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Abstract

The U.S. Air force currently has a need for high altitude, unguided airdrops without making two

passes over a drop zone (DZ). During conventional high altitude drops, aircrews fly over a DZ,

release a dropsonde, compute a payload release point, loop back to the DZ, and release a

payload. This work proposes a machine learning method that enables a single pass airdrop

mission where a dropsonde is released en route to a DZ, the dropsonde measurement is merged

with a weather forecast using machine learning methods, and the aircrew releases the payload

when they reach the drop zone. Machine learning models are trained to use a deterministic

weather forecast and a dropsonde measurement to predict the winds over a DZ. The uncertainty

in the DZ wind prediction is inferred using quantile regression. The uncertainty estimate is non-

static meaning it is unique for each airdrop mission, and the uncertainty estimate is derived from

data that is already available to aircrews. The quantile regression uncertainty estimate replaces

the single pass mission's potential need for ensemble forecasts. The developed models are

evaluated using data near Yuma, AZ, with later evaluation of several other locations in the US.

The machine learning models are shown to improve the accuracy of the wind prediction at the

DZ from a remote location up to 117 km away by up to 43% over other methods. To generalize

findings, we develop models at several US locations and demonstrate the machine learning

methodology is successful at other geographic locations. Models trained on data from a set of

DZs are then shown to be transferrable to DZs unseen by models during training. This moves the

wind prediction methodology closer to a global solution. The inferred prediction uncertainty is

found to reliably reflect the accuracy in the wind prediction. The dynamic wind uncertainty

estimate allows for the assessment of mission risks as a function of day-of-drop conditions. For

nominal drop parameters, single pass airdrop missions were simulated around the Yuma DZ, and

the machine learning methodology is shown to be approximately 20% more accurate than other

methods.
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1 Introduction

1.1 Single Pass Airdrop Motivation

Airdrop is a process developed to deliver cargo from aircraft to recipients on the ground.

Historically, unguided parachutes were attached to cargo and allowed to fall towards the ground

from low altitudes. The airdrop community refers to this as a ballistic drop. Payloads hit targets

with precision when dropped from these relatively low altitudes, 500-800 feet. Dangers on the

ground, e.g. enemies firing at the aircraft, created a demand for high-altitude airdrops, 3,000 to

25,000 feet above ground level (AGL), and commanders still required precision. The Joint

Precision Airdrop System (JPADS) is a system created to answer the demand for high-altitude

airdrops. The JPADS system utilizes precise wind estimates from a dropsonde instrument, an

advanced guidance system, a steerable parafoil, and mission planning software (Benney, et al.,

2005). During a guided drop, the guidance system tracks the payloads location and controls its

trajectory using the steerable parafoil. The guided JPADS system increases accuracy, but it is

expensive. The guided systems are not typically used for low risk or large-scale missions

(Gerlach & Doman, 2017). In 2010, more than 99% of payloads by mass were unguided

(Bowman, 2011).

When a payload is released from an aircraft, the payload's initial, lateral velocity is equal to the

aircraft's, and this causes the payload to drift away from its release point. While the payload

falls, the winds pushing on the payload cause it to drift even further from the release point. The

mission planning software calculates a release point, accounting for predicted payload drift, that

will ideally result in the payload landing on the DZ. This release point is referred to as a

Computed Air Release Point (CARP), and its quality is strongly dependent on the quality of the
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prior wind estimate. This wind estimate comes from a dropsonde which is a small wind sensor,

released from the aircraft, that collects and transmits data as it falls.

During descent, the JPADS guidance and control system can correct for modeling errors, and

perhaps more significantly, it can correct for wind estimation errors. Because an unguided

system is unable to correct for these modeling and estimation errors, the wind estimate and

CARP become more important for ballistic drops. Above 3000 feet AGL, aircrews are required

to release a dropsonde before a drop. Below 3000 feet, aircrews can perform the drop based on

aircraft wind estimates, or they can release a prior dropsonde when the necessary crewmember is

present.

For a better wind estimate, dropsondes are typically released over or very near a target DZ

fifteen to twenty minutes before a payload drop (Staine-Pyne, 2009). If the aircraft is flying at

approximately 240 knots when the dropsonde is released, the aircraft would travel approximately

70 miles by the time the dropsonde fully transmits the measured wind data. The aircraft then

must loiter over the DZ, calculate a CARP based on the collected wind information, prepare the

aircraft, and finally release the payload over the DZ. A dropsonde wind measurement over the

DZ requires the aircraft to make two passes over the DZ. This pattern could alert enemies on the

ground as to when and where the payload will be delivered which creates significant risk (Staine-

Pyne, 2009). Precision airdrop is in the position where the two passes demanded by the

dropsonde are necessary for accuracy, but in some situations, greatly increase mission risk.
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1.2 Currently Proposed Solutions for Single Pass Airdrop

The Air Force has a current need for precise, high altitude airdrops without the dropsonde DZ

pass (Staine-Pyne, 2009). Bowman (2011) proposed a mission strategy where a Predator drone

would fly over a DZ, launch a dropsonde, collect wind data, and transmit the data to a tailing

aircraft. The tailing aircraft would calculate a CARP and release the payload according to the

dropsonde wind estimate. The mission would be completed in a single pass of two aircraft;

however, the second aircraft would greatly increase the mission cost. The first aircraft could also

be a signal to nearby enemies about an incoming airdrop.

Separately, Jones (2016) proposed an aircraft mounted Lidar systems that could remotely sense

the winds over the DZ. His work draws from earlier AC 130 mounted Lidar systems that were

shown to provide quality wind estimates. Work is still being done to show how these Lidar

systems can be integrated into the airdrop mission.

There is also work being done with radar-based wind estimation schemes. QinetQ, Welham,

MA, has developed a ground based wind sensing radar system for use with airdrop. The system

would be operated by personnel on the ground, and the data would be transmitted to aircraft

before the payload is released (PADS WiPPR: Wind Profiling Portable RADAR, 2015). This

system is stationed on a trailer, and its use is therefore limited to areas the trailer can access. The

radar system is also potentially detectable to enemies around the DZ.

Meier (2010) developed a method for estimating winds over a DZ using IR satellite soundings.

The wind estimation is derived from thermal measurements and are shown to consistently

estimate winds above the boundary layer. The planetary boundary layer is the portion of the

atmosphere closest to and most influenced by the ground. It can be 1500 meters above the

9



ground, and for many drops, the wind errors in this space cause the most problems. Meir (2010)

left wind estimation within the boundary layer for future work. Both of these radar-based system

require instruments that present significant monetary investments, development, and testing.

A better single pass solution would make use of equipment that is already integrated into the

JPADS system and data that is currently available to aircrews. This thesis proposes a single pass

mission where a dropsonde is released en route of the DZ, and the dropsonde measurement is

merged with a prior weather forecast to predict the winds over the DZ. Chapter details the

requirements of the single pass mission. Chapter 3 discusses the methodology for training

machine learning models that can accurately predict winds over the DZ by learning on a history

of forecasts and dropsondes. Parallel to the DZ wind prediction, quantile regression models

quantify the uncertainty in the prediction. The wind uncertainty can be used to estimate the

probability of a drop missing a DZ or the probability of hitting a protected object. The results in

Chapter 4 show this method is an improvement over other possible methods during simulated

missions around Yuma, AZ and other DZs. Chapter 5 discusses some necessary future work to

verify the methodology and take the solution further.

