
Sensitivity analysis on chaotic dynamical systems by

Non-Intrusive Least Squares Shadowing (NILSS)

by

Angxiu Ni

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

Massachusetts Institute of Technology 2017. All rights reserved.

Signature redacted
A uthor

Department of Aeronautics and Astronautics
May 18, 2017

Signature redacted
Certified by..............

Qiqi Wang
Associate Professor

Thesis Supervisor

Accepted by

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

Jut112017

LIBRARIES

0o

0

Signature redacted-
Youssef M. Marzouk

Chairman, Graduate Program Committee

2

Sensitivity analysis on chaotic dynamical systems by

Non-Intrusive Least Squares Shadowing (NILSS)

by

Angxiu Ni

Submitted to the Department of Aeronautics and Astronautics
on May 18, 2017, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

This thesis develops the Non-Intrusive Least Squares Shadowing (NILSS) method,
which computes the sensitivity for long-time averaged objectives in chaotic dynamical
systems. In NILSS, we represent a tangent solution by a linear combination of one
inhomogeneous tangent solution and several homogeneous tangent solutions. Next, we
solve a least squares problem using this representation; thus, the resulting solution can
be used for computing sensitivities. NILSS is easy to implement with existing solvers.
In addition, for chaotic systems with many degrees of freedom but few unstable modes,
NILSS has a low computational cost. NILSS is applied to two chaotic PDE systems:
the Lorenz 63 system and a CFD simulation of flow over a backward-facing step. In
both cases, the sensitivities computed by NILSS reflect the trends in the long-time
averaged objectives of dynamical systems.

Thesis Supervisor: Qiqi Wang
Title: Associate Professor

3

4

Acknowledgments

I would like to thank my adviser, Professor Qiqi Wang, for his support and guidance

during my three years at MIT. His knowledge and insight helped develop the directions

for my research; working with him has been inspiring.

I would like to thank professors in the Department of AeroAstro for their insightful

feedback on my research. They had with me many open discussions, which cleared

many anxieties. I am especially grateful to Professor Youssef Marzouk, Jaime Peraire,

Eytan Modiano, David Darmofal and Cuong Nguyen.

I would like to thank my friends at ACDL, AeroAstro as well as in the whole MIT

community for the time I spent at the institute. We had many fruitful discussions

and hilarious moments together. I am especially grateful to Zheng Wang, Ben Zhang,

and Pablo Fernandez, who patiently helped me improve my communication skills in

English.

I would like to thank the teachers who introduced me the beauty and fun of pure

math, specifically Professor Richard Melrose and Professor Michael Artin, who wrote

reference letters when I apply to grad schools. Moreover, they both taught me how

to live lives.

I am grateful to my parents, Xiuming Liu and Guoqiang Ni, for supporting me

through this time. They had always been learning new things so that they could

give me the best support they can. Being their son encourages me to keep chasing a

higher level of life.

5

6

'1111 ". ,

2 The

2.1

2.2

2.3

2.4

2.5

2.6

idea of NILSS

Connection between sensitivity to system parameters and initial con-

d ition s .

Describing perturbations by tangents

Constructing w from unstable Characteristic Lyapunov Vectors (CLV)

Computing v' by NILSS .

Computing d(J),/ds from the tangent solution

Benefits of NILSS .

3 Tangent NILSS Algorithm

3.1 Solving NILSS on multiple time segments .

3.2 Determining parameters for NILSS

3.3 Pre-processing

3.4 Computing the homogeneous solution {Wi}

3.5 Computing the inhomogeneous solution {v'}

3.6 Computing v

3.7 Computing ji

3.8 Computing d (J), /ds

4 Numerical Results

4.1 Numerical Results on Lorenz attractor

7

Contents

1 Introduction 11

15

15

17

20

23

24

25

27

. 27

. 29

. 30

. 30

. 3 2

. 33

. 34

. 34

35

35

4.2 Numerical Results on CFD Simulation of flow over a backward-facing

step .

5 Conclusions

A Showing f(u) is a CLV with a zero LE

B Showing {j(]- } behave like exponentials

C Derivation of d(J)j/ds

D Finite difference NILSS method
S

E Derivation of d(J),/ds on multiple segments

8

37

45

47

49

51

57

59

List of Figures

2-1 Snapshots of an ensemble of 1.8 x 107 trajectories of the Lorenz 63 sys-

tem. Left column: trajectories with different parameters that are uni-

formly distributed over the range 127,291, where smaller p is indicated

by blue, larger p by red. Right column: trajectories with fixed p but

with initial conditions uniformly distributed over (12.00, 6.82, 36.47) t

[0.0939, -0.001053,1.025]. From top to bottom: snapshots taken at

tim e 1.67, 5.0, 10.0, and 41.67. 18

2-2 Intuition of NILSS: through minimization over |1v'I1, we find a column

vector a, such that v- = vL W'a ~ v-L. This is because most

unstable components in v*L - VOl are subtracted by W'a during the

m inim ization.24

3-1 Notations used for NILSS, tO = 0, tK= T 28

4-1 Averaged objective (J)T' versus parameter p for the Lorenz 63 system,

with -= 10, f3 = 8/3, T' = 500 time units. 37

4-2 d (J), /dp computed for each p via NILSS. The time length of the

trajectories is T = 100, which is partitioned into 50 segments of length

2. NILSS uses one homogeneous tangent solution. 38

4-3 Geometry used in the simulation of a chaotic flow over a backward-

facing step, dimensions in mm. All boundaries except inlet/outlet are

solid w alls. 38

4-4 Mesh of test case, as provided in the tutorial of OpenFOAM 4.0 . . . 39

4-5 Flow field at time 0.091. Plotted by x-directional velocity U. . . 39

9

4-6 Lyapunov exponents (LE). Left: the convergence history of 16 different

LEs as the trajectory length increases, where the trajectory length is

represented by the number of segments. Right: confidence interval of

the largest 16 LEs. 41

4-7 Sensitivity computed by NILSS. From top to bottom, the objective

function is the long-time average of U/10, (U2/10) 2 , (U2/10) 4 , and

(U-/10) 8 . Left column: sensitivity computed by an increasing number

of segments, the lines indicates confidence intervals for sensitivities.

Right column: sensitivity plotted with objectives for adjacent parame-

ters, the bars and wedges indicate confidence intervals of the objectives

and sensitivities, respectively. 44

C-1 Perturbation of the trajectory due to a perturbation on the parameter. 52

10

Chapter 1

Introduction

Many important phenomena in engineering, such as turbulent flow [191 and some

fluid-structure interactions 113], are chaotic. In these systems, the objectives we

are often interested in are long-time averaged rather than instantaneous quantities.

Furthermore, we want to perform sensitivity analysis, i.e., we want to know how

a change in the parameters of a system can affect its objectives. Such sensitivity

analysis is the purpose of this thesis.

To rigorously define the problem, we first consider the governing equation for a

chaotic dynamical system:

du
du - f(u, s), u(t = 0) = uo(O), (1.1)dt

where f(u, s) : R' x R -- R" is a smooth function, u is the state, and s is the

parameter. The initial condition uO is a smooth function of #. A solution u(t) is

called the primal solution.

In this thesis, The objective is a long-time averaged quantity. To define it, we first

let J(u, s) : R' x R -+ R be a continuous function that represents the instantaneous

objective function. The objective is obtained by averaging J over a infinitely long

trajectory:

(J) M := lim (J) T, where (J)T := 4 J(u, s)dt. (1.2)t- o0 T 0

(J)T depends on s, 4, and T, while (J). is determined only by s and uO. Here we

11

make the assumption of ergodicity 1321, which means that no, hence # does not affect

(J)O. As a result, (J). only depends on s.

The purpose of this thesis is to develop an algorithm that computes the sensitivity

d (J). /ds. The sensitivity can help scientists and engineers design products [17, 26J,

control processes and systems 15, 61, solve inverse problems [311, estimate simulation

errors [3, 16, 151, assimilate measurement data [29, 12] and quantify uncertainties

[341.

When a dynamical system is chaotic, computing a meaningful d (J). /ds is chal-

lenging, since in general:

d 0
- (J), # lim - (J)T (s, q, T). (1.3)ds T-+oo Os

That is, if we fix uo(O), the process of T -+ oc does not commute with differentiation

with respect to s [9]. As a result, the transient method, which employs the conven-

tional tangent method with a fixed uO, does not converge to the correct sensitivity

for chaotic systems. In fact, the transient method diverges most of the time [9].

Many sensitivity analysis methods have been developed to compute d (J), /ds.

The conventional methods include the finite difference and transient method. The

ensemble method, developed by Lea et al. [20, 14], computes the sensitivity by

averaging results from the transient method over an ensemble of trajectories. Another

recent approach is based on the fluctuation dissipation theorem (FDT), as seen in

130, 23, 35, 21, 1, 21.

In this research study, we consider the Least Squares Shadowing (LSS) approach,

developed by Wang, Hu and Blonigan [33, 341. LSS computes a bounded shift of a

trajectory under an infinitesimal parameter change, which is called the LSS solution.

