
yr- would be lost from the ocean globally. A 10% uncertainty in r contributes about a
25% uncertainty, giving a range of 41-71 Tg N yr- 1, and the 35% uncertainty in the POC
flux gives a range of 16-108 Tg N yr- . This represents an upper bound on the estimation
of the N loss, since the condition that 4 < 1 is a necessary but not sufficient condition for
denitrification. In the idealized OMZ model in the main text, 77% of the organic matter
oxidation within this volume was respired anaerobically; this may roughly estimate the
expected fraction for the real ocean.

Though the range is large, this estimate is low compared to other estimates of global
denitrification, which range from 65-150 Tg N yr 1 (compiled by Bianchi et al. (2012),
their Table 1). The underestimate here reflects the fact that the oxygen climatology is most
certainly an overestimate in low oxygen regions. However, the range is within the order of
magnitude expected in the ocean. This indicates that the oxygen and POC flux estimates
are in rough balance. This is unsurprising since the POC flux is an inverse estimate, with
oxygen concentrations as one of the inputs for that estimate (Schlitzer 2002).

Knowing that this rough balance holds can be useful, then, in comparing other estimates
of the POC flux. When using the POC flux estimate derived from thorium measurements by
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Figure 3.11: The components of 0 at 270m depth: (a) The gross transport rate from the OCCA state
estimate (Forget 2010), which can be thought of as the 'dilution rate' at each location. The 0.01 d-1
contour is overlaid, which isolates the oxygen minimum zones; (b) the oxygen concentration from
WOA 2013, incorporating a correction for its systematic overestimate (Bianchi et al. 2012); (c) the
resulting incoming flux of oxygen computed; (d) the divergence of the POC flux from the inverse
estimate of Schlitzer (2002). 82



a.

0 2

b. Dissolved oxygen (IM) with O= 1 contour

A

1 10 100
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Henson et al. (2011), the calculation of 0 suggests that zero denitrification occurs (results
not shown), independent of the assumption of the b coefficient (Martin et al. 1987). Thus, 0
can be used as a crude inverse estimate for the POC flux required - in the oxygen minimum
zones, at least - to give a plausible amount of global denitrification. We infer that the POC
flux in the eastern equatorial Pacific and Indian oceans as estimated by Henson et al. (2011)
is too low, since it does not give these plausible numbers.
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3.A Appendix

3.A.1 Derivation of 4

From Eqn. 3.6, the steady state concentration of just aerobic biomass is:

K
BO = (O2in - 0*)YO, (3.16)

PO

Thus, for aerobic biomass to exist, O2in > 02.
From Eqn. 3.5 at steady state, the biomasses of both the aerobic and anaerobic popula-

tions are related as:

1 1
0 = K(OMi, - OM) - poBo - IpNBN (3.l17)

YOMO )OMN

where the organic matter subsistence concentration for anaerobic biomass OMk is relevant,

since we are working towards an expression for the coexistence of both populations, and

this is the larger subsistence concentration (if OMi, < OMk and OMi, > OM ), aerobic

but not anaerobic biomass can accumulate.) Since p = K at steady state in the chemostat,

further simplification can be made, but we retain these values in order to more easily extend

the expression to environments.

Plugging in the expression for aerobic biomass from Eqn. 3.16, and rearranging to solve

for anaerobic biomass:

BN = YOMN K(OMin - OMk) - YOMN K(02in - 0*)yo 2  (3.18)
YOMo

Thus, for anaerobic biomass to exist,

0 < K(OMi, - OMky) - K(0 2 in - Y*) (3.19)
YOMO

y02 K(02in - 02) < K(OMin - OM) (3.20)
YOMO

Y02 K(O2in - 0O*)
- < 1 (3.21)

YOMo K(OMin - OMk)

In the main text, we label the LHS expression as 0, and thus the threshold 1 is relevant

for identifying the domain of coexistant aerobic and anaerobic biomass. We also use r to

represent the ratio of oxygen to organic matter demand: r = Y'M0 (mol 02 utilized per mol

OM utilized), and so:

4, =ri (3.22)
C(OMin - OM)
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3.A.2 2D model

Flow field for 2D model

Governing Equations A two-dimensional, basin-wide closed flow field is developed with
conservation of momentum (with no gradients in y) and a wind stress forcing. The governing
momentum equations are:

du dui dui lap
=- -wy- I +fv+V.KVu (3.23)

dt dx dZ PO dX

dv dv dv
=-u - -w -fu+V-Kvv (3.24)

dt dx dz

With horizontal u computed, a non-divergent 2D circulation field can then be computed by
imposing continuity as:

du dw
+ T= 0 (3.25)

d x d z
and integrating downwards (or upwards) to solve for the vertical velocity field w, with w = 0
as the top (or bottom) boundary condition.

The Pressure Field The wind-driven Ekman transport stirs up an overturning circulation
through resolution of the pressure field, or, more specifically, the horizontal pressure gra-
dient. The hydrostatic pressure field can be divided into the baroclinic pressure, calculated
from density anomalies, and the surface pressure component, which are the deviations in
sea surface height, r:

dp _d'
0 , d Psurf- = - p'gdz+ (3.26)dx = dx f dx

Advecting the potential temperature and the salinity as tracers allows for the calculation of
density anomalies at each time step. However, in this model, temperature and salinity are
not resolved dynamically, and density anomalies are set to zero throughout the domain.

The rigid lid approximation is used to constrain this unknown; the total flux in and out
of each water column must sum to zero, as:

nji

I (uj,i+1 - u ji)dz j = 0 (3.27)
1I=1

Subbing Eqn. 3.26 (deconstruction of the pressure gradient) into Eqn. 3.23 (momentum in
the x-direction) and then inserting this into the above rigid lid constraint allows for solving
the horizontal surface pressure derivative. A boundary condition needed for this; dp = 0
was imposed on the left (or right) boundary, and the pressure gradient was solved for at
the face of each column by integrating from left to right (or right to left), which resulted
in an analogous boundary pressure gradient of zero at the far boundary. The u velocity was
then calculated with the newly updated pressure gradient at each time step, and checked for
consistency with Eqn. 3.27.
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Figure 3.13: The modeled wind stress used as the forcing for the circulation, against climatological

mean. Annual mean wind stress (y component) from the Hellerman and Rosenstein Global Wind

Stress Climatology (Hellerman and Rosenstein 1983) from 180'E to 80'W, and from 0S to 10'S,
was averaged meridionally.

Wind Stress Forcing The overturning circulation was ultimately driven by an imposed
wind stress forcing, only in the y-direction. The y-component of the wind stress was mod-

eled not very elegantly as:

7x 7rx
ry (x)=0.0125(sin(OxL )+ )(-tanh( lL -97,)+1) (3.28)

0.8L 2 0.1L

where L is the length of the domain (10,000 km). Fig. 3.13 compares this modeled wind

stress to the climatological mean from Hellerman and Rosenstein (1983) over the Pacific

Basin, at 10 S latitude. The wind stress was imposed into the momentum equations as the

top boundary condition for the diffusive flux of momentum in the y-direction as:

r -(x) = Kdv (3.29)
Po dz

Mixing A mixed layer was imposed by varying the vertical diffusion with depth. The

vertical diffusion coefficient icz was decreased exponentially from a maximum of 10-2 m2

s--I at the surface to a minimum with a length scale of Zinid. Additionally, since the boundary

conditions of the sinking velocity for the detritus are prescribed as zero at both the top and

the bottom edges (z=0 and z = H) of the domain, D often accumulates at the bottom of

the domain. To smooth over numerical error, vertical mixing was allowed to increase there

to 10-2 m2 s-1, simulating a bottom boundary mixed layer. Calculation of Kz (m2 S-1)
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thus results from summing the exponentially decaying terms at both the top (simulating the
surface mixed layer) and the bottom (simulating the bottom boundary layer) of the domain
with a minimum diffusion coefficient of 10-' m2 s-1:

Kz = 10- 2 e d + e0-- 10-2e M (3.30)

where H is the height of the domain (2000 m). KZ is calculated at cell faces, and so the
maximum values of 10-2 m 2 s- 1 are never quite reached at either boundary.

The horizontal diffusion was prescribed as a constant 103 m2 s-1, a value thought to
represent mixing by submesoscale eddies.

Numerical solution The momentum equations were solved to calculate the flow field,
with a resolution of 10 m in the vertical and 100 km in the horizontal. The choice to resolve
the time step explicitly led to the need to resolve gravity waves, and so a 10-3 day time step
was necessary. Equations were integrated forward in time using the 4th order Runge-Kutta
method. Advection was carried out using the QUICK advection scheme, consisting of a lin-
ear interpolation between points weighted by an upstream 2nd order curvature, resulting in
3rd order accuracy. Fluxes were calculated at the faces of each grid cell, and concentrations
at the centers. The resulting u and w fields used for the biogeochemistry model were saved
after 100 years of spin up.

Biogeochemistry detail for 2D model

The idealized ecological model of an oxygen minimum zone has six state variables: the
aerobic (BO) and anaerobic (BN) types, sinking particulate organic matter (OM), small zoo-
plankton grazers (Z), dissolved inorganic nitrogen (DIN), and oxygen (02). With nitrogen
as the currency, the sum of all except oxygen is conserved over time.

Bypassing phytoplankton resolution, we parameterize a light- and DIN-limited export
production as the source of OM as Xe-zLN. The parameter ) represents a maximum rate
of export production (d-1), which decays as ZL over depth z. OM is then a function of this
export production, uptake by the microbial functional types, and mortality of all popula-
tions, and sinking at rate ws.

The two metabolic functional types take up organic matter, oxygen, and DIN, and ex-
crete DIN as in the virtual chemostat. The DIN taken up for respiration of the denitrifying
functional type is balanced by immediately redistributing it evenly over the domain, which
simulates a distant source of nitrogen fixation. The rate of change of the two types is a
function of their growth rate p (as in the main text), a linear mortality rate MB, and linear
grazing by zooplankton with a maximum grazing rate g.

The zooplankton population grows as the product of g, total microbial biomass (Bo +
BN), and growth efficiency y (Armstrong 1994). A quadratic mortality rate mz implicitly
represents their predation by higher trophic levels. Growth efficiency of zooplankton is as-
signed as 0.3, which is a consistent efficiency across size-classes as compiled by Taniguchi
et al. (2014), and excretes DIN as a respiration product in accordance.
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Figure 3.14: The ratio r used for the calculation of 4 as a function of organic matter growth effi-

ciency (y1 ),compared to the oxygen demand y-1. The ratio of the two, r, stays relatively similar

(just below 1) for large variation in organic matter and oxygen demand, when assuming consistent

substrate composition.

Zooplankton oxygen consumption is parameterized to allow for implicit zooplankton

migration in and out of oxygen minimum zones: the oxygen demand by the zooplankton at

a given location is spread vertically above and below that location, weighted by the oxygen

concentration at that location. If the oxygen concentration is less than 8 PM at any spot

along the spread, oxygen is not consumed there, but instead the weights are increased for

the other boxes. This allows for zooplankton activity within the OMZ, mimicking their

ability to breathe above or below the anoxic area, but swim into the area for grazing, as

evidenced by Escribano et al. (2009). In the equations below, this is termed f(02 , Z)-

All microbial and zooplankton growth, respiration, and mortality rates are temperature

dependent, assuming a Qio value of 2 (rate doublings per 10'C increase); values listed

correspond to a reference temperature of 24 C. The model assumes a constant temperature

profile, an average of the 10'S Pacific Ocean transect from the WOA 2013 climatology.

This temperature dependency increases microbial rates by a factor of three from the deep

to the surface.

Oxygen is sourced from export production with the same ratio r as in the expression

for 0 in the main text (Fig. 3.14). This assures that the formation and consumption of

oxygen balance over time. Oxygen fluxes across the air-sea interface at a rate of about a

month, estimated from an air-sea gas transfer coefficient of Kg (3*10-5 m s-1; Williams

and Follows 2011) and an equilibration depth of 100 m, and with a constant saturation

concentration of 212 pM (the saturation concentration for 25'C and a salinity of 35).

As in the flow field spin-up, the mixed layer was imposed by an exponential decay of

a vertical mixing coefficient ic, from 10-2 m 2 s-1 at the surface to an interior diapycnal
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mixing estimate of 10- m 2 S-1 with length scale z,,nd. Horizontal diffusion was prescribed

with a constant diffusion coefficient K, of 103 m 2 s- 1, simulating along-isopycnal stirring

by submesoscale eddies (although in this model, isopycnal surfaces are not resolved as

anything other than horizontal).

The biogeochemical model is then integrated forward in time using the 4th order Runge-

Kutta method with a 0.1 d-1 time step. Advection, using the above resulting flow field, is

carried out with the QUICK advection scheme, consisting of a linear interpolation between

points weighted by an upstream 2nd order curvature, resulting in 3rd order accuracy. Fluxes

are calculated at the faces of each grid cell, and concentrations at the centers. DIN, BO, BN,
and Z are advected by the computed flow field. OM is advected the sum of the computed

flow field and a constant sinking velocity w,. Oxygen is resolved with a no-flux boundary

over the domain everywhere except for the surface, where the air-sea flux is represented as

an open boundary with a fixed equilibrium concentration as described above.

Denitrification stoichiometry estimate

The DIN demand of the denitrifying heterotroph can be estimated from the chemical reac-

tions that, to first order, underlies its metabolism, following the methodology of Rittman

and McCarty (2001). The description consists of three half-reactions: biomass synthesis,
oxidation of an electron donor (organic matter), and reduction of an electron acceptor (here

as NO 3 reduced completely to N 2 , as a simplification of denitrification for the purposes of

this study). The metabolism represents the combination of cell synthesis and energy pro-

duction, partitioned by the fraction f of electrons fueling cell synthesis vs. respiration for

energy.

These three reactions and their electron-partitioning coefficients are listed here for

organic matter (OM) composition C,OMHhomOOOmNnom and for biomass (B) composition

CCBHhBOOBNB as (neglecting water for simplification):

(1) [I CcOMHhOOoOmN nOM (NH+ + HCO-) + Com - nO CO 2 + + + e-
(1 dom Mhm nm- dom dom 021

1 4 1
(1 -f) NO + H+ + e- 10 N2

(4[nBJ++ CB - +B+n
NH+ 2 + BHCO3- + H+ + e- - - C HhBOoENBdB d dB dB

When summed, the full metabolism forming denitrifying biomass BN is:

OM+ N 3
dom M 5 N

4 -LBN+ COM CBf O 2 + (nom fBf NH+ f N 2 (3.31)
dB doM dB dom dB,) 4 10
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From these equations, the yield of DIN YDIN = 5yOMN . When assuming the av-
dom (1 -yOMV d0 M

erage stoichiometry of marine organic matter (CI 06HI 75042N 16 ; Anderson 1995) for both

the organic matter substrate and microbial biomass, yOMN = f, and the full metabolism is

represented as:

OM+ 467 (1 -yomN) N03467(17(OM- yoON

YONBN + 106(1 yOMN)CO2+ 16(1 - yoMN)NH + 467(1 -YOM N2 (3.32)OMN YMN 410

The DIN demand for nitrification j is equivalent to 4 
(oN, which is about 400 mol

PA)N 
5
yomN

DIN per mol synthesized C, or about 25 mol DIN per mol synthesized N. This value is a bit

lower when assuming bacterial stoichiometry (with C:N = 5); a value of 17 that reflects this

is used in the illustrated models. The equivalent comparison with the Gruber and Sarmiento

(1997) estimate for rgN M of 104:106 is 467( oM N) which here is about 0.7, in the range of
other theoretically calculated values listed in (Gruber and Sarmiento 1997).

Equations for 2D model

Equations for the six state variables are:

DBO
= Bo(po -mB - gZ) + CV Bo

Dt

DBN = BN(PN - MB - gZ) + KV 2BN
Dt

DZ
Dt= yg(Bo+BN)Z -MZZ2+ KV 2Z

D(DIN) - DIN+ I I ) poBo+(I -y)g(Bo+BN)Z
Dt kYOMo

S 1 ff( NBN)dydz
((---1 --- PNBN+ .YDIN 2 (DIN)

yoMN YDIN ff dydz

D(OM) I I
_DIN-- - oBo- 1PNBN+MB(Bo+2BN +MZ

Dt YOMo YOMN

dz- wsjBZ(OM) + KV 2 (OM)

D(0 2 ) - K= rADIN- --- pB0 - f(0 2 ,Z)+ - s -02)+ 02
Dt yo' h

Table 3.4 lists the notations of all variables and parameters, their units, and default model

values.
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Table 3.4: The additional parameter values used in the 2D model. See the main text and Table 3.1
in main text for the growth rate equations and other metabolic parameters for the two microbial
functional types. M, L, and T represent mass, length, and time.

Symbol Description Dimensions Value

g Maximum grazing rate L 3M 'T-1 2 pM- 1d'

y Growth efficiency of zooplankton 0.3

Kx Horizontal Diffusion Coefficient L2OT-1 10 m 2 s-1

K- Vertical Diffusion Coefficient L2T-1 f(z)
K, Air-sea flux transfer rate T- 0.8 mo-1

KDIN DIN half-saturation for BN ML- 3  0.1 PM

A Maximum export production rate T-1 0.1 d-'

02sat Saturated dissolved oxygen concentration ML- 3  212 pM

mB Bacteria mortality rate T-1 0.01 d-'

"1z Zooplankton mortality rate (quadratic) L 3M- T- 1  1 pM-' d-'

Q10 Temperature coefficient 2

VnwxDIN Max specific uptake rate of DIN T-1 20 d-'

WS Sinking velocity of detritus ML- 3 m s-

Zeuph Length scale for light-limited export production M 30 m

Znd Length scale for mixed layer depth/vertical diffusion M 20 m
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Figure 3.15: Full solutions for the six state variables in the 2D model.

Full solutions for 2D model

Fig. 3.15 illustrates the solutions for all six variables over the whole domain of the 2D

model.
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3.A.3 The six metabolic functional types

The six theoretical metabolisms considered here are: aerobic hetetrotrophy, nitrate-reducing
heterotrophy, nitrite-reducing/denitrifying heterotrophy, ammonia oxidation, nitrite oxida-
tion, and anaerobic ammonia oxidation (anammox).

We define the metabolic functional types with the set of redox reactions that, to first
order, underlies each metabolism, following the methodology of Rittman and McCarty
(2001). The description consists of three half-reactions: biomass synthesis, oxidation of an
electron donor, and reduction of an electron acceptor. Each metabolism represents the com-
bination of cell synthesis and energy production, partitioned by the fraction f of electrons
fueling cell synthesis vs. respiration for energy.

Here, we list these reactions for each of the six metabolisms considered in this study
and explain the estimate of their efficiency as a function of f. For the three heterotrophic
metabolisms, we list the three reactions and their electron-partitioning coefficients for or-
ganic matter (OM) stoichiometry CCOHhoOOOMNnOM and for biomass (B) stoichiometry

CCBHhBOOBNnB. In the organic matter and synthesis half-reactions, we here neglect to type
out the term for water (ex: 2com-oom+nOmH 2 0) for conciseness, though this term is required
for chemical balance.

For the values in the chemostat model, the average stoichiometry of marine organic
matter (C1 0 6H 17 5042 N 16 ; Anderson (1995) is assumed for organic matter; the model nor-

malizes this organic matter by nitrogen content. The average stoichiometry of bacterial
biomass assumed by Rittman and McCarty (2001) (CI 0 6HI 75 042 N16 ). This difference sug-

gests a decoupling of the C and N cycling below. However, different efficiencies for C and
N use have been reported for bacterial metabolisms as well (Goldman et al. 1987), and so
insights into how bacterial metabolisms control C:N ratios in the environment are left for
future research.