10



2 Single Pass Airdrop through Remote Dropsonde Assimilation

This thesis proposes a method for single pass airdrop that uses only equipment and data currently

available to aircrews. This chapter discusses the flow of the proposed single pass mission, some

standard data assimilation methods drawn from the meteorology community, and the data set

used to train the machine learning models.

S 
DsdD

,, Weather Forecast

Risk Estimate for Each RL

No Ys

Accept Risk? Yes

Two Pss OrCalculate CARP

Release Payload

Figure 1:.Remote Dropsonde Single Pass Mission.

Mission assessment begins with an estimate, based on a deterministic forecast, of the quality of
reach potential remote location for releasing the dropsonde. If the uncertainty estimate is

acceptable, a dropsonde is released en route of the DZ at the RL. The dropsonde is assimilated

for an updated DZ wind estimate with an associated uncertainty. Based on the new uncertainty
estimate, a mission could continue with a single-pass, switch to a conventional two-pass mission,

or be aborted.
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Figure 1 outlines a proposed single-pass mission where a dropsonde is released en route to the

DZ referred to as the Remote Dropsonde Single Pass Mission (RDSPM). The mission would

begin with a recommendation for the remote dropsonde location. This recommendation, for each

potential dropsonde location, would be a predicted miss distance distribution for a payload

released at the DZ. If one accepted the uncertainty estimate for a particular remote location, the

dropsonde would be released at that remote location and assimilated. The result would be in an

estimate of the winds over the DZ and an updated miss distance distribution. Based on the new

uncertainty estimate, an aircrew could decide if they should continue the single-pass mission,

switch to a conventional two-pass drop, or completely abort the mission

12



Figure 2: Airdrop Flight Paths
Compares the flight pathfor a single pass and double pass airdrop. This shows an example DZ
and RL. In the single pass mission, the dropsonde would be released at the remote location (1),
and in the two pass mission, the dropsonde would be released at the DZ (2). The two-pass loop

in pink shows the extraflight pathfor a two-pass drop. (Google Maps, 2017)

Figure 2: Airdrop Flight Paths illustrates the aircraft flight paths for single and two pass

missions. During the single pass case, the dropsonde would be released only at a remote location
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(dropsonde 1) and not over the DZ (dropsonde 2). This map shows an example remote location

92 km northeast of a DZ on Yuma Proving Ground in Arizona. The 'Two-Pass Loop' in pink

highlights the added risk of the two pass mission.

The RDSPM relies on two estimates. The first estimate, based only on a weather forecast, is an

uncertainty assessment for each potential dropsonde location before a dropsonde is released. The

winds over the DZ, after a dropsonde is released, is the second estimate necessary for a RDSPM.

This thesis addresses the second estimate and leaves the assessment of each remote location for

future work. The assessment of each potential dropsonde location is dependent on the method

used for wind prediction, so its development naturally follows after a wind prediction method is

established.

2.1.1 Weather Data Assimilation Methods

Numerical weather prediction, or forecasting, predicts future atmospheric states based on initial

atmospheric conditions. The problem is essentially a propagation of initial atmospheric states

through differential equations modeling atmospheric behavior. The initial states have a

significant impact on the accuracy of the forecast, and the estimation of the initial states is an

active research area (Navon, 2009). Typically, meteorologists blend prior state estimates, e.g.

forecasts, with atmospheric measurements to create updated estimates of the atmospheric state.

The updated estimates are used as initial conditions for future forecasts. The processes of

blending priors with measurements is referred to as data assimilation, and the posterior state

estimate is called an analysis (Barker, et al., 2012).

In the past, all analyses were created by hand and were subjective to a person's experience and

judgment. Some situations still call upon these 'subjective' analysis (United Surface Analysis
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Manual). Researchers created methods to assimilate observations automatically. These methods

are termed objective analysis and have been around for many years. Some of the earliest

objective analysis schemes are successive correction methods (Navon, 2009). These methods,

(Bergthorsson & D66s, 1955) and (Cressman, 1959), iteratively updated a blend of forecasts and

climatology with observations. The Barnes (1964) scheme is a successive correction method

were the weighting of the observations is defined by the distance between the observation and a

location on the background grid. Procedure 1 shows the method from (Barnes, 1964) as it is

adapted for airdrop mission planning to assimilate dropsonde measurements with wind forecasts.

It is an iterative method that updates a three dimensional grid of forecasts with a dropsonde

measurement with weights that vary with horizontal distance h, vertical distance v, and

difference in time, t, between the forecast grid and the dropsonde measurement.

Procedure 1: Barnes Interpolation

This algorithm is iterative. m is the iteration number

1. In the first iteration, initialize a three dimensional grid, over i, j, and w, ofprior

estimates for iteration m = 0, from the forecast grid, f.:

S M=0 _pp
u, fLij,w

2. In each iteration, m, Calculate an error, ek, between the ktf observation, ak, and,

fkm, the a priori estimate of the kth observation interpolated from this iteration's

prior grid, fim, to the kth observation's location:

ek= ak - fk

3. Make a correction only to each prior grid point at (i,j) with at least two

measurements within a radius, D, using:

15



Wk,h = exp (D) D 2

Wk,v exp R ,V
D2

Wk,t- exp (
D 2

fm+1 m + k=1 C Wk,h wk,vwk,tek

=1 Wk,h Wk,vWk,t

If two measurements are not within a radius D, no update is made to that grid point.

Rk is the distance from the observation to the grid point. D is a specified scan radius

constant centered on the grid point. The subscript h denotes horizontal position, v

denotes vertical position in log pressure, and t denotes position in time. C is a

measurement weighting constant.

4. Repeat steps 2 and 3, until five iterations have completed or the difference in all

successive updates is less than le-3 m/s.

The influence of the measurement is dispersed to grid points according to the weight function,

Wk, which is specified by the parameter D. The weight function approaches zero asymptotically

as the distance from the measurement to a grid point increases which agrees with intuition that

measurements very far from a grid point should have no influence on the prior (Barnes, 1964).

This method can be used for any weather variable, and it could be used to estimate DZ winds

using a forecast and remote dropsonde. But for this study, it is only relevant for updating wind

measurements.

The Barnes scheme from Procedure I is used as a baseline comparison to the methods developed

in this thesis. The constants used in the baseline procedure are shown in Table 1:

16



Table 1: Barnes Interpolation Constants

Dh 240,000 m

D_ .015 In(Pa)

Dt 1second

C 53.16

The current state of the art in objective weather analysis has moved from successive correction

methods into 4-D VAR. The 4-D VAR system uses an optimal control approach to finding a

blend of past forecasts and observations that minimizes the squared error between the analysis

field and the observations. These schemes typically use an adjoint atmospheric model to estimate

the gradient of the squared error, and this gradient enables a variety of optimization techniques

(Cacuci, Navon, & Ionescu-Bujor, 2014). These methods are typically the most computationally

expensive, and they are used in weather forecasting and assimilation systems that receive

continuous streams of observational data (Barker, et al., 2012).