The LSS solution can then be used to compute the derivative d (J). /ds. LSS has

been successfully applied to dynamical systems such as the Lorenz 63 system and a

modified Kuramoto-Sivashinsky equation [7, 34, 8]. LSS has also been applied, by

Blonigan et al., to sensitivity analysis for flow around airfoils [9, 81. From a theoretical

standpoint, Wang has proven that, under ergodicity and hyperbolicity assumptions,

12

LSS converges to the correct sensitivity at a rate of T-", where T is the trajectory

time length[33j.

However, for large systems which arise in real life problems, LSS is expensive, since

it involves solving a large linear system, where the number of variables is the system

dimension times the number of time steps. As the system gets larger and the trajec-

tory longer, the linear system becomes very large and possibly stiff. Although solving

the system could be accelerated by preconditioners and iterative methods [8], there

would still be a large cost in both computational time and memory. Furthermore,

LSS requires the Jacobian matrix Ouf(u, s) at each time step, which many existing

simulation software may not readily provide; and making modifications to existing

codes can be difficult.

To reduce the computational cost and ease the implementation of LSS, this thesis

presents the Non-Intrusive Least Squares Shadowing (NILSS) method. The compu-

tational and memory cost of NILSS are both proportional to the number of positive

Lyapunov Exponents (LE). For many real life applications this number is smaller

than the dimension of the dynamical system, and the cost of NILSS could be lower

than LSS. Another benefit is that NILSS requires less modification to the underlying

tangent solver than LSS, since it does not require the Jacobian matrix &uf(u, s).

The rest of this thesis presents the NILSS algorithm as follows: First, we examine

the long-time and transient effects due to perturbations in the system parameters.

We also examine how transient effects are also generated by perturbations in initial

conditions. Next, we describe the NILSS method as a procedure that distills the long-

time effect by subtracting the transient effect, where perturbations are expressed

by tangent solutions. Then, we present a step-by-step description of the NILSS

algorithm. Finally, we apply NILSS to the Lorenz 63 system and a CFD simulation

of a flow over a backward-facing step.

13

14

Chapter 2

The idea of NILSS

In our definition of the objective, the average is taken over a trajectory. Hence, intu-

itively, by looking at how the trajectory is perturbed due to parameter perturbations,

the sensitivity of the objective could be revealed. In this chapter, we first examine

such perturbations, where we shall see the parameter perturbation has two effects:

1) the long-time effect, which is of our interest, and 2) the transient effect, which

could be represented by initial condition perturbations. The following sections of the

chapter develops the NILSS algorithm, which can be interpreted as 'subtracting' the

transient effect from the parameter perturbation.

2.1 Connection between sensitivity to system param-

eters and initial conditions

Trajectories of chaotic dynamical systems depend sensitively on system parameters.

If we change any parameter by a small amount, the new trajectory will be significantly

different than the old one, even though they start from the same initial condition.

This is similar to another sensitive dependence on initial conditions, better known as

the 'butterfly effect', i.e., a small difference in the initial condition can grow larger

and larger as the system evolves.

To illustrate the similarity between the two sensitivities, we consider the Lorenz

15

63 system, which is a simplified ODE model for atmospheric convection [22]. Lorenz

63 has three states x, y, z and a parameter p. In Figure 2-1, we show the sensitive

dependence of trajectories on both the initial condition and the parameter. In the

left column, on the x-z axis, we plot planar snapshots of 1.8 x 101 trajectories with

varying p but with the same initial condition uo = (12.00, 6.82, 36.47). Here p is

uniformly distributed in 28 Ap, where Ap = 1. Note that a smaller p is indicated

by colors with shorter wavelengths (blue), while a larger p by longer wavelengths

(red). On the right column, we plot snapshots of the same number of trajectories

with the same parameter p = 28, but with a varying initial initial condition, which

is characterized by a vector that is uniformly distributed along uo Auo, where

Auo = [0.0939, -0.001053, 1.025]. As we shall see later, Auo is chosen to have similar

effects to the transient effect of varying p.

There are many similarities and subtle differences between the effects of a varying

p and a varying uo. As we can see in the first three rows of Figure 2-1, in the short

time, the varying p results in diverging trajectories which looks like the effect of only

varying uo: we call this the transient effect.

The picture in the last row of Figure 2-1 is obtained after letting the trajectories

evolve over a long time. The picture on the right gives the attractor of the base

parameter. The picture on the left, at first glance, has similar shape as the attractor

to its right. However, the left figure is the superposition of many attractors with

different parameters, and a closer look shows that it has different colors in different

parts. The red color on the upper rim, and the blue on the lower, indicates that

as p increases, the attractor moves upward in the z direction. To conclude, in the

long-time, varying p results in a shifted attractor: we call this the long-time effect.

The long-time effect generated by a varying p is important for computing the

long-time sensitivity, however, it is hidden beneath diverging trajectories and is only

visible after a long time and an ensemble of millions of trajectories. As we said,

the transient effect is reflected by diverging trajectories, hence if we can find two

trajectories, one with p and another with p + 6p, which do not diverge, then their

difference does not contain the transient effect. Now with the transient effect gone,

16

their difference contains only the long-time effect. Thus, we can reveal the long-time

effect with a shorter trajectory.

Our main goal in this paper is to devise an algorithm that can generate the

transient effect and subsequently 'subtract' the transient effect from a varying p, so

that we can find two trajectories that do not diverge from each other, and whose

difference only contains the long-time effect. In fact, in Figure 2-1, Auo = vAp and

v represents the NILSS solution. As we shall see, this change in the initial condition

yields the transient effect, and by subtracting it from the two effects of a varying p, we

can distill the long-time effect using a short trajectory. We will clarify the qualitative

description of 'subtraction' in later sections.

2.2 Describing perturbations by tangents

To solidify the intuition built in Section 2.1, in this section, we mathematically char-

acterize the two perturbations as two different tangent solutions, i.e., inhomogeneous

and homogeneous tangents. To distill the long-time effect, denoted by some inhomo-

geneous tangent v, we want to construct a homogeneous tangent w which represents

the transient effect brought about by varying initial conditions, and subtract it from

the conventional inhomogeneous tangent v*, which represents the two effects of the

varying parameters. In Section 2.3, we see how to mathematically construct such

a w as a linear combination of unstable Characteristic Lyapunov Vectors (CLV). In

Section 2.4, we give a computationally efficient formula for w from only the con-

ventional tangent v* and several homogeneous solutions {w1 }, which approximate

unstable CLVs. Finally, Section 2.5 explains how to compute d (J). /ds.

Now we mathematically describe the trajectory perturbations generated by pa-

rameter and initial condition perturbations. This is done by tangent solutions. Specif-

ically, the perturbation due to parameter change is described by inhomogeneous tan-

gents, while that due to initial condition change is described by homogeneous tan-

gents.

First, we differentiate the dynamical system in Equation (1.1) with respect to s,

17

Figure 2-1: Snapshots of an ensemble of 1.8 x 107 trajectories of the Lorenz 63 system.
Left column: trajectories with different parameters that are uniformly distributed
over the range 127,291, where smaller p is indicated by blue, larger p by red. Right
column: trajectories with fixed p but with initial conditions uniformly distributed
over (12.00, 6.82, 36.47) [0.0939, -0.001053, 1.025]. From top to bottom: snapshots
taken at time 1.67, 5.0, 10.0, and 41.67.

18

while keeping # fixed. Then, we let v* = Ou/Os. Thus, the governing equation for v*

is:
dv* - Oufv* = 09f, v*(t = 0) = 0 (2.1)
dt

where ouf is an Rm x R' matrix and 0sf is an Rm column vector. The zero initial

condition v* reflects that uo remains unchanged. By definition, v* reflects the trajec-

tory perturbation due to parameter changes under fixed initial conditions, which is

shown in the left column of Figure 2-1.

Under the assumption of ergodicity, the long time behavior is not affected by the

selection of initial conditions. This suggests that 0 is not necessarily fixed if we are

only interested in the change of the long-time average. We define inhomogeneous

tangent solutions as solutions that satisfy the ODE in Equation (2.1), but without

the initial condition:

- Oufv = 08 f. (2.2)
di

Notice that this ODE is under-determined. To get a solution we can either provide

an initial condition, as we did for v*, or put the ODE as a constraint for some

optimization problems. By its definition, v reflects the trajectory perturbation due

to a change in the parameter, while the initial condition change is not specified.

We define w = Ou/0#, where s is assumed to be fixed and w satisfies the so called

homogeneous tangent equation:

dw- aufw = 0. (2.3)
dt

By its definition, w characterizes the perturbations due to initial condition changes

while s is fixed, as shown in the right column of Figure 2-1.

Hence v* and w describe the effect of only varying s and uo, respectively. Also,

Equation (2.3) differs from Equation (2.2) by setting the right hand side to zero.

For two different inhomogeneous tangent solutions, say v* and an arbitrary v, their

difference is a homogeneous tangent solution w.

We know that if we vary s, we generate two effects: one is equivalent to varying uo;

19

while the other shifts the attractor. Since we are interested in the latter, we want to

find a w such that v = v* + w contains only the long-time but not the transient effect.

Here we used addition, but we can replace w by -w so that we have subtraction in

the formula.

