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Abstract

Current human motion measurement systems using inertial measurement units (IMUs)
typically rely on precise alignment, static calibration poses, or dynamic calibration motions.
Muller et al. recently proposed a method for online calibration of the human elbow anatomi-

cal joint axes via decomposition of angular velocity measurements. This thesis evaluated this
calibration-free method in the context of two motion types. First, the method is evaluated
with human-generated motions common to occupational rehabilitation, to investigate activ-
ities of daily living (ADLs) as online calibration motions. Second, the method is evaluated
with parameterized sinusoidal motion, to investigate amplitudes and frequencies of motions
that yield robust axis estimations. It was found for the axis of interest, high on-axis mo-
tion and low off-axis motion lead to precise axis estimation and high accuracy estimation of
the pronation/supination elbow axis. Further, high off-axis motion and low on-axis motion
yielded imprecise axis estimation and inaccurate estimation of both the flexion/extension
and pronation/supination elbow axes. A comparative study of different filtering methodolo-

gies to the estimation of upper extremity human motion was also performed. Compared to
a motion capture truth, the Extended Kalman Filter (EKF) and Unscented Kalman Filter
(UKF) were found to perform similarly. An implemented particle filter (PF) was found to
perform better than both the EKF and UKF, and on the order of accuracy of a manufactur-
ers black-box algorithm. This work is the first to evaluate a particle filter in the estimation of
human motion by inertial sensors. The particle filter was then subject to a sensitivity anal-
ysis of the error of its estimated 3D orientation to its underlying algorithm inputs, namely,
the accelerometer and magnetometer uncertainties, and number of particles. Recommended
operational levels for these parameters are reported. Future work will combine the Muller
auto-calibration method, robust IMU orientation filters, and knowledge of appropriate online

motions to develop an IMU bias correction method for long periods of measurement.

Thesis Supervisor: Leia Stirling
Title: Charles Stark Draper Professor of Aeronautics and Astronautics
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Chapter 1

Introduction, Motivation, Previous

Work, and Literature Review

1.1 Motivation

The study of human biomechanics is important to the advancement of rehabilitation

therapy, sports medicine, human performance, and human-robot interaction. Better biome-

chanical models and biomechanical measurement systems enable more robust systems for

interacting with and understanding the human. For example, in rehabilitation, understand-

ing human motion informs the plan of care. For sports applications, understanding motion

can lead to improved strategy development. To this end, an accurate measurement of human

joint angles is desired. This measurement is complicated, as human motion is characteristi-

cally nonlinear, uncorrelated, and non-smooth [4]. While other computer vision approaches

to human measurement exist [5], the current gold standard for measurement of human mo-

tion is optical motion capture [6]. Passive optical motion capture uses infrared light emitted

from mounted cameras to localize reflective spheres (markers) in three-dimensional space.

Active motion capture includes methods such as markers which are infrared light sources.

Optical motion capture has the advantage of being very accurate in the triangulation of the

markers, but the interpretation of the data may not be obvious. To translate 3D position of
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markers in space to human joint angles, models of the human body must be assumed. An

often-used model is OpenSim [7]. From markers set on major anatomical landmarks of the

body, a least-squares optimization to fit a model may be performed to estimate the joint

angles.

This approach, of course, is financially expensive due to the equipment required to

collect the data, and is cumbersome to post-process. The subject must be fitted in non-

reflective clothing with markers placed precisely at anatomical landmarks. Any misplacement

would manifest itself as an error in the estimation of joint angles. The infrared cameras are

expensive, must be calibrated and oriented properly to view a necessarily-large capture

volume, and suffer from marker dropout when the markers are occluded by another object.

This approach can be inappropriate for the clinician, sports performance expert, or engineer

when measurements need to be made at low cost and in the environment of interest.

Inertial sensors, in contrast, offer an inexpensive way to make robust measurements.

Decades of research in state estimation and filtering have enabled the appropriate mathemat-

ical models and techniques to estimate orientation in three-dimensional space. The modern

inertial measurement unit (IMU), containing accelerometers, gyroscopes, and magnetome-

ters, is a common tool of motion measurement in non-deforming bodies. Unfortunately, usage

of IMUs to measure human motion is dependent on a kinematic model of motion, which can

be sensitive to misalignments of the IMUs on the subject. We desire a method which can

circumvent these tedious calibration and alignment methods. The M6ller method [3] can es-

timate joint axes in a calibration-free manner, but it is unclear what motions are required to

obtain good estimates of the axes. Furthermore, IMUs can drift over time, which confounds

their usage in long-term measurement applications.

While methods exist in the literature to estimate IMU orientation, these methods have

not been compared on human-generated data. This work examines three types of filters, and

performs a sensitivity analysis of the best performing filter to the underlying parameters.

To assess how the choice of motion affects the calibration-free axis estimation methodology,

a robotic experiment was performed using a set of occupational human motion data and
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parameterized sinusoidal motion.

1.2 The Filtering Problem

The Bayesian filtering problem presents a classic conundrum in state estimation-it is

desired to uncover the true state of a process, yet that process can only be measured with

discrete, noisy samples. This problem has been well studied, beginning with the seminal work

of Norbert Weiner [8]. Algorithmic implementations for -reduction in noise to help unmask a

state soon followed [9]. A leap forward occurred in 1960 when R. E. Kalman [10] presented an

optimal, recursive estimator of state with minimal covariance for linear dynamical systems

under white noise. As opposed to previous works, this work created a provably-optimal

method for state estimation of linear processes. Now, engineers had a filter with optimal

performance for practical calculation of a hidden state. Its potential was famously uncovered

by the work of Stanley F. Schmidt, who first applied the Kalman filter method to the C-

5A Inertial Navigation System (INS) [11]. Immediately, the Kalman filter was used in the

actually-nonlinear systems of interest in the aerospace community. Alongside developments

in the mathematics of nonlinear filtering [12], Schmidt and his group would implement

a simple technique to extend the Kalman filter to nonlinear systems. The aptly-named

Extended Kalman Filter would linearize the dynamics of a nonlinear system by the well-

known Taylor Series expansion. From this point forward, a simple, relatively inexpensive

method existed to estimate the state of more general noisy stochastic processes. In the

decades following, filtering methodologies of many flavors would spring up, each with their

own strengths and weaknesses. The most popular are the Unscented Kalman Filter [13] and

collection of Sequential Monte Carlo methods know as the Particle Filter [14].

1.2.1 Inertial Sensor Fusion

The aforementioned filtering methods are fairly generic, in that they are applicable to

any process which can be characterized by an observation and state transition model under
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additive white noise. We must contextualize them for the IMU problem at hand.

The inertial sensor fusion problem can be viewed as a subset of the larger, general

filtering problem. With this more specific problem come specific intricacies. For example,

sensors can return faulty information if damaged. Magnetometers specifically can return

bad measurements in the presence of a changing or unknown magnetic field. Furthermore,

selection of the state representation can also create complexity. For example, Euler angles are

prone to gimbal lock, and quaternion representations of orientation are not mathematically

independent amongst its four components (they must have unity norm). This violates a basic

assumption of the particle filter, that the state is a mathematically independent quantity.

These nuances present specific hurdles which must be considered in our implementations of

the classic filtering techniques.

In this work, our inertial measurement units are 9 degrees-of-freedom (DOF)-a 3-axis

accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer. An example of these small

devices is shown in Figure 1.1. These measurements are fused into an orientation estimate

represented by the quaternion, a 4-dimensional vector of unity norm which avoids the com-

mon gimbal-locking phenomenon of the Euler angle representation [15].

In general, there will be a common structure within the algorithms which describe the

state filtering. Namely, two models (multivariate functions) are required. First, a (possibly

nonlinear) state dynamics model f(4y). The dynamics model (otherwise called the state

transition model) maps the previous state and the discrete time to a prediction of the new

state. Practically, in the inertial sensor fusion problem, this will map the previous state

quaternion qk-1 and gyroscope measurements '3 to a new quaternion qk. Second, an obser-

vation model h(ik) is required. This model will map the predicted state to a set of predicted

measurements. Conceptually, the models are represented as:

Zk <- h(x) (1.1b)

The 6-element array Zk of predicted measurements has the exact same structure as the

17



6-element array of observed measurements yk: 3 accelerometer measurements and 3 magne-

tometer measurements, in that order.

Yk ~[~k nkl(1.2)

1.2.2 System Model

The classical discrete-time

system can be described through

the dynamics presented below.

The Bayesian approach, as imple-

mented by the particle filter, as-

signs probabilities to these models,

rather than deterministic quanti-

ties. However, the models are sim-

ilar, and it is of use to understand

the system model in its determin-

istic form before extrapolating to
Figure 1.1 APDM Opal v2 IMU

the probabilistic model.

The deterministic model describes the rotation of a rigid body in space. This rigid-body

rotating system is observed by the measurement of the IMU's three sensors: accelerometer,

gyroscope, and magnetometer. The filtered state will be an estimate of the IMU's orientation

in space, represented by a quaternion.

State Definition

The state vector is defined as an orientation quaternion, q = [qo, qi, q2 , q3 ] where qo

is the scalar quaternion component and the other three components q = [qi, q2 , q3] are the

vector components of the quaternion.
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Explicitly written, the state vector Xk is:

X [qo q 1 q2 q3] (1.3)

Naturally, this quaternion can easily be converted to Euler angles. Quaternions are com-

putationally desirable because they are not subject to the singularity/ambiguity issues that

are common to Euler angle definitions of orientation.

State Transition Model

In the traditional Kalman Filter algorithm, it is assumed that the system can be modeled

as:

Xk = AXk41 + Bdk_1 - Wk_1 (1.4)

where w' is normal Gaussian noise, uncorrelated with other system noises. B is the

matrix that defines control dynamics while U' is the control input vector, all variables that

influence the state vector X.

In the case of the linear, basic Kalman Filter, A is a constant matrix. However, in

general dynamic motion, AkIk+1 is a nonlinear, time-dependent matrix. It serves to map the

previous state at k - 1 to the current state at k.

Note that k is the iterator in the algorithm. It represents time, where k is the current

time and k - 1 is the previous time step. In this document, the notation in Eq (1.4) will be

used consistently, where subscripts k and k - 1 represent the values at times k and k - 1,

respectively. This is the discrete, deterministic state model, as employed by algorithms like

the Extended Kalman Filter and Unscented Kalman Filter. The Particle filter is a stochastic

method, which will be elaborated on in Section 1.2.6.

In the nonlinear, time-varying case of the dynamics function f(k), the aforementioned

nonlinear matrix Ak will use the previous state Xk_1 to predict the current state kk by:
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>^c = f (4_1, QAt) = AkX4_1 (1.5)

where Ak is:

cos(|Q4At/2) -/I 'I sin(| Qlst/2) -/I J|I sin(|Q JAt/2) -',/I'| sin(| Jlst/2)

/I '|I sin(|WQJst/2) cos(|W| At/2) 'Z /|wQ| sin(| QJst/2) - /I|J| sin(| Olst/2)
Ak =

Q,|Q~sn(Q ~ W|2 W WQ~i(G~t2 cos(|WQ|At/2) W'X/|wQlsin(|4|At/2)

-Wz /|W| sin(|J| At/2) Wy /|W| sin(|J| At/2) 0 /1|0| sin(|W| At/2) cos(|W| At/2)

(1.6)

Note that IL' is simply the 2-norm of the gyro rate vector. A simply represents the dynamics

of a rotating body over a small time interval At. It is more intuitively represented in 3-axis

coordinate form, but Equation 1.6 represents it for quaternion dynamics.

Measurement Model

The IMU sensors consist of a tri-axis accelerometer, tri-axis gyroscope, and tri-axis

magnetometer. These measured vector quantities are a. w, and mii, respectively. The IMU

is subject to total acceleration (sum of gravity #c and body acceleration abody), the angular

rotation rates gtrue, and the local magnetic field hc. Likewise, the measurements are subject

to biases ba, bg, and bm and uncorrelated Gaussian white noises Va, Vg, and im.

- "S[Dn(q)(Jc + abody)] + ba + Va (1.7a)

=Sgtrue + bg + g (1.7b)

Ini =SD n(q)hc + bm + Vm (1.7c)
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In (1.7), Db is the direction cosine matrix (DCM) that represents the rotation of body

frame B into the navigation frame M. Finally, S, 9S, and "'S are the scale factor matrices

of the three measurement sensors. These matrices are used to correct any axis sensitivity

differences by a sensor. In the case of a perfect sensor, these scale factor matrices are simply

the 3-by-3 identity matrix.

The measured vector is the concatenation of the accelerometer and magnetometer read-

ings Yk = [k rk . As we have established, the motion is nonlinear, so the aforemen-

tioned relation could be more aptly written as:

y = =h(A4)+ + At (1.8)

Mk bm m Vm

This function h(ik) is quite important. It defines the rotational quaternion dynamics.

It is succinctly defined as:

D(qk)- O3 qC
h(ik) = (1.9)

03U3 D b(qk)-I hc

where Db(qk) is the 3x3 rotation matrix defined by:

D(qk) = (q2 _ 4T4)I3x3 + 244T - 2qo[e x] (1.10)
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0 -q3 q2
- - T

with 4 = qi q2 q3 and [qx] = q3  0 -qi . Fully expanded, it would read:

-q 2  q1 0

0  1 ~2 3 2(qoq3 + qlq2) 2(q1q3 - qoq2 )

Dn(qk) = 2(qlq2 - qoq3) q02 - q + q2 - q3 2(qoqi + q2q3 )

2(qoq2 + qlq3) 2(q2q3 - qoq1) q2 - q 2- q 2+ q2

Next, it becomes important to remember that this rotation is not linear. We are not

assuming linearity in our dynamics. In the EKF, a local linearization of the nonlinear

dynamics is taken to numerically compute orientation at each time step. In the case of the

Unscented Kalman Filter, discrete probability points are described on a sigmoid [16]. Recall

Equation (1.5), the function that defines the nonlinear dynamics. In the case of the particle

filter, a Bayesian inference technique will be used to discretely approximate the posterior

probability density of the state.

Process Noise Covariance Matrix Q

The process noise covariance matrix represents the error due to unmodeled dynamics

such as wind gusts or random vibration, and also uncertainty due to gyroscope noise. Typ-

ically, small numbers are chosen and then tuned until the estimated state agrees with some

external truth measurement.

Measurement noise covariance matrix R

The noise of a static sensor measurement may be measured. This simple process consists

of setting the IMU on a motionless surfaces and recording data. Take multiple points, then

compute the variance of the sample set for both the accelerometer and magnetometer. In
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real systems, there is noise, which will make this quantity nonzero.

Furthermore, in real systems, there is unceitainty in measurement due to more than just

the physical noise of the sensor. Unmodeled dynamics in acceleration and magnetic field are

relevant examples. In acceleration, our measurement model presented in Section 1.2.2 only

models static acceleration due to tilt of the IMU in Earth's gravitational field. Dynamic

body accelerations introduce errors to this model. Likewise, the measurement model of the

magnetometer assumes that ambient magnetic field is static in direction and magnitude,

which is not always the case in laboratory environments with electrical equipment.

If the uncertainties of the accelerometer and magnetometer measurement are written as

a and 62 (note that these are 3-vectors, there is a separate uncertainty about each axis),

then the matrix R is computed as:

-T

2 = m 16x2I6 (1.12)

1.2.3 The Kalman Filter

While the traditional, linear Kalman filter is not applicable in the nonlinear dynamics

domain of this work, the filtering algorithm is presented below, along with a discussion. The

algorithm will be expanded into its nonlinear forms in the following sections.

Xk = A 4k1 + Bd (1.13a)

Pk = APk_1AT + Q (1.13b)

Kk = PHT (HPkHT + R) (1.13c)

Xk = k + Kk (Yk - Hfk) (1.13d)

P = (144 - KkH) Pk (1.13e)
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Note that the matrix H is simply the linear matrix analog of the measurement model

h(ik). Recall that under linear dynamics, used here in the Kalman filter, that the pre-

dicted measurements can always be represented by the linear transformation zk = Hik. Yet

unintroduced are the matrices P and K.

State Estimate Covariance Matrix P

The state covariance matrix P is a direct measure of the belief in the estimated state.

If the state is a 4-vector quaternion, then P is a 4x4 matrix. The diagonal of the matrix can

be thought of as the direct variance of the estimated state parameters, while the off-diagonal

elements are measures of the covariance of the state with other elements of the same state.