1. Aerobic heterotrophy: For the aerobic heterotroph, organic matter (OM) provides the
elements and electrons for both the synthesis of biomass (B) and energy production, and
oxygen serves as the electron acceptor, as:

(1) CCOfHhoOO ( +HC )+ COM -- nO CO2H +H++4+e-
Idom doM doM I

( - f) 0 2 + H++e + -> H20

(f) nBNH+ + CB - nBCO2 + nBHCO-+ H+ +e- - -C (HhO(,BNB
.dB d dB e dB

where doM and dB are the number of electron equivalents for the organic matter and bio-
mass compositions, respectively, that correspond to the oxidation states of their inorganic
constituents. We estimate d for CcHhO0 Nn as d = 4c + h - 2o - 3n when considering con-

version of organic N to the reduced oxidation state of ammonium/a (-3); d = 20 for bacterial
biomass. Summing gives the full metabolism forming aerobic heterotrophic biomass BHetO
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as:

1 1- f
OM+ 02

dom 4 f

dB (OM CB fom dB/
__4 dBBHetO + (dm dBJ )02+ (d7 m dB n ) NH+ (3.33)

The commonly discussed bacterial growth efficiency, or yield y (mol B mol -1 OM, or,
mol C synthesized mol -1 C consumed) relates to f as:

Yom -- domf (3.34)
dB

and so yoM = f when assuming the same stoichiometry for both the organic matter substrate
and microbial biomass. For the chemostat model, we assign yoM as 0.2, the average bacterial
growth efficiency for coastal marine environments (Robinson 2008).

2. Nitrate-reducing heterotrophy: For the nitrate reducer, organic matter (OM) provides
the elements and electrons for both the synthesis of biomass (B) and energy production, and
nitrate serves as the electron acceptor, which is reduced to nitrite:

(1) 1 0C OHNomOoOmNjOm nom (NH+ HCO-)+ co - nom CO2 H++el
Ldom doM dom

(- f) N-+H+ + e- N02

(f) nBNH + CB- 2B + HCO- + H+ + e- C HjOBoBNB
dB d dB dB

When summed, the full metabolism forming nitrate-reducing biomass BHetNO3 is:

OM+f NO3dom 2

f (coM CBf" (noM nlBf ~ NH -f -
y BHetNO3 + oM C 2 + d B / NH+ + 2 NO- (3.35)
dB (dom dB dom dB 4 2 2

For the nitrate reducer in chemostat model, we assign yoM as 0.19, an arbitrarily slightly

lower value than that of the aerobic heterotroph. This is close to the theoretical difference

in yields, though observations often show much higher reductions in yields for the use of

nitrate as an electron acceptor than thermodynamics predicts (Roden and Jin 2011; Chen

and Strous 2013).

3. Denitrifying heterotrophy: For the denitrifier, organic matter (OM) provides the ele-

ments and electrons for both the synthesis of biomass (B) and energy production, and nitrite
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serves as the electron acceptor, which we consider here as all being reduced completely to
N 2 (ignoring the formation of N20 for the purposes of this study).

(1) CCOMHhoMOoOmNnom - nom (NH+ + HCO3) + com - nOM CO 2 + H++ e
dom dom dom

[1 4 1 2 H
( - f) NO2 +H+ 6-N2  3]

[nfl CBl-f + 1B
NH +B CO 2 + HCO- + H+ + e- HCCHhON

LdB 4 d dB 3d BNfBI

When summed, the full metabolism forming denitrifying biomass BHetNO2 is:

do OMA- fNO-
OM+ NO2

f e (COM CBf C2+ nom nBf NH+ fN2 (3.36)-d BHetNO2 + doM dB kdoM dB / 6

For the denitrifier in chemostat model, we assign yoM as 0.19, the same value as the
nitrate reducer. Thus, the only difference between these two modeled metabolisms results

from the half-reactions of the nitrate and nitrite reduction.
For each of the three chemoautotrophic metabolisms, we list the three reactions and

their electron-partitioning coefficients for biomass CHhOONn:

4. Ammonia oxidation: For the ammonia oxidizer (here considering NH+ and NH 3 in-
terchangeably), we here assume ammonium oxidation provides electrons for energy that
fuels cell synthesis, with oxygen serving as the terminal electron acceptor:

( I NHi+ +IH20 I NO- + 4 H++e-

( 1-f) 0 2 +H++e e- H20

n c0-n C 1 2c- o+n
(f) N d C2+ HCO-+ H+ +e CcHhOoNn + d H20

This gives the full metabolism forming ammonia-oxidizing biomass BAOO when summed

(ignoring water and lumping bicarbonate into the CO 2 pool for simplification) as:

-+ - NH + c CO2  02 -+ fBAOO + -NO2 (3.37)
(6 d d - 4 d 6

For the ammonia oxidizer in the chemostat model, we assign f = 0.03, the same value

as used in Chapter 4. The derivation of this value as a ballpark estimate is extensively

discussed in the Appendix to Chapter 4; its precise value is highly uncertain, but relatively

large variations in this value do not affect model results qualitatively. Qualitatively, the

solutions only depend on this f being lower than that of heterotrophy; this is reasonable

given the basic assumption that heterotrophic metabolisms are overall more efficient (and

faster) than chemoautotrophic lifestyles.
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5. Nitrite oxidation: We assume that the nitrite oxidizer uses nitrite as its electron donor
for energy, and reduced nitrogen (i.e., the same oxidation state as ammonium) as the source
of elemental nitrogen (Santoro 2016), which could be due to mixotrophic growth or ammo-
nium uptake capability. This has a negligible effect on the stoichiometry (since f/d < 1/2
below), but increases our burden of proof to distinguish the two metabolisms energetically:

(1) [NO2 + IH0 -- NO3 +H++ej

(10-f) -02 +H+ +e-- -+ H 20

S c-n C,+n 2c-o n 1
(f) [NH+ d -HCO-+H++Ne- CHN H0

d dd dd - I

which gives the full metabolism forming nitrite-oxidizing biomass BNOO when summed
(again written without water, and with CO 2 as the carbon source) as:

NO + NH + fCO2+ f02 -> BNOO + NO (3.38)
2 2 d 4 d - 4d 2 3

For the nitrite oxidizer in the chemostat model, we assign f = 0.03, the same value as the
ammonia oxidizer. In the Appendix to Chapter 4, we discuss theoretical reasons for and
observational evidence of the relatively equal efficiency of ammonia oxidation and nitrite
oxidation. This same efficiency of electron flow results in significantly higher (a factor
of three larger) nitrite demand compared to ammonium demand for the two metabolisms,
respectively.

6. Anammox: For anammox, we here assume, to first order, that ammonium oxidation
provides electrons for energy that fuels cell synthesis (here considering NH and NH 3 in-
terchangeably), and nitrite serves as the electron acceptor. Together, elemental N2 is formed:

( I NH+ -> N2 + 4H+ +e-

(1f) 1 1 4 1 2
(1 -f NO- + _H++e- --+ -N2?+ H120

n -n n 2c -o+ n
(f) NH + d CO 2 + HCO3 + H++e- & CcH;OoNn + d H20

d 4 dd 3d n d -

The anammox metabolism is more complicated than this (Kartal et al. 2008), but this de-
scription at least results in values that are consistent with the stoichiometry observed by
(Strous et al. 1998). This description here gives the full metabolism forming anammox bio-
mass BannL when summed as:

( + -NH + fNO- + -CO 2 --+ Banni + N2  (3.39)
3 d 4 3 2 d d 6 2
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For anammox in the chemostat model, we assign f = 0.03 for the solutions that are illus-

trated, the same value as the aerobic nitrifiers. We also compare theoretical stoichiometry
with the values that result from the experiments of Strous et al. (1998) (their direct results,
which are the unbalanced stoichiometries in their Table 1). Strous et al. (1998) report av-
erage ammonium and nitrite demands (here neglecting their reported uncertainty range of

approximately 10%) of about 112 and 136 mol per mol biomass, respectively. These values
are approximately the same as if f = 0.05 (theoretical ammonium and nitrite demand for
f = 0.05 predicts about 130 mol /mol for each substrate). Interestingly and significantly, the
model results do not change qualitatively as long as the ammonium demand by anammox
is less than that of the aerobic ammonia oxidizer. Whether assuming f = 0.03 or f = 0.05,
anammox demands significantly less nitrite than nitrite-oxidizers, as modeled here theoret-
ically.

Chemostat equations for the six types

The biomass of the six functional types and nutrients (in units of PM N except for 02)
are modeled with the expressions for their rates of change with time, defined by incoming
nutrient supply, nutrient uptake, growth rate, and excretion of waste respiration products,
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and the chemostat dilution rate K as:

dBHetO

dt = BHetO PHetO -

dBHetNO= BHetNO 3 (PHetNO 3

dt
dBHetNO2

dt = BHetNO2 (IHetNO,

dBAOO

dt

K)

K)

BAOO(IAOO - I)

dBNOO

dt = BNOO(PNOO - 1C)

d Banx axPn-IC

dt
dOM _ I

dt - (OMin - OM) - pHetOBHetO - (/HeNO3BHetNO3 + HetNO2 BHetNO2)dt yOMO YOMN

d[NH+)dN- ___ - I ) HetoBHetO + ( -- I )(HetNOBHeNOj + PHetNO2BHetNO2)dt yOM0  yOMN

/IAOOBAOO - pNOOBNOO - I_ nxBanx - K[NH ]
NH 4 AOO yNH4-anx

d[Noy] ___ d HetNO3 BHetNO
3dt YNO 3 let

+( I
SN H 4 AOO

PHetNO2 BHetNO2
YNO 2-h,,

I I
1) /AOoBAOO - PNOOBNOO - -PanxBanx

)'N02-NOO YN ,2-anx

d[NO-] 1
= /NOOBNOO - -PHetNO 3 BHetNO3 - K[NO 3 ]dt YNO2 YNO3-hir

[021) - PHetOBHetO
y02-o

/IAOOBAOO
Y02-AOO

/NOOBNOO
YO2-NOO

where p = K for equilibrated model solutions. As in the main text of the chapter, we assume
a growth rate y as the product of the uptake rate and yield, and the limiting growth rate as
the minimum of this product for multiple required substrates.
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Chapter 4

How nitrification can form the

primary nitrite maximum

The work in this chapter was completed in collaboration with Mick Follows, Stephanie
Dutkiewicz, Alia AI-Haj, Wally Fulweiler, Sarah Foster, Matt Church, Matt Mills, and Gert
van Dijken.

4.1 Overview

The primary nitrite maximum (PNM), an accumulation of 10-1000 nM nitrite at the base
of the euphotic zone, is a ubiquitous but poorly understood oceanographic feature. Peak
nitrification often correlates with the PNM, but causation requires explaining why the two
steps of nitrification - ammonia oxidation and nitrite oxidation - are decoupled, and why
nitrification peaks at depth. Previous work has suggested that light inhibition restricts ni-
trification to dark waters, but observations show that this is not universally true. Here, we
suggest mechanisms for the formation of the PNM using a microbial ecosystem model with
explicit nitrifying metabolic functional type populations: ammonia oxidizers and nitrite ox-
idizers. First, the decoupling of the two nitrification steps and the accumulation of nitrite
are quantitatively explained by two mechanisms: redox reaction-based descriptions of the
two nitrifying metabolisms as well as differences in uptake kinetics based on cell size. Sec-
ond, competition with phytoplankton for ammonium and nitrite excludes the nitrifiers from
the surface in much of the model. The PNM emerges at the base of the euphotic zone as a
consequence of ecological interactions, with no photoinhibition imposed. In a global simu-
lation, this dynamic parameterization of nitrification also exhibits significant euphotic zone
nitrification at high latitudes, which is consistent with observations. The model thus pro-
poses favorable nitrification near the surface when phytoplankton growth is limited by light
or perhaps iron, such as in high nutrient low chlorophyll regions, and otherwise where nitro-
gen supply is abundant, such as in bloom environments. Results provide a global framework
for understanding the controls on nitrification in the ocean.
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4.2 Introduction

Nitrogen locally limits primary productivity over about half of the surface ocean (Moore
et al. 2013). Though dissolved inorganic nitrogen (DIN) in the form of ammonium (NH+)
or urea is a common nitrogen substrate for phytoplankton, most DIN exists as nitrate (NO)
below the euphotic zone in the deep ocean. Nitrification - the microbially-mediated oxida-
tion of NH+ (technically as NH 3) to NO-, with nitrite (NO-) as the intermediary (NH+ -
No -+ NO) - connects these pools (Ward 2008). Nitrification thus relates to NO sup-
ply, and has implications for estimates of new versus regenerated primary production. New
production, traditionally considered that fueled by NO3 , is thought to balance export pro-
duction over large time and space scales, but cycling in the euphotic zone complicates this
definition (Dugdale and Goering 1967; Yool et al. 2007).

The primary nitrite maximum (PNM) is an accumulation of NO at the base of the
euphotic zone in stratified water columns (Fig. 4.1), with concentrations ranging from 10-
1000 nmol L- 1 . The PNM is often just below the deep chlorophyll maximum (DCM), is
occasionally accompanied by an ammonium maximum (cite Brzezinski LandO 1988), and
varies with the degree of water column stratification (Zafiriou et al. 1992; Dore and Karl
1996b; Lomas and Lipschultz 2006; Ward 2008; Mackey et al. 2011; Santoro et al. 2013). Its
location typically tracks the depth of the mixed layer: the PNM is shallower near equatorial
upwelling, deeper in the center of subtropical gyres, and less evident at high latitudes where
seasonality causes variance in mixed layer depth and production. The PNM is ubiquitous in
the ocean (Fig. 4.1), in contrast to the secondary nitrite maximum that forms in low oxygen
environments from anaerobic activity.

Despite its widespread occurrence, the formation of the PNM is still not well under-
stood, which highlights a gap in our understanding of the marine nitrogen cycle. Two hy-
potheses, not mutually exclusive, have been put forward to explain its formation: 1. the two
steps of nitrification - ammonia oxidation (NH+ -+ NO-) and nitrite oxidation (NOy -+

NO) -- are decoupled due to the activities of discrete populations of chemoautolithotrophs,
and 2. nitrite is excreted due to incomplete assimilatory reduction of nitrate by phytoplank-
ton (Lomas and Lipschultz 2006).

However, isotopic evidence increasingly points to nitrification as the dominant control
(Santoro et al. 2013; Buchwald and Casciotti 2013). In a typical near-surface vertical pro-
file, nitrification rates and nitrifier biomasses are usually observed to peak at the base of
the euphotic zone, at or just below the PNM (Ward 1987; Ward et al. 1989; Dore and Karl
1996a; Santoro et al. 2010; Newell et al. 2011; Santoro et al. 2013; Buchwald and Casciotti
2013). On a recent research cruise in the oligotrophic N. Pacific, we again observed these
typical patterns in the near-surface water column. We measured ammonia oxidation rates
measured using stable isotope addition (15N), amoA gene abundances, NO-, NO, PAR,
and chlorophyll a at four locations (Fig. 4.2; see Appendix 4.A.1 for locations and meth-
ods). Peak NO concentration in each water column was consistently just below the deep
chlorophyll maximum, reaching 40-130 nmol L-1. Ammonia oxidation rates peaked near
the PNM at three out of four stations, reaching about 2 to 6 nmol L-1 d-1. In general, rates
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Figure 4.1: Nitrite (NO2 ) concentrations along three transects from GLODAPv2 (top panel), illus-

trating the primary nitrite maximum at the base of the euphotic zone, and along similar transects in

the 3D simulation (bottom panel). GLODAPv2 data: Key et al. (2015); Olsen et al. (2016)

and abundances correlated with NO concentrations, and so were consistent with previous

observations (Newell et al. 2011; Santoro et al. 2013).

If nitrification is indeed the dominant control on PNM formation, two explanations are

required: 1. the mechanism by which nitrification often peaks at depth, and 2. the mecha-

nism for the decoupling of the two steps of nitrification that allows for the accumulation of

nitrite. Light inhibition has been hypothesized as an explanation for both, with differential

inhibition affecting the oxidation of NHI to NO- and NO- to NO- (Lomas and Lipschultz

2006; Merbt et al. 2012). However, studies of this photoinhibition are inconclusive (Lo-

mas and Lipschultz 2006), and observations of nitrification in the euphotic zone suggest

that this cannot be a universal mechanism (Ward 1987; Dore and Karl 1996a; Ward 2005;

Clark et al. 2008; Cavagna et al. 2015; Fripiat et al. 2015). Smith et al. (2014) propose that

phytoplankton may outcompete slow-growing chemolithotrophic nitrifiers in most surface

conditions, favoring nitrification once light is depleted. Indeed, Preheim et al. (2016) model

metabolic processes in a lake as a function of chemical gradients and show ammonia ox-

idation peaking at depth. Thus light may indirectly govern the typical vertical profile, and

limitations to phytoplankton growth other than light may allow for surface nitrification.

The decoupling of the two steps of nitrification is plausible because it is understood that

they are carried out by distinct groups of chemolithoautotrophs in the water column (Costa

et al. 2006; Ward 2008). Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) are

responsible for the oxidation of NH+ to NO-. However, AOA are currently understood to be
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Figure 4.2: Data from four stations in the oligotrophic North Pacific from cruise NH1417: Chl a
and nitrate concentrations, photosynthetically active radiation (PAR), amoA gene abundances, and
ammonia oxidation rates.
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more biogeochemically significant in the open ocean than AOB (Stahl and de la Torre 2012).
Their extremely high affinity for ammonium makes them better adapted to oligotrophic
environments than the larger AOB (Martens-Habbena et al. 2009). In contrast, the oxidation
of NO to NO3 is understood to be dominated by nitrite-oxidizing bacteria (NOB) (Daims
et al. 2016), although knowledge of nitrifying organisms is limited and rapidly expanding
(Spieck et al. 2014; Daims et al. 2016; Santoro 2016). Both AOA and NOB have been
demonstrated to have versatile metabolisms including mixotrophy (Ward 2008; Qin et al.
2014; Daims et al. 2016). Daims et al. (2015) and van Kessel et al. (2015) have demonstrated
both steps of nitrification in one organism common in biofilms, however, it is still thought
that two distinct groups characterize well-mixed environments such as the ocean (Costa
et al. 2006).

Here, we aim to understand how nitrification may consistently form the PNM. Why does
nitrification often peak at the base of the euphotic zone, and occasionally occur within the
sunlit layer? Why does nitrite, but not ammonium, consistently accumulate, and how does
the decoupling of the NH+ and NO- oxidation relate to nitrifier abundances and nitrification
rates? Here, we develop a model microbial ecosystem to quantitatively examine the ecol-
ogy of nitrification in the water column. We represent the microbial community responsible
for the two steps of nitrification explicitly with two metabolic functional types: ammonia-
oxidizing and nitrite-oxidizing organisms (AOO and NOO, respectively). The AOO and
NOO types are distinguished in two ways: a theoretically-based difference in their biomass
yields with respect to DIN uptake reflecting the underlying redox reactions of the metabol-
isms, and a difference in affinities for NH+ and NO- assumed from an observed difference
in cell size. We do not impose light inhibition or any other direct constraint on nitrification,
and instead explore the resulting nutrient, biomass, and nitrification rate distributions that
emerge as a function of the microbial metabolisms and their ecological interactions in the
upper ocean.

4.3 Ecosystem model

We include an explicit representation of nitrification in the development of a simplified ma-
rine ecosystem model, with nitrogen as the currency (Fig. 4.3a). In addition to the two nitri-
fying metabolic functional types (as described above), the model includes a heterotrophic
prokaryotic functional type that consumes sinking particulate organic matter. Its assigned
growth efficiency (the open ocean average y = 0.14; citetRobinson2008) partitions this con-
sumption into biomass synthesis (as y) and its remineralization into ammonium (as y - 1).
A single phytoplankton functional type assimilates ammonium, nitrite, and nitrate into bio-
mass with light- and nutrient-limited growth. Two zooplankton grazers, one consuming
phytoplankton and another consuming heterotrophic bacteria and nitrifiers, also produce
ammonium via respiration. (See Appendix 4.A.3 for all equations and parameters.)

All functional types are modeled as populations with biomass B (pmol L-1 N), growing
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Figure 4.3: Schematics of the marine ecosystem model with explicit nitrification. (a) The micro-
bial food web: three species of inorganic nitrogen, particulate organic nitrogen (PON), phytoplank-
ton (P), zooplankton grazing on phytoplankton (ZI) and bacterial types (Z2), heterotrophic bacteria
(Bhet), ammonia-oxidizing organisms (AOO), and nitrite-oxidizing organisms (NOO). (b) The AOO
and NOO metabolic functional types, illustrating their two distinctions: the higher yield of NHg vs.
NO2 for the same production of energy, and cell size.

at rate p (d-1) with total losses L (d-1) to mortality and grazing as:

dB

dt pB-LB-V.(B)+V (KVB) (4.1)

where the last two terms represent advection and diffusion, respectively.