Subtracting such w from v* is the main idea behind NILSS. As discussed in Section

2.1, we want to find two trajectories, one associated with parameter s and the other

with s + 6s, which do not diverge. Given the tangent solution definition, we can

mathematically state that a v, if its Euclidean norm1 of its orthogonal projection onto

V'L(u) remains bounded as the trajectory length goes to infinity, then this v suffices

to reveal the long-time effect of the varying parameter. We denote this sufficient v

by the shadowing direction, v , whose existence is proved by the shadowing lemma

[24]. Here Vl(u) is defined as:

V'(u) = {p E Rm : p f (u) = 0}, (2.4)

where pT is the transpose of the column vector p. Moreover, the orthogonal projection

p of p is defined as:

P = fP- f. (2.5)
PfTff

v' 1 is defined by substituting p by v'. We define wL, 6u', v*1 , and {q} in a

similar way. We use the norm of v' 1 because it describes the perpendicular distance

between two trajectories. A more mathematical explanation of why such v' can be

used to compute the sensitivity is in Appendix C.

2.3 Constructing w from unstable Characteristic Lya-

punov Vectors (CLV)

The main goal of NILSS is to find a w such that v1 = v*I + w1 approximates v' 1

on a finite trajectory. Here v' is the inhomogeneous tangent the norm of whose

'In this paper, the norm we use is Euclidean norm.

20

projection, v 1 , remains bounded even on an infinitely long trajectory. Notice that

the NILSS solution vL may be not bounded if we extend it to an infinitely long

trajectory; however, on the finite trajectory where NILSS is solved, v1 provides a

good approximation of v 1 . Specifically, this means that if we apply both v1 and

v00 to the formula that computes sensitivity in Equation (3.26), the results are

similar.

In this subsection, we shall see one way to construct such a w by supposing

that we know v' and all CLVs. This method is unrealistic since it requires too

much computation. Yet it is informative since it shows that we only need a linear

combination of unstable CLVs to construct a desired w. Based on this knowledge, we

develop the NILSS method in the next subsection.

To further clarify this method, we should first define Lyapunov Exponent (LE)

and the corresponding CLVs. We assume that the dynamical system has a full set

of LEs and corresponding CLVs [27]. That is, there are {Aj,j = 1,2, ... , m}, such

that for any trajectory on the attractor and a corresponding homogeneous tangent

solution w(u), there is a unique representation of w(u):

m

w(u) = Zaj(j(u), (2.6)
j=1

where aj E R is a constant for all u(t) on the trajectory.

Here each (j(u) is a homogeneous tangent solution, and its norm behaves like an

exponential function of time. That is, there exists C1, C2 > 0, such that for any u(t)

on the attractor and any j and t, a CLV satisfies

Cie Aill(yj(u(0))l < 11(j(u(t))11 < C2eAjt1j(j(u(0))11, (2.7)

where {Aj} and {(} are LEs and CLVs, respectively. CLVs with Aj > 0 are called

unstable modes, those with negative A, < 0 are stable modes, and those with Aj = 0

are neutral modes. We denote the unstable modes by (1, - - - , m. and the neutral

modes by (m The remaining modes are the stable modes. In fact, unstable modes

21

are the reason for the 'butterfly effect' since a perturbation in the unstable subspace

grows exponentially over time.

We assume that for all s we are interested in, there is no point u on the attractor

A such that f(u) = 0 and A is bounded. These two assumptions imply that, per

Appendix A, f(u) is a CLV whose LE is 0. We further assume that f(u) is the only

neutral mode.

Although CLVs are not necessarily in V', we can project them

Equation (2.6) becomes:
m-i

j=1

onto V'. Thus,

(2.8)

where w 1 and (f are orthogonal projections as defined by Equation (2.5). Because

V' is perpendicular to f(u), the projection of the neutral mode is zero. This implies

that the summation in Equation (2.8) only considers the stable and unstable modes,

the total number of which is m - 1. We also call C stable or unstable modes based

on their corresponding A,.

We assume that all CLVs are uniformly bounded away from each other. Under

this assumption, the norm of stable and unstable modes {(j} also behave like expo-

nentials, as defined in Equation 2.7. Appendix B justifies this claim.

Suppose that v" and its CLVs are known. Since v" - v* is a homogeneous tangent

solution, we can decompose v'L - v*J via Equation (2.8). By using the first mus

coefficients in this decomposition, we let

Mus
w = .

j=1
(2.9)

Thus, vI = v*- + w approximates v' since v'i- v 1 is composed of only stable

modes, which decay exponentially.

The important information in this method is that w is a linear combination of only

unstable modes. To find the coefficients of this linear combination using the method

given here, we need to know all the CLVs and v". This method is infeasible since the

computational cost will be high to find all CLVs and v' is unknown a priori. These

22

difficulties are overcome in the next subsection.

2.4 Computing v1 by NILSS

In NILSS, we compute v = v*+ w such that v ~~ v" . More specifically, we want the

integration of v1 to approximate v so that later, when computing the sensitivity

via Equation (2.12), v1 yields a result close to the result given by v 1 . To achieve

this, we solve the NILSS problem on a single time segment, which is to minimize the

L2 norm of v = v.*L + W'a:

min - (v* + W a)T(v* + W'a) dt, (2.10)
a 2 0

which is simply a least squares problem with arguments a c RM, where M is an

integer larger than the number of positive LEs m,,. Here v* is the conventional

tangent solution, and W'(t) is a matrix whose columns are homogeneous tangent

solutions {wf(t),j = 1, ... , M}. The initial conditions {wj (t = 0)} are randomized

unit vectors in R'.

First we need to see that a desired v1 exists in the feasible solution space, or that

some a can yield a desired v1 = v*1 + W'a. Our discussion in the last subsection

confirms the existence if we use unstable CLVs instead of W. Moreover, [41 proves

that as time evolves, the span of {wf (t), j = 1, ... , M} converges to the span of the

CLVs {Qf(t),j = 1, ... , M} with the largest M LEs. As a result, replacing unstable

CLVs by W' gives a feasible solution space that contains a v' such that v1 ~ v".

Next, we need to rationalize that minimizing the L2 norm of v1 = v* + WLa

yields v1 ~ v . First, we notice that v1 can be written as the summation of

V and some homogeneous tangents. Because vocO is bounded and the unstable

modes (now approximated by the span of W) grow exponentially, then minimizing

V over a long trajectory implies the difference vL - 0 cannot contain significant

unstable components. Although stable modes may be left in this difference, they

decay exponentially. The effect of the minimization is illustrated by Figure 2-2.

23

WI

- - -- A -I

/
-- I/

-- V
~, *1

- Il/i)

--
'I

time

V

Figure 2-2: Intuition of NILSS: through minimization over I1v'IL, we find a column
vector a, such that vI = v*J + WLa ~~ v 1 . This is because most unstable compo-
nents in v*J -v0 1 are subtracted by WLa during the minimization.

2.5 Computing d(J)./ds from the tangent solution

Since v - v1 is parallel to f, we can define as the scalar which satisfies:

I1~=V-V (2.11)

To find a pair (vI,), we first find a v which solves Equation (2.2), project v onto

the subspace V' to find v1 , then use Equation (2.11) to find .

Once we obtain the solution vector a of the NILSS problem, we can construct v =

v* + Wa and compute the corresponding . Then we have the following approximation

for d(J),,/ds:

d (J)00 1 [T

ds T 0
(OuJv + 98 J) dt + I ()T - (TJ)

where (J)T is defined in Equation (1.2). Notice that in Equation (2.12), we use the

tangent solution v instead of its projection v1 . The derivation of Equation (2.12) is

in Appendix C.

24

T ,
0]I (2.12)

- -- Ar

2.6 Benefits of NILSS

The first benefit of NILSS is that it is easily implemented with existing tangent

solvers. The data used in the NILSS problem are v*_ and {wf}. Here v* is the result

of a conventional tangent solver. {w3} are given by homogeneous tangent solvers,

which can be obtained by setting the right hand side in Equation (2.2) to zero in

conventional tangent solvers. Once we have v* and {wj}, v*-L and {wf} can be

computed by orthogonal projection onto V'(u), as shown in Equation (2.5).

Another way to compute those tangent solutions is to approximate them by finite

difference solutions. This leads to the finite difference NILSS. 2 In this way, NILSS

requires only primal simulation and no longer the tangent solvers. An explanation of

finite difference NILSS is in Appendix D.

In NILSS, the optimization problem is comprised of only a small part of the

computational cost, since there are only M arguments in Equation (2.10). The

main cost comes from setting-up the optimization problem by computing v*_ and

wfr (t), ... , wn(t). Hence the cost of NILSS is proportional to the number of unstable

modes mu,. For engineering problems, mu, is usually much smaller than m; thus, the

cost of NILSS is low.

A beneficial side-effect is that NILSS uses less computer memory than LSS. Fur-

thermore, the tangent solutions used in NILSS do not need to be saved in the com-

puter memory concurrently. NILSS can use tangent solutions saved on an external

hard drive, which can then be read in pairs to compute their inner product; this may

reduce the computational speed, but further saves computer memory.

2 The python package 'fds', which implements the algorithm introduced in this paper, for both
tangent NILSS and the finite difference variant, are available at github.com/qiqi/fds.

25

26

Chapter 3

Tangent NILSS Algorithm

In this chapter, we first address the numerical stability of the algorithm by rescaling

v* and W' after every short segment of time AT. Then, we discuss the criterion

for determining the number of homogeneous solutions M and segment length AT.

Finally, we provide a walk-through of the NILSS algorithm.

3.1 Solving NILSS on multiple time segments

Since both v* and W1 grow exponentially, the round-off error when storing them

in the computer become non-negligible over time. The growth in v*1 and W' will

also generate an ill-conditioned covariance matrix (WI)TWI, since all {wf} will

eventually be dominated by the fastest growing unstable CLV. This section shows

how to prevent this by partitioning a long trajectory into a series of shorter segments.

We partition the time domain into K time segments [to, t1], [t1 , t 2],..., [tK-, tK1,

with to = 0, tK T. Next, we define time segment i as [ti,ti+1],i 0, ... , K - 1.

For each time segment i, we define an inhomogeneous solution {vi*} and homogeneous

solutions {Wi}, such that each W = [w, 1 , ... , wi]. This notation is depicted in

Figure 3-1.

We want to rescale and orthogonalize v 'L and W' at the end of each segment so

that they do not grow too large or become dominated by the fastest growing CLV. We

also want to keep the affine vector space v* + span(W') the same across interfaces

27

integration Rescaling

v|(ti v(ti+1) vi+1 (ti+1)
W (ti) Wi(ti+1) Wi+1(ti+1)

to ... ti ti+1...tK time
i-th segment

Figure 3-1: Notations used for NILSS, to = 0, tK = T

between contingent segments, so that we can recover a continuous v1 :

S--(ti) + span (Wi' (ti)) = vi1(ti) + span (W _1 (ti))

where span(W') is the vector space spanned by the column vectors of W'

To achieve this, we first orthonormalize W' via a QR decomposition:

W (ti+1) = QiRi.

We set the initial conditions of the next tangent segment to

Wi+i(ti+1) = Qi.

In QR factorization, the column vectors in Qi and W' could represent each other if

the column vectors in WV are linearly independent. Indeed, the linear independence

of the initial condition of W' can be preserved after AT, if f is Lipschitz continuous.

Hence, the span (Wi'(ti)) = span (W_ 1(ti)).

We subtract from v*J" its orthogonal projection on W1 to obtain the initial con-

dition of the next time segment:

oi+1(ti+1) = v*'(ti+i) - W+1(ti+1)bi, (3.4)

where bi = i vi' 1(ti+1) is still in the affine space v*L(ti) +

span (W'(ti)). The norm of v*L(ti) is reduced, since the unstable modes in it are

subtracted through the projection.

28

(3.1)

(3.2)

(3.3)

We can recover a continuous vi over the whole trajectory. Now Equation (3.1) is

satisfied, for any ai_ 1, there exists ai such that:

vii"tt) + jW'(tij)at = v"i_(ti) + W_ 1 (tW)i ai-_. (3.5)

Hence we have the necessary conditions to enforce the continuity requirement:

vL(ti) -viL>(ti). (3.6)

The solution vi over multiple time segments is equivalent to that over a longer

segment. However, rescaling v*_ and W' at the end of each time segment prevents

them from growing too large.

Using QR factorization to rescale homogeneous solutions, while keeping a contin-

uous affine subspace, is not a new idea. In a widely used technique for computing LE

14], the same idea was used.

3.2 Determining parameters for NILSS

There are two parameters in NILSS that users should choose: the number of homo-

geneous solutions M and the length of each time segment AT. This section discusses

the criteria for determining these parameters. Once the parameters are determined,

we can proceed to following sections about the detailed algorithm of NILSS.

M is determined based on the Lyapunov Exponents (LE), which are byproducts

of NILSS. According to [4], Aj, the j-th largest LE, is computed by:

1 K

Aj ~ Idij 1 (3.7)K ~AT'
i=1

where dij is the j-th diagonal element in Ri.1 Notice that the computation of {Ri}

only require W but not v*. As we shall see in the detailed algorithm later, NILSS

can compute homogeneous solutions W before v*. At the stage of computing W, we

'The python package 'fds' has a function that computes LEs.

29

can gradually increase M and compute more LEs, which appear in decreasing order.

Once we have a negative LE, we know that we have found all positive LEs.

AT is determined by the constraint that the CLV with the largest LE does not

dominate the M-th CLV. If we assume the largest LE is A1 and the M-th LE is Am,

then the ratio between the norm of these two CLVs satisfies:

1L(U(t))1 _L(u(o))11 exp((A1 - AM)t). (3.8)
|1 (M- (U (0))11 / I I(M-(U(0)) 1 |

This suggests that the ratio between the fastest growing and the M-th CLV grow about

three times larger after a time span (A 1 - AM) 1 . If AT is large, the covariance matrix

Ci in Equation (3.11) will be ill-conditioned, which could pose a numerical problem.

To prevent this from happening, we rescale W' and v*- after AT < (A 1 - Am)- 1 .

On the other hand, when AT get smaller, there are more segments, which leads to a

larger optimization problem in Equation (3.22). This concern on cost gives the lower

bound of AT.

The two criteria in this section are a posteriori, which means that we need to

actually run NILSS for a few segments to check if they are satisfied. In most cases,

the optimization problem does not significantly contribute to the computational cost

of NILSS; thus, we recommend readers choose small AT to begin. After the AT is

chosen, we can determine the M accordingly.

3.3 Pre-processing

First, we integrate Equation (1.1) over a sufficient period before t = 0 so that u is on

the attractor at the beginning of our algorithm. Then, we integrate Equation (1.1)

from t = 0 to t = T to obtain the primal solution u(t).

3.4 Computing the homogeneous solution {W}

We compute one inhomogeneous and M homogeneous tangent equations for each of

the K time segments [to, t1],. . .,[tK-1, tK], where to = 0, tK = T. Time segment i is

30

with the range [ti, ti+1]. This notation is the same as those found in Figure 3-1.

We start at the first segment with random initial conditions for each column vector

in W:

Wo(0) = [wo,1(0), ,WO,M(0)], with wog(0) E V'(u(0)).

Then, we proceed with the following algorithm, which starts at i = 0.

1. For each j = 1, -- - , M, we start from the initial conditions {wis(ti)}.

then integrate Equation (2.3) to obtain wi,j(t),t E [ti, ti+1].

orthogonal projection onto V' using Equation (2.5):

We compute the

(3.10)

2. Then, we compute and store the

/t i +1

(3.11)

3. We orthonormalize W'(ti+1) with a QR decomposition under the Euclidean

norm:

(3.12)

Then, we store Ri and set the initial conditions of the next segment to

Wi+1(ti+1) = Qi. (3.13)

4. Finally, we let i = i + 1, after which we go to Step 1 unless i = K, in which

case we proceed to Section 3.5.

Here we compute {wij} from Equation (2.3). They may also be computed as the

difference between two inhomogeneous tangent solutions:

{Wij} = o - V0W2,3 2i (3.14)

31

(3.9)

We

W/() = [Wi-' (M), . .. ,WIt (0)1 1

W (ti+i) = QiRi.

t E [tiI ti+1. -

where vF" has same initial condition as wij and vo has a zero initial condition at ti.

This way of computing homogeneous tangents no longer requires a separate homoge-

neous tangent solver.

3.5 Computing the inhomogeneous solution {v*}

We start at the first time segment with initial condition: vo*(0) = 0, then proceed

with the following algorithm starting at i = 0.

1. Starting from the initial condition v* (ti), integrate the inhomogeneous Equation

(2.2) to obtain v*(t), t E [ti, ti+1]. Through Equation (2.5), we compute the

orthogonal projection 4L'(t), t E [ti, ti+1]-

2. Compute and store

di = W v*idt. (3.15)

3. Orthogonalize v*'(ti+1) with respect to W z(ti+ 1) to obtain the initial condition

of the next time segment:

+= vi(ti+1) - Wi 1(ti+1)bi, (3.16)

where

bi = W- 1(ti+1)TV*(t,+1) (3.17)

should be stored.

4. Let i = i + 1. Go to Step 1 unless i = K, in which case we proceed to Section

3.6.

Here we compute the inhomogeneous solution vo and homogeneous solution Wi

separately. By doing this, we can first find all positive LEs by gradually increasing

M, since the computation of LE only requires homogeneous solutions. Once M is

determined, we can go on to compute v*. If we already know the number of positive

LEs, then vo and W can be computed simultaneously.

32

3.6 Computing v

Here we compute {vi} for each segment, with vo- continuous across different segments.

The minimization in Equation (2.10) becomes:

K-1 ti+ 1

S J (vi)vi + 2(v*)TWai + a (WI)TWjai] dt,
i=0 ti

(3.18)

where {ai E Rm, i = 0,..., K - 1}. Other than a constant contribution from

(vIL)Tv*I, which is independent of {ai}, we should choose {ai} via

K-i

min 5 2df ai + a[Cia.
{ail i=O

(3.19)

The continuity of v1 at ti, across the interface between segment i - 1 and i, can

be written as

vi'1(ti) + W _(ti)ai-I = v"L(ti) + W (ti)ai. (3.20)

By applying Equation (3.12), (3.13), and (3.16), we can show this is equivalent to:

ai = Ri_ 1 ai_ 1 + bi_ 1 . (3.21)

Combining the minimization problem in Equation (3.19) and the continuity con-

straints in Equation (3.21), we obtain the NILSS problem for multiple time segments:

K-1

min E 2d7Tai + a7TCiai
fai i=O (3.22)

s.t. ai = Ri_1ai_1 + bi_, i = 1, ...,IK - i.