The proof of optimality of the Kalman filter for linear dynamics, in fact, minimized the mean

square error (MMSE) of this state covariance.

A common measure of total state belief is the trace of the covariance matrix. The

operation trace(P) sums the diagonal elements of the matrix-yielding an overall scalar metric

for state belief. This measure is commonly reported alongside time plots of the state. Along

with general state variance, this time series gives a concept of how long it took for the filter

to converge to a stable estimate. If initialized to P1 = 144, the filter will generally begin

to rapidly reduce the values of these diagonal elements. Likewise, the value of trace(P) will

increase in regions where data are noisy or less believable.

Kalman Gain Matrix K

The Kalman gain matrix K is a function of this aforementioned state covariance. In

equation 1.13d, the Kalman matrix multiplies the difference between the predicted and

measured sensor data. If this difference is very small, the prediction of the state was modeled

well by A when compared to what is measured. However, if there is a large discrepancy

between what we believe we will observe and what we do observe, a correction is necessary.

In lies the power of the Kalman filter. The Kalman gain matrix represents trust in our

measurements. If the Kalman gain matrix K is small, we trust our sensors very little. In
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this case, the updated state 'k would be very close to the predicted state k. The Kalman

gain matrix is the arbiter between these two values. If the Kalman gain matrix is large, we.

trust our sensors a lot, and the discrepancy Yk - Hkk weighs heavily into the computation

of the final state estimate Xk.

1.2.4 Extended Kalman Filter

Almost immediately after the development of Kalman's filtering algorithm, Schmidt be-

gan to investigate nonlinear extensions of the algorithm [11]. The most obvious formulation

was to utilize the Taylor series expansion to linearize these nonlinear dynamics and measure-

ment models. To do so, we define the Jacobians of the system transition and measurement

models as:

af(X)
Fk1= N (1.14)

Hk_1 = ah() (1.15)

These now-linearized state transition and measurement models can now be used in a

familiar algorithm.

Xk = f(i4-1) (1.16a)

Pk ? Fk-lPk-1 + k-1 + Qk-1 (1 .16b)

Kk = PkHk (HkPki + R) (1.16c)

Xk = Xk + Kk(yk - h(ik)) (1.16d)

Pk = (I44 - Kklk) Pk (1.16e)

Now that the dynamics are nonlinear, there is no guarantee of optimality as Kalman

proved for his original filter (recall that the Kalman filter was optimal in a MMSE sense).

The accuracy of the filter, intuitively, would depend on how well a first-order Taylor series
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expansion can approximate the nonlinear dynamics.

The first order Taylor series expansion about a point x would simply be equivalent to

finding the slope of the function f(x) at point x and using this linear approximation for

f(x) at x. If this is a good approximation, i.e., the function f(x) is not highly nonlinear at

x over the sample interval At, then the EKF will have high accuracy. In scenarios of high

nonlinearity, this first-order approximation may be unsuitable.

Formulations of the EKF do exist with higher-order Taylor series approximation of the

nonlinear dynamics model f(x) [17]. However, higher-order Taylor series approximations are

in general computationally expensive. Furthermore, every order of approximation beyond

first order yields quickly diminishing returns in filter accuracy. While higher-order EKFs may

be used in specific applications, they are not common for general nonlinear filter schemes.

1.2.5 Unscented Kalman Filter

While the EKF offered the de facto nonlinear filtering method for decades, it has a spe-

cific set of disadvantages. Namely, as previously discussed, highly nonlinear functions can

doom first-order Taylor series approximations, and higher-order EKF formulations can be

undesirable for computational complexity and diminishing returns in filter accuracy. Further-

more, the Jacobians of nonlinear functions can very quickly become intractable to calculate

for large functions of many variables. In these scenarios, new schema are desired. Jeffrey

Uhlmann [16] formulated a new approach to utilizing the available information within a

nonlinear function: the unscented transform.

The Unscented Transform

Uhlmann conjectured: rather than approximating a nonlinear function as linear, why

not approximate a nonlinear function as a distribution which would still capture the mean

and covariance of the underlying nonlinear function? After all, Kalman's algorithm is a

direct operation with the mean and covariance of that nonlinear function.

The unscented transform, explained fully in [18], transforms an n-vector of state and
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Figure 1.2 Illustration of mean and covariance propagation in the Kalman filter frame-

work: true state (left); linearized EKF (middle); unscented transform

(right) [1]

n-by-n matrix of covariance into an n+1 x n+1 matrix of sigma points, which is a symmetric

matrix that represents the statistical distribution of the underlying state and covariance.

This distribution retains the first moment (mean), the second moment (covariance), and un-

der certain assumptions, the third moment (skew) of the state and covariance. The unscented

transform is illustrated conceptually in Figure 1.2.

Once this set of sigma points has been computed, these individual points can be trans-

formed by the nonlinear function f(x) exactly, rather than an approximation being necessary.

These transformed sigma points can then be decoded to find the new state mean and covari-

ance. This method can be employed in the Kalman filter to propagate nonlinear dynamics
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and measurement models.

The UKF has become a cornerstone algorithm in state estimation when the dynamics

and measurement models are either highly nonlinear, non-differentiable, or too burdensome

to compute the Jacobian. Furthermore, the unscented transform has been employed with

weights on the means and covariance of the state to aide performance of the filter when the

functions being transformed are well-studied. The UKF shows notable improvements over

the canonical EKF [13], but is more computationally complex than the EKF. In cases where

the dynamics of a system can be modeled accurately as a Taylor series linearization, then the

EKF is more appropriate. Also, while the UKF can capture skew, the unscented transform

cannot propagate general non-Gaussian distributions. In these cases, a particle filter may

be preferred [19].

1.2.6 Particle Filter

The particle filter method (or Sequential Monte Carlo method) is a stochastic approach

to solving the filtering problem. The filter is a computational implementation of Bayes' Rule.

Given the classical equation,

P(OIY) = P(YjO)P(9) (1.17a)
P(Y)

ak
Y = (1.17b)

Mk

0 = q (1.17c)

we can recursively estimate P(OIY)k, or the state posterior probability distribution at time

k. P(Y I) represents the likelihood model, and represents the "likelihood" of our current

predicted state, kk being correct given our measurement Yk. The prior probability P(9)

represents the statistical extrapolation of our nonlinear dynamics update model, a simple

integration of the gyroscope rates. It could be interpreted as the gyroscope prediction, which
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is then multiplied by the conditional likelihood probability. Finally, P(Y) is the marginal

likelihood of the measurements, which is constant for every prediction/hypothesis proposed

by P(O). As such, it is often thought of as simply a normalizing constant, which becomes

unimportant as the particle weights are normalized to sum to one for obvious reasons.

The Particle Filter Algorithm

The particle filter [20] represents a commonly-used stochastic sampling method, as op-

posed to the deterministic sampling manner of the UKF. The PF is initialized by sampling

a number of particles randomly from a predefined initial probability distribution about the

initial mean. These particles are propagated through the nonlinear dynamics model f(A).

Then, the weights w of these particles are sampled from a second, not necessarily identical,

distribution. Finally, if these particles are found to diverge or converge, they may be resam-

pled using a number of different algorithms. Equation 1.18 suggests a basic particle filter for

IMU tracking purposes [20].

The particle filter is a powerful statistical technique because a finite system of discrete

particles can capture complex distributions. Accordingly, more computational time must

be spent to compute the dynamics of these particle systems. The computational burden of

the particle filter can be a significant problem for use in online analysis or in systems with

low-cost on-board hardware.
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Xpi,i +- (x'1, a-) (1.18a)
1

wji <- (1.18b)
Np

XPk,i +- (XPk_1,i) (1.18c)

Yk +- current measurement (1.18d)

Zk,i 4~h(XPk,i) (1. 18e)

exp(- (yk - Zk,i)TR- 1 (Yk - Zk,i))
Wki 2- Wk-li (1.18f)ZN1 exp(-!(yk - Zk,i)TR- 1 (Yk - Zk,i))

Wk,i <- resample weights as necessary (1.18g)

Xk ~- Wk,iXPk,i (1.18h)

In this implementation, the initial distribution from which particles are sampled in

equation 1.18a is from a normal curve with a mean of the initial orientation and a variance of

the state uncertainty. The distribution the particle weights Wk,i are sampled from in Eq 1.18b

is simply a normal curve with a mean as the difference between the observed measurement

Yk and the particle-predicted measurement zk,i. The variance of this probability distribution

is Rk, the sensor noise matrix .

The Particle Filter in Practice

The Bayes' Rule components discussed previously in 1.17 are modeled as normal curves,

as previous literature has done [20]. Greater tests and practice can be used to tune the sta-

tistical distributions from which the particles are sampled. The likelihood model P(OIY) is

simply a normal curve whose mean represents the difference between predicted and observed

measurements, and whose variance is represented by the entire uncertainly associated with a

measurement. It may be due to measured sensor variance, partial observations, environmen-

tal factors, sampling constraints, etc. It has been found in practice that the sensor noises

of the accelerometer and magnetometer are sensitive parameters of the performance of the
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particle filter.

These probability distributions are not represented by analytical functions but as "par-

ticles," which are randomly distributed about the initial posterior probability curve. As the

recursion is carried out, these particles evolve to represent the updated state posterior prob-

ability distribution. The state estimate q is computed as the weighted sum of these discrete

probability representations. This transformation could be qualitatively described by stating,

P(OIy)t=k -+ P(9)t=k~ + P(OIY)t=k+l -+ -(~~+ -4 (1.19)

where the symbol -+ could be thought of as to mean "informs."

While a formal introduction to Markvoian processes and Monte Carlo simulation are

beyond the scope of this thesis (see Pardoux [21]), one nuance of this implementation should

be noted. Sampling the state estimate from any distribution requires that the individual

state components are independent, i.e., sampling the state components from a distribution

would represent a valid state. However, the quaternion violates this assumption, as the

4-component quaternion component must have a unit 2-norm. If 4 individual components

are sampled from a distribution, they are not guaranteed (in fact, they would likely almost

never) uphold this assumption. For that reason, a modified formulation of the particle filter

must be used that estimates a properly independent state, unlike the quaternion.

Cheng and Crassidis [22] presents an interesting formulation of the particle filter to

avoid this problem. An attitude error representation is formulated, where the global atti-

tude representation is defined as a quaternion, but a local error representation is used with

modified Rodriguez parameters as the state which is estimated via the particle filter. Ro-

driquez parameters are another method of representing orientation. Unlike the quaternion

(and like Euler angles), the components of this representation are independent.

Since the estimated state is independent, the assumption of Monte Carlo processes has

now been met. This formulation of the particle filter will be used for the remainder of this

thesis.
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Figure 1.3 A goniometer, image from: https://www.fab-ent.com/media/02_

Evaluation/12-1000. jpg

1.3 Human Joint Angle Measurement

The measurement of joint angles is a non-trivial task. The simplest measurement tool

is the goniometer (Figure 1.3). While a manual tool like the goniometer is cheap and widely

available, the tool can be misused by user through improper joint axis alignment. A difference

in alignment of the instrument to an anatomical landmark will create a significant difference

in measurement. De Kraker et al. [23] found that while the precision of a goniometer is +/-

2 degrees, in operational usage, the same measurement by multiple operators varied by +/-

8 degrees. Furthermore, the goniometer only yields a static measurement. This could be

useful for understanding range of motion, but is not useful in dynamic analyses. Time-series

data provides a more useful data for understanding how the human joint moves over time.

In a case of occupational therapy, while the initial and final joint orientations are important,

the trajectory to achieve those orientations is also relevant. Further, it is important to

understand the relative motions between joints over time, which is not possible with static

measures that can obtain one joint at a time.

1.3.1 Optical Methods

Optical tracking methods are the most robust and commonly used methods for tracking

human joint angles. Optical methods rely on a camera to capture certain objects or features

in the environment, and a computer to process the data into an interpretable form. While
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most methods of optical measurements are accurate in tracking a marker in space, these data

require a model of human kinematics in order to map the data to human joint orientations.

The measurement of human motion via optical system is limited by the underlying model

of human kinematics. These optical systems require large laboratory capture volumes and

possibly-impractical subject attire. Furthermore, markers can be occluded by the subject

or other objects in the capture volume, and incomplete datasets can make analysis difficult

and time-consuming post-hoc.

In any optical method, underlying models of the human subject are normally assumed.

Optical methods are limited by the fidelity of the model used to estimate human kinematics.

These models can possibly be incomplete or ill-posed for patients with certain physical im-

pairments, with whom clinicians are often tasked. Software such as OpenSim (open source),

AnyBody (AnyBody Technology Inc., Salem, MA, USA), and MSC ADAMS (MSC Software,

Inc., Newport Beach, CA, USA) use motion capture and embedded models of kinematics

to estimate joint angles. In general, these models require precise placement of markers on

certain anatomical landmarks on the human body.

1.3.2 Inertial Sensors

Inertial sensors can also be used to measure human motion. The advantages of inertial

sensors have been discussed previously. These sensors are low-cost, require no capture vol-

ume, and can work in situ. This enables motion capture for applications that do not allow

for the infrastructure required for using optical motion capture technologies. Filtering for

IMU orientation produces more robust results than direct interpretation of sensor informa-

tion alone [24]. Sabitini [25] presented a novel EKF which fused magnetic measurements to

provide a better estimate of heading, rather than relying on the drift-prone gyroscope mea-

surements. Madgwick et al. [26] presented a novel orientation filter based around a gradient

descent method to minimize error. This method was used to track position and orientation

of a foot over a period of 60 seconds. Madgwick found RMS errors of less than 1.5 degrees

about each IMU axis. The particle filter has been applied to body tracking in optical motion
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capture systems [27], but not to motion tracking via inertial sensors.

The use of integrated inertial sensors for measurement of human motion spans roughly

two decades. In 1999, John Elwell posed [28] a method for inertial navigation for soldiers

in the battlefield. Elwell was concerned with general body motion, but found that IMU

drift became a challenge, even with state-of-the-art gyroscope and accelerometer packages

and using a zero-velocity update. Prior to the development of filters with more robust

complementary measurement updates, it was common to align an axis of an IMU with a

human limb segment, so that the integration of the gyroscope could be interpreted as rotation

of the limb directly [29]. Giansanti et al. [30] combined gyroscopes and accelerometers to

track orientation in human motion, but restricted motion to only a few seconds to avoid

IMU drift. Zhou et al. [31] measured motion over 12 seconds, while also applying a weighted

least squares frequency filtering technique to damp erratic measurements from the gyroscope.

Methods which rely on sensor alignment may include robust nonlinear filters [31-34], but

alignment with an anatomical axis is imprecise. Seel et al. [2] illustrates the cumbersome

process of measuring sensor misalignment and correction. Figure 1.4 shows this problem:

multiple IMUs are placed on the limb, each of which has its own coordinate frame. These

coordinate frames must be reconciled with the joint axis, and so that relative orientation must

be computed. This calibration technique is only as accurate as the ability of the researcher

to measure the relative orientation between the IMU and the joint axis of interest.

Another technique to align the IMU with a body frame for human joint angle compu-

tation involves static calibration poses. Cutti et al. [35] show a calibration procedure where

IMUs are placed on the subject, and then the subject moves to a predefined pose. In this pre-

defined pose, the true joint angles of the subject are assumed and the IMU 3D orientation in

space can be measured. From these pieces of information, the static calibration quaternions

can be discerned. Luinge et al. [29, 36] developed a method which used knowledge about

elbow constraints and a static pose to compute orientation of the lower arm relative to the

upper arm. Other methods [34, 37-39] similarly seek an IMU sensor-to-subject calibration

quaternion from a static pose method.
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Figure 1.4 IMU alignment on a body limb [2]
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Some calibration techniques use dynamic calibration motions. Mayagoitia et al. [40]

and Lotters et al. [41] use individual accelerometers and gyroscopes, aligned to the lower

extremity. Gyroscopes were calibrated through 90 degree and 180 degree motion sweeps in a

set time, while accelerometers were calibrated through simple alignment with and normal to

gravity. Favre et al. [39] presents a hybrid static-dynamic method to estimate the static cal-

ibration quaternions through both knee motion and static poses. Some works [37,42] require

the subject to perform motions while holding a pose, e.g., flex the knee while maintaining

a static ankle pose. In general, calibration can be a time-consuming process and requires

known motions and/or postures for each joint of interest.

Mller et al. [3] recently presented a method to overcome the problems of calibration.

This method, which will be explained more thoroughly in Section 1.4, estimates the joint

axes of interest by decomposition of the angular velocity of IMUs. This method has potential

to introduce IMUs to applications which otherwise would have been intractable because of

cumbersome calibration and calibration quaternion misalignments.

1.3.3 Drift

As previously mentioned, a prevailing problem with inertial sensors is drift. In modern

sensors, drift is primarily due to the integration of noisy gyroscope data. One method to solve

this problem is through better sensor fusion techniques, as presented previously. In general,

these techniques have been developed to provide a measurement update via accelerometers

and/or magnetometers [43], or provide better models of motion. Other techniques include

heuristics on gyroscope data. A commonly-used heuristic is the zero-velocity update [44].

This heuristic works by sensing times when the magnitude of gyroscope data is small, and

then setting these data to zero angular velocity. The intuition for this heuristic comes from

the gyroscope being an analog-to-digital sensor. This sensor cannot produce zero angular

velocity due to noise. So if the rotation rate is near zero, we can argue that it is below

a signal-to-noise threshold, and set these data to zero. This would reduce drift by not

integrating gyroscope noise during periods of low rotation. However, this heuristic cannot
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apply in situations where drift is occurring in the gyroscope over a real angular velocity

signal.

Drift confounds human motion measurement when measurements are desired to be taken

over a long period of time. For example, in studies where long-term performance evaluation

is required to assess fatigue, intractable IMU drift would prevent the researcher from being

able to compare data over a long period of time. Methods are desired to solve this drift

problem. In Section 1.4, this thesis will present an algorithm developed by Muller et al. [31

that has potential to aid in the correction of drift.

1.4 MU*ler Method

The human elbow joint can be modeled approximately as a two DOF joint. Anatomi-

cally, we call these rotations flexion/extension and pronation/supination of the elbow. Note

that while pronation/supination is a more complex interaction of the radius and ulna bones

of the forearm, this is commonly modeled as a single degree of freedom at the elbow.

An IMU is placed both distal

and proximal to the elbow joint,
Flexion/Extension

such that all relative motions be- Angle

tween the IMUs occur at the elbow

joint. Figure 1.5 illustrates this.

No assumption of alignment of the Pronation/Supination
Angle

IMUs are made; the IMUs are free

to be placed in any orientation on

the arm, provided that one is distal Extension
Axis

and one is proximal to the joint.

The coordinate frame of the

IMU on the upper arm will be re-

ferred to as frame A, and likewise,

the frame of the IMU on the lower
Figure 1.5 Human arm with IMUs and two DOF of
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arm will be referred to as frame B.

The flexion/extension axis of the

elbow will be referred to as axis a, and the pronation/supination axis of the elbow as axis

b. As such, the anatomical axis a expressed in frame A will be noted as iA. The prona-

tion/supination axis of the elbow expressed in terms of the coordinate frame of the lower

arm would likewise be noted as bB

The relative angular velocity between the two IMUs can be computed. The angular

velocities of the respective IMUs would be noted in their local frames as Wam for the upper

arm IMU and Cz.rist for the lower arm IMU. The relative angular velocity between the two

IMUs can be expressed as:

rel -Warm + Wwrist = -Warm + DAWwrist (1.20)

where DB is the rotation matrix from frame A to frame B. This operation is simply

the rotation of the lower arm angular velocity into the frame of the upper arm, and then a

difference operation between Wam and .

An interesting property holds about the two anatomical axes of the elbow relative

to their IMUs: the pronation/supination axis a is fixed in frame A, while the prona-

tion/supination axis of the elbow b is fixed in frame B. Taking advantage of this assumption

about 6A and bB, we can express the relative angular velocity as a decomposition about

these two axes.

-. A -A B Wrel = a+/Db (1.21)0%=aa + 3DAG

where scalars a and # are simply angular rates about the two axes 6A and bB, respec-

tively.

We know that due to factors like sensor noise and imperfect orientation estimation, these

relative angular velocities cannot be estimated perfectly. So we introduce an error term e

and summarize our two expressions for relative angular velocity between the two IMUs.
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=re -Warm + Awit e (1.22a)

We=a + ID~bB + d (1.22b)

In a perfect world, this error ' would be zero. While in practice it cannot be zero, an

optimization method is used to minimize the error to solve for the anatomical axes i and

b;B

Rearranging equation 1.22b to solve for e:

= (a + _DBB - A/ 1A (1.23)

Given that we already know WAm from equation 1.20, we can employ an optimization

method to compute the anatomical axes by minimizing the following cost function:

N
J(iA B) N T-k (1.24)

k=1

This cost function is formulated as a common least-squares nonlinear objective function.

The minimization of the cost function in equation 1.24 yields the optimal solution for the

anatomical axes iA and bB

Muller et al. used an online gradient-descent method. In this thesis, the Levenberg-

Marquardt algorithm was the used optimization method. The Levenberg-Marquardt algo-

rithm interpolates between a Gauss-Newton and gradient-descent method. This method is

robust and popular in practice for solving nonlinear, nonconvex least squares problem. More

information on the algorithm can be found in Nocedal et al. [45].

Once the anatomical axes iA and bB are computed, the joint angles about these axes

can be computed. Davenport [46] first considered the problem, and gave conditions for the

existence of rotation angles. Davenport proved that rotational angles are only guaranteed to

exist in the case of 3 orthogonal axes. Furthermore, the closer these axes are to parallel, the

more likely it is that rotation angles do not exist about them. While the explanation of this
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computation is beyond the scope of this work, Piovan et al. [47] presents a compact algorithm

to decompose the relative orientation D' as two rotations about possibly-nonorthogonal

axes iA and bB. While these two rotation axes are slightly non-orthogonal, this effect is not

strong enough to threaten the existence of the joint angles.

The nonorthogonality of axes iA and bB could be due to error, but can also be due to

human anatomy. The carry angle of the human elbow is generally about 11 degrees for men

and 15 degrees for women from orthogonal [48]. This angle allows the forearm to clear the

hips in normal walking motion.

The Miller method was demonstrated in a proof-of-concept study [3], but these results

are not generalizable to all human motion. The method is intriguing, but it is not clear

what motions will yield accurate estimates of the joint axes, or whether natural motions are

usable for on-line axis estimation.

1.5 Aims

There are methods for estimating human motion using inertial sensors. There has

not been a comparative study of the EKF, UKF, and PF to human motion estimation.

Furthermore, the particle filter has not been used for human motion estimation in inertial

sensors. State estimation-based approaches still usually require precise calibrations, either

statically or dynamically. The Muller method presents a possible method to calibrate human-

inertial systems online, but the motions required to achieve accurate joint axis estimation

are unknown. Hence, this works aims to:

1. Compare the orientation error as estimated by the EKF, UKF, and PF for a sample

of upper extremity human motions relative to motion capture

2. Determine the sensitivity of the particle filter estimation error to its input parameters

3. Characterize the performance of the Muller algorithm when used for a set of human

and parametric motions
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In Chapter 2, we study the application of the aforementioned filters to human motion

estimation by comparing the developed filters to an optical motion capture truth in the

context of three motions performed by a single subject: a circle and square drawn with the

hand in the horizontal plane, and a natural grasping motion. We continue Chapter 2 by

then performing a sensitivity analysis of the particle filter to its parametric inputs to draw

operational conclusions about recommended values for these parameters. Chapter 2 repre-

sents the first application of the particle filter to the estimation of human motion via inertial

sensors. In Chapter 3, we evaluate the M6ller method in the context of human-generated mo-

tion to evaluate the capability of motions common to occupational rehabilitation to provide

robust axis estimation. We further evaluate the Muller method against sinusoidal motion,

parameterized by frequency and amplitude, to determine the characteristics of motion which

lead to robust axis estimation. Finally, in Chapter 4, we provide a summary of the results,

limitations of the current work, and suggested future work.
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Chapter 2

Experimental Comparison of Filters

and Parameter Sensitivity Analysis

Chapter 1 outlined the development of three common filtering methodologies for this

work-the Extended Kalman Filter (EKF), the Unscented Kalman Filter (UKF), and a Par-

ticle Filter (PF). Validation of these filters has been experimentally shown, but not in the

context of inertially measuring human motions. This chapter will evaluate filter performance

in this context.

Furthermore, for any given filter, the state is not estimated perfectly, so errors in es-

timation can be exacerbated by using inappropriate filter parameters. For example, the

gyroscope, as discussed previously, is used as a predictor to transition the state estimate

forward in time. This gyroscope has some measurable, physical noise. A parameter Q
was introduced previously as the state covariance. The noise from the gyroscope is one,

but not the only, factor that contributes to total state uncertainty. Some other notable

sources of noise: analog-to-digital sampling, clock drift, and imperfect dynamics. The latter

is important-remember that the EKF, as presented, uses only a first-order Taylor series

approximation. To fully capture the dynamics, an infinite Taylor series would be required.

This imperfect approximation contributes to state uncertainty. For this reason, the filter

parameters should be tuned to acceptable values. In general, filter parameters are normally
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selected by experiment-specific tuning. This chapter will also evaluate the sensitivity of

tuning parameters in the context of the particle filter.

2.1 Aims and Hypotheses

IMUs as a commercial product usually come with a proprietary, built-in black box

algorithm for computing orientation. These black-box algorithms may be robust and com-

mercially validated, but give the researcher little control over details of the algorithm which

may be relevant to his or her situation. An open algorithm is more desirable because it al-

lows the research to recalibrate more easily for different magnetic environments, to tune filter

inputs for a given situation, and to implement heuristic methods which may be appropriate

for a specific motion type.

To this end, it is desired to evaluate the performance of different filter types against a

truth and also against a proprietary algorithm. In this case, the proprietary algorithm is

an unscented Kalman filter with unknown heuristics as implemented by ADPM in the Opal

vi IMUs. The goal is to create an open algorithm that provides researcher flexibility that

performs similar to or better than the proprietary algorithm.

This chapter addresses the following aims:

1. To establish levels of baseline accuracy for each filter type at estimation of human

motion and compare performance

2. To understand the sensitivity of the particle filter to its inputs; specifically, the number

of particles, accelerometer variance, and magnetometer variance

This first aim will be evaluated through three human-generated motions (evaluated at

two different speeds each). The three motions selected were drawing a circle in the horizontal

plane with the hand, drawing a square in the horizontal plane with the hand, and grasping a

cup. The filter was compared via the root-mean-square error against a motion capture truth

datum. This will be elaborated on in Section 2.2.1.
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The second aim will be evaluated through a numerical experiment with statistical anal-

ysis. The following hypothesis will be evaluated:

1. H1 : Different levels of number of particles, accelerometer variance, and magnetometer

variance will each significantly affect the accuracy of the particle filter

The accelerometer and magnetometer noise parameters are the main inputs to the fil-

ter. They describe the "trust" of the measurement model in the filter update step. The

Kalman filter acts as the decision maker for which to trust-the state prediction model or

the measurement update model. In anecdotal experience, we find that these measurement

variances greatly impact the filter output. The particle filter additionally requires a scalar

to represent the number of particles in the simulation. The accuracy of the particle filter is

a function of how well the discrete particle set can represent the state posterior distribution.

We can intuitively reason that more particles allows better the particle set to better capture

this posterior distribution, and thus yield a more accurate filtered state.

2.2 Filter Comparison via Motion Capture

Once the filters were implemented into an algorithmic form, they were approximately

tuned by visual observation of the estimated state. The observationally tuned algorithm

was then compared to the proprietary algorithm for the selected motions. The following

describes the experimental process and results.

2.2.1 Experimental Method

The comparison of human kinematic motions was performed using an Opal v1 IMU

(APDM Inc., Seattle, Washington) and motion capture (Vicon Motion Systems, Inc., Ox-

fordshire, UK).
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APDM Opal IMU

The APDM Opal IMU system is an off-the-shelf system for human tracking. The IMU

is packaged as a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer. The IMU

system also features desirable noise characteristics, an output sample rate of up to 128 Hz,

and sensor ranges well covering the human capability. The full specifications of the IMU are

found in Appendix G.

This sensor outputs both raw and calibrated sensor data, as well as a filtered orientation

estimate using an on-board UKF. The calibrated sensor data is of particular use, because

APDM uses a fairly robust model to remove bias. It allows direct orientation filter compar-

ison using the same set of bias-removed sensor data. The Opal IMU is shown in Figure 1.1.

For the motion described below, one long sensor dataset was captured. The differing filter

methodologies were applied to the same dataset for comparison.

The manufacturer IMU uses a black-box algorithm to compute orientation that cannot

be tuned or recalibrated for different usages. The manufacturer's algorithm uses a set of

unknown heuristics to increase performance. Two heuristics were implemented in these

open algorithms.

The first is a heuristic to set the accelerometer variance high if the magnitude of accel-

eration deviates by 50% of Earth gravity (or approximately 4.9g). The observation model

presented in Chapter 1 for the filters is a model for static orientation accelerometer mea-

surement. In cases of dynamic acceleration, acceleration measurements would deviate from

the observation model's expectation. To counteract this, the variance of the measurement is

set high during these periods, meaning we "trust" the accelerometers less in these periods.

The second heuristic drives the variance of the manometer measurement when the mag-

nitude of the magnetic field deviates by 50% from expected, or the magnetic dip angle

deviates by ten degrees. This dip angle is the angle the magnetic field lines make with the

local horizontal. In the same logic as the accelerometer heuristic, in these periods, we do

not trust the magnetometer's reading, so the effective noise is set to a high value.

The open algorithms were performed with an accelerometer noise of 10 m4 /s 2 and
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a magnetometer noise of 100 pT 2 . The particle filter was run with 20 particles in the

simulation.

Vicon Motion Capture System

For laboratory estimation of human motion, the Vicon motion capture system is the

gold standard. The system projects infrared light from a series of cameras. Infrared bounces

from reflective spherical markers back to the cameras, which use a triangulation algorithm

to estimate the position of the marker in space.

These small markers can be attached to many surfaces. For this experiment, reflective

markers were attached to a 3D-printed IMU holder, which fits around the hand. The Vicon

system returns the spatial coordinates of the individual markers in the Vicon coordinate

frame. The apparatus shown in Figure 2.1 has a cavity on the underside which allows

it to sit over the APDM Opal IMU. This smooth overlay allows for direct comparison of

orientation via both the IMU and the Vicon system. The three reflective markers on top of

the apparatus allow for cross-products to compute a three-dimensional local IMU coordinate

frame. This coordinate frame's relative orientation to the Vicon frame can then be computed.

The other two reflective markers on the sides are used for simple filling of data gaps in the

Vicon Nexus software. Thus, the orientation estimate of the filter IMU readings can be

directly compared to the computed orientation of the Vicon mount in space.

Human Motion Measured

For this study, only one subject was required to gather a pilot dataset. This subject

consented to the study and the study protocol was approved by COUHES. The Opal IMU

was attached to the subject's right hand, with the Vicon apparatus attached on top. The

subject then completed 3 motions at 2 different speeds (slow and fast) each. The first motion

was the drawing of a circle in the horizontal plane. The second motion was the drawing of a

square in the horizontal plane. These first two motions seek to probe filter performance-can

we artificially induce filter error by some nonlinear motion or motion with discrete changes
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Figure 2.1 Vicon markers on a 3D-printed IMU mount

in direction? The motion discontinuities introduce a nonlinearity that may cause difficulty

in the filters. The third motion is more kinematically natural: a grasping motion. The six

discrete motions, in order, were:

1. Circle, slow

2. Circle, fast

3. Square, slow

4. Square, fast

5. Grasp A

6. Grasp B

The circles were approximately 30 centimeters in radius, and the squares were approx-

imately 30 centimeters in half-width. The grasping motion consisted of the subject's right

hand near the chest, and then extending at the shoulder, elbow, and wrist to simulate grasp-

ing a bottle of water or similar object. This was done twice, as shown above. At the point

of grasp, the shoulder and elbow of the subject was fully extended. There was no physical

object-this was a simulated motion.

