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Abstract

We study the flow generated when a handheld fan is waved. This fluid-structure in-
teraction problem is investigated through precision experiments, using an oscillating
semi-circular elastic plate as a reduced analog model. The aerodynamic performance
of the fans is systematically characterized for a variety of geometric and material pa-
rameters, as well as the amplitude of the periodic driving. We demonstrate that the
bending stiffness of the structure can be tuned to maximize the output of the gener-
ated airflow, while simultaneously minimizing the input power. A design guideline is
established for this optimal conditions based on matching the driving and the natural
frequencies of the plate. Closer to the handheld fans, we then consider a discrete
analog model comprising an array of overlapping strips. Unlike homogeneous plates,
these discrete designs deform passively into shapes with finite Gaussian curvature
and further enhance the generated flow. Finally, we explored the effect of corrugation
on the flapping plate and found that the fan employs the interesting mechanism of
reversible buckling to simultaneously increase the velocity of the flow and reduce the
load.

Thesis Supervisor: Pedro M. Reis
Title: Associate Professor of Mechanical Engineering and Civil and Environmental
Engineering
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Chapter 1

Introduction

In nature, flapping plates structures are often exploited dynamically in the biolocomo-

tion of flying insects, birds and fishes. The animals are not only required to generate

lift equal to their weight but also sufficient lift for acceleration from rest [56]. Some

flying animals such as bats and insects were found to be able to generate maximum

lift of up to 5 times the body weight despite the small wing area and low flying

speed [40, 64]. The ability of the wings to generate lift through flapping locomotion

cannot be simply described using fixed wing aerodynamics, since large wing deforma-

tion occurs over the flapping cycle [56].

Insects have evolved over the past 400 million years and the designs of their wings

were optimized for flapping flights [16]. There are several studies that focused on

the structural designs of insect wings: the vein thickness distribution on a dragonfly

wing [28], the functionality of corrugation in dragonfly wings [47] and the venation

network of various insect wings [16]. In particular, Combes and Dainel measured the

flexural stiffness of the wings of different insect species and showed that stiffnesses of

the wings depends on the cube of the span while the chordwise flexural stiffness to

depend on the square of the chord length [12]. This result pointed towards a universal

scaling and anisotropy of the wing designs, even though there is a wide variation in

the venation networks across species of the insect [12, 16]. Combes and Daniel [13]

also identified the thicker and stiffer veins along the leading edge as a common feature

among insects, which is the main contributor to the anisotropy of the wings. On top
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of the overview of insect flexural stiffness, studies on specific features such as the

effect of a vein joint on the flexibility and the aerodynamic force generated by the

wings of a bumblebee [44] suggests that flapping wing structures can be optimized by

exploiting unconventional structural designs.

While studies of insect flight was of academic curiousity in the past, there is

now great interest in the studies of the aeroelastic behavior of flapping wings due

to the advancement in autonomous control, miniaturization of electronic components

and interest in small scale flying vehicles [56, 61]. Micro Aerial Vehicles (MAVs), or

a class of Unmanned Aerial Vehicles (UAVs) that are smaller than 15 cm in wing

span, have become increasingly popular in military and commercial operations due

to their ability to avoid detection and agility. Weight and size constraints motivates

the optimization of every aspect of the flapping wing drones, including kinematics

and structural designs. At the scale of the MAVs, flapping is the main mechanisms

for propulsion 164] and many research groups had turned to drawing inspiration from

real insect wings. Examples of bio-inspired MAVs are the Nano hummingbird [311,
insect scale Microrobotic Fly [74] and DelFly [36]. Flexibility of the structure was

found to have significant impact on the optimal thrust production of the wings and

the structures undergo large deformation during the flapping [61].

A more common biomimetic object is the hand fan. It is used dynamically to

generate flow and used as a cooling device [541 and its design was inspired by a bat's

wing 151]. In this thesis, we present a study of using the foldable hand fan as an analog

model for flapping wings. We explored the effect of bending stiffness on the flow

generation of planar homogeneous plates, followed by three different heterogeneous

plates: commercial hand fans, discrete model fans and corrugated fans. Even though

the specific geometry is different, the aim is to study the effect of discrete nature of

the elements of the hand fan and the effect of corrugation.

12



1.1 Past Studies of Flapping Plates

The optimization of flexural properties in fluid-structure couplings is ubiquitous in

the engineering context of vortex-induced vibrations [73], and in biolocomotion [60]

(e.g., in bacterial flagella [35], fish fins [67] or insect wings [61]). More recently, the

instabilities in flags had also been studied [19, 43] and proposed as a mechanism for

power generation [6]. While the influence of elasticity on the optimal locomotion of

fish [20, 21, 68] and the resonance of insect wings [29, 42, 49, 52, 53, 57, 65] on the

generation of thrust and lift have been widely explored as flat plates or foils, the effect

of structural features on the performance of flapping wings remains elusive.

The maximum and optimal thrust production was found to occur near the resonant

frequency of the structure in a number of flapping plate studies [17, 22, 42, 49, 52].

For self propelled models, the optimal thrust production had occured at resonant

frequency of as low as 0.41 of the natural frequency [29] to a range of 0.65-0.85 of the

natural frequency [53, 65]. For comparison, the measurement of natural frequency

of the dragonfly wings the flapping frequency is only at a fraction of the structural

frequency [9]. The occurence of improved performance of plates at lower frequencies

is thought to be due to the deformed shape being favorable to thrust production [53].

It was also observed that the system also simultaneously self-selects the conditions

to achieve a Strouhal number of 0.25-0.35 [76], which are also exhibited by real

fishes [67, 63].

Many studies also showed that there is an intermediate flexibility at which the

wings produce the optimal thrust [2, 4, 24, 25, 42, 46, 49, 50]. The study of the flexi-

bility of the flapping structure can be largely classified into four categories: variation

of flexibility through changing the thickness or material of the homogeneous flapping

plate [65], in chordwise [2, 23, 42, 49, 50, 52], spanwise [4, 24, 32] and both chord

and spanwise directions [25, 45, 46]. The chordwise case can be studied using two-

dimensional [2, 42, 491 or quasi two-dimensional [17, 23] geometries. In a study, it

was found that intermediate flexibility improved the thrust production by 1-2 times

and doubles the efficiency [17]. The motion of the trailing edge of the airfoil was
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also observed and foils with intermediate flexibility were found to produce favorable

deflection that alters the effective angle of attack of the airfoil [4, 53]. Intermediate

spanwise flexibility was found result in about a 50% increment in thrust and lower

flexibility were found to cause the tip of the wing to move out of phase with the

root, thus diminishing the thrust production [4, 24]. In a study that changes both

the chord and spanwise direction, it was also found that increasing the flexibility of

the leading edge structural member has a detrimental effect to the thrust produc-

tion and increasing the flexibility of the wing relative to the leading edge improves

thrust [46]. Most studies had relied on only changing the materials or thickness of

thin homogeneous plates, while steering clear of more complicated structures. For

studies that used composite wings [25], the studies again focused on the materials

and little structural details were explored.

The flapping behavior is also studied using a modified versions of the Euler-

Bernoulli beam theory and order of magnitude scaling of forces [17, 20, 29, 52, 651.

Thiria and Godoy-Diana characterized the flexibility of the wing by the ratio of inertia

to elastic force [65]. Kang et al.. additionally scaled the added mass and aerodynam-

ics term with non-dimensional numbers to derive the optimal thrust frequency [29].

While using order of magnitude scaling to study flapping motion is not new, most of

the studies had focused on finding optimal frequency with few mention on effect of

amplitude [49].

While there are considerable efforts in the aeroelastic study of flapping structures,

there are still a few open questions. In terms of operating conditions, many literature

focused on the flapping frequency and only a few studies investigated the effect of

linear flapping amplitude [76, 49]. How the angular flapping amplitude affect the

thrust generation was not addressed by past studies. Flapping structures in nature

have complicated features; the effects and functionalities of (1) corrugation, (2) stiff

discrete members held together by compliant materials, (3) distribution of venation

network of the insect wings, (4) porosity, and (5) aspect ratio of the wings on thrust

production were not studied in detail. In this thesis, we will address our question

on flapping amplitude and the effects of the first two structural designs. Finally,
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Schnipper et al. [58] studied the vortex structure generated by a two dimensional foil

flapping in a stationary soap film but otherwise, the work reported in the current

thesis the first time the hand fan is studied in the context of aeroelasticity.

1.2 The Hand Fan as an Analog Model to Study

Flapping Structures

Flexible handheld fans have been in existence since ancient Egypt and Assyria [54j.
In Egypt, fans were symbols of wealth and power and divine items used in religious

ceremonies. Because of the esteemed status of the fans, they were made with exotic

materials such as ostrich feathers and embellished with precious stones and met-

als [54]. The Japanese were credited for inventing the folding fan based on historical

writings by Japanese and Chinese scholars [51].

A diagram depicting the different parts of a hand fans and terminology are shown

in Fig.1-1. The foldable fans typically comprise an array of discrete radial sticks

that narrow to become ribs, themselves attached to the leaves. The sticks are pinned

together at the head by a rivet which is the point of rotation for the sticks. The top

and bottom sticks are called guards [41]. The sticks and ribs are traditionally made

of wood, and the leaves are connected by fabric, threads or paper [54]. Foldable fans

with ribs that are connected by fabric leaves are known as the pleated fans while fans

with ribs that are only connected at the tip with threads or ribbons are brisd fan [3].

Since the advent of the portable foldable fan, their use as an instrument to cool

one down became increasingly popular. The to and fro axial motion about one's hand,

displaces the air around the fan and generates vortices, thereby inducing flow. The

foldable fans were introduced to Europe in the 16th century [3] and the craftsmanship

of high-end artisanal fans has been passed down through generations; the geometry of

the layout, together with materials, are careful selected to enhance the aerodynamic

performance [381.

Based on historical writings, the design of the foldable hand fan was also inspired
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rivet-

sticks

head ribs or slips

guard

leaves
DIAGRAM A

THE ANATOMY OF A FOLDING FAN

Figure 1-1: The parts and terminology of a pleated hand fan. Figure adopted from [41]

by the wings of a bat [51]. In fact, bats are not the only animals that possess a

stick-ribs-leaves structure. In marine biology, animals that use the fins for propulsion

such as fishes [34] and seahorses [15] have radial arrays of bony fin rays that form the

surface called the fins [34].

The wings of insects also have the stick-ribs-leaves structure. They consist of

tubular veins spread out over the plane surface of the wings also known as the mem-

brane. Even though the veins are made of similar materials as the wing membrane,

the increased second moment of inertia of the tube causes an increased flexural stiff-

ness [12]. For some species from the Lepidoptera (butterflies/moth) and Diptera (flies)

order, the longitudinal veins form a radial pattern [14]. In the Odonata (dragonflies,

laceflies) order, pleated structures were observed and the wings were observed to be

able to carry very high loads and buckle reversibly [47]. Hence, the foldable hand fan

is a good analog for these features in fish fins and insect wings.

1.3 Plate Bending and Vibration Theory

A plate is defined as a structural element where two of the dimensions are orders

of magnitudes larger than the third dimension. The plane formed by the two larger

dimension defines the face of the plate and the third dimension is the thickness [66, 70].
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The stress and deformation of a flat plate subjected to known loads or vibration are

well described using the Kirchoff-Love plate theory, which is an extension of the

Euler-Bernoulli beam theory [66, 70].

Assuming a characteristic length scale of a for the planar dimension and thickness

h, the way the plates carry load is highly dependent on the ratio of the thickness to the

planar dimensions a/h. Plates with a/h ~ 1 - 10 [70] can be regarded as thick plates

and the plate theory cannot be applied. For plates with a/h > 10, which is the case

for all the results in this thesis, the plate theory can be used, and depending on the

deflections relative to the thickness, the plate will either carry the load by bending or

through membrane forces. Plate theory can only be applied to developable surfaces,

or surfaces that have zero Gaussian curvature.

The governing equation for plates under pure bending is given by the Kirchoff-Love

plate theory:

+2 + =0, (1.1)x94 &X2&y2  &x4

V2V2 = 0, (1.2)

where is the deflection and V 2 is the Laplace operator. Under a transverse load

(perpendicular to the planar surface):

V2 -2 _q (1.3)
B

where q is the load per unit area and B is the flexural stiffness per unit length. For

the case where the bending motion is independent in one of the dimension (say y),

the Kirchoff-Love theory can be simplified to a form similar to the Euler-Bernoulli

equation
04 q- = - -- (1.4)
ax4  B

For plates under vibration, the governing equation is given by adding the D'Almebert

forces to Eq. (1.3):

BV2V 2 + ph = P(x, y, t) (1.5)
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where pp is the density of the plate and P is the excitation given by

P(x, y, t) = E fm(t)mn(X, y)
m=1 n=1

w(x, y, t) = Fmn(t)Wmn(X, y)
m=1 n=1

(1.6)

(1.7)

where fmn is the forcing term, Fn is the response term, Wmn is the normalized

mode shape, and m and n are the mode numbers. Assuming is sinusoidal in time,

-w2, where w is the natural frequency . For free vibration we have:

BV 2 V 2 Wmn - pphCnWmn = (1.8)

which is satisfied at every location on the plate. Hence, we have to integrate Eq. (1.8)

over the entire plate [30]

LL J BV 2Vg2 Wmn - pyhw WmndA = 0 (1.9)

and we define the modal mass Pnn and modal stiffness rmn (characteristic kinetic

energy and bending energy at mode shape mn) respectively:

Pmn = ph J

Km =

fW 2ndA

(1.10)J BV 2V 2 WmndA

where A is the area of the plate. The natural frequency can be found using

'f=in"n (1.11)
Pmn

and we will now have to find expressions for Wmn by considering an estimate of the

mode shape based on the boundary conditions.

We will now use Eq. (1.11) to derive the natural frequency of a rectangular plate

18



shown in Fig. 1-2 with one fixed boundary (x = 0) and free boundary conditions on

the other three sides, (x = a, y = 0, y = b). The boundary conditions are thus

a

b

x

Figure 1-2: x - y plane of a rectangular plate.

1.

W =0, = 0
OX

at x = 0 (1.12)

2.

a [02W
V a=a+(2-VV Oy iy2

a2W

19X2I
-0 at y=z0,b

(1.13)

=0 Vx= a ~02W

aX2 at x =a

(1.14)

A way to estimate the natural frequency in Eq. (1.11) is to assume a mode shape that

satisfies the boundary conditions. A solution for W is given by

a 2W

ay2

OW
W = 01 =a 0 at x 0

a2 w
2 0 at y = 0,b and = a

OX2
(1.15)
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Using a combination of sinusoidal and linear functions, we find that

n7ry ?Tr m7F 7y
W = sin sin " M ) - (M X) sin(b ) (1.16)

defines the mode shapes satisfies Eq. (1.15). Note that in order to satisfy the boundary

conditions, m = Z+ and n = N. Since the plate is unconstrained in the y direction, we

can assume a pure bending scenario, the surface is developable (Gaussian curvature

is zero) 15]. To have zero Gaussian curvature, we require n = 0:

W -sin m((1.17)

To get the mode shape for the first mode, we substitute m = 1 into Eq. (1.17):

p = (27r 2 - 9) abph

2ab /r 4

r = B - (1.18)
7r a

The natural frequency can then be estimated by substituting Eq. (1.18) into Eq. (1.11):

7r 2  B B(
w 0.356 - = 3.51 (1.19)

a ph pha4

For a plate of similar deflection distribution but with different geometry, the nat-

ural frequency can be expressed as

B
w=k B (1.20)

pha4

where a is a characteristic length scale of the plate and k is a dimensionless prefactor

that depends on the geometry of the plate. We will use this expression in Chapter 3 to

obtain the prefactor for a semi-circular plate. The experimentally obtained prefactor

will then be used to estimate the natural frequency of plates beyond the limits of our

instruments.
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1.3.1 Orthotropic Plates

The heterogeneous plates in our study have regular linear or radial structural patterns

(detailed descriptions of the heterogeneous plates can be found in Section 2.3). Even

though there may be local variation or discontinuities in flexural properties, we can

idealize the global behavior of the plates to be similar to an orthotropic plate. In

solid mechanics, a material or structure is known as orthotropic when its properties

have symmetry along three mutually orthogonal axis. The strain is related to the

stress in an orthotropic material by [7]

Ezz'Yyz

1,xy-

1

-M

Ex

0

0

0

lEy

Eyz

-

0

0

0

vz

Ez

0

0

0

0

0

0

Gyz

0

0

0

0

0

0

1
Gxz

0

0

0

0

0

0
1

Gxy-

o-XX

o-yy

o-ZZ

cryZ

cYXZ

For a plate, we consider the plane stress condition which makes the assumption

that the plate does not carry stress in the direction of the thickness: ozz = a =

cXZz = 0. Thus the stresses in a plates made with orthotropic material are [37]:

1
o-yy 

- XV

where E, = vyEx = vxEy, vx and

Young's Modulus about the x or y

E, Ev 0 Exx

E E 0 eyy (1.21)

0 0 (1 - vxvy)Gxy yxy

vy are the Poisson ratio and Ex and Ey are the

direction.