Weather ensemble based methods are tangential to the 4-D VAR systems. Evensen (1994)

introduced the ensemble Kalman filter as a Monte Carlo based data assimilation method. The

ensemble Kalman filter is an adaptation of the classic Kalman filter that makes Bayesian updates

to vectors of Gaussian random variables (Kalman, 1960). With Kalman filters, the state update

relies on a background error covariance matrix and an observation error covariance matrix. The

ensemble Kalman filter quantifies the background error covariance as the sample distribution of

an ensemble set of weather forecasts. The ensemble forecast is typically created by propagating a

set of initial states through an atmospheric model. Evensen (2003) details a methods for creating

the set of initial states and outlines an analysis procedure for the ensemble Kalman filter. There

are some memory and computational burdens associated with the ensemble Kalman filter. The
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ensembles or the covariance must be stored on disk, and an inverse in the analysis update must

be performed.

The proposed single pass mission uses a dropsonde measurement far away from the DZ to make

a prediction of the winds over the DZ. When forecasts are available prior to the dropsonde, this

can be framed as an analysis, and one of the many data assimilation methods, like Barnes, 4D-

VAR, or the ensemble Kalman filter, could be used to estimate the winds over the DZ. Clearly,

each of the methods discussed thus far has different data and computational requirements. The

Barnes method is relatively cheap and only requires a deterministic forecast and a dropsonde

measurement. The 4D-VAR method requires a deterministic forecast, a dropsonde measurement,

and an adjoint atmospheric model. The ensemble Kalman filter requires an ensemble of forecasts

and the dropsonde measurement.

The Barnes scheme is the simplest method and requires the least amount of information. In fact,

it is the basis for the assimilation methods used in airdrop mission planning today. The downside

of the Barnes scheme is that it has no intrinsic method for choosing a remote dropsonde location.

Based on the Barnes distance weighting method, one would have no method for choosing one

dropsonde location that is 50 km from the DZ over different potential dropsonde locations that

are also 50 km away from the DZ. The Barnes scheme also does not include a method for

determining the uncertainty of the analysis. One could assume a forecast and measurement

uncertainty and propagate them through the Barnes scheme, but the uncertainty would be static

for these assumptions. The uncertainty in the final wind estimate would be predetermined by the

distance between the DZ and RL, the assumed forecast error, and the assumed measurement

error. The uncertainty would not take into account any of the information in the forecast or
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dropsonde measurement, and it is to be expected that an uncertainty estimate using this

information should be more meaningful.

4DVAR requires an execution of the derivative atmospheric model which typically has upwards

of 107model states (Navon, 2009). It is unlikely the onboard laptops used for airdrop data

assimilation and mission planning could make a 4DVAR analysis in the time between dropsonde

release and arrival at the DZ.

The ensemble Kalman filter is potentially well suited for the remote dropsonde mission. One

could choose the optimal remote location, for some mission constraints, that would minimize the

final analysis uncertainty. This estimate could be derived directly from the ensemble forecast

error covariance, and would solve the problem of choosing the remote dropsonde location. After

the dropsonde measurement, the ensemble Kalman filter can be used to estimate of the winds

over the DZ, and it provides an estimate uncertainty. The issue with the ensemble Kalman filter

is the large data requirement. To make the posterior analysis, the filter requires either the forecast

covariance matrix or the complete set of forecast ensemble members on the mission planning

laptop. In theater, download bandwidth is limited, and for the foreseeable future, it is unlikely

mission planners will be able to download and use ensemble forecasts. This eliminates the

ensemble Kalman filter from consideration for the single pass mission.

2.1.2 Machine Learning as Weather Data Assimilation Method

For most precision airdrops, planners are able to download a deterministic weather forecast

which provides a single estimate of the atmospheric state. Because of the deterministic forecast,

it follows that the Barnes method is the current assimilation method used for airdrop, and this

thesis presents the potential accuracy of using this method as a baseline. The Barnes scheme
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requires some hard assumptions like static forecast and measurement errors and a distance

defined weighting. The Barnes weighting scheme states that every dropsonde released 50

kilometers from a DZ should be weighted exactly the same regardless of the terrain, weather

patterns, and observed data. Because of variations in terrain and atmospheric conditions, it is

unlikely this methodology will work for distant dropsondes at all places and times. This

motivated us to think about different methods for making an assimilation for the very specialized

remote dropsonde mission. This methodology would use a deterministic forecast and a remote

dropsonde measurement to predict the winds over the DZ.

One can view the wind assimilation task as a function F that takes an input vector x and predicts

a response variable y. Where the function F is the assimilation method, the input vector x is

made up of forecast and measurement data, and the response variable y is the true wind over the

DZ. If we propose some true assimilation method, F*, that makes a perfect estimate every time,

we can try to approximate this function with F.

Often, the best platform for function approximation tasks is found in machine learning. In the

weather literature, Radhika & Shash (2009) used Support Vector Machines to forecast future

max temperature values. Markuzon (2012) used Random Forests to predict landslides from

weather and terrain information. Krasnopolsky & Fox-Rabinovitz (2010) used neural networks to

parameterize cloud coverage in the atmosphere. Each of these studies solved problems that were

not being solved by traditional statistical or meteorological methods alone. Machine learning

methods were able to recognize patterns in a dataset and make useful estimations. The remote

dropsonde mission requires an estimate of the DZ winds with 'day-of-drop' uncertainty using

only a deterministic forecast and a remote dropsonde.
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The data assimilation methods discussed thus far fall short for different reasons. The 4D-VAR

system has too much computational cost. The Barnes scheme cannot provide a 'day-of-drop'

uncertainty. The ensemble Kalman filter relies on ensemble forecasts, and aircrews are not able

to download that much data. For these reasons, the methodologies discussed in Chapter 3 were

developed to make the DZ wind prediction and infer its uncertainty.

Machine learning methods use a training dataset, X, and learn to predict a response, Y. This

thesis details a method for building assimilation models where the input vector, x, is made up of

features derived from a deterministic forecast and data collected by a remote dropsonde, and the

target variable is the wind over the DZ. The machine learning models are trained on a dataset of

past forecast and dropsonde data.

2.2 The Rapid Refresh (RAP) Dataset

This study aims to learn models on a dataset of past forecasts and dropsondes to predict the

winds far away from the dropsonde measurement. The forecast dataset that was used, the Rapid

Refresh (RAP) model, is available from the National Oceanic & Atmospheric Administration

(NOAA). The Rapid Refresh model is a continental-scale forecast and analysis system that is

updated hourly. Every hour, observations are merged with a prior forecast to create an analysis,

and the analysis is used as the initial condition to create hourly forecasts up to eighteen hours in

the future. The RAP system began operation on May 1st of 2012 and is still in operation. It

operates on a thirteen kilometer grid that spans North America and covers thirty-seven

atmospheric pressure levels (NOAA, 2017).

To simulate operational forecasts, forecasts were subsampled to a 20$x20 grid point region

centered on a DZ. This is a 260x260 km region that captures the local weather patterns around a
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DZ. This size is also similar to forecasts used operationally, and it is large enough to contain

potential remote dropsonde locations. The RAP forecast grid resolution, 13 km, is similar to

those available from the Air Force Weather Agency and the UK MET Office which are actually

used. The RAP forecasts have many weather variables. Because not all of these variables are

available in operational weather forecasts, only the east wind component, the north wind

component, the vertical winds, temperature, relative humidity, and geopotential height are used.