Nitrifier functional types

To parameterize nitrifier growth rates, we use a combination of observations, underlying
energetic constraints, and cell size-based constraints. The growth rate y of each nitrifier
functional type is formulated as the product of its yield and the specific uptake rate (with
Michaelis-Menten form) of DIN as:

[NH+]
11A00 = YNH 4 VnaXNH4  4

[NH+] +KNH4

[NO2
INQO :--: YN02 ViaXN

2 [NO2] + KNO2

(4.2)

(4.3)

Growth rate thus depends on three parameters: in general form, the yield y (mol biomass
N / mol DIN), the maximum specific uptake rate V,,ax ((mol DIN / mol biomass N) d-1),
and the half-saturation concentration KN. We here consider only oxygenated marine en-
vironments; we anticipate that oxygen becomes limiting to nitrifier growth at nanomolar
concentrations (Bristow et al. 2016a; Zakem and Follows 2016). We next assign values for
these parameters, which results in two distinctions between the two metabolisms.
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First, theoretical yields are estimated using observations from previous studies as a

guide. The electron-balanced equations for the two nitrifying metabolisms follow from the

set of redox reactions that underlies each, as in Rittman and McCarty (2001) (Appendix

4.A.2). Ammonium serves as the electron donor for the AOO, and nitrite for the NOO,
with oxygen as the terminal electron acceptor for both. The electron donor half-reactions

reveal that three times more nitrite than ammonium is required to yield the same amount of

electrons.

We assume both metabolisms use reduced nitrogen (i.e., the same oxidation state as

ammonium or organic nitrogen) as the elemental nitrogen source. This leads to the require-

ment of one mole of NH4 per mole biomass for the NOO below, which could result from

either supplemental ammonium or organic uptake capabilities (Santoro 2016; Daims et al.

2016). This is the most realistic description of the nitrite-oxidizing population, and does

not cause an ammonium dependence of the NOO population in any model solutions. This

also increases the burden of proof to distinguish the two metabolisms, since no additional

energy for the reduction of nitrite to the oxidation state of ammonium/organic is assumed.

The electron donor half-reaction is the only difference impacting the resulting yields (see

Appendix 4.A.l for detail).
Stoichiometries of the nitrifying metabolisms are defined as a function of the fraction of

electrons partitioned into biomass synthesis versus respiration. A smaller fraction equates

to a lower efficiency, and thus a lower yield. Theory suggests that this fraction is very simi-

lar for the two nitrifying types (Rittman and McCarty 2001). Next, rather than estimate the

magnitude of this fraction by estimating the free energies of reactions, which involves an

assumption of the cumulative costs of biomass synthesis, published laboratory observations

of AOO and NOO growth were used to infer it. Growth yield estimates from these data

were used to compute an average yield for the AOO and the NOO groups, and then the

electron fraction for each was inferred (Appendix 4.A.2). Though the list of observations

that go into these averages is short, it provides two insights that allow for theoretical de-

scriptions. First, the theoretical approach is validated because the inferred fraction is similar

for the AOO and the NOO. Second, a ballpark value is provided for the fraction, which is

70% lower than predicted by the free energies and analysis of bioreactors by Rittman and

McCarty (2001). This difference is not surprising, because marine organisms likely have

higher affinity transport systems for the uptake of nutrients that are at concentrations orders

of magnitudes lower than found in wastewater and thus require more energy.

Using the inferred average efficiency from observations, the resulting metabolisms

forming ammonia-oxidizing biomass BAQO and nitrite-oxidizing biomass BNOO are:

(11 2+22)NH+ + (5 l)CO2 + (162 32)024 BAOO + (111 22)NOy

(334 67)NO + NH+ + (5 l)C02 + (162 32)02 - BNOO+ (334 67)NOg

where the uncertainty results from incorporating the observed 1 mol/mol standard devia-

tion of the C:N composition of heterotrophic marine bacteria (Zimmerman et al. 2014).

This suggests that the second step of nitrification has a significantly lower yield than the

first: average yields are YNH 4 = 1/112 and YNO, = 1/334 moles biomass N synthesized per
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mole DIN utilized. This distinction between the two metabolisms directly and solely re-
flects the electron donor half-reactions. The theoretical nitrite oxidizer requires three times
as much nitrite to produce a unit of biomass, relative to the amount of ammonium the am-
monia oxidizer requires to produce a unit of biomass. This differential in yield is consistent
across variations in the electron fraction and the energetics of biomass synthesis (see Ap-
pendix 4.A.2). In real organisms, we expect wide variation of these stoichiometries due
to variation in efficiency, biomass composition, energies of synthesis, and some versatility
of metabolism, but hypothesize that the broad pattern, the significantly higher demand for
nitrite than ammonium for the same amount of growth, remains.

Second, we hypothesize a difference in affinity for DIN between smaller ammonia-
oxidizing archaea and larger nitrite-oxidizing bacteria. We assume KNH4 = 130 nM from
the laboratory data of Martens-Habbena et al. (2009), and constrain a plausible range for

VnaxsH4 with conversion from the maximum cellular nitrification rate measured by Martens-
Habbena et al. (2009) and in situ observations (Appendix 4.A.2). The uncertainty of these
parameters limits the quantitative predictive capability of the model; a larger V,,ax increases
the competitive ability of the nitrifiers against phytoplankton (Appendix 4.A.4). In the il-
lustrated models, we assume a constant VFaXNH = 120 mol NH+ / mol biomass N d 1 at

20'C, which was tuned to simulate the distribution of the global water column maximum
nitrite concentrations from GLODAPv2 (Fig. 4.6c).

We use allometry to assign the relative uptake parameters for the NOO. We assume a
10-fold larger cell volume for NOO, based on the minimum 10-fold difference in protein
content between AOO and AOB measured by Martens-Habbena et al. (2009). Allometric
theory predicts that the specific uptake rate should decrease with an increase in cell size due
to a reduced surface to volume ratio, scaling as r- 1, and that KN should increase, scaling as
r. Together, this suggests a 4.6-fold lower specific affinity (V, 1,/KN) of the NOO (Appendix
4.A.2).

The two distinctions between the resulting AOO and NOO types (summarized visually
in Fig. 4.3b) both serve as mechanisms for the decoupling of the two steps of nitrification,
and both suggest that AOO are better competitors for NH+ than NOO are for NO-. We
do not consider mixotrophic growth and other metabolic versatility since a comprehensive
understanding of these processes is lacking, though such capabilities could decouple the
two steps further.

Nitrification in the model is a function of nitrifier growth and respiration. The yields par-
tition the uptake of NH+ and NO- is into biomass synthesis versus respiration and excretion
back into the water column in its more oxidized form. For example, nitrite accumulates and
depletes due to nitrifier respiration and phytoplankton assimilation as:

D[NO2] 1
= ( - M)PAooBA00 PNOOBNOO - VNO 2 P (4.4)

Dt yNH4 YNO 2

where the substantial derivative notation D/Dt includes physical transport. The other nitro-
gen pools are similarly accumulated and depleted (Appendix 4.A.3). Since yields are < 1,
the rates of uptake of NHt or NO- by nitrifiers are approximately the ambient nitrification
rates.
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Model of physical environment

We develop an idealized 2000m water column model environment, where light, mixing, and
sinking organic matter decouple surface and deep microbial activity (see Appendix 4.A.3
for detail). Enhanced vertical mixing at the surface simulates the mixed layer, which decays
to a minimum with a prescribed length scale. Light energy attenuates with depth due to
water and biomass shading. One pool of organic matter is resolved with a constant sinking
rate.

To explore the model in a variety of more realistic physical marine environments, we in-
clude the microbial functional types in a global biogeochemical model that uses the ECCO-
GODAE state estimation of ocean circulation (Wunsch and Heimbach 2007). The model
couples the nitrogen cycle to cycles of carbon, phoshorus, iron, and silica. Building upon
previous work, we include six phytoplankton functional types and five zooplankton types
(Follows et al. 2007; Dutkiewicz et al. 2015). Again, the non-photoautotrophic populations
are grazed on by a single zooplankton population. Additional anaerobic metabolic types be-
come favorable metabolisms in the model once oxygen is sufficiently depleted, assuming a
diffusive limitation to aerobic growth (Zakem and Follows 2016) (more detail in Appendix
4.A.3). This results in nitrite accumulation in anaerobic zones to micromolar concentra-
tions; examining this secondary maximum is beyond the scope of this study, but we do
consider below whether this nitrite reaches aerobic waters due to mixing or other transport.

Subsistence concentrations

R* is the minimum concentration of a resource required to sustain a particular population in
its environment, according to resource ratio theory (RRT) (Tilman 1982). R* translates the
metabolic and kinetic characteristics of the functional types into ambient nutrient concen-
trations. For the nitrifiers, R* is a function of the yield and uptake parameters. R* concen-
trations also indicate competitive ability: if two populations compete for the same resource,
the population with the lower R* can competitively exclude the other. Application of RRT
to nitrification is not new: Bellucci et al. (2015) use it for insight into the coexistence of
multiple species of ammonia oxidizing bacteria in bioreactors.

To analyze the model results, we calculate these subsistence concentrations of ammo-
nia and nitrite for the ammonia-oxidizing, nitrite-oxidizing, and phytoplankton functional
types. In a steady-state environment, the growth of population described by Eqn. 4.1 will
approximate loss rates as pB = LB. The subsistence concentrations for the two nitrifying
populations result from defining p with Eqns. 4.2 and 4.3, and solving for the steady-state
NH+ and NO2 concentrations as:

KN H2

RNH4 AOO = NH4 L L (4.5)
YNH4 m11axNH4

RN*2NOO KNoL (4.6)
YNO2 VmaXNO

2 L
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Figure 4.4: Water column model solution: (a) phytoplankton, light (scaled), and nitrate concentra-
tion. (b) ammonia and nitrite concentrations, (c) nitrifier abundances, and (d) nitrification rates. Also
shown are the results when the model does not include one or both of the two factors that distin-
guishing the two nitrifier metabolisms: the redox-based difference in N demand and the size-based
difference in uptake kinetics.

The R* concentrations of the phytoplankton type are:

S _KNH 4PL
RNH4 P - KNH~-L (4.7)

ymawx - L

RN2P KNopL (4.8)
ymax -- L

where maximum growth rate ..ax and half-saturation constants (K) for phytoplankton are
those used for picoplankton by (Follows et al. 2007), based on literature data (listed in
Appendix 4.A.3). We expect that the loss rates L for phytoplankton should be about an order
of magnitude larger than those of the nitrifiers, given that phytoplankton grow at about an
order of magnitude faster than bacteria in the ocean (Kirchman 2016).

4.4 Water column process model results

A PNM emerges in the steady-state water column model solution as a function of the inter-
actions between the metabolic functional types and the environment (Fig. 4.4). Phytoplank-
ton biomass reaches a peak concentration at the base of the euphotic zone. NO, nitrifier

abundances, and nitrification rates peak below this DCM with no light-inhibition imposed.
Model results are similar when resolving a daily light cycle (Appendix 4.A.4): surface ni-
trification does not occur during nightly inhibition of phytoplankton activity because of the

longer (weekly) timescales of nitrifier growth.
Two factors distinguish the two steps of nitrification in the model - the redox chemistry-

based metabolisms, and the size-based uptake kinetics - and as a consequence of both, NO
accumulates at depth (Fig. 4.4b). In the illustrated version of the model, NO concentra-
tions peak at 60-80 nmol L- 1 due to each of these two factors alone, and 350 nmol L-1

110



b

50

100
E
5 150

[NO]
200 - [NH+] , RNO 2-NOO

250 .". RNH 4-AOO , R0 2 -P
-- Eqns. 5 and7

300
0 10 20 30 40 0 100 200 300 400

NH+ (nM) NO- (nM)

Figure 4.5: Water column model NH+ and NO2 concentrations compared to computed steady state
balances: R* concentrations for nitrifiers and phytoplankton, and NO2ss (Eqn. 4.11) derived from
the steady-state balance for nitrate.

together, over lOx higher than NH+ concentrations. Without any distinction between the
AOO and NOO, nutrient concentrations and nitrifier abundances are essentially identical at
and below the PNM for each of the two steps. In contrast, the rates of both ammonia and
nitrite oxidation are identical below the PNM regardless of the differences.

Redox chemistry and uptake kinetics cause nitrite accumulation at depth

R* analysis identifies why nitrite accumulates to a higher concentration than ammonium
in the model. The two distinctions between the two nitrifying functional types - yield and
affinity differences - result in a higher R* 2 of the nitrite oxidizers than the RNH 4 of the

ammonia oxidizers (Fig. 4.5). Thus, the NOO are unable to deplete nitrite to as low of a
concentration as the AOO are able to deplete ammonium. When these metabolic constraints
are the same, nitrite and ammonium concentrations are identical (Fig. 4.4b).

Nitrifier abundances also reflect the two metabolisms (Fig. 4.4c). The NOO sustains
4.5 times less biomass than the AOO due to the lower yield for nitrite oxidation. The as-
sumption of the 10-fold difference in cell volume results in an additional 10-fold lower cell

count for the NOO, although the difference in affinity negligibly effects total biomass. The
NOO access the same total amount of DIN at depth, just more slowly. Together, the model
shows 50x higher cell count for AOO than NOO. Observations of AOO and NOO cell abun-

dances suggest NOO is consistently 4-5-fold lower less abundant than AOO (Mincer et al.
2007; Santoro et al. 2010), which we discuss further below.

In contrast, nitrification rates are indistinguishable below the PNM (Fig. 4.4d). The

decoupling of the two steps of nitrification due to the differences in the functional types
emerges in the nutrient distributions and organism abundances, but not in the deep bulk

nitrification rates. This result is consistent with the lack of a pattern of differences in ob-
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served rates (Ward 2008). It reflects that the flux of sinking organic matter ultimately limits
all steps in the sequence of remineralization metabolisms below the euphotic zone.

Ecological dynamics set the location of the PNM

Phytoplankton subsistence concentrations of DIN are almost always lower than those of
the nitrifiers. This articulates the mechanism for the exclusion of nitrification at the sur-
face: phytoplankton will outcompete nitrifiers when both populations are limited by NH+
or No. At depth, phytoplankton are light-limited, and nitrifiers can access the DIN and
sustain their populations.

Below about 125m, both NH+ and NO- almost exactly match the R*s of the nitrifiers:
this indicates that these concentrations are under strict nitrifier control. From the surface to
about 80m, NH+ and NO- are below the respective phytoplankton R*s: though DIN limits
phytoplankton growth, mixing of cells up from the DCM allows for further depletion. In
between (about 80-125m), NH+ and NO- are greater than all R* concentrations, signifying
that transport exerts significant control on DIN concentrations there.

The model suggests that phytoplankton and nitrifiers are close competitors for
DIN. RNH 4 concentrations for phytoplankton and ammonia-oxidizers reach similar values
throughout the euphotic zone in Fig. 4.5, but the choice of grazing parameterization affects
the degree of this similarity; increasing the grazing pressure on the nitrifiers further lowers
their R*s (Appendix 4.A.4). This uncertainty limits the quantitative predictive capability of
the model; we cannot conclude the precise depth above which nitrification is excluded from
the surface.

Though nitrification rates peak at depth, ammonia oxidation also occurs in the surface
at low rates (Fig. 4.4d). Physical transport sweeps cells away from areas of sustainable
growth, and supplies these cells at rates faster than their mortality rates. This allows for a
small population of "unsustainable" AOO in the surface. This exemplifies how dispersal can
increase biodiversity by preventing complete competitive exclusion (Clayton et al. 2013).
This dispersal in the model is a function of the vertical mixing scheme, and so emphasizes
the role that mixing plays in allowing varying degrees of favorable surface nitrification.

Why don't NOO also populate the surface? We find that differences in the supply of
ammonium and nitrite also decouple the two steps of nitrification near the surface. Tran-
sient AOO are able to utilize a share of the supply of ammonia from zooplankton and
heterotrophic bacteria populations (Appendix 4.A.4). These fluxes of NH+ are larger than
that of NO in the model euphotic zone. This explains why the modeled ammonia oxida-
tion rate is higher than the nitrite oxidation rate at shallower depths, even for the case where
there is no other distinction between the two metabolisms.

4.5 What controls the magnitude of the PNM?

Though R* concentrations explain why NO-, and not NH+, consistently accumulates, NO-
concentrations are much higher than R*. This indicates that transport processes are non-
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negligible in setting the magnitude of the PNM. How can we understand this peak concen-
tration?

First, we consider the influence of physical transport on R* by including the advective
and diffusive fluxes in the equation for NOO biomass (Appendix 4.A.3; Eqn. S6). We again
solve for NO at steady state, which we term R*, as:

KNO2 (-BI BNOO
R*NO2NOO K ( NOO (49)

yNO2Vmx 2 - (L- BNOO BNOO

where JBNOO represents both advection and diffusion of biomass (JBNOO -V - (iiBNOO) +
V. (KVBNOO). This expression does not neglect any terms in the model, and so exactly
predicts the resulting nitrite concentration. Conceptually, it signifies that the steep gradient
in NOO at depth fuels a diffusive flux of cells away from the PNM, increasing the subsis-
tence concentration from R* to R*. At the PNM, the NOO cannot sustain a population large
enough to draw down NO to the original R*.

We examine an alternative balance for the concentration of NO, derived from the
fluxes of NO, that includes the effects of transport and phytoplankton as well as nitrifiers
and so predicts the NO concentration throughout the water column. For a steady-state
environment, defined as such when the change in total NO concentration is small relative
to its fluxes, three NO3 fluxes should be in balance: production by NOO, assimilation by
phytoplankton (VNO 3P), and physical transport (Appendix 4.A.3; Eqn. S3). Substituting in
the expression for the NO -dependent growth rate (Eqn. 4.3) gives:

NO(
0 =- xNO" Nin KO2 BNOO - VN03P+ JN03 (4.10

2Ng + KNO2

where JNO 3 represents both advection and diffusion of nitrate (JNO3  -V. (iNO3) -V
(kVNO )). Rearranging gives:

NO2s KNO 2 (VNO 3P - JNO3)
VUXNO

2 BNOO - (VNO3 P-JN03)

This steady-state NO concentration varies with three factors: the 'potential' for nitrite
oxidation as set by NOO biomass and its affinity, the assimilation of NO by phytoplankton,
and the physical supply or removal of NO due to advection and diffusion.

Like R*, the balance still reflects the metabolic constraints of the nitrite-oxidizing func-
tional type. NO2ss is negatively correlated with the NOO affinity: lower VaxN0 2 and higher
KNO 2 give a higher NO 2ss. Unlike R*, the yield is reflected implicitly: a lower yield results
in less NOO biomass and a higher NO concentration.

The balance reveals how phytoplankton activity and ocean circulation are crucial to
setting the PNM. Phytoplankton assimilation and transport of NO appear in Eqn. 4.11 as
two fluxes that are summed. This may be a relatively small sum: if phytoplankton assimilate
nearly all of the physically supplied NO, NO will approximate zero concentration. This
characterizes the surface ocean.
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If phytoplankton cannot assimilate NO because they are light-limited, NO may be
transported away from that location (JNO 3 < 0), which contributes to a high NO concen-
tration in Eqn. 4.11. This occurs in the water column model at the PNM. At the onset of
the nitricline, just below the zone where phytoplankton consume nitrate, the accumulation
of nitrate from nitrite oxidation maintains a steep gradient, which fuels a constant upward
diffusive flux of NO. This upward flux of NO correlates with the accumulation of NO
beyond R*.

Alternatively, if phytoplankton assimilate more NO than is provided by physical sup-
ply, that signifies that the source of that N03 is localized nitrite-oxidation, rather than an
influx from another location. This effect alone would contribute to a higher NO concen-
tration according to Eqn. 4.11, although if this is the case, the biomass of nitrite oxidizers
may also be relatively high, which would contribute to a lower NO concentration.

At some distance below the PNM, in the thermocline, the physical supply of NO
becomes less significant, and control of the NO concentration transitions to the nitrite-
oxidizers: NO2 is predicted by the original R*. Does this transition have any significance
in understanding the double-peaked character of the PNM in some locations? This sets
up a plausible framework for interpreting the upper and lower primary nitrite maximums
described by Dore and Karl (1996b) at Station ALOHA. The water column model does
show a change in concavity where the nitrite-oxidizer control sets in; including different
classes and speeds of sinking organic matter or more mechanistic thermocline dynamics in
a similar model may provide further insight.