(1.22)
o-vZ G z 0 [j

o-yz- 0 GyZ - Yyz

Note that even though the stresses a-, and o-yz are assumed to be negligible in

plate bending, vertical shear forces are required for the equilibrium of the plates [70].
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MX1 
h/2

my = -h/2 Oxy, zdz (1.23)

i= I zdz (1.24)

_QY -h/l2 -Olyz

where Mx, My and Mxy are the bending moments and Qx and Q, are the shear force.

For our application, we want to look at structurally orthotropic plates made with

isotropic materials, such as corrugated plates or plates with stiffeners. To calculate

the forces and moments, we can substitute Eq. (1.21) into Eq. (1.23) and (1.24), using

Ex = Ey = E and vx = vy = v, and also using the strain curvature assumptions, we

obtain:

M -B,+ V!

MY = -By +Y vX (1.25)

MY By (1 - v)2W

where Bx, By and Bxy are the effective flexural stiffnesses relating moments to cur-

vature.

For some cases such as plates with stiffeners, we can obtain the flexural stiffnesses

through direct evaluation of the the integrals in Eq. (1.23) and (1.24). For corrugated

plates, the flexural stiffness are dependent on the effective curvature and Castigliano's

second theorem was used to derive the effective flexural stiffnesses proposed by Bri-

assoulis [8]. The equations for the effective flexural stiffnesses derived from the two

different methods for corrugated plates are presented in Chapter 4.
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1.3.2 Anisotropy of the Hand Fan and the Effect on Natural

Frequency

The stiffer sticks/ribs of the hand fans are arranged in a radial fashion and the ribs

are connected to adjacent ribs by compliant leaves. This radial arrangement resulted

in different flexural stiffness in the radial and tangential direction and the hand fan

is polar orthotropic. If we assume that the tangential flexural stiffness is negligible

compared to the radial flexural stiffness, we can consider each stick/rib of the hand

fans to behave like a beam and derive its characteristic natural frequency based on

the flexural stiffness and the mass of the fans. For a cantilever beam the natural

frequency is given by [30]

/#5 EI
L2 pAb

#3 = 0.597-F

#= - (1.26)

where j is the mode number of the vibration and area Ab refers to the cross sectional

area of the beam. For our hand fans, we can only experimentally measure their mass

and we express the average mass per unit length, m = pA = f where M is the mass

of the fans and R is the radius of the fan.

For the hand fans, we will test our assumption that the hand fans are behaving

like beams in Chapter 4 by using the following expression for the natural frequency

of the hand fan:

W f E (1.27)
L 2 pAb

where kf is a dimensionless prefactor. If the hand fans do vibrate like beams, we will

find kf to be a constant.
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1.4 Outline of Thesis

In the current introduction, we have provided a literature review and highlighted

some of the relevant theory that will be used throughout this thesis. Chapter 2

describes the experimental apparatus used to conduct our studies, the process of

choosing the hand fans and the fabrication of the model fans. Our study is divided

into two main categories; flat homogeneous and heterogeneous plates. Our results for

the homogeneous plates and theory to understand the scaling of flapping amplitude

are reported in Chapter 3. In Chapter 4, we present the experimental results for the

commercial hand fans, discrete model fans and corrugated fans. We will also contrast

them with the corresponding values for the homogeneous plates. Finally, a summary

of the outcomes of the thesis and areas of future work are provided in Chapter 5.
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Chapter 2

Experimental Apparatus

In this chapter, we describe the setup and calibration for the experiments and method

for the fabrication of the specimens. We designed and constructed an experiment set

up that imposes the flapping motion of the fan, measure the flow generated by the

fan and the torque required. The method for obtaining the instantaneous deflection

of the fans during the flapping motion will also be presented. The chapter will also

address the instruments and methods used to measure the natural frequency of the

hand fan and plates. We then discuss the process of selecting the Spanish style of

hand fans for this study and describe the structural elements of and materials used

on the hand fans we acquired. Based on the design of the hand fans, we present the

methods for making model fans that mimic two structural features of the hand fans.

Semi-circular flat plate fan of various thicknesses were used as a baseline comparison

and discrete model fans were designed to study the ribs-leaves feature of the hand

fan. We also introduce corrugation to the thinner plates to study its effect. Finally,

for our study we first evaluated the flexural stiffness of the hand fan by performing a

precision load deflection test and the results for selected fans are also presented.
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2.1 Flow Generation Experiment

In order to study the effect of structure on flapping fan behavior we designed an ex-

perimental set up that imitates the fan flapping motion (Section 2.1.1) and measure

the flow output (Section 2.1.2). In Fig. 2-la, we present a photograph of the exper-

imental apparatus used to measure the flow output and input torque of handheld

fans or, their simplified analogue models. A motor is aligned horizontally with the

shaft connected to the input shaft of the 1:5 step down gearbox. The output shaft of

the 1:5 right-angle speed reducer is aligned vertically and the motion is transmitted

(a)

(b)

Figure 2-1: (a) A fan (1) is driven by a stepper motor (2), connected to 1:5 step down
gearbox (3) followed by a torque sensor and encoder (4). The generated velocity is
measured with an hot-wire anemometer (5). (b) A top down schematic indicating
the flapping amplitude a and the angle between the hot-wire anemometer and the
center line of the flapping motion. The red strip is on the x-y plate and on the same
heigh as the symmetry line of the fan and indicates the range of positions the hot-wire
anemometer.
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through to a rotary torque sensor and encoder to a 6.35 mm diameter D-profile stain-

less steel shaft. The D-profile prevents the connector clamps inserted from slipping

and D-profile shaft collars were used to secure the connector clamps along the axis of

rotation. There is a stainless steel shaft coupling between each piece of equipment.

The couplings match the diameter of the connector shaft of each piece of equipment

to ensure that all the connections are aligned properly and prevent relative slip.

The control and operation of the flapping motion set up is described in Sec-

tion 2.1.1. For flow measurement, we used a TSI 1210 hot wire anemometer. Before

using the hot wire anemometer, calibration was carried out for flows between 0.3-11

m/s. The calibration methods and set up are described in Section 2.1.2. In the exper-

iment, the hot wire anemometer was placed such that it is always pointing towards

the axis of rotation and in plane indicated in Fig. 2-1b. Finally, to determine the

surface deflection of the fans or models during flapping, strobe-trigger method was

used to capture still photograph explained in Section 2.1.4.

2.1.1 Control of the Flapping Motion

The rotary stepper motor (NEMA23) was controlled by a Copley Controls Stepnet

stepper amplifier through an ethernet cable via a Kvaser CAN communication adap-

tor. This allows us to program the motion using National Instrument LabView. We

are able to control the stepper motor accurately to 0.5' and using a 1:5 right-angle

speed reducer (Boston Gear) between the motor and the shaft, we improved the

accuracy of the control to 0.10 and hence smoother flapping motion.

Using the manufacturer-provided motor control functions for the Copley amplifier

for LabView, we programmed the motor to drive the motion for a series of amplitude

at a fixed frequency. We imposed its angular position: e(t) = a sin(wt), where a is

the angular amplitude (Fig. 2-1b), and t is time. The driving frequency was fixed at

i = 2 Hz to match comfortable operation conditions of handheld fans and the angular

amplitude was varied over the range 8 < a [0] < 56.
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2.1.2 Measurement of Flow Generated by the Fans or Models

Due to the transient nature of the flow generated by a flapping structure, we require

a measurement instrument that has high acquisition rate. While pitot tubes are

more accurate for steady flow, it can take up to a couple of seconds to stabilize.

Assuming the comfortable flapping frequency for a person flapping a fan is -2 Hz

and every complete oscillation passes through the middle of the flapping motion twice.

generating a ~4 Hz signal and thus the minimum sampling rate required is -8 Hz.

The hot-wire anemometer we used (TSI 1210) can handle transient responses up to

500 Hz, which is sufficient for our experiment.

Before using the hot wire anemometer, we have to calibrate the probe. For low

speed, Ug we calibrated the probe by mounting it on a high precision linear posi-

tioner (Parker Daedal model 404150XRMP-D2-H1L1) attached to a stepper motor

and the motion of the stepper motor was controlled using LabView. As the hot wire

anemometer moves together with the linear stage, the relative velocity of the air

will be the speed of the movement. The linear stage was made to move at a speed of

Ug = 0.3-0.7 m/s and the output voltage from the hot-wire anemometer was recorded

using Logger Pro (Vernier Pro Software). For calibration at higher speed, the setup

anemometer anemometer holder axial adjustment
horizontal
adjustment Pitot tube tip

anemometer
vertical adjustment

clips

anemometer sensor slot
axial adjustment

Pitot tube mounts on
anemometer holde the NEAR side of the

anemometer

translation stage

Pitot tube base Pitot tube assembly
detachment point for
removing Pitot tube
assembly

Figure 2-2: Photograph of the experimental setup for higher air flow Ug hot wire
anemometer calibration and the pitot tube assembly. Figure adopted from [261.
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in the 2.671 Instrumentation and Measurement lab shown in Fig. 2-2 was used. The

flow is produced by releasing compressed air from a tank through a 100 mm inner

diameter cylindrical tube. A pitot tube (Omega Engineering PX138-0.3D5V) and the

hot wire anemometer were placed at the opening of the tube. They were positioned

in the middle of the cylindrical tube opening to avoid significant boundary layer ef-

fect. The output pressure P. ~ {300, 450, 600} kPa will typically produce a flow of

Ug = 4 - 12 m/s in the cylindrical tube. At each pressure setting, the pitot tube was

first used to accurately determine the steady gas flow speed U in the cylinder. Then

the output voltages of the hot wire anemometer probe for velocities of Ug = 5 - 11

m/s were obtained for our experiments. The constants from the calibration can then

be found by fitting Vane, the voltage measured by the anemometer, and U9 , the speed

of the air, to the equation provided by the manufacturer Vie C1 + C2 U, as

shown in Fig. 2-3.

30
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Figure 2-3: Plot of Ve against Uuse to derive

of the hot wire anemometer. The fit of the data

C1 = 6.73 0.6 and C2 = 7.06 t 1.3.

the constants for the calibration
is V e C Ug + C2 , where
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The calibrated hot-wire anemometer can now be used in the flow measurement

experiment. The instantaneous velocity of the generated flow, u(t), was measured by

setting the single point hot-wire anemometer perpendicular to the axis of rotation,

at a distance d from the fan tip and an angle 0 from the mid point of the flapping

tip motion, along the x-axis. Measurement of the velocity was carried out in the

x-y plane on the same height as the symmetry line of the fan indicated by in Fig. 2-

1, by having the center of the flapping motion be offset by an angle of 9, which

allowed us to obtain the corresponding data without having to change the position

of the hot-wire anemometer after every single data point. Based on the time average

velocity field of velocity the final measurement location of d = 0.AR and 0 = 0'

was selected. The specific results are presented in Section 3.3. For collection of

data, the output of the hot-wire anemometer is collected via the National Instrument

Data Acquisition device (USB-6002) and processed using LabView. In Fig 2-4, we

present a 2 s sample of the instantaneous velocity, u(t), measured by the hot-wire

anemometer using LabView. Note that the flapping frequency is set at 2 Hz, but

there are four peaks every second. This is because there are two symmetrical passes

1.5

1- 1

0.5

0
0 0.5 1 1.5 2

Time, t (s)

Figure 2-4: A 2 s sample of velocity measured by the hot-wire anemometer. For this
signal, h = 254 pm, R = 200 mm, 0 = 0', d = 20 mm and w = 12.6 rad/s (2 Hz).
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of the fan in every complete oscillation when 0 = 0 and the hot-wire anemometer

does not distinguish the direction of the flow. The peaks are of approximately the

same height, indicating that the plate is flapping symmetrically.

2.1.3 Torque Measurement

We also want to know the torque required to impose the flapping motion, so that

we can evaluate the input power. The instantaneous rotational input power can be

computed using Pi = Te where r is the torque and 0 is the instantaneous rotational

velocity. Hence, we added a rotatory torque sensor and encoder (Futek TRS 605) to

our set up (Fig. 2-la) to measure the torque. The TRS605 measures torque up to

10 N/m with an uncertainty of 6 7 = +0.02 N/m and can measure the position of

the fan up to 0.5'. The typical magnitude of torque is in the range of IT - 0.5 - 2

N/m. Due to taring procedures where we subtract the torque measurement without

the fans from the overall torque measurement, the uncertainty is 26 Tl/TI _ 2 - 8%.

Both sets of data were recorded simultaneously and we can then extract the phase

data of the torque output. Again the output signal is collected using the USB-

6002 and processed using the same LabView program for the data collection of the

flow generation. This allows us to record both the torque T and angular position e
together with the corresponding output flow, u(t) simultaneously. Finally, we can

then extract the phase averaged flow velocity at each measurement location for a

given fan position to obtain the phase averaged velocity field. The results and data

analysis are presented in Section 3.2.

2.1.4 Strobe Still Photography

Since we are interested in the effect of the geometry of the fans, we want to obtain the

instantaneous deflection of the fans during flapping. The idea behind the technique

is by controlling the amount of light in the environment, such that the camera only

captures the instance when the lights are on. For that to work, the camera has to

placed on long exposure mode in a dark room. The light strobe goes off at the the
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specific time and the camera will capture a still image at the specific instance.

In order to use the technique on our experiment, we need to make someni minor

changes to the set up. A generic infrared beam-break sensor (it is a simple device

constructed with infrared transmitter and receiver), shown in Fig. 2-5, is mounted

next to the rotating shaft and a beam inserted into the rotating shaft such that every

time the fan crosses the center line, the beam passes between the beam-break sensor.

creating a gap in the signal collected by the receiver side of the beam-break sensor.

The sensor sends binary signals every 50 ms to a trigger kit (Cognisys Stop Shot)

which we programmed to send a trigger to a photography strobe light every time a

gap is observed. The strobe light then produce a flash of light. We also programmed

the trigger kit to send at most one pulse every second. Due to the frequency of the

signal, the time delay of the trigger is less than 50 ms which is significantly lower

than the frequency of the flapping motion of 2 Hz.