More on this is shown in Table 4. Because there is no publicly available dropsonde database, the

remote dropsonde and the true winds over the DZ are simulated with the analysis from the RAP

dataset.
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3 Methodology for wind estimation and uncertainty quantification

3.1 Approach to training learned models

Chapter 2 shows the procedure for the remote dropsonde single pass mission. The mission begins

by predicting, for each remote location, the accuracy of a drop if a dropsonde were to be released

at that remote location. If the estimated accuracy associated with a RL is acceptable, a dropsonde

is released at that RL, assimilated, and an uncertainty estimate is used to decide whether or not to

continue the mission. This chapter presents a machine learning method for assimilating the

dropsonde data to predict the winds over the DZ.

Machine Learning algorithms typically use a data set with many samples of input and output to

fit a model that can be used on future data. The models developed in this chapter take an input

feature set derived from the data in a deterministic forecast and a dropsonde released away from

the DZ. They provide a mean estimate of the winds and a set of discrete quantile estimates that

are used to produce an error distribution function. Because there is no large enough dataset of

dropsondes, the dataset used in this study is made up of deterministic forecasts and matching

analysis. The analysis are generally a good proxy for truth, so they are used to simulate

dropsondes at the remote location and the winds over the DZ.

Grim et. all ( 2015) conducted a study investigating if remote measurements were correlated with

measurements over a DZ. They chose one balloon sounding site as their DZ. They found the

correlation between the winds measured by the balloon at the DZ and winds measured by

balloons at remote locations. They concluded the winds at a RL were sufficiently correlated with

winds at the DZ to justify research into using remote dropsondes to predict winds at a DZ. They

noted the balloon sounding dataset to not be representative of all RLs, DZs, and times, so they
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studied if weather analyses could be used as proxies for the balloon soundings. They found

correlations between the winds at the DZ and RL balloon sites using data from a set of weather

analyses. They concluded that the analyses and balloon soundings produced similar correlations,

and that they could build predictive models that target data derived from the analysis dataset.

Their conclusion relating analyses to balloon soundings is used to justify training models on

pseudo-dropsondes derived from a weather analysis.

Historical input
Deterministic Forecast

- Wind, Temp, Humidity, etc
Analysis wind sticks far from the DZ

Historical Target
Analysis vind stick at the DZ

In-situ Input
Deterministic Forecast
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Figure 3: Model Development Block Diagram.
Machine learning models are trained using historical forecasts and analysis. Features are

extracted from the entire forecast weather cube and are added to features takenfrom a pseudo-
dropsonde at the RL. Operationally, the model would take the same forecast features used during

training and features from an actual dropsonde released at the DZ.
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Figure 3 shows the general approach for model training and operational use. Samples of forecast

and dropsondes are used as input into preliminary models. The models are trained to predict the

analysis winds at the DZ. Model training is an iterative procedure where different feature

combinations, parameters, and learning algorithms are tried. Once a model's performance

converges and is verified, they could be implemented operationally. The operational model

would then take forecasts, as it did before, but would now use actual dropsonde data instead of

the analysis wind stick at the RL. The output of the operational model would be an estimate and

associated uncertainty of the winds at the DZ. Users could then use this information to update the

plan for the airdrop mission. In the Operational Wind Assimilation Model (OWAM), regression

models are used to predict the mean winds over the DZ. To quantify the uncertainty of this

estimate, quantile regression is used to estimate quantiles of the winds over the DZ. The mean

wind estimate is used to find the best Calculated Area Release Point (CARP) for an accurate

drop. The uncertainty estimates can help, with other tools, mission planners understand the

probability of various drop scenarios.

3.2 Breaking the atmosphere into separate models

The OWAM from Figure 3 uses a forecast and dropsonde measurement to estimate the winds

over the DZ. The winds over the DZ are quantified by a north wind component, u, and an east

wind component, v, at a discrete set of isobaric pressure levels. The OWAM consists of a set of

regression models. Each regression model in the set predicts either the u or v wind component

for one isobaric pressure level based on one RL

For a particular weather variable, forecasts are presented as three dimensional arrays spanning an

east direction, a north direction, and vertical pressure levels. They can contain many variables

including but not limited to: u winds, v winds, vertical winds, relative humidity, temperature,
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and geopotential height. The three dimensional arrays for each weather variable are regularly

spaced in the east and north directions and irregularly spaced in the vertical direction.
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Figure 4: 2-Dimensional Weather Forecast Grid Projectionfor One Pressure Level.

Figure 4 shows an example of a weather forecast grid for one isobaric pressure level, 1. Each dot

represents a grid point where the forecast stores data for each weather variable. This forecast grid

is centered on a DZ which is shown by the red star. The green star shows a potential remote

dropsonde location, (RLj, RLj). Using forecast data points from (RL , RL1) and 1, the dropsonde

measurements at (RL , RLL) and 1, and features derived from the entire forecast grid, one

regression model, F, predicts a wind component, either u or v, at the DZ location on pressure

level 1.
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Figure 5: 3-Dimensional Forecast Weather Grid

Figure 5 shows the structure of a forecast weather cube. Figure 4 showed the forecast grid for

one pressure level, and Figure 5 shows how the two-dimensional grid structure is repeated

vertically at discrete pressure levels. The OWAM predicts the u and v winds at each pressure

level over the DZ. In this example, a dropsonde would be released at the upper most green star

and allowed to collect wind data at each lower green star. The OWAM would have two

regression models for each green star, and each regression model would estimate either the true

u or the true v wind component at the red star on the same pressure level.

The weather cube was broken into many different regression models for a variety of reasons. It

was hypothesized that the relationships between the winds at one remote location and DZ would

27



be unique to that remote location. The similarity patterns between winds at the DZ and winds at a

RL northeast of the DZ might be very different than the similarity patterns between winds at the

DZ and winds at a RL southeast of the DZ. One could train a model using dropsonde data from

both the northeast and southeast RLs and include information in the input features that prescribe

the dropsonde location. These models would need to not only learn assimilation patterns, but

they would have to learn how the dropsonde location affected these assimilation patterns. For

any one regression model, the dropsonde location was fixed so the models could better learn

patterns that are unique to that location. Section 4.3.2 explores this assumption by evaluating a

set of regression models trained at one RL on data from other RLs. The set of models trained on

one location are shown to perform similarly on data from other nearby RLs.

Separating the models by pressure level and RL reduces the number of features that used by any

one model. For most regression modeling methods, large feature vectors can lead to overfitting

(Hastie, Tibshirani, & Friedman, 2009). Input vectors are mostly composed of features derived

from local pressure levels. To further limit the length of the input feature vector, a method for

generating feature vectors, evaluating their performance, and trimming weakly performing inputs

is used. Before feature trimming, a large set of features is derived from the forecast one hour

prior to the drop, the forecast at the drop time, the forecast one hour after the drop time, and the

dropsonde released before the drop. Section 3.6 details the trimming procedure that is used to

reduce the large feature set.

3.3 Training Tree Boosting Models

Predictive models are fit using the Tree Boosting algorithm introduced by (Friedman, 2001).