Interestingly, phytoplankton excretion of NO would not enter into Eqn. 4.11 directly.
Rather, we might expect that the impact of excessive NO reduction by phytoplankton
would emerge implicitly as a lower phytoplankton biomass. Thus the balance holds for all
sources of NO, including both ammonia oxidation and nitrate reduction.

4.6 Global simulations

Like the water column model, the global simulation results in peak NO, nitrifier abun-
dance, and nitrification rates at depth (Appendix 4.A.5). It also captures the observed de-
viation from this pattern at high latitudes: the annually averaged simulation of the PNM
is consistent with the three transects from the GLODAPv2 database (Fig. 4.1; Key et al.
2015; Olsen et al. 2016). Like the observations, the modeled PNM roughly tracks the depth
of the mixed layer zone, and transitions poleward of about 45" latitude into the broader
accumulation of N02 throughout the top few hundred meters.

The maximum water column NO- concentrations and nitrification rates match broad
global patterns (Fig. 4.6a-b; Fig. 4.7a): water column NO generally correlates with pri-
mary production (Appendix 4.A.5), reaching higher concentrations in upwelling zones and
at high latitudes. This is consistent with the observations of Santoro et al. (2013) over the
gradient in productivity across the California Current, and reflects that deep nitrification
rates ultimately depend on surface production above as the source for reduced nitrogen
substrate. The range in the maximum water column nitrification rate (annually averaged)
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is consistent with the order 10-100 nmol L 1 d- 1 range of many marine nitrification rate
measurements listed by Ward (2008).

The dataset shows a large area of much higher nitrite concentrations in the equatorial
Pacific than the model predicts in oxygenated waters. In Fig. 4.6, we illustrate only the
points where oxygen concentration is > 10 pM. In the model, anaerobic activity results in
high nitrite (> I pM) - the secondary nitrite maximum - where oxygen is sufficiently low
(in the nanomolar range), even though anaerobic activity within particles, not represented
in this model, can occur when ambient oxygen is at tens of pM (Kalvelage et al. 2011; Penn
et al. 2016). However, in the dataset, such high nitrite concentrations also occur well above
50 pM; Fig. 4.6a appears the same when plotted with this threshold. This observed nitrite
accumulation could suggest that nitrate-reduction occurs inside particles at much higher
oxygen concentrations than previously thought. On the other hand, this could suggest an
unaccounted-for difference in aerobic nitrifier activity, or another microbial process, in the
equatorial Pacific.

The global simulation predicts significant nitrite oxidation to nitrate in the mixed layer
at high latitudes, up to about 20 nM d-1 as an annual average at the surface (Fig. 4.7b;
Appendix 4.A.5). Surface ammonia oxidation rates are much higher than nitrite oxidation
rates in the model; in Appendix 4.A.5, we use the net biological production rate (Clayton
et al. 2013) to show that almost all of this annually averaged surface ammonia oxidation is
transient, as in the I D water column model, and its presence is dependent on the grazing
parameterization as well as growth parameter values (Appendix 4.A.4). The model results
of Preheim et al. (2016) also show significant ammonia oxidation rates at the surface of a
lake, which is in contrast with observations there.

The predictions of high latitude nitrification are consistent with the observations of Cav-
agna et al. (2015) in the mixed layer in the Southern Ocean, though those rates, measured
during a bloom, reach 1 pM d-1. Model rates are higher and surface coverage is broader
in the early winter in both hemispheres (Appendix 4.A.5), though the S. Ocean shows sig-
nificant surface nitrification throughout the model year. With seasonal resolution, surface
nitrite-oxidation is a sustainable metabolism in many locations, rather than solely an effect
of physical transport (Appendix 4.A.5).

The global model results lead to the general hypothesis that nitrification can be favor-
able at the surface when phytoplankton growth is limited by light, iron, or anything other
than nitrogen. The seasonal pattern in the results suggests that the competition between
phytoplankton and nitrifiers is relevant over seasonal cycles as well as over depth, as phyto-
plankton growth becomes more light-limited in the winter. Results show that surface nitrifi-
cation is higher in high-nutrient, low-chlorophyll (HNLC) regions, where competition with
phytoplankton is reduced due to iron limitation, and thus DIN accumulates in the surface
and is available to nitrifiers.
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Figure 4.6: The maximum concentration of NO- in the water column, (a) from the GLODAPv2

database for all observations, and (b) from the annually averaged 3D simulation, and (c) distributions

of both. GLODAPv2 data: Key et al. (2015); Olsen et al. (2016)
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a. Maximum

b. Surface (0-55m mean)
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Figure 4.7: Annually averaged (a) maximum and (b) surface (0-55m mean) nitrite oxidation rate in

the water column in the 3D simulation.
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4.7 Comparison with observed abundances

Observed differences in AOO and NOO abundances serve as evidence, in addition to ni-
trite accumulation, of the distinctions between the nitrifying types. Across the California
Current, Santoro et al. (2010) find a four-fold difference in the abundances of ammonia-
oxidizing Marine Group 1 (MG1) (Thaumarchaea) and nitrite-oxidizing Nitrospina. They
also find that abundances of amoA gene copies are 1-5 times higher than MGl, suggesting
the potential for up to 20-fold difference in cell count in some locations. In Monterey Bay,
Mincer et al. (2007) find a 1-5-fold lower abundance of Nitrospina-like bacteria compared
to amoA gene and MGI (thaumarchaeal) abundances: at each of four profiles, the differ-
ence reached at least a factor of three, but no more than six. Mincer et al. (2007) also show
a 1-4-fold difference at Station ALOHA.

These observed differences between the two nitrifier types are much less than the re-
sulting 50-fold difference in the model. However, we have no means to speculate whether
the model overestimates the difference due to an overestimate of the distinctions in yield,
cell size, or both. Perhaps coincidentally, the energetics-based distinction alone shows an
approximately 4.5-fold difference in abundance (Fig. 4.4), approximating observed dif-
ferences. Can energetics alone cause the decoupling? We considered this scenario in the
global simulation by removing the difference in size and lowering the maximum uptake rate

VWaXNH4 to again simulate the observed concentrations: the resulting tuned rate of 50 (rather

than 120) mol NH+ / mol biomass N d- 1 at 20'C is closer to the estimated maximum rate
as measured by Martens-Habbena et al. (2009) (about 60 mol NH+ / mol biomass N d-,
assuming Qio = 2; Appendix 4.A.2) and so may more accurately represent AOO affinity.
Thus, it is plausible that the size-based difference is not significant in the real ocean, and
that a small, high-affinity NOO type has not yet been discovered, especially since it is only
within the last decade that the ubiquity of the high-affinity AOA has been appreciated (Stahl
and de la Torre 2012).

On the other hand, kinetics alone may explain the decoupling. This could be the case
if the difference in the underlying energetics is compensated for by the known metabolic
versatility of nitrite-oxidizing organisms (Daims et al. 2016). For example, an ability to use
other inorganic or organic molecules as additional sources of energy may supplement the
energy acquired from nitrite oxidation, and negate the theoretical difference in yield.

4.8 A framework for marine nitrification ecology

Where does nitrification occur?

Our approach provides a framework with which to understand why nitrification rates often
peak at depth, and are often, but not always, restricted from the surface. We summarize the
three main factors found to control the locations of nitrification:

1. Competitive exclusion by phytoplankton. As hypothesized by Smith et al. (2014),
when phytoplankton and bacteria both compete for ammonia and/or nitrite, nitrifiers lose
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the competition because their subsistence concentrations of DIN are higher than those of
phytoplankton. This result should apply to the nitrogen-limited surface ocean, including
much of the oligotrophic subtropical gyres. However, due to their high affinity, the com-
petition between AOA and phytoplankton for NH+ is close, which hypothesizes that AOA
may outcompete phytoplankton in some environments even when phytoplankton are DIN
limited.

2. Favorable nitrification when other factors limit primary production. When phy-
toplankton growth is limited by something other than DIN, nitrifiers can sustain growth.
This characterizes the base of the euphotic zone and below, where phytoplankton are light-
limited and DIN is typically not limiting. This may also apply to surface environments
where phytoplankton are iron-limited, such as in high-nutrient, low-chlorophyll regions,
and to high-latitude surface environments during winter when phytoplankton are light-
limited.

3. Transient and dynamic environments sustain coexisting nitrifiers and phytoplank-
ton. Sufficient continual supply of ammonium or nitrite, or supply of nitrifying biomass
from favorable locations, prevents competitive exclusion by phytoplankton and allows
nitrifiers to sustain a population. This may characterize the surface of the ocean where
sufficient mixing from depth supplies nitrifying cells faster than they can die off. This also
may characterize coastal areas with high nutrient injection from river runoff, the depth of
the deep chlorophyll maximum, or where heterotrophic respiration supplies a sufficiently
large flux of ammonium to support both populations.

In sum, we hypothesize that ecological dynamics are the predominant control on nitrifica-
tion, with light as an indirect control. This is not irreconcilable with laboratory data sug-
gesting direct light inhibition (cite again), since subsets of nitrifiers may have adapted to
long-term exclusion from the surface. We find that the base of the euphotic zone is an op-
timal location for nitrification in stratified water columns: nitrifying chemoautotrophy is
outcompeted photoautotrophy above and limited by the availability of reduced DIN, ulti-
mately sourced from the remineralization of organic matter by heterotrophs, below.

Why does nitrite accumulate?

We identify two underlying causes for the decoupling of the two steps of nitrification, which
both allow for nitrite accumulation:

1. The underlying redox chemistry of nitrifier metabolisms. Energetics suggest that
nitrite oxidizers require significantly more nitrite to produce biomass relative to the amount
of ammonium required by ammonia oxidizers. The minimum subsistence concentrations of
ammonia and nitrite for the two groups diagnoses the mechanism of accumulation: nitrite
oxidizers cannot deplete nitrite to as low of a concentration.
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2. Size-based differences in affinity. Allometric theory for nutrient uptake suggests
that the larger nitrite-oxidizing bacteria have a lower affinity than the smaller ammonia-
oxidizing archaea. This also translates into a difference in the subsistence concentrations.

Physical transport in the environment can also play a significant role in setting the peak

nitrite concentration. The simple balance that we developed for nitrite (Eqn. 4.11) incorpo-
rates this impact. However, transport influences both ammonium and nitrite concentrations:
that the primary nitrite maximum is a consistent feature, while an ammonium maximum is
a transient feature, suggests that transport alone cannot explain the accumulation.

4.9 Uncertainties

Results here provide the mechanisms and conditions for favorable nitrification, but do not
aim to predict magnitudes or precise locations due to the uncertainty of the parameters
describing the nitrifying functional types. Growth efficiencies were estimated from marine
batch cultures grown in initially nutrient-rich conditions. How different are the efficiencies
of cells growing in low-nutrient conditions, such as at the base of the euphotic zone? Also,
estimates of in situ cell-specific nitrification rates provided necessary constraints, but what
controls the variance in in situ maximum rates as measured by Santoro et al. (2013)? More
observations of simultaneous in situ AOO, NOO, and phytoplankton activity, abundances,
and physiologies could bring new patterns to light.

Additionally, how well do the theoretical AOO and NOO metabolic types represent real
nitrifying populations? We make the assumption that two distinct groups of organisms are
responsible for ammonia and nitrite oxidation, despite the recent discovery of both steps oc-
curring in one organism (Daims et al. 2015; van Kessel et al. 2015). Costa et al. (2006) pre-
dicted this 'commamox' before it was observed in biofilms using the theory that the length
of a metabolic pathway is optimized for ATP generation. In biofilms, growth efficiency may
be optimized at the expense of growth rate, favoring a longer pathway (i.e., comammox). In
contrast, growth rate may be optimized at the expense of efficiency in well-mixed systems,
favoring shorter pathways (Costa et al. 2006), which supports our traditional understanding
of discrete populations of nitrifers in the ocean and other aquatic environments.

However, we know that organisms can develop enzymatic machinery to overcome phys-
iological or energetic constraints. For example, the results of Martens-Habbena et al. (2009)
suggest that AOA and AOB have potentially diverged to fill different niches, with AOB hav-
ing much lower affinity in comparison to AOA than just allometry would predict. We also
know that real NOO, and potentially AOO as well, have diverse and versatile metabolisms,
which would easily decouple their growth efficiency from that predicted by the underlying
chemistry of nitrogen oxidation. Yet nitrite does accumulate, and isotopic evidence points
to nitrification as its source. We therefore hypothesize two underlying mechanisms (redox
chemistry and/or affinity differences) as the simplest explanations for the formation of the
PNM. Future biochemical and physiological studies may further connect the dots between
these mechanisms and real organisms.
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4.10 Conclusions

By representing nitrification explicitly in an ecosystem, we can explain the formation of
the primary nitrite maximum (PNM) by nitrifying microorganisms. Nitrifier activity is re-
stricted to depth because of competition with phytoplankton, while nitrite accumulates to
higher concentrations than ammonium because of energetic and kinetic distinctions be-
tween the two metabolisms.

The model provides a framework for understanding nitrification in marine ecosystems,
and serves as a dynamic, mechanistic parameterization of nitrifying metabolisms suitable
for regional and global biogeochemical studies. For example, examining the controls on
aerobic nitrification within an aerobic-anaerobic microbial ecosystem may provide insight
into the fate of fixed nitrogen. Also, the model articulates the dynamic base of the euphotic
zone, characterized by many maximas of nutrient fluxes, and so can aid in sharpening de-
scriptions of export production. These results further progress our understanding of the
ecology of nitrification and its biogeochemical impacts.
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4.A Appendix

4.A.1 Measurement locations and methods

Measurements were made in the subtropical N. Pacific on Cruise NH1417 in August and
September 2014. Stations thought to be at productive locations were chosen for nitrification
rate measurements using satellite data to increase changes of detectable concentrations and
rates. Measurements were taken at stations 44, 58, 70, and 99; Fig. 4.8 maps their locations.

Nitrification rates, nitrite, and nitrate concentrations were measured by Emily Zakem,
with support from the lab of Robinson (Wally) Fulweiler at Boston University. Two treat-
ments were completed at each stations: 1. addition of 15 NH7 as a tracer to measure the rate
of ammonia oxidation, and 2. addition of 15 NO to measure the rate of nitrite oxidation,
but only the former was successful. Triplicate samples of each treatment were spiked to a
final concentration of 100 nM, incubated for 24 hours, filtered through 0.2 Pm pore-sized
nylon filters, and frozen. For ammonia oxidation rate samples, thawed aliquots were treated
with sodium azide to convert all of the NO to N 20 gas. (For nitrite oxidation rate sam-
ples, in situ NO- was removed with sulfamic acid. NO in the sample was then reduced
to NO- using cadmium, and then samples were treated with azide to convert the resulting
NO to N2 0 gas.) The 14 N:15 N ratio of the N 20 gas was analyzed on an isotope ratio mass
spectrometer at the University of California Davis Stable Isotope Facility. Unlabeled carrier
nitrite (to 1 pM) was added to reach instrument detection limits, which introduced most of
the uncertainty to the calculations as indicated by the error bars in Fig. 4.2. NO, and NO
concentrations were measured using standard colorimetric techniques.

Chlorophyll a was measured by the Arrigo lab at Stanford Univeristy. Samples were ex-
tracted in 90% acetone for 24 hours and measured fluorometrically using the Welschmeyer
protocol (1992).
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Figure 4.8: Locations of the four stations at which nitrification measurements were taken (yellow

stars) on NH1417 cruise track (black line; red dots indicate all stations). Also shown is surface

chlorophyll derived from MODIS L2, representing the week surrounding the ship arrival at each

location, and sea surface height contours (AVISO: 9/3/14).
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4.A.2 Nitrifying functional type detail

Stoichiometries

Following the methodology of Rittman and McCarty (2001), three half-reactions together
combine to form the catabolic and anabolic full reactions for each nitrifier metabolism:
1. the oxidation of ammonia or nitrite, 2. the reduction of oxygen, and 3. biomass synthesis.
The parameter f represents the partitioning of these reactions into biomass synthesis and
respiration, and specifically represents the fraction of electrons from the electron donor that
are channelled into biomass synthesis.

For the ammonia oxidizer (here considering NH+ and NH3 interchangeably), these

three reactions, for generic biomass CHhON,, and their electron-partitioning coefficients,
are:

( NH+j+ I H2 0 I NO- + 4 H++ej

(1-f) 02 + H++ e- -4 H20
(I --n n 1 2c- o+n 

(f) N4 d+ d CO2 + HCO+H++e-- I CcH2cONn d H20

where d normalizes the biomass synthesis reaction to one electron, representing the number
of electron equivalents that correspond to the oxidation states of the inorganic constituents
of that synthesis (Rittman and McCarty 200 1). This gives the full metabolism for ammonia-
oxidizing biomass BAoO when summed (ignoring water and lumping bicarbonate into the

CO 2 pool for simplification in the main text), with the fraction f representing this partition-
ing, as:

1 fcf -
-f

-+ - NH+ + C02+ - 02 4 BAOO + -NO (4.12)
(6 d 4 d 4 d 6 -

Our assumption that the nitrite oxidizer also uses reduced nitrogen (i.e., the same oxi-
dation state as ammonium) is realistic (Santoro 2016; Daims et al. 2016), and also increases
our burden of proof to distinguish the two metabolisms energetically; the only difference
between the stoichiometry of the two steps is the electron donor reaction. For the nitrite
oxidizer, the three reactions are:

(1) [NO2 + H 2 0 I NO +H++ ej

(1-f) Q2 + H+ e- I H20

n + -n -HO 2c -o+ n (f) N ~j+ d CO+ + H + e- 1 CcH2+n H20
whidh whe +m d d w

which when summed (again written without water, and with CO 2 as the carbon source)
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gives the full metabolism nitrite-oxidizing biomass BNOO as:

-NO- + NH +C02+ 02 BNOO + -NO- (4.13)
2 2 d 4 d 4 d2

Comparing Eqns. 4.12 and 4.13 suggests that the second step of nitrification is much

less efficient than the first. For any value of f, the theoretical nitrite oxidizer requires three

times as much nitrite to produce a unit of biomass, relative to the amount of ammonium the

ammonia oxidizer requires to produce a unit of biomass. The resulting nitrifier efficiencies,
or yields y defined as moles biomass N synthesized per mole DIN utilized, are:

YNH 4 = (4.14)
1 +

2f
YNO2 d- 2 (4.15)

which are the parameters that we include in the ecosystem model. Since we assume in

Eqn. 4.13 that the nitrite oxidizer also uses reduced nitrogen (Santoro 2016), we use the

same estimate for d for both functional types: d = 4c + h - 2o - 3n. If we instead con-

sidered nitrite to serve as both the electron donor and the substrate for assimilation, as do

Rittman and McCarty (2001), energetics would be accounted for by adjusting d from 20

to 26 (representing the change in oxidation state of the substrate for synthesis), and would

further decrease the nitrite-oxidizer yield.

Estimating f from data

Theory suggests that f should be similar for the two types (Rittman and McCarty 2001).

(Rittman and McCarty 2001) assume an even larger difference in f by assuming nitrite as

the source for biomass nitrogen, and use free energies of reactions to estimate f as 0.14 and

0.10 for ammonia oxidizers and nitrite oxidizers, respectively. Their analysis of nitrifiers in

bioreactors shows a consensus of this theory and observations (their Tables 9.1 and 9.2).

With the assumption that ammonium or organic nitrogen serves as the source for bio-

mass nitrogen, the values of f for the AOO and NOO are much more similar; the difference

in the free energy of ammonium oxidation to nitrite versus nitrite oxidation to nitrate does

not impact the free energy estimate as much as the additional energy required to reduce

nitrite to the oxidation state of ammonium/organic matter for synthesis (which is reflected

in the above assumption of d).