Once {ai} is obtained, we can compute vi within each time segment t G [ti, ti+1]

via the expression

vi(t) = v*(t) + W(t)ai . (3.23)

33

3.7 Computing &

For each segment i, we define j(t) by plugging v into Equation (2.11) to arrive at

jf = Vi - V -. (3.24)

In fact, we only need to know the value of j at the beginning and end of each

segment, that is:

j (ti) =0 ;

(Vi(ti+1))Tf(u(ti+1))
(g ~ (+)=f(U(ti+,))Tf (U(t,+1)

(3.25)

In Equation 3.25, we used the fact that at the beginning of each segment, v* and Wi

are in V', hence so is vi.

3.8 Computing d (J),, /ds

Once v(t) is obtained, d (J), /ds is computed via

K-1 ti+1

Ti=O _ ti
(OJ vi + OJ) dt + i(ti+1)((J)T - J(ti+i))] . (3.26)

The derivation of Equation (3.26) from Equation (2.12) is in Appendix E.

Alternatively, the sensitivity can be computed without explicitly determining

{vi(t)}. The sensitivity contribution of each vi(t) can be computed from a linear

combination of the contributions of v* and wij, with ai being the coefficients.

34

Chapter 4

Numerical Results

In this chapter we apply NILSS to two dynamical systems. The first is the Lorenz

63 system, which is a PDE with dimension m = 3. The second is a CFD simulation

of a chaotic flow over a backward-facing step, which has dimension m = 36675. The

second problem shows that NILSS can be used in engineering applications.

4.1 Numerical Results on Lorenz attractor

We apply NILSS to the Lorenz 63 system. There are three states = [x, y, z], so

m = 3. The governing equation is:

dx - u(y -
dt

dy dz
dt dt

In our current numerical example, o- = 10, # = 8/3.

The parameter of the system is p, which varies in range [2, 45]. The Lorenz 63

system has different behaviors when p changes [281:

* 2 < p < 24.7, two fixed-point attractors.

* 24.7 < p < 31, one quasi-hyperbolic strange attractor.

* 31 < p < 45, one non-hyperbolic attractor.

35

(4.1)

In none of these cases the dynamical system strictly satisfies our assumptions that

there exists a full set of CLVs for all states on the attractor; however, as we shall see,

NILSS still gives meaningful results.

The instantaneous objective function is J(u) = z, so the objective is:

1 ~T
(J), = lim -I z dt. (4.2)

T--+x T

We use (J)T' to approximate (J), where T' = 500 time units. Moreover, the initial

state uO of each p is randomized.

When solving the primal solution u = (x, y, z)T, we use RK-4 with time step size

0.01. Each segment has 200 steps, or 2 time units. We perform NILSS over K = 50

segments, i.e., T = 100 time units.

The LEs of the Lorenz 63 system should satisfy the following constraints [101:

A, + A2 + A3 = -(1 + U-+ (4);(4.3)
A3 = 0.

Here A3 is the LE whose corresponding CLV is parallel to du/dt. Since A, + A2 < 0,

there are at most 1 positive LE. Hence we set the number of homogeneous solutions

to be M = 1.

With above setting, we compute (J). and d (J), /dp. The results are shown in

Figure 4-1 and Figure 4-2. The flaw shown in Figure 4-1 is also observed in other

numerical results such as those found in [20]. This flaw corresponds to the onset

of chaos around p = 24.7. For smaller p, the system has two fixed-points, and the

sensitivity results, via NILSS, show no oscillation. When the system develops into

chaos, the sensitivity results begin to oscillate because, on a finite trajectory, they

depend on the random-valued initial conditions uO and Wo(0). Nevertheless, Figure 4-

1 shows that the true value of d (J). /dp is approximately 1 for all p. The sensitivities

computed with NILSS agree with this observation.

36

40-

35-

30-

25-

S 20-

15-

10-

5-

0
0 10 20 30 40

P

Figure 4-1: Averaged objective ()T' versus parameter p for the Lorenz 63 system,
with a = 10,4 = 8/3, T' = 500 time units.

4.2 Numerical Results on CFD Simulation of flow

over a backward-facing step

We apply NILSS to a chaotic flow over a backward-facing step. Specifically, we use

the same geometry and mesh as in the PitzDaily tutorial of OpenFOAM 4.0, which

is modeled from the experiment by Pitz and Daily [25]. This problem is a two-

dimensional flow over a backward-facing step near the inlet and a contracting nozzle

at the outlet. The geometry is shown in Figure 4-3.

For the numerical simulation, we use OpenFOAM 4.0 as the solver. We use the

mesh provided in the tutorial: there are 12225 cells, as shown in Figure 4-4. We solve

the incompressible Navier-Stokes equation via pisoFOAM. We use the second-order

finite volume scheme and the time-integration method is PISO (Pressure Implicit with

Splitting of Operator) with a time step size 1 x 10' second. We use dynamic one

equation eddy-viscosity model as turbulence model 118]. The viscosity is I x 10- 5m 2/s.

We set no-slip wall conditions for all boundaries except for the inlet and outlet.

The velocity at the inlet boundary takes a uniform fixed value in the x-direction,

the norm of which is the parameter of this problem. For the base case, we set the

37

b
8

2.00--

1.75-

1.50-

1.25-

1.00-

0.75-

0.50-

0.25-

0.00 -
0 10 20 30 40

P

Figure 4-2: d (J), /dp computed for each p via NILSS. The time length of the tra-
jectories is T = 100, which is partitioned into 50 segments of length 2. NILSS uses
one homogeneous tangent solution.

inlet velocity to U = (10, 0, 0)m/s. For the outlet, we use the 'inletOutlet' option,

which is to switch between the zero value and the zero gradient boundary condition,

depending on the flow direction.

With the above settings, a typical snapshot of the flow field is shown in Figure

4-5. The flow is chaotic but not turbulent, since it is two-dimensional. Moreover,

for a real-life problem, like the current one, there is no guarantee that all of our

assumptions made when developing NILSS will be satisfied. However, as we shall see,

Inlet 50.8 Probe

1Y 25.3
50.8 - - - - -

20.6 206.0

Outlet

--- - -- -- -- --- 33.2

84.0

Figure 4-3: Geometry used in the simulation of a chaotic flow over a backward-facing
step, dimensions in mm. All boundaries except inlet/outlet are solid walls.

38

4

Figure 4-4: Mesh of test case, as provided in the tutorial of OpenFOAM 4.0

NILSS still gives meaningful results.

probe U1,
16.7

10

-6.36

Figure 4-5: Flow field at time 0.091. Plotted by x-directional velocity U.

The parameter in this problem is the x-directional velocity at the inlet, U'o. We

use four different objectives: the long-time average of U /10, (U2/10)2 , (U/10) 4, and

(U,/10) 8, where U2 is the x-direction velocity at a probe at coordinate (50.8 mm,

25.3 mm). The location of the probe is very close to the upper surface, as shown in

Figure 4-5.

Each objective (J). is approximated by (J)T,, which is the average of the instan-

taneous objectives J(t) over 2 x 105 time steps, or T' = 2 seconds. Since J(t) exhibits

aperiodic oscillations, (J)T, has uncertainty. To get the uncertainty, we divide the

history of J(t) into 5 equally long parts in time.. Denote the objectives averaged over

each of the five parts by J1 ,...J5 . The corrected sample standard deviation between

them are:
5

4- = (Jk - J)T) 2 . (4.4)
k=1

Here we assume that the standard deviation of (J)T' is proportional to T'-0.5 . Thus,

we use o- = o'/v/5 as the standard deviation of (J)T,. We further assume 2a- yields

the 95% confidence interval for (J)T,. Objectives for different parameters in the range

39

[9,11J are shown in the right column of Figure 4-7, where the bars indicate the 95%

confidence interval.

We use the finite difference NILSS as explained in Appendix D. Each segment

has 250 time steps, or a period of 0.0025 second. To compute the sensitivity, we run

NILSS over K = 200 segments, or T = 0.5 seconds.

To determine the number of homogeneous solutions, M, we compute LEs by the

method described in Section 3.2. For a particular LE, denoted by A, its computed

value changes with the length of the trajectory, or the number of segments, provided

that the segment length AT is fixed. We use Ai to denote the LE value computed

using data from segments 1, 2, ... , i. To determine the uncertainty in the computed

LE, we compute the smallest interval that converges at rate i-0.5 and contains all

{ Ai}. Specifically, we assume that {A} converges to some AO as we increase i and its

confidence interval is proportional to i-0-5. To find A0, we first define C(A) as:

C(A) = min{C' I JA - Ail < C'i-0.5, for all i < K}, (4.5)

where K is the number of segments. We define AO as such that the corresponding

C(Ao) is smallest:

Ao = argmin{C(A)}. (4.6)
A

We regard CK-0. 5 as the confidence interval for A0 . The convergence history of the

largest 16 LEs are shown in the left of Figure 4-6. The AO and confidence intervals

for each LE are shown in the right of Figure 4-6. The total number of positive LEs

is smaller than 16. So we set M = 16.

By using the settings listed above, the cost of NILSS is mainly in integrating the

primal solution over 200 x 250 x 18 = 9 x 105 time steps. Here 200 is the number of

segments, 250 is the number of time steps in each segment, and 18 is the number of

primal solutions computed. In finite difference NILSS, we need one v* and 16 {w3 }.

Each tangent solution is approximated by a finite difference between a perturbed

solution and the same base solution: that is 18 primal solutions in total.

We want to give confidence intervals for the sensitivities computed by NILSS.

40

0.6 0.30

0 .5 - - -- -- -.. --- .. 0 .2 5 --

0 .4--.- .- .- .. 0 .2 0 -
CC

> CL

C 0

0.1 - -..... 0.15

0.>0.2 0 - ----- -.1 -0.1 --0.05

0.0 ----- ---- -- - ~~0.00 -- - - - - - - - - - - - - -

4060 80100 12010 10 10 200 0 2 4 6 8 10 12 14 16 18
Time segment n-th largest Lyapunov exponent

Figure 4-6: Lyapunov exponents (LE). Left: the convergence history of 16 different
LEs as the trajectory length increases, where the trajectory length is represented by
the number of segments. Right: confidence interval of the largest 16 LEs.

Similar to the case of LE, the value of dJ/ds changes with T, or equivalently, the

number of segments. We use (dJ/ds)i to denote the sensitivity computed using data

from segments 1, 2, ... , i. In this case, we assume that {(dJ/ds)i} converges to some

(dJ/ds)o as we increase i, and its confidence interval is proportional to i-05 . To find

(dJ/ds)o, we first define C(dJ/ds) as

C V) = min C' s (dJ < C'i-05, for all i < K . (4.7)
ds ds ds - - j

We define (dJ/ds)o such that the corresponding C((dJ/ds)o) is the smallest:

V) = =arg min C .) (4.8)
ds 0 dJ/ds k ds

We regard CK-0 5 as the confidence interval for (dJ/ds)o. The left column in Figure

4-7 is a log-log plot of I(dJ/ds)o - (dJ/ds)iI versus i for Uo = 10, where the lines

indicate Ci-05 . Similarly, we find the confidence interval of the sensitivity at Uo =

11. In the right column of Figure 4-7, the wedges indicate the confidence intervals of

the sensitivities.

As we can see in Figure 4-7, in the last three rows, the sensitivities computed

41

by NILSS correctly reflect the trend in long-time averaged objectives. However, for

the first row, the averaged objectives themselves have large uncertainties. This is

because a function oscillating near zero usually has large variance in comparison to

its average. In this scenario, since the primal simulation does not suggest a trend, we

cannot tell if NILSS gives a meaningful derivative.

In our current example, the cost of NILSS is roughly the same as that of the

conventional finite difference method. For chaotic systems, with fixed uo and T', the

relation (J)T' s has many local fluctuations [34]. To smooth out these local fluctu-

ations, we perform a linear regression over 5 parameters within the interval [9,111. In

the conventional finite difference method, the total cost comes from integrating the

primal system for 5 x 2 x 105 - 1 x 106 steps. This cost is similar to NILSS, which

integrates for 9 x 105 steps.

However, here we may be making a comparison in favor of the conventional finite

difference. In Figure 4-7, the range span of parameters is 2; it is too large for the last

two objectives, since the relations between objectives and parameters are not linear.

In these cases, if we want to reduce the error in linearly approximating a nonlinear

function, the parameter range should be smaller. However, this requires the confi-

dence intervals of the objectives to be reduced as well. Otherwise, the uncertainties

in the objectives are divided by a smaller parameter range; this would give rise to

larger uncertainties in the sensitivities. To obtain smaller confidence intervals for the

objectives, we require longer trajectories, which means larger computational cost for

the conventional finite difference method.

When there are multiple parameters, the cost of NILSS is even lower than the

conventional finite difference method. For a tangent NILSS, Equation (2.2) has a

right-hand side 08 f, which states that v* would change if we have a new parameter;

however, wj does not depend on the parameter s, so they could be reused for the new

parameter. The marginal cost of adding a new parameter is only the cost to compute a

new v*. In our finite difference NILSS for this problem, 18 trajectories were computed:

one is a base trajectory, one has a perturbed parameter, 16 have perturbed initial

conditions. Only the trajectories with perturbed parameter should be recomputed

42

for an additional parameter. So the marginal cost of another parameter is only 1/18

of the cost of the first parameter. On the other hand, for the conventional finite

difference method, 5 trajectories are computed: one is a base trajectory and 4 have

perturbed parameters. As a result, 4 trajectories should be recomputed for a new

choice of parameter. This suggests that the marginal cost of another parameter is

4/5 of the cost of the first parameter, which is higher than that of finite difference

NILSS.

The cost of NILSS is lower than that of the conventional LSS method. The number

of states in our problem is 12225 x 3 = 36675. If we perform the conventional LSS

over the same time span of 5 x 104 steps, the LSS method would require solving a

linear equation system with 1.8 x 109 variables. This would be a very large cost in

both computation time and computer storage.

43

10 - 102

Time segment: I

101 102

Time segment: i

101 102

Time segment: i

103

-

0.14

0.12

0.10
0.08

0.06

0.04

" .5 9.0 9.5 10.0 10.5 11.0 11.5 12.
Inlet velocity

0.14

0.12

0.10

0.08-

0.0%.3 9.0 9.5 10.0 10.5 11.0 11.5 12
Inlet velocity

0.07.

0.06 -

0.05 -

0.04 -

0.03 -

0.02

9.0 9.5 10.0 10.5
Inlet velocity

11.0 11.5 1"

10' 102 1
Time segment: i

S

0.040

0.035

0.030

0.025

0.020-

0.015 -

0.010-

0.005

0.00%L- 9.0 9.5 10.0 10.5
Inlet velocity

11.0 11.5 12.0

Figure 4-7: Sensitivity computed by NILSS. From top to bottom, the objective func-
tion is the long-time average of U_/10, (U2/1O) 2 , (U2/1O) 4 , and (U'/10)8 . Left col-
umn: sensitivity computed by an increasing number of segments, the lines indicates
confidence intervals for sensitivities. Right column: sensitivity plotted with objec-
tives for adjacent parameters, the bars and wedges indicate confidence intervals of
the objectives and sensitivities, respectively.

44

10

10-2

10[

100

f
10.1

4 10-2

10-3

100

10 :

10-2 -

-10-

104 1
10 0

(fv if

10-1

10-3

10-0

1A

I r u.ra .

- 103
-

- ' -- - - - -
13 0.0115

Chapter 5

Conclusions

The Least Squares Shadowing (LSS) method [34] can compute meaningful sensitiv-

ities of long-time averaged quantities in chaotic systems. In comparison to other

approaches, the advantage of LSS is in its relative simplicity and robustness. LSS

gives one of the first applications of sensitivity analysis on CFD problems. However,

the cost of LSS is still too high for real-life engineering problems, where the dimension

of the system can be hundreds of thousands.

This thesis develops the Non-Intrusive Least Squares Shadowing (NILSS) method.

In NILSS, we want to represent the transient effect by homogeneous tangent solutions,

and subtract it from the conventional inhomogeneous tangent, which represents the

two effects of the parameter perturbation. The leftover long-time effect can then be

used to compute the sensitivity of interest. The homogeneous tangent we want can be

constructed as the linear combination of unstable modes, which can be approximated

by the same number of homogeneous tangents with random initial conditions. Then

we solve the NILSS problem, which is to minimize the L2 norm of a linear combination

among the conventional inhomogeneous tangent and several homogeneous tangents.

This minimization finds the inhomogeneous tangents that represents the long-time

effect.

The first advantage of NILSS is in its computational cost. Now the minimization

problem in NILSS is small and almost costless; the main cost is in preparing the

minimization problem, that is, to compute the conventional inhomogeneous tangent

45

and several homogeneous tangents. Hence for problems with a few unstable modes,

which is the case for many engineering applications, NILSS has low computational

cost.

The major coding workload for implementing NILSS is to have a homogeneous

tangent solver which takes arbitrary initial conditions. Although most linear solvers

are inhomogeneous and takes only zero initial conditions, these changes could be done

relatively easily. Specifically, NILSS does not involve manipulating information that

most existing linear solvers do not provide, such as the Jacobian matrix. Moreover,

for the finite difference NILSS, only a primal simulation software is required, and we

even do not need a linear solver.

NILSS has been demonstrated on the Lorenz 63 system and a CFD simulation for

a flow over a backward-facing step. In both cases, the sensitivities provided by NILSS

reflects the trend between objectives and parameters. For the latter case, NILSS has

a similar computational cost as the conventional finite difference method. We further

argue that NILSS would be computationally cheaper than the conventional finite

difference method if the relationship between objectives and parameters is nonlinear

or if we are interested in multiple parameters. We also verified that the latter test

case has a low-dimensional attractor, with less than 16 positive Lyapunov exponents.

There are many avenues for future work of NILSS. For example, we should extend

our theory to systems which are not uniform-hyperbolic or not ergodic. On the

application side, the adjoint formulation of NILSS is of interest. Nevertheless, NILSS

reduces the computational cost to the same level of the primal simulation, which gives

it potential to make sensitivity analysis accessible to real-life engineering applications.

46

Appendix A

Showing f(u) is a CLV with a zero LE

We assume the attractor A is bounded with a positive lower bound for f(u), i.e., there

exists CO > 0, such that

lf(u) 1> Ci, for all u E A.

Since f(u, s) is a continuous function, then f(u) is continuous for fixed s. Together

with the assumption that A is bounded, we see that the f(A) is also bounded, i.e.,

there exists C2 > 0, such that

for all u E A. (A.2)

We check that for a fixed s, f(u) is a homogeneous tangent solution that satisfies

df(u)
dt

=f du -
-au dt

(A.3)

where the last equality is due to Equation (1.1).

Next, we denote C1 = CO /Ilf(u(0))1, C2 = C2/H|f(u(0))l, then f(u) is a CLV

whose LE is 0, since

Cie4'l f(u(0))Hj |lf(u(t))Hl C2e t |f(u(0))jI, (A.4)

47

(A.1)

lf (U)| 11< C210,

which satisfies Equation (2.7).

48

Appendix B

Showing {fH I} behave like

exponentials

Here we show that the norm of the orthogonal projection of stable and unstable

modes, {fIj'I1}, behave like exponentials.

We assume that all CLVs are uniformly bounded away from each other. First, we

define the angle aij(u) between two CLVs,

aij (u) = arccos , i #: j. (B.1)

The assumption means that there is an ao > 0 such that:

for all i = j, u E A , (B.2)

where A is the attractor.

Since f(u) is also a CLV, the angles between {(} and f(u) are all greater than

ao and the angles between {(} and V' are smaller than 7r/2 - ao. Hence, by using

the C1 and C2 provided by Equation (2.7), we arrive at

(j'(u(t))| > sin (ao)H(j(u sin(ao)eAIIC1 (j (u(0)) > C'eAitH(fj (u(0)),

(B.3)

49

Ceij (U) > ao,

where C' = sin(ao)C1 . On the other hand, we know that

|(jL(u(t))HI 11(j(u(t))Hl < C2ej tll(yj(u(O))|l < CleAi#H4(j1(u(0))H,

where C2 = sin(ao)C2 . To summarize, there is C', C2 > 0, such that

(B.4)

(B.5)

Here all A, # 0, since they correspond to either stable or unstable modes, but not the

neutral mode.

50

Cleaj'II(j-(U(0))|| !5 |I((U(t))II < Cleasjtll(j-(u(0))|| .

Appendix C

Derivation of d(J)jds

By applying an infinitesimal perturbation in s, the governing equation for u is:

d(u + 6 u)
dt = f(U+6Us+6s) (C.1)

After subtracting it by the unperturbed ODE, we get the governing equation for 6u

d(6u) - f6u + 8 f6s.
dt =

(C.2)

As shown in fig C-1, we assume that at time t, the difference of the new trajectory

from the original one is itself perpendicular to f, or 6u(t) = 6u'(t). After 6t, this

difference is no longer perpendicular to f, and thus it becomes

6u (t + 6t) = 6u'(t) + (& f6uL(t) + 0S f s) 6t . (C.3)

We denote the projection of 6u(t+6t) onto the direction of f(u(t+6t)) by -rqf ts,

or

(C-4)fT [6u (t + 6t)]
-77f St =~ f.

On the other hand, the projection of 6u(t + 6t) onto V' is denoted by 6u'(t + Jt),

as defined in Equation (2.5). Thus, in Equation (C.3), 6u(t + 3t) can be represented

51

as the summation of two orthogonal projections:

6u'(t) + (OUfPu'(t) + fs)3t = 6u'(t + 6t) - r7f6tos.

We recall our definition that v = 6u/s, vi = 6u'/6s, we obtain:

dv 0&fv I + 8 f + if .dt

(C.5)

(C.6)

Here v is the tangent solution of Equation (2.2); v1 is the orthogonal projection of v

according to Equation (2.5). Only 77 is unknown, so we can also view Equation (C.6)

as the definition of q.

(1 + f'6t)6u'(t)

6uj Mt) onk(t + 6t)

U(t + 6t) ' S

Figure C-1: Perturbation of the trajectory due to a perturbation on the parameter.

Recall is the scalar such that f = v - v1 , as defined in Equation (2.11). We

can show that:

(C.7)77 d=

To see this, first subtract Equation (C.6) from (2.2). This yields

d(v -vi))d - &f(v - v') - rf.
dt

Using our definition of , we arrive at

(C.8)

dQ f) = Ouf(f) - 7f .dt

52

(C.9)

By the rule for differentiating the product of two functions,

dQ{f) _df dg
d_ = - - + -f. (C.10)

dt dt dt

Equation (C.7) is obtained by recalling the chain rule for the differential:

Of(fW) =auf = dfuf d = f (C.11)
dt dt

To know the difference between the perturbed trajectory and the base trajectory,

we need to define a correspondence between the states on the two trajectories. That

is, we should define which state on the base trajectory should be subtracted by which

state on the perturbed trajectory.

Instead of comparing the two trajectories in the same time frame, we vary the

length of infinitesimal time steps so that the corresponding states of the two trajec-

tories remain perpendicular to f. In time 6t, the new trajectory moves a length of

f6t - qf ts. So the new speed is (1 - y3s)f. Hence the new trajectory needs time

6t/(1 - rl6s) ~ 6t(1 +q6s) to cross length f6t, which is the length of the base trajec-

tory. If we compare the point on base trajectory at time (t + 6t) with the point on the

perturbed trajectory at time t+6t(1+6s), their difference will remain perpendicular

to f, which is 6ul(t + 6t).

The Jnewotnew on this small section of new trajectory is:

Jnew 6 tnew

(J + -F JUL)(I + 76s)6t (C.12)

=Jt + OUJ6U'6t + J 76s6t.

53

To compute the difference between the average J, we first write down its definition:

4Jne;dt 1 T Jdt
Tnew 0 T 0

1 1
=OTJu+ dt - - Jdt (C.13)

fr (1 + r6s)dt (+ T 0

s J f - [uJ + J + -(J))] dt,

where we used the definition 6uL(t) = vL6s. If we divide by 6s, we arrive at:

d (.Jdt) = T [Jv + 8 J + y(J - (J))] dt . (C.14)

Notice that here the ending time T also depends on s.

First we use the shadowing direction v' as v in equation (C.14). Since v (u)

is uniformly bounded for all u on the attractor, we can interchange the procedure of

differentiating by s and letting T go to infinity:

d d lim 1 IT
ds (Tds Too T o (C.15)

=lim - [&uJ v & J + O J+ (J - (J))] dt,T -+coo T 0

where q is computed by substituting v' into Equation (C.6). In fact, it is exactly

the commutation between differentiation and T going to infinity that requires v' 1 to

be uniformly bounded. The mathematical proof that justifies the interchange of two

procedures can be found in 133, 111.

For infinite T, only v' 1 can make C.15 holds. However, for finite T, we can use

the NILSS solution v to approximate v and arrive at:

d (J)aJv-L + a1J q(J - (J)) dt . (C.16)
ds T 0

The proof of this approximation can be accomplished similarly to that in [33, 11].

We can replace the requirement for computing n, by computing at the two ends

54

To achieve this, we first apply Equation (C.7) and integrate by

1 ST [J
o + sJ-< (J-(

- .1 [jT Jv+J) dt - (J)

J)T)] dt

|IT+ \T(J) +

Next, we apply the fact that

dJ du
= (.J Thus, w h

and that v = v' + f into Equation (C.17). Thus, we have:

1[jT
d (J)

T[JT V+O'J)

(OuJv + a9J + $uJf) dt - (J) IT + (J)T
0 0 (J -

(C.19)

dt + {|(J),T - (TJ)|

This is exactly Equation (2.12).

55

parts:

ds

0 dtj

(C.17)

(C.18)

of the trajectory.

56

Appendix D

Finite difference NILSS method

We can use finite difference results to approximate all the tangent solutions used

in NILSS, which consist of v* and W = {wj},Mj. Once their approximations are

obtained, we can compute the NILSS solution v and then use this v to compute

sensitivity. To achieve this, we first compute a baseline primal solution Ub, which

satisfies Equation (1.1) with the initial condition uo on the attractor.

To approximate the homogeneous solution w with initial condition wo, we compute

primal solution uW by keeping the same s but using initial conditions uo + Ewo. The

approximation for w is thus

W . (D.1)

For NILSS on a single time segment, v* is the conventional inhomogeneous tangent

which has a zero initial condition. To approximate it, we first change s to s+C, where C

is a small number. Then, we compute primal solution u*, which satisfies the perturbed

governing equation with the same initial condition uo. The approximation for v* is

thus

V* U Ub (D.2)

For NILSS over multiple time segments, vj can have non-zero initial conditions

for segments i = 0. To approximate v" with initial condition v*, we compute primal

solution u* with parameter s + E and initial condition uo + cwo. The approximation

57

for vo is thus
U* -Ub

-~ . (D.3)

The benefit of this finite difference version of NILSS is that it is truly non-intrusive.

In fact, it no longer requires a tangent solver, all it needs is a simulation software

which can solve the primal solution.

The downside is that, the approximation by finite difference may incur additional

error. Also, when deciding the time segment length AT, there is an extra require-

ment: the perturbation cannot grow out of the linear region, in which case the finite

difference no longer approximates the tangent solution.

58

Appendix E

Derivation of d(J), /ds on multiple

segments

To derive Equation (3.26) from Equation (2.12), first we recover a continuous tangent

solution v from {v } and {j} on each segment:

(E.1)

where

vL(t) = i- (t)

((t) = (t) + = _ (t +)

(E.2)

where {vj-(t)} are given by Equation (3.23), j(t) are given by Equation (3.24). The

definition of can be viewed as 'accumulating' j from previous segments. Applying

this definition, we have:

K-1

((0) = 0, ((T) =- 1: j(ti+1). (E.3)
i=O

The continuity of v follows from the continuity of v1 and . v-L (t) is continuous

because of the continuity condition in Equation (3.20). (t) is continuous because

j(tj) = 0, as shown in Equation (3.25).

To see that v is a tangent solution of Equation (2.2), we first notice that on

59

V~t = - (t)L + (W f (M ,I

t E [ti, ti+1, 7

segment i, v(t) is characterized by

(E.4)

where * = E,-O i'(ti'+). Taking the time derivative of v, we have:

dv dv- df
dt -i at

=t dt + dt + =J +C0f.
-9 (Vi + C*f) &8f= OfV V + 9sf.

(E.5)

To conclude, v is a continuous tangent solution over the entire trajectory and the

L' norm of v1 is minimized, i.e., v is the solution of NILSS problem on a single time

segment. Hence we can substitute v into Equation (2.12), which means that, together

with Equation (E.3), we obtain:

d (J)0 * 1
ds T

1

T

1

f(T ,J v + J) dt + \I (J) - (6J)I1

K-1 ti+1 [z ,J (JO+ ,J + Q&8,Jf) dt + [(T)((J)T - J(T))]

K-i+1 dJ
I: ()J+J dt + [)((J)-J(T))1L i=f dt

K-1 -ti+1

E-i jtii(, J vi + 9J) dt + (ti+1)((J)T - J(ti+1))]
i=(E-

(E.6)

This yields Equation (3.26).

60

V M) = Vi W) + C f (M), t E [tiI ti+1] ,)

Bibliography

[1] Rafail V Abramov and Andrew J Majda. Blended response algorithms for linear
fluctuation-dissipation for complex nonlinear dynamical systems. Nonlinearity,
20(12):2793, 2007.

121 Rafail V. Abramov and Andrew J. Majda. New Approximations and Tests of
Linear Fluctuation-Response for Chaotic Nonlinear Forced-Dissipative Dynami-
cal Systems. Journal of Nonlinear Science, 18(3):303-341, 2008.

[3] Roland Becker and Rolf Rannacher. An optimal control approach to a posteriori
error estimation in finite element methods. Acta Numerica, 10, may 2001.

[4] Giancarlo Benettin, Luigi Galgani, Antonio Giorgilli, and Jean-Marie Strelcyn.
Lyapunov Characteristic Exponents for smooth dynamical systems and for hamil-
tonian systems; A method for computing all of them. Part 2: Numerical appli-
cation. Meccanica, 15(1):21-30, 1980.

15] Thomas R Bewley. Flow control: new challenges for a new Renaissance. Progress
in Aerospace Sciences, 37:21-58, 2001.

[61 Thomas R. Bewley, Parviz Moin, and Roger Temam. DNS-based predictive
control of turbulence: an optimal benchmark for feedback algorithms. Journal
of Fluid Mechanics, 447:179-225, 2001.

17] Patrick Blonigan, Steven Gomez, and Qiqi Wang. Least Squares Shadowing for
sensitivity analysis of turbulent fluid flows. In 52nd Aerospace Sciences Meeting,
pages 1-24, 2014.

[81 Patrick J. Blonigan. Least Squares Shadowing for Sensitivity Analysis of Large
Chaotic Systems and Fluid Flows. Ph.d thesis, MIT, 2016.

[91 Patrick J Blonigan, Qiqi Wang, Eric J Nielsen, and Boris Diskin. Least Squares
Shadowing Sensitivity Analysis of Chaotic Flow around a Two-Dimensional Air-
foil. In 54th AIAA Aerospace Sciences Meeting, number January, pages 1-28,
2016.

[10] Jo Bovy. Lyapunov exponents and strange attractors in discrete and continuous
dynamical systems. Technical report, KU Leuven University, Theoretical Physics
Project, 2004.

61

[11] Mario Chater, Angxiu Ni, Patrick J. Blonigan, and Qiqi Wang. Least Squares
Shadowing method for sensitivity analysis of differential equations. sumitted to
SIAM Journal on Numerical Analysis, arXiv:1509.02882, 2015.

[12] Philippe Courtier, John Derber, Ron Errico, JF Louis, and T Vukidevi&. Impor-
tant literature on the use of adjoint, variational methods and the Kalman filter
in meteorology, oct 1993.

[13] EH Dowell. Flutter of a buckled plate as an example of chaotic motion of a
deterministic autonomous system. Journal of Sound and Vibration, pages 333-
344, 1982.

[14] G L Eyink, T W N Haine, and D J Lea. Ruelle's linear response formula,
ensemble adjoint schemes and Levy flights. Nonlinearity, 17(5):1867, 2004.

[151 Krzysztof J Fidkowski and David L Darmofal. Review of Output-Based Error
Estimation and Mesh Adaptation in Computational Fluid Dynamics.

[16] Michael B. Giles and Endre Siili. Adjoint methods for PDEs: a posteriori error
analysis and postprocessing by duality. Acta Numerica, 11, jan 2002.

[17] Antony Jameson. Aerodynamic design via control theory. Journal of scientific
computing, 3(3):233-260, 1988.

[18] Won-Wook Kim and Suresh Menon. A new dynamic one-equation subgrid-scale
model for large eddy simulations. In AIA A, 33 rd Aerospace Sciences Meeting
and Exhibit, Reno, NV, 1995.

[19] A N Kolmogorov. The Local Structure of Turbulence in Incompressible Viscous
Fluid for Very Large Reynolds Numbers. Proceedings: Mathematical and Physical
Sciences, 434(1890):9-13, 1991.

[20] D J Lea, M R Allen, and T W N Haine. Sensitivity analysis of the climate
of a chaotic system. Tellus Series a-Dynamic Meteorology and Oceanography,
52(5):523-532, 2000.

[21] C. E. Leith. Climate Response and Fluctuation Dissipation. Journal of the
Atmospheric Sciences, 32(10):2022-2026, oct 1975.

[22] Edward N. Lorenz. Deterministic Nonperiodic Flow. Journal of the Atmospheric
Sciences, 20(2):130-141, mar 1963.

[23] T. N. Palmer. A nonlinear dynamical perspective on model error: A proposal for
non-local stochastic-dynamic parametrization in weather and climate prediction
models. Quarterly Journal of the Royal Meteorological Society, 127(572):279-304,
2001.

[24] Sergei Yu. Pilyugin. Shadowing in Dynamical Systems. Lecture Notes in Math-
ematics.

62

[25] R. W. Pitz and J.W. Daily. Combustion in a turbulent mixing layer formed at
a rearward facing step. AIAA Journal, 21(11):1565-1570, 1983.

[26] James J Reuther, Antony Jameson, Juan J. Alonso, Mark J Rimllnger, and
David Saunders. Constrained Multipoint Aerodynamic Shape Optimization Us-
ing an Adjoint Formulation and Parallel Computers, Part 2. Journal of Aircraft,
36(1):61-74, 1999.

[271 David Ruelle. Ergodic theory of differentiable dynamical systems. Publications
Math{s}matiques de l'Institut des Hautes {E}tudes Scientifiques, 50(1):27-58,
1979.

[28] Colin Sparrow. The Lorenz equations: bifurcations, chaos, and strange attractors,
volume 41. Springer Science & Business Media, 2012.

[29] Jean-Noeul Thepaut and Philippe Courtier. Four-dimensional variational data
assimilation using the adjoint of a multilevel primitive-equation model. Quarterly
Journal of the Royal Meteorological Society, 117(502):1225-1254, oct 1991.

[30] J. Thuburn. Climate sensitivities via a FokkerhA*Planck adjoint approach.
Quarterly Journal of the Royal Meteorological Society, 131(605):73-92, 2005.

[311 Jeroen Tromp, Carl Tape, and Qinya Liu. Seismic tomography, adjoint methods,
time reversal and banana-doughnut kernels. Geophys. J. Int.

[321 Peter Walters. An introduction to ergodic theory, volume 79. Springer Science &
Business Media, 2000.

[33] Qiqi Wang. Convergence of the Least Squares Shadowing Method for Computing
Derivative of Ergodic Averages. SIAM Journal on Numerical Analysis, 52(1):156-
170, 2014.

[34] Qiqi Wang, Rui Hu, and Patrick Blonigan. Least Squares Shadowing sensitivity
analysis of chaotic limit cycle oscillations. Journal of Computational Physics,
267:210-224, 2014.

[35] Lai-Sang Young. What are SRB measures, and which dynamical systems have
them? Journal of Statistical Physics, 108(5):733-754, 2002.

63