Tree Boosting is a popular, off-the-shelf data mining tool that has several advantages over other

algorithms. It is able to optimize over any differentiable loss function, L, and in this study, both
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the least squares loss function and the check loss function are used. Tree Boosting is based on

regression trees and retains many of their useful characteristics: Tree Boosting is robust to

univariate feature transformations, able to handle features of mixed type, and provides an

intrinsic method for quantifying the importance of individual features. Tree Boosting is an

additive model that seeks to iteratively add basis regression trees.

Regression and decision trees, which form the basis functions of Tree Boosting, are data mining

models that take some input feature vector, x, and learn to predict a response y. For decision

trees, the response is some categorical random variable, and for regression trees, the response is a

continuous random variable. Most tree building algorithms iteratively split on tree nodes

according to some minimizing split criterion. One of the most popular, and what is used in Tree

Boosting, is the CART algorithm. In the CART algorithm, a regression tree, f, can be seen to

partition the response in to M regions R1,..., RM (Hastie, Tibshirani, & Friedman, 2009). Where

the function response would follow as:

M

f(x) = Cm I(x E Rm) (1)
m=1

Where I is an indicator random variable returning I if x is in region Rm and 0 if not, and cm is

the response for the m'h region. CART uses a greedy algorithm to find a splitting variable j and

a split point s that minimizes the sum of squares and defines a pair of half-planes, R1 and R2 -

R 1(j, s) = tX|Xj s} and R 2 (j,s) = IX|Xj > s} (2)

The splitting variable j and split point s solve:
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min min Z y 1 C1 2 + min (YL -C2)2 (3)
j, s C, IC2

XiER 1(j,s) xjER 2 (js)

The inner minimization is solved by the average of the response in each region:

c= ave(yilxg E R(j,s)) and ^ ave(yi lxi E R 2 (j, S)) (4)

A regression tree, h, is denoted by its split points, c, and disjoint regions, R, in the set a.

a = {c,R} (5)

The response, y, of a regression tree is specified by the parameter a and the input feature vector,

x.

yi = h(xi, a) (6)

This splitting process is done recursively on tree nodes to grow the depth of the tree. Trees can

add more splits until some convergence criterion is met, or more often, some hard stopping point

is reached. The stopping point could be a fixed tree depth, a fixed number of terminal nodes, or a

maximum number of splits. The stopping point for the regression trees is an important tuning

parameter in the Tree Boosting algorithm.

Tree Boosting seeks to approximates some optimal function, F* (x) = y, where y is a response

variable and x is an input feature vector. It is a stage-wise algorithm where basis functions, in

this case regression trees, h(x; a) are iteratively added to model. The algorithm does this by

finding a constraint-based gradient direction, a, through line search that brings the function

approximation, F, closer to the optimal function F*. This gradient direction is made to run

parallel to the true steepest descent gradient, gm. The result is a minimization over a set of

pseudo responses, {fi = -g,(xi)}l , instead of raw response values y. The general procedure

(Friedman, 2001):
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Freidman Gradient Boosting Algorithm

N

FO(x) = argminp L(yi, p)

For m = I to M do:

y= - [L(yi,F(xi)) i =1, N
L F(xi) IF(x)=Fm-1(x)'

N

am = argmina,B i - Bh(xi; a)]'

N

pm = argminp L(yi, Fm-1(xi) + ph(xi; am))

Fm(x) = Fm-1 + pmh(x; am)

end For

M is the number of basis funcitons included in the model, N is the number of training samples,

and p is the gradient distance taken in the direction a. This algorithm is used with least squares

loss function to predict a mean of the winds over the DZ and, separately, with the check loss

function to predict quantiles of the winds over the DZ.

The Tree Boosting algorithm implemented in the python package Scikit-Learn was used to fit

wind prediction models (Pedregosa, et al., 2011). For this Tree Boosting implementation, there

are a number of parameters that must be specified including: the loss function, the learning rate,

the number of estimators, the max depth of the basis trees, the number of features used to fit a

basis regression tree, and the subsample percentage. Most parameters were chosen during an

exploration phase of the study by using cross-validation grid search.

The loss function dictates the final use of the model. A model fit using the least squares loss

function predicts a conditional mean of the response variable. A model fit with the check loss

function predicts a conditional quantile of the response variable. The learning rate controls the
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influence of each individual regression tree. A lower learning rate typically increases the

necessary training time but tends to increase generalizability. The necessary training time is

directly related the number of basis functions that are used. When using Tree Boosting, the

number of regression trees, estimators, was allowed to be dynamically determined. The number

of features used to fit a basis tree, 'Feature %', is another tunable parameter where a value less

than the total number of features, n, generally increases bias while decreasing variance.

Friedman (2002) details a modification of the original Tree Boosting algorithm called Stochastic

Gradient Boosting. In the original procedure, each basis regression tree has access to the entire

training data set when fitting. In the stochastic variant, random training samples are drawn

without replacement for each individual regression tree, hj (x, aj), fit procedure. Adding this

randomization tends to produce more generalizable models. The percentage of available samples

is a tunable parameter referred to as 'Subsample %' that can affect the quality of the models.

After a period of cross-validated trial and error, models were fit using the parameters:

Table 2 Scikit-Learn Gradient Boosting Regressor Parameters

Loss Function Least Squares and Check
Learning Rate .01
# Estimators Algorithmically Determined
Max Depth 5
Split Criterion Least Squares
Subsample % 70
Feature % 60

The Tree Boosting algorithm adds one basis function at each iteration. The fitting process is

monitored by evaluating the loss on the validation set after every 250 iterations and saving a

copy of the model. The model stops adding basis functions after three consecutive increases in
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the validation loss score. The model version with the lowest validation score is kept. This

method of monitoring the performance on the validation set is used to control against over

fitting. When models continue to minimize a loss function, either least squares or the check loss

function, on the training set, eventually the model will fit too closely to the data it has observed.

The validation set gives an idea of how a model will generalize to unseen data, so it is useful to

stop fitting the model when the performance on the validation set is decreasing. This method

detects a decrease in performance on the validation set as being a decrease in performance over

three sets of 250 iterations. The three sets of 250 iterations was chosen because it was observed

to almost surely take the validation error out of a local minimum.

3.4 Estimators for winds at DZ

The Friedman's Tree Boosting algorithm shown in Section 3.3 is used to fit models that predict

the winds over the DZ. These models take input features from the forecast and remote dropsonde

and predict a conditional mean of the winds over the DZ. The algorithm is fit using the least

squares loss function.

The least squares loss function is often the standard choice is regression analysis. This is because

of both mathematical convenience and the usefulness of a mean estimate (Koenker, 2000). Many

predictive models are interested in the mean value of a response variable. Because of this, they

rely on the least squares loss function to produce of conditional mean estimate. This can be seen

in that a population's mean, M, minimizes the least squares cost function.

n
min

E R
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Linear regression seeks to estimate a response variable, y, with some inputs, X, with a vector of

parameters 8.

Y = 3X (8)

For standard linear regression, least squares can be viewed as producing a conditional mean

estimator. The / parameters are estimated using least squares.

n

min R ( _ Xl2 (9)

The Tree Boosting algorithm builds a nonlinear model that takes an input feature vector and

predicts a conditional mean of the response function. This estimate will have some accompanied

uncertainty, and the next section discusses separate Tree Boosting models that estimate

conditional quantiles of the prediction error.

3.5 Estimators for uncertainty of winds at DZ

For airdrop, mission planners are just as interested in the uncertainty of an estimate as they are in

the estimate itself. Most plans are formulated based on the risk of an unsuccessful drop. Wind

estimation errors, that may seem intuitively small, can push a payload far away from a drop

zone. A useful prediction of the winds over the DZ should be accompanied by an uncertainty in

that prediction. Ideally, this uncertainty will be 'day-of-drop' meaning that it will be unique for

every planned mission, and will be dependent on all the available information. Some

atmospheric conditions will be easier to predict than others, so a useful model should be able to

recognize these conditions. The meteorological community solves this issue with ensemble

forecasts. These are sets of atmospheric states, and the sample variance from this set can be used

to quantify a forecast's uncertainty. The ensemble forecasts are too large to download, so
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quantile regression is used to infer the uncertainty in the wind prediction. Quantile regression

provides a day-of-drop error CDF that is both tight and reliable.

Quantile regression uses the check loss function to produce a conditional quantile estimate of a

response variable. (Koenker, 2000) has a detailed explanation of the procedure.

I is an indicator random variable taking value I when a condition I is met and value 0 when the

condition is not met.

I=lif u<0 (10)
0 if U > 0

For a random variable, X, the CDF is defined as:

F(x)=P(X!!;x) (11)

The inverse CDF is defined as:

F-1 (r) = inffx: F(x) ;; r} (12)

This shows a quantile of X, at T, is defined as the value of X at which T * 100% of the

probability space is less than F-'(r). If one were to draw random samples from X, they should

expect -r * 100% to be less than the value at F-1 (r). Koenneker shows that the estimation of

quantiles for X can be framed as an optimization problem where the check loss function, py, is

minimized.

p,(u) = u(T - I(u < 0)) (13)

For this exercise, one seeks the value, X, of X at the quantile r. The check loss function uses:

U = (X - 2) (14)

Like most optimization procedures, the expected loss is minimized.
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R 00

E[p (X - R)] = (T - 1) f(x - 5)dF(x) + r (x - -)dF(x) (15)

Differentiated with respect to 2,

0= (1-) dF(x)-T dF(x)= F(2)-T (16)

Any element of {x: F(x) = -rj minimizes the expected loss because F is monotone. A proof of

this is shown in (Manski, 1988). To find the -ta sample quantile through optimization, one seeks

a parameter from the set of reals, R, that minimizes:

n
min

minR pr 1O(yj (17)

through a linear program with 2n slack variables v. The new problem is

min
(,u,nv) E RxR nlfU + (1 - r)1'v 1' + u - v = y} (18)

where 1n is a vector of ones with length n.

Up till now, Konneker has shown us that one can find the quantiles of a random variable through

a linear program with the check loss function. It was shown that the conditional mean is a

solution to the least squares loss function. Quantile regression can now be shown to produce a

conditional quantile estimate in a similar way. Define a as the Tth sample quantile. This value

solves the minimization:

mnm
a E R~ i=pr(y - a) (19).
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This leads to quantile regression which allows one to estimate a conditional quantile function

Qy(r Ix) for a given input variable x and model parameter fl.

Qy(Trx) = x'f(tr) (20)

This is the solution to:

min (21).
fl E RP -'1 Pr(yi - x'fl)(2)

To go back to the linear program formulation:

min
(f,,u, v) E RPxR+n {tl'u + (1 -x)1' v IXf + u - v = y}

This quantile regression linear program can be used during the Tree Boosting Algorithm

presented in 3.3. Using the same feature vector, x, as was used when predicting the mean

response, check loss function is used to predict conditional quantiles of the winds at the DZ.

Awgreiate Outputs

Forecast + q
Dropsonde
Level I Mode| q,,=.2

V ~Model qa,=.O1

Figure 6 Wind CDF Structure for Level i.
Forecast and RL dropsonde features are used as inputs to a set of quantile regression models
that each estimate a discrete quantile of the response variable. The aggregate of the quantile

function responses is a CDF of the winds over the DZ that represents the prediction uncertainty.
This procedure is repeatedfor each pressure level of interest.
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Figure 6 shows the general structure for how quantile regression is used to quantify the

prediction error. For one pressure level, quantile regression models are fit at a set of discretized

quantiles. These models each take the same input feature vector but predict different conditional

quantiles of the possible values for the winds over the DZ. The aggregate of the predictions for

these models is a conditional CDF for the winds on that pressure level. A wind error CDF could

be produced by subtracting the mean response estimate from the CDF produced in Figure 6.

The procedure outlined in Figure 6 is repeated for each pressure level. The output of all these

quantile regression models is the CDF for the winds on each pressure level over the DZ.

3.6 Feature Generation and Selection

Feature selection was done through a generate and test procedure. When predicting the winds

over the DZ, the system has access to forecasts and dropsonde data. After the forecast is

subsampled to the 260 x 260 kilometer region, there are roughly 105 data points within the

forecast. There is too much available data to use the forecast without preprocessing. Intuitively,

the information in the forecast is of varying degrees of relevancy. This study uses a combination

of guessing and automatic feature selection. Features are extracted, which may or may not be

helpful, from both the available forecast and dropsonde. This section shows how the feature

vector is generated, evaluated, and trimmed to find a set of features that best predict the winds

over the DZ. Section 3.2 discussed how regression models are created for each pressure level,

remote dropsonde location, and target wind component. For a drop at the maximum altitude,

thirty pressure levels of models would be used.
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3.6.1 Feature Generation

3.6.1.] Forecast variables

From the forecasts, this feature generation methodology takes raw variables that are most likely

to be in most available numerical weather forecasts. This study included:

Table 3 Forecast Variables

For each of these variables, a feature is extracted using the following method:

Table 4 Features Generated from Forecast Variables

At this point, a feature vector of length 48 is created by taking the cross-product of Table 2 and

Table 4.
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Relative humidity

U winds

V winds

Vertical winds

Geopotential height

Temperature

Value at the sonde location and on the pressure level

Value at the DZ location and on the pressure level

Mean value of the stick at the sonde location

Mean value of the stick at the DZ location

Mean value on the pressure level

Variance of the stick at the sonde location

Variance of the stick at the DZ location

Variance of the values on the pressure level



3.6.1.2 PCA Features

PCA vectors based on the U and V wind grids are concatenated with the prior feature vector.

This is an important dimensionality reduction step that allows the model to capture some of the

variability in the forecast grid. The PCA vectors are created by starting with a grid for one wind

component of shape (F, L, J, I), where F is the number of forecasts in the data set, L is the

number of pressure levels in a forecast, J is the number of forecast grid points in the northern

direction, and I is the number of grid points in the eastern direction. Note that both J and I are

centered on the DZ grid point. The wind grid of shape (F, L, J, I) is reshaped into two

dimensions to become (FL, JI). At this point, a PCA function can be fit using the methods

discussed in Hastie, Tibshirani, & Friedman (2009). A PCA function for each wind component is

fit using winds strictly in the training set. These PCA functions can then reduce the wind grid

into a smaller vector length which makes training easier. At this point, a PCA vector for both U

and V each of length P. Concatenating this with the previous feature vector, this brings the total

feature count to 48 + 2P.