We estimate the magnitude of f from observations of marine nitrifying microorganisms

instead of using the free energies of reactions to estimate it theoretically. We find that our list

of observations, albeit short, supports the theory that f should be similar for the two types,

but suggests much lower magnitudes. In Table 1, we list the studies, the implied yields

as estimated from observations of cell growth on ammonium or nitrite, and the resulting

inferred value of f for each from Eqns. 4.14 and 4.15. We assume d = 20, representing the

generic microbial biomass composition of C5 H702N used by Rittman and McCarty (2001).
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For most of the observations, calculating the dimensionless yield from observed cell
growth requires an estimate of the cell quota of nitrogen. We use the 10 fg protein cell-'
content of AOA measured by Martens-Habbena et al. (2009), and assume a 10-fold larger
quota for the NOO, as we do for the uptake kinetics, based on the measured minimum 10-
fold difference in protein content between AOO and AOB Martens-Habbena et al. (2009).
Assuming the mean composition of phytoplankton protein compiled by Anderson (1995)

of C3.83H6.0501. 25N, nitrogen is about 16% of protein by weight. This calculation estimates
a nitrogen quota of about 0.1 and 1 fmol N cell -1 for the AOO and NOO groups, respec-
tively. We can also independently estimate the 10-fold larger nitrogen quota of the NOO
by considering the sphereoidical volume inferred from the average size of the new marine
strain of Nitrospina of 0.3-0.4 pm x 1-3 pm observed by Spieck et al. (2014): converting
from the average bacterial carbon quota of 0.22 g C cm- 3 of Bratbak and Dundas (1984)
with a C:N of 5 also suggests a quota of order I fmol N cell -1.

Even though the calculations have a large uncertainty, they justify the use of the theory
that f should be similar for the AOO and NOO metabolic types, and provide a ballpark esti-
mate of f. For the AOO and the NOO groups, the average yields are 1/135 and 1/322 moles
biomass N synthesized per mole DIN utilized, respectively. The f values corresponding to
these yields are 0.025 and 0.031, respectively.

For the stoichiometries presented in the main text, we assume f = 0.03 and d = 20
4. The C:N uncertainty of 1 mol/mol, the standard deviation of the C:N composition of
heterotrophic marine bacteria compiled by Zimmerman et al. (2014), gives the uncertainty
in d (and neglecting the changes in H and 0 stoichiometry for the largest impact on the
resulting stoichiometric uncertainty).

Notes on the estimated yields

AOA observations: From Martens-Habbena et al. (2009), we estimated ADIN as the initial
and end NH+ concentrations and cell yield from their Fig. I for Nitrosopumilus maritimus
strain SCMI. From Qin et al. (2014), used the upper limit of the reported ranges in cell
yield per mole of ammonia oxidized (pg. 12507) for growth in organic carbon supplemented
media for each of three strains of Nitrosopumilus maritimus. From Santoro and Casciotti
(2011), we estimated the initial and end NH+ concentrations and cell yield from their Fig.
3 for AOA strain CN75.

NOB observations: From Spieck et al. (2014), we used the reported cell yields (pg. 172)
for chemolithoautotrophic growth of the new bacterium, named Nitrospina watsonii, and for
mixotrophic growth of Nitrospina gracilis. From Watson and Waterbury (1971), the ratio
of NO2 oxidized to CO 2 fixed was calculated for the results of each of the two reaction
mixtures listed in their Table 2 for Nitrospina gracilis and Nitrococcus mobilis, the average
taken for the reaction mixtures, and a C:N of 5 assumed for the conversion to the growth
yield.
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Yields for variation in parameters f and d

Figure 4.9 illustrates the DIN demand, the inverse of the yield y, as a function of f and d for
the AOO and the NOO metabolic types, following Eqns. 4.12 and 4.13. The ranges of values
are arbitrary but aim to represent a realistic range in parameter space. Values correspond to
the range in values of f implied by the observations, and the range in d for the C:N variation
of one as above. The midpoint of both ranges is that used in the illustrated model solutions
(f = 0.03, d = 20).

This plot supports our claim that there should be a broad pattern of significantly higher
demand for nitrite than ammonium for the same rate of growth of the AOO and NOO
metabolic types. The yield is lowest (DIN demand highest) for low f and high d. The

highest NH+ demand for the AOO - about 200 moles NH+ per mole biomass synthesized
- is smaller than the lowest N02 demand that corresponds to high values of f and low d.

Uptake kinetics

Estimating V,,WNH4 Martens-Habbena et al. (2009) report KNH4 = 130 nM and a max-

imum cellular rate of 0.53 fmol cell-' h-' (13 fmol cell-' d-1) at 30'C for ammonia-
oxidizing archaea. Using the above assumption of a cell nitrogen quota of 0.1 fmol cell--I
suggests a maximum specific rate of 130 mol NH+ cycled per mole biomass N per day at
30'C, or 65 at 20'C assuming a Q10 temperature-dependency of two. In comparison, in situ
cellular rates range from 0.2 to 15 fmol cell- d-1 at water column temperatures, all below
20'C (Wuchter et al. 2006; Santoro et al. 2010; Santoro and Casciotti 2011). Assuming the
same cell quota, this suggests that actual, not maximum, specific rates from 2 to 150 mol

NH+ cycled per mole biomass N per day are plausible at lower temperatures. Acknowledg-
ing its uncertainty, we assume VWXNH4 100 mo4 NH per mol biomass N per day at 20'
in the model.

Allometric theory and affinity Allometric theory predicts that though the cellular uptake
rate should increase with cell size, the specific uptake rate should decrease due to a decrease

in the surface to volume ratio: the cellular rate scales with surface area as cell radius r2 ,
volume increases as r3 , and so the specific rate scales as r- 1. Theory also predicts that the
half-saturation constant increases with cell size: the diffusion-limited cellular uptake rate,
which explains the steep slope of the Michaelis-Menton form, increases as r (and so the
cellular affinity increases as r). The cellular affinity equates to the quotient of the cellular
uptake rate and KN, which suggests that KN scales as r2 /r = r. Together, allometry thus
suggests that the specific affinity decreases with cell size as r- 2, which is supported by
more detailed analysis of nutrient update models (Fiksen et al. 2013).

With the 10-fold difference in volume, we assume a cell radius of NOO larger than that
of AOO by 100/3 = 2.2, and so for the NOO estimate a specific uptake rate of about half
and a half-saturation constant of about double that of the AOO. This gives a 4.6-fold lower
specific affinity (V,,.,/KN) of the NOO.
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Table 4.1: Estimated NH+ and NO2 biomass yields from cultures, with electron fraction f calcu-
lated from Eqns. 4.14 and 4.15.

Organism A[DIN] Cell yield Cell yield Quota NO2: C:N Y- f
IOce0sI

6
.ell. mo N Io DIN)

(AM) mL ) CM2DIN__ ("'F/\ D N

AOO:

Martens-Habbena et al. (2009) SCM 1 850 44 52 0.1 190

Qin et al. (2014) SCM1 112.6 0.1 88.9

Qin et al. (2014) HCAl 80.8 0.1 124

Qin et al. (2014) PSO 70.4 0.1 142

Santoro and Casciotti (2011) CN75 40 3.2 80 0.1 130

Average 130 0.025
NOO:

Spieck et al. (2014) N. watsonii 6.6 1 150

Spieck et al. (2014) N. gmcilis 7.2 1 139

Watson and Waterbury (1971) N. gmcilis 160 5 780

Watson and Waterbury (1971) N. mobilis 44 5 220

Average I I I I I 1_1_320 0.031
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Figure 4.9: Prediction of NHI and NO- demands (y-1) for the AOO and NOO types, respectively,
as a function of parameters f and d.
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4.A.3 Ecosystem model detail

Equations

Ten state variables were conserved as concentrations of nitrogen over the domain: seven
functional type populations (ammonia-oxidizers BAOO, nitrite-oxidizers BNOO, phytoplank-
ton P, heterotrophic bacteria Bliet, and zooplankton grazers Z, and Z2), three inorganic nutri-
ents (NH+, NO-, and N03), and organic detritus D. Growth rates, efficiencies, and grazing
rates are described below. Table I lists all parameters, their dimensions, and the default
values used in the model.

D[NH7] 1
(SI) Dt YNH4 MAQOBAQO - PNOOBNOO

+ (I -) )[gi1 +g2Z21

(S2) D[N= (
Dt YNH4

1
VNH4P+ (- - I )PhetBhet

YD

D[NO3l- _
(S3) [ pNOOBNOO - VNO3P

Dt YNo2

DD 1
(S4) D= -- + etBhet + B[BAOO+BNOO+Bhet + [Z Z] + inpP
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where the substantial derivative D/Dt includes the diffusive flux as function of the diffusive
coefficient K as V - (KVC) for tracer C, and advective fluxes as functions of velocity u as
V - (aC).

Phytoplankton growth

Phytoplankton grow as a function of DIN and light concentrations, following the approach
of Follows et al. (2007), as:

I NH+ NO- NO-
LP =N H Nx mKin ,4 _ + 2 +N 3ki NH+ + KNH4 p N02 + KNo2p N03+KN03P

(4.16)

The inhibition of nitrite and nitrate assimilation in the presence of ammonium had a negligi-
ble effect in the water column model solutions, and so was not included (though is included
in the 3D model). The half-saturation constants for DIN uptake for phytoplankton are the
lower limit to the range of those used by Follows et al. (2007), and so representative of
the smallest phytoplankton; the water column model aims to represent the characteristics of
the small picoplankton typical in oligotrophic environments. The specific rates of uptake V
(d-1) of each DIN species are:

VNH4 = P( NH+

NH4+KNH 4 P

NH+

NH +KNH4P
NO-

NO2+KNO
2 P

NOY
NO -+KNO

2P
VN2 =PP NH+ NO

NH+Kp NO24 KH4 ~ NO+KNO 2 P

VNO 3 = PP NH+

NH++KNH4 P

NO-
NO3 +KNO

3P

NO-
+NOi 

+KNo
2 P

Heterotrophic growth

The bacterial heterotrophic functional type grows as a
tus D) as:

NO-

ANO3 + NO3 )

+NO
N3+KNO3P

NO-
NO3+KNO

3 P

function of organic matter (detri-

D
Phet -- YDVmnaxD D+KD (4.17)

where the growth efficiency YD is assumed as the average bacterial growth efficiency of 0.14
for the open ocean as compiled by Robinson (2008), and the maximum uptake rate VmaxD
is assigned as 0.7 d-' to constrain the heterotrophic bacterial growth rate to about 0.1 d-1,
matching the average bulk bacterial growth rate estimated by Kirchman (2016).

130



Grazing

The rate of grazing g (d-) for each of the two zooplankton types is calculated as a function
of its total prey biomass as:

P

Bhet + BAO + BNOO
92 =gmax-Bhet + BAOO + BNOO + Kg

where maximum grazing rate g,nax and half-saturation kg are estimated from the ranges of
values compiled by Taniguchi et al. (2014) for small organisms.

1D model detail

In the water column model, the mixed layer was imposed by varying the vertical diffusion
coefficient Kz with depth, from a maximum of 10-2 m 2 s-- at the surface to a minimum with
a length scale of Z..id. The fixed (no flux) boundary conditions result in some accumulation
of D at the bottom of the domain, conceptually representing a sediment layer. To smooth
over numerical error, vertical mixing was allowed to increase there, simulating a bottom
boundary mixed layer. KZ (m 2 s-1) is thus calculated at cell faces as:

Kz =10 e eI +1 0-5+02- (4.18)

where H is the height of the domain (2000m).
Light energy I decreases with depth according to the attenuation coefficients for wa-

ter k, and for biomass kbi,, following the approach of Dutkiewicz et al. (2001) as:

(-z(kw+ E (Bio(z)kqi0 )))
I(z) = 1ine n=1 (4.19)

where Bio is the sum of the concentrations of microbial biomass and organic matter. Ii,
is the incoming irradiance, which is 0 .51,nax, or for resolution of the daily cycle, Ii,(t) =

0.5I,,.x(cos(27rt)+ 1).
A temperature curve was fit to the mean observations from the four stations sampled on

cruise NH1417, with linear and exponential curves as:

T (z) = max((25 - z)/18, (12e 15 0 + 12ez/ 00 + 2)) (4.20)

with which the temperature-dependence of all microbial growth, grazing, and mortality

rates was represented with a Q10 of two. The temperature-dependencies have a small but

non-negligible effect, slowing microbial rates with depth and so altering the solutions quan-

titatively but not qualitatively.

The illustrated domain was 2000 m in height, with 5m resolution. Equations were in-

tegrated forward in time using the 4th order Runge-Kutta method. Advection was carried

out using the QUICK advection scheme, consisting of a linear interpolation between points

weighted by an upstream 2nd order curvature, resulting in 3rd order accuracy. Fluxes were

calculated at the faces of each grid cell, and concentrations at the centers.
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3D model detail

Nine microbial metabolic functional types are included in the global ecosystem model,
and are responsible for all organic matter remineralization, nitrification, and denitrification.
Particulate and dissolved organic matter (POM and DOM) are consumed and subsequently
remineralized by two aerobic heterotrophic bacterial functional types, two nitrate-reducing
(NO3 -* NOI) heterotrophic types, and two denitrifying (NO2 -+ N 2 ) heterotrophic types.

A 'sloppy feeding'-like parameterization provides a source of DOM as a function of the

uptake of POM: according to parameter a, POM is taken up by the particle-associated bac-
terial types in excess to what is incorporated into biomass or remineralized via respiration
(a factor of a more than is required), and the remainder (a - 1) is converted into DOM.
This parameterization crudely mimicks the hydrolysis of high-molecular-weight organic
molecules by extracellular enzymes excreted by heterotrophic bacteria. The particulate-
associated types sink at the same rate as the particulate organic matter.

The depletion of oxygen and switch from aerobic to anaerobic respiration occurs dy-
namically in the model, following the parameterization of Zakem and Follows (2016), with
organic matter growth efficiency (yoM; Eqn. 4.22 below) of 0.14 moles biomass N per mole
uptake PON or DON for the aerobic types (Robinson 2008). The organic matter yield for
the anaerobic types is assigned at 0.13; the lower yield results in the competitive exclusion
of the anaerobic heterotrophs in oxygenated environments, as in Chapter 3.

C:N:P:Fe stoichiometries of bacterial types and demands are constant, as the stoi-
chiometries of average marine organic matter (Anderson 1995). The two nitrifier types are
identical to those in the water column model. The anammox type (NH+ + NO- - N 2)
is excluded from oxygenated environments by the aerobic ammonia-oxidizer because of
its higher demand for ammonium; its stoichiometry is similarly calculated from the un-
derlying redox chemistry, with ammonium as the electron donor and nitrite as the electron
acceptor, and results in very similar stoichiometry to that reported by (Strous et al. 1998)
for anammox bacteria.

The stoichiometries, developed analogously to the nitrifiers, for these additional meta-
bolic functional types are as follows:

Aerobic heterotrophy Organic matter (OM) provides the elements and electrons for both
the synthesis of biomass (B) and energy production, and oxygen serves as the electron
acceptor.

_CcoMHhoMOooMNnoM + 02
doM o 4

-+ fCCB hBOOBNnB COM CBf Co2  ( nOM nBf NH+ (4.21)
dB + doM dB ) \dOM dB 4

where d is the number of electron equivalents for generic organic matter stoichiometry
CcHhOON, that correspond to the oxidation states of its inorganic constituents (below as
d = 4c+h- 2o- 3n).
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The growth efficiency (mol B mol -- OM, or, mol C synthesized mol -1 C consumed)
relates to f as:

Yom = dom f (4.22)
dB

and so yoM = f when assuming the same stoichiometry for both the organic matter substrate
and microbial biomass. When assuming the average stoichiometry of marine organic mat-
ter (CI 06 H] 7 5042N16; Anderson 1995) for both the organic matter substrate and microbial

biomass, the full metabolism is represented as:

C 106H 175 042 N 16+ 467(1 - yom)02
4

4 yOMCl06Hl75042Nl6+ 106(1- yOM)CO2+ 16(1 -yom)NH 4  (4.23)

Nitrate-reducing heterotrophy For the nitrate reducer, organic matter (OM) provides
the elements and electrons for both the synthesis of biomass (B) and energy production,
and nitrate serves as the electron acceptor, which is reduced to nitrite. The full metabolism
forming nitrate-reducing biomass BHetNO 3 is:

OM+ f NOdom 2

f (COM _CBf~C (nom fBf\)H+1-NO
-+ BHetNO, + C02 + ) NdH + 2NO (4.24)

dB (dom dB ) dom dB 4 2 2

For marine stoichiometry, the full metabolism is:

467(1 -yoM)No
C106H 17504 2N 16 + 2 N03

467(1 -YoM)
YOMC 1 6H 75042NI 6 +106(I - yo)CO2+l 6 (l -yoM)NHi+ 2 NO

(4.25)

Denitrifying heterotrophy For the denitrifier, organic matter (OM) provides the elements
and electrons for both the synthesis of biomass (B) and energy production, and nitrite serves
as the electron acceptor, which we consider here as all being reduced completely to N2

(here neglecting the formation of N 2 0). The full metabolism forming denitrifying biomass
BHetNO

2 is:

OM+ N02doM 3

-> BHetNO2 + COM CBf C2+ nOM nBf NH+ 1 N (4.26)
dB dom dB (doM dB 4 6 (
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For marine stoichiometry, the full metabolism is:

467(1 -Y0M)
C106H1 75042 N1 6 + 3 N02

467(1 -yoM)N
-+ yOMCI 6H 7504 2N 6 +106(1 - yom)C 0 2+ 16(1 - yom)NHj+ 6 N

(4.27)

The difference in stoichiometry for the DIN demand and excretion between the nitrate-
reducer and denitrifier results in the accumulation of nitrite in the water column where both
steps of anaerobic heterotrophy occur.

Anammox For chemoautotrophic anaerobic ammonium oxidation, ammonium oxidation
to elemental N provides electrons for energy that fuels cell synthesis (here considering NH4
and NH3 interchangeably), and nitrite serves as the electron acceptor. Together, elemental
N 2 is formed. The three half-reactions are:

(1) NH - I N 2 + H++ e-
1)3 46 3 1 2

( I- N02 + 4H+ +e- -+ N2 + 2H20(I -f)13 3

n c-n n 12c -o+n
(f) [NH+ Cd C 2 + HCO3 + H++ e- -I CHhOoNn+ d H20

which gives the full metabolism forming anammox biomass Banx when summed as:

(1  f u 1 -ffNO+~C B+2-f-f+J- NHd + NO2 + CC 2  d Banx + N2  (4.28)
3 d 4 3 2 d d 6

A value of f of 0.05, higher than that of the nitrifiers, best matches the measured stoichiom-
etry of Strous et al. (1998), though this reflects optimal laboratory conditions. Rather, we
also assume f = 0.03 for anammox in the global model; using the same value of f as for the
nitrifiers allows for an equal, theoretical consideration of the three chemoautotrophic meta-
bolisms. And importantly, this choice does not affect the resulting ecological competitive
outcomes of the metabolisms, since the aerobic ammonia-oxidizers outcompete anammox
bacteria, excluding anammox from the oxygenated ocean, with either stoichiometry. With
f = 0.03, the anammox metabolism, normalized to one mole of N in order to compare with
the nitrifier metabolisms, is:

223NH+ + 216NO2 + 5CO2 * Banx + 219N 2  (4.29)

Other than the above microbial types and consequent remineralization schemes, the
global biogeochemical ecosystem model is similar to the model of Dutkiewicz et al. (2015),
though with six phytoplankton populations with parameters that represent the traits of the
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following six functional types: diatoms, picoplankton, diazotrophs, coccolithophores, and
other large and other small phytoplankton. Four zooplankton types graze on the phytoplank-
ton: one each on the picoplankton, other small, and coccolithophore types, and the fourth
on the diatom, other large, and diazotroph type. A fifth zooplankton type grazes on the
heterotrophic, nitrifier, and denitrifying microbial types. The model resolves the cycles of
carbon, phosphorus, nitrogen, silica, iron, and oxygen. We refer to Dutkiewicz et al. (2015)
for further detail. The 3D ocean circulation state estimate (the ECCO-GODAE state esti-
mate) is from the configuration of the MITgcm as constrained by observations (Marshall
et al. 1997; Wunsch and Heimbach 2007), and has a horizontal resolution of I' x 1 and 23
levels of vertical resolution, from 10m at the surface to 500m at depth.
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Table 4.2: Model parameters

Parameter [Symbol I Value I Units

Nitrifier electron partition fraction

Denominator for nitrifier biomass synthesis

Maximum specific NH+ uptake rate, AOO

Maximum specific NO2 uptake rate, NOO

NH+ half-saturation, AOO

NO2 half-saturation, NOO

Maximum growth rate, P

NH+ half-saturation, P

NO2 half-saturation, P

NO half-saturation, P

Maximum detritus normalized uptake rate

Detritus half-saturation

Microbial mortality rate

Phytoplankton mortality rate

Zooplankton mortality rate (quadratic)

Maximum grazing rate

Grazing half-saturation

Grazing efficiency

Maximum light flux

Light half-saturation

PAR attenuation in water

PAR attenuation due to biomass

Mixed-layer attenuation depth

Minimum vertical mixing coefficient

Maximum vertical mixing coefficient

Detrital sinking rate
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4.A.4 Expanded water column model results

Daily cycle

If phytoplankton are light-limited at night, does nitrification occur in the surface? Fig. 4.10
shows the water column model results over time, with resolution of a daily light cycle. Pri-
mary production varies with time of day. At the base of the euphotic zone, both ammonia-
oxidation and nitrite-oxidation occur continuously in the model; the time-scales of sinking
and remineralization of organic matter are sufficiently long as to allow for continual rem-
ineralization at depth. Ammonia-oxidation occurs at higher rates and shallower in the model
due to the larger supply of ammonia than nitrite in the euphotic zone, and its intensity does
exhibit a daily cycle: ammonium concentration and ammonia-oxidation rates are slightly

enhanced at night, as phytoplankton cease DIN uptake. Though the model resolves the daily
cycle very simplistically, it suggests that nitrification does not occur at significantly higher

rates at night in the surface; the weekly population turnover rates of the nitrifying types
inhibit them from growing a significant population during the model period of light-limited
phytoplankton growth.

Grazing parameterizations

The microbial ecosystem model is sensitive to the parameterization of top-down control: the

resulting microbial population sizes differ depending on whether the zooplankton grazing
populations are 'generalists' or are 'host-specific.' Fig. 4.11 illustrates the model solutions
for three different parameterizations: with one generalist zooplankton grazer, with two zoo-

plankton grazers - one consuming just phytoplankton and the other consuming the bacterial
heterotroph and the nitrifiers, and with three zooplankton grazers - one each consuming
phytoplankton, the bacterial heterotroph, and the nitrifiers.

With one generalist grazer (Fig. 4.11 a), the larger zooplankton population, sustained by
the phytoplankton, subjects the bacterial and nitrifier types to a stronger grazing pressure,
and so these types are completely excluded from the euphotic zone because the rate of graz-

ing on their population exceeds their maximum growth rates. Data shows that this solution
is unrealistic; heterotrophic bacteria do inhabit the surface. The order of magnitude dif-
ference in phytoplankton and heterotrophic bacterial growth, as documented by Kirchman
(2016), suggests that the two populations - in order to sustain a steady population - must
be analogously subjected to an order of magnitude difference in loss rates due to grazing,
mortality, or viruses.

With two grazers (Fig. 4.1 lb), the bacterial and nitrifier types are sheltered from the
large phytoplankton-feeding zooplankton population, and can inhabit the surface. The het-
erotrophic bacterial population size is significantly larger than the nitrifier population size,
as observed, and this results in a stronger grazing pressure on the nitrifiers than the model
with three grazers (Fig. 4.11 c). When the nitrifiers are sheltered from the heterotrophic
bacterial-feeding zooplankton population, they are subjected to much lower loss rates, and

so can sustain a significant population at the surface. Whether the two grazer or the three
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grazer model is more realistic remains unclear: are nitrifying archaea and bacteria subject
to being grazed upon by the same small ciliates or heterotrophic nanoflagellates?

We suspect that the real world exhibits a sense of all three parameterizations, and with-
out the observations available to sufficiently parameterize grazing more realistically, we
note the impact that top-down control has on this ecosystem model: the profiles in general
remain very similar, but as grazing pressure on the nitrifiers decreases (from lZ to 3Z),
the nitrifier fitness increases, and they are able to sustain their populations at increasingly
shallower depths.

Sensitivity to uncertainties in physiology

Though the overall pattern of the nitrite accumulation at depth is robust, the model solu-
tions are sensitive to the parameters describing nitrifier physiology. Fig. 4.12 illustrates the
resulting peaks in nitrification profiles for the variation of two parameters: f and p,nax. De-
creasing the efficiency of the nitrifying metabolisms by decreasing f leads to a significantly
higher PNM and lower nitrifier biomasses.

Fluxes

Fig. 4.12 illustrates the steady-state fluxes of DIN in Eqns. Sl - S3, including the vertical
flux, for the water column model results. The concentrations of NH+, NO-, and NO- are
overlaid on the plots in gray.
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Figure 4.10: Model solutions as a function of a daily light cycle. Because of the slow nitrifier growth
rates, with population turnover times of over a week, the nitrifying populations cannot populate the
surface during the night, when phytoplankton uptake of DIN ceases in the model.
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Figure 4.11: Solutions to ID model for (a) one grazer, (b) two grazers (one for phytoplankton, and
one for heterotrophic bacteria and nitrifiers), and (c) three grazers (one for phytoplankton, one for
heterotrophic bacteria, and one for both nitrifiers).
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4.A.5 Expanded global simulations

Fig. 4.14 shows the resulting maximum water column and surface mean ammonia oxidation
and nitrite oxidation rates (AOR and NOR) in the global simulation. We also analyze the
net biological production rate MNET of the populations (Clayton et al. 2013): if PNET > 0,
a population produces biomass at a rate greater than or equal to its losses at that location,
and so is "locally sustainable." The blue contours identify the locations where PNET = 0,
partitioning the areas of favorable nitrification vs nitrification that is there due to physical
transport. This shows that almost all of the surface AOR and NOR is due to transport.

Though the spatial patterns are similar, maximum AOR is higher than maximum NOR
as in the water column model: larger fluxes of ammonium in the euphotic zone sustain
a larger population of ammonia-oxidizers. At or just below the depth of the PNM, AOR
and NOR become very similar, reflecting that the sinking flux of particulate organic matter
ultimately controls both rates.

Fig. 4.15 illustrates the monthly average (from one model year) primary production and
surface nitrite oxidation rate in December and May. Nitrification rates are higher and more
widespread in the early winter in both hemispheres. Analysis of PNET (again with the blue
contour) shows that surface nitrification is sustainable throughout the year in the S. Ocean,
though more so in May than in December. Much of the surface nitrification in the N. Pacific
and N. Atlantic is locally sustainable in December, but none is in May.

Fig. 4.16 illustrates the annually averaged integrated primary production in the global
simulation.

Fig. 4.17 shows the resulting mean profiles of nitrite, ammonium, nitrifier biomass, and
nitrification rates as a function of depth in the annually averaged global simulation. This
demonstrates the consistency between the water column model and the global simulation;
nitrite, nitrification rates, and nitrifier populations on average peak at depth, near the base
of the euphotic zone.
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Figure 4.14: Annually averaged nitrification rates: (a) maximum water column and (b) surface mean

ammonia oxidation rates, and (c) maximum water column and (b) surface mean nitrite oxidation

rates. The blue contour indicates where biological growth rates of the AOO and NOO exactly balance

loss rates for the AOR and NOR surface means, respectively, encircling the small areas in which the

two metabolisms are 'locally sustainable.'
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Figure 4.15: Surface primary production and nitrite oxidation in December and May, the months

where their negative correlation is most obvious. The blue contour indicates where biological growth

rates of the NOO exactly balance loss rates, encircling the regions where nitrite oxidation is a sus-

tainable metabolism.
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Figure 4.16: Annually averaged primary productivity in the 3D simulation.
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Chapter 5

Conclusions and outlook

This thesis has provided insight into a few features of marine biogeochemistry by connect-
ing microbial metabolisms explicitly with nutrient distributions and circulation. Metabolic
functional types, linked to underlying chemical potential and physiological limitations of

cell size, have enabled this connection. Here, the main conclusions found in each chapter
and their broad implications are summarized. Specific extensions of the work are outlined
with new questions and hypotheses. Finally, some general comments are made on potential

ways to progress in representing microbial activity at larger scales.

5.1 Main conclusions

In Chapter 2, a simple model of how oxygen limits the growth rate of a microbial cell was

developed. Incorporating an ecological perspective allowed for the estimation of the limit-

ing oxygen concentration for growth. These limiting oxygen concentrations match observed
minimum concentrations in the ocean when considering a wide range of plausible parame-
ters, and thus Chapter 2 serves as an explanation for why these observed concentrations are

as low as they are.
Chapter 3 extends the scope of Chapter 2 by considering the full set of conditions that

limit the growth of an aerobic population. It describes the transition for aerobic to anaero-

bic metabolisms as governed by not just oxygen supply, but also the supply of an electron
donor, the other half of the redox reaction. For heterotrophs in general, organic matter serves
as this electron donor. Using established ecological theory for the coexistence of two pop-

ulations competing for a resource, Chapter 3 then theoretically defines the transition from
exclusively aerobic activity to steady coexisting aerobic and anaerobic activity. The pre-
dicted dynamics match observations of coexisting aerobic and anaerobic sulfur bacteria in
a laboratory, and so provide a substantiated interpretation of observations of co-occurring
aerobic and anaerobic activity at low oxygen concentrations in pelagic oxygen minimum
zones. Results then serve to organize predictions about anaerobic activity and its associated

losses of fixed nitrogen in these anoxic zones: with steady coexistence, less anaerobic ac-
tivity is expected than would be if exclusively anaerobic metabolisms were sustainable in
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these environments.
A further utility of Chapters 2 and 3 is that the dynamics of limiting oxygen developed

are general, and so are appropriate limits for diverse populations of microbes. This is be-
cause the expression for oxygen limitation is a flexible function of parameters like cell size
and specific oxygen efficiency, and in this way, was able to predict the observed minimum
oxygen concentrations for both small, slow-growing bacteria in the cold, pelagic ocean as
well as larger E. coli growing ten times faster in a laboratory at 37'C (Stolper et al. 2010).
In both cases, nanomolar oxygen concentrations limited the growth, which suggests that
both the expression for the oxygen limitation (as a function of the parameters) and its return
value (nanomolar oxygen concentrations) may be broadly applicable.

Chapter 4 explains how chemoautotrophic nitrifying microorganisms may form the pri-
mary nitrite maximum. Mechanisms are proposed for the location of the nitrite accumu-
lation - the competition with phytoplankton for ammonium and nitrite - as well as the
accumulation itself - the differences in the physiology and efficiencies of the two guilds of
nitrifiers responsible for the two steps of nitrification. Light inhibition has been tradition-
ally proposed as an explanation for both of these mechanisms, but since nitrification has
been measured in sunlit waters, another explanation was required. The model here realizes
a previous hypothesis that competition with phytoplankton may control the geography of
nitrification.

Results are not incompatible with observations of light inhibition: certain species of
nitrifying microorganisms in stratified environments may have evolved or adapted to lose
photoprotective cellular machinery as a consequence of long-term exclusion from the sur-
face. In this sense, direct observations of light inhibition of nitrifiers may signify how real
microorganisms have evolved to reflect their original underlying energetic constraints, as
anticipated by the functional type approach.

The dynamical model of nitrification in Chapter 4 led to a hypothesis that nitrification
may be favorable in sunlit waters where phytoplankton (but not nitrifiers) are limited by
something other than nitrogen, or in surface waters where phytoplankton are limited by
light. One caveat to this hypothesis is the possibility that a higher grazing pressure near the
surface also contributes to nitrifier exclusion. These results provide testable hypotheses for
future work, which are discussed below.

5.2 Future work: Specific

Beyond Chapter 3: Aerobic-anaerobic interactions in OMZs

Addendum I of Chapter 3 considers the full suite of the microbial metabolisms currently
understood to control nitrogen loss in oxygen minimum zone. The interactions of six meta-
bolic functional types - including heterotrophic, chemoautotrophic, aerobic, and anaerobic
metabolisms - are examined as a function of the supply of oxygen and organic matter,
since organic matter is the ultimate source of all chemical energy in the pelagic ecosys-
tem. Analysis shows that the distributions of metabolisms are largely consistent with ob-
served patterns: for one, all aerobic metabolisms coexist due to cross-feeding, and give
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way to anaerobic metabolisms as oxygen supply decreases. For another, the ratio of den-
itrification to anammox activity converges to that calculated theoretically for marine or-
ganic matter, reconciling models of microbial growth, respiration, and cross-feeding with
this geochemically-inferred theoretical ratio. However, outstanding questions complicate
the interpretation of these results.

Does the stable coexistence explain the 'tipping point' of the Bay of Bengal?

The model results in Addendum I shows a stable state at an intermediate supply of oxygen
that explains much of, but not all of, recent observations in the Bay of Bengal (Bristow et al.
2016b). Results seem to provide insight into the dynamics that create the observed environ-
ment. In the model, the nitrifiers become oxygen limited at a higher concentration than the
aerobic heterotrophs because they have a higher oxygen demand, and so anammox, com-
peting with the nitrifiers for inorganic nitrogen, becomes favorable at this higher limiting
oxygen concentration. This matches the observations showing co-occuring nitrite-oxidation
and anammox, no heterotrophic denitrification, and with anammox nitrite-limited.

In both model and observations, oxygen concentrations are maintained at levels that
are higher than a potential minimum: observations show oxygen at seemingly fixed levels
higher than those observed in other anoxic marine zones (10-200 nM). In the model, a lower
supply of oxygen to the model results in a lower concentration of oxygen and higher rates
of denitrification. In this way, the model agrees with Bristow et al.'s conclusion that the
observations indicate a tipping point state: a decrease in the supply of oxygen, such as that
projected by global warming, could change the Bay of Bengal into an anoxic zone with
higher rates of denitrification.

However, the observations differ from the model results in significant ways that re-
flect the limitations of the descriptions of the microbial metabolisms in the model, and so
currently inhibit any robust conclusions. For one, the subsistence oxygen concentration es-
timated for the nitrifiers is 7 nM, about an order of magnitude lower than the observed
concentrations. For another, the observations show significant rates of nitrate reduction.
The model considers a scenario in which nitrate reduction is favorable at higher oxygen
concentrations to address this discrepancy, but it cannot simulate nitrate reduction without
accumulation of nitrite, and so does not anticipate nitrite-limited anammox.

In the current model, insufficiently described dynamics of anaerobic heterotrophy may
cause this mismatch between model and observations. At least two questions arise for fur-
ther research: when does dissimilatory nitrate reduction become a favorable metabolism?
And why does nitrite accumulate? Another reason for a discrepancy could be that nitrate
reduction occurs on or within particles, and thus is decoupled from the dynamics of the
chemoautotrophic metabolisms active in the ambient environment, with both observations
and the model unable to distinguish the two. Either way, future research into both metabol-
isms and descriptions of the physical environment in OMZs could provide further insight.
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Beyond Chapter 4: Geography of nitrification and new production

Chapter 4 establishes a broad framework for the biogeography of nitrification in the ocean.
Observations of nitrification peaking at the base of the euphotic zone or below are numer-
ous. However, observations are sparse in the deep mixed layers at high latitudes, which
is where the model predicts significant amounts of favorable nitrification. Thus, proposed
work to extend progress made in Chapter 4 includes measurements of in situ microbial
activity at these locations in particular.

A testable hypothesis inferred from Chapter 4 is whether surface nitrification occurs in
high-nutrient, low-chlorophyll (HNLC) regions, and particularly in the wintertime at high
latitude regions when light further limits photoautotrophy. HNLC regions are named as
such because of the accumulation of nitrate at the surface, and are often explained by a
lack of iron availability (Martin and Fitzwater 1988; Gruber and Galloway 2008). Surplus
nitrate concentrations indicate that excess ammonium and nitrite may also be accessible to
nitrifiers.

Measurements of nitrification rates in HNLC environments could test this hypothesis.
It would be most useful to measure both ammonia- and nitrite-oxidation rates simultane-
ously. Often, only ammonia oxidation is measured, for a few reasons: 1. it is understood as
the rate-limiting step for nitrification (Ward 2008), 2. we know more about the ammonia-
oxidizing organisms than the nitrite-oxidizing organisms (Daims et al. 2016), and 3. it is
difficult to measure nitrite oxidation (Ward 2008). However, the calculated resource sub-
sistence concentrations in Chapter 4 suggest that ammonia oxidizers may be closer com-
petitors for DIN against phytoplankton than nitrite oxidizers. For this reason, as well as
because of the larger fluxes of ammonia than nitrite in the euphotic zone, model predicts
more locations and higher rates with stable ammonia-oxidation than nitrite-oxidation. Thus,
ammonia-oxidation may not be a sufficient indicator of full nitrification.

Observations could provide needed information about the limiting factors to nitrifier
growth other than DIN. In Chapter 4, the potential for iron limitation of nitrifiers was not
considered. It has been shown that bacterial growth is limited by iron in the Southern Ocean
(Church et al. 2000). Are the high-affinity ammonia oxidizers also iron limited, and thus,
also unable to process available surface nutrients? Also, how much grazing pressure do
nitrifiers experience in the euphotic zone vs. at depth? Enhanced losses to grazers at the
surface increases the likelihood of their competitive exclusion there; Appendix 4.A.4 em-
phasizes the uncertainty of the modeled rates.

The size of prey is a strong predictor of grazing behavior (Taniguchi et al. 2014). Does
there then exist a relatively higher grazing pressure on nitrifiers in these HNLC regions,
where large phytoplankton compose a larger fraction of total phytoplankton, than in olig-
otrophic subtropical gyres, where picoplankton dominate (Barton et al. 2010; Ward et al.
2014)? If so, then this would serve as an additional mechanism for the exclusion of nitri-
fiers in the surface in oligotrophic environments, and for their favorability in HNLC zones.
The exceptionally small size of ammonia-oxidizing archaea may further shelter them from
such an effect (Martens-Habbena et al. 2009), which may even potentially serve to further
decouple ammonia oxidizers from nitrite oxidizers. It would be useful to investigate the
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grazing dynamics in these environments with experiments.

Is there a more mechanistic definition of new production (and export production)?

The model here articulates how the nitrification peak at the base of the euphotic zone is
linked to the overlying surface production. Sinking organic matter fuels the remineralization
and nitrification that happens most intensely just as phytoplankton become light-limited, at
or just below the PNM. All else the same, if surface production as higher, nitrification rates
are higher.

Much of the newly formed nitrate then may be mixed back into the euphotic zone to
fuel further production, as happens in the model. Should this newly-formed-nitrate-fueled
production be considered as new production? Some of the earliest work to consider the
ecology of chemoautotrophic nitrification considered it this way (Ward 1987). Yool et al.
(2007), motivated to reexamine the role of euphotic zone nitrification specifically, instead
considered all nitrate formed in the thermocline as 'regenerated' nitrate.

Either perspective could be justified depending on a choice of timescale. The rate at
which nitrate is supplied from the zone of peak nitrification may be considered significantly
slower than the rate of supply of nitrate formed within the mixed layer, but significantly
faster than the rate at which the amounts of nitrate formed in the mesopelagic is returned to
the mixed layer in far-away locations of upwelling as a consequence of larger-scale ocean
circulation. What is the most meaningful way to divide production into 'new' and 'regener-
ated'?

The concept of such a divide is useful because of the research focus on export pro-
duction (Siegel et al. 2016), which must balance new production in the ocean as a whole
(Eppley and Peterson 1979). A current operational definition of the export flux is that which
exits the base of the euphotic zone (Buesseler and Boyd 2009; Siegel et al. 2014). However,
the model here suggests that this definition may inappropriate in that much of this export is
then actively remineralized just at this particular depth.

A modified conception of new and export production could embrace this interdepen-
dency of surface production and subsurface nitrification. Future work could use the dynamic
model of nitrification to determine a strategic combination of a depth and a timescale with
which to define export production. The slope of nitrite or nitrate accumulation, for example,
may identify the strongest fluxes of nitrification, and enable the determination of a charac-
teristic length-scale at which these fluxes taper off. This deeper depth would of course of
course predict an export flux smaller than the one estimated at the base of the euphotic zone.

5.3 Future work: Broad

The conclusions here regarding microbially-mediated biogeochemical cycling result from
considering discrete, interacting metabolisms. Metabolic functional types, modeled as pop-
ulations, were the means of connecting these metabolisms to environmental conditions as
an extension of traditional 'NPZ' ecosystem models (Franks 2002). In these models, a func-
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tional type population that could not sustain itself in an environment with its defined meta-
bolism was excluded entirely from that environment.