47



Procedure

Before the IMU was outfitted onto the subject, the IMU was first aligned on a table

with the Vicon coordinate system and measurements were taken. This measurement serves

to document the magnetic heading of the Vicon coordinate frame relative to the North-West-

Up (NWU) magnetic world frame, which is the common world frame of choice for inertial

sensors.

The six motions studied were completed in one consecutive run. Between the six mo-

tions, an approximate still period of ten seconds was held. In these still period, the subject

held their hand still in space. This experiment yielded a single Vicon dataset and a single

IMU sensor dataset. These data must be parsed to pull out the individual motions. Also,

the Vicon dataset and the IMU dataset were aligned in time.

Filter Error Metric

The response variable here must represent filter error from truth in some way. Recall

that the filter is estimating orientation in space as a quaternion. However, it is typically

more intuitive to interpret Euler angles, #, 0, and V). For historical purposes [10], the 2-norm

of the individual root mean square error component will be used. More explicitly,

FE = RMSE( - Otrue), RMSE(- Otrue), RMSE( - 4 'true) 2 (2.1)

2.2.2 Analysis

The implemented filters were computed relative to the magnetic frame which was aligned

with the Vicon system. The orientation was therefore directly computed in the Vicon frame.

The manufacturer's filter, however, needed to be rotated to align with the Vicon frame.

The NWU frame and Vicon frame only differ in heading (rotation about the vertical axis,

z). The manufacturer's orientation estimate was corrected by computing this heading offset

and correcting by rotating the manufacturer's offset around the vertical axis by the offset

amount.
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The Vicon data needed to be synchronized with the IMU data. First, the Vicon data

was transformed (via the cross-product calculation described previously) into the true ori-

entation. This true orientation was synchronized with the IMU estimated orientation by

visually inspection to match peaks of the dataset.

The long IMU dataset was parsed into the six individual motions. This was done by

visual inspection using still periods between motions. The parsed motion start and end times

were applied identically to each evaluated filter.

The computed error of the filter is shown in Equation 2.1. This is simply the norm of

the vector which represents the x, y, and z root-mean-square errors of the computed Euler

angles.

2.2.3 Results and Discussion

The magnetic offset between the Vicon frame and the NWU frame was found to be

approximately 31 degrees. This heading correction was applied to the manufacturer's filter

for proper comparison.

The estimated orientations for the entire experiment can be seen in Figure 2.2. The

errors of these estimated orientations vs. the Vicon truth datum are shown in Figure 2.3.

The RMSE errors parsed for each trial motion are shown in Table 2.1. The data of these

individual motion trials are shown in Appendix A. By looking at the rotation about the

z-axis, the six individual motions and the still periods between can be seen. The horizontal

circle and square motions were intended to be completed in the horizontal plane, this was

not strictly enforced, and no tactile or visual feedback was given to the subject. The data

show deviations from horizontal which gave about a 20 degree range of motion about the

y-axis and 15 degrees about the x-axis. The two grasp motions at the end show significant

movement about the x and y axes, as expected.

All filtered results have RMSE less than 10.5 deg compared to the Vicon data. This

provides a benchmark for filter performance. Ideally, our developed filters would perform

on the order of the manufacturer's filter. As can be seen, while the manufacturer's filter

49



Full experiment Euler angles
200

A100 - UKF
APDM

__--EKF

0

-A PF

-100 10

010 20 30 40 50 0

20

A0 3

20-

100

0 10 20 30 40 50 60
time (a)

Figure 2.2 Truth (Vicon) vs. estimated orientations for entire experiment

performs slightly better than our EKE and UKF, when considering the total RMSE for

the experiment, the difference is small (3 deg). The particle filter is seen to have a slightly

smaller total error than the manufacturer's filter, but this difference may not be operationally

relevant (0.41 deg).

A caveat to consider for operational usage is the computational complexity of the particle

filter. Despite the higher accuracy, it takes far longer to compute. For this dataset, while the

EKE and UKF were computed on the order of 3-5 seconds for the entire 60 second dataset,

the PF took on the order of 80 seconds with 25 particles. In this context, the particle filter

is an accurate filter which is inappropriate for online filtering in its current implementation,

but would be appropriate for offline analysis.

A final desire of this experiment was to understand the motion domain for which each

filter is most appropriate. Specifically, it was desired to understand how nonlinearities in

motion affect filter performance. As discussed previously, the circle and square motion
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Figure 2.3 Error of estimated orientations for entire experiment

represent a simple nonlinear motion and a discrete, discontinuous motion.

As mentioned in Chapter 1, the EKF approximates nonlinear dynamics as a linearizion

via the Taylor Series expansion. In the common case that a first-order expansion is used, one

can intuit that this approximation is best suited for dynamics that are least nonlinear, i.e.,

most approximately linear. The omission of the higher-order Taylor Series expansion terms

would lead to error in highly nonlinear dynamics, which cannot be appropriately captured

by a linear approximation. The UKF, on the other hand, propagates a nonlinear map via

a statistical transformation which preserves the lower-order moments of the distribution.

Perhaps, it could be argued, the UKF would be inherently better suited for more nonlinear

dynamics.

In the context of our experiment, both the circle and square motions were all in the

horizontal plane, with limited out-of-plane rotations. It could thus be argued that the

motions were not highly complex or nonlinear. The UKF seems to have performed slightly
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Table 2.1 Filter RMSE (deg) for each motion tested

better in the circle motion, but not much different from the EKF in the square motion.

In the grasp motions, the second grasp was more robustly estimated by all filters. The

second grasping motion was nearly identical to the first, but was completed about 10%

faster. This could be due to the second grasp actually having more Euler angle constancy

through the motion profile. The x-rotation in Figure 2.3 shows that the first grasp (about

42 seconds to 46 seconds) is smooth, whereas in the second grasp (49 seconds to 55 seconds),

the Euler angle profile has some constant periods. This does not suggest the overall motion

was less smooth, but rather that individual rotations about an axis during the motion were

more discrete. The particle filter is shown to be more accurate than the EKF and UKF. As

the particle filter is more computationally complex, this result makes sense. The particle

filter performs better than the manufacturer for the square, but not for the circle motions.

This could be due to the particle filter's resampling strategy. Around tight corners, particles

which keep "going forward" might be quickly degenerated (i.e., the weight of these particles

quickly becomes small).

In conclusion, all of the implemented filters performed within an error bound of a little

over ten degrees. There is no operational difference between the performance of the EKF

and UKF for human motion estimation. The particle filter is seen to perform better than the
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Motion EKF UKF PF Manufacturer

Circle, slow 9.20 7.61 4.99 1.92

Circle, fast 8.27 7.63 3.26 2.81

Square, slow 9.16 9.23 3.80 6.11

Square, fast 9.32 9.84 2.59 7.87

Grasp A 8.45 9.33 4.73 5.70

Grasp B 4.65 6.23 3.08 3.21

Total experiment 10.25 10.22 6.93 7.34



EKF and UKF, and on the order of the manufacturer's proprietary filter. The particle filter

has achieved our goal of performing on the order of the manufacturer's filter and enabling

a open-algorithm opportunity for refining the model and understanding the sensitivity to

parameters.

For future estimation work with the IMUs, the manufacturer's filter will be used when

special calibrations or heuristics are not needed. In cases of tunings or re-calibrations being

necessary, the offline particle filter will be used. It has been shown to perform as well as the

manufacturer's filter, while also allowing freedom of tuning that the manufacturer's filter

does not offer.

2.3 Evaluation of Particle Filter Performance

The particle filter, as a stochastic method, has a variety of tunable parameters which

can affect accuracy and computational time. An experiment was devised to assess sensitiv-

ity to a subset of the parameters. This computational experiment uses the same dataset

used in Section 2.2. The particle filter was run multiple times, while varying these tunable

parameters.

2.3.1 Experimental Design

Factors

The performance of the particle filter is defined as the error between the estimate particle

filter data and the true state. Low filter error is a high performance metric. It has been

observed in anecdotal experience that the performance of the filter is sensitive to the input

parameters. The three parameters (factors) which seem to have the highest impact are:

1. Accelerometer noise (variance)

2. Magnetometer noise (variance)

3. Number of particles in the simulation

53



The only major parameter not evaluated here is the initial state covariance PO. This

is because the filter estimates this parameter iteratively. Choosing an inappropriate initial

estimate of P can cause the filter to take more time to settle, but the initial state covariance

does not, in general, affect filter orientation after a significant period of time.

The chosen levels of each factor were:

" Accelerometer Noise = 1, 5, 10, 15] m 2 /8 4

" Magnetometer Noise = 10,50,100, 150 pT 2

" Number of Particles = 5, 15, 25, 50

Furthermore, n = 5 replicates were used at each treatment combination. These levels

were chosen to investigate parameter levels around the visually-tuned parameters from Sec-

tion 2.2. These original parameters were an accelerometer noise of 10 m2 /S 4 , a magnetometer

noise of 100 p1 T2 , and 20 particles.

Hypotheses

We assessed the following hypotheses:

1. H1 : Varying the accelerometer noise parameter will yield a significant effect on filter

estimate

2. H2 : Varying the magnetometer noise parameter will yield a significant effect on filter

estimate

3. H3 : Increasing the number of particles will yield a better filter estimate

Recall that the terms noise and variance may be used interchangeably-while it is gener-

ally called sensor "noise," it reflects the total uncertainty associated with that measurement,

not just the physical sensor error.
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Dependent Variable

The particle filter used in this study estimates orientation in space from noisy IMU

accelerometer, gyroscope, and magnetometer data. Given that the IMU is used to track

some kinematic motion we compare the estimate to the truth data just as in Section 2.2.

The response variable is shown in Equation 2.1. This is a single scalar response variable.

Thus, this response variable does not capture the individual components of error about each

axis; it provides a total error metric.

Procedure

The particle filter was computed over the total experiment dataset as described in

Section 2.2.1 and for each simulation, the filter error was recorded. Order of the treatments

are not important because this is a numerical simulation.

This experiment uses a full factorial design. In general, reduction techniques are de-

sirable. However, this is a computational experiment. As such, we were only limited by

computational resources and time. This makes a full factorial design much more feasible.

This 43 factorial design with 5 replicates yields 320 combinations.

It took a little over 14 hours to compute all of these combinations and metrics. The

major disadvantage of the particle filter when compared to deterministic methods like the

Kalman filters is computational time. Further, computational time is increased with increas-

ing numbers of particles.

2.3.2 Analysis

The data were found to not be normal (Appendix B), thus a Kruskal-Wallis test was

used to assess the difference in treatments, and then pairwise comparisons were performed

with a Scheffe correction to see differences between pairwise treatments. Interaction effects

were found to be small, and are discussed in Appendix C.
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2.3.3 Results and Discussion

Kruskal-Wallis Test for Main Effects

Effect of Accelerometer Noise A box plot filter error vs. accelerometer noise level is

shown in Figure 2.4. The data support an effect of accelerometer noise (H=31.14, p < 0.001).

Scheffe corrected confidence intervals (Table 2.2) suggest that levels 1 and 5 m2 /s 4 are not

different (p = 0.99), but all other levels are significantly different.
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Table 2.2 95% Response confidence interval for accelerometer noise

These results show an increase in error as the accelerometer noise parameter increases

from 5 to 10 to 15 m 2 /S 4 . Operationally, this suggests that a value of 5 would yield better
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Accel. N. Lower B. Upper B.

1 10.03 11.42

5 9.97 11.37

10 12.09 13.49

15 14.11 15.51



Table 2.3 Pairwise comparison of treatments for factor 1

filter results than a higher parameter. A value of 5 is not significantly different than 1,

however. Any value in this range should be suitable for good filter performance.

Theoretically, we know that choosing a value that is too small would increase filter error.

This accelerometer noise parameter is supposed to capture the uncertainty in the measure-

ment of the acceleration, which is larger than just the physical acceleration measurement

variance. However, if this parameter were chosen to be too small such that it underestimated

the true uncertainty, filter error would increase as a result of overtrusting the accelerome-

ter measurement. This experiment, however, did not use small enough factor levels of the

accelerometer variance to observe this phenomenon.

Effect of Magnetometer Noise A box plot of filter error vs. magnetometer factor

level is shown in Figure 2.5. Unlike factors 1 and 3, magnetometer noise did not show a

significant effect across treatments (Kruskal-Wallis H=4.303, p = 0.231). We conclude that

magnetometer noise parameter, at least in the levels chosen, does not significantly impact

the response of the particle filter.
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Lvl I - Lvl 2 LB Mean UB p

1 5 -1.33 0.053 1.44 0.99

1 10 -3.45 -2.06 -0.67 < .001

1 15 -5.47 -4.09 -2.69 < .001

5 10 -3.5 -2.12 -0.73 < .001

5 15 -5.53 -4.14 -2.75 < .001

10 15 -3.41 -2.02 -0.63 0.001
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Figure 2.5 Treatment effect box plot of magnetometer noise

Operationally, a preferred level of magnetometer noise may not exist, as long as it

remains in the reasonable range. The reasonable range is defined by these factor levels,

keeping with the discussion earlier that a parameter that is too small can overtrust a sensor.

Likewise, a factor level that is too high undertrusts a sensor, and leaves the filter prone to

the drift of the IMU due to gyroscope integration with little sensor update.

Effect of Number of Particles A box plot showing filter error vs. number of particles

level is shown in Figure 2.6. The number of particles showed a significant difference in

response across factor levels (Kruskal-Wallis H=86.87, p < 0.001).

- Table 2.4 Pairwise comparison of treatments for factor 3
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# Particles Lower B. Upper B.

5 16.07 17.48

15 11.10 12.50

25 9.96 11.36

50 9.05 10.45
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Table 2.5 Pairwise comparison of treatments for factor 3

As expected, as the number of particles increases, the error of the filter decreases. The-

oretically, we know that choosing a value for the number of particles that is too small would

increase filter error significantly. This is because the particle filtering algorithm, as presented

in Chapter 1, relies on the ability of multiple particles to approximately represent the pos-

terior state distribution. One particle, for example, cannot represent the entire distribution.

Expanding this logic, a small number of particles would do a very poor job of representing

the distribution, and would thus increase.filter error.

Theoretically, there is no such thing as too large of a value for the number of particles.

An infinite number of particles could perfectly represent the posterior state distribution.
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Lvl I- Lvl 2 LB Mean UB p

5 15 3.59 4.97 6.36 < .001

5 25 4.73 6.12 7.51 < .001

5 50 5.64 7.03 8.41 < .001

15 25 -0.24 1.13 2.52 0.14

15 50 0.66 2.04 3.44 < .001

25 50 -0.48 0.91 2.29 0.33



However, operationally, there is a practical limit. More particles requires larger computing

resources. This computational limit motivates the scientist to seek a number of particles

that is good enough to represent the posterior state distribution at the accuracy required.

Here, the box plot in Figure 2.6 suggests a diminishing returns phenomenon. One can

increase the number of particles in the simulation from 25 to 50, but receive no statistically

significant benefit in accuracy. We operationally conclude that 25 particles is appropriate

for this particle filter with the IMU sensor fusion problem.

2.3.4 Conclusion

In conclusion, it was found that both factors 1 and 3 had significant effects. While factor

2 did not yield a significant main effect by the Kruskal-Wallis test, a discussion counterpoint

was offered to explain the lack of significance for the factor levels selected. The hypotheses

may now be revisited with new insights:

1. H1 : Varying the accelerometer noise parameter will yield a significant effect on filter

estimate

The data support an effect of accelerometer noise on filter performance. Increasing

the accelerometer noise was found to increase the estimation error. Operationally, we

conclude that using a range of 1-5 m 2 /S 4 would be appropriate.

2. H2 : Varying the magnetometer noise parameter will yield a significant effect on filter

estimate

The data do not support that varying the magnetometer noise between 10 and 150

puT2 affected the estimation error. Operationally we conclude any value in this range

is appropriate.

3. H3 : Increasing the number of particles will yield a better filter estimate

The data support an effect of number of particles on filter performance. Increasing the

number of particles decreased filter error. Operationally, we conclude that 25 particles

is appropriate.
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We discussed why there are theoretical values which could be too high and too low for

each parameter. However, these theoretical limits are not operationally relevant. This study

provides operationally-relevant evaluation of particle filter input parameters.

The study did have some limitations. Namely, these results are limited in scope to the

motions selected. Further examination would be required for other types of dynamic motions

and appropriate parameter selection for those motion domains. Here, most motion was in

the horizontal plane with two grasping tasks at the end. The study also showed no significant

difference between magnetometer noise factor levels, which could indicate an inappropriate

choice in levels.

Furthermore, if the data was taken in a magnetically-foreign environment, we would

tend to trust the magnetometer less and as a result increase associated sensor variance in

the filter. These types of environments arise when there are changing magnetic fields or a

different field for which the sensor has not been properly calibrated.
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Chapter 3

Effect of Motion Profile on Joint Axis

Error

As motivated in Chapter 1, we are evaluating a system which uses inertial sensors to

measure human joint angles. Unfortunately, as discussed, inertial sensors suffer from needing

precise positioning and/or calibration motions. A technique to overcome these issues would

drastically improve the viability of inertial sensors for human joint angle measurement in

real-world environments.

An elegant method was recently proposed by M6ler et. al. [3] and presented in Section

1.4. This method calculates the joint axis from the individual IMU data. However, it is

unclear how the input data to M6ller's method affects the quality of joint axis estimation.

In this chapter, Muller's algorithm will be evaluated against different motion profiles to

better understand what types of motions lead to better or worse joint axis/angle estimation.

3.1 Introduction and Motivation

Muller's method, as introduced in Chapter 1, provides a framework to estimate robust

anatomical axes (and thus joint angles) in a gamut of domains. One application of particular

interest is that of occupational therapy. Currently, progress in rehabilitation is evaluated
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by experts visually observing patient motion [49]. Electronic systems which provide data

feedback to the clinician may be beneficial, as long as said systems do not reduce situation

awareness of the clinician. Joint angles of the subject can currently be found using motion

capture systems in some research labs, but this technology is typically not used by clinicians.

Furthermore, marker-based motion capture systems have no potential as an at-home system

for the patient. Small IMU-based systems have potential as a robust human joint motion

measurement system. Muller's method may provide a solution to the problem of calibration.

Occupational therapy, as a field, seeks to rehabilitate patients activities of daily living

(ADLs) which include brushing ones teeth, or bathing oneself. These ADLs will be evaluated

as an input to the Muller algorithm. If ADLs cannot provide robust joint axis estimators in

the Miller framework, the Miller method may not be an appropriate tool to enable on-line

calibration in clinical settings. Although, it could still be used with a set of pre-defined

calibration motions that are repeated at set intervals. In this manner you could obtain an

initial estimate of the axes and correct for drift over time.

In the experiment described in the following sections, a robotic arm was used to evalu-

ate both ADL motions and control motions as inputs to the Mfiller method. We hypothe-

sized that motions which have higher frequency and amplitude characteristics would produce

lower-error axis estimations when using the M6ller method. These hypotheses can be found

in Section 3.3.1. The dependent measures (Section 3.3.2), the two joint axis estimations of

the elbow, will be evaluated in a formal statistical analysis.

3.2 Experimental Method

To evaluate these questions, a robot was developed to emulate the human arm. Using

this robotic test bed, specific motion profiles may be commanded. The anatomical axes of

the robot are built-in, and may easily be compared to the estimated anatomical axes of the

aforementioned algorithm.
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3.2.1 Robot

The robot is meant to emulate the human upper arm, elbow joint, and forearm. The two

degrees of freedom of the elbow, flexion/extension and pronation/supination, are achieved

through commercial servos. In particular, the flexion/extension servo is a Dynamixel RX-24F

(Robotis Ltd. Lake Forest, CA). The pronation/supination motion servo is the Dynamixel

AX-12A. These servos are very fundamentally similar. The RX-24F has a bit higher torque

ceiling, which is necessary for the flexion/extension servo. The rotational inertia of the entire

lower arm about its base must be actuated by this servo, which is more inertia than just the

rotational inertia of the lower arm about its longitudinal axis. The flexion/extensions servo

(RX-24F) has a range of motion of 300 degrees, although it is constrained to 170 degrees

for the purpose of this experiment. Likewise, the pronation/supination servo (AX-12A) has

a range of motion of 360 degrees (not rotationally continuous), but is constrained to 180

degrees for the purpose of this experiment. The constraints are simply to mimic the human

range of motion. Specifications of the Dynamixel servos can be found in Appendix F.

Figure 3.1 shows the robotic test bed developed for this test. The robot was fixed to

the table by clamping the upper arm to the table surface. In this configuration, the upper

arm is fixed in space (and hence the IMU on the upper arm is also still), while the lower

arm is allowed to move freely. The two servos are powered by a 12V power supply and

commanded from MATLAB using the Dynamixel SDK for MATLAB. The robot is turned

on its side so that the flexion/extension plane is actually horizontal rather than vertical (as

it normally is for a human). This is simply to remove the effect of gravity acting against the

flexion/extension servo. In this horizontal configuration, the flexion/extension motions are

smoother. Since Miller's algorithm is only a function of the relative orientation between the

two IMUs, the human arm (or a robotic simulator) can be oriented in any plane.

A major advantage of the robot are that its anatomical axes are built-in. As the IMUs

are placed on the robot, the true anatomical axes are already known.
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Figure 3.1 Robotic test bed, meant to simulate the human elbow
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3.2.2 Inertial Measurement Units

The same APDM Opal IMUs used previously are used in this experiment. They can

be seen in Figure 1.1. The IMUs are turned on prior to the long experiment, mounted, and

record all motions in one dataset. The IMUs are calibrated for the magnetic environment

that they are used in beforehand, to get the best filtered estimate possible. The calibration

procedure involves spinning the IMU for multiple seconds to cover a full sphere of magne-

tometer measurements. This cloud of data should be spherical and centered at the origin.

In practice, this measurement cloud needs to be circularized via a scale factor matrix. The

offset from the origin is the static bias of the magnetometer, and can be subtracted away

from measurements. The manufacturer's Unscented Kalman Filter was used to compute

orientation in space.

3.2.3 Motions

Both ADL-type motions and control motions were completed using the robotic test bed.

ADL Motions

Motion data of the ADLs were taken from the Carnegie-Melon motion capture database

(mocap. cs. cmu. edu), which computed joint angles from motion capture data. An example

of one of these ADLs, brushing ones teeth, is shown in Figure 3.2. A catalog of all ADL

motions can be found in Appendix D.

The ADLs were chosen by searching the CMU database for all available motions which:

(a) provided multiple seconds of clean, usable data of the right arm, (b) would be considered

common to a normal task of recreation, physical work, or self-care.

The ADLs chosen were: drinking soda, buttoning a front-button shirt, swimming, swing-

ing a golf club, hammering a nail, dribbling a basketball, pitching/throwing a baseball,

brushing ones teeth, coiling a rope, washing ones self, running, sweeping the floor with a

broom, and walking.
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Figure 3.2 Elbow joint angles for brushing teeth in a right-handed subject

Control Motions

As a control, sinusoidal motions in flexion/extension and pronation/supination were

performed. These sine waves were parameterized by amplitude and frequency. Each mo-

tion was precisely 6 seconds long (which corresponds to one period for the low frequency

level and two periods for the high frequency factor level). Phase difference between the

flexion/extension sine wave and the pronation/supination sine wave was not considered.

The chosen levels for amplitude were 10 and 65 degrees. The chosen levels for frequency

were 60 and 120 degrees per second. As there are two motions to be conducted at a time

(flexion/extension and pronation/supination), this yields 24 = 16 treatment combinations.

The levels chosen for amplitude and frequency of the sine waves were motivated by range

of motion for amplitude factor levels and average velocity for frequency levels. The chosen

levels of 10 and 65 degrees for amplitude yields a total range of motion of 20 and 130 -degrees,

respectively. These two values are shown in red dash lines in Figure 3.3. As can be seen,

67



ADL Ranges of Motion Flex/Ex ADL Ranges of Motion ProlSup140 Was Self -
Wash Self Coil Rope

120 - - - - - - --- w mm n
Coil Rope Dribble Swimming

Brush Teeth Brush Teeth
0 100 Basebal P- .Dribbie . Wash SelfW15ton Shirt ' 00Sweep Floor

9 1 Swimmning
Golf Swing

0 Button S t Golf Swing
Baseball Pitch

c 0 Hammer
05

Walk Hammer .
Run 'u Walk

ADL Motions * ADL Motions Run
0 -- Control Factor A Drink Soda 0 -- Control FaclorA Drink Soda

Figure 3.3 ADL range of motion (blue dots) and two control amplitude factor levels (red
dotted line) for flexion/extension and pronation/supination (left and right, re-
spectively)

these values do a fair job of describing the maximum and minimum functional ranges of

motion of the ADLs. It was not desired to capture the extremely small range of motion of

drinking soda, as this range was not representative of the typical ranges of the dataset.

The frequency levels of 60 and 120 degrees per second were chosen to produce sine waves

which have average velocities similar to the ADLs. Figure 3.4 shows the average absolute

velocities of the ADLs in blue dots and the control motions in red dots. Just as in the case

of range of motion, the control motions nearly cover the range of average velocities as well.

Figure 3.5 shows an example motion plot for one of the 16 treatments. The sine wave

for flexion/extension motion is centered about 90 degrees, which is the center of the range

of motion for flexion/extension. The pronation/supination sine wave is centered about 0

degrees, which is the center of the range of motion in pronation/supination.

Between each six second motion, a five-second pause period is held. This is done for

post-processing purposes. The pattern of a six-second motion followed by a five-second pause

is repeated for all motions conducted.

All 16 control motions conducted by the robotic test bed are shown in Appendix E.
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Figure 3.5 Example motion with A1 = 10deg,A2 = 65deg,F1 = 120deg/s,F2 = 60deg/s
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3.3 Experimental Design and Analysis

The factors, measures, and hypotheses evaluated are presented below. Whenever motion

is described hereafter as high motion, this will be interpreted to mean large amplitude and

high frequency motion. Likewise, low motion would mean low amplitude and low frequency

motion.

3.3.1 Hypotheses

While Muller's method is useful for online calibration, there is a gap in understanding

which IMU-measured motions beget good anatomical axes measurements.

1. H1 : Higher amplitude (both DOFs) elbow motion will yield a lower-error estimate of

both anatomical axes

2. H2 : Higher frequency (both DOFs) elbow motion will yield a lower-error estimate of

both anatomical axes

3. H3 : Higher amplitude (both DOFs) elbow motion will yield a lower-variance estimate

of both anatomical axes

4. H4 : Higher frequency (both DOFs) elbow motion will yield a lower-variance estimate

of both anatomical axes

These hypotheses are meant to mean that both axes can be estimated more robustly by

making motions about both axes higher in frequency and amplitude. This is motivated by

the sensors-we know that there is some lower threshold of motion amplitude and frequency

below which the IMU cannot distinguish movement. At this low level, effective motion would

be indistinguishable from noise in the gyroscopes. It is also presumed that feeding noisy data

into Mflller's algorithm would not produce good estimation. So, we take the logical inverse

to hypothesize that more motion would lead to better estimation results.

Continuing this signal-to-noise ratio argument, we hypothesize that not only is accu-

racy improved by increasing the amplitude and frequency of motion, but precision as well.
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Formally, we state that the variance of the joint axis estimates will decrease as a result of

increased amplitude and frequency of motion.

3.3.2 Dependent Variables

The dependent variables measured were the error of the estimated axis via Mnller's

algorithm when compared to the true axis. This error is computed as:

error = atan2(Iaxistrue x axisest1, axistrue - axisest) (3.1)

Equation 3.1 will find the rotation angle between two axes (in this case, the true and

estimated axes), as the smallest angle between the two vectors. More precisely, the plane

this angle lies in is the plane orthogonal to the two axes. i.e., the plane defined by the cross

product between the two axes.

There are two dependent measures here.

1. error of a: the error of the estimated flexion/extension axis

2. error of b: the error of the estimated pronation/supination axis

These two dependent variables will have a minimum of zero and a maximum of 90

degrees. Zero degrees would imply that the estimate is perfectly aligned with the true

anatomical axis. 90 degrees would be the maximum error-implying that the estimated axis

is perpendicular to the true axis. The directionality of the estimated axis is irrelevant-an axis

and its negative are parallel and thus equivalent axes as a representation for the anatomical

joint axis.

For each trial conducted, the following steps are used to calculate the two dependent

measures:

1. Calculate relative orientation of the two IMUs: qA = (qwu) - qwq

2. Calculate relative angular velocity of the two IMUs, WA
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3. Use modified Muller method (section 1.4) to compute anatomical axes i and b. Repeat

5 times to avoid local minima as discussed in Section 3.3.3.

4. Compute error between estimated a and b from step 3 and true values a = [0, 0,1]

and b = [1, 0, 0] using equation 3.1 for each estimate from step 3. Select lowest error,

as discussed in Section 3.3.3.

The true values a = [0, 0, 1] and b = [1, 0, 0] come from the built-in robot axes relative to

the IMU.

3.3.3 Optimization Method

As stated previously, for each individual motion k, the two anatomical axes ak and

bk can be computed and compared to the true values a = [0, 0, 1] and b = [1, 0, 0]. A

Levenberg-Marquardt optimization algorithm was implemented on the nonlinear objective

function in Equation 1.24.

By nature, nonlinear objective functions can include multiple local minima. Overcoming

the pitfalls of being "caught" in a local minima is an area of active research and a defining

motivator of many optimization techniques. Due to the existence of local minima, the

solution of an optimization method can be sensitive to the initial conditions which define

where the solution search begins.

This problem was observed in solving for the anatomical axes in this experiment. In

fact, a local minima existed at the 90 degree error solution, so many outliers at 90 degrees

error existed. This is merely due to the surface of the object function, Equation 1.24. To

overcome this, for each motion, the Levenberg-Marquardt solver was run 5 times, each time

with random initial conditions. The best solution from the five runs was taken for each

motion analyzed.

This method is reasonable because the local minima, in general, produced solution which

were very high error and easily identifiable as outliers, rather than physical solutions. This

is because the local minima "traps" in the solution surface were generally far away from the
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true physical solution at the global minima. In practice, it would be easy to throw away

these non-physical solutions.

3.3.4 Test Matrix/Test Order

Table 3.1 lists all 16 treatments (numbered zero to fifteen) and the corresponding levels

of each of the four factors that are associated with each treatment. Here, L is meant to

mean low (10' amplitude or 60' /s frequency), and H is meant to mean high (650 amplitude

or 1200 /s frequency). Remember that each of the four factors only have two levels. For

experimental design purposes, these levels are considered to be categorical and binary, hence

their representation in the table.

Each treatment was repeated 100 times. The order was a repeated mirror design. Specif-

ically, this was treatment 0 to treatment 15, then mirror to do treatment 15 to treatment 0.

Then this block of 32 trials was repeated 50 times. Or,

treatment 0,1,...14,15,15,14...1,0 (repeat 50 times) (3.2)

The mirrored 50 block segments was used to balance out any ordering effects that could

arise from simply repeating treatment 0 to 15 in the same order 100 times. Note that

while this removes an ordering effect, IMU drift over time is a different effect which will be

commented on later.

3.3.5 Statistical Approach

The factors were evaluated for main effects on mean via two-sample Wilcoxin Rank Sum

tests on each (binary) factor level. Main effects of each factor on variance were evaluated

bootstrapping the interquartile range (IQR) of a sample 1000 times with replacement. The

new bootstrapped IQR distributions were compared using a Wilcoxin Rank Sum test.

The responses of the 16 individual treatments were found to be non-normal. These

treatment responses were compared for differences in mean via a Kruskal-Wallis omnibus
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Table 3.1 Treatment combinations with corresponding factor levels; A 1 is amplitude of
flexion/extension, A 2 is amplitude of pronation/supination, F is frequency of

flexion/extension, F2 is frequency of pronation/supination

Treatment A 1 A 2 F F2

0 L L L L

1 H L L L

2 L H L L

3 H H L L

4 L L H L

5 H L H L

6 L H H L

7 H H H L

8 L L L H

9 H L L H

10 L H L H

11 H H L H

12 L L H H

13 H L H H

14 L H H H

15 H H H H
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test with multiple comparisons corrected via the Dwass-Steel-Critchlow-Flinger method.

Interactions were tested by constructing groups that pool two factors (as opposed to

three factors as main effect tests do). A Kruskal-Wallis omnibus test was performed on

each pooled group to show significantly different subgroups. The data were found to be

non-normally distributed. Pairwise medians were compared via a Wilcoxin Rank Sum test.

Pairwise IQR of subgroups was estimated by bootstrapping. The boostrapped distributions

of IQR were compared via a Wilcox Rank Sum test, similar to the evaluation of main effects

on IQR. When interpreting effect sizes, we use Cohen's convention of effect sizes of 0.3, 0.5,

and 0.8 to represent small, medium, and large effect sizes, respectively [50].

3.4 Results and Discussion

All statistical tests were run in SYSTAT (SYSTAT Software Inc.) and MATLAB (The

Mathworks, Inc., Natick, Massachusetts). The results of the ADL motions will be presented

first, followed by the results of the control motions.

3.4.1 ADL Motion Results

Figure 3.6 shows the axis estimation error of each anatomical axis. Intuition suggests

that the lower-error motions are motions which are more varied in their profiles. Drinking

soda does not require much elbow motion (range of motion: 4 degrees F/E, 3 degrees P/S),

the shoulder generates most of movement. Likewise, with walking (range of motion: 10

degrees F/E, 8 degrees P/S) the elbow is typically more static and motion of the arm is

due to flexion/extension of the shoulder. In contrast, some motions are very dynamic at the

elbow. Washing ones self shows a range of motion of 130 degrees F/E and 70 degrees in P/S.

The control motion results are presented to better understand the effects of amplitude

and frequency of motion as an effect on axis estimation error.
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3.4.2 Control Motion Results

Section 3.2 designed an experiment to test four factors on the two axis estimations.

First, the main effects of the four factors will be presented, followed by the treatment effects.

Main effects: error of flexion/extension axis estimation

The hypotheses in 3.3.1 are evaluated as main effects in the Wilcoxin Rank Sum test,

because the data were found to be non-normal and possibly multi-modal for a subset of

pooled groups.

Table 3.2 Medians (in degrees) of the four main factors on flexion/extension axis error

Factor Low Level Median High Level Median p-value z-stat Effect size

A1  4.62 3.11 < .001 6.40 0.23

A 2  2.73 5.62 < .001 20.37 0.72

F1  2.87 3.47 < .001 5.13 0.18

F2  3.20 3.50 0.041 2.04 0.07

Table 3.2 shows the four main factors and their effect on flexion/extension axis (axis 1)

estimation. These results and the presence of a multi-modal distribution suggest interaction

effects are present. A modified hypothesis was developed post-hoc. High amplitude and high

frequency motion yields lower error estimation on the axis of high amplitude and frequency.

High amplitude and high frequency motion on the off-axis increases error on the axis of

interest.

Main effects: variance of flexion/extension axis estimation

Not only did we hypothesize about the accuracy of flexion/extension axis estimation

(hypotheses 1 and 2), but about its precision also (hypotheses 3 and 4).

Table 3.3 shows the interquartile range (IQR) of the main four effects on flexion/extension

axis estimation. Similar to our previous conclusion, we find that main effects support the new
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Table 3.3 IQRs (in degrees) of the four main factors on flexion/extension axis error

Factor Low Level IQR High Level IQR p-value z-stat Effect size

A1  15.57 1.21 < .001 38.72 1.22

A 2  1.74 13.27 < .001 38.72 1.22

F1  4.54 3.62 < .001 37.45 1.18

F2  2.04 6.65 < .001 38.72 1.22

post-hoc hypothesis. This needs to be explored further with an interaction effects analysis.

Main effects: error of pronation/supination axis estimation

Similar to the flexion/extension main effect analysis, the medians of the factor levels

were evaluated using a Wilcoxin Rank Sum test.

Table 3.4 Medians (in degrees) of the four main factors on pronation/supination axis error

Factor Low Level Median High Level Median p-value z-stat Effect size

A1  2.35 3.90 < .001 13.14 0.46

A 2  7.64 2.31 < .001 23.43 0.83

F1  2.34 4.12 < .001 10.83 0.38

F2  3.20 2.39 < .001 5.44 0.19

Table 3.4 shows the four main factors and their effect on pronation/supination axis

(axis 2) estimation. These results echo the main effects on accuracy of flexion/extension

with slightly stronger effects. The pronation/supination axis estimation is most sensitive to

the amplitude of on-axis motion, with an effect size of 0.83 between the low and high factor

medians of the on-axis amplitude (A 2 ). Similar to flexion/extension, the error is least sensi-

tive to factor F2. This is interesting because F2 is an on-axis factor in pronation/supination,

but an off-axis factor in flexion/extension.

Our understanding, as informed by main effects, is that whether the factor increases or
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decreases accuracy is related to if the factor is on the axis of measurement or not on the axis

of measurement. However, the effect sizes between factor level medians are not related to an

on-axis vs. off-axis notion. For both flexion/extension and pronation/supination accuracy,

A 2 has the largest effect size (0.72 and 0.83, respectively). Likewise, F2 has the smallest

effect size (0.07 and 0.19, respectively).

Main effects: variance of pronation/supination axis estimation

Table 3.5 IQRs (in degrees) of the four main factors on pronation/supination axis error

Factor Low Level IQR High Level IQR p-value z-stat Effect size

A1  4.18 8.34 < .001 38.70 1.22

A 2  14.02 0.93 < .001 38.72 1.22

F1  2.72 8.15 < .001 38.72 1.22

F2  8.25 3.40 < .001 38.72 1.22

The results of comparing bootstrapped distributions of IQR are shown in Table 3.5. The

effects of the factors on the variance (i.e, precision) of estimation of the pronation/supination

axis follows identically to the conclusion from the flexion/extension axis results. Having high

on-axis frequency and amplitude decreases variance of the axis estimation, leading to a more

precise estimate. Conversely, having high off-axis frequency and amplitude yields a less

precise estimation.

3.4.3 Flexion/Extension Axis Treatment Effects

While the main effects are important and shed light onto our original hypotheses, the

distributions of the pooled main effects suggest that interaction effects may be present.

Treatments were found to be statistically different (H=964.29, p < 0.001). Pairwise compar-

isons found almost all groups were significantly different. For ease, Appendix H shows the

pairwise treatment comparisons along with corresponding statistic and p-value.
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Figure 3.7 shows the effect of individual treatments on the flexion/extension axis esti-

mation error. Some notable points arise with this plot. For example, when A1 = 1, we see a

much smaller variance estimate as compared to A 1 = 0. According the post-hoc hypothesis,

high on-axis amplitude should decrease variance.

Treatment effects on error of flexionlextension axis
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Figure 3.7 Flexion/extension axis error vs. individual treatment 0 to 15

This treatment plot, however, shows an interesting result with the both-low amplitude

combination (A1 = 0 and A 2 = 0 across all four combinations of frequency). The group

of 4 treatments when both amplitudes are low appears to show higher variance than the
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general A 1 =1 condition, but it seems to have a lower median in general. Individually, these

treatments are treatments 0, 4, 8, and 12. This groups naturally as Appendix H shows that

treatment 0 is not significantly different from 4 and 12, and treatment 4 is not significantly

different from 12. This suggests that while the specific low amplitudes combination may

have a greater variance, it in general gives a small median error (less than 5 degrees).

Conversely, treatments 2, 6, 10, and 14 represent the amplitude combination we hy-

pothesized should give us the highest-median estimates: the combination where the on-axis

amplitude is low but the off-axis amplitude is high (A 1 = 0 and A 2 = 1). Unlike the previous

group, there is a visually observable effect across frequencies. In order to these results and

possible interactions, we further analyze the data.

The main effects reported in section 3.4.2 inform our original hypotheses, but can hide

interaction effects due to the pooling of many factors. When a main effect was previously

evaluated via a two-sample t-test, the other 3 factors were pooled. For example, when the

two levels of A1 were compared via the test, the effects of factors A 2 , F1 , and F2 were all

pooled. This analysis investigates two-way interactions by considering a combination of two

factors. For four factors, there are six combinations of possible treatments to hold constant

(i.e., to pool, as opposed to pooling three factors like previously). Kruskal-Wallis test shows

that all 6 subgroups have significantly different medians and IQRs (all p < 0.001).

Flexion/extension axis estimation accuracy

In any of the six two-factor pooling groups, the four individual corresponding subsets

were evaluated for support of the post-hoc hypotheses. Appendix J shows the six possible

two-factor pool groups. Each pool group has four subsets (the four possible combinations of

the remaining two unpooled, binary factors). The table, for each two-factor subset, shows

the corresponding median and interquartile range (IQR) of the sample.

Our revised hypotheses suggest that on-axis high frequency and amplitude decreases

error and error variance, while off-axis high frequency and amplitude increase error and

error variance. Remember that error and error variance are analogous to accuracy and
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Table 3.6 Comparison of highest and lowest median subgroups for each pool group in
flexion/extension; associated subgroup is shown in parentheses

Pool Group Highest Median Lowest Median p-value z-stat Effect

1 16.54 (1.3) 1.60 (1.1) < 0.001 18.64 0.59

2 5.88 (2.1) 2.56 (2.2) < 0.001 6.07 0.19

3 6.09 (3.4) 2.41 (3.1) < 0.001 18.65 0.59

4 7.78 (4.3) 2.80 (4.4) < 0.001 6.73 0.21

5 7.61 (5.4) 2.49 (5.3) < 0.001 13.82 0.44

6 5.87 (6.4) 2.30 (6.3) < 0.001 7.77 0.25

precision.

Between each subset of a pool group, a pairwise comparison is performed to test for

difference in medians. The resulting six pairwise comparisons per group are completed using

a Wilcoxin Rank Sum test. The results of the pairwise comparisons are shown in Appendix

L, along with the effect size. This normalized effect size is calculated as r = z/V'N, where

N is the number of samples. Table 3.6 shows a condensed version of the appendix which

shows the lowest and highest median subgroups within each pooling group.

For each pooling group, our hypotheses suggest that the lowest-median error would occur

when any on-axis amplitude and frequency factors are high, and any off-axis amplitude and

frequency factors are low. Likewise, the highest-median error should occur when any off-axis

amplitude and frequency factors are high, and any on-axis amplitude and frequency factors

are low.

Pool groups 1 through 5 offer mixed support for the post-hoc hypotheses. The groups

do not support the hypotheses at expected low-median conditions, although the effect sizes

between the expected lowest median and observed lowest median (0.23, 0.42, 0.21, 0.11,

and 0.03 for groups 1-5 respectively) are very small. Group 5, in fact, is not statistically

significant (p = 0.361). Group 1 through 5 do, however, support the high-median condition

hypothesis.
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Table 3.7 Comparison of highest and lowest IQR subgroups for each pool group in
flexion/extension; associated subgroup is shown in parentheses

Pool Group Highest IQR Lowest IQR p-value z-stat Effect

1 18.20 (1.3) 0.64 (1.2) < 0.001 38.72 1.22

2 21.32 (2.1) 1.62 (2.4) < 0.001 38.72 1.22

3 20.63 (3.2) 1.64 (3.3) < 0.001 38.72 1.22

4 21.70 (4.3) 0.74 (4.2) < 0.001 38.72 1.22

5 21.20 (5.4) 1.39 (5.1) < 0.001 38.72 1.22

6 5.17 (6.4) 1.00 (6.2) < 0.001 38.72 1.22

Group 6, however, does not support the post-hoc hypotheses at either the low or high

median condition. Expected subgroup 6.2 was not the lowest (p < 0.001, effect size 0.19)

and expected subgroup 6.3 was not the highest (p < 0.001, effect size 0.25). This pool group

represents pooling both frequency factors, F and F2 . While significant differences were

observed between the pool group 6 contrasts, the effect sizes were small. The magnitude of

the range between the high and low group medians was 3.57 deg (effect size 0.25), which

may not be operationally relevant.

Flexion/extension axis estimation precision

The post-hoc hypotheses offered a similar explanation on both accuracy and precision:

that accuracy and precision exhibit a similar response to on-axis and off-axis amplitude and

frequency effects. Precision is analogous to the inter-quartile range of the data set, due to

the underlying data being not normally distributed.

The major results of the pairwise comparisons are presented in table 3.7, while the full

results are shown in Appendix M.

Groups 1 through 5 all support our post-hoc hypotheses, in both low and high IQR

conditions. Group 6 supports the post-hoc hypothesis in the low-IQR condition, but not

in the high-IQR case. However, the observed highest IQR case is actually not significantly
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different from another member of pool group 6 (p = 0.78). The post-hoc hypothesis on

precision of the flexion/extension axis is strongly supported.

For operational use, it is useful to have both high precision and high accuracy. However,

if high precision is maintained, the error in accuracy could be used as a measure of static

bias. In other words, the estimation error under some given conditions may be high, but if

it is consistent, it may be able to be corrected. Conversely, having a low-error estimation

condition may not be useful if it cannot be consistently repeated.

3.4.4 Pronation/Supination Axis Treatment Effects

This same approach was taken to the pronation/supination axis results. Treatments

were found to be statistically different (H=1177.36, p < 0.001). Appendix I shows all of the

pairwise comparisons between treatments.

Figure 3.8 shows a first similarity to the flexion/extension results: as expected, we

generally see a lower-error and lower-variance estimate for the case of A 2 = 1 when compared

to A 2 = 0.
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We continue our analysis method as before with the two-factor pool groups. Appendix

K displays the medians and interquartile ranges of the two-factor pool groups and their

treatment subsets. Pairwise comparisons were conducted after Kruskal-Wallis supports that

there are significantly different groups in both median and IQR (all p < 0.001).
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Table 3.8 Comparison of highest and lowest median subgroups for each pool group in
pronation/supination; associated subgroup is shown in parentheses

Pool Group Highest Median Lowest Median p-value z-stat Effect

1 11.01 (1.2) 2.26 (1.3) < 0.001 23.26 0.74

2 5.04 (2.4) 2.30 (2.1) < 0.001 16.9 0.53

3 10.61 (3.3) 2.25 (3.2) < 0.001 21.04 0.67

4 4.40 (4.4) 2.27 (4.3) < 0.001 13.43 0.42

5 10.58 (5.1) 2.28 (5.4) < 0.001 20.36 0.64

6 4.87 (6.4) 2.31 (6.3) < 0.001 7.77 0.25

Pronation/supination axis accuracy

Just as in the case of flexion/extension, pairwise comparisons on medians were completed

using a Wilcoxin Rank Sum test. The results of the pairwise comparisons are shown in

Appendix N but results are highlighted in Table 3.8.

Pool groups 1, 2, 3, and 5 show low and high median subgroups that align with the

post-hoc hypotheses. Group 4 supports the hypotheses in the low median condition, and

the expected high median condition (subgroup 4.2, median 3.31) is not significantly different

from the observed high median (subgroup 4.4, median 4.40, p = 0.064). We conclude that

group 1 through 5 support the post-hoc hypotheses.

Group 6 supports the post-hoc hypothesis in the low median condition, but not the high

median condition. However, this effect is not very large (0.38 effect size between expected

high median subgroup 6.2 and observed high median subgroup 6.4). Just as in the case

of flexion/extension, group 6 shows the smallest effect sizes on pairwise comparisons. The

magnitude of difference in medians between the lowest and highest median subgroup is only

2.56 deg (effect size 0.25), which may not be operationally relevant.

The data support the post-hoc hypotheses that high on-axis and low-off axis amplitude

and frequency increase accuracy (i.e., decrease median error). Pool group 6 shows mixed

support, although has a smaller effect size and highlights that median error is more sensitive

86



Table 3.9 Comparison of highest and lowest IQR subgroups for each pool group in
pronation/supination; associated subgroup is shown in parentheses

Pool Group Highest IQR Lowest IQR p-value z-stat Effect

1 27.47 (1.2) 0.67 (1.3) < 0.001 38.72 1.22

2 17.95 (2.4) 1.08 (2.1) < 0.001 38.72 1.22

3 18.80 (3.3) 0.40 (3.2) < 0.001 38.72 1.22

4 13.28 (4.4) 1.04 (4.3) < 0.001 38.72 1.22

5 15.02 (5.3) 0.36 (5.4) < 0.001 38.72 1.22

6 15.60 (6.4) 0.47 (6.3) < 0.001 38.72 1.22

to changes in amplitude.

Pronation/supination axis precision

All pairwise comparisons of subgroup IQR were statistically significant. The complete

set of pairwise comparisons is shown in Appendix 0, and the highest and lowest subgroups

are shown in Table 3.9.