3.6.1.3 Finite Difference Time Features

This methodology assumes and requires forecast information one hour before and one hour after

a drop time. Based on the way drops are normally planned and conducted, it is almost always

true that when forecasts are available, there will be forecast data one hour before and one hour

after a drop time. The feature vector of length 48 + 2P is now used generate a discrete time

derivate for each feature. This is done using a central difference.

Vt = feature vector at drop time t

Vt+ = feature vector at drop time t + 1 hour

Vt_1 = feature vector at drop time t - 1 hour
Zt = discrete time feature vector at time t
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Zt= -- vt_ 1  (23)

The discrete time derivative features are then concatenated with the original feature vector. The

total feature vector is now of length 2(48 + 2P).

3.6.1.4 Dropsonde Features

Features derived from the dropsonde data which, not surprisingly, are the most powerful

features, are now concatenated with the feature vector. For this method, dropsonde data must be

available for each pressure level for both above and below a model for a particular pressure

level. This data is leveraged to create features according to Table 5. Note that subscript s denotes

data from the dropsonde, subscript f denotes data from the forecast, subscript RL denotes data

from the dropsonde location, and subscript DZ denotes data from the DZ location.

Table 5 Dropsonde Features

Dropsonde u on pressure level UsRL

Dropsonde v on pressure level Vs,RL

Forecast error u Us,RL - Uf,RL

Forecast error v VS,RL - Vf,RL

DZ forecast error corrected u Us,RL - Uf,RL + Uf,DZ

DZ forecast error corrected v VS,RL - Vf,RL + Vf,DZ

Notice that 'DZ forecast error corrected u' and 'DZ forecast error corrected v' are created by

adding the forecast error at the remote location to the forecast estimate at the DZ. These features

use the assumption that if the forecast is wrong by some amount at one location then it must be

wrong by the same amount everywhere else. This is obviously not true, but it is a good starting

estimate to go from. It is also interesting that these features are simply the addition of two other

included features. A teamed model could ideally extract these type of feature interactions on its
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own, but in some cases, it is useful to supply the interaction at the start if it is clearly useful. This

results in six features from the dropsonde data, and after concatenating it with the prior features,

brings the feature vector to 2(48 + 2P) + 6 total features.

3.6.1.5 Pressure Level Finite Difference Features

A feature vector is generated and a model is trained for each pressure level and each remote

location in the forecast cube. So far, features have only been generated from a model's pressure

level or from the wind stick. Because there is vertical movement in the atmosphere, it is likely a

model for one pressure level could benefit from features extracted from other levels in the

weather cube. This information is provided to the model through discrete derivatives with respect

to pressure level, z 1.

VI = feature vector for the pressure level of interest

v1= feature vector from one pressure level above

vI_ 1 = feature vector from one pressure level below

Zi = v1+1 + vi-1

The above method for z only works for pressure levels that are not at the top or bottom of the

weather cube. If the pressure level of interest, 1, is that the top or bottom z, is found using:

I = lmax: Zi = v1 1 - vi (24)

1lmin Zi =vi - v1 (25)

A new feature vector is formed by concatenating v, and z1. The new feature vector is of length

2(2(48 + 2P) + 6) or (204 + 4P).

3.6.2 Feature Selection

After generating a feature vector of length (204 + 4P), the feature vector probably contains

many redundant or worthless features. One the advantages of using tree methods is that they
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provide an estimate of relative feature importance Ii on the variation of F (x). From (Friedman,

2001), generally this measure is taken as:

ii = (Ex [j)] varx[x ]) (26)

Where Ex is the expected value and varx is the variance. This is approximated for regression

trees by:

J-1

I (T)= it(vt = j) (27)
t=1

Where t are the non-terminal nodes of the J-terminal node tree T, vt is the splitting variable at

node t , and it is the corresponding empirical improvement in squared-error. For M trees, the

influence is measured using:

M

12 = P Z (Tm) (28)
m=1

These relative feature measures can be used to select the most useful features. Removing less

useful features will decrease computational costs while potentially affecting performance. This

importance metric is used to iteratively trim and select features.

3.6.2.1 Iterative Feature Trimming

An iterative feature trimming method is used to gradually remove noise from the model by

removing weakly predictive features. The procedure is as follows:
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Procedure 2: Iterative Feature Trimming

1. Generate afull feature set

2. Build and evaluate models through cross validation

3. Remove the lowest p% offeatures from the feature vector

4. Generate a new feature vector from the remaining features

5. Repeat steps 2-4 for a predetermined number of iterations

6. Select the feature set corresponding to the iteration with the lowest cross validation score

Models are evaluated at each iteration by the mean, cross-validated RMSE. The RMSE is

expected to start at higher value when there are many noisy features. After some iterations, the

weakly predictive features will be removed and the RMSE is expected to gradually improve.

Towards the end of the procedure, the RMSE is expected to increase which signifies useful

features are being removed from the model. The feature set that corresponds to the lowest RMSE

value is taken as the final model.

The computational cost for fitting a model with the Tree Boosting algorithm scales linearly with

the number of included features. Decreasing the amount of features included in the model will

become important as models are trained on larger histories of weather and data or train models

on a variety of DZ.

3.6.2.2 PCA Vector Length Selection

The method shown in Procedure 2 can also be used to select an appropriate PCA vector length,

P. One can generate starting feature sets for different values of P, repeat the trimming procedure,

and select the feature set with the best performance from all iterations of each P value.

3.7 Adapting to the RAP Data set
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Ideally, models could train on a data set where there is a measurement of the wind stick at the

DZ and a measurement of the wind stick at the RL at the same time. Models could have one

stick, at the RL, taken as input to predict the other wind stick at the DZ. Unfortunately, this data

set does not exist, and it would be very expensive to create. Instead, this methodology uses

pseudo-dropsondes in place of actual measurements. In this study, dropsondes at the DZ and the

RL are simulated with wind sticks taken from the weather analysis. Models are trained on dataset

of simulated drops where the input is made up of data from the forecasts and remote pseudo-

dropsondes. During training, models learn to predict the pseudo-dropsonde at the DZ. The

forecast is taken as a RAP weather forecast with a six hour lead time, and the pseudo-dropsondes

are taken from the analysis at the forecast time.

As discussed in Section 2.2, the RAP dataset is used because it has matching forecasts and

analysis. In this study, models use forecast data that what would be available to aircrews during

actual airdrop missions. Aircrews typically receive a block of forecasts that are spaced hourly

and encompass the drop time within a few hours. These forecasts are typically downloaded on

the ground before a drop, so the lead times of the forecasts can range from 2 to 24 hours. This

study makes the assumptions that forecasts are always available for one hour prior to a forecast

and one hour after a forecast, forecasts cover the DZ 130 km in the East direction and 130 km in

the North direction, and the block of forecasts downloaded shortly before a drop are the only

information available. This study also only uses forecasts with a lead time of six hours. Because

the RAP dataset has records for many places and times, machine learning models can be trained

for a variety of conditions. In this study, the forecast is segmented to a 260 km x 260 km grid

centered on the DZ. This means each forecast weather cube is shaped (37 ,20 ,20) for each
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weather variable of interest. This forecast size was chosen because it approximately represents

the minimum forecast area aircrews would receive operationally.

The RAP dataset provides forecasts and analysis for about 3.5 years of data and covers

geographic North America. The training dataset consists of samples with unique forecast times.

The samples are divided into a fit, validation, and test set. The fit data set consists of the

forecasts and pseudo-dropsondes used while the model is training. The validation set is only

evaluated periodically during the fitting process to monitor how the model generalizes. The test

set is completely unseen during the fitting process and is used to evaluate its performance. All

plots in this document are shown from a test data set unless otherwise noted.

Table 6: RAP Dataset Months and Samples

Month # Samples Month # Samples Month # Samples Month S
Samples

Jan-12 0 Apr-13 719 Jul-14 729 Oct-15 744
Feb-12 0 May-13 744 Aug-14 738 Nov-15 720
Mar-12 0 Jun-13 720 Sep-14 689 Dec-15 744

Apr-12 0 Jul-13 0 Oct-14 744 Jan-16 744
May-12 552 Aug-13 702 Nov-14 720 Feb-16 696
Jun-12 711 Sep-13 719 Dec-14 743 Mar-16 744
Jul-12 676 Oct-13 744 Jan-15 729 Apr-16 676
Aug-12 0 Nov-13 720 Feb-15 488 May-16 709
Sep-12 679 Dec-13 743 Mar-15 728 Jun-16 653
Oct-12 0 Jan-14 738 Apr-15 647 Jul-16 744
Nov-12 0 Feb-14 615 May-15 744 Aug-16 744

Dec-12 743 Mar-14 549 Jun-15 695 Sep-16 0
Jan-13 744 Apr-14 720 Jul-15 741 Oct-16 0
Feb-13 672 May-14 744 Aug-15 730 Nov-16 0
Mar-13 743 Jun-14 720 Sep-15 720 Dec-16 0

TOTAL 33920

Table 6 shows the months from the RAP dataset. The '# Samples' columns shows the number of

forecasts used in each month. Each sample comes from a matching pair of 6 hour lead time
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forecasts and analyses that are hourly spaced. Some months have zero data either because the

data was not produced, missing, or not downloaded for this study.

Data was placed into the fit, validation, and test sets at random. For all experiments in this study,

75% of the data was placed in the fit set, 15% was in the validation set, and 10% was used in the

test set. The random dispersion of the data allowed for more varied weather conditions to be in

each set. For the data shown in Table 6, 25440 random samples were in the training set, 5088

random samples were in the validation set, and random 3392 samples were in the test set.

3.8 Ballistic Wind Estimates

While a payload is falling toward the ground, the wind acting on it causes it to drift. For

simulation purposes, it is useful to only model the aggregate wind that acts on the payload. This

value is wrapped up in what is called a ballistic wind, and it summarizes the degree to which the

winds cause an object to drift. The ballistic wind, B, can be calculated using the total drift, D,

and time of fall, T, as B = D/T. This metric summarizes the quality of a wind estimate for a

column of air, and this metric is used to verify the predictive models discussed thus far.

The RAP dataset contains 37 pressure levels. The maximum drop altitude for operation airdrop is

approximately 25,000 feet AGL. In this study, the lowest 30 pressure levels are used to create

predictive models. The top most pressure level has an isobaric pressure of 25 kPa which

corresponds to approximately 34,000 feet above MSL.

3.8.1 Ballistic Wind Procedure

Wind information for one wind component, u or v, is given as a vector of wind values over the

DZ. The values in the wind vector match specific altitudes, corresponding to the pressure levels

discussed earlier, and are quantified by a geopotential height, a. The ballistic wind calculation
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uses a function coesa( which is a lookup table for the 1976 Coesa Standard Atmosphere model

and returns a density, p, for a given MSL altitude (U.S. Standard Atmosphere 1976).The

procedure for calculating the ballistic wind is as follows:

Procedure 3: Ballistic Wind Calculation

drift = 0
time = 0
For i: 0.. len(u) - 1

p, = coesa(a[i])
P2 = coesa(a[i + 1])

1

f ri= (2g)2
1

fr 2 = i-f
(P2

fr1 + fr2fr= 22
dz = a[i + 1] - a[i]

u[i] + u[i + 1]
W= 2

dz
drift+= w-

fr
time+= dz/fr

ballistic = drift/time

Where g is a gravity constant taken to be 9.81 m/s, u is a wind component,w is the average wind

in a section of a column of air, drift is the lateral movement of the payload, dz is the change in

altitude, and fr is a fall rate They payload's fall rate is approximated by its terminal velocity, vt =

. The Ballistic Wind calculation procedure normalizes by the mission specific parameters,

FM. m is the mass of the payload, S is the projected area, and Cd is the drag coefficient. Because
SC d

these are constant for each altitude, they can be accounted for at the end and make a ballistic wind

calculation reflect a mission's parameters.
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3.8.2 Prediction of the Mean Winds over the DZ

Models fit using least squares were shown predict mean values of the winds over the DZ

(Section 3.4). To quantify the ballistic winds over the DZ, the output of the mean wind models

are used as input to the ballistic wind calculation. This ballistic wind value could be used to

calculate a CARP.

3.8.3 Ballistic Wind Uncertainty

Mission planners need the uncertainty of the ballistic wind estimate to derive probabilities for

different mission failure modes. Ideally, this uncertainty would be presented in the form of an

error CDF. This CDF can be used to estimate the probability of a drop missing the DZ or the

probability of hitting a protected object on the ground. The quality of an error CDF is often

quantified by its tightness and reliability. Tightness meaning that the widths of the distribution

are narrow and reliability meaning that for a given quantile, a, the expected percentage of

estimation errors are actually below that threshold. As seen in 3.8, the ballistic wind is a

weighted integration over the wind stick. By treating the prediction error on each pressure level

as a random variable, the problem becomes one of integrating over random variables.
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Figure 7: Ballistic Wind Monte Carlo

Figure 7 shows the general outline for how the ballistic wind error CDFs are inferred. For each

pressure level, a set of quantile regressors are fit that together predict wind CDFs for each

pressure level. The wind errors on each pressure level are random variables that are treated as

correlated. The integration of the winds on all the pressure levels is solved through Monte Carlo.

When the random variables are independent, the summation of n random variables is solved

through recursive convolution. For two random variables, where F(xi) specifies a marginal

distribution function and Z is the sum, the procedure is as follows:

F(xi) = P(Xj xj) (29)

Z =X1 + X2 (30)

F(z) = Zx cRx2 F(z - x 2 )F(x2 ) (31).

For n random variables, the distribution of the summation, Z, is found using:

Z=X1 +---+X,, (32)
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Y2 =X1+X2  (33)

Z = Yn = Yn_1 + Xn. (34)

Unfortunately, the prediction errors on each pressure level are not independent. Quantile

regression models are fit and used for each pressure level in the ballistic wind calculation. The

pressure levels that are near each other use many of the same input features during training and

operation. The result is that predicted error CDFs are correlated, so one cannot use recursive

convolution to sum the random variables. This section details a Monte Carlo based integration

method for correlated prediction CDFs.

As discussed above, the Monte Carlo needs samples from a vector of correlated, arbitrary

prