
Sampling-Based Path Planner for Guided Airdrop in

Urban Environments
by

Brian Le Floch
B.S., University at Buffalo (2015)

Submitted to the Department of Aeronautics an Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2017

Massachusetts Institute of Technology 2017. All rights reserved.

Author Signature
Department of Aeronautics an Astronautics

Certified by.........
Signature redacted May25,2017

Jonathan How
Richard Cockburn Maclaurin Professor of Aeronautics and Astronautics

Certified by
Signature redacted Thesis Supervisor

Matthew Stoeckle
Member of the Technical Staff, Draper

Certified by.,Signature redacted
/

Thesis Supervisor

Louis Breger
Member of the Technical Staff, Draper

Accepted by...

OTE HNQ GY_

0L6BRAR IES

Youssef M. Marzouk

Signature redacted-Teesis Supervisor

CL

Associate Professor of Aeronautics and Astronautics
Cn Chair, Graduate Program Committee

0j

2

Sampling-Based Path Planner for Guided Airdrop in Urban

Environments

by

Brian Le Floch

Submitted to the Department of Aeronautics and Astronautics
on May 25, 2017, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Aerial resupply can deliver cargo to locations across the globe. A challenge for modern
guided parafoil systems is to land accurately in complex terrain, including canyons and
cities. This thesis presents the Rewire-RRT algorithm for parafoil terminal guidance.
The algorithm uses Rapidly-Exploring Random Trees (RRT) to efficiently search for
feasible paths through complex environments. Most importantly, Rewire-RRT pro-
vides a mechanism to build and rewire the tree to explicitly minimize the risk of
collision with obstacles along each path and to minimize the expected final miss dis-
tance from the target. This key adaptation allows for parafoil guidance in urban drop
zones not previously considered for airdrop operations. The Rewire-RRT algorithm
is first developed and tested in two dimensions and demonstrated to have greater per-
formance than RRT for simple dynamical systems, finding paths that are shorter and
safer than those found by RRT. Then, Rewire-RRT is shown to be an effective path
planner for a guided parafoil with complex dynamics. Paths planned by Rewire-RRT
better meet the performance objectives of guided parafoils than those planned by
RRT. Finally, simulation results show that Rewire-RRT performs better than state-
of-the-art terminal guidance strategies for guided parafoils when the target location
is cluttered with multiple three-dimensional obstacles.

Thesis Supervisor: Jonathan How
Title: Richard Cockburn Maclaurin Professor of Aeronautics and Astronautics

Thesis Supervisor: Matthew Stoeckle
Title: Member of the Technical Staff, Draper

Thesis Supervisor: Louis Breger
Title: Member of the Technical Staff, Draper

3

4

Acknowledgments

Thank you to everyone who provided guidance and support towards the completion

of this thesis. In particular, I appreciate the effort of my triad of advisors: Pro-

fessor Jonathan How at MIT, and Matthew Stoeckle and Louis Breger at Draper.

Also, thank you to the Natick Soldier Research, Development and Engineering Cen-

ter (NSRDEC) for funding and inspiring this work.

5

6

Contents

1 Introduction

1.1 Background .

1.2 Literature Review .

1.3 Contributions .

2 Sampling-based Path Planning in Two Dimensions

2.1 Introduction .

2.2 The Rewire-RRT Algorithm . . .

2.2.1 Rapidly Exploring Random

2.2.2 Rewire-RRT

2.2.3 Choosing the parent node

2.2.4 Rewiring the tree

2.3 Experiments

2.3.1 Experiment Setup

2.3.2 Minimum Length Paths

2.3.3 Safest Paths

2.4 Conclusion

3 The

3.1

3.2

3.3

Trees

Rewire-RRT Algorithm for Parafoil Guidance

Introduction..........................

Parafoil Dynamics and Problem Statement

The Parafoil Rewire-RRT Algorithm

3.3.1 Parafoil RRT

15

15

18

21

23

23

24

24

25

26

28

29

29

32

36

41

43

43

43

45

45

7

3.3.2 Parafoil Rewire-RRT

3.3.3 Cost function

3.3.4 Choosing the parent node . . .

3.3.5 Rewiring the tree

3.4 Experiments

3.4.1 Flat terrain performance

3.4.2 Weighting objective cost terms

3.4.3 Complex scenarios

3.5 Conclusion

4 Simulations

4.1 Introduction .

4.2 Online Rewire-RRT Planning

4.3 Sim ulator .

4.3.1 Wind Profiles

4.4 Algorithms for comparison

4.4.1 Chance-Constrained Band Limited Guidance

4.4.2 Chance-Constrained RRT (CC-RRT) . .

4.4.3 Presentation of Results

4.5 Rewire-RRT Parameters

4.6 Simulation Results

4.6.1 Flat terrain

4.6.2 Canyon terrain

4.6.3 Urban environment

4.7 Conclusion .

(CC-BLG)

8

46

46

48

49

51

51

53

55

58

59

59

59

60

61

62

62

64

64

64

65

66

68

71

74

5 Conclusion and Future Work 75

5.1 Conclusion . 75

5.2 Future W ork . 76

5.2.1 Further Simulations . 76

5.2.2 Obstacle Checking . 76

5.2.3 Sensed Obstacles . 77

5.2.4 Dynamic Obstacles . 77

9

10

List of Figures

1-1 Round parachutes used for unguided airdrop 16

1-2 Guided airdrop parafoil system on final approach 16

1-3 Illustration of the three main components of a guided parafoil in flight

- front view (Note: illustration not to scale) 17

1-4 Overhead view of a guided parafoil flight profile. The two-part terminal

guidance phase consists of 'SETUP' followed by 'BLG'. 18

2-1 The chooseParent function comparison between RRT and Rewire-RRT 27

2-2 The reconnectTree function comparison between RRT* and Rewire-RRT 29

2-3 2D path planning environment. The green dot at the bottom of the

figure is the start location and the red square is the goal. Shades of

green and yellow represent distance to the nearest obstacle. 30

2-4 2D steering method . 32

2-5 Best paths for 100 trials in 2D environment - 10s tree growth - Mini-

mum path length objective . 33

2-6 Best paths for 100 trials in 2D environment - 1000 iterations - Minimum

path length objective . 35

2-7 Best paths for 100 trials in single obstacle 2D environment - 1000 iter-

ations - Minimum path length objective 36

2-8 Best paths for 100 trials in 2D environment - 10s tree growth - Safety-

cost objective . 38

2-9 Best paths for 100 trials in 2D environment - 1000 iteration limit -

Safety-cost objective . 40

11

2-10 100 trials 2D environment . 41

3-1 Example tree grown by the parafoil RRT algorithm. The landing points

of paths are shown by pink dots. Infeasible paths that intersect obsta-

cles are terminated by a red dot. 45

3-2 Illustration of choosing between two possible parent nodes during tree

grow th . 50

3-3 Cylinder . 50

3-4 Illustration of the rewiring process during tree growth 51

3-5 Trees of feasible paths in flat terrain 52

3-6 Sample trajectories for various weightings of w, andW2 54

3-7 The average over 50 trials of the cost-to-go (J 29), safety(J.), and total

(J) costs at the final node of the chosen path for various weightings . 55

3-8 Simplified urban environment consisting of twelve "buildings" and a

single bridge. The initial state is at the green dot and the goal is the

center of the target. 56

3-9 50 trials in simplified urban environment 57

4-1 Normalized miss distance CDF for flat terrain - 116 trials 66

4-2 Normalized miss distance CDF for flat terrain - 116 trials 67

4-3 Canyon terrain environment (meters) 68

4-4 Normalized miss distance CDF for canyon terrain - 100 trials 69

4-5 Normalized miss distance CDF for canyon terrain - 100 trials 70

4-6 Two urban style environments . 71

4-7 Normalized miss distance CDF for city block environment - 100 trials 72

4-8 Normalized miss distance CDF for urban environment - 100 trials . . 73

12

List of Tables

2.1 Average path length for 100 trials - 10s tree growth 33

2.2 Average path length and average time per trial for 100 trials - 1000

iteration lim it . 34

2.3 Average path length and average time per trial for 100 trials - 1000

iteration limit - Single obstacle case 36

2.4 Average safety-cost for 100 trials - 10s tree growth 37

2.5 Average safety-cost for 100 trials - 10s tree growth - 1000 iteration limit 39

2.6 100 Trials - 10s - Min Distance . 39

3.1 Miss distance statistics normalized by mean Rewire-RRT performance

on flat terrain for 50 trials of RRT and Rewire-RRT 52

3.2 Miss distance statistics normalized by mean Rewire-RRT performance

for 50 trials of RRT and Rewire-RRT 55

3.3 Normalized Results for 50 trials of RRT and Rewire-RRT in a Simpli-

fied Urban Environment . 56

4.1 Normalized miss distance for flat terrain - 116 trials 66

4.2 Normalized miss distance for flat terrain - 116 trials 67

4.3 Normalized miss distance for canyon terrain - 100 trials 69

4.4 Normalized miss distance for canyon terrain - 100 trials 70

4.5 Normalized miss distance for city block environment - 100 trials . . . 72

4.6 Normalized miss distance for urban environment - 100 trials 73

13

14

Chapter 1

Introduction

1.1 Background

Airdrop operations are used to deliver cargo to locations across the globe. The capa-

bility to deliver cargo from the air is useful when ground transportation is dangerous

or otherwise infeasible. Applications range from military resupply to disaster relief [1].

It is imperative that the cargo land as accurately as possible in all conditions. Land-

ings that are far from the intended impact point (IP) can result in damage or theft of

cargo and difficult recovery efforts 121. Historically, round unguided parachutes, such

as those shown in Figure 1-1, have been used during airdrop operations [31.

More recently, greater accuracy has been achieved using guided parafoils that

can autonomously steer towards the IP 151. Guided parafoils have the additional

advantage of being deployable from higher altitudes than unguided systems without

a decrease in accuracy [5]. This can allow for deployment farther away from the IP,

decreasing the risk to cargo aircraft that might otherwise have to make a low approach

over hostile areas or rugged terrain. An example of a guided airdrop system is shown

in Figure 1-2.

The three main components of a guided parafoil are a ram air canopy, an airborne

guidance unit (AGU), and a payload [71, as shown in Figure 1-3. The ram air canopy

slows the descent of the payload and allows for steering via asymmetric deflection of

the trailing edge. The AGU contains motors used to deflect the trailing edge, along

15

Figure 1-1: Round parachutes used for unguided airdrop [41

Figure 1-2: Guided airdrop parafoil system on final approach [6]

16

I

M

Steerable
Ram-Air Parafoil

Airborne Guidance
Unit (AGU)

Payload

Figure 1-3: Illustration of the three main components of a guided parafoil in flight -
front view (Note: illustration riot to scale)

with the required hardware for autonomous guidance, navigation, and control of the

parafoil. The payload, which can range from 10 to 42,0001b [8] as appropriate for the

chosen canopy, is suspended below the AGU.

Guidance of parafoils is difficult due to their underactuated dynamics. They have

large turning circles and little or no control over vertical descent rate 191. Further,

guided parafoils may operate in environments with highly uncertain winds. The

addition of complex terrain near the target landing area, including canyons, ridges,

or multiple large buildings, adds to the complexity of the guidance problem even when

terrain is mapped in advance [101.

The flight profile of a guided parafoil is typically separated into three main phases

[111, as shown in Figure 1-4. After a brief stabilization period, the homing phase steers

the parafoil directly towards the IP. Next, the energy management phase guides the

parafoil through a series of figure-eight maneuvers that decrease the system altitude

while staying in proximity of the IP. Finally, the terminal guidance phase steers the

parafoil to its final landing point on the ground. Terminal guidance is the most critical

phase in determining parafoil accuracy, arid is therefore the subject of most parafoil

17

logOO018 # East-North groundtrack

FLT
ING
MT
UP

E

Due East (>0) target relative position (m)

Figure 1-4: Overhead view of a guided parafoil flight profile. The two-part terminal

guidance phase consists of 'SETUP' followed by 'BLG'.

guidance research.

This thesis presents a novel parafoil terminal guidance strategy. It is particu-

larly well adapted to the challenge of landing in urban areas, where multiple large

buildings may be within close proximity of the IP. This adds significant challenges to

the terminal guidance problem, because the planner must be flexible enough to pro-

vide long-term guidance around multiple obstacles. Further, collisions with buildings

would result in severe damage and are highly undesirable. An enhanced version of

the sampling based parafoil Rapidly-Exploring Random Trees algorithm [12J is used

to address these issues.

1.2 Literature Review

Several terminal guidance methods for guided airdrop have been proposed. Glide-

slope-based methods use the concept of the glide-slope cone, the set of all position

and heading states which, assuming constant velocity and disturbances, would guide

the parafoil to the target location. Calise and Preston [13] use a series of scripted

18

- PRE
+ HOM
+ EMG

SET
- BLG
' FLA

E

0

Ca,

a)

0D
CD

z

R

maneuvers online to estimate glide-slope parameters, then execute turning maneuvers

to drive the parafoil to the glide-slope. This method requires long-term glide-slope

tracking and does not consider the presense of obstacles along the planned trajectory,

limiting its use in complex terrain.

Trajectory-based approaches generate reference trajectories online to optimize a

pre-defined cost function, then use various control strategies to track these trajecto-

ries. The Band-Limited Guidance (BLG) algorithm [14] uses Nelder-Mead simplex

search to minimize a cost function based on the parafoil's predicted terminal state.

BLG guarantees that control bandwidth constraints are satisfied to ensure accurate

trajectory following, and its computational efficiency enables the use of online replan-

ning. However, BLG does not consider the possibility of collison with obstacles due

to a deviation from the planned trajectory caused by changing wind conditions. Ad-

ditionally, the speed of optimization is sensitive to the intial guess, starting altitude,

and number of control points, leading to slow convergence to the globally optimal

solution in some cases.

Work by Rogers and Slegers considers robustness to wind variations by using

graphics processing units (GPUs) to parallelize a Monte Carlo simulation of possible

future winds, and the resulting parafoil trajectories, based on available measure-

ments [15, 161. However, significant computational effort is required to run these

Monte Carlo simulations online. Although the presence of environmental obstacles is

considered in the vicinity of the target, terminal guidance is also assumed to begin in

relative proximity to the target location due to the selected parameterization of can-

didate trajectories (i.e., using a single constant-rate turn and straight line segment).

This approach may therefore prove difficult to implement in constrained terrain ge-

ometries (such as valleys and canyons), where robust planning and obstacle avoidance

must begin from high initial altitudes, and greater path flexibility is required.

Rapidly-Exploring Random Trees (RRT) 117] are used to plan paths by the parafoil

Chance-Constrained RRT (CC-RRT) algorithm [121. Real-time wind modeling and

classification is used to anticipate future disturbances, while an uncertainty-sampling

technique ensures that robustness to possible future variation is efficiently maintained.

19

Yet, despite this success in planning robustness, one of the limitations of CC-RRT

relative to state-of-the-art parafoil terminal guidance algorithms is the suboptimal

nature of the RRT-based trajectory design. Analytic CC-RRT algorithm lacks a

method for explicitly minimizing the risk of constraint violation and the final miss

distance. A parafoil Analytic CC-RRT* [18] algorithm was considered based on the

optimal RRT* algorithm [19J which is guaranteed asymptotically optimal. However,

significant challenges were found in implementation of this algorithm, including de-

veloping a steering law to connect any two parafoil states in 3D space. Position and

heading at the beginning and end states must be matched exactly, creating a two-

point boundary value problem (BVP) that is as difficult to solve as the initial two

point boundary value problem between the parafoil initial and goal states.

The CC-BLG algorithm [101 includes a cost function that can incorporate risk

into the trajectory optimization framework of BLG. While this allows CC-BLG to

minimize the risk of collision, it does not address the limitation of the algorithm

in cluttered environments. The optimization algorithm used by BLG scales poorly

with starting altitude and number of obstacles, and is very sensitive to the initial

guess [141. In a complex terrain environment that requires turns around several

obstacles beginning from a high initial altitude, an accurate intial guess is unlikely

and convergence to the globally optimal solution will be slow.

This thesis presents the Rewire-RRT algorithm. It uses the parafoil RRT frame-

work to efficiently find dynamically feasible trajectories from any starting altitude

through complex terrain. A cost function is developed to compare the risk of collision

and predicted final miss distance at each node in the tree. Two new functions are

introduced that minimize this cost function at each node during tree growth. The re-

sult is a terminal guidance algorithm that can find dynamically feasible paths through

complex terrain environments that are explicitly optimized to reduce risk of collision

and to minimize miss distance. Rewire-RRT is demonstrated to perform better than

existing terminal guidance algorithms in complex environments.

20

1.3 Contributions

This thesis is divided into three main sections:

e Chapter 2 The Rewire-RRT algorithm is presented and used to plan paths for a

vehicle with simple dynamics in two dimensions. Path-planning experiments

demonstrate that Rewire-RRT performs much better than RRT and nearly as

well as RRT*.

e Chapter 3 It is demonstrated that unlike RRT*, the Rewire-RRT algorithm can

be easily applied to the underactuated parafoil dynamics. Experiments show

that Rewire-RRT performs better than RRT at finding dynamically feasible

paths for guided parafoils through complex environments.

9 Chapter 4 Rewire-RRT is compared to state-of-the-art parafoil guidance algo-

rithms CC-BLG and CC-RRT. Simulation experiments in a high-fidelity simu-

lator demonstrate that Rewire-RRT performs strongly in urban-style environ-

ments.

Finally, recommendations are made for future work related to these topics.

21

22

Chapter 2

Sampling-based Path Planning in

Two Dimensions

2.1 Introduction

Path planning algorithms find dynamically feasible trajectories between starting and

goal states. In this section, it will be assumed that the environment is pre-mapped

and known to the robot during the planning process. Sampling based path planners,

such as Rapidly-exploring Random Trees (RRT) [171, have been used successfully by

an array of ground vehicles to find 2D trajectories through a variety of environments

[201.

When planning paths for ground vehicles in two dimensions, it is often desirable

to minimize the total path length between the start and goal positions. RRT is often

successful at finding feasible paths through high-dimensional spaces much faster than

optimization-based methods [17]. However, though RRT is probabilistically complete,

it is not asymptotically optimal [19j. This means that trajectories will almost certainly

be suboptimal with respect to the goal of minimizing path length. This is true even

if infinite computation time is available.

The asymptotically optimal RRT-based algorithm RRT* was proposed by Kara-

man and Frazzoli [191. A rewiring technique that reconnects nodes in the tree with

lower-cost paths is shown to provide an asymptotic optimality guarantee under cer-

23

tain conditions. The rewire procedure requires the ability to connect any two existing

nodes in the tree with a dynamically feasible optimal path. Analytical solutions to

this two-point boundary value problem exist for systems with simple dynamics (e.g.

single integrator, double integrator, Dubins vehicle [211). In general, especially for

more complex or underactuated systems, analytic solutions do not exist [22]. The

underactuated dynamics of a guided parafoil are an example of a case for which this

analytic solution is not known. These parafoil dynamics are thoroughly described in

Chapter 3.

There have been attempts to overcome this limitation of RRT* for ground robots.

Jeon et al. [231 suggest methods of relaxing the end constraint during the rewiring

process and then deleting or repropagating child nodes. An alternative is the Dual-

Tree RRT algorithm [24] which also relaxes the end constraint during rewiring, but

keeps the original tree structure intact. The use of two trees allows for faster identifi-

cation of nearest nodes using search schemes such as kd-trees [251. Successful real-time

implementation of the Dual-Tree RRT algorithm is shown on a wheeled robot.

In this chapter, path planning is considered for a vehicle with the dynamics of

a simplified guided parafoil. This is done in two dimensions, ignoring the altitude

dynamics of the parafoil (i.e., planning will be done in the plane parallel to the ground

plane). The Rewire-RRT algorithm is introduced and evaluated. It is able to find

paths that are better optimized for the system requirements (e.g., path length) than

paths found by RRT and Rewire-RRT does not have the same limitations of RRT*

for vehicles with complex dynamics.

2.2 The Rewire-RRT Algorithm

2.2.1 Rapidly Exploring Random Trees

The RRT algorithm grows a tree of dynamically feasible trajectories through a pre-

mapped environment. It does so by sampling a random position in the 2D envi-

ronment, Xsamp. The nearest existing node to Xsamp in Euclidean distance, Xnea, is

24

Algorithm 1 RRT
1: Tree.init(xo)
2: while t < tgrowth limit do
3: Xsamp= sample()
4: Xnear = near(Xsamp)
5: Xnew= steer(Xnear, Xsamp)
6: if exists(xnew) then
7: Tree.addNode(Xnew)
8: Tree.addEdge(XnearXnew)
9: end if

10: end while

identified. Then, an attempt is made to connect Xnear to Xsamp With a dynamically

feasible path using a "steering" procedure. (Alternatively, a dynamically feasible

path extending a fixed distance from Xnea, towards Xsamp may be identified.) The

ending state of this path is called Xnew. If the path from Xnear to Xnew is free from

obstacles, then Xnew is added to the tree along with an edge from Xnea, to Xnew. This

tree growth method is repeated until a time limit tgrowth limit is exceeded. Once tree

growth is complete, the best path in the tree is chosen and followed by the robot.

Often, the best path is the one that gets to the goal with the shortest total path

length. Algorithm 1 shows the pseudocode for the RRT tree growth procedure.

2.2.2 Rewire-RRT

Like Dual-tree RRT [24], The Rewire-RRT algorithm adds two new functions to

the RRT algorithm, chooseParent and reconnect Tree. The chooseParent function

considers multiple possible nodes as parent nodes for ne, during tree growth. This

allows the tree to be incrementally built with lower-cost paths. Once a new node

is added to the tree, reconnect Tree considers the new node as a possible parent for

existing nodes in the tree. This "rewires" the tree to make new lower cost paths. The

pseudocode for Rewire-RRT is shown in Algorithm 2.

25

Algorithm 2 Rewire-RRT

1: Tree.init(Xo)
2: while t < tgrowthlimit do
3: Xsamp = sample()
4: Xnear = nearest(xsamp)
5: lxparentXnewl = chooseParent (Xsamp,Xnear)

6: if exists(xnew) then
7: Tree.addNode(Xnew)
8: Tree.addEdge(xparent, Xnew)
9: rewire(Xnew ,Xnear)

10: end if
11: end while

2.2.3 Choosing the parent node

Instead of identifying the nearest node, Xnear, Rewire-RRT identifies a set of near-

est nodes, Xnear. For each Xnear E Xnear, an attempt is made to connect Xnear to

Xsamp with a dynamically feasible path terminating at a new node, Xnewcandidate. If

Xnewcandidate is within a 2D radius re of Xnew and the path is collision free, the cost

of the node Xnewcandidate is calculated. The cost of any node x is determined by

calculating the total path length from the root node to node x. This definition of

cost is chosen because the objective of the path planner is to find the feasible path

of shortest length from the starting position to the goal. The candidate node with

the lowest cost is chosen as 1 ne. The node Xnew is added to the tree along with

an edge from its associated parent, xparent. The chooseParent function increases the

success rate of node extension, and incrementally builds a tree that minimizes the

cost associated with each node in the tree.

Consider a tree consisting of two nodes, x0 and x1, with an edge between them.

This scenario is shown in Figure 2-1. When a random point xsamp is sampled from

the environment, the RRT algorithm only identifies the nearest node, x1 . A feasible

path from 1 towards Xsamp and ultimately ending at Xnew is identified. Since the

path from x1 to Xnew is free from obstacles, the new node and edge will be added to

the tree.

Alternatively, the Rewire-RRT algorithm identifies all the nearest nodes within

26

Algorithm 3 chooseParent(xsampXnear)

1: Xnew = null; Xparent = null
2: min cost = o0
3: for each Xnear E Xnear do
4: Xnew candidate = steer(xnear, Xsamp)

5: if exists(Xnewcandidate) && dhorizontal < Te then
6: if Cost(Xnewcandidate)< mincost then
7: Xnew = Xnew _candidate

8: Xparent = Xnear

9: min _cost = cost (Xnew _candidate)
10: end if
11: end if
12: end for
13: return([xnew ,Xparent])

a radius rb of the Xsamp. In this case, that is both xo and x1 . Starting at each xo

and x1 , an attempt is made to steer towards Xsamp. This results in two new edges

ending at candidate nodes xc,1 and Xc,2. Both candidate nodes are within a radius re

of Xsamp, so their costs will be evaluated. Notice that candidate node xc,1 has a lower

cost than Xc,2, because the path length from xo to xc, is shorter than from Xo to Xc,2.

Therefore, xc,1 will be added to the tree, along with an edge from xo to xc,1.

After this iteration of the tree growth loop, the trees in Figure 2-1a and 2-1b are

different. The chooseParent function of Rewire-RRT has resulted in a shorter path

being added to the tree that ends near Xsamp than the RRT algorithm achieved.

x0 (root) x0 (root)

xx asamp rb

Xx
samp r x

near new

(a) RRT (b) Rewire-RRT

Figure 2-1: The chooseParent function comparison between RRT and Rewire-RRT

27

Algorithm 4 reconnectTree(XnewXnear)

1: for each Xnear E Xnear do
2: Xnew _candidate = steer(xnew , Xnear)

3: if dhorizontal < re then
4: if cost(Xnewcandidate) < COst(Xnear)) then
5: Tree.removeNode(Xnear)
6: Tree.addNode(Xnew candidate)

7: Tree.addEdge(xnew ,Xnew candidate)

8: end if
9: end if

10: end for

2.2.4 Rewiring the tree

After a new node is added to the tree, the reconnectTree function considers Xne, as

a possible parent for the nodes in the set Xnear. An attempt is made to connect Xnew

with each Xnear E Xnear. Using the same steering procedure as RRT, a new node

Xnewcandidate is found. If Xnew candidate is within a 2D radius re of Xnear, and the path

to it is collision free, the cost of the node Xnew candidate is calculated. If the cost of

Xnewcandidate is less than that of Xnear, then Xnewcandidate is added to the tree along

with an edge from Xnew to Xnewcandidate. Also, if Xnear has children nodes, Xnear is

deleted and the edges between its parent and children are concatenated. This step

encourages future tree growth from the lower-cost node.

Consider a tree consisting of seven nodes XO,Xi,... ,X 6 , as in Figure 2-2. After the

addition of a new node, Xnew, the rewire procedure of the RRT* algorithm will try

to find a path from Xnew to each node within a radius rb of Xnew. In this case, that

means finding a path from Xnew to X 4 . For vehicles with simple dynamics, finding an

optimal feasible path that matches the position and heading at Xnew and X4 may be

trivial. Recall, however, that an analytic solution to this two-point boundary value

problem does not necessarily exist for complex dynamical systems.

The reconnect Tree function of the Rewire-RRT algorithm relaxes one end con-

straint of the BVP and finds a path starting at Xnew that ends near X 4 at the node

Xcandidate- If Xcandidate is within a radius re of X 4 , then its cost is calculated. If the

cost of Xcandidate is less than that of X4 , then Xcandidate is added to the tree along with

28

x0 (root)

X N2b
X5

X rb
new4

X4

X6

x. (root)

X Xi
2

5

Xrb 9
new X

r

ca X 4
candiate

X6

(a) RRT* (b) Rewire-RRT

Figure 2-2: The reconnect Tree function comparison between RRT* and Rewire-RRT

the edge from x,,.. Further, the node x4 is deleted and the edge from x3 to x6 is

concatenated.

2.3 Experiments

To evaluate the performance or Rewire-RRT versus RRT and RRT*, all three algo-

rithms were used to plan paths through simulated environments.

2.3.1 Experiment Setup

Environment

Paths were planned through the environment shown in Figure 2-3. Obstacles are

shown in black, and free areas are shades of green and yellow. The color bar on the

side of the figure indicates the distance from the nearest obstacle. The vehicle starts

at the light green circle at the bottom of the figure and the goal region is the red

29

X 3

71,

Y

40

3C

0

Figure 2-3: 2D path planning environment.
figure is the start location and the red square
represent distance to the nearest obstacle.

The green dot at the bottom of the
is the goal. Shades of green and yellow

square at the top of the figure. The initial velocity is in the "up" direction directly

towards the red square.

Simplified Parafoil Dynamics

The simplified parafoil dynamics in two dimensions are represented by a Dubins

vehicle [211 with fixed velocity, v. Therefore, the vehicle configuration space is three-

dimensional, represented by a position p = (px, pY) and a heading 7'. The single

control input u is the commanded heading rate, 4. The simplified dynamics have the

form

Px v cos ',

Py = v sin V',

(2.1)

(2.2)

(2.3)

30

I,

20 40 60 80 100

X

16

16

14

12

10

8

6

4

2

0

I)-4
1)43
a.3
a
0
aC
C3-4
'a
4)

0
a
C
C)
41
a
.3

-d
C:j

The steering procedure in the chooseParent and reconnect Tree functions must find

a dynamically feasible path from one node to another. At the starting node, two-

dimensional position and heading must be matched exactly. At the terminal node,

position must be reached within a specified margin of error, re. In fact, with the

given dynamics, an analytic solution using one constant rate turn is available that

can match the terminal position exactly [12]. Consider nodes x, and x, in Figure 2-4.

In order to steer from xn, with specified position and heading, to x,, with specified

position only, first define

Px= PXs - Pxn, (2.4)

jP, =PY., - PYn, (2.5)

6 = o , +6 ,. (2.6)

Then, the radius of the arc can be determined via

62R = 6 (2.7)
2(6p, cos O, - 6p. sin ())

The control input is given by u = v/R. Also of interest are the arc subtend angle

y and the time required to traverse the arc, t.

y = 2sin- 1 2 (2.8)

t = 'y/u, (2.9)

31

R R

Figure 2-4: 2D steering method, adapted from [261

Implementation

RRT, RRT*, and Rewire-RRT were implemented in MATLAB. Path planning exper-

iments were run on a desktop computer with a 3.2-GHz Intel @ i5 processor.

2.3.2 Minimum Length Paths

The first set of experiments will compare the ability of RRT, Rewire-RRT and RRT*

to find minimum length paths through the environment in Figure 2-3. This initial

scenario will reveal the ability of each algorithm not only to find dynamically feasible

paths through the environment, but to also minimize an objective cost. To com-

pare the ability of each algorithm to find paths quickly given limited computational

resources, some experiments give each algorithm a fixed time limit for planning. An-

other set of experiments compare the effectiveness of each loop in the tree growth

procedure by giving each algorithm a fixed number of loop iterations to plan a path.

Time Limit

In the first experiment, each algorithm is allowed 10 seconds of tree growth

(tgrowthimit = 10s). After this time has elapsed, the shortest path to the goal in

the tree is recorded. This process is repeated 100 times for each algorithm. The

32

Table 2.1: Average path length for 100 trials - 10s tree growth

Algorithm: RRT Rewire-RRT RRT*
Average Path Length: 161.4 83.60 83.30

100

90

80

40

30

20

00 2O .10 60

(a) RRT

Figure 2-5: Best paths for

path length objective

-r -

(c) RRT*

100 trials in 2D environment

(b) Rewire-RRT

20

18

16

12

10

6

4

2

10ls tree growth - Minimum

average path length for the 100 trials is reported in Table 2.1

paths is shown in Figure 2-5.

and an image of all 100

Without the ability to specifically minimize path length during tree growth, RRT

generates paths that are nearly twice as long on average than those generated by

Rewire-RRT and RRT*. Even though Rewire-RRT is not guaranteed asymptotically

optimal, as is RRT*, paths found in the same amount of time are under one percent

longer on average.

33

I

20

18

16

8

4

2

0

20

18

16

14

12

10

H

jI~ 3
'p

Table 2.2: Average path length and average time per trial for 100 trials - 1000 iteration
limit

Algorithm: RRT Rewire-RRT RRT*
Average Path Length: 190.3 84.36 83.30

Average Time per Trial (s): 0.9039 4.315 4.000

Iteration Limit

The previous experiment was repeated, but this time tree growth was not limited

by a specific time limit. Instead, tree growth continued until the tree growth loop

had completed 1000 iterations (i.e., each algorithm was run until 1000 points were

sampled in the environment). Once the 1000 iterations were complete, the shortest

path to the goal was recorded. Again, 100 trials of each algorithm were completed.

The average path length for the 100 trials is reported in Table 2.2 and an image of

all 100 paths for each algorithm is shown in Figure 2-6.

The average path length increased for all three algorithms, because the compu-

tation for 1000 iterations took less than 10s - the limit set in the previous section.

Understandably, RRT was much faster that both Rewire-RRT and RRT*, because

it only considers one possible parent node and does not include a rewiring function.

However, we know from the first experiment (Table 2.1) that when RRT is given

equal computation time as the two competing algorithms it does not perform as well.

Interestingly, 1000 iterations of Rewire-RRT takes slightly more time that 1000 it-

erations of RRT*. An explanation for this is that the steering procedure used by

Rewire-RRT more often resulted in paths that were free from obstacles. This means

that each clear path had to be lazily checked against 8 obstacles (four in the middle

and four walls).

Iteration Limit - single obstacle case

The 1000-iteration test is now repeated for the RRT* and Rewire-RRT algorithms in

an environment with one single obstacle to see the affect on computation time.

34

90

80

60

40

30

20

10

0 20 40 60 i G

(a) RRT

20

18

16

14

12

10

6

A

2

(b) Rewire-RRT

I

20

is

16

14

12

10

4

2

(c) RRT*

Figure 2-6: Best paths for 100 trials in 2D environment - 1000 iterations - Minimum

path length objective

35

I
'U -. I

Table 2.3: Average path length and average time per trial for 100
limit - Single obstacle case

trials - 1000 iteration

100-

90-

80-

70

40

30

20

10

0 20 40 60 80 100

(a) Rewire-RRT

100
90

80

70

60

s0

40

30 ,11

20-

10.

4
0 20 40 60 80 100

(b) RRT*

Figure 2-7: Best paths for 100 trials in single obstacle 2D environment
- Minimum path length objective

In this case, Rewire-RRT is faster due to only one obstacle check being needed.

RRT* still holds a slight advantage in path length, though this is minimal.

2.3.3 Safest Paths

Safety cost

In the previous experiments, the objective of the path planner was to find paths of

minimum length from the initial state to the goal. In Chapter 3, when the parafoil

guidance problem is formally introduced, path length is no longer a goal of the planner.

One objective is to remain as far as possible from terrain features and other objects

in order to avoid collisions due to unexpected winds. In two dimensions, the goal of

staying far away from obstacles can be achieved by replacing the path-length cost with

a safety-cost. Given a set of n states xi, i E {0,..., n} spaced at uniform intervals

36

Algorithm: Rewire-RRT RRT*

Average Path Length: 107.6 107.5

Average Time per Trial (s): 3.437 3.6047

- 1000 iterations

along a trajectory from the root node to a node with state x, di is defined as the

distance from xi to the nearest obstacle. The safety cost J, penalizes every state that

is within a specified distance dmax of any obstacle,

n

Zs = (dmax - min(dmax, di)) 2 /d a. (2.10)

Because the cost increases exponentially with proximity to obstacles, paths that

pass very close to an obstacle, even briefly, are strongly discouraged. Further, paths

that remain moderately close to obstacles for extended periods are discouraged due

to the additive nature of the cost formulation.

Time Limit

In this experiment, each algorithm is allowed 10 seconds of tree growth

(tgrowthjimit = 10s). After this time has elapsed, the lowest-cost path to the goal

in the tree is recorded. This process is repeated 100 times for each algorithm. The

average path length for the 100 trials is reported in Table 2.4 and an image of all 100

paths is shown in Figure 2-8.

Table 2.4: Average safety-cost for 100 trials - 10s tree growth

Algorithm: RRT Rewire-RRT RRT*

Average Safety Cost: 763.0 349.4 351.0

Once again, RRT is unable to optimize the cost of nodes in the tree, and therefore

has a safety cost that is on average more than twice as large as either Rewire-RRT

or RRT*. RRT* yields an average safety cost that is only slightly lower than that

of Rewire-RRT. In general, paths found by Rewire-RRT and RRT* stay towards the

middle of obstacles, much more so than paths planned using RRT.

37

I

'af-
I

18U

16

14

12

10

(a) RRT (b) Rewire-RRT

20

-18

16

14

12

10

6

4

2

(c) RRT*

Figure 2-8: Best paths for 100 trials in 2D environment - 10s tree growth - Safety-cost

objective

38

q ".

I

Iteration Limit

The previous experiment was repeated, but this time tree growth was limited by a

specific time limit. Tree growth continued until the tree growth loop completed 1000

iterations (i.e., each algorithm was run until 1000 points were sampled). Once the

1000 iterations were complete, the safest path to the goal was recorded. Again, 100

trials of each algorithm were completed. The average safety-cost for the 100 trials is

reported in Table 2.5 and an image of all 100 paths is shown in Figure 2-9.

Table 2.5: Average safety-cost for 100 trials - 10s tree growth - 1000 iteration limit

Algorithm: RRT Rewire-RRT RRT*

Average Safety Cost: 842.8 347.3 346.6

Average Time per Trial (s): 1.54 20.0 19.7

Hard Constraint on Distance from Obstacles

One way to improve the safety of paths found by RRT is to impose a hard constraint

on the minimum distance between the path and any obstacle. This minimum distance

constraint, A, is imposed on the RRT path planner at different values in the following

experiment. 100 trials are run for A = 2 and A = 5, with 10s of tree growth allowed

per trial. Results are shown in Table 2.6 and Figure 2-10.

Table 2.6: 100 Trials - 10s - Min Distance

Hard Radius A: 2 5

Average Safety Cost: 915.3 752.7

39

s0

70

60

40

30

20

10 - j

[18
16

14

12

10

(a) RRT (b) Rewire-RRT

20

-18

16

14

12

10

8

6

4

2

(c) RRT*

Figure 2-9: Best paths for 100 trials in 2D environment - 1000 iteration limit - Safety-
cost objective

40

-16

14

12

10

6

6

4

2

A

Eu
I.

16

16

12

10

8

4

I 1fl2

(a) RRT

Figure 2-10: 100 trials

When the hard constraint is imposed, the

creases only slightly for the A = 5 case versus

(b) Rewire-RRT

2D environment

average safety-cost over 100

when no hard constrain was

The constraint makes tree growth much slower because many potential paths become

infeasible. Therfore, after 10 seconds of tree growth, few complete paths to the goal

exist to choose from, and they may not necessarily be low-cost despite the hard con-

straint. It is much more efficient to use the Rewire-RRT algorithm to find low-cost

paths.

2.4 Conclusion

The Rewire-RRT algorithm has been shown to find paths that are shorter and safer

than those found by RRT. Further, Rewire-RRT is nearly as fast and successful in 2D

at finding low-cost paths as the RRT* algorithm. In the next chapter, the parafoil

guidance problem will be presented and is demonstrated that Rewire-RRT is com-

patible with such underactuated systems, unlike RRT*. This combination of being

near-optimal and easy to apply to complex or underactuated dynamic systems will

allow for strong performance by the Rewire-RRT algorithm on the parafoil guidance

problem.

41

trials de-

imposed.

42

Chapter 3

The Rewire-RRT Algorithm for

Parafoil Guidance

3.1 Introduction

The Rewire-RRT algorithm has been demonstrated to find near-optimal paths through

2D environments for a vehicle with simple dynamics. In this chapter, Rewire-RRT

is used to plan paths for a guided parafoil. Experiments show that Rewire-RRT

can identify dynamically feasible paths for guided parafoils through complex environ-

ments. Further, these paths are better at achieving the objectives of landing near the

IP and staying clear of obstacles than paths planned by RRT.

3.2 Parafoil Dynamics and Problem Statement

The goal of this path planning problem is to guide a parafoil from some initial position

p, and heading i (full state x1) to some target location pG (full state XG), where

P = (Px, py, Pz) is the position in the inertial reference frame. A north east down

(NED) coordinate system centered at the target location is used. The parafoil dy-

namics are represented as the nonlinear state-space system

x = f(x, u, w), x(t1) = xI, (3.1)

43

where t, is the initial time, u are the control inputs, and w = (wX, wY, wz) are the

wind disturbances. This work assumes a prediction of the winds at future flight times

is available [141, based on either a priori wind forecasts or estimates of the wind expe-

rienced earlier in flight. The parafoil is modeled as a Dubins vehicle [21J descending

at a rate governed by atmospheric conditions subject to updrafts/downdrafts, with

the input-to-heading-rate mapping governed by complex lag dynamics. The vertical

velocity is a function of the vehicle altitude via [1]

V(Pz) = VoeY / 2 , (3.2)

where Tz = 10 4m, and vo is the nominal vehicle airspeed at sea level. The heading

rate of the parafoil is modeled as a second-order approximation of the canopy Dutch

roll lateral mode suggested by Carter et al. [111. A first-order lag is also used to model

the differential toggle control input mechanism for trailing edge deflection, while the

controller is a PID with feedforward gains tuned to achieve the desired performance

[11]. In total, this yields a 5th order state s and dynamics (A, B, C, D), augmented

to the state vector x and dynamics (3.1), respectively. The control input is a scalar,

u - u " Xd representing the desired heading rate, subject to the symmetric input

bounds u = {iu| ; wmax}. The overall parafoil dynamics (3.1) thus take the form

Px = V(Pz) cos IF + we, (3.3)

y= v(p,) sin x + wy, (3.4)

V(P=+z) e (3.5)
LD

= As + Bu, (3.6)

I = sat(Cs + Du, -Wmax, Wmax), (3.7)

where the saturation function sat(a, b, c) bounds a between b and c.

44

1000

500

2000

1000 1000
500

0
y-position 0 1000

-1500 x-position

Figure 3-1: Example tree grown by the parafoil RRT algorithm. The landing points of

paths are shown by pink dots. Infeasible paths that intersect obstacles are terminated

by a red dot.

3.3 The Parafoil Rewire-RRT Algorithm

3.3.1 Parafoil RRT

The parafoil RRT algorithm 1121 incrementally constructs a tree of dynamically fea-

sible trajectories from the current state. An example tree is shown in Figure 3-5. An

RRT-based approach is particularly well-suited to this application. RRT can quickly

identify feasible solutions online within the 9-dimensional configuration space (3 for

position, 1 for heading, 5 for lag dynamics), without discretizing the solution space.

Further, its incremental construction and constraint checking allows it to scale with

both problem complexity and available computational resources.

The RRT algorithm grows a tree by sampling a random point in the environment,

Xsamp. The nearest node to Xsamp, Xnear, is identified using heuristics 1121. Then, an

attempt is made to connect Xnco to Xsa mp with a dynamically feasible path. This

"steering" procedure is done by generating a reference trajectory [121 between Xnear

and Xsamp in 2D space assuming lag free dynamics. The reference trajectory consists

of a single constant-rate turn that can be found using Equations (2.4)-(2.9). The

45

Algorithm 5 Parafoil RRT [121

1: Tree.init(Xo)
2: while t < tgrowthlimit do
3: Xsamp= sample()
4: Xnear= near(Xsamp)
5: Xnew= steer(Xnear, Xsamp)
6: if exists(Xnew) then
7: Tree.addNode (Xnew)
8: Tree.addEdge (Xnear,Xnew)
9: end if

10: end while

control u identified from the reference trajectory is used to propagate the full 3D lag

dynamics from Xnear to a new state Xnew, close to Xsamp. The likely difference in the

altitude p, between Xsamp and Xnew is ignored. If the path from Xnear to Xnew is free

from obstacles, then Xnw is added to the tree along with an edge from Xnear to Xew*

This tree growth method is repeated until a time limit tgrowth limit is met. This time

limit is dictated by the replanning frequency required by the system, typically 1 Hz

[14].

3.3.2 Parafoil Rewire-RRT

The Rewire-RRT algorithm assigns a cost to each node in the tree. Two functions are

added to the basic RRT framework in order to build and rewire the tree to explicitly

minimize the cost at each node. ChooseParent considers multiple candidate parent

nodes and chooses the lowest-cost option. Rewire rewires the tree by reconnecting

existing nodes with lower cost paths thorugh Xzew. The pseudocode for parafoil

Rewire-RRT tree growth is shown in Algorithm 6.

3.3.3 Cost function

The parafoil Rewire-RRT algorithm assigns a cost to each node. The cost function

has two components. The first component, cost-to-go or J 2 g, is the estimated final

miss distance of a system that has initial conditions associated with the node. This

component encourages the construction of paths that will terminate close to the

46

Algorithm 6 Parafoil Rewire-RRT

1: while t < tgrowth limit do
2: Xsamp = sample()
3: Xnear= nearest(Xsamp)
4: [xparent ,Xnewl = chooseParent(Xsamp,Xnear)
5: if exists(Xnew) then
6: Tree.addNode(Xnew)
7: Tree.addEdge(xparent, Xnew)
8: rewire(xnew,Xnear)

9: end if
10: end while

target, resulting in small miss distances. The second cost component, Ja, represents

the safety of getting to the node from the current parafoil state (the root node).

This component encourages construction of paths that do not pass close to terrain

or obstacles, thus preventing early impacts with obstacles should the parafoil deviate

from the planned trajectory due to unexpected winds. It is important for the parafoil

to maintain as large horizontal and vertical clearances from obstacles as possible,

because inaccurate wind predictions are common and can cause the parafoil to deviate

from the planned path in any direction. The total cost, J, is a weighted sum of the

two components,

J = WiJc2g + w2 Js. (3.8)

The parafoil Rewire-RRT algorithm builds and rewires the tree to minimize J at

each node. Therefore the tree develops partial and complete paths that land near the

goal with little risk of collision with obstacles along the way.

Cost-to-go

The cost-to-go component is based on an approximate reachability set for a parafoil

with a given state j12]. Given a parafoil with position xO = (Pxo,Pyo,Pzo), several

possible future states X1, X2, ... , Xz are determined by propagating the lag-free parafoil

dynamics forward a fixed time T, each with a different control input u, spanning the

range between -Wmax and Wmaz. A cost Ji is assigned to each state xi, i E {o,.. . , n},

47

based on the distance from xi to the goal state, accounting for drift due to predicted

mean wind over the estimated remaining flight time, tzG,

Ji = (Pxi - PzG - tzGWx) 2 + (Pyi - PzG - tzGWx)2 + (Pzi - PzG) 2 . (3.9)

The final cost-to-go function takes the maximum between the cost of the initial

point, J0, and the minimum cost in the approximate reachability set,

Jc2g = max(Jo,min(J, J2 ,. --, JNp)). (3.10)

Safety cost

The safety cost component is designed to discourage paths that come near mapped

terrain or other obstacles, such as buildings. It is expected that the parafoil will drift

from the intended trajectory due to changing winds, so paths that stay farther from

obstacles at all times reduce the chance of collisions. Given a set of n parafoil states

Xi, i E {, .. . , n} spaced at uniform intervals along a trajectory from the root node

to a node with state Xn, di is defined as the distance from xi to the nearest terrain

feature or obstacle. The safety cost penalizes every state that is within a specified

distance dmax of terrain or obstacles.

n

Js = Z(dmax - min(dmax, di))2/dmax (3.11)
i=1

3.3.4 Choosing the parent node

Instead of identifying the nearest node, 1 near, Rewire-RRT identifies a set of nearest

nodes, Xnear. For each Xnea, E Xnear, an attempt is made to connect Xnear to Xsamp.

Using the same steering procedure as parafoil RRT, a new node Xnewcandidate is found.

If Xnewcandidate is within a 2D radius re of xne, and the path is collision free, the cost

of the node Xnewcandidate is calculated. The candidate node with the lowest cost is

chosen as Xne.. The node Xnew is added to the tree along with an edge from its

48

Algorithm 7 chooseParent(XsampXnear)

1: Xnew = null; Xparent= null
2: min cost = 00

3: for each Xnear E Xnear do
4: Xnew candidate = steer(xnear, Xsamp)

5: if exists (Xnew _candidate) && dhorizontal < re then
6: if cost(Xnew _candidate)< mincost then
7: Xnew = Xnewcandidate

8: Xparent = Xnear

9: min _ cost = Cost(Xnewcandidate)

10: end if
11: end if
12: end for
13: return([xnew ,Xparentl)

associated parent, Xnear. The chooseParent function increases the success rate of

node extension, and incrementally builds a tree that minimizes the cost associated

with each node in the tree.

Consider the scenario presented in Figure 3-2. Two possible parent nodes along

with two candidate nodes are identified. Notice that the candidate nodes do not have

be close in altitude to the sampled node, Xrand. The cost-to-go portion of the cost

function will account for the differences in altitude between various candidate nodes,

and it is useful to be able to choose between several different candidate nodes in order

to identify a low-cost option.

3.3.5 Rewiring the tree

After a new node is added to the tree, the reconnectTree function considers Xnew as

a possible parent for the nodes in the set Xnear. An attempt is made to connect Xnew

with each Xnear E Xnear. Using the same steering procedure as RRT, a new node

Xnewcandidate is found. If Xnewcandidate is within a 2D radius re and vertical distance

he of Xnear, and the path to it is collision free, the cost of the node Xnew candidate is

calculated. Notice that Xnewcandidate must now fall within the volume of a cylinder

centered on Xnear, as shown in Figure 3-3. If the cost of Xnewcandidate is less than

that of Xnear, then Xnewcandidate is added to the tree along with an edge from Xnew to

49

xI* Xcandidal *
X2

.'c6ndida 0.2

Xt4 nd

Figure 3-2: Illustration of choosing between two possible parent nodes during tree
growth

Xnewcandidate. Also, if Xnear has children nodes, Xnear is deleted and the edges between

its parent and children are concatenated. This step encourages future tree growth

from the lower-cost node.

he
xhe

Figure 3-3: Cylinder

Algorithm 8 reconnectTree(Xne ,Xnear)

1: for each Xnear E Xnear do
2: Xnew candidate = steer(Xnew, Xnear)
3: if dhorizontaI < re && dvertical < he then
4: if cost(Xnewcandidate) < cost(xnear)) then
5: Tree.removeNode(Xnear)
6: Tree.addNode(necandidate)
7: Tree.addEdge(xnew,xnewcandidate)
8: end if
9: end if

10: end for

50

C 2 < C,

Xnew candidateC2

Figure 3-4: Illustration of the rewiring process during tree growth

Consider the scenario in Figure 3-4. After xne, is added to the tree, it is possible

to create a path from Xnew to x that stays farther away from the building. Assuming

the cost-to-go of Xcandidate is equal to that of x, the total cost of node Xcandidate is

therefore less than that of node x. The node Xcandidate will be added to the tree. Node

x will be deleted, and the edge between its parents and children will be concatenated.

3.4 Experiments

The performance of the parafoil Rewire-RRT algorithm will be evaluated by planning

paths through several environments.

3.4.1 Flat terrain performance

First, the performance of the Rewire-RRT algorithm will be evaluated in an envi-

ronment with flat terrain and no obstacles. Figure 3-5 shows the trees generated by

RRT and Rewire-RRT after two seconds of tree growth. The parafoil starts at the

green dot with an initial velocity in the negative y-direction (towards the bottom of

the page). The center of the target represents the desired landing location. Paths in

the tree that impact the ground have their landing locations denoted by a magenta

51

RRT tree
3D-Rewire-RRT tree

Fx P

(a) (b)

Figure 3-5: Trees of feasible paths in flat terrain

Table 3.1: Miss distance statistics normalized by mean Rewire-RRT performance on
flat terrain for 50 trials of RRT and Rewire-RRT

Mean Std Min Max

RRT 1.78 1.45 0.109 7.02
Rewire-RRT 1 0.815 0.0518 4.03

dot. The tree grown by RRT is very spread out, demonstrating the ability of RRT to

rapidly explore a large state space. However, there are very few paths that terminate

near the target. The Rewire-RRT tree is grown and rewired specifically to generate

paths that will terminate near the target. Paths tend to converge towards the goal,

resulting in many more paths that terminate on or near the target, compared to RRT.

To compare the performance of RRT and Rewire-RRT on flat terrain, both algo-

rithms are subjected to 50 trials. During each trial, each algorithm is allowed three

seconds of tree growth. After three seconds, the complete path to the ground with

the shortest miss distance for each algorithm is recorded. The results are shown in

Table 3.1. The average miss distance for paths found by Rewire-RRT was 44% less

than paths found by RRT. Both minimum and maximum miss distances were smaller

for Rewire-RRT as well. In flat terrain, Rewire-RRT is able to outperform RRT given

equal computation times.

52

3.4.2 Weighting objective cost terms

Recall that when obstacles or terrain features are present along the flight path,

Rewire-RRT builds a tree with that aims to minimize a cost function that is the

weighted sum of two components. The cost-to-go component Jc29 helps develop paths

that end near the target while the safety cost component J, keeps the planned paths

away from obstacles. Balancing these two components is necessary in order to find

paths that satisfy both goals.

In Figure 3-6, several paths found by Rewire-RRT through a more complicated

environment are shown. The initial state is at the green dot with initial velocity in the

negative x-direction (towards the left of the page). All paths to the target must pass

through a narrow opening between two obstacles. In Figure 3-6a, the ratio between

w1 and w2 from (3.8) is zero, meaning only the safety cost is active. For four trials, we

grow the tree for 10s and then choose the landed path with the lowest total cost J of

the last node in the path. Note that because this node is on the ground, the cost-to-go

equals the miss distance. When only the safety cost is active, the lowest cost paths

stay far from any obstacles, regardless of whether they terminate near the goal. In

Figure 3-6b, the ratio w 1/w 2 is one. Sometimes, paths still terminate unacceptably

far from the goal in order to avoid obstacles. Figure 3-6c shows a nice balance where

paths stay in the middle of the gap and terminate near the target. In Figure 3-6d, all

paths terminate very close to the target, but because the cost-to-go term dominates

the cost function paths sometimes pass close to obstacles, risking collision.

In order to determine the ideal weighting, 50 trials each of Rewire-RRT are run

for several possible weightings. The average cost components for the best paths found

during each trial are recorded. The results are shown in Figure 3-7. Confirming the

findings from Figure 3-6, the best ratio is 10. Below 10, the cost-to-go, and therefore

miss distances, are too high. Above 10, the risk of collision with obstacles increases

too much as the safety cost increases sharply.

Given this choice of weighting, Rewire-RRT and RRT can be compared in the

scenario presented in Figure 3-6. The results for 50 trials of each algorithm with

53

P7 P7

PXX

(a) w1/w2 0 (b) W1/W2 1

PY

Px

(c) w1/w2 10 (d) W1/W2 = 100

Figure 3-6: Sample trajectories for various weightings of w, and w 2

54

Cost components vs. weighting
600

c2g

s c2g

E 200 --- -

-0 0 2
102 10 10

W1 /W2

Figure 3-7: The average over 50 trials of the cost-to-go (J,2 g), safety(J,), and total

(J) costs at the final node of the chosen path for various weightings

Table 3.2: Miss distance statistics normalized by mean Rewire-RRT performance for
50 trials of RRT and Rewire-RRT

Mean Miss Mean Safety
RRT 1.24 45.8

Rewire-RRT 1 43.47

10s allowed for tree growth during each trial are shown in Table 3.2. Rewire-RRT

provides better results in terms of mean miss distance and safety.

It is expected that this choice of weighting will work well for other scenarios

with no need for tuning. This will be demonstrated by further testing in different

environments without modifying the weighting.

3.4.3 Complex scenarios

A simplified urban environment is shown if Figure 3-8. It consists of 12 "buildings"

and a low bridge between two of the buildings. The parafoil's initial position is at

the green dot with initial velocity in the negative y-direction.

The results of 50 trials for both RRT and Rewire-RRT are shown in the

55

N

py px

Figure 3-8: Simplified urban environment consisting of twelve "buildings" and a
single bridge. The initial state is at the green dot and the goal is the center of the

target.

Table 3.3: Normalized

Re

Results for 50 trials of RRT and Rewire-RRT in a Simplified
Urban Environment

Mean Miss Mean Safety
RRT 1.41 81.2

vire-RRT 1 58.6

Figure 3-9 and Table 3.3. During each trial, 10s of tree growth was allowed. Rewire-

RRT provides better safety and miss distance on average by a significant margin.

Figure 3-9b shows that paths generated by Rewire-RRT mostly stay in the middle of

openings between obstacles and terminate near the center of the target.

56

px

(a) RRT

px

(b) Rewire-RRT

Figure 3-9: 50 trials in simplified urban environment

57

3.5 Conclusion

The Rewire-RRT algorithm is able to find dynamically feasible paths for guided

parafoils even through cluttered 3D environments. These paths better achieve the

objectives of landing near the IP and minimizing risk of collision than paths planned

by RRT. Given this result, it is expected that Rewire-RRT will be an effective online

path planner for guided airdrop.

58

Chapter 4

Simulations

4.1 Introduction

In previous chapters, the Rewire-RRT algorithm has been used to plan paths from

a fixed point in the environment to a goal region. Parafoil guidance, however, is

performed onboard a moving parafoil system. Typically, guidance, navigation, and

control are performed in series at a fixed rate. Thus, replanning of the desired parafoil

trajectory occurs at regular intervals during terminal guidance. This section first

introduces the necessary steps to use Rewire-RRT for parafoil guidance online. Then,

a series of simulations are conducted in the high-fidelity Draper simulator, as used in

[26] and [271, to quantify the performance of Rewire-RRT in various environments.

4.2 Online Rewire-RRT Planning

The Parafoil Rewire-RRT algorithm (Algorithm 6) is the mechanism by which a tree

of feasible paths is grown through the environment. However, tree growth is just one

of many procedures that must be performed in series during each replanning interval

for terminal guidance [12]. Algorithm 9 shows the high-level procedure for the entire

replanning cycle. Typically, replanning occurs at a rate of 1Hz (At = 1s) [14].

The first step is to update the current vehicle state and current wind estimate from

GPS sensor data. The current wind estimate is used to update predicted winds as a

59

Algorithm 9 Rewire-RRT Execution

1: Initialize parafoil state and time: x = o, t = to
2: while not landed do
3: update vehicle state and current wind estimate
4: update expected winds
5: propagate current state xt by computation time -+ xt+At

6: update tree feasibility and costs
7: while time remaining for this step do
8: grow tree by adding nodes (Algorithm 6)
9: end while

10: select lowest cost path
11: if at least one path exists then
12: apply best path
13: else
14: apply "safe" action
15: end if
16: t = t + At
17: end while

function of altitude. Next, the vehicle state is propagated forward by the computation

time At using (3.3)-(3.7). This yields the expected vehicle state after computation

for the current guidance iteration has finished. The current tree is repropagated from

this new state xt+At, and the feasibility and cost of each node is updated. For as

much time as is remaining to complete this guidance iteration, the tree is grown

using Algorithm 6. The lowest-cost path in the tree is identified, and the associated

control input is used to direct the parafoil. If no feasible paths exist, a "safe" action

is performed. This safe action is typically either a full left turn, full right turn,

or straight ahead flight. The choice between these options is made by propagating

the lag free dynamics of the parafoil ahead for a fixed amount of time using the

reachability set approximation in (3.9)-(3.10). The option that remains collision free

for the longest time is chosen.

4.3 Simulator

All simulation experiments are performed in the Draper high-fidelity simulation en-

vironment. This simulator has been used in several recent works to evaluate parafoil

60

guidance strategies. Ellertson [26] used the simulator to validate the CC-BLG algo-

rithm. Additionally, Stoeckle [27] used the simulator as a realistic training platform

to design and test a Fault Detection, Isolation, and Recovery (FDIR) algorithm for

autonomous parafoil guidance.

In the simulator, the parafoil is represented using a full nonlinear dynamics model

[271, which incorporates the effects of the parafoil aerodynamics described in 191 and

[281. Feedback is provided for guidance in the form of simulated GPS position and

ground velocity measurements. An Extended Kalman Filter (EKF) is applied in order

to estimate parafoil airspeed, heading, and the true wind velocity during descent [11].

Monte Carlo experiments are conducted which vary several parameters between

trials. The initial conditions of parafoil position, velocity, altitude, and heading are

randomly varied during each simulation trial. The parafoil is simulated from the point

of release at altitudes uniformly sampled over the range from 3,048 to 4,572 meters

(10,000 to 15,000 ft), and lateral distances from 0 to 8,524 meters (0 to 28,000 ft).

The terminal guidance phase begins at a preselected altitude of 500m for RRT-based

guidance methods. The parafoil system parameters including payload weight, turn

rate bias, and lift-to-drag ratio are also randomized over a range of values suitable for

each canopy type [111. This chapter considers simulations using the UltraFly parafoil

system (JPADS-ULW) developed by Wamore Inc. [29, 30]. The system weight is

uniformly sampled within the range from 250 to 750 lbs, while the turn rate bias

and lift-to-drag ratio are sampled from a Gaussian distribution centered about each

nominal value with standard deviations of 0.1.

4.3.1 Wind Profiles

In addition to initial conditions and parafoil system parameters, wind profiles are

varied between simulation trials. A total of 25 wind profiles are used, of which 18

profiles are from collected drop data and 7 profiles are artificially generated. Of the

7 artificially generated profiles, 6 are constant-wind profiles varying in intensity from

0 to 25 knots (over 70% of the parafoil airspeed). The final artificially generated

profile represents an exponentially decaying wind, with average and maximum wind

61

speed changes with respect to altitude of 0.0025 M and 0.05 a, respectively. The

profiles from real drop data are more aggressive. Over all 18 profiles, the average

wind velocity is 6.7 m/s and the maximum gust is at 17.1 m/s (nearly matching the

parafoil airspeed). These profiles are subject to average and maximum wind speed

changes with respect to altitude of 0.025 M and 2.4 al-, respectively. They are alsom m

subject to rapid directional changes as large as 115 LS.m

4.4 Algorithms for comparison

The Rewire-RRT algorithm will be compared to two state-of-the art parafoil terminal

guidance strategies. Chance-Constrained Band Limited Guidance (CC-BLG) [10] and

Chance-Constrained RRT (CC-RRT) [12, 261 will be standards for comparison.

4.4.1 Chance-Constrained Band Limited Guidance (CC-BLG)

Band Limited Guidance (BLG)

BLG determines an optimized control input by choosing coefficients Ik for the heading

rate profile

, N sn(rp, - kAh)/ Ah)
0 (z) =E k - k h)Ah (4.1)

k=O 7F(Pz -

based on simulating forward the simplified parafoil kinematics

P = -LD CoS(/)0 + W/z, (4.2)

P = -LD sin() z, (4.3)

(cos(O))' = -O(pz)' sin(,O), (4.4)

(sin(4))' = -(pz)' cos(4'), (4.5)

where (-)' denotes a derivative respect to altitude pz [14]. BLG formulates the

terminal guidance as an unconstrained optimization problem designed to minimize

62

the cost function

JBLG = A1 (Ap 2 + Lpy) w2(sin(A4/2))2 (4.6)

via the propagation of (4.1)-(4.5), where Ap2 and Ap2 are squared miss distances

and AO is the difference between the final heading and the desired heading at the

terminal trajectory state. The terms w, and w 2 in (4.6) denote user-specified weights

selected to penalize the landing error for position and heading, respectively.

The BLG optimization is solved repeatedly online using the Nelder-Mead sim-

plex algorithm, while the integration of the kinematics is performed using fixed-point

arithmetic for computational efficiency [141. In addition, BLG periodically compares

the current optimization cost against a set of randomly generated trajectory solutions

to prevent possible convergence to local minimum [8]. Lastly, through the selection

of appropriate values for N and Ah in (4.1), the BLG algorithm ensures accurate

trajectory tracking by considering only those heading rate profiles with frequencies

sufficiently less than the control bandwidth constraints. These parameters serve to

enforce the "Band-Limited" quality of the trajectory design so as to avoid excitation

of payload and canopy modes [141. Due to the difficulty of optimizing a trajectory

from a large starting altitude, BLG is often run in two phases, with the first phase

guiding the parafoil to a specified position in the air and the second phase guiding

the parafoil to the ground.

Chance-Constrained Band Limited Guidance

A major contribution of the CC-BLG algorithm is the addition of terms to the BLG

objective function that capture the probability of the parafoil prematurely colliding

with terrain [101. This is done by developing an uncertainty model for the wind. This

model is used along with a method of weighted analytic uncertainty sampling to esti-

mate the probability of collision with terrain. Next, this probability is converted into

a cost term that is added to the BLG objective function for trajectory optimization.

Additionally, a discrete reachability set approximation is used for robust obstacle

63

detection and avoidance during the first phase of BLG. This "looks ahead" to prevent

collisions with terrain features immediately after the transition to phase two.

4.4.2 Chance-Constrained RRT (CC-RRT)

Chance-Constrained RRT [12, 261 builds upon the parafoil RRT algorithm. CC-RRT

builds a tree of paths that have a risk of collision with terrain or obstacles below

a specified threshold. This is done by using a wind uncertainty model to build an

uncertainty distribution over future parafoil states. While this provides a theoretical

guarantee of safety to within some threshold, paths developed by CC-RRT are not

explicitly optimized for miss distance or safety.

4.4.3 Presentation of Results

Results are presented in the form of cumulative distribution functions (CDF) and

tabular data of normalized parafoil miss distance performance. In each experiment,

the data is normalized by the median landing accuracy from the set of Rewire-RRT

trials.

4.5 Rewire-RRT Parameters

Several parameters are held constant during all simulation experiments.

" Radius rb - The chooseParent and rewire Tree algorithms will consider nodes within

a 2D radius rb of the sampled node Xsamp as possible parent nodes and for

rewiring, respectively. This radius is set at 300m. Note that if more than 10

nodes are within this radius, only the closest 10 are considered. If there are no

nodes in this radius, the single closest node is considered.

" Radius re - When an attempt is made to steer from a possible parent node to

Xsamp or from Xnew to Xnear during rewiring, the terminus of the exended path

must be within a 20m radius of the target node.

64

" Height he - During rewiring, the target cylinder has dimension he = 50m (total

height of cylinder is 100m). Due to the lack of parafoil control in the vertical

direction, this height is much larger than the radius re.

* Cost term weighting - The result from Section 3.4.2, wi/w 2 = 10 remains un-

changed in this section.

" Maximum iterations of tree growth - Each time tree growth occurs (line 8 in

Algorithm 9), 165 iterations of the tree growth procedure are allowed. This

result was derived from an analysis by Ellertson 1261 that concluded 165 was

the average number of samples generated in 1 Hz planning cycle with 60% duty

cycle by the nominal RRT algorithm.

4.6 Simulation Results

To understand the performance of the Rewire-RRT algorithm for parafoil guidance,

the algorithm will be tested in three main types of environments ranging from simple

to very complex:

1. Flat Terrain The simplest testing environment consists of completely flat

ground. No terrain features or man-made obstacles are present.

2. Canyon Terrain The canyon terrain represents a complex natural environ-

ment. It is free from any man-made obstacles.

3. Urban Environment The urban environments contain multiple large build-

ings near the IP that pose a hazard to landing parafoils. The terrain is com-

pletely flat.

65

LIL

E
0

Figure 4-1:

1

0.9

0.8
0.7

0.6

0.5

0.4

0.3

0.2

0.1

Cumulative Density Functions (Miss)

-CRR

-- Rewire-RRT
-7

.. 1 2 ... 345.6.7.8 .9

0 1 2 3 4 5 6 7 8 9
Normalized Miss Distance

Normalized miss distance CDF for flat terrain - 116 trials

Table 4.1: Normalized miss distance for flat terrain - 116 trials

Algorithm Mean StDev 50% 80% 90% 95% 98%
CC-RRT 1.41 1.02 1.19 2.05 2.62 3.15 3.82

Rewire-RRT 1.19 0.771 1 1.67 2.32 2.73 3.54

4.6.1 Flat terrain

The flat terrain case should be the easiest case for all algorithms. The lack of any

terrain features or obstacles means that there is no potential for unwanted impacts if

the parafoil strays from the planned path due to unexpected winds. Therefore, there

is no need for the planner to consider leaving extra space around obstacles to prevent

such collisions. Only miss distance from the IP needs to be optimized.

First, the performance or Rewire-RRT is compared to that of CC-RRT. Each

algorithm is run for 116 trials. The results of this experiment are shown in Figure

4-1 and Table 4.1.

In flat terrain, Rewire-RRT outperforms CC-RRT on average and at all per-

centiles. This indicates that the cost-to-go term in Rewire-RRT's cost function ac-

curately determines which nodes are more likely to terminate near the IP. Further,

the consideration of multiple possible parent nodes and the rewiring or the tree, both

of which consider the cost-to-go, are working as intended to identify paths that land

66

Cumulative Density Functions (Miss)
1

0.8 F

0.6 [....

0.4 -..

--.-- ---...... - CC-BLG
- Rewire-RRT

1 2 3 4 5 6 7
1 2 3 4 5 6 7

Normalized Miss Distance

zed miss distance CDF for flat terrain

0.2

0 0
0

Figure 4-2: Normali

Table 4.2: Normalized miss distance for flat terrain - 116 trials

Algorithm Mean StDev 50% 80% 90% 95% 98%
CC-BLG 0.554 0.641 0.416 0.726 1.12 1.32 1.80

Rewire-RRT 1.19 0.77 1 1.67 2.32 2.73 3.54

near the target. While the improvement in mean miss distance of Rewire-RRT over

CC-RRT is 15.6%, it is important to note that CC-RRT's performance on flat ter-

rain is poor relative to the state-of-the art. Consider the comparison of performance

between Rewire-RRT and CC-BLG shown in Figure 4-2 and Table 4.2.

The miss distances achieved by CC-BLG are about half of those acheived by

Rewire-RRT on average and at all percentiles. When no terrain features or obstacles

are present, BLG's optimization framework is better able to find paths that land near

the IP than Rewire-RRT. In flat terrain where there are no obstacles, the ability of

BLG to minimize miss distance is very strong. Because there are few constraints

on the parafoil trajectory shape and terminal guidance can begin at a relatively low

altitude, the Nelder Mead simplex search used by BLG is very fast at optimizing

the trajectory for miss distance. Rewire-RRT's advantages in path flexibility and

invariance to starting altitude do not help in the flat terrain setting.

67

L

E

- 116 trials

...

(a) Top view (b) 3D view

Figure 4-3: Canyon terrain environment (meters)

4.6.2 Canyon terrain

Canyon terrain is a very challenging natural environment for a parafoil landing. Sim-

ulations were performed in a section of the Grand Canyon shown in Figure 4-3. The

IP is represented by a yellow dot at the very bottom of the canyon. The steep slope

of the canyon walls, along with the great depth, create a risk for the parafoil to collide

with the walls before reaching the IP. A naive planner such as BLG, which considers

only miss distance and terminal heading during optimization, may plan a path that

comes very close to the canyon walls. Should the parafoil by pushed off the desired

trajectory by unexpected winds, a collision with the wall is possible. This collision

could damage cargo and greatly increase the miss distance from the IP. By consid-

ering the distance between the planned trajectory and terrain features in some way,

Rewire-RRT, CC-RRT, and CC-BLG all provide some measure of protection against

this type of collision. Note that in canyon terrain simulation experiments, a parafoil is

always considered landed at first contact with terrain, even if this was an unplanned

collision.

68

Cumulative Density Functions (Miss)

08 . .

LL
0 .6 -- - -- - - - - -.-

U
C)
E

0 .2 .- --.--- . ---.-. --. -------. --. C C -R R T --
Rewire-RRT

0
0 2 4 6 8 10 12

Normalized Miss Distance

Figure 4-4: Normalized miss distance CDF for canyon terrain - 100 trials

Table 4.3: Normalized miss distance for canyon terrain - 100 trials

Algorithm Mean StDev 50% 80% 90% 95% 98%
CC-RRT 1.40 1.40 0.979 1.72 2.63 3.94 4.88

Rewire-RRT 1.28 1.29 1 1.79 2.30 2.83 4.15

First, the sampling based planners were be compared in the canyon terrain. Both

Rewire-RRT and CC-RRT were run for 100 trials. The results of this experiment are

shown in Figure 4-4 and Table 4.3.

Rewire-RRT has a mean miss distance that is 8.6% better than CC-RRT. At

the 90th percentile and greater, Rewire-RRT also has an advantage. Overall, how-

ever, CC-RRT and Rewire-RRT are fairly evenly matched in this terrain. Though

the canyon walls are steep, the width of the canyon is still several kilometers. Both

Rewire-RRT and CC-RRT are successful at avoiding unexpected collisions with the

terrain in all but the most vigorous wind profiles. Rewire-RRT maintains its advan-

tage by considering cost-to-go during tree growth, as in the flat terrain.

Next, Rewire-RRT is compared with 100 trials of CC-BLG in the same canyon

terrain. Recall that CC-BLG incorporates risk of collision with terrain into its ob-

jective function. The results of this experiment are displayed in Figure 4-5 and

Table 4.4.

69

LL

E
0/

1

0.8

0.6

0.4

0.2

ni

Cumulative Density Functions (Miss)

- - - - ----------.. ...-

- -.--.-.-.-.-.- -.-- --

--- -- - -- - -.. .-. .-. .- ------.. -.. -. .

CC-BLG
Rewire-RRT

0 2 4 6 8 10 12
Normalized Miss Distance

Figure 4-5: Normalized miss distance CDF for canyon terrain - 100 trials

Table 4.4: Normalized miss distance for canyon terrain - 100 trials

Algorithm Mean StDev 50% 80% 90% 95% 98%

CC-BLG 0.640 0.758 0.470 0.890 1.20 1.55 2.22

Rewire-RRT 1.28 1.29 1 1.79 2.30 2.83 4.15

In the canyon terrain, CC-BLG maintains an advantage over Rewire-RRT. Be-

cause of the width of the canyon, a simple J-hook style approach consisting of a

downwind leg parallel to the canyon followed by a 180deg turn upwind is possible,

as long as the parafoil stays towards the center of the canyon. No complex series of

maneuvers around obstacles is necessary. Because phase two of CC-BLG can occur

at relatively low altitude, even in the canyon terrain, optimization of the objective

function is fast and converges towards the global minimum in most trials. CC-BLG

achieves miss distances of about half of those achieved by Rewire-RRT on average

and at all percentiles.

70

I - -

IX.

North of target (m) East of target (m) North of target (m) East of target (m)

(a) City Block Environment (b) Dense Urban Environment

Figure 4-6: Two urban style environments

4.6.3 Urban environment

Finally, two urban-syle envrionments are considered. They consist of rectangular

prism shaped obstacles, representing large skyscrapers, arranged on a grid around the

IP. The "City Block" environment (Figure 4-6a) has four obstacles and the "Dense

Urban" environment (Figure 4-6b) has 16 obstacles. These urban cases represent a

unique challenge compared to the canyon terrain. Though a "straight-in" approach

is possible, the large height of the buildings combined with the randomized initial

conditions will require that the parafoil maneuver around multiple obstacles in at

least some cases.

This represents a challenge for the optimization-based BLG and CC-BLG algo-

rithms for several reasons. First, turns around multiple obstacles requires BLG to

use more control points (larger N in (4.1)). This decreases the speed of optimization.

Further, the presence of multiple large obstacles, in contrast to the canyon terrain,

makes the objective function non-convex. This makes it easy for the optimization to

fall into a local minimum, even with the random comparisons to random trajectories.

For these reasons, only the sampling-based planners are tested in these environments.

The results for 100 trials each of CC-RRT and Rewire-RRT are shown in Figure 4-7

and Table 4.5. In these urban environment simulations, parafoils that collide with

obstacles are allowed to continue flight to the ground. Statistics of these constraint

71

Cumulative Density Functions (Miss)
1

0.81

LL
S0.6

0.4

0.2

0'
(

Figure 4-7: Normalized m

-- C

R
C-RRT
ewire-RRT

1 2 3 4 5 6
1 2 3 4 5 6 7

Normalized Miss Distance

iss distance CDF for city block environment - 100 trials

Table 4.5: Normalized miss distance for city block environment - 100 trials

Algorithm Mean StDev 50% 80% 90% 95% 98%
CC-RRT 1.37 0.867 1.21 1.98 2.64 3.21 3.43

Rewire-RRT 1.25 0.85 0 1 1.73 2.33 2.93 3.64

violations are reported in the analysis of each set of simulations.

Rewire-RRT performs better than CC-RRT on average and at all percentiles other

than the 98th in the City Block environment. Because CC-RRT requires large mar-

gins between the planned trajectory and obstacles, it is difficult for the planner to

identify feasible paths into the middle of the buildings. In many cases, it must rely

on replanning at lower altitudes, when the required margins are not as large, to iden-

tify paths that terminate near the target. This problem is exacerbated in the Dense

Urban environment. Rewire-RRT, on the other hand, does not require these safety

margins. Paths that come near the IP can be identified early on and then refined for

safety and miss distance in subsequent replanning intervals. This gives Rewire-RRT

an advantage in this environment. In terms of safety, CC-RRT and Rewire-RRT

were evenly matched. Five trials for each algorithm violated the obstacle boundary

constraints. Results from 100 trials in the Dense Urban environment are displayed in

Figure 4-8 and Table 4.6.

72

Cumulative Density Functions (Miss)
1

0.8-.....

LL
rZ 0.6-.....
U)
0)
.5-

04
m 0.

0.2- F

O'
-2

Figure 4-8: Normalized

-- CC-RRT
Rewire-RRT

0 2 4 6 8 10
Normalized Miss Distance

niss distance CDF for urban environment - 100 trials

Table 4.6: Normalized miss distance for urban environment - 100 trials

Algorithm Mean StDev 50% 80% 90% 95% 98%

CC-RRT 1.78 1.44 1.40 2.85 3.60 4.63 6.23

Rewire-RRT 1.34 0.971 1 1.86 2.61 3.46 4.49

In the Dense Urban environment, the advantage of Rewire-RRT is more pro-

nounced. At the 80th percentile Rewire-RRT performs 34.7% better than CC-RRT.

The over-conservative hard constraints imposed by CC-RRT, along with its lack of

chooseParent and reconnect Tree functions make it more difficult to find quality paths

than terminate near the IP in such a cluttered environment. The increased suc-

cess rate of node extension provided by the chooseParent function, along with the

increased path quality provided by reconnect Tree allow for Rewire-RRT to perform

better in this scenario. Cluttered environments such as this one are where the Rewire-

RRT algorithm has the most potential for success. Eight trials of Rewire-RRT violated

obstacle constraints, compared to seven trials of CC-RRT.

73

4.7 Conclusion

Simulation results show that Rewire-RRT is a potential path planner for guided

parafoils. In all three simulated environment types, flat, canyon, and urban, Rewire-

RRT was as good or better than the CC-RRT algorithm. In the simpler flat and

canyon terrains, CC-BLG kept an advantage. In relatively open spaces, an optimization-

based planner such as CC-BLG has an advantage over sampling-based algorithms.

However, as the environment gets more cluttered with multiple obstacles, a sampling-

based approach becomes more competitive. With further testing, Rewire-RRT may

prove to be the best guided airdrop guidance algorithm in certain complex terrains.

This suggests that the best guidance algorithm for guided airdrop may be dependent

on the environment, and worth tailoring to each mission for optimal performance.

74

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Guided airdrop is a useful method for delivery of cargo when ground transportation is

dangerous or otherwise infeasible. It is imperative that the cargo land as accurately as

possible in all conditions. However, landing accurately remains difficult, especially in

complex environments with multiple obstacles near the IP. Path planning for guided

airdrop, especially in the terminal phase, is an active area of research.

One method to increase the accuracy of guided airdrop systems in complex terrain

is to use an advanced sampling-based planner such as RRT. The ability of RRT to

rapidly explore large state spaces makes the algorithm attractive for the guidance

of many robots. However, the sub-optimality of the RRT algorithm makes it less

useful in cases where an objective needs to be met very closely. The RRT* algorithm

provides a guarantee of optimality in certain conditions, but has been shown to be

difficult to implement for underactuated systems.

In Chapter 2, a method of approximating the chooseParent and rewiring opera-

tions of RRT* for underactuated systems is identified. Rewire-RRT, as the algorithm

is called, is used to find both shortest and safest paths through an environment for

a vehicle with simple dynamics. It is shown that Rewire-RRT finds paths that are

lower-cost than RRT and only slightly higher-cost relative to RRT*.

Following this work, Rewire-RRT is applied to a system with underactuated dy-

75

I
pr

namics in Chapter 3. Rewire-RRT is shown to find paths for guided parafoils that

better meet the system objectives of safety and miss distance than paths planned by

RRT. This is true in flat terrain and in an urban-style environment.

Finally, in Chapter 4, the Rewire-RRT algorithm is used to guide parafoils online

is several simulation experiments. In flat terrain, canyons, and urban environments,

Rewire-RRT meets or exceed the performance of the state-of-the-art CC-RRT algo-

rithm. In the simpler flat and canyon terrains, Rewire-RRT is outperformed by the

CC-BLG algorithm. This suggests that Rewire-RRT has strong potential in very

cluttered environments such as cities, but optimization based algorithms are better

suited for more open environments.

5.2 Future Work

This work can be extended in several ways. Four possibilities are suggested below.

5.2.1 Further Simulations

There exists great opportunity to run more simulations with the Rewire-RRT algo-

rithm. Further simulation in many different urban environments, including models of

real cities where such map data is available, would provide insight into whether real

urban airdrop flights are feasible. Running large numbers of trials will increase the

accuracy of the miss distances reported at higher percentiles.

5.2.2 Obstacle Checking

Significant computation time is used to identify the nearest terrain feature or obstacle

to a given parafoil state. Currently, terrain data is stored in the DTED2 file format

[31]. The elevation of terrain is available at gridpoints on the map spaced at intervals

determined by the map resolution. In order to estimate the distance to terrain, terrain

elevation must be sampled at several points at various radii from the parafoil state.

Obstacles such as buildings are mapped using a separate system. Each obstacle is

76

represented as a polygon of specified height. The distance from a parafoil state to the

nearest obstacle is calculated by computing the distance to all obstacles and choosing

the lowest value. More efficient representations of the environments and efficient

constraint checking against the environment can ease this computational burden. For

example, Octomaps 132] have been used successfully for 3D mapping for many robotic

applications. However, given the large area covered by a guided parafoil during flight,

it is not clear that this solution would scale well to fit the parafoil domain.

5.2.3 Sensed Obstacles

If parafoils are deployed into urban environments, a map of the environment may

not always be available a priori. It may be neccessary to equip the parafoil with

onboard sensors to detect the environment. As sensors such as Lidar [33] become

lighter and cheaper, they may become useful for parafoil guidance. Because Rewire-

RRT grows a tree of feasible trajectories, back up trajectories are available should

the currently chosen path become obstructed by a newly sensed obstacle. For this

reason, Rewire-RRT may be more useful should obstacles need to be sensed online

than optimization-based methods which would likely need time to converge to a new

feasible solution should the current solution become infeasible. Simulation experi-

ments to study the viability of current parafoil guidance methods when sensors are

used to detect obstacles online would provide valuable information.

5.2.4 Dynamic Obstacles

Additionally, obstacles in urban areas may not be static. An extension to the case of

sensed obstacles, decribed above, would be to allow the obstacles to move in addition

to being sensed.

77

78

Bibliography

[1] Branden J Rademacher, Ping Lu, Alan L Strahan, and Christopher J Cerimele.
In-flight trajectory planning and guidance for autonomous parafoils. Journal of
Guidance, Control, and Dynamics, 32(6):1697-1712, 2009.

[2] Yves de Lassat de Pressigny, Raphael Bechet, Richard Benney, Michael Henry,
and Jan-Henrik Wintgens. Pacd 2008: Operational requirements fullfilled. In
20th AIAA Aerodynamic Decelerator Systems Technology Conference and Semi-
nar, page 2993, 2009.

[3] WR Barton and CF Knapp. Controlled recovery of payloads at large glide dis-
tances, using the para-foil. Journal of Aircraft, 5(2):112-118, 1968.

[4] The warrior. http://www.natick.army.mil/about/pao/pubs/warrior/03/mayjune/',
May-June 2003. Accessed: 05-02-2017.

[5] Philip Hattis, Brent Appleby, Thomas Fill, and Richard Benney. Precision guided
airdrop system flight test results. In 14th Aerodynamic Decelerator Systems
Technology Conference, page 1468, 1997.

[61 Natick uses efficient airdrop testing. https://www. army. mil/article/72525/Natick
_ uses_ efficient_ airdrop_ testing, January 2012. Accessed: 05-02-2017.

[7] Sean George, David Carter, Jean-Christophe Berland, Storm Dunker, Steven
Tavan, and Justin Barber. The dragonfly 4,500 kg class guided airdrop system.
In Infotech@ Aerospace, page 7095. 2005.

[81 Keith Bergeron, Gregory Noetscher, Michael Shurtliff, and Frank Deazley. Lon-
gitudinal control for ultra light weight guided parachute systems. In 23rd AIAA
Aerodynamic Decelerator Systems Technology Conference, page 2108, 2015.

[91 Nathan Slegers and Mark Costello. Model predictive control of a parafoil and
payload system. Journal of Guidance, Control, and Dynamics, 28(4):816-821,
2005.

[101 Aaron Ellertson, Jonathan P How, and Louis S Breger. Analytic chance con-
straints for the robust guidance of autonomous parafoils. In AIAA Infotech@
Aerospace, page 1408. 2016.

79

[111 David Carter, Sean George, Philip Hattis, Marc W McConley, Scott Rasmussen,
Leena Singh, and Steve Tavan. Autonomous large parafoil guidance, naviga-
tion, and control system design status. In 19th AIAA Aerodynamic Decelerator
Systems Technology Conference and Seminar, page 2514, 2007.

[121 Brandon D Luders, Ian Sugel, and Jonathan P How. Robust trajectory planning
for autonomous parafoils under wind uncertainty. In AIAA Infotech@ Aerospace
(I0 A) Conference, page 4584, 2013.

[131 Anthony Calise and Daniel Preston. Swarming/flocking and collision avoidance
for mass airdrop of autonomous guided parafoils. In AIAA Guidance, Navigation,
and Control Conference and Exhibit, page 6477, 2005.

[141 David Carter, Leena Singh, Leonard Wholey, Marc McConley, Steve Tavan,
Brian Bagdonovich, Tim Barrows, Chris Gibson, Sean George, and Scott Ras-
mussen. Band-limited guidance and control of large parafoils. In 20th AIAA
Aerodynamic Decelerator Systems Technology Conference and Seminar, page
2981, 2009.

[151 Nathan Slegers and Jonathan D Rogers. Terminal guidance for complex drop
zones using massively parallel processing. In AIAA Aerodynamic Decelerator
Systems (ADS) Conference, page 1343, 2013.

116] Nathan Slegers, Andrew Brown, and Jonathan Rogers. Experimental investi-
gation of stochastic parafoil guidance using a graphics processing unit. Control
Engineering Practice, 36:27-38, 2015.

[171 Steven M LaValle. Rapidly-exploring random trees: A new tool for path plan-
ning. 1998.

[181 Brandon Luders. Robust sampling-based motion planning for autonomous vehi-
cles in uncertain environments. PhD thesis, Massachusetts Institute of Technol-
ogy, 2014.

[191 Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research, 30(7):846-894,
2011.

1201 Yoshiaki Kuwata, Justin Teo, Gaston Fiore, Sertac Karaman, Emilio Frazzoli,
and Jonathan P How. Real-time motion planning with applications to au-
tonomous urban driving. IEEE Transactions on Control Systems Technology,
17(5):1105-1118, 2009.

[211 Lester E Dubins. On curves of minimal length with a constraint on average curva-
ture, and with prescribed initial and terminal positions and tangents. American
Journal of mathematics, 79(3):497-516, 1957.

[221 Arthur E Bryson. Optimal control-1950 to 1985. IEEE Control Systems,
16(3):26-33, 1996.

80

[231 Jeong hwan Jeon, Sertac Karaman, and Emilio Frazzoli. Anytime computation

of time-optimal off-road vehicle maneuvers using the rrt. In Decision and Control

and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on,
pages 3276-3282. IEEE, 2011.

[24] Chang-bae Moon and Woojin Chung. Kinodynamic planner dual-tree rrt (dt-rrt)

for two-wheeled mobile robots using the rapidly exploring random tree. IEEE

Transactions on Industrial Electronics, 62(2):1080-1090, 2015.

[251 Andrew W Moore. An intoductory tutorial on kd-trees. 1991.

[261 Aaron Cole Ellertson. Analytic chance constraints for the robust guidance of

autonomous parafoils. Master's thesis, Massachusetts Institute of Technology,
2015.

[27] Matthew Robert Stoeckle. Fault detection, isolation, and recovery for au-

tonomous parafoils. Master's thesis, Massachusetts Institute of Technology, 2014.

[281 Timothy M Barrows. Apparent mass of parafoils with spanwise camber. Journal

of Aircraft, 39(3):445-451, 2002.

[291 Richard Benney, Mike Henry, Kristen Lafond, Andrew Meloni, and Sanjay Pa-

tel. Dod new jpads programs and nato activities. In 20th AIAA Aerodynamic

Decelerator Systems Technology Conference and Seminar, page 2952, 2009.

[301 Ultrafly precision guided airdrop system. http:/ www.waymore. com/Products/Mil

itary-Products. Accessed: 04-15-2017.

[311 Digital terrain elevation data level 2 (dted2). http://www.gcs.gov.sa/En/Produc

tsAndServices/Products/DigitalElevationModels/lPages/default.aspx. Accessed:

12-05-2016.

[321 Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram

Burgard. Octomap: An efficient probabilistic 3d mapping framework based on

octrees. Autonomous Robots, 34(3):189-206, 2013.

[331 Yangming Li and Edwin B Olson. Extracting general-purpose features from lidar

data. In Robotics and Automation (ICRA), 2010 IEEE International Conference

on, pages 1388-1393. IEEE, 2010.

81