Group 1 through 3 support the post-hoc hypotheses in both the low and high IQR

conditions. Group 4 through 6 support the post-hoc hypotheses in the low IQR case, but

not the high IQR case.

As the lowest IQRs supported the hypothesis for all pool groups, these data do provide

insight on the recommended system usage. When on-axis amplitude and frequency are high

and off-axis amplitude and frequency are low, we observe high precision (i.e., low IQR). As

discussed previously, a high precision solution may be considered a static error in accuracy,

and lend itself to a correction method.

The lack of support for the highest IQR condition in the latter 3 pool groups may point

to a 3-way interaction between factors. Furthermore, IQR is only a single measure of the

spread of a non-normal distribution. IQR explicitly is the 25th and 75th percentile data

points. It is possible to have a very long tail in a distribution which falls outside of this
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IQR, i.e., the range of errors in the top quartile may be wider than the range described by

the two middle quartiles. In such a case, the IQR does not adequately capture the spread

of the distribution. That is likely the case here, where IQR is consistently underpredicting

the spread of pool group 6, which pools the two frequency factors. The additional spread in

the upper quartile was driven by pooling treatments that had high and low individual IQR.

This reinforces that the axis error precision is more sensitive to on and off-axis amplitudes

than frequencies.

3.4.5 Conclusions

In conclusion, we evaluated the Miller method against human-generated motions and

against sinusoidal motion. We proposed post-hoc hypotheses that on-axis high amplitude

and frequency and low off-axis amplitude and frequency would decrease error and error

variance, and that off-axis high amplitude and frequency and off-axis low amplitude and

frequency would increase error and error variance. It was found that high on-axis motion

and low off-axis motion did indeed decrease error variance (i.e., made axis estimation more

precise). This hypothesis was also supported in establishing low error (i.e., high accuracy)

in pronation/supination axis estimation. While it was not supported in establishing high

accuracy on the flexion/extension, it was consistent with the condition of low accuracy.

In practice, high accuracy would be desired on both axes of estimation. However, with

knowledge of high precision conditions, a precise-but-inaccurate axis estimation may lead to

a static bias correction method.

These results are consistent with a physical interpretation of the system. For an IMU

mounted on the human wrist, flexion/extension motion has a much higher radius of rotation

at the IMU than pronation/supination motion. If the angular velocities of motion are the

same on both degrees of freedom (in this study frequency levels were the same for both

degrees of freedom), then the IMU undergoes higher linear velocity in flexion/extension.

Higher linear velocities would yield higher linear accelerations. As discussed in Section

1.2.2, the measurement model of the filter models static accelerations due to Earth gravity
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only. Dynamic body accelerations, therefore, introduce error in the measurement model.

In cases of high flexion/extension motion, we conclude there should be more error in the

filtered IMU orientation, which in turn would yield erroneous data for the Muller method to

use. This is an explanation for why high pronation/supination motion yielded accurate axis

estimations, but high flexion/extension motion did not. Future work can address an optimal

range of amplitude and frequency of flexion/extension motion for use in online motion.
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Chapter 4

Conclusions, Recommendations, and

Future Work

4.1 Research Summary

We compared the open filters in Chapter 1 to a truth datum and a black-box filter

from a manufacturer for estimation of human performance. We found that the EKF and

UKF, with included heuristics, yielded around ten degrees RMSE over the entire experiment.

Operationally, there was no difference in total performance between the two filters. The

particle filter was found to perform better, on the order of the manufacturer's black-box

filter. Notably, the manufacturer's filter seemed to perform better with the smooth circle than

the particle filter, but the particle filter outperformed the manufacturer's filter around the

discrete square. This could possibly be due to the manufacturer's filter including heuristics

which prefer smooth dynamics. On the other hand, the particle filter might handle sharp

discontinuities better because of its ability to lessen the weight of particles which significantly

deviate from the measured behavior. We conclude that the particle filter is an appropriate

open filter for use, but is computationally more expensive.

The particle filter was then the subject of a subsequent study to analyze its sensitivity

to its input parameters to inform parameter selection, as currently parameter selection is
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performed via visual inspection. The chosen parameters were accelerometer uncertainty,

magnetometer uncertainty, and the number of particles in the simulation. We found that

the accelerometer uncertainty and number of particles significantly affected the accuracy of

the filter for the levels chosen. Operationally, we recommend values of 1 to 5 m 2 / 4 for

accelerometer uncertainty and 25 particles for usage within the implemented particle filter

(Cheng and Crassidis [22]). The magnetometer uncertainty did not significantly affect filter

performance at the levels chosen. We motivate that while no significant difference was found

between levels, the theory tells us that there is still an operational range of appropriate

levels for this parameter. Extreme values outside of this range underpredict or overpredict

magnetometer uncertainty, leading to overtrust or undertrust of the sensor. Both conditions

are inappropriate. An operational limit of 50-100 pT 2 is appropriate. A further explanation

could be that for the motions selected, the magnetometer measurement update was small,

and so the level chosen for magnetometer uncertainty would not impact the state much.

Finally, we evaluated the M5ller auto-calibrating elbow system method in the context

of both human motion and sinusoidal motion through the use of a robotic test bed. The hu-

man motions selected were activities of daily living (ADLs), which are commonly used within

occupational therapy to rehabilitate patients into normal living. The method was also eval-

uated against sinusoidal motion which was parameterized by amplitude and frequency. We

formulated post-hoc hypotheses: high on-axis amplitude and frequency decreases axis esti-

mation error, while high off-axis amplitude and frequency increases axis estimation error. We

found that in flexion/extension, this post-hoc hypothesis was supported in high-error (low-

accuracy) conditions, and also supported in all precision conditions. In pronation/supination,

our post-hoc hypotheses were supported in the high and low accuracy conditions, and were

supported in the low IQR (high precision) condition.

Operationally, we conclude that high on-axis motion and low off-axis motion yields high

precision axis estimations for both degrees of freedom. High accuracy is only established by

this motion in pronation/supination. In general, high accuracy would ideally be established

by this motion on both degrees of freedom. However, if an axis estimation is found to be
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precise, but not accurate, it still may be able to be corrected by a static error correction

method. Furthermore, we understand the condition which produces low accuracy estimation

in flexion/extension, and these conditions can be avoided when using a static error correction

method.

4.2 Contributions

This thesis made the following contributions.

1. We compared the performance of the EKF, UKF, and PF in the context of a simple

upper extremity human motion against optical motion capture. It was found that PF

had lowest errors while EKF and UKF performed similarly. This work is the first to

implement a particle filter for inertial sensing of human motion.

2. We performed a sensitivity analysis of the particle filter to its parameter inputs for use

in human motion. Recommended operational ranges for accelerometer uncertainty,

magnetometer uncertainty, and number of particles were found.

3. We investigated the potential of the Miller method for online axis updating by assessing

performance under human occupational motion and parameterized sinusoidal input.

The data supported that high on-axis motion and low off-axis motion yields high

precision axis estimation, and also accurate estimation of the pronation/supination

axis. Data also supported that high off-axis motion and low on-axis motion yields

inaccurate axis estimations.

4.3 Limitations and Future Work

As with many studies in human motion, the experimental results of Chapter 2 may

be limited to the motions performed. Since two of the three experimental motions are

performed in the horizontal plane, 3D motion is not fully assessed in these motions. The
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grasping task does move in three dimensions, but is only one instance of a 3D motion. The

robotic experiment performed in Chapter 3 had binary factor levels. In reality, the intricacies

of treatment interaction on Mnller axis estimation may not be able to be captured by pairs

of high/low levels. However, this approach was a good starting point to provide information

about the qualities of successful online calibration motion.

Future work will seek to take advantage of the continuous-estimation capability of the

Muller method to correct drift of an IMU over time. While an inertial sensor may drift

over long periods of time, the human joint axis does not. Knowledge of this joint axis,

first established by undrifted sensors and the Muller method, may be recalled to continually

update the possibly-drifting inertial frame over time. The conditions under which these

updates are best performed are informed by the experimental results of Chapter 3, for

example, high motion in pronation/supination but low motion in flexion/extension yields

accurate axis estimations of the pronation/supination elbow axis. Functionally, this type of

method would utilize knowledge of human kinematic constraints to provide a novel solution

to inertial sensor drift. As motivated by the results of Chapter 3, future work can also seek

to determine an optimal range of flexion/extension amplitude and frequency; data suggested

that too little motion provides for poor estimation while too much motion introduces error

into the filtered IMU orientation. Finally, further work can use more factor levels to build a

continuous regression model of expected axis error, rather than the high/low interpretation

of this thesis.
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Appendix A

Vicon experiment motions
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Appendix B

Normality tests for particle filter

parameter sensitivity analysis

This appendix establishes the lack of normality in response data to the particle filter

sensitivity analysis experiment presented in Section 2.3.
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Figure B.1 does not seem to indicate any problems with the residuals at first glance.

More interesting are the residuals as presented in Figure B.2. Plotting the residuals vs.

normal probability and other plots can show more information.
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The first thing one might notice are the seemingly large deviations from normality that

these residuals take. Of note is first the normal probability plot. The tails seem to make

very large deviations from normality. This is not a full indictment in itself. Then one should

note the symmetry of the residuals. Which is to say that they are not symmetric. Finally,

the histogram gives a final dagger as it clearly shows non-normal residuals. The histogram

is heteroscedastic. It skews towards a right tail. It almost looks like an F-distribution.

Nonetheless, these residuals do not seem to meet the assumptions of ANOVA.

Kolmogorov-Smirnov Test Just to reinforce the intuition of non-normality of the

residuals, a Kolmogorov-Smirnov test can be performed to test for normality. In this one-

sample test, the null hypothesis is that the data comes from a normal distribution. Hence,
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a low p-value indicates non-normality of the data. The test on the standardized residuals

reveals a p = 0.0187. This confirms our previous suspicion: the residuals are not normal.

Transforming the data is an option, but a non-parametric test will be employed here.
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Appendix C

Normality tests for particle filter

parameter sensitivity analysis

This appendix illustrates the lack of interaction among two specific factors of the ex-

periment presented in Section 2.3.

Figures C.1 and C.2 show box plots of error vs. the number of particles with accelerom-

eter and magnetometer noises as a grouped variable. Inspection of these plots reveals that

the effect of the accelerometer and magnetometer noises on error is the same over the num-

ber of particles. Thus, it is concluded that interaction effects of the accelerometer and

magnetometer noises are small.
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Appendix D

ADL Motion Profiles
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Appendix E

Control Motion Profiles

Titles of plots represent the parameters of the sine waves used to generate the control

motion. These parameters are separated by underscores. They are read, in order, as: ampli-

tude of sine wave 1 (deg), amplitude of sine wave 2 (deg), frequency of sine wave 1 (deg/s),

frequency of sine wave 2 (deg/s), phase of sine wave 1 (deg), phase of sine wave 2 (deg), and

sampling rate of motion (Hz). For the purposes of this study, all phase parameters are set

to 0 deg, and motion were generated at a sampling rate of 80 Hz.
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Appendix F

Robot Servo Specifications
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Table F.1 Specifications for the Dynamixel AX-12A servo from Robotis

Operating Voltage 12V

Stall Torque* 15.3 kg cm

212 oz in

No-load Speed 59 RPM

0.169sec/60 deg

Weight 55g

Size 32 x 50 x 40 mm

Resolution 0.29 deg

Reduction Ratio 1/254

Operating Angle 300 or Continuous Turn

Operating Voltage 9-12V (Recommended Voltage 11.1V)

Max Current 900 mA

Standby Current 50 mA

Internal Operating Temp -5 degC ~ 70 degC

Protocol TTL Half Duplex Async Serial

Module Limit 254 valid addresses

Com Speed 7343bps ~ 1Mbps

Position Feedback Yes

Temp Feedback Yes

Load Voltage Feedback Yes

Input Voltage Feedback Yes

Compliance/PID Yes

Material Plastic Gears and Body

Motor Cored Motor
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Table F.2 Specifications for the Dynamixel RX-24F servo from Robotis

Operating Voltage 12V

Stall Torque* 26 kg cm

360 oz in

No-load Speed 0.079 sec/60 deg

Weight 67g

Size 50.6 x 35.6 x 35.5 mm

Resolution 0.29 deg

Reduction Ratio 1/193

Operating Angle 300 deg or Continuous Turn

Max Current 2400mA

Standby Current 50 mA

Operating Temp -5 degC - 85 degC

Protocol RS485 Asynchronous Serial

Module Limit 254 valid addresses

Com Speed 7343bps ~ 1Mbps

Position Feedback Yes

Temp Feedback Yes

Load Voltage Feedback Yes

Input Voltage Feedback Yes

Compliance/PID Yes

Material Metal Gears &

Engineering Plastic Body

Motor Maxon RE-MAX
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Appendix

APDM Opal IMU Specifications
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Table GA APDM Opal IMU Specifications

133

Accelerometer Gyroscope Magnetometer

Axes 3 axes 3 axes 3 axes

Range 16g 2000 deg/s 8 Gauss

Noise 5 mg/Hz 0.025 deg/s/Hz 2 mGauss/Hz

Sample Rate 20 to 128 Hz 20 to 200 Hz 20 to 200 Hz

Bandwidth 50 Hz 50 Hz 32.5 Hz

Resolution 14 bits 16 bits 12 bits



Appendix H

Kruskal-Wallis pairwise comparisons

of flexion/extension treatments

Table H.1 Pairwise comparisons of all treatments in flexion/extension

134

Group(i) Group(j) Statistic p-Value

0 1 4.366 0.135

0 2 10.004 0

0 3 7.457 0

0 4 -0.67 1

0 5 4.63 0.08

0 6 6.275 0.001

0 7 6.095 0.002

0 8 -6.545 0



0 9 3.563 0.457

0 10 15.861 0

0 11 -0.553 1

0 12 -0.097 1

0 13 6.607 0

0 14 13.812 0

0 15 9.067 0

1 2 11.336 0

1 3 16.833 0

1 4 -4.383 0.13

1 5 -2.998 0.753

1 6 12.436 0

1 7 13.293 0

1 8 -6.723 0

1 9 -15.026 0

1 10 16.562 0

1 11 -15.852 0

1 12 -2.51 0.925
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1 13 15.2 0

1 14 15.876 0

1 15 17.241 0

2 3 -9.641 0

2 4 -12.215 0

2 5 -11.051 0

2 6 -9.368 0

2 7 -10.75 0

2 8 -13.87 0

2 9 -11.469 0

2 10 14.254 0

2 11 -12.571 0

2 12 -11.026 0

2 13 -10.608 0

2 14 5.867 0.003

2 15 -7.17 0

3 4 -12.557 0

3 5 -16.804 0
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3 6 3.998 0.253

3 7 -15.747 0

3 8 -12.568 0

3 9 -16.932 0

3 10 15.985 0

3 11 -16.593 0

3 12 -7.295 0

3 13 -14.019 0

3 14 14.845 0

3 15 16.313 0

4 5 4.33. 0.144

4 6 11.676 0

4 7 7.063 0

4 8 -5.798 0.004

4 9 1.707 0.998

4 10 16.441 0

4 11 -4.288 0.155

4 12 1.355 1
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4 13 8.221 0

4 14 15.456 0

4 15 16.738 0

5 6 12.602 0

5 7 16.579 0

5 8 -6.973 0

5 9 -16.59 0

5 10 16.244 0

5 11 -16.59 0

5 12 -2.761 0.851

5 13 16.897 0

5 14 15.55 0

5 15 16.932 0

6 7 -10.612 0

6 8 -12.771 0

6 9 -13.577 0

6 10 16.279 0

6 11 -13.853 0

138



6 12 -7.212 0

6 13 -9.938 0

6 14 14.914 0

6 15 10.719 0

7 8 -9.427 0

7 9 -16.935 0

7 10 16.244 0

7 11 -16.59 0

7 12 -4.478 0.109

7 13 8.998 0

7 14 15.55 0

7 15 16.932 0

8 9 5.024 0.033

8 10 16.749 0

8 11 2.612 0.899

8 12 6.455 0.001

8 13 10.221 0

8 14 15.888 0
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8 15 16.514 0

9 10 16.293 0

9 11 -16.59 0

9 12 -1.203 1

9 13 17.277 0

9 14 15.563 0

9 15 16.935 0

10 11 -16.414 0

10 12 -16.469 0

10 13 -16.241 0

10 14 -13.131 0

10 15 -16.251 0

11 12 2.619 0.897

11 13 16.932 0

11 14 15.242 0

11 15 16.59 0

12 13 5.194 0.022

12 14 14.897 0
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12 15 11.762 0