To collect our data, the specimen was first prepared by adding a regular array

of points on the surface of the fan. We found that grids arranged in a rectangular

grid Fig. 2-6a or radial array Fig. 2-6b resulted in similar findings on the flat semi-

circular plate and thus opted to perform the test using a radial grid because of the

geometry of the hand fans. A Nikon D600 camera is set up facing the face of the

fan perpendicularly. The camera was set on the 0.5 s exposure mode and captured a

still image at the instantaneous moment when the strobe light flashed. A photograph

(a) i;.-, (b)

Figure 2-5: (a) Photograph of the mounted (1) infrared beam-break sensor and the

(2) beam attached to the rotating shaft. (b) the Cognisys stop shot trigger kit.
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Figure 2-6: (a) Example of a grid of points on a semi-circular plate of R = 200 mm
and h = 254 pm (b) Grid of points on Fan 1. (c) Example of the resultant deformation
field.
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Figure 2-7: Schematic showing the points on a (a) undeformed and (b) deformed
surface. (c) Schematic showing the deflection of the relationship between deformed
and undeformed planar length.
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at the same angle is also obtained when the fan is not flapping and this will give us

the undeformed configuration. Fig.2-7a and b are schematics of the undeformed and

deformed grid array respectively. Considering the x-axis and y-axis to be aligned with

the horizontal and vertical sides of the photo, we can find the coordinates of each of

the points. The x and y distance between successive points are defined Xp,q, and Y},r

where p = {1, 2} with 1 =undeformed and 2 =deformed and q and r are the identifier

for each of the points in the array. The distance between two successive points is

Ap,qr = X2 + Y 2 q,. Fig.2-7c shows a schematic of the relationship between the

undeformed and deformed distances. The slope angle is q = cos-1(A1,qr/A2,qr).

Deflection is then simply w = sin 4. All the distances were computed based on pixel

length and we will have to convert pixels into real distance. Note that we obtained

Ap,qr in pixels which is equivalent to real distance A*,qr = 20 mm.

2.2 Measurement of Natural Frequency Using a Laser

Vibrometer

Section 1.1 considered previous works that showed the first resonant frequency has

considerable effect on the aerodynamic performance of flapping structure. We also

need to compare the results and characterize the respective mechanical properties

for the handheld fans and the homogeneous plates using the same metric. Thus we

choose their natural frequency, w,, as the common mechanical property. This data

will also help us better understand the effect of the change of structural features on

the resonant frequency. The set up to measure the natural frequency of the fans and

plate is shown in Fig 2-8.

The fan (or plate) is periodically excited from a frequency of f = 2-20 Hz with an

electromagnetic shaker (Modal Shop 2075E). In order to find the natural frequency

we need to be able to measure the response of the fan tip under vibration. The

fan clamps (the respective clamps will be presented in Section 2.3) were connected

directly at the base to the shaft of the shaker. An accelerometer (PCB Piezotronics
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H

Figure 2-8: A fan (1) is driven by a electromagnetic shaker (2). The base acceleration
is measured by an accerlerometer (3) and the velocity of the fan tip is measured with
an laser vibrometer (4).
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Figure 2-9: Example of signal (blue line) from (a) laser vibrometer and (b) accelerom-
eter. The signal is fitted to a sinusoidal function (red line) using least root mean
square. The specimen is a semi-circular flat plate R = 200mm, h = 762pm, vibrating
at f=7Hz.

35



353B3) was attached directly to the base of the fan/model and clamp assembly to

measure the by an acceleration at the base, ab. For the motion of the hand fan or

model at the tip, we chose to use the laser vibrometer (Polytec PDV 100), since it

measures the velocity of a surface without contact and addition of significant weight,

thus it would not interfere with the natural frequency. The vibrometer measures the

velocity of a surface by producing a laser beam that is directed to a perpendicular

surface that reflects the beam back to the laser vibrometer. To make the surface of

the fan/model reflective, a piece of reflective tape was attached on to the face side

at a distance of 5 mm from the tip and along the symmetry line of the semi-circle.

The laser vibrometer was set up such that the laser points directly at the reflective

tape and clear signals are obtained. The laser vibrometer is also limited to velocity

of 250 mm/s, and the shaker amplitude was kept low. The laser vibrometer can

work for frequencies up up 22 Hz accurately and we rejected results from models with

natural frequencies higher than 22 Hz. Again the signals from the laser vibrometer

and the accelerometer are digitized using the USB-6002 DAQ and recorded using a

customized LabView program.

Fig. 2-9 shows an example of the signals obtain from the laser vibrometer and

accelerometer. The signals from the DAQ and recorded in Labview are in voltages

(V). The manufacturer provided conversion of the signal from the laser vibrometer

to velocity is 1V= 125 mm/s while the manufacturer calibrated conversion of the

signal from the accelerometer to acceleration is 0.0989V= 1g. The voltage signal

from the laser vibrometer is Vtip while the voltage signal from the accelerometer is Vb.

The two sets of data are synchronous in time and the data was fitted to a sinusoidal

function using Matlab. We then derived phase and amplitude by fitting the signal to

a sinusoidal function such that Vip = Vma, sin(27rt + # 1 ), V Vbma, sin(2irt - 2 )

and the phase difference is given by q = 1 - 42, which will be corrected to fall within

0 < # < 27. Vma, and Vmax are converted to utmax, the amplitude of the velocity

of the fan tip, and abmax, the amplitude of the acceleration of the base of the fan,

respectively. The maximum acceleration of the fan tip is then atmax = 2 lrfUtmax. With

the amplitude data we calculated the amplification factor at each frequency, which
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is simply given as A = atmax/abmax. In Section 3.1 and Section 4.1.2 presents the

measured natural frequency of the flat plates and, hand fans and models respectively

2.3 Experimental Specimens

We first conducted a search for various types of commercially available hand fans and

observe the features of their designs, which we found to vary widely. In Section 2.3.1,

we will rationalize our choice of using Spanish style hand fans for the study. Since we

do not have control over the material properties and sizes of the hand fans, we want

to fabricate model fans which we have control over those parameters. We fabricated

three different types of model fans to understand the effect of structural features. In

Section 2.3.2, we describe the fabrication procedure for the semi-circular flat plates,

and its clamps, that will be used as simplified model systems for the hand fan. The

mechanical feature we are exploring here is the effect of the thickness and hence the

flexural stiffness of the fans. To study the ribs and leaves features found in foldable

hand fan, we designed and fabricated a model fan made out of discrete flat sector-

shaped plates described in Section 2.3.3. Finally, due to the foldable nature of the

hand fans we can describe the folds as corrugation and we will describe the method

we used to impose the geometry on the semi-circular plates in Section 2.3.4.

2.3.1 Materials and Structures of Spanish Hand Fans

As an initial screening process for the type of hand fans to be tested, we acquired

a variety of commercial hand fans of different designs, almost all of them were of

the foldable Chinese/ Japanese and Spanish style. Most of the fans we collected are

constructed out of stiff structural members, known as the ribs, usually made of wood

or plastic, connected at the fan tip with compliant thin materials, known as leaves,

usually made with cloth, paper or thin plastic sheets. Besides the the materials

used to construct the fans, angle of the fully opened fans is also of importance; the

Chinese/ Japanese style of foldable hand fan when fully opened up forms a quadrant

smaller than a semi-circle (e.g. Fig. 2-10a,c), which turns out to be another param-
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(a) (b)

Figure 2-10: (a) A Chinese style plastic ribs and leaves hand fan with only seven ribs
(b) A Spanish style wood ribs and cloth leaves hand fan with overlapping ribs (c) A
Chinese style wood ribs hand fan without leaves with intricate through cuts on the
ribs.

eter for consideration. The Spanish style fans on the other hand (e.g. Fig. 2-10b).

though has the same ribs and leaves construction, open to a full semi-circular shape.

eliminating the angle as a parameter. We will refer to the semi-circular surface side

of the fully open hand fan as the face side.

The spacing between successive ribs and the size of the fold of the leaves is another

factor to consider. If the number of ribs is small, the ribs are sparse circumferentially

and thus the projected area of the fan changes significantly and difficult to estimate

(e.g. Fig. 2-10a). Spanish style of fan also tends to have higher number of sticks such

that each stick overlaps with adjacent ones, leaving the projected area of the fan to

be exactly the same as a semi-circle (e.g. Fig 2-10b). Another common feature in

some of the fans have intricate cuttings on the ribs both altering the projected area

of the fan and the bending stiffness of the ribs (e.g. Fig. 2-10c) adding a problem of

the effect of porosity, which is beyond the scope of this thesis.

The study began to focus on the Spanish style of fans and that brought the

attention to a famous fan shop, Casa de Diego, in Madrid, Spain, that sells high

quality and hand made Spanish style fans. From the conversation with the owner

of the shop, we know that their collection of unembellished Spanish style hand fans

is fabricated consistently and the source of materials for were also well documented.

Even though the fans in the collection has very similar geometries, there are variations

in terms of the size of the fans, choice of wood for the ribs and the thread counts for

the leaves. The fan makers claimed that based on their experience, the "best" fans
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Figure 2-11: Pictures of the seven fans obtained from Casa de Diego (face side).

of this series tend to be made with wood from fruit trees, such as orange or pear,

as they are strong yet flexible and London plane tree wood is also often used. We

found that the typical Young's modulus of wood from pear tree is indeed the lowest

at 7.8 GPa, followed by London plane tree at 8.9 GPa and then orange tree at 11.6

GPa [551. High thread count cloth are also preferred as the threads are more closely

weaved, thus reducing the effect of porosity, and was thought to be able to generate

flow more efficiently.

Based on this information, we obtained a collection of seven fans shown in Fig 2-11

with their properties summarized in Table 2.3.1. Fans 1, 2 and 3 are of the same size

with radii R = 212 mm. Fan 1 has 34 orange wood ribs and standard cloth leaves

that only covers the outer 40 mm of the fan. The leaves section is half the length

of the leaves of Fan 2 and 3. Fan 2 and 3 have the same geometry, but are made of

different materials. The 24 ribs of Fan 2 are made out of wood from London Plane

tree and the leaves out of standard thread count cloth. Fan 3 is made with pear wood
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Table 2.1: Properties of commercial hand fans

Fan R (mm) Wood Cloth thread count Number of ribs
1 212 orange standard 34
2 212 London Plane standard 24
3 212 pear high 24
4 144 London Plane standard 24
5 137 pear standard 24
6 244 pear high 30
7 300 London Plane standard 20

and high thread count cloth. Fan 4 and 5 have smaller radii R = {144, 137} mm

and both have standard cloth leaves. However, Fan 4 is made of 24 London Plane

wood ribs and only has 15 mm of leaves while Fan 5 is made of 24 pear wood ribs

and has 60 mm of leaves. Fan 6 has radius R = 244 mm, made with 30 pear wood

ribs and high thread count cloth. Fan 7 has radius R = 300 mm and has 20 London

Plane wood ribs and standard cloth. It seems that other than the materials used, the

ratio of the length of leaves to the overall length of the hand fans may be another

important feature. In our flow generation experiments, we focus on the first three

hand fans, which are of the same size but have slight differences in their structure

and materials.

The geometry of the hand fan is rather complex, especially at the base of the

fan. In order to test the fan we constructed a simple clamp that can hold the fan

open, while not applying breaking them with excessive force. Rigid clamps fabricated

through using 3-D printing require a high resolution 3-D CAD of the fan since they

need to match the surfaces of the fan perfectly. Given the high number of ribs in

Spanish style fans, it is unrealistic. The clamp (Fig.2-12b) is made by attaching

two acrylic plates to two connecting clamps (Fig. 2-12a) to the shaft. The distance

between the two acrylic plates is 63.5 mm, which is thicker than the hand fans. A

compliant material that can conform to the shape of the fan is then required to fill up

the space between the fans and the plates, but yet has sufficient stiffness to impose

a fixed boundary condition at the root. Polyurethane foam sheets with Young's
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Figure 2-12: (a) Connector clamps to the rotating shaft (b) Acrylic plates attached to
the connector clamps (c) Polyurethane foam wrapped around the hand fan (d) Foam
and fan inserted between the acrylic plates.

Modulus of approximately 4000 Pa were used to wrap around the fully opened fan

(Fig.2-12c) before being inserted them between the acrylic plates, as shown in Fig.2-

12d. The foam becomes stiffer under compression and the fan remains in the same

position even after high amplitude oscillations.

2.3.2 Fabrication of Flat Semi-circular Plates

As a baseline for flow generation, we want to test fans that have constant thickness

over the entire surface. The semi-circular shape is picked since that is the projection

of the face side of the hand fans. We fabricated semi-circular flat plate out of acrylic

and polyethylene terephthalate (PETG) by laser cutting them out from a larger sheet

of material using a LaserPro Spirit laser printer at the fabrication lab in Civil and

Environmental Engineering department in MIT. Plates of two plates radii were fabri-
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cated, R = {120, 200} mm where the later was chosen because of the similar relative

size to Fan 1-3. The former was chosen to correspond in size to the smaller Fan 4

and 5.

(b)

Connector
clamps

Figure 2-13: (a) Photo of the 120 mm semi-circular fans made from PETG of a range
of thicknesses. (b) Photograph of the face side of a semi-circular plate fan of thickness
h = 762 pm and R = 200 mm with acrylic strips (blue box) and the connector clamps
attached at the holes on the two ends.

The bending stiffness of the plates can then be changed systematically by using

sheets of different thicknesses, since the flexural stiffness B = Eh3/12(1-V), where E

is the Young's Modulus of the material and h is the thickness of the plate. The plates

with h = {1588, 3175} pm were made out of acrylic (E=3.5 GPa, pp= 1180 kg/M 3 ) and

the plates with h ; 1016 pm were made out of PETG (E=z2.2 GPa, pp=1270 kg/m 3).

Plates of R = 120 mm (Fig. 2-13a) were made out of PETG plates of thicknesses h =

{50, 76, 102, 127, 191, 254, 281, 508, 762, 1016} ftm while plates of R = 200 mm were

made with both PETG and acrylic plates of thicknesses h = {102, 127,191, 254, 281,

508, 762, 1016, 1588, 3175} pm. An additional 2 cm was extruded at the base (flat)

side of the semi-circular plates and five equidistance holes were cut in the extruded

section, as indicated in Fig. 2-13b . We also laser cut two acrylic strips of thickness

h = 3175 pm, corresponding to the shape of the extruded section and they were

fastened on each side of the plate with nut and bolt at the middle three holes. The

two extreme holes were used to attach the fan to the connecting clamps.

42



2.3.3 Fabrication and Design of Discrete Model Fans

In hand fans, we can view the structure as stiff discrete beams (ribs) connected

together at one singular point at the base. At the fan tip, the beams (ribs) were

connected with adjacent beams (ribs) with a compliant materials. This construction

means that there are two additional degree of freedom: the rotation of the beams

(ribs) about the point of connection and twist of the individual beams about the axis

running along the length of the beam.

(a)
R

Rtk V
(b)

0

(c)

Figure 2-14: (a) Vector drawing of the sector and the parameters used to define the
sectors. Photograph of the face side of (b) Model Fan 1 with R = 200 mm, Rt = 300
mm and y = 120 (c) Model Fan 2 with R = 200 mm, Rt = 200 mm and -y = 10'.

In order to find the effect of this additional degree of freedom, we explored that

by imitating the construction of the hand fan through creating a model fan made
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with discrete plates to represent the ribs and nitinol wires to represent the compliant

material at the fan tip. Sector-shaped strips shown in Fig. 2-14a were cut out of

PETG sheets of h = 760 pm. The sectors are symmetrical in the radial direction

and the shapes were defined with the following parameters: the radius of the outline

defining the tip of the hand fan Rt, the distance from the intersection between the

outline of the fan tip and the line of symmetry to the hole at the base R (also the

size of the hand fan) and the angle between the outline on the sides, -Y. The hole

at the base of the sector was where the strips were fasted together with one single

nut and screw and was centered on the line of symmetry. Near the tip, one or two

(depending on the width of the sector at the tip) small holes were cut and nitinol

wires (500 pm diameter) was sewed through the holes at the fan tip side to simulate

the leaves of the hand fan. Each strip can rotate minimally about the connecting

hole but its motion was limited such that the overlap with adjacent plates fall in the

range of 1-5'. Although the model fan is not fully foldable, it emulates the structure

when the fan is constrained to the fully open configuration.

2.3.4 Fabrication and Design of Corrugated Fans

Hole drilled to attach to connectors

(a)

2H

(b)

2 cm

Figure 2-15: (a) Vector drawing of the corrugated clamp with the parameters shown
(b) Photograph of two example corrugated fan clamps, (1) H = 10 mm and A = 40
mm (2) H = 10 mm and A = 100 mm.
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(a) (b)

Figure 2-16: Photograph of the (a) face side and (b) thickness side of a corrugated
fan with R = 200 mm, h = 50 pm, H = 20 mm and A = 133 mm

Corrugated plates were constructed by switching up the clamp of the flat semi-

circular plate. The maximum thickness of plates used was h = 191 pm, since making

thicker plates conform to the shape of the clamp might result in irreversible deforma-

tion or failure. Clamps were laser cut using acrylic sheets of thickness 12.7 mm.

A sample vector drawing of the clamp is shown in Fig.2-15a and photographs of

real clamps are shown in Fig.2-15b. Holes were drilled on the ends perpendicular to

the thickness of the plate to fasten the clamp to the connector to the rotating shaft.

The interface with the plate is defined by the shape of the corrugation, z = H sin(!)

where H and A are the amplitude and wavelength of the corrugation respectively.

Based on classic literature on corrugated plates, the second moment of inertia was

calculated based on the geometry of the corrugation and was thought to depend

strongly on the ratio 2H/A [66]. More recent literature estimated the second moment

of inertia based on average curvature of the surface and the second moment of inertial

was found to be scaled by H2 t only [48, 37]. Fig. 2-16 shows the photograph of a

semi-circular plate clamped to conform to the corrugated shape using the corrugated

clamps fabricated.

45



2.4 Flexural Stiffness Measurement of Hand Fans

The bending stiffness of the fans cannot be easily calculated due to their complex

structure and thus we measured it through experiments by performing a mechanical

testing on the fans. The bending stiffnesses of Fans 1, 2 and 3 were estimated through

a load-displacement mechanical test (Instron 5934, 10 N load cell). The displacement

of the fan tip, 6, was increased incrementally up to 10 mm and the load, F required

is measured (Fig. 2-17). Since we cannot place the contact point right at the tip, we

set it at a point of 5 mm inwards from the tip; the radius of Fans 1, 2 and 3 are

R = 211 mm, and the distance between the clamped end of the fan and the location

of the applied load is 1 = 206 mm. An indenter with diameter of 3 mm was used. The

bending stiffness values were estimated using classic theory for the linear deflection

of a beam under point loading:

EI =F (2.1)
36

_A F

Figure 2-17: (a) Schematic of the point load experiment. The displacement of the fan
tip, 6, is increased incrementally up to 10mm and the load, F required is measured
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Figure 2-18: Point load for deflection of the tip of the hand fans up to 20 mm for Fan
1 (square), 2 (circle) and 3 (triangle)

where E is the Young modulus, I the area moment of inertia. The calculation of the

moment of inertia, I for the hand fan is non-trivial due to several reasons. Firstly,

the number of ribs is large, ranging from 20-30, each of them are like beams aligned

to the radial direction and the effective stiffness has to be calculated in the direction

of interest individually. Secondly, the ribs also interacts with each other due to

partial overlap near the connecting points and forces are also transmitted through

the stretching and deflection of the cloth leaves, which are not well characterized.

Furthermore, there is a variation of thickness along each beam and while we can find

that through measurement, it would be rather inefficient. While a creation of a model

to derive the second moment of inertial of the fan is not unfeasible, it would be beyond

the exploratory scope of the thesis, but could be of interest for detailed designs in

the future. Since we also do not know the specific value of E due to the composite

nature of the fan, we will perform the subsequent analysis of the fans based on EL.

Using the measurement setup described above, we found the force F required
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to impose a deflection of 6 at the point of contact. The graph of F(6) versus 6

is plotted in Fig. 2-18. We perform a linear fit of the data and obtain the slope

which is F/i. The effective rigidity of Fans 1, 2 and 3 was measured to be EI

{2.24 0.02, 4.02 + 0.04, 2.76 0.03} x 10-2 Nm 2 .

We note that although orange wood has the highest typical Young's modulus, the

overall structure of Fan 1 (made from orange wood) is the most flexible. This is an

indication that there is an overall structural effect, since Fan 1 has a larger "discrete"

wood section (or smaller connected leaf section) than the other two fans. We will

show later in Chapter 4 that the orange wood also generates the most flow among

the hand fans, despite being the most flexible of the trio.

2.5 Outlook

We presented the experimental setup to measure the flow production and the natural

frequencies of the hand fans and models, the selection of the hand fan and the method

of fabrication and design of the semi-circular plate, discrete model and corrugated

fans. The experiment specimens were tested using the procedure and setup described

and we will aeroelastic behavior of the flat plates in Chapter 3. In Chapter 4, we will

study the aeroelastic behavior of heterogeneous structures.
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Chapter 3

Aeroelastic Behaviour of Flapping

Flat Plates

In this chapter we present the flow and natural frequency measurement results for

the semi-circular flat plates described in Section 2.3.2. We first evaluate the natural

frequencies of the flat plate with the experimental set up described in Section 2.2

which allowed us to find the pre-factor that linked the geometrical parameters to the

primary natural frequency and we evaluated the natural frequency of plates above

the limitation of our apparatus. Velocity of the flow generated by plates were ob-

tained using the hot-wire anemometer. Comparing the velocity fields of plates of

different thicknesses and radii, we determined a location where we will place the hot-

wire anemometer probe for the rest of the study. Tests were done by setting the

same flapping frequency, but with increasing flapping amplitude. We normalized the

generated velocity by the velocity of the fan tip and the natural frequency by the

driving frequency and found an optimal when the normalized frequency is close to

unity, which is consistent with past studies discussed in Section 1.1. Together with

data from the torque sensor, we are able to evaluate a representative efficiency of the

flapping motion. We then define plates as thick, thin and intermediate based on the

normalized natural frequency and seek to understand the differences in variation of

normalized velocity and efficiency with flapping amplitude by considering the order

of magnitude of the moment terms.
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3.1 Natural Frequency of the Flat Plates

From the literature review in Section 1.1, the resonant frequency is a critical parameter

in the aerodynamic performance of a flapping plate. From the estimation of the

vibration of a flat plate in Section 1.3, we recall that the characteristic frequency of

a vibrating homogeneous plate is [70, 30]:

B
Q = k (3.1)

pphR4A

where B = Eh3 /12(1 - v2 ) is the bending stiffness and k is a prefactor that depends

on the geometry and boundary conditions. Also, we noted that analytical solution for

the natural frequency of a rectangular plate was an assumption of the deflection mode

shape that satisfies a fixed-free boundary condition. The actual solution depends on

the geometry and thus would be easier to obtain an experimental solution for the

flat plates. Some of the plates have natural frequencies that are much higher than

the measurement range of our apparatus (up to 22 Hz or 138 rad/s), so we cannot

measure the natural frequency for all the plates. Hence, we solve the problem by

performing the vibration experiments using the apparatus presented in Section 2.2

for plates with natural frequencies lower than 22 Hz to obtain the pre-factor k.

Before conducting the tests on the plates, we want to ensure that the amplitude is

sufficiently small such that we reduce the effect of damping from aerodynamic forces

(dependent on velocity) and the effect of frequency shift from added mass (dependent

on acceleration). To do that we conducted a series of vibration experiments on Fan

2 with increasing shaker amplitude and plotted the resultant amplification factor in

Fig. 3-la. The phase shift for all the experiments were also plotted in Fig. 3-1b.

We see that for the range of amplitude considered, the amplification factor peak

shifted minimally from the value of w., =~ 85.5 rad/s (13.6 Hz) at base amplitude

of 0.125 mm to w. ~ 86.7 rad/s (13.8 Hz) at base amplitude of 0.5 mm, while the

phase shift reaches a value of ir (where resonant occurs) narrowly between the band

of w. = 83 - 88 rad/s for base amplitude of lower than 1.5 mm. Hence, a value of
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Figure 3-1: (a) Amplification factor, at/ab and
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(b) phase shift over a range of shaker
amplitude at the base for Fan 2

A = 0.5 mm base amplitude was chosen for our experiments, since a pronounced peak

was produced, while the frequency shift was small.

In Fig. 3-2a, we present three representative examples of the measured amplifi-

cation factors as a function of shaker frequency w for three representative plates of

thicknesses h = {1016, 762, 254} pm and R = 200 mm. We observed a sharp peak in

amplification factor and the frequency at which the peaks occur are the natural fre-

quencies. The natural frequencies of the plate of thicknesses h = { 1016, 762, 254} Pm

aren = {44.6, 32.0, 13.2} rad/s . We obtained the natural frequencies for four other

semi-circular plates using the corresponding plots and in Fig. 3-2b, we plotted the

experimentally measured wo versus Q,, for our semi-circular plates (solid red circles).

The data collapse onto a straight line, with a pre-factor k = Wn/Op = 4.1 0.2

(determined by fitting, for cn in rad/s), confirming our experimental method to de-

termine wn for plates. There are also plates, thicker and smaller, that have natural

frequencies much larger than 22 Hz (138 rad/s). Since we do not have the neces-

sary instruments to measure those frequencies accurately, we will be using pre-factor

k = 4.1 and Eq. (3.1) to estimate the natural frequencies for plates and fans with

resonance higher than the range of the laser vibrometer (22 Hz). In Section 2.2, we
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Figure 3-2: (a) Frequency response curve of three semi-circular plate with R=200mm
and h = 1016, 762, 254}pm. (b) Natural frequency of semi-circular plates (red cir-
cles) versus the relevant characteristic frequency, Qf

estimated the pre-factor for a rectangular plate of similar dimensions to be krec 3.51

by assuming a deflection mode shape of

W = sin n )in - (7Fx) sin (fl7 ). (3.2)
(b (a a b

The value of the measured and the estimated pre-factors are close and the higher

natural frequency for the measured value is higher because the semi-circular plate

has smaller mass as compared to the rectangular plates, but both geometries have

the same flexural stiffness B. Thus, it is reasonable to assume the plate deflection to

be

woLosin(wt) sin( x) - wix, (3.3)
R

where wo and w, are scaling parameters.
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3.2 Phase Averaged Velocity and Vortex Generation

Before conducting the series of experiments to parametrically changing the thickness

of the semi-circular plate, we need to understand the phenomenological behavior of

how flow is produced. The phase average velocity is defined,

T n u(t + nT), (3.4)

where t is time, T = 2ir/w is the driving period and n > 30 is the number of

oscillations. Experiments were conducted at over 125 locations on the x-y plane

indicated in Fig. 2-1b, using the set up as described in Section 2.1. The hot wire

anemometer was set perpendicular to the axis of rotation, at 5 distances from the fan

tip d = [10, 30, 50, 80, 120] mm and 25 angles -48 < 0(') ; 48 at 40 intervals from

the mid point of the flapping tip motion. Using the encoder data from the torque

sensor, the phase average velocity field at each of the point can be matched to the

motion of the fan. Thus we can pick an instantaneous position of the fan and obtain

the velocity for all 125 points to create a velocity field. The snapshots of the velocity

over half of the oscillating period shown in Fig. 3-3. For each snapshot, the position

of the fan tip is indicated by the solid black line. The colors correspond to a range of

0 to 0.3 m/s (see adjacent color-bar in Fig. 3-3).

As the fan moves from its position at t/T = 0, a high velocity region is produced

near the fan tip as it sweeps across and at t/T = 0.125, we see higher velocity of

~ 0.2 m/s at 0 = 0 and d ~ 10 mm, but the core of the vortex is not visible on the

velocity field as it is in the path of flapping plate. The velocity at 0 = 0 and d ~ 10

mm builds up to the maximum of ~ 0.3 m/s as the tip of the fan slows down to a

stop at t/T = 0.250. This is known as the stopping vortex 161, 57]. As the fan moves

away from the extreme position at t/T = 0.250 to t/T = 0.375, another vortex is

formed on the right side of the map with the velocity at 0 = 240 and d = 10 mm is

0.3 m/s. This is the starting vortex [61, 57].

As the fan moves towards 0 = 00 at between t/T = 0.0375 and t/T = 0.500, the
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Figure 3-3: Phased averaged fields showing the instantaneous velocity u(t) at different
time indicated by t/T for a plate of radius R = 120 mm, thickness h = 127 pm driven
at a frequency w = 12.6 rad/s (2 Hz), and an angular amplitude a = 24'. The
position of the tip of the fan is indicated for each time-step by the solid black line.
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starting and stopping vortex pair then moves away from the fan tip. The velocity

of the vortex pair moving away from the fan tip is known as the induced velocity.

We observe from the velocity field at t/T = 0.5 that the vortex pair centers around

O ~ 24 , the same angle as the angular amplitude of a = 24', and d ~ 80 mm. The

vortex then continues to move further and moves to d ~ 100 mm and 0 ~ 240 at

t/T = 0.625, moving a distance of 6d, = d,(t/T = 0.625) - d,(t/T = 0.5) ~ 20 mm

over a time period of 6t/T = 0.125 or R5 = 0.0625 s. Thus the speed at which the

vortex pair moves or induced velocity is given by Uinduced = 6dv/6t ~ 0.02/0.0625

m/s = 0.32 m/s. The process repeats as the position of the fan is now at negative

values of 0 and similar behavior was observed for t/T > 0.5. After the last frame at

t/T = 0.875, the process loops back to t/T = 0. Smaller intervals of d and 0 would

be required If we want a more accurate estimate of the induced velocity. While it

is possible to characterize the flow generated by the flapping fan by finding induced

velocity, we would be required to produce the phase average velocity field for every

single test cases. It would not be a realistic approach for our purpose and we have to

find the most representative location to place the probe.

3.3 Placement of Hot-Wire Anemometer Probe

To simplify the problem, we used the phase velocity data in Fig.3-3 to determine the

best position for the placement the hot-wire anemometer probe. We averaged the

velocity field for all t/T in the previous section for each of the 125 positions tested.

This process was carried out for plates of thicknesses h = [51, 127, 254, 762] ftm and

radius R = 120 mm, driven at a frequency w = 12.6 rad/s (2 Hz), and an angular

amplitude a = 24'. The average velocity field for the plates are shown in Fig. 3-4.

Similar velocity fields were also obtained for plates of radius R = {200}.

There are two locations on the averaged velocity fields where higher velocities

were measured. The first location is for small angles around the center of the flapping

motion and close to the trajectory of the fan tip, which is -12' < 0 < 12' and d < 30

mm for the plates of R = 120 mm flapping at an amplitude of a = 240. We tested the
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Figure 3-4: Time averaged velocity fields showing the average velocity U for plates of
different thicknesses of plates h = [51, 127, 254, 762] pm, radius R = 120 mm driven
at a frequency w = 12.6 rad/s (2 Hz), and an angular amplitude a = 24'.

larger plates and a range of flapping amplitude and find that this also happens in the

region defined by -a/2 < 6 < a/2 and d - 0.25 R. This region is observed across all

the cases we tested, even when the velocity is relatively low throughout the data (e.g.

for the case h = 51 pm, R = 120 mm, w = 12.6 rad/s (2 Hz) and a = 240 shown in

Fig. 3-4). The second location occurs at distance of d - 50 - 80 mm and at 0 - a/2

for plates of R = 200 mm and h = {127, 254} pm. For plates of h = {51, 1016}, this

second region of higher velocity were not observed. The observation of whether the

second region of high velocity occurs correlates with the value of velocity measured

at -12' < 0 < 120 and d < 30 mm. The second regions of higher velocity is not

observed for many plates and its location is not well defined based on our available

data. It is then reasonable to chose a point within the first region, which we defined

-a/2 K 6 K a/2 and d ~ 0.25 R, for the placement of the hot-wire anemometer. As

the flapping amplitude can be as small as a = 8 and velocity values are the highest

at points closest to the fan tip, we picked the mid point of the flapping tip motion

(6 = 0') and a distance d = 0.1R as a representative location to measure the flow.

3.4 Flow Generation and Power Efficiency of Flap-

ping Flat Plate

In this section, we present the analysis of the measured velocities, generated by the

plates at the location selected in the previous section, on all the semi-circular plates
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described in Fig. 2.3.2. We normalized the measured velocity with and the natural

frequency with the flapping frequency and found that the optimal normalized velocity

indeed occurs when the normalized natural frequency is unity. Together with the data

from the torque sensor and encoder, we also defined the input and output power terms

which gives us the efficiency of the plates. The variation of normalized velocity and

efficiency with angular amplitude also depends on the normalized natural frequencies.

We then turn a modified version of the Euler-Bernoulli equation and considered the

order of magnitude of the contributing moments of the equations to help us rationalize

the dependence on flapping amplitude.

3.4.1 Velocity of Generated Flow

From the time-series of the instantaneous velocity, u(t), we define the average velocity

of the generated flow:

U = Eu (t)dt, (3.5)

where the averaging is done over n > 40 cycles. We define a length scale based on

the velocity of the tip of the fan (assuming rigid motion) or the driving velocity,

V = waL, where L is the length from the tip to the axis of rotation. Note that

the distance between the base of the semi-circular fan to the axis of rotation is 45

mm, so L - R = 45 mm. The range of Reynolds number, Re = VL/v, explored was

250-5000, v = 1.57 x 10-5 m2s 1 is the kinematic viscosity of air. We first start with

testing the semi-circular, homogeneous, and elastic plate described in Section 2.3.2.

This simplification enables a more systematic control over the relevant parameters,

while decoupling the intricate structural details of the fan. We focus on plates with

two radii values, R = {120, 200} mm and eleven different thicknesses in the range

50 < h [pum] < 3175. All plates were tested using the apparatus shown in Fig. 2-la,

with the location of the anemometer determined from Section 3.3.

In Fig. 3-5, we plot the average speed of the generated flow, U, versus driving

velocity, V, for three representative plates (h ={102, 254, 762} pm). Both the thick-

est and the thinnest plates (h ={762, 102}pm respectively), exhibit linear behavior,
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Figure 3-5: U versus V for semi-circular plates of R = 200 mm with three different

thicknesses, h.

where U c< V. On the other hand, for the intermediate-thickness plate (h = 102 pm),

the U(V) dependence is nonlinear, even if a linear region can still be identified for

V < 0.4 (corresponding to a < 240). More importantly, the average velocity of the

flow generated by the intermediate thickness plate is significantly higher than the

other two, further suggesting that there is an optimal bending stiffness to generate

maximal flow output.

Next, we defined a normalized output velocity i = U/V and a normalized nat-

ural frequency Z = w,/w for plates. In Fig. 3-6, we plot the normalized out-

put velocity U versus the normalized natural frequency cD for plates of thicknesses

h = {102, 127, 191, 254, 281, 508, 762, 1016, 1588, 3175} pm and radii R = 200 mm,

driven at seven angular amplitudes where, 80 < a < 56' at 8' intervals. From the

graph, the maximum normalized velocity is found to occur when the driving frequency
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matches the natural frequency of the plate: L ~ 1. Away from this peak, the gen-

erated flow drops sharply to f < 1 for 6j < 0.6 and decreases towards the constant

value of U- ~ 0.70 for c > 2. Based on the behavior of the normalized velocity, we

define thin plates for D < 0.6, thick plates for cD > 2 and intermediate plates for

0.6 < i < 2.

3

A a = 240

S2 a = 320

Sa = 400

*e = 480

va= 560

10 10
Normalized natural frequency, L'

Figure 3-6: Dimensionless velocity of the generated flow, U, versus normalized natural
frequency, CZ for plates R = 200 mm at different amplitudes (see legend).

For both the thin and thick plates, the normalized output velocity U is independent

of a and in this case, it means that U cx V oc a. In the case of thick plates, the nor-

malized velocity U- ~constant, an indication that the plates have the same dynamics.

In the limits of infinite thickness, the plates would be perfectly rigid. Thus we treat

the plates in W > 2 to be almost rigid or have small deflection. Thin plates however,

have natural frequencies much smaller than the driving frequencies and while it is pos-

sible that higher modes, which can be estimated using an equation similar to Eq.(3.1)

multiplied by m 2 where m is the mode number, could be excited, we did not observe

another peak near C = 0.25. Since the vortex generated is correlated to the effective

59



amplitude of the tip [42, 57], the smaller normalized velocity compared to the thick

plate case indicates a reduction in the effective fan tip amplitude. Unlike the thick

plates, the value of normalized velocity varies with normalized natural frequencies, we

can conclude that the normalized shapes are different across the normalized natural

frequencies. For the same normalized natural frequencies however, the deflections

are independent of the flapping amplitudes. Interestingly, when C ~ 1, U increases

monotonically with decreasing a. The normalized velocity is as large as a factor of

4.5 at a = 8' to a factor of 1.4 at a = 56' when compared to rigid plates. This is an

indication that the normalized deflection tip decreases with angular amplitude.

The above results demonstrate that flexibility is found to significantly enhance

the aerodynamic performance of the plates during flapping, with maximal generated

flow exhibited when the driving excitation occurs close to the natural frequency of

the plate, which agrees with the findings from the other findings in literature. Coun-

terintuitively, however, is that while the plates in the thin and the thick regimes are

not affected by the flapping amplitude, plates in the intermediate regime are gener-

ating proportionally less flow with increasing amplitude. We will further discuss the

effect of the flapping amplitude on deformation and consequently the flow generated

in Section 3.5.1 by considering the order of magnitude of the forces acting on the

plate.

3.4.2 Power Efficiency of Flat Plate

Our apparatus described in Section 2.1 also includes a rotatory torque sensor (Futek

TRS 605) that, simultaneously to u(t), acquires time-series of the torque, T(t), applied

at the driving axis, and its angular position, e(t) = a sin(wt). We find the phase

average torque using
t 1n

T - - - T(t + nT), (3.6)
1

and an example plot of the phase average torque vs. the normalized time t/T is

presented in Fig. 3-7. The value of t/T = 1 represents a complete cycle. We then

fit the data to a sinusoidal curve with equation T = Tma sin(wt).
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Figure 3-7: Phase average signal of
R = 200 mm.

torque measurement. For this signal, h = 1016 pm,

With these data in hand, we define the flapping efficiency as the ratio of output

and input powers,
PO

(3.7)

The input power is defined as

(3.8)

where r is the average magnitude of T or IrI over > 40 cycles and

O = dO/dt = d/dt a sin(wt) ~ o (3.9)

is the angular velocity of the motion. The aerodynamic output power of the generated

flow can be thought of a function of the volume, speed and density of air flowing

through through a surface S, the area of the surface generated by the locus of the fan

tip. A schematic of S is shown in Fig.3-8. The kinetic energy (KE) and power (P)
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Figure 3-8: (a) An isometric view and (b) a top (x-y) view of a schematic illustrating
the (1) maximum position of the fan and (2) location of surface area S.

of mass of air, mai flowing at a velocity of U is given by

KE = 1/2mairU2

PO = 1/2mhai, U 2 ,

(3.10)

(3.11)

where md0 t is the mass flow rate. Since we are interested in the flow going through

S, the mass flow rate crossing S with constant velocity U across the entire surface is

mair = pf SU (3.12)

where pf is the density of air. Thus we estimate the power output as

P ~ 1/2pfSU 3, (3.13)

Note that the estimation of P is only valid at the level of scalings; a more detailed

calculation would require measured data of U at many different locations close to the

plane of S, before integrating the value over the entire surface. While it is theoretically

possible to do so, it does not add value to our understanding of the efficiency of the

flapping fan.
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Figure 3-9: Efficiency q; of semi-circular plates (L = 200 mm) versus normalized
natural frequency C.

We plot in Fig.3-9 the efficiency rj against the normalized natural frequency W.

Similar to the normalized velocity, we see that the overall maximum efficiency of

~ 5.5 x 104 occurs at Co ~ 1 and a = 560, which is in line with the position of

the peak of the ft(cD) data shown in Fig. 3-6. However, the efficiency increases with

flapping frequency, which is in reverse to the normalized velocity. The peak drops

sharply by almost two order of magnitudes away from the plates. For the thick plates,

the efficiency slow decreases with C. Since the output power P. is similar across the

c' > 2, the decrease is due to the increase in input power P. Experiments were

conducted using the same flapping frequency, hence the decrease in efficiency is due

to the increase in torque. Meanwhile for the thin plates, the efficiency quickly drops

in order of magnitude, as cZ decreases.

In Fig. 3-10 we present plot of the efficiency rj against angular amplitude a for four

plates with thicknesses in the range h = {102, 254, 381, 762} Pm and R = 200 mm.

We observe that the efficiency r increases monotonically with a. For the thinnest
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Figure 3-10: Efficiency q of semi-circular plates (L 200 mm) versus angular ampli-
tude, a.

plate (h = 102pm, green squares), we find that r ~ a. whereas for the thickest

plate (h = 762pm, circles), the data is consistent with a power-law, q ~ a2 . For the

intermediate plate, we find 77 ~ Ceq where 1 < q < 2. We will rationalize the angular

amplitude scaling in Section 3.5.1.

3.5 Euler-Bernoulli Equation

In this section, we will derive scaling expressions of the moment terms acting on the

plates in terms of the geometry and properties of the plates and flapping conditions.

We will consider the inertial, bending and aerodynamic moments. First, we assume

a Euler-Bernoulli description [49, 29] for the deflection ,

1
(m, + m)(+ Be"" ~pf Cd i = 0, (3.14)
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where mp = pph is the mass per unit area of the plate, m,, - pf aR is the added mass

of the fluid per unit area (estimated from the acceleration of the mass of air displaced

by the moving plate [18]), B Eh3  is the flexural rigidity per unit length of a12(1-u' 2
)

plate, Cp is the aerodynamic force coefficient, 0 = /Ot and 0' /&x (x is the

spacial coordinate).

Recall from Section 1.3 that the mode shape of a vibrating plate for a plate with

fixed-free boundary condition is

nr
woLa sin(wt) sin( x) - wix, (3.15)

R

where wo and w, are scaling parameters for the magnitude of maximum deflection,

then differentiating Eq. (3.15) with respect to time, we have

woLaw cos(t) sin(n x) (3.16)
R

-- n7r
-woLaw 2 sin(wt) sin(-x) (3.17)

R

and integrating Eq. (3.15) with respect to x, we have

woL( nr )4a sin(t) sin(nX) (3.18)
R R

We can then substitute Eq. (3.16), (3.17) and (3.18) into the individual terms of

Eq. (3.14). Integrating the individual terms in Eq. (3.14) with respect to the surface

area of the fan and the distance from the rotation axes would give us the expression

for each of the contributing moments. The first term is the inertial moment and there

are two contributing terms, the inertial moment due to the plate and the added mass.

The second term is the bending moment and the last term represents the moment due

to aerodynamic forces. We will now discuss the individual moment terms in details.
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Inertial Moment

The first term in Eq. (3.14) represents the d'Alembert forces due to the acceleration

of the plate. The associated moments correspond to the sum of the inertial moments

due to the mass of the plate and its added mass: M' = M + M.. Inertial moment

due to the mass of the plate, is given by integrating the product of the d'Alembert

force at each infinitesimal segment and the moment arm.

The d'Alembert force per unit area Fp of the plate due to its mass is given by

dFp = ph , (3.19)

while moment arm of the force is given by

dMi = pphx . (3.20)

Thus the resultant moment can be found by integrating Eq. (3.20) over the semi-

circular area of the plate A

M j' pphx dA. (3.21)

Using the scaling, considering only the amplitude of the modes, ( ~ woLaw2 , based

on Eq. (3.17) and dropping the sinusoidal terms, and using fA xdA ~ R2 L we have

M> ~ j wophxLaw 2 dA ~ wophR2 L2 2w 2 . (3.22)
JA

Next, the forces due to added mass is due to the acceleration of the mass of air

displaced by the plate. The volume of displaced air is given by the volume of the

segment swept by the plate, which is V ~ aR3 . Thus the force dF, and moment arm

dMi of the contribution of an infinitesimal volume of air is

dF* = pf dV, (3.23)

dM* pfxdV. (3.24)
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The inertial moment due to the added mass is then given by integrating Eq. (3.24)

and using the scaling r~ woLaw 2 and using f xdA ~ R2L, we have

= Pfx dV ~ wo pxLaw dV
M Jv Jv

~ wopf R3 L2 O26 2

Bending Moment

The second term in Eq. (3.14) represents the bending moment. The per unit length

forces due to bending is given by

dF = B("" (3.26)

The moment per unit length due to bending is given by

dMb = Bx("". (3.27)

Using the scaling c"" ~wo4 ia, based on Eq. (3.18) and dropping the sinusoidal

terms, the overall moment due to bending is found by integrating Eq. (3.27):

M b= j Bx""dA ~ LAwoBx adA - woB(L/R)2a - woBa - woh3a.
R4'

(3.28)

Aerodynamic Force

Finally, the third term is due to aerodynamic loading. Taking the dynamic pressure

as 1pfU, the aerodynamic force per unit area of the semi-circular plate is given by

1dF = Pf Cpc 2d A,2
(3.29)

and the moment arm of the aerodynamic force about the axis of rotation is

1
dM" = pfC 2 xdA,2

(3.30)

Hence the total moment associated with the aerodynamic loading is found by in-
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tegrating Eq.3.30 and using the scaling ~ woLaw, based on Eq. (3.16) and dropping

the sinusoidal terms:

M = ,p 2 dA - w2 p R 2 L3a2W 2  (3.31)

where the aerodynamic force coefficient lies in the range 2.4 < Cp < 3.5 for rotational

motion [72, 1].

3.5.1 Order of Magnitude of the Moment Terms

The data presented above for the magnitude of the generated flow (Fig. 3-6) and

the aerodynamic efficiency (Fig. 3-9), as functions of C' and a, respectively, can now

be interpreted by balancing the inertial, elastic and aerodynamic moments, in the

limiting cases of (I) thin, (II) thick and (III) intermediate plates. For convenience,

we will treat R - L and the scaling for the four moments are summarized below:

M ~ wopphL 4aW 2  (3.32)

M ~ wopjLa 2w 2  (3.33)

Mb ~ woEh3a. (3.34)

Ma 2P 5L 2W2  (3.35)

The resultant torque is then given by,

T = MP + M, + Mb + Ma (3.36)

Thin Plate Regime

In the case of our semi-circular fans, we defined it as the region when C) < 0.6. In

this region, the thickness of the plate is much smaller relative to its other dimensions

T > 1 or L > h. Thus, we will neglect terms that scales with h, i.e. elastic and inertia

of plate moment terms {Mb, Mj} and we will keep the terms that does not scale with
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h, i.e. aerodynamics and added mass terms {Ma, M,}. Physically, this means that

aerodynamic and added mass effects dominate, while the elasticity and inertia of the

plate are negligible or {Ma, MJ > {Mb, Mp}. Hence, Eq.3.14 becomes:

m* +-pf Cd =, (3.37)
2 =0

and the two terms in Eq.3.37 scales similarly with {M', M}:

wopf L a2W2 ~ W2 pf L a2W2 (3.38)

Thus the amplitude of the mode shape of plate deflection wo does not depend explicitly

on a. Consequently, U ~ a and i is independent of a, which is confirmed by the data

in Fig. 3-6. To help understand the dependence of the efficiency on a, we consider

the scaling for the resultant torque. From Eq.3.36, the resultant torque is now

T = Mi + Ma (3.39)

T - pfL50Z2W 2  (3.40)

and hence the scaling for the input power is

Pi ~ (M' + M*)aw ~ pfL 5a3w 3  (3.41)

The scaling for the input power, given that we know U - a for thin plates from

Section 3.4.1 is

P, ~ SU 3 ~ aU3 ~ a 4  (3.42)

Thus the dependency of the aerodynamic efficiency on a is given by:

P0 a4

O = , ~ -= a, (3.43)
Pi 3a

which is also found experimentally (Fig. 3-9, squares).
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Thick Plate Regime

For thick plates, even though h is smaller than L, the value of h is large enough such

that pph > pfL and Eh' > pf L5 . Physically this means that aerodynamic and added

mass effects can be neglected over inertia and elasticity: {M, MJ « {Mb, MP}.

Now the resultant torque is

T= + mb (3.44)

T-, pphL4 aw 2 + Eh3a (3.45)

and hence the scaling for the input power is

P, ~ (M + Mb)aw ~ pphL4 a2w 3 + Ehsa2 w (3.46)

The scaling for the input power, given that we know U - a for thick plates from

Section 3.4.1 is

P0 ~ SU 3 ~aU3 ~ a4 (3.47)

Thus the dependency of the aerodynamic efficiency on a is given by:

p 4d
r= - = a2  (3.48)

a2Pi Oz

which is in good agreement with the data (Fig. 3-9, circles).

Intermediate Plate Regime

Finally, for intermediate thickness plates, all four moment terms are of the same order;

the governing equation is nonlinear, making a detailed analysis more challenging.

Qualitatively, the third term in Eq. (3.14) depends quadratically on the velocity of the

plate and this damping term becomes increasingly more important as a is increased.

Consequently, the deflection of the plate tip, and, hence, the average velocity of the

generated flow, is expected to decrease with increasing a, which is also confirmed by

the data in Fig. 3-6.

The interesting thing is to note how even though the plate is producing propor-
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tionally less flow with increasing amplitude, the efficiency still increases with flapping

amplitude. It is likely that the input and output powers are polynomials of a based

on the scaling of each of the terms. The order of the input and output powers

are Pi - O(oi') and P ~ O(an2), the exponents can be related in the inequal-

ity, ni < n2. In the limits of thin and thick plates, the values of n and n2 are

[3,4] and [2,4] respectively. From Fig. 3-6 we observed that ii ~ n3 , where n3 < 0

and so U ~ Vaen ~' al+n3. Since U increases monotonically with V in Fig. 3-5,

0 < 1 + n3 < 1 and so n2= 4 + 3n 3 < 4 for intermediate plates. From Fig. 3-6a, we

find that U ~ a05 fits well with the intermediate curve, which gives us n2 = 2.5 and

i ~ o -0.5. Consequently, if we assume wo ~L _7 a-0.5 , we find Mb ~ a0 ., Ma,~ a

and, M. and M a which gives us - ~ a. We observe from Fig. 3-9 that the

slope of the curve for intermediate plate is around 1.

3.6 Outlook

In this chapter, the effect of thicknesses on the flow generation of semi-circular flat

plate were discussed. First, we presented the measurement of the natural frequency of

the semi-circular flat plate and fitted the parameter to classical plate vibration theory

that relates natural frequency to geometry. Using the experimental set up presented

in Chapter 2, we tested a variety of plates of different thicknesses and related their

normalized velocity to normalized natural frequencies and demonstrated that the

optimal conditions for flow generation and efficiency of a semi-circular homogeneous

plate occur when driving near its natural frequency, which is consistent with previous

studies of fixed flapping structures [2, 4, 24, 25, 42, 46, 49, 50]. We were also able

to measure the input torque required for the flapping motion, which allowed us to

define an efficiency term. By observing the order of magnitude of the contribution

of different moment terms we were able to determine the scaling of efficiency terms

with the flapping amplitude for both thick and thin plates. In the next chapter, we

will focus on heterogeneous plates, namely the hand fan, the discrete model fans and

corrugated fans to check whether a similar mechanism is present.
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Chapter 4

Aeroelastic Behavior of

Heterogeneous Plates

In this chapter, we turn our attention to the flow generated by flapping heterogeneous

plates. The aim is to find out if the structural design of the plates increases the ve-

locity of the flow and require less input power. The following cases are considered:

the hand fans, the discrete model fans, and the corrugated fans. First, we present

the results on the natural frequencies of the hand fans and compare them to the

characteristic frequencies of a beam. The natural frequencies for both the hand fans

and the discrete model fans were found to be in the range of the thick plates regime

defined in Section 3.5.1. The normalized velocity for the hand fans and discrete model

fans were then plotted against the normalized natural frequency. We found that one

of the hand fans and the discrete model fans produced significantly higher velocity

compared to the rigid plates. In the case of the corrugated plates, we first mea-

sured the flexural stiffness of the corrugated plates and compared them to theory and

finite element simulations using commercial finite element package ABAQUS/CAE

(SIMULIA, Providence, RI). We then present the normalized velocity generated by

the corrugated plates as a function of the normalized natural frequency of the origi-

nal semi-circular. It was found that reversible buckling is a mechanism for generating

higher flow velocity and power efficiency.
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4.1 Aeroelastic Behavior of the Hand Fans

In this section, we present the results for the natural frequency and flow measurements

of the hand fans described in Section 2.3.1. First, we measured the natural frequency

of the hand fan using the laser vibrometer setup described in Section 2.2. Since

the structure of a handheld fan is more complicated than a semi-circular flat plate,

we start by deriving the first and second mode shape of the fan in Section 4.1.1.

To simplify the estimation of the natural frequencies, we fitted the vibration data

by defining a characteristic frequency based on a beam. We then compared the

normalized velocity and the power efficiency of the flow generated by the hand fan to

that of the homogeneous flat plate in Section 4.1.3 and 4.1.4 respectively.

4.1.1 Mode Shape of Hand Fans

In Section 1.3, we derived analytical expressions for the mode shape of a flat plate that

has one fixed and three free boundaries. We showed that mode shapes that depend

only on the x direction satisfy the symmetric free-free boundary condition in the z

direction. For the hand fan, we cannot simply assume that the mode shape varies

only in the x direction as the stick-ribs-leaves structure of the hand fan is different

from a flat plate.

Hence, we created an array of points marked with the reflective tapes on the

right half of the face side of Fan 1 (Fig. 4-la) and measured the acceleration an

and phase shift 0 using the process described in Section 2.2. We can then derive the

maximum modal deflection (max,n = a/w2 , where an is the acceleration of the surface

at the nth location. Fig. 4-1b and Fig. 4-2 show the maximum modal deflection,

(max,n of the face side surface of Fan 1 at the first and second resonant frequency

(wn ~ {57.6, 94.2} rad/s, shaker amplitude A = 0.5 mm), respectively. The axis

follows the same convention as the experimental setup in Fig. 2-1.

We see that the first mode shape of the hand fan is almost constant in the z

direction (similar to a planar plate). The second mode of the hand fan displayed a

radial mode shape, with regions of alternating signs of phase. Note that the second
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Figure 4-1: (a) A photograph of the side of Fan 1 where we measured the surface
acceleration (photo not to scale) (b)Maximum deflection Qiax for one half of Fan 1 at
the first resonant frequency, w,,i 57.6 rad/s (9.2 Hz) and shaker amplitude A 0.5
mm (out of plane direction).
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Figure 4-2: Maximum deflection (max for one half of the Fan 1 at the second resonant
frequency, wn 2 ~ 94.2 rad/s (15 Hz) and shaker amplitude A = 0.5 mm.
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mode shape of a flat plate will again be uniform in the z direction and only varies in the

x direction. We conjecture that at higher natural frequencies, we would expect more

of the alternating patterns to occur. The radial sticks would be vibrating relative

to each other and the hand fans behave just like an array of beams. To test our

hypothesis, we compared the measured frequency to the characteristic frequency of

beams in Section 4.1.2.

4.1.2 Natural Frequency of Hand Fans

As we mentioned in Section 4.1.1, we conjectured that the sticks on the hand fan

vibrate as if they were independent beams and, hence, we rewrite the characteris-

tic frequency of the flat plate Eq. (3.1) to one that is similar to the characteristic

4-Q

Q

F.
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0 Fan I

100 - O Fan2 
AFan3 A

80 - Fan 6
SFan 7

60- /o

40-
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0
0 5 10 15

Characteristic Frequency, Qf (rad/s)

Figure 4-3: Measured natural frequency plotted against
for Fans 1-3, 6 and 7. The dashed line is a linear fit.

the characteristic frequency
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frequency of a beam:

EI
f =k mL 4 , (4.1)

where m = M/R is the mass per unit length of the fan, M is the total mass of the

fan and El is the effective flexural stiffness measured using the procedure outlined in

Section. 2.4.

In Fig. 4-3, we plot w,(Qf) for Fans 1-3, 6 and 7 (Details of the fans can be

found in Section 2.3.1). The natural frequencies of Fans 4 and 5 are above the 22

Hz limitation of the laser vibrometer and were excluded in Fig. 4-3. Similarly to the

semi-circular plates, we found that &., oc Qf with a prefactor kf = 8.9 0.7. The

linear relationship between w, and Qf indicates that the fans are vibrating like beams

and can be seen as a set of discrete elastic strips arranged in a semi-circular fashion.

Hereon, we use wn as a measure of the flexural properties of both the fans.

4.1.3 Flow Generated by the Hand Fan

We measured the flow generated by the hand fan using the same procedure for the flat

plate (at the location 0 = 0 and d = 0.1R as described in Section 3.3). In Fig. 4-4,

we plotted U versus the velocity of the tip of the fan V = wcL (based on a rigid

plate). We found that all three fans have a linear dependence, U oc V, similar to the

rigid flat plate. Fan 2 and 3 produced comparable velocity (U ~ {0.75, 0.76}1V) of

the generated flow at each driving velocity, while Fan 1 generated consistently higher

velocity. Note that Fan 1 is the most flexible (El = {2.24 + 0.02, 4.02 0.04, 2.76 +

0.03} x 10-2 Nm2 for Fan 1, 2 and 3) and has the lowest natural frequencies among

the three fans (w = {57.6, 95.5 88.0} rad/s).

Having measured the natural frequency of the hand fans, we compared the flow

they generate to that of the flat plates. Of particular interest is whether the hand

fans improve the flow generated by plates with similar natural frequencies. The data

were processed in the same manner as the flat plate. In Fig. 4-5, we contrast the

u(C) data for Fans 1, 2 and 3 (open symbols) to the homogeneous plates (closed gray

triangles). Given that the natural frequency of these fans is significantly larger than
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the driving frequency, C = {4.6, 7.6, 7.0}, one would expect them to exhibit rigid limit

behavior or produce the same normalized velocity as the thick plates. The normalized

velocities for Fan 2 and 3 u = {0.75t 0.05, 0.76 0.10} are only ~ 9% higher than the

normalized velocity of a rigid plate ii = 0.70 0.04. On the other hand, U = 0.97 0.20

for Fan 1, which is ~ 39% higher than the expected velocity for a homogeneous plate

with the same normalized natural frequencies. These results suggest that the discrete

design may be an important feature that increases the velocity of the generated flow.

In order to verify that hypothesis, we conducted the experiments on the discrete

model fans with the methods described in Section 2.3.3 using the same methods as

the hand fans. Besides the generated velocity, we also want to find out if the hand

fans are more efficient than the flat plates as a flow generating tool and the results

are presented in Section 4.1.4.

1

b O

Q)

0 
) 0.5 1

Driving velocity, V (m/s)

Figure 4-4: Velocity of generated flow U by the fan versus the velocity of the fan tip
V for the three hand fans.
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Figure 4-5: Average normalized velocity generated by the hand fans (open symbols)

and the semi-circular plates (grey triangles) versus the corresponding normalized
natural frequencies for 8' < a < 560 at 8) intervals. The error bar represents the

standard deviation of the flow generated for 8' < a < 56'.

4.1.4 Power Efficiency of the Flapping Hand Fan

Other than the flow generated by the hand fan, we also compared the power efficiency

of the hand fans to that of the flat plates. We measured the torque required to flap

the hand fan in a similar way to the procedure used on the flat plate described in

Section 2.1.3. Details of the definition and derivation of the input and output power

terms were presented in Section 3.4.2 and for convenience, we summarize the expres-

sions for efficiency, input and output powers here. We defined the power efficiency

as

(4.2)
Pi
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the input power

and the output power

P ~ 1/2pfSU 3 . (4.4)

In Fig. 4-6, we contrast the efficiency r data for Fans 1, 2 and 3 (open sym-

bols) to the homogeneous plates (closed symbols). The efficiency of Fans 1, 2 and

3 are r/(fans)/r(plates) = {7.4, 4.5, 5.8} times the efficiency of the flat plates. Fans

2 and 3 produced a 13% higher velocity and consequently - 30% more output

power as compared to rigid plates of the same normalized natural frequencies (see

Fig. 4-5). While the increased output power contributes to a corresponding increase

10-3

10-4

Q 10-5

i(- 6

1 0 100 10 1

Normalized natural frequency, -
102

Figure 4-6: Average efficiency for the hand fans (open symbols) and the semi-circular
plates (grey triangles) versus the corresponding normalized natural frequencies for
8 < a < 56' at 8' intervals. The error bar represents the standard deviation of the
efficiency for 80 < a < 560.
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in efficiency, the handheld fans also required much lower input power. Indeed, the

input and output powers of Fans 1, 2 and 3, and the flat plates at cv = 320 are

Pi = {0.0050, 0.0027, 0.0030, 0.0017} W and Pi = {19.73, 18.63, 16.69, ~ 75} W,

respectively. In Section 3.5.1 we noted that the dominant moments in the thick

plate regime are inertial and bending. A plate of the same normalized natural

frequency as the hand fans would have a thickness of h ~ 900 pm and a mass of

M =7R p ~ 0.078 kg. This is approximately double the masses of Fan 2 and 3

(M ={0.0412, 0.0382} kg). Given that the normalized natural frequency is the same,

the inertial to bending moment ratio is also the same, meaning that the bending mo-

ment of the flat plate is also nearly double that of the fans. Considering the scaling

of the moments in Eq. 3.32, we would expect the input power of the handheld fan to

be ~~ 50% of the semi-circular flat plate (assuming the distribution of the mass is the

same as a semi-circular plate). However, the measured input power of the handheld

fans are only ~ 22 - 26% of that of the flat plates, half of what we were expecting.

We hypothesize that the discrete designs of the hand fan, in addition to increasing

the output velocity, also contributes to higher power efficiency by reducing the input

power requirement.

To investigate the effect of structures with discrete parts connected by compliant

materials, we performed the same experiments and analysis on the discrete model fans

described in Section 2.3.3 and the results are presented in Section 4.2. We will also

revisit the handheld fan by considering its instantaneous deformation in Section 4.3
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4.2 Aeroelastic Behavior of the Discrete Models

In this section, we test our hypothesis that the discrete design of the hand fan con-

tributes to the increase in velocity of the flow. We performed the experiments on the

discrete model fans described in Section 2.3.3, using the same procedure as both the

flat semi-circular plates and the hand fans. In Section 4.2.1, we present the results of

the measurement of the natural frequencies and the velocity of the flow and compare

them with semi-circular plates of the same natural frequencies. In Section 4.2.2, we

make the comparison of power efficiency of the discrete model fans and the semi-

circular planar plates.

4.2.1 Natural Frequency and Flow Generated by the Discrete

Models

We speculated that discrete structures increase the flow generation and tested the

discrete model fans described in Section 2.3.3 using the same procedure for the hand

fans and flat plates. The natural frequency of these model fans were similar to that

of the homogeneous plate: &9 = 33.3rad/s and 34.5 rad/s for Model 1 and Model 2,

respectively, versus 32.7 rad/s for the flat plate with R = 200 mm and h = 762 [um

(the same thickness of the material used to fabricate the sectors of Model 1 and 2). For

simplicity, we shall henceforth call this semi-circular plate Model Plate in Section 4.2.1

and 4.2.2. It is surprising that having discrete sections did not significantly alter the

natural frequency of the Model Plate (shifts of 1.8 and 5.5% in natural frequency

for Model 1 and Model 2 respectively). More material was used for the model fans

compared to the Model Plate due to the overlap of sectors, which cause an increase

in the fan mass. The bending moment increased correspondingly as the inertial to

bending moment ratios of Model 1 and 2 and Model Plate are similar.

In Fig. 4-7, we contrast the average velocity of flow generated by the model fans

to that of the flat plates across the range of angular amplitudes 8' < < 560.

We find that the averages of generated flow of ft = 1.15 0.22 and i = 0.96

0.13 (Fig. 4-7, red triangle, green diamond) are significantly higher (53% and 26%,
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Figure 4-7: Average normalized velocity generated by Model 1 (red triangle), Model
2 (green diamond) and semi-circular plates (grey triangle) versus their corresponding
normalized natural frequencies for 8' < a < 56' at 8' intervals. The error bar
represents the standard deviation of the flow generated for 8' < a < 56'.

respectively) than that of the Model Plate. To help us rationalize this improvement in

flow generation, we shall measure the instantaneous plate deformation in Section 4.3.

We also understood from Section 4.1.4 that even though the natural frequency of the

Model 1, 2 and the Model Plate may be the same, the net moment will be affected by

the mass and flexural stiffness of the structure and we will discuss the power efficiency

of our discrete model fans next.
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4.2.2 Power Efficiency of the Flapping Discrete Models

To complete our analysis, in Fig. 4-8, we contrast the efficiency of Model 1 and

2 to that of the Mode Plate. Model 1 and Model 2 have average efficiencies of

77= {1.34, 0.81} x 10-4 which are 3.80 and 2.27 times the average efficiency of the

Model Plate (,q = 0.36 x 10-4). To understand the contributing factors for this

increment, we compared both their input and output powers to that of the Model

Plate at the median flapping amplitude, a = 320. The output power and input

power of Model 1, Model 2 and Plate at a = 32' are P0, {0.0055, 0.0026, 0.0017}

W and P {51.7, 43.8, 54.6} W respectively. Similar trends were also observed

at other angular amplitudes. As expected, the higher input powers for the discrete

plates are due to the higher normalized velocity relative to the Model Plate (0 =

10-3, 
,,
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Figure 4-8: Average efficiency of Model 1 (red triangle), Model 2 (green diamond)
and semi-circular plates (grey triangle) versus their corresponding normalized natural
frequencies for 8' < a < 560 at 8' intervals. The error bar represents the standard
deviation of the efficiency for 8 < a < 56'.
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{1.02, 0.80, 0.73} for Model 1, Model 2 and Model Plate at a = 320). The slight

decrease in input power is a surprising result because the model fans are heavier (due

to the overlapping nature of the discrete model plates) than the Model Plate. At the

same values of the natural frequency, the inertial to bending moment ratios are the

same and thus the model discrete fans have larger inertial and bending moment. Yet,

the input power required to flap the discrete model fans is lower compared to that of

Model Plate. We also observed from the handheld fans experiments that the input

power is lower than expected (based on masses and flexural stiffness).

The direct effect of discrete sections on input moments is still unclear and we may

have to rely on simulations to understand the contributions of the moments better. It

is also interesting to note that Model 1 increased the flow generated drastically, while

Model 2 increased the efficiency through requiring even less input power as compared

to Model 1. Through optimization process, we should be able to design the shape of

the sectors that can both produce higher velocity and reduce the input power.

4.3 Comparison of Instantaneous Deflection of Flat

Plates, Hand Fans and Discrete Models

Finally, in order to understand why the discrete geometry helps the fan generate

higher velocity flow, we quantified the deformation of the discrete model, the homo-

geneous plates, and a handheld fan. To obtain these data, we used the trigger strobe

photography technique described in Section 2.1.4. The out-of-plane deflections, 6

were also computed using the image processing technique described in Section 2.1.4.

In order to derive the Gaussian curvature K, we used an open source Matlab func-

tion Surface curvature [11] which calculates the principal curvatures and the Gaussian

curvature given the x - y - z positions of points on the surface of the fans.

Fan 1 (Fig. 4-9b2) and the discrete model (Fig. 4-9c2) exhibited non-uniform

deflection fields in the x and z directions, while the deflection of the semi-circular

plates varied only along x. Moreover, the maximum tip deflection of both the fan
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and the discrete model (6 tip = {31.8, 43.5} mm) was ~ 5 - 6 times larger than that

for the plate (6 tip = 7.1 mm). The Gaussian curvature of the homogeneous plate is

uniformly zero (Fig. 4-9a3), a confirmation that the plate is only undergoing pure

bending deformation and remains developable (isometric to a plane), as expected [5].

(al) (bi) (C)

(a2) (b2) (c2)4

201S

(a3) (3) (c3)0

Figure 4-9: Deflection, 6 and Gaussian curvature K field at w 2 Hz and a = 480 of
(a) semicircular plate (L = 200 mm, h = 762 pm) (b) Fan 1 and (c) Discrete model
made with 11 sector-shaped discrete strips (PETG, thickness 762 pm, radius 200 mm,
and angular width 18', with an overlap of 1 - 5' between adjacent strips).

By contrast, both the discrete model (Fig. 4-9c3) and the fan (Fig. 4-9b3) exhibit

regions of positive and negative K, which means there are regions of significant of

in-plane compression and expansion of the structure. Even if each individual strip

only undergoes pure bending about the tangential direction, the additional degrees

of freedom provided by their overlap allows this overall in-plane kinematics. The

individual strips can form different angles about the radial direction relative to the

adjacent strips, generating a "curvature" about the radial direction as illustrated in

Fig. 4-10. Together with bending about the tangential direction, we have non-zero

Gaussian curvature on the discrete surface. We speculate that this results in larger

tip deflections and, correspondingly, increases the strength of vortices shed by the

fan tip. Studying the aerodynamic effects of these shape transformations during the

flapping motion would require either flow visualization or full-scale computational

fluid dynamics (CFD) simulations which are outside of the scope of this thesis.
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Figure 4-10: A simplified illustration to show how overlapping sectors generate a
curvature with adjacent sectors. The amount of deformation is exaggerated and
shown here is a generic orthogonal coordinate.

4.4 Outlook on Discrete Section Designs

Based on the results of the experiments on the commercial hand fans and how they

compared to the semi-circular plates of similar natural frequencies, we conclude that

the efficiency of flow generation was significantly improved by lowering both the mass

and the bending stiffness. As the effect of the discrete nature of the hand fans is

not well understood, we designed two fans with discrete sectors. In our experiments,

Model 1 and 2 differs by the sector shape and even though they both improved the

performance of the hand fan (both flow generation and efficiency), Model 1 generated

much higher flow velocity than Model 2 while Model 2 required less input power for

the flapping motion. Thus the shape of the sectors and the number of sectors used for

the fans could be optimized to find the optimal discrete geometry. The optimization

process is not a trivial process as we are not only concerned about the mass and

flexural stiffness of the resultant structure but also the instantaneous deformation of

the fan and the effect on the flow generation. On top of the optimization of the sector

shape, the behavior of the discrete sector plates should also be studied for cases near

the natural frequency.

In the next section, we explore another structural feature inspired by the pleated

hand fan - the effect of the corrugation of the plates. For the discrete sections, we

modified the structure of the thick plates and for the next section, we will be working

on the thin plates.
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4.5 Aeroelastic Behavior of Corrugated Plates

In this section, we imposed corrugation on plates with thickness h < 191 pm with

the method detailed in Section 2.3.4. Intuitively, we know that corrugation increases

the flexural stiffness of the plates (only with respect to one of the axes), without

changing the mass of the fan. We have first to characterize the bending stiffness of

the corrugated plates in the direction of the corrugation. Finally, we will compare

the velocity of the flow generated and the power efficiency of the corrugated plate to

the corresponding values of the flat plates.

4.5.1 Mechanical Properties of Corrugated Plates

Firstly, we are interested in finding the bending stiffness of a plate at which the middle

plane is defined with the shape y = Hsin(?j-), where H is amplitude and A is the

wavelength. An illustration of the shape of corrugation is shown in Fig. 4-11.

S

z'00A

Figure 4-11: Illustration of the shape of corrugation.

Classical experiments conducted by Seydel [59, 66] approximated the length of

the unwrapped plate, S and the bending moment I to be

SSey =

H2 h
ISey - (1 -2

A(1 + ' A2

0.81
1+2.5( )2

(4.5)
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where the subscript represents the method used to define the value. The values of

the moment of inertia from the experiments were found to be much lower than the

''exact" values calculated through integration [75]:

Sint= 2 1 ( )2dz,
0 (4.6)

irnt = z 2h 1+ (dY)2dz.

Evaluating Eqn. (4.6) using the software Mathematica (Wolfram) we have

2A1
Sjng F2 [-j (47r C

2H 2h Snt - Y2(4.7)

hn~2H2 h 1 1[ J1[1cl+ 2 F [1c]Iis = + (1 - C2)yj1 + C2y2
3x C l+2 _ 1+ C2_ 2 +C2

where C = A, F [x] and F2 [x] are the complete elliptical integral of the first and

second kind. The integrals cannot be expressed as analytical functions but for our

application, we can use Matlab to evaluate specific values. We can first normalize the

moment of inertia per unit length of the corrugated plates by the moment of inertia

per unit length of the flat plate, which is given by 1o = . Thus we have the following

relationships:

it 8H2  1 (1 - C2)1 + C2 2Io h2 rC+ C2  _F I + C2

2A2  1 [- /1 1 l L+- JJ-= A (I - C2)1 + C2y2 (4.8)ir3C 2 h2  C2 _"2 +1C 1+ C2

Isy 6H2  0.81
Io h2 -I 1 +25( H)2(49

Note that when we set H = 0 or A = oc, ISey and int vanish, which is inconsistent

with our knowledge that the moment of inertia of the flat plate is given by Ip =

h3/12(1 - V2). For corrugated plates, the effective curvature of the plates affects

whether the loads are carried transversely (through bending moments) or axially
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(through membrane forces) [48]. Castigliano's second theorem was used to derive the

effective flexural stiffnesses proposed by Briassoulis [8] and the effective moment of

inertia, IB was given as:
Eh3  EH2 h

1B 2 (4.10)

Note that now when H = 0, IB of Eqn. 4.10 was exactly that of the flat plate.

Normalizing Eqn. 4.10 by Io = , we have:

B I + 6H2  
(4.11)

10 (1- 2) h2

In order to verify the expressions, we conducted finite element simulations using

commercial finite element package ABAQUS/CAE (SIMULIA, Providence, RI) to

find the moment of inertia of the corrugated plates sim for plates of thicknesses

254 < h < 7000 ,m, in the ranges of 0.5 < H < 5 mm and 0.1 < A < 10 mm. An

example of the ABAQUS model is shown in Fig. 4-12. The plate was fixed on one

of the corrugated ends and a line load was imposed on the other end. Symmetry

conditions (about the x-axis) were placed on the other two sides, such that it was as

though the simulation was conducted with infinite plates.

For plates of h K 1000 pm, we used the four-node thin shell elements (element

type S4R) with 5 integration points through the thickness. We conducted a mesh

sensitivity study on large amplitude H and small wavelength A cases and found that

the size of the elements have to be no larger than ~~ A/100. The number of elements

were usually of the order of - 4000.

For h > 1000 pm, we used the eight-node solid elements (element type C3D8R)

because there are significant stress gradient across the thickness of the plate (shell

elements are good for plane stress conditions). From the mesh sensitivity study, we

found that the mesh size has to be at most h/8 in the direction of the thickness and

~ A/100 for the other dimensions.

In Fig. 4-13, we then plot Isim/IO - 1/(1 - v 2) against H2/h 2 in log-log graph

shown (blue circles). Based on the theoretical value, we should have a line that has

a slope of 1 and intercepts the point [H2 /h 2, 1/10 _ 1/(1 _ ,2)] = [1,6]. From the
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Figure 4-12: Image showing an example corrugated plate in ABAQUS. The boundary
conditions are defined as shown.

Simulations

Experiments
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Figure 4-13: Plot of I/Io - 1/(1 - v 2 ) and H2 /h 2 for simulations, I = sim (blue
circle) and experiment I =It? (red square). For points below H2 /h 2 < 1000, the
line of best fit was found to have slope 1 and intercepted H2/h 2 = 1 at 5.
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results in Fig. 4-13, we see that for H2/h 2 < 1000, the line of best fit has a slope of 1

but intercepts the point [H2 /h 2, 1/10 _ 1/(1 _ V2)] 1, 5]. For H2 /h 2 > 1000, some

of the simulations show that the moment of inertia falls below the expected linear

relationship behavior and exhibited global buckling behavior were observed for plates

of H2/h 2 > 1000. The buckling behavior is not well characterized by H2 /h 2 since the

value of I/Io - 1/(1 - v2) spans more than 3 orders of magnitude.

We then experimentally measured the flexural stiffnesses of a few corrugated plates

and they are also plotted in Fig. 4-13 (red squares). In order to impose a line load

to find the overall flexural stiffness, an additional plate that matches the shape of

the corrugation was laser cut from acrylic and attached to the indenter as shown in

Fig. 4-14. It was difficult to bend a thicker plate into the corrugated shape without

causing irreversible damage, so the smallest feasible H2/h 2 was in the order of - 600.

Furthermore, we were also only able to define the shape at one end and as we move

away from the clamp, there is a relaxation of the shape of corrugation as the amplitude

of corrugation gets smaller, given that the stress-free configuration of the plate is its

flat state. The evolution of the corrugation patterns from root to tip can be estimated

through energy scaling arguments [69] but that would also be beyond the scope of

this thesis.

Figure 4-14: Photograph of an example of a linear indenter used to impose a line load
on the corrugated fan.

We shall see in Section 4.5.2 how global buckling behavior affects the flow genera-

tion of a corrugated plate. Nevertheless, both the simulations and experiments show

that at the physically feasible range of H2 /h 2 > 600 corrugation increases the flexural

stiffness by at least - 100 times. This means that we expect the natural frequency of

the corrugated structures to be at least - 10 times larger than the natural frequency
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of the plates. Unfortunately, that would also make most of the corrugated structures

out of range for the laser vibrometer experiments. Since we do not have specific in-

formation of the natural frequency of the corrugated plates, we will be normalizing

and compare them with the parameters of the original un-corrugated plate.

4.5.2 Flow Generation of Flapping Corrugated Fans

In a process similar to the commercial handheld fan and the discrete model plates,

we again compared the ii(9) data for by two different corrugation designs (four

thicknesses each, blue squares and red circles) with that of the original flat ho-

mogeneous plates (gray triangles). Corrugated Fan 1 has H 12.5 mm and A

2.5
W Plates

2 Corrugated Fan 1

4 Corrugated Fan 2

1.5

1 --

010

10- 10 0 101

Normalized natural frequency, w

Figure 4-15: Average normalized velocity of flow generated ft by corrugated de-

sign 1 (blue square) A = 133 mm, H = 12.5 mm and R = 200 mm and corru-

gated design 2 (red circle) A = 200 mm, H = 12.5 mm and R = 200 mm us-

ing plates of h = {51, 76, 102, 191} m with original normalized natural frequency
C = {0.181, 0.271, 0.361, 0.677} compared to the flat planar plates (grey triangles).
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133 mm while Corrugated Fan 2 has H = 12.5 mm and A = 200 mm. We im-

posed the corrugation to four homogeneous semi-circular plates of thicknesses h =

{51, 76, 102, 191} pum and R = 200 mm using the clamps of the two corrugated de-

signs (the method of fabrication of the fan clamp is outlined in Section 2.3.4). The

normalized natural frequencies of the planar homogeneous semi-circular plates used

were cD = {0.181, 0.271, 0.361, 0.677} and the average u- of the corrugated plates are

plotted at the o of the corresponding semi-circular plates in Fig. 4-15.

From Fig. 4-15, we see that the average normalized velocities of flow for both cor-

rugation designs are higher than that of the semi-circular plates of ci = {0.271, 0.361}.

For instance, at cQi = 0.361, the average velocity is U = {0.510, 0.764, 0.146} for Cor-

rugated Fan 1, Corrugated Fan 2 and the corresponding semi-circular plates, respec-

tively. For cD = 0.677, the average normalized velocities of both corrugated designs

are comparable to that of the corresponding semi-circular plates at U ei 0.515. Note

that at the rigid limit, the average U = 0.76 for the homogeneous semi-circular flat

plate and almost all of the corrugated plates performed worse.

Similar to the discrete model fan, the design of the corrugation shape is an im-

portant factor to the flow generation. In Fig. 4-16, we present the photographs of

the static and undeformed corrugated plates (Fig. 4-16a1, a2, bi and b2) and pho-

tographs of the deformed fan during the flapping motion (Fig. 4-16a3, a4, b3, and

b4. The positions of the deformed fans are at the extremes) for Corrugated Fan 1

(Fig. 4-16a) and Corrugated Fan 2 (Fig. 4-16b). The properties of the corresponding

semi-circular planar plate are h = 51 Mm, R = 200 mm and Cj = 0.181. The param-

eters of the corrugation shapes are A = 133 mm and H = 12.5 mm for Corrugated

Fan 1 and A = 200 mm and H = 12.5 mm for Corrugated Fan 2. Since both cor-

rugation designs have the same H and h, they have the same theoretical moment of

inertia based Eqn. 4.10. However, we see from Fig. 4-16 that Corrugated Fan 1 did

not buckle under the load and flaps rigidly with minimal deformation while Corru-

gated Fan 2 buckles and creates a large tip deformation. This buckling behavior is

reversible and Corrugated Fan 2 reverts back to the undeformed configuration once

the flapping motion stops. Due to this large buckling behavior, the tip velocity of
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Figure 4-16: Photographs of the undeformed corrugated plate (1) from the face side
and (2) from the negative x axis view, and deformed corrugated plate during flapping
motion (3) from the face side and (2) from the negative x axis view for (a) Corrugated
Fan I (A = 133 mm, H = 12.5 mm) and (b) Corrugated Fan 2 (A = 200 mm, H = 12.5
mm) with h = 51 pm, R = 200 mm and a = 48'

Corrugated Fan 2 was much larger than V = waL and caused the fan to generate

a higher normalized velocity than Corrugated Fan 1. For the conditions shown in

Fig. 4-16 (c = 0.181 and a = 480) the normalized velocities for Corrugated Fan 1,

Corrugated Fan 2, and plate are 'U= {0.143, 0.246, 0.102}. Even though Corrugated

Fan 1 behaves as though it is rigid at a = 480, the ii = 0.143 is only a fraction of

the rigid semi-circular flat plates t ~ 0.70. We hypothesize that this is because the

corrugated shape is not ideal for generating vortexes and to investigate that, CFD

simulations of a rigid flapping corrugated plate is required.

Even though the velocity generated by the buckling of the corrugated plate is

still smaller and at most comparable to that of rigid plates, the corrugated plates
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are thinner (h = 51 pm) and hence lighter than the rigid homogeneous semi-circular

plates (h ;> 508 pm). This means that the inertial moments is lower for the corrugated

plates. To understand the overall effect of corrugation on the flapping motion, we

consider the power efficiency of the flapping corrugated fan.

4.5.3 Power Efficiency of Flapping Corrugated Fans

To round up our study on corrugated plates, we contrast the average power efficiency

,q of the corrugated fans to that of the semi-circular plates in Fig. 4-17. The av-

eraged normalized efficiency for both corrugation designs are higher than that for

semi-circular plates of Ck' = {0.271, 0.361}. At CD = 0.361, the average T for Cor-
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Figure 4-17: Power efficiency of corrugated design 1 (blue square) A = 133 mm,
H = 12.5 mm and R = 200 mm and corrugated design 2 (red circle) A = 200 mm,
H = 12.5 mm and R = 200 mm using plates of h = {51, 76, 102, 191} pm with

original normalized natural frequency o = {0.181, 0.271, 0.3613, 0.677} compared to
the flat planar plates (grey triangles).
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rugated Fan 1, Corrugated Fan 2 and the corresponding semi-circular plates are

S= f{0.533, 1.331, 0.039} x 10-. At co = 0.361 and a = 320, the output power are

Po = {0.83, 4.67, 0.01} x 10- W for Corrugated Fan 1, Corrugated Fan 2 and the

corresponding plate, respectively. We also consider how the input power changes with

corrugation. At a = 480 and Z = 0.361, the input power Pi = {14.6, 13.61, 3.56}

W for Corrugated Fan 1, Corrugated Fan 2 and semi-circular plates. As we can

see, the input power for the corrugated plates are ~ 4 - 5 times higher than the

un-corrugated configuration. However, the improvement in output power far out-

weighs the increased required input power. Thus we observe the power efficiencies:

,q(Corrugated Fan 2) > r(Corrugated Fan 1) > T(plate).

Finally, we want to understand the effect of buckling on the power efficiency. We

consider the case shown in Fig. 4-16 (normalized frequency - = 0.181) where we

observed that Corrugated Fan 2 buckled, while Corrugated Fan 1 did not. The in-

put powers for Corrugated Fan 1, Corrugated Fan 2 and the plates at o = 0.181

and a = 48' are Pi = {28.04, 19.55, 10.88} W. It is interesting to note that the in-

put power (and also torque) for Corrugated Fan 1 was ~~ 43% higher than that of

Corrugated Fan 2. On top of the larger fan tip deflection, which results in larger

flow velocity (i = {0.143, 0.246, 0.102} at D = 0.181 and a = 480 for Corrugated

Fan 1, Corrugated Fan 2 and flat plate), this dynamic reversible buckling mechanism

also alleviates the high torque that an undeformed corrugated plate would experi-

ence. The advantage of reverse buckling is hence two-fold: increasing velocity and

the lowering input power requirement. However, not all corrugated designs are ad-

vantageous as we demonstrated above; corrugation without reversible buckling only

increases the required input power without the benefit of increased flow. The resul-

tant power efficiencies for Corrugated Fan 1, Corrugated Fan 2 and flat plate are

S= f{0.41, 3.00, 0.38} x 10-5 at C = 0.181 and a = 32'. The power efficiencies of

all these plates are still significantly lower than a semi-circular plate near resonant

frequency 7(I = 0.98) = 5.19 x 10-4.
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4.6 Outlook of Corrugated Fan

From the experiments on the corrugated fans, we find that buckling of the corrugated

fans allows them to achieve larger tip deflection and consequently higher values of

velocity of the generated flow. We also observed that the shape of the corrugation

has a significant impact on whether the fans will buckle under the flapping motion.

Newman and Wootton [47] proposed that reversible buckling is a mechanism employed

by dragonflies to withstand and alleviate the high load. Indeed, we observed from

our experiments on the corrugated plates that the input torque for the corrugated

plate that buckles reversibly is lower than the unbuckled case. To optimize corrugated

plate design, it would be necessary to first study the mechanisms of dynamic buckling

and develop a simplified model to determine if the plate will buckle. This is not a

trivial problem as the loads are unsteady and also depends heavily on the flapping

amplitudes and frequencies.

We note that dragonflies have wings with higher aspect ratio than a semi-circular

shaped structure like the fans. Longer wings typically have to balance the larger

bending moment at the wing root and the flexural stiffness of the wing. The corru-

gation designs provide the required rigidity without additional weight to the wings

and were also proposed as an evolutionary optimization in insects such as dragon-

flies [47]. A study of using corrugation patterns on longer flapping structures could be

conducted to further understand this trade-off. Coupled fluid-structure interaction

simulations on the buckling deformation shape of the corrugated plates and the flow

generation of the plates would have to be conducted in order to optimize the shape

of the corrugated fans.
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Chapter 5

Conclusion

In this concluding chapter, we first summarize (Section 5.1) the main findings of our

experimental investigation on the aeroelastic behavior of four different flapping struc-

tures: planar homogeneous flat semi-circular plates, commercially available Spanish

style pleated hand fans, discrete model fans and corrugated plates. Secondly, we dis-

cuss in Section 5.2 how our findings can be potentially applied to the understanding of

the mechanisms of other flapping structures in nature, and the design of biomimetic

flapping structures. Finally, in Section 5.3, we suggest some possible extensions of

this thesis and direction for future research in the area of flapping structures.

5.1 Summary of Findings

In this thesis, we studied the aeroelastic behavior of four different flapping structures:

planar homogeneous semi-circular plates (Section 5.1.1), commercially available Span-

ish style pleated handheld fans (Section 5.1.2), discrete model fans inspired by the

hand fans (Section 5.1.3) and corrugated plates (Section 5.1.4). We used precision

model experiments to understand the effects of structural designs on the ability of

the fan to generate flow. The main findings for each of the categories are summarized

below.

99



5.1.1 Homogeneous Semi-circular Plates

As a baseline for comparison with the other flapping structures, we quantified the

normalized velocity ii of the generated flow as a function of the normalized natural

frequency C of the homogeneous semi-circular plates, for a range of thicknesses. We

found that plates with C' - 1 produce the highest ft and are also the most power effi-

cient. Three thickness regime were defined: 1) thin plates for C' < 0.6; (2) thick plates

for C > 2; and (3) intermediate plates for 0.6 < K < 2. The behavior of these plates

under flapping motion was understood by considering the contributing moments. Us-

ing the linearized Euler-Bernoulli equations, we expressed each of the moments in

terms of geometrical and material parameters, and operating conditions. We found

that for thin plates, the aerodynamic and the added mass moments dominate. In

this case, the deflection is independent of the angular amplitude a and the efficiency

scales as o ~ a. For thick plates, the bending and the inertial moments dominate

and, while deflection is also independent of angular amplitude, we have 'q - a2 . For

intermediate plates, it is more complicated than the previous two cases because all

the ingredients (inertia, bending, aerodynamic and add mass) are of similar order of

magnitude. In this third case, we find experimentally that U ~ a-0.5 and 77 - a.

5.1.2 Commercially Available Spanish Handheld Fans

We began by studying the mode shapes of the handheld fans at the first and second

resonant frequencies and noted that the fans vibrated in a way similar to a series of

beams arranged in a semi-circular array. We then found that the natural frequencies

of the fans scale proportionally with the characteristic frequency of a beam. The three

handheld fans (Fan 1, Fan 2 and Fan 3) were all found to have normalized natural

frequencies that are in the thick plates regime. Fan 1, with a longer discrete section,

was found to generate higher velocity flow than the rigid plates, while Fan 2 and Fan

3 generated comparable velocity with the rigid plates. All three fans were found to

be more efficient than the rigid plates and we attributed this finding to their lower

masses and flexural stiffnesses (which contributed to lower input power).
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5.1.3 Discrete Model Fans

In order to explore the effect of discrete structures on the flow generation of the fans,

we fabricated discrete model fans by attaching individual sectors shaped plates to-

gether. The natural frequencies of the discrete model fans were comparable to that

of the homogeneous semi-circular plates with the same thickness. The discrete model

fans produced 26-53% more flow than the corresponding semi-circular plates and also

required slightly lower input torque to generate the flapping motion. Therefore, the

discrete model fans have higher power efficiency compared to the semi-circular plates.

We rationalized the increase in generated flow velocities by comparing the instanta-

neous deflection of the homogeneous plates, hand fans, and discrete model fans. We

observed that the hand fan and the discrete model fans have significantly larger fan tip

deflections compared to semi-circular plates of comparable natural frequencies. This

is because the flat plates only deform through bending (resulting in uniformly zero

Gaussian curvature) while the hand fans and discrete model fans experience in-plane

expansions and compressions (resulting in regions of positive and negative Gaussian

curvature).

5.1.4 Corrugated Plates

For the corrugated plates, we first compared the theoretical moment of inertia to FEM

simulations and experimental results. Buckling behavior is observed for plates with

high corrugation amplitude to thickness ratio (H2/h 2 > 1000) and is not predicted by

the theoretical models. This range of H2/h 2 and is also the regime of interest for our

study since we can only impose the corrugation shape on plates with thickness h <

191 pm. We tested two different corrugation designs and observed improvements in

flow generation and efficiency compared to the original un-corrugated plates. Between

the two designs with the same corrugation amplitude, we observed the one which

buckles during flapping has a larger fan tip deflection and consequently generated

higher velocity flow. The buckled plate also required lower torque (and hence a lower

input power) for the flapping motion.
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5.2 Application to Biomimetic Flapping Structures

Beyond the specifics of handheld fans, we believe that uncovering the mechanisms

for the enhancement of the flow generated by oscillating plate-like systems, which

are both flexible and discrete, may open exciting opportunities in understanding

the aeroelasticity of flapping structures such as insect and bird wings [71, 12, 45].

Moreover, these fundamentals could be invaluable in novel engineering designs of bio-

inspired flapping drones [10, 39]. We hope that our findings will prompt zoologists,

etymologists, and marine biologists to observe in detail the effect of modifying the

stiff-ribs-compliant-connector structures in nature.

Our study identified the discrete nature of the ribs as a main structural design

"ingredient" that allows the fan to achieve greater tip deflections. Hence, the fan

is able to deform into a more favorable instantaneous shape, which in the case of

our study, greatly improve the flow generation. We noticed that in self-propelling

models, the frequencies at which optimal thrust production occurs is at a fraction

of the natural frequencies [29, 53, 651. We think that this discrete design could be

paradigm shift in structural design which can be employed by biomimetic flapping

wings structures with normalized natural frequencies CA) > 2 to increase their thrust

generation. We also identified plate corrugation as another structural design strategy

to improve flow generation of plates with cD' < 0.6. Our study confirmed that the cor-

rugated plates employed the interesting mechanism of reversible buckling (proposed

by Newman and Wootton [47] based on the observations on dragonflies) to generated

higher velocity flow. In Chapter 3, we also scaled the moments and power efficiency

with the flapping angular amplitude a. The findings have a direct implication on the

controls and dynamics of flapping drones and robots.
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5.3 Future Work

In this Section, we discuss some related works in literature and potential extensions

for future research. Even if these are beyond the scope of the current study, we hope

that our results will instigate future research activity in these directions.

5.3.1 Optimizing Discrete Section Models

Designs for flapping fans that contain discrete sections allows for finite Gaussian

curvature to develop on the surface of the fan and improve the velocity of flow gener-

ation for CD > 2, with respect to flat homogeneous plate. A natural question to ask is

whether the discrete design works for other W- and if the optimal would occur at values

other than C ~ 1. In Sections 4.2.1 and 4.2.2, we also found that the shape of the

discrete model fans is another important factor. Topology Optimization [62] could

be applied to find the best sector shape for generating thrust. A further extension

is to apply discrete sections to flapping structures that have are not semi-circular in

shape, and in this case, the shape/size of the sectors in a plate may not uniform.

5.3.2 Visualization of Deformation and Optimization of

Corrugated Plates

We noted that the amplitude and wavelength of the corrugations affect whether buck-

ling occurs and has a significant effect on the generated flow. A natural potential

research is to develop a simplified model to predict the conditions at which differ-

ent corrugation shapes buckle dynamically. Since deflection shape is crucial for flow

generation /thrust production, another direction for the study of the behavior of cor-

rugated plate is related to the visualization of the resulting deflection. We can also

apply corrugation to non-semi-circular structures. This is especially useful for struc-

tures with high aspect ratio since corrugation increases bending stiffness without

additional weight.
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5.3.3 Venation Network

The venation network of insect wings provides a structural support for the wing

membrane to form the shape of the aerodynamic surface. Recent biological research

has suggested that the overall flexural flexibility of insect wings scales to the cube of

the span [12]. Moreover, the wings of Manduca Sexta have been shown to exhibit an

exponential distribution of stiffness in the spanwise and chordwise direction [13]. A

potential direction is to identify the geometrical and material design principles that

contribute to this distribution of stiffness and develop a predictive understanding

of the coupling between the structural properties of the wing due to the venation

networks and the aerodynamic performance.

5.3.4 Porosity of the Flapping Structure

In nature, wing membranes can sometimes be porous but this has been typically

overlooked in the literature. The handheld fans we tested have cloth leaves. The

cloth material is a porous material in that there are spaces between the threads

where air could move across. In this thesis and in existing designs of robotic flapping

wings, we had used non-porous contiguous materials almost exclusively. Some robotic

flapping wings had used cloth as a covering material 127, 331 but the trade-off is not

well understood. The advantage of using a porous material is twofold: (i) it decreases

the overall weight of the structures, and (ii) it allows the stiffness distribution across

the wing to be readily tailored heterogeneously. The aerodynamics trade-off during

flapping flight must then be understood so as to make use of porosity to optimize

wing design. A possible direction for future work is to study the maximum degree of

porosity that a wing membrane can contain, while still behaving aerodynamically as

if it was contiguous.
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