However, real microbial communities exhibit characteristics that are not captured dy-
namically in this approach. These characteristics lead to at least two conceptual descriptions
of microbial communities:

A continuum of specialists and generalists.

First, the length of the metabolic pathway that occurs within one organism is not always
known or predictable. For example, the two steps of nitrification occur in two distinct guilds
of microorganisms in most environments, but have been recently shown to occur within a
single organism in biofllms (with the metabolism of the full pathway termed 'comammox')
(Santoro 2016). For another, all combinations of the subsets of the multiple steps of dissim-
ilatory denitrification from NO- to N 2 may occur in different organisms (Ward 2008).

Can these length of pathways be anticipated? As discussed in Chapter 3, theory pre-
dicts comammox in biofilms, but not mixed systems, as a function of these environmental
conditions (Costa et al. 2006). The length of denitrification pathways may similarly be re-
lated to ambient conditions (Lilja and Johnson 2016). A consensus is that the lengths of
pathways are not fixed in space or in time. Thus, the nitrification model here, with distinct
ammonia- and nitrite-oxidizing populations, would not be appropriate for studying nitrifica-
tion in biofilms. A more broadly applicable approach would be to incorporate such theory of
pathway length into modeled environments. For example, an algorithm could dynamically
estimate the favorable lengths of pathways as a function of that environment.

Beyond pathway length, uncertainty lies in the versatility of metabolism occurring
within a species or functional guild. Nitrite oxidizers, ammonia oxidizers, and cyanobac-
teria, all traditionally considered as autotrophic, have been shown to utilize organic matter
and other various substrates (Zubkov et al. 2003; Ward 2008; Qin et al. 2014; Daims et al.
2016). The role of mixotrophy - the combination of photoautotrophy and the ingestion of
prey - is becoming increasingly appreciated, with significant consequences for ecosystem
function (Stoecker et al. 2009; Ward and Follows 2016). Can the degree versatility of the
metabolism carried out by a particular species be predicted?

In one sense, such versatility may be inferred from observing coexistences: syntrophic
interactions among groups of organisms gives rise to their coexistences in the water col-
umn. For example, the nitrification model shows how cross-feeding results in a consistent
coexistence of heterotrophic bacteria, nitrite oxidizers, and ammonia oxidizers at depth. A
perhaps overly bold speculation arising from this coexistence is that an overlapping of those
coexisting metabolisms may occur over time via lateral gene transfer. Whether or not such a
speculation can be substantiated, there could be some utility in considering these coexisting
populations as one, and thus blanketing all of the metabolisms being carried out into one
bulk population. This may be one way to account for known versatility and mixotrophy in
ecosystem models. We next explore this idea in more depth.
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A continuum of individual and community.

Cross-feeding interactions constitute chains of dependencies. In the models here, it is as-
sumed that nitrite oxidizers can utilize any available nitrite irrespective of its source -
whether from ammonia oxidation or from dissimilatory nitrate reduction. But observations
show interactions between organisms with dependencies on specific substrates and organ-
isms (Biller et al. 2016). Definitions of such symbioses are unclear, but may be distinguished
from cross-feeding by considering them as 'active' vs. 'passive' interactions (Kazamia et al.
2016).

How can we quantitatively account for the impacts of numerous and complex interac-
tions in ecosystems? Evidence suggests that modeling populations that mimick individual
cells carrying out one specific metabolism with a few required substrates is insufficient to
capture mutualisms as well as passive dependencies for specific metabolites. If these com-
plex exchanges are more of the rule than the exception, and are thus integral to ecosystem
function, how can ecosystem models accurately consider such semi-autonomous popula-
tions? One way forward is to increase the level of detail of the models to incorporate many
more metabolites and species, but in addition to being computationally expensive, this could
also lead to model solutions that are too complex to interpret and understand. Another way
forward could lie in considering the microbial consortia itself as the minimum unit of func-
tioning microbial biomass (Strom 2008; Tikhonov 2015b,a; Rillig et al. 2015).

A consortia approach to describing microbial ecosystems aims to move beyond popula-
tion models with fixed metabolisms to something that represents known metabolic versatil-
ity and interdependencies. Another benefit to such an approach may be to gain insight into
aggregate effects of microbial biomass on nutrient distributions, which may be particularly
useful for understanding the heterogeneity and complexity of organic matter dynamics. It
also may pave the way to move beyond a sharp distinction between organic and inorganic
nutrients - a holistic perspective could consider the mix of necessary metabolites that fuels
the consortia.

But how would such a representation best work? What level of detail would need to
be included? One could consider a mixed biomass as a unit for population modeling, with
the function of that biomass predicted theoretically from the ambient chemical potential.
This is similar to the metabolic functional type approach, except without dividing up the
functional types into discrete populations. But in this case, how would the resolution of
intermediates be represented? If both steps of nitrification were a part of such a consortia,
for example, how could the release of nitrite be predicted? Could the redox-reaction-based
different energetic efficiencies of each step be reflected within a large unit of biomass that
then predicts a leak of nitrite as an excreted waste product? These questions are left for
future research.

5.4 Concluding notes

The approach here has served to open up the 'black box' of the microbial control of marine
biogeochemical cycling. Knowledge has been gained about the aerobic-anaerobic interac-
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tions in oxygen minimum zones that lead to the losses of fixed nitrogen there, and the
potential controls on the locations of nitrification in marine environments have been de-
scribed. The approach here additionally serves as a means of representing microbial growth
and respiration explicitly and consistently in large-scale ocean circulation models. Describ-
ing microbial populations as grounded by their underlying energetic constraints provides a
dynamical way to connect these metabolisms with global distributions of oxygen, nitrogen,
and carbon dioxide. This ultimately enables the incorporation of the feedbacks of microbial
activity to changes in global biogeochemistry and the climate system.
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Appendix A

A simple correction scheme for the
inherent error in multi-dimensional
cell quota models

The work in this chapter was completed in collaboration with Mick Follows, David Talmy,
and Glenn Flierl.

A.1 Overview

Cell quota models calculate the growth rate of the population from a single, average value
of the quota of the modeling point or grid box. In multiple dimensions, this calculation
by a single quota value meant to represent the average of a heterogeneous population re-
sults in an inherent averaging error, which overestimates the growth rate of the population.
Here, we propose a simple, diagnostic calculation as a correction for this error in multi-
dimensional cell quota numerical models: an 'explicit' scheme, since no prior measure of
the heterogeneity of the population is required. We also demonstrate a method to correct
for the error when the standard deviation of the represented heterogeneous population is
known: an 'implicit' calculation, since the calculation requires knowing the variance of the
quota. To quantify the effectiveness of both correctional methods, we compare equivalent
(for point balances) individual-based and population level quota models, subjected to a con-
tinual inflow of cells with differing quotas. For scenarios with non-negligible error (greater
than I% error) of the population model with respect to the IBM, both methods reduce this
error significantly: by an average of 62% (a=34%) for the explicit numerical scheme, and
by 81% (a=9.6%) for the implicit calculation. The explicit method serves as a simple con-
ditional addition to existing quota models: a few lines of code with small computational
cost.
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A.2 Introduction

Cutting edge marine global biogeochemical modeling considers the internal nutrient storage
of phytoplankton cells (Blackford et al. 2004; Le Quere et al. 2005; Ward et al. 2012).
Modeling nutrient storage decouples nutrient uptake from assimilation into biomass, a more
accurate representation of cell dynamics (Caperon and Meyer 1972; Droop 1973), as first
developed into a model by Burmaster (1979) with subsequent variations (Sharples and Tett
1994; Verdy et al. 2009; Flynn 2008).

As these models are adopted, questions emerge about their application beyond con-
trolled laboratory environments. Hellweger and Kianirad (2007a) point out the error inher-
ent in applying the nonlinear Droop model to a heterogeneous population. The average of
the growth rates of the individuals in a heterogeneous population is always less than the
growth rate calculated from the average quota of that population. Hellweger and Kiani-
rad (2007a) demonstrate how analogous individual and population models show identical
results for a homogenous population, but for a heterogeneous population, the population
model overestimates population size and underestimates the internal quota because of this
inherent error.

How does this inherent error affect global marine microbial quota modeling? First, 'ex-
plicit' error can result in multi-dimensional quota models, deriving from the convergence of
different populations from contiguous grid boxes. Thus, heterogeneity results in the down-
stream grid box, which must represent this convergent population. Figure A.] depicts an
area of the ocean where such a convergence is likely to occur, at the intersections of the
swift, nutrient-rich Kuroshio current with the surrounding slower, more oligotrophic ocean
areas. As an example, an eddy filament in this environment could advect a few 'fat' cells
from the current (Q = I0Q,,,i,, giving growth rate p = 0.9 day-' from Eqn. A. 1 below for

A,. = 1) into the oligotrophic area containing five times more 'skinny' cells (Q = Q,,i,
giving p = 0 day-'). The average of the individual growth rates for this heterogeneous pop-
ulation is 0.15 day-], while the growth rate calculated from the average quota (Q = 2.5Q,,in)
is 0.6 day-, four times higher.

A second, 'implicit' characterization of this error derives from the choice to use a
population-density model in the first place: the decision to represent phytoplankton commu-
nity as a single point in a grid box, rather than resolving each individual. Population-density
models ignore the heterogeneity contributed by the individuals at a single place and time.
Bucci et al. (2011) modeled a heterogeneous population of river phytoplankton, and found
that internal quotas were distributed from 1 to 6 times the minimum phosphorus quota.
Calculating the average population level growth rate gave a rate 47% higher than that of
the average of the individual rates. They concluded that the microscale patchiness of the
environment largely contributed to the heterogeneity. At the microscale, changes in the ex-
ternal nutrient concentration can occur by excretion by zooplankton and other organisms,
and cells encountering such a patch can increase their internal nutrient storage.

Such implicit heterogeneity may or may not be represented by data sampling, and can
be considered itself as an additional source of uncertainty in marine ocean models. Param-
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Figure A.1: Surface velocity in the northwest Pacific Ocean, depicting areas of intersection of the
swift, productive Kuroshio Current with nearby slower, oligotrophic waters, where convergence of
phytoplankton populations with different internal nutrient quotas may occur. (Data: Geostrophic
velocity, AVISO, Oct. 2, 2013.)

eters used for population models were measured at the population level, and thus perhaps
sidestep the error in the models themselves since the parameters already incorporate a pop-
ulation average bias. However, Bucci et al. point out that the parameters are measured from
culturing experiments of largely more homogenous populations, and so, neglect to incorpo-
rate error from heterogeneity. To correct for his bias, they suggest that models could use a

lower maximum growth rate parameter, where the factor of decrease reflects the prediction
of the error.

Here, we examine both considerations of error. To abate the explicit error, we develop a

numerical scheme to estimate the error in multi-dimensional quota models. The scheme is a
diagnostic calculation using the fluxes and quotas of the incoming populations for converg-
ing populations on a gridded domain. Second, we examine a theoretical estimation of the
implicit error using prior knowledge of a heterogeneous population: the calculation requires
knowing the (statistical/normal) variance of the population. Both strategies involve estimat-
ing a factor by which to reduce the modeled growth rate, and so follow the suggestion of
Bucci et al. (2011).

Though individual-based models (IBMs) by definition avoid this inherent error, they re-
main very expensive for application to large-scale phytoplankton population studies. Armed

with a way by which to predict and prevent this error, we compare analogous IBM and
population models of phytoplankton physiology. We aim to demonstrate the utility of the
numerical scheme to correct for explicit error in areas of convergence, and thus the utility

of population quota modeling at regional and global scales.
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Figure A.2: Growth rate p against nutrient quota Q (for Lmax = 1 and Qmin = 1), and discrete
individual quota values (blue dots), illustrating the error in calculating P from the average quota
of the individuals (red line) rather than as an average of the values of A calculated from each of
the individual quotas (blue line). The averaged quota calculation overestimates the growth rate by
102%.

A.3 Inherent error in multi-dimensional cell quota models

Cell quota models calculate the growth rate p (time- 1) from a maximum growth rate pax
modified by the cell's internal nutrient storage quota as:

Q 

= max Q min (A.1)

Q

where the total quota Q (internal nutrient concentration, ymol cell- 1 ), consists of the sum
of a minimum amount, Qmin, and a variable amount of 'luxury' storage. Overestimation of
the growth rate is implicit to using averaged quota values for a heterogeneous population
due to Jensen's inequality (Hellweger and Kianirad 2007a). Figure A.2 illustrates this error,
showing the average of the growth rates of individuals (blue dots) compared to the growth
rate calculated from the average quota of the individuals; the latter rate is 102% higher than
the former, more accurate representation of the population.

Two factors contribute to large error. First, error is maximized when individuals vary
along the steepest slope of the growth rate-quota curve, thus constituting a population that
optimizes change in growth rate by a change in quota. Second, error is maximized when
the distribution of the population's internal quotas is skewed towards smaller quotas, when
individuals with bigger quotas represent a smaller fraction of the total population. In short,
a few fat cells mixed into many skinny cells causes enormous error.

For example, if a population of cells with the highest phosphorus quota in the ex-
periments of Burmaster (1979) (Q = 18Qnin) were mixed converged into a downstream
model grid cell with a population at the subsistence quota (Q = Qmin) at a ratio of 1:10, the
phosphorus-limited growth rate calculated by the population model would overestimate the
average growth rate of the individuals by a factor of 7, almost an order of magnitude. But
if the ratio were 10:1, the growth rate of the population model would be only 10% higher
than the average of the individual rates.

158



When and where would we predict significant error in global marine quota models?
Since error is correlated with the degree of difference of the mixing quotas, we would ex-
pect error with sharp gradients in productivity, and thus luxury nutrient storage, and with
sustained mixing or transport across this gradient. Most of the open ocean, and perhaps
the entire domains of coarse resolution models may not exhibit such error-prone areas.
Eddy-resolving biogeochemical models, however, may contain such large gradients across
eddy fronts or from filaments. Since many of the scientific questions asked of these models
involve the difference in biological productivity with and without eddy resolution (Mahade-
van 2014), this question of numerical error becomes particularly relevant.

A.4 Theory: correction methods

To investigate and address this numerical error, we examine a simple ID model environment
of sustained convergence of a sharp gradient in cell quotas. The middle box B of a three
box model is subjected to the immigration of cells from the outer two boxes A and C: the
blending of two populations (Fig. A.3). The parameter f (0 < f < 1). controls the portion
of the outflow of box C that flows into B, thus allowing for experimentation with the effect
of different proportions of 'fat' and 'skinny' cells and error. In this section, we present two
methods by which to estimate the error due to heterogeneity of this downstream, middle
box.

Explicit error correction: A diagnostic numerical scheme

In ocean population models, we cannot know the implicit distribution of quotas within each
grid box, but, we can estimate the error from the convergence of different populations that
causes the distribution. For box B in the ID model, the population growth rate is calculated
as:

PB = Amax QB - (A.2)
QB

The fluxes of incoming cells from boxes A and B cause heterogeneity. The error from this
heterogeneity can be predicted by first calculating the growth rate from the average quota
of the incoming populations and comparing that to the average growth rate calculated from
each of the distinct incoming populations from boxes A and B, weighting each by the size
of the flux of incoming cells. The growth rate of the average incoming population, Nin,avg,
is:

Iin,avg = Amax Qin avg - Qmzn (A.3)
Qin,avg

where

Qinavg - DAXA(QA) + fDcXc(Qc) (A.4)
DAXA + fDcXc
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The more accurate growth rate of the incoming population that incorporates its heterogene-

ity, pi/,he,, is calculated from each of the incoming quotas:

linhet Pmax [ DAXA (QA - Qmin + fDcXc Qc - Qin (A.5)
LDAXA + fDcXc QA DAXA + fDcXc Qc )1

The original growth rate calculation can then be modified to reflect ratio of these two:

PB = /Amax QB - Qnin Pin,het (A.6)
QB Min,avg

Since Jensen's inequality shows that pinhet will always be less than Pin,avg, this modifica-
tion always decreases the resulting growth rate for box B, and so follows the advice of
Bucci et al. (2011). The modification itself, the last term on the right hand side in Eqn.
A.6, represents a prediction of the error. Thus, the modification prevents the error by low-
ering the calculated growth rate by a factor that approximates the error due to ignoring the
heterogeneity from distinct incoming populations.

Implicit error correction: Incorporating known variance

We can estimate the error of the heterogeneous grid box if from its mean value Q and its
variance a. We can express the growth rate (Eqn. 2) as an integral of the quotas over the
population p:

P =/-nwx dqQ 11lmn (A.7)

Using this expression, we can derive an approximation for this growth rate (derivation in
Appendix A.A.1) as:

P A ax [ 'Qmin _ 2 Qtnin (A.8)
Q () .

Models can use this expression to more accurately approximate the growth rate, and prevent
the error, but only if the mean and variance of the quota distribution is known, and so this
method is less useful for numerical models. Rather, it provides a proof of concept that
knowing the patchiness of an environment can give an improved population-level model.

A.5 Application: A three box cell quota model

We next evaluate the skill of each of the two methods in estimating and thus preventing error
by comparing individual and population cell models of the three box convergence environ-
ment. As demonstrated by Hellweger and Kianirad (2007b) and Klausmeier et al. (2004),
individual and population models can be developed for equivalence in one dimension. We
build an idealized quota model of phytoplankton and one nutrient (Burmaster 1979; Cap-
eron and Meyer 1972; Droop 1973), which are equivalent in one dimension (to 0.3% error
due to nonlinear dynamics, see Appendix A.A.1 for model description.) We develop the
parameters in ID for a virtual model of a chemostat, following Burmaster (1979). To build
to ID, the chemostat model is modified to include three multiple connected 'flasks,' which
become analogous to grid boxes of a numerical model (Figure A.3).
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Figure A.3: The three box model environment. Cell quotas (sizes of dots) reflect the different dilu-
tion rates D of boxes A and C, and are blended into box B, forming the continuously heterogeneous
population used to examine error. The population density version of the model compared to the in-
dividually based version of the model demonstrates significant error in resolving the quota of box
B.

Methods

In a traditional chemostat, increasing the rate of the inflow of concentrated nutrient increases

the quota of the resulting population. At steady state, the dilution rate D, the dividend of
the flow rate and the volume of the flask (D = time-i), is equal to the growth rate of the

population of cells. In the three box model environment pictured in Fig. A.3, the outflow
of two boxes (boxes A and C) becomes the inflow of a third, downstream box (box B).
We vary two parameters: D3, the dilution rate of one of the outer boxes, and f, the portion
of the outflow of this box that is directed into the middle, downstream box. Increasing D3
increases the quota of the cells in that box, and thus the cells immigrating to the downstream
box. Increasing f increases the contribution from this outer box relative to the other outer
box, affecting the distribution of quota values as well as the total flux of the heterogeneous
box. We conducted this blending experiment for three values of f: 1, 1/2, and 1/4.

For each value of f, the dilution rate Dc was varied by increasing increments of 0.1

day' , until washout (less than 5,000 individuals in any box). Dilution rates DA and DB
were constant at 0.1 day-' for all runs. In this way, the populations of the two source boxes
became increasingly different. For each increment, the model was run to equilibration with
an explicit Euler forward scheme (explained in detail in Appendix A.A.l). All results are

expressed against the outgoing dilution rate D of box B (where D = DA + DBi+ Dr).
For all simulations, error was calculated as the deviation of the population model from

the IBM (see Appendix A.A.1 for detail). Following the numerical correction method, the
quota and flux values from boxes A and C are used to calculate the modification to the

growth rate for Box B at each timestep. This modification alone provides a prediction of the
error, which can be compared to the population model simulations to determine how skillful
such a prediction is compared to resulting model solution for the quota and population size
of box B. The modification can then be applied to the diagnostic growth rate calculation at
each time step, without using any previously determined information about heterogeneity.
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f=1 Original Numerical Impidt f=0.5 Original Numerical Implicit f=0.25 Original Numerical ImpUicR

QC/QA D Error(%) Error(%) %Diff Error(%) %Diff D Error(%) Error(%) %Dlff Error(%) %Dff D Error(%) Error(%) %Diff Error(%) %Diff

100 0.3 0.472 0.507 -7.5 0.802 -69.9 0.25 0.127 0.172 -35.4 0.440 -247.1 0.23 0.206 0.051 75.0 0.298 -44.9

2.13 0.4 0.142 0.791 -458.0 0.442 -211.8 0.30 0.173 1.132 -554.5 0.429 -148.2 0.25 0.051 1.004 -1867.6 0.326 -539.2

3.40 0.5 -0.479 1141 -138.2 0.400 16.5 0.35 -0.594 1.981 -233.7 0.228 61.6 0.28 -0.983 2.217 -125.4 0.320 67.5

4.86 0.6 -1.623 0.945 41.8 0.025 9&5 0.40 -2.169 2.039 6.0 -0.034 98.4 0.30 -2.634 3.154 -19.8 -0.190 92.8

6.55 0.7 -3.000 0.284 90.5 -0.513 82.9 0.45 -4.005 1.536 61.7 -0.613 84.7 0.33 -4.728 3.318 29.8 -0.551 88.3

8.52 0.8 -4.661 -0.688 85.2 -1.065 77.1 0.50 -6.349 0.568 91.1 -1.388 78.1 0.35 -7.475 2.965 60.3 -1.510 79.8

10.86 0.9 -6.18 -1.666 73.1 -1.877 69.7 0.55 -8.822 -0.361 95.9 -2.246 74.5 0.38 -10.466 2.612 75.0 -2.486 76.2

13.66 1.0 -8.000 -2.584 67.7 -2.522 68.5 0.60 -11.261 -1.456 87.1 -3.037 73.0 0.40 -13.705 2.032 85.2 -3.253 76.3

Avg %Diff for Error > 1% 71.7 79.3 68.3 81.8 46.1 82.7

Table A.1: Values of the error illustrated in Fig. A.4 for varying D and f compared to the degree
of heterogeneity of the incoming cells (QC/QA, the dividend of the quotas of Boxes A and C)
and the percent difference in error by the two correction methods: the explicit, numerical scheme,
and the implicit method using the priorly calculated variance in the IBM. For the average percent
differences, only values for the original error greater than 1% are used (the blue values).

Following the implicit error estimation, we use the improved growth rate calculation
(Eqn. A.8). Here, a time series of the mean QB(t) and variance UB(t) of the quota distri-
bution of box B are first determined from a completed run of the individual model. These

statistics are then input as parameters into the expression of the growth rate for Box B in

the population model for each of the same time steps t.

Results

Fig. A.4 shows the resulting error, predicted error, and reduced error from each of the cor-
rection methods for the quota and population size of box B. Table A. 1) lists the values of
the errors for the original and modified simulations against a measure of the distribution of
the quota of the incoming population: QC/QA, which increases with DC.. As parameters Dc
and f vary, two trends result (Figure A.4). First, as the dilution rate of box C increases, the
difference in the quotas of the two incoming populations increases, and thus the negative

slope of the error against D. Second, as the fraction of flow f of box C into the downstream
box increases, error decreases as the population consists of a higher proportion of 'fat' cells.
Thus, our model is able to reproduce the error predicted from a heterogeneous population
from these two effects.

The predicted error agrees with the resulting error in the quota (Figure A.4, upper left).
The negative error signifies that the population model underestimates the quota, though it

did not significantly overestimate the population density itself (lower left). That the growth
rate error was reflected in the quota, rather than the population size, reflects the dynamics
of the chemostat model, which requires the growth rate to equal the dilution rate at steady

state; the error is thus 'forced' into the quota pool. (More subtly, the timescale of growth
is slower than the timescale of nutrient uptake by a factor of two in this model, and so the
internal quota adjusts more quickly than the population size.)

Figure A.4 also compares the results of correcting for heterogeneity using each of the

two correction methods. Both methods significantly reduce the error of the quota to less than
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Figure A.4: Error of the population model's representation of the heterogeneous population with

respect to the IBM, for varying dilution rate D and f = 1, 1/2, and 1/4. Upper left: The original

error in the modeled quota (solid lines) and the predicted error (dashed lines). Lower left: The

original error in the modeled population size. Right: The error in the modeled quota (upper right)

and population size (lower right) using each of the two correction schemes.
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3% for all values of f, and further reduce the small error of the population size. In general,
the correction schemes are robust across the parameter space. Though both give a similar
magnitude of error, the explicit correction method results in an overestimate of the quota,
while the implicit correction method reduces the underestimate of the quota. This may
reflect the fact that the numerical scheme estimates an upper bound to the error, and so an
overcorrection results when whenever this method overestimates the error; overcorrections
correlate with overestimated predictions.

Table A. 1 also lists the percent decrease in error by each of the two correction methods.
For large error (> I %), both methods reduce this error significantly: by an average of 62%
(a=34%) for the explicit numerical scheme, and by 81% (a=9.6%) for the implicit calcu-
lation. However, when the error is small (<1%), overcorrection results in error of the same
or larger magnitude. This can be understood by considering that the corrective methods
themselves contain error, which is dwarfed when the original error is sufficiently large.

Appendix A.A.2 contains pseudocode for implementing the numerical scheme in two
dimensions, including a conditional statement for implementation when error is greater
than 1%.

A.6 Discussion

The inherent error in cell quota models due to Jensen's inequality results from the necessity
of averaging diverse cell quotas in a population level Hellweger and Kianirad (2007a). This
error causes a significant overestimation of the growth rate, which manifests in the model
solutions as underestimated quotas or overestimated population densities. The error is theo-
retically predictable for any modeled population of cells for a known distribution of internal
quotas in the population. When we do not know these values, such as in numerical models,
we need an approach that can estimate the error in order to make the necessary correction
that decreases the growth rate.

We demonstrate the utility of two methods by which to predict and prevent the error
invoked by comparing a population-averaged quota model to an individual-based model.
Both correction methods are robust enough to apply to any parameterization of a quota
model; the error is similarly predicted and prevented for various parameterizations of the
model here, such as varying cell size and varying uptake to growth rate ratios, with con-
sistent results. The first, a numerical scheme, involves no prior knowledge of population
heterogeneity. Rather, it prevents the 'explicit' heterogeneity caused by the confluence of
populations in gridded models. It calculates the upper bound of the error as a function of
the quotas of incoming populations, weighted by the incoming flux of each. The second
method requires knowledge of the distribution of the quota among the population. It is a
simple way to incorporate the effects of known patchiness.

Correction methods are estimations, rather than exact calculations of error, and so add
an amount of error to the model themselves. When the predicted error was greater than
1% in the simulations here, the corrective methods reduced the total error significantly.
When the inherent error is low, both corrective methods are a hindrance, rather than a help,
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to improving the accuracy of the population model. For more homogenous populations
of perhaps the majority of the domain of global quota models. Therefore, we recommend
applying the corrective methods conditionally, when the predicted error is greater than a
few percentage points.

In what conditions, then, would these corrective methods be utilized? The first method
can be easily incorporated into existing cell quota models, with a conditional implemen-
tation command when error is predicted to be large. The second, implicit method relies
on such knowledge of the system, and so this method becomes less useful as a permanent
feature of population models where such patchiness is determined to be significant, such
as in small-scale, coastal areas. Individually-based models may be the preferred choice for
studying these areas.

In ocean models, the prediction of error will be significant only in areas of sharp conver-
gence, when adjacent grid cells contain very different internal quotas of the growth-limiting
nutrient, and so only when a non-smooth/discontinuous-like quota distribution exists. For
most areas of the ocean, quotas may not differ that drastically in adjacent grid cells, and so
not exhibit the necessary sharp gradients that introduce error.

Additionally, sustained error requires that convergence is also sustained in time. For a
pulse of convergence with large error, this error should be reduced on daily timescales as
the cells adjust to their new environmental conditions. I.e., for an overestimated growth rate
at an initial timestep, at the following timestep, the quota will complementarily be smaller,
and the growth rate consequently smaller; both the quota and the growth rate continue to
adjust away from the error until the population converges to homogeneity, in the absence of
continued input of new heterogeneous cells. Thus, only continual convergence would result
in a steadily large error.

The largest error should then occur for a sustained convergence of small amounts of
cells with large quotas and large amounts of cells with minimal quotas. An example of
this in the ocean is downstream of productivity hotspots, where a few cells still storing
much nutrient continuously merge via an eddy-induced filament into an oligotrophic area
consisting of a population surviving at a subsistence quota. This would have the effect in
models of amplifying growth rates or storage quotas significantly in these areas.

It should be noted that other uncertainties and error of ocean biogeochemical modeling
may dwarf this inherent error in most cases. Steinberg et al. (2011) showed that the dif-
ference between four methods used to estimate numbers of total and live cells is of order
10% and can be as great as a factor of two. In other words, if we could model each cell
individually, our model would likely contain at least 10-100% error. More generally, much
uncertainty exists among many characteristics of biogeochemical marine modeling: esti-
mates of net primary productivity differ significantly among different models (Saba et al.
2010).

The examples of very significant error presented here (error of 500%) arise from deter-
mination of the growth rate by the phosphorus quotas ranging by an order of magnitude, as
in (Burmaster 1979). But in much of the ocean, the limiting growth rate is nitrogen, which
typically ranges in cell quotas by only about a factor of two (Dortch et al. 1984). And so,
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quota models running with nitrogen as a currency should give lower error. However, the
potential for large error remains, since even a factor of two difference in quota can lead
to significant error when small numbers of larger cells and large numbers of smaller cells
converge.

A.7 Conclusions

An averaging error is inherent in multi-dimensional cell quota modeling when representing
a converging, heterogeneous population as a single point. This error results most drastically
from flows between sharp differences in cell population sizes and quotas. In most of the
domain of ocean models, we would not expect much sharp gradients. However, these fronts
emerge in models that resolve eddies and filaments. The averaging error would result in an
artificially high prediction of growth rate in these areas of convergence. Here, we present
a computationally inexpensive way to correct for this error diagnostically in quota models
in these areas. A few lines of code within any advection scheme can quickly contribute the
factor by which to modify the growth rate of a grid cell in accordance with the heterogene-
ity of the incoming population. This method is a feasible, simple way by which to avoid
the artificial numerical effect of the convergence of a heterogeneous population. With this
corrective method, we propose the utility of the population level quota models at regional
and global scales.
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S dQ Qmin

Figure A.5: Schematic of the cell quota model, illustrating the flow of nutrient from external con-
centration S to the varying internal storage quota 5Q and the fixed minimum quota Qin.

A.A Appendix

A.A.1 Equivalent Population and Individual-based Quota Models

The quota model

We build an idealized quota model of phytoplankton and one nutrient (Burmaster 1979;
Caperon and Meyer 1972; Droop 1973). The total quota Q (internal nutrient concentration,
gmol cell-1), consists of the sum of a minimum amount, Q,..n, and a variable amount of
'luxury' storage, 3Q (Figure A.5).

The rate of external nutrient uptake p (pmol cell-' day-') is calculated with a
Michaelis-Menton limitation by the external nitrogen concentration S (pmol m- 3):

S
P = pmax (A.9)

where pm,,x is a maximum uptake rate and Kp the half-saturation constant.
The size of the quota then controls growth rate p as:

Q = Q"in (A.10)
Q

where p. is a maximum theoretical growth rate.
The population model conserves biomass, the product of the quota and the population

density X (cells m~ 3), by conserving the biomass of each of the two quota components,
X8Q and XQmin (imol m~ 3 ). Three differential equations describe the chemostat system,
which has no analytic solution:

d s
- = D(SO - S) - pX (A.11)

dt
d(XQmin) (XQmin) -D(XQmin) (A.13)

dt
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where D is the dilution rate (day-) and So is the nitrogen concentration of the external
inflow (pmol m- 3) into each box. For constant Qin, this system of equations is exactly
that of Burmaster (1979). With constant Qnin, the rate of change of the population density
X is derived from Eqn. A.13 as:

dX
X= pX - DX (A.14)d t

Combining Eqns. A.12 and A.14 gives a differential equation for the storage quota SQ. For
constant Q,nin, the rates of change of the two components of the cell quota for the population
model are thus:

d( SQ)
=Q p - PQ (A.15)dt

d -(Qin) = 0 (A. 16)
dt

The individual-based model

The IBM resolves each individual as an analog of the population model, referring to the
minimum and storage components of the quota as qnin and Sq, respectively. In the IBM,
q,nin fluctuates within fixed bounds, representing growth and division of cells, and so is fixed
over a time average. The rates of change of the two components of the quota of the ith cell,
analogous to Equations 8 and 9, are calculated as:

dt = p (i) - (p (i)q 1 n,, (i) (A. 17)

d (qrnin (i))
dt = j (i)q,nin (i) (A. 18)

A cell divides once its protein content reaches a given limit q,inL, with each resulting cell
containing half of the former values of q,ini and Sq (Figure A.5). The number of cells to be
transported in and out of a box is calculated as the product of the dilution rate, the timestep,
and the number of individuals. This number of individuals are randomly selected from
the population and then transported, transferring their corresponding q,.in and Sq values.
Uptake and growth rates are calculated for each individual cell (Eqns. I and 2). The rate of
change of the external nutrients S is calculated in the same way as Eqn. A.1 1 by summing
up the individual uptake rates. The mean value of each quota sand the number of individuals
are recorded at each time step.

IBM and population model equivalence

Hellweger and Kianirad (2007b) provide an in-depth analysis of the equivalence of pop-
ulation and IBM models for a point balance. Output of the model in this study visually
demonstrates this equivalence (Figure A.6, D = 0.5 day-). The two models show closely
matched external nutrient concentration, internal quotas, and the total number of individ-
uals in the flask for the transient as well as steady states. The synchronous cell life cycles
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Figure A.6: Output of the population model and its individual-based model (IBM) analog for a point
balance (D = 0.5 day-'). The external nutrient concentration S (A), the internal storage quota 3Q
(B), the minimum quota Qmin (C), and the number of cells are visibly equivalent for the two models.
Due to the nonlinearity from the synchronous cell growth, the steady state quota of the population
model differs by 0.3% from that of the IBM.

of the IBM result from identical initial conditions, but the nonlinearity of this oscillation
prohibits exact numerical equivalence.

Determining the degree of equivalence thus requires comparison of the numerical solu-
tions. To compare the models, we quantify the departure of the population model from the
mean quota of the individuals in the IBM. We calculate the error of the population model

with respect to the individual model for the storage quota and for the population density
(see below). In Figure A.6, the error for 3Q with respect to 3q of the IBM is 0.3%.

The ability to represent the population as a continuum breaks down as the population
size decreases. This occurs as dilution rates approach the effective maximum growth rate
of the cell population. As this happens, the steady state population size approaches zero;
'washout' in chemostat experiments. As an objective criteria for the continuum assumption,
we report model output for which the IBM resulted in at least 5,000 individuals for every
grid box.

169



Quantifying the degree of equivalence of the population and individual-based models

For the density-based population model, variables converge to fixed values at steady state.
But for the IBM, the explicit cell growth and division causes the quotas to oscillate at steady
state. The blending of two populations gives an unpredictable period and shape of this
oscillation, and so, quantifying model equivalence required averaging model output over a
period of time. Convergence to a steady state value occurred when results were averaged
over at least fifteen cell cycles; all results were averaged over at least this many cycles. All
model output presented here was spun up for fifty days, and then averaged over fifty days
at steady state.

The storage quota 6Q changes with the environment, and thus is the comparison of
interest between the continuous and individual models. In the IBM, explicit cell division
warrants first weighting 3 q by the number of individuals at each time step, producing a
weighted time series, 3 q', as:

6q'(t) = 8q(t) *n(t)* T L n(t) (A. 19)

where T is the total number of time steps in the fifty day period, and n is the number of indi-
viduals at a timestep t. The error between the population and individual model predictions
of the storage quota is then calculated as:

Error = -) (A.20)

Considering the error in this way, as a mean, ensures that an error of zero is possible, should
the median of the IBM fluctuations exactly match the population model.

The ability of the quota model to match the IBM in terms of the minimum quota serves
as the underlying premise from which the two models are deemed equivalent. Thus, calcu-
lating the mean error as above for the fixed quota, Q,,in, relative to the weighted time series
of qmjn serves as calibration of the two models. Due to nonlinearities in the IBM, this error
was not exactly zero, but was assured to be I % or less for all results.

Parameter Values

The model uses the allometric relationships for nitrogen uptake and storage published by
Litchman et al. (2007) to calculate Qrnin, Pnmx, and Kp from cell volume (Table 1). The
theoretical purpose of this study permits the use of these empirical relationships despite
uncertainties and species variance of actual cell budgets (Lourenco et al. 1998; Dortch et al.
1984; Geider and La Roche 2002). Cell volume was calculated from a prescribed diameter
of 10 pm assuming a spherical shape.

In the IBM, the parameter q,,IinL determines the frequency of cell division. When q,,in
reaches q,ninL, the cell divides, and the new cells each contain half of q,,inL. The time average
of q,,in is thus analogous to Q,,i, in the population model. Since the time average of q,nin
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is not prescribed directly, we specify qninL so that q,ji, equals Q, i. Theoretically, qninm
relates to the time average of q,..jn by a factor of 21n(2), since the growth rate is defined as
a doubling at an exponential rate. We thus specify:

qintL = Qynin (21n(2)) (A.21)

The external nutrients were depleted to such low levels immediately following syn-
chronous cell division that the rate of synthesis exceeded uptake rate, which affected the
ability of the models to accurately match. To avoid this effect, quotas of cells were initial-
ized with a range of quota values: an equal distribution from q,niL/2 to q, i-*

The maximum growth rate p. sets a second biological timescale in the quota model,
after the maximum external nutrient uptake rate V,,,. The two timescales are related by con-
sidering P.i as a maximum synthesis rate. Then, the ratio r = V,,, : i0 Q,i, represents
the ratio of external nutrient uptake to biomass synthesis, and thus influences the location
of the bottleneck limiting cell growth. For r greater than one, maximum synthesis is smaller
than maximum uptake, and cell growth is likely to be limited by synthesis, which allows for
the accumulation of nutrient storage: a larger 3Q*. For r less than one, cell growth is more
likely to be limited by external uptake, minimizing 3Q*. This ratio represents a particular
phytoplankton physiology. We determine this ratio r, and then calculate the corresponding

P- parameter as:

P r = ""IW (A.22)
r Qtmin

We can gain more insight into our model dynamics by examining the expression for the
steady state quota, Q*, derived from Eqn. A.15:

p = pQ* (A.23)

Substituting in Eqns. I and 2 then gives Q* in terms of parameters and external nutrient
concentration:

*Q P+nax S (A.24)
Q* = 1l + 1P.Qnin Kp +S/

We can then rearrange the above to express 6Q* normalized by Q,in,, and substituting in r,
as:

_Q S= r S(A.25)
Qmn Kp + S

The normalized storage quota is thus limited by the external nutrient uptake, and can reach
a maximum value of r. For all results shown here, r = 2.

For each simulation, the model was run to equilibration with an explicit Euler forward
scheme with a 0.6 hour time step. Box volume was 10-7 m 3 and So was 20 pM.

A.A.2 Pseudocode for the numerical scheme in 2D

For point (i, j) in a 2D model, the unmodified growth rate p is:

Pii = yma - "" (A.26)
Qi,'
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For positive velocities u and v, incoming cells with quotas Qij, and Qi,_1 can cause the
heterogeneity. The growth rate of this incoming population, Pin,avg, is:

Ain,avg = /max QinavgQmin (A.27)
Qin,avg

where

Qin,at'g =uX1 1 ,(Qi, 1 ) + vXi (Qi,.-I) (A.28)
uXi 1j + VXij _

where X is biomass concentration. The weighted average of the modification that incorpo-

rates the heterogeneity, phet, is calculated from each of the incoming quotas:

Ain,het = inax [' i-jI (iIj - Qnin + uX1,1 1  -
.Uxi_1,7+vXij_1 Qi_1,j uXi_1,7+vXijI QijI

(A.29)
The original growth rate calculation can then be modified to reflect ratio of these two:

Qij- Qmin nhe

Ii,j = Imax - 'inhet (A.30)
Qi/j Pin,avg

Results suggest applying this modification conditionally, for when error is predicted to be

greater than 1%:

if

/in,avg > 0.01
Pinhet

then

lij =Amax Qi, -

- Qmin in,het Qi,j in,avg

else

Pij =PmaxQi, j - Qmin
NI~j= max 1

Qij
end
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