13 14 15.515 0

13 15 16.932 0

14 15 -14.326 0

""WMMMMM-IM qmmm"W - - 1 1.11 1-1 .1 1 1 ". Tn"I". I I I I-



Appendix I

Kruskal-Wallis pairwise comparisons

of pronation/supination treatments

Table 1.1 Pairwise comparisons of all treatments in pronation/supination

142

Group(i) Group(j) Statistic p-Value

0 1 7.861 0

0 2 -13.932 0

0 3 -13.639 0

0 4 2.408 0.947

0 5 -2.336 0.959

0 6 -13.601 0

0 7 -12.419 0

0 8 -13.497 0



0 9 -10.235 0

0 10 -13.697 0

0 11 -13.822 0

0 12 -6.178 0.001

0 13 16.735 0

0 14 -14.06 0

0 15 -9.938 0

1 2 -16.033 0

1 3 -15.907 0

1 4 -6.267 0.001

1 5 -8.808 0

1 6 -16.116 0

1 7 -15.113 0

1 8 -15.852 0

1 9 -13.432 0

1 10 -16.12 0

1 11 -16.189 0

1 12 -11.207 0

143



1 13 14.288 0

1 14 -15.852 0

1 15 -12.554 0

2 3 6.234 0.001

2 4 15.125 0

2 5 16.766 0

2 6 15.881 0

2 7 16.918 0

2 8 6.057 0.002

2 9 16.375 0

2 10 15.474 0

2 11 14.226 0

2 12 11.445 0

2 13 16.928 0

2 14 -5.667 0.006

2 15 16.458 0

3 4 14.637 0

3 5 16.324 0
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3 6 3.967 0.266

3 7 13.179 0

3 8 -0.111 1

3 9 12.716 0

3 10 2.156 0.98

3 11 0.805 1

3 12 10.518 0

3 13 16.953 0

3 14 -9.271 0

3 15 15.75 0

4 5 -4.371 0.133

4 6 -14.451 0

4 7 -12.889 0

4 8 -14.579 0

4 9 -11.617 0

4 10 -14.544 0

4 11 -14.824 0

4 12 -8.048 0
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4 13 16.452 0

4 14 -15.373 0

4 15 -11.403 0

5 6 -16.749 0

5 7 -14.789 0

5 8 -16.141 0

5 9 -9.596 0

5 10 -16.738 0

5 11 -16.932 0

5 12 -4.15 0.198

5 13 16.652 0

5 14 -16.814 0

5 15 -7.028 0

6 7 16.794 0

6 8 -4.879 0.046

6 9 11.7 0

6 10 -12.042 0

6 11 -16.109 0
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6 12 9.347 0

6 13 16.932 0

6 14 -16.932 0

6 15 15.601 0

7 8 -13.114 0

7 9 5.449 0.011

7 10 -16.932 0

7 11 -17.277 0

7 12 8.259 0

7 13 16.932 0

7 14 -16.932 0

7 15 13.877 0

8 9 12.813 0

8 10 3.773 0.351

8 11 2.92 0.788

8 12 10.259 0

8 13 16.932 0

8 14 -10.066 0
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8 15 15.405 0

9 10 -12.999 0

9 11 -14.568 0

9 12 4.35 0.139

9 13 16.932 0

9 14 -16.928 0

9 15 4.361 0.136

10 11 -12.847 0

10 12 9.834 0

10 13 16.932 0

10 14 -16.932 0

10 15 15.629 0

11 12 10.346 0

11 13 16.932 0

11 14 -16.932 0

11 15 16.158 0

12 13 16.946 0

12 14 -11.914 0
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12 15 -2.972 0.765

13 14 -16.635 0

13 15 -16.932 0

14 15 16.69 0



Appendix J

Flexion/Extension two-factor pool

groups
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Table J.1 Two-way factor groups with median and interquartile range for
flexion/extension axis response

Pool Group Subgroup Pooling Subset Median IQR

1 1 F1; F 2  A, = 0;A 2 = 0 1.60 3.24

1 2 F1; F 2  A, = 1;A 2 = 0 2.83 0.64

1 3 F1; F2  A1 = 0;A 2 = 1 16.54 18.20

1 4 F1; F 2  A, = 1;A 2 = 1 3.52 3.82

2 1 A 2 ; F2  A, = 0;F = 0 5.88 21.32

2 2 A 2 ; F2  A1 = 1; F = 0 2.56 1.83

2 3 A 2; F2  A1 = 0; F = 1 4.39 6.97

2 4 A 2 ; F2  A, = 1;F = 1 3.35 1.62

3 1 A 1 ; F2  A 2 = 0;F1 = 0 2.41 1.80

3 2 A 1 ; F 2  A 2 = 1; F1 = 0 4.99 20.63

3 3 A,; F 2  A 2 = 0; F1 = 1 2.88 1.64

3 4 A,; F 2  A 2 = 1;7F1 = 1 6.09 4.40

4 1 A 2 ; F1  A 1 = 0; F2 = 0 3.95 6.17

4 2 A 2 ; F1 A1 = 1;F2 = 0 3.14 0.74

4 3 A 2 ; F1 A 1 = 0;F2 = 1 7.78 21.70

4 4 A 2 ; F1 A, = 1;F2 = 1 2.80 2.75

5 1 A,; F1  A 2 = 0;F2 = 0 2.78 1.39

5 2 A 1 ; F1  A 2 = 1;F2 = 0 4.33 2.81

5 3 A,; F, A 2 = 0;F2 = 1 2.49 2.20

5 4 A 1 ; F1  A 2 = 1; F2 = 1 7.61 21.20

6 1 A,; A 2  F1 = 0; F2 = 0 3.67 3.30

6 2 A,; A 2  F1 = 1;F2 = 0 3.12 1.00

6 3 A,; A 2  F = 0;F2 = 1 2.30 4.89

6 4 A 1 ; A 2 F1 = 1;F2 = 1 5.87 5.17

151



Appendix K

Pronation/supination two-factor pool

groups
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Table K.1 Two-way factor groups with medians and interquartile range for
pronation/supination axis response

Pool Group Subgroup Pooling Subset Median IQR

1 1 F1; F2  A1 = 0;A 2 = 0 5.98 9.40

1 2 F1 ; F2  A1 = 1;A 2 = 0 11.01 27.47

1 3 F1 ; F 2  A, = 0;A 2 = 1 2.26 0.67

1 4 F1 ; F 2  A, = 1;A 2 = 1 2.90 1.09

2 1 A 2 ; F2  A 1 = 0; F1 = 0 2.30 1.08

2 2 A 2 ; F2  A 1 = 1;F1 = 0 2.65 3.96

2 3 A 2 ; F2  A1 = 0;F1 = 1 2.46 6.21

2 4 A 2 ; F2  A, = 1;F1 = 1 5.04 17.95

3 1 A,; F2  A 2 = 0;F1 = 0 4.82 10.20

3 2 A,; F 2  A 2 = 1;F1 = 0 2.25 0.40

3 3 A,; F2  A 2 = 0;F1 = 1 10.61 18.80

3 4 A1;F2  A 2 = 1;F1 = 1 2.63 1.28

4 1 A 2 ; F1 A 1 = 0;F2 = 0 2.50 8.13

4 2 A 2 ; Fi A1 = 1;F2 = 0 3.31 8.05

4 3 A 2 ; F1 A1 = 0;F2 = 1 2.27 1.04

4 4 A 2 ; Fi A1 = 1;F2 = 1 4.40 13.28

5 1 A,; F1 A 2 =0;F2 = 0 10.58 11.74

5 2 A,; F1 A 2 =1; F2 = 0 2.40 1.02

5 3 A 1 ; F1 A 2 = 0;F2 = 1 4.52 15.02

5 4 A 1 ; F1  A 2 =1; F2 = 1 2.28 0.36

6 1 A,; A2  F= 0; F2 = 0 2.94 10.77

6 2 A,; A2  F=1; F2 = 0 3.26 6.30

6 3 A,; A2  F1 =0; F2 = 1 2.31 0.47

6 4 A,; A2 F1 =1;F2 = 1 4.87 15.60
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Appendix L

Flexion/Extension pairwise

comparisons of subgroups medians

Table L.1 Pairwise comparisons of subgroup medians for flexion/extension

154

Group 1 Group 2 p-value z-stat Effect size

1.1 1.2 < 0.001 7.27 0.23

1.1 1.3 < 0.001 18.64 0.59

1.2 1.3 < 0.001 19.39 0.61

1.1 1.4 < 0.001 10.4 0.33

1.2 1.4 < 0.001 9.17 0.29

1.3 1.4 < 0.001 16.4 0.52

2.1 2.2 < 0.001 6.07 0.19

2.1 2.3 0.006 2.74 0.09



2.2 2.3 < 0.001 7.1 0.22

2.1 2.4 0.002 3.17 0.1

2.2 2.4 < 0.001 13.32 0.42

2.3 2.4 0.079 1.75 0.06

3.1 3.2 < 0.001 11.89 0.38

3.1 3.3 < 0.001 6.72 0.21

3.2 3.3 < 0.001 10.71 0.34

3.1 3.4 < 0.001 18.65 0.59

3.2 3.4 0.874 0.15 0

3.3 3.4 < 0.001 16.33 0.52

4.1 4.2 0.011 2.53 0.08

4.1 4.3 < 0.001 5.02 0.16

4.2 4.3 < 0.001 6.53 0.21

4.1 4.4 0.021 2.3 0.07

4.2 4.4 < 0.001 3.47 0.11

4.3 4.4 < 0.001 6.73 0.21

5.1 5.2 < 0.001 16.29 0.52

5.1 5.3 0.361 0.91 0.03
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5.2 5.3 < 0.001 14.46 0.46

5.1 5.4 < 0.001 13.03 0.41

5.2 5.4 < 0.001 8.11 0.26

5.3 5.4 < 0.001 13.82 0.44

6.1 6.2 < 0.001 4.61 0.15

6.1 6.3 < 0.001 5.8 0.18

6.2 6.3 < 0.001 5.93 0.19

6.1 6.4 < 0.001 5.42 0.17

6.2 6.4 < 0.001 11.98 0.38

6.3 6.4 < 0.001 7.77 0.25



Appendix M

Flexion/Extension pairwise

comparisons of subgroup IQRs

Table M.1 Pairwise comparisons of subgroup IQR for flexion/extension
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Group 1 Group 2 p-value z-stat Effect size

1.1 1.2 < 0.001 38.72 1.22

1.1 1.3 < 0.001 38.72 1.22

1.2 1.3 < 0.001 38.72 1.22

1.1 1.4 < 0.001 4.35 0.14

1.2 1.4 < 0.001 38.72 1.22

1.3 1.4 < 0.001 38.72 1.22

2.1 2.2 < 0.001 38.72 1.22

2.1 2.3 < 0.001 38.72 1.22



2.2 2.3 < 0.001 38.72 1.22

2.1 2.4 < 0.001 38.72 1.22

2.2 2.4 0.107 1.61 0.05

2.3 2.4 < 0.001 38.72 1.22

3.1 3.2 < 0.001 38.72 1.22

3.1 3.3 < 0.001 18.35 0.58

3.2 3.3 < 0.001 38.72 1.22

3.1 3.4 < 0.001 38.72 1.22

3.2 3.4 < 0.001 38.72 1.22

3.3 3.4 < 0.001 38.72 1.22

4.1 4.2 < 0.001 38.72 1.22

4.1 4.3 < 0.001 38.72 1.22

4.2 4.3 < 0.001 38.72 1.22

4.1 4.4 < 0.001 38.72 1.22

4.2 4.4 < 0.001 38.72 1.22

4.3 4.4 < 0.001 38.72 1.22

5.1 5.2 < 0.001 38.72 1.22

5.1 5.3 < 0.001 36.18 1.14
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5.2 5.3 < 0.001 34.6 1.09

5.1 5.4 < 0.001 38.72 1.22

5.2 5.4 < 0.001 38.72 1.22

5.3 5.4 < 0.001 38.72 1.22

6.1 6.2 < 0.001 38.72 1.22

6.1 6.3 < 0.001 20.58 0.65

6.2 6.3 < 0.001 38.72 1.22

6.1 6.4 < 0.001 30.91 0.98

6.2 6.4 < 0.001 38.72 1.22

6.3 6.4 0.434 0.78 0.02



Appendix N

Pronation/supination pairwise

comparisons of subgroup medians

Table N.1 Pairwise comparisons of subgroup medians for pronation/supination response
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Group 1 Group 2 p-value z-stat Effect size

1.1 1.2 < 0.001 38.72 1.22

1.1 1.3 < 0.001 38.72 1.22

1.2 1.3 < 0.001 38.72 1.22

1.1 1.4 < 0.001 4.35 0.14

1.2 1.4 < 0.001 38.72 1.22

1.3 1.4 < 0.001 38.72 1.22

2.1 2.2 < 0.001 38.72 1.22

2.1 2.3 < 0.001 38.72 1.22



2.2 2.3 < 0.001 38.72 1.22

2.1 2.4 < 0.001 38.72 1.22

2.2 2.4 0.107 1.61 0.05

2.3 2.4 < 0.001 38.72 1.22

3.1 3.2 < 0.001 38.72 1.22

3.1 3.3 < 0.001 18.35 0.58

3.2 3.3 < 0.001 38.72 1.22

3.1 3.4 < 0.001 38.72 1.22

3.2 3.4 < 0.001 38.72 1.22

3.3 3.4 < 0.001 38.72 1.22

4.1 4.2 < 0.001 38.72 1.22

4.1 4.3 < 0.001 38.72 1.22

4.2 4.3 < 0.001 38.72 1.22

4.1 4.4 < 0.001 38.72 1.22

4.2 4.4 < 0.001 38.72 1.22

4.3 4.4 < 0.001 38.72 1.22

5.1 5.2 < 0.001 38.72 1.22

5.1 5.3 < 0.001 36.18 1.14
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Appendix 0

Pronation/supination pairwise

comparisons of subgroup IQRs

Table 0.1 Pairwise comparisons of subgroup IQRs for pronation/supination response
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Group 1 Group 2 p-value z-stat Effect size

1.1 1.2 < 0.001 38.72 1.22

1.1 1.3 < 0.001 38.72 1.22

1.2 1.3 < 0.001 38.72 1.22

1.1 1.4 < 0.001 38.72 1.22

1.2 1.4 < 0.001 38.72 1.22

1.3 1.4 < 0.001 38.72 1.22

2.1 2.2 < 0.001 38.42 1.21

2.1 2.3 < 0.001 38.72 1.22



2.2 2.3 < 0.001 36.41 1.15

2.1 2.4 < 0.001 38.72 1.22

2.2 2.4 < 0.001 38.72 1.22

2.3 2.4 < 0.001 38.72 1.22

3.1 3.2 < 0.001 38.72 1.22

3.1 3.3 < 0.001 38.72 1.22

3.2 3.3 < 0.001 38.72 1.22

3.1 3.4 < 0.001 38.72 1.22

3.2 3.4 < 0.001 38.72 1.22

3.3 3.4 < 0.001 38.72 1.22

4.1 4.2 < 0.001 6.40 0.20

4.1 4.3 < 0.001 38.72 1.22

4.2 4.3 < 0.001 38.72 1.22

4.1 4.4 < 0.001 7.41 0.23

4.2 4.4 < 0.001 7.88 0.25

4.3 4.4 < 0.001 38.72 1.22

5.1 5.2 < 0.001 38.72 1.22

5.1 5.3 < 0.001 24.05 0.76
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5.2 5.3 < 0.001 38.72 1.22

5.1 5.4 < 0.001 38.72 1.22

5.2 5.4 < 0.001 24.42 0.77

5.3 5.4 < 0.001 38.72 1.22

6.1 6.2 < 0.001 38.70 1.22

6.1 6.3 < 0.001 38.72 1.22

6.2 6.3 < 0.001 38.72 1.22

6.1 6.4 < 0.001 27.09 0.86

6.2 6.4 < 0.001 38.55 1.22

6.3 6.4 < 0.001 38.72 1.22

.......... . ,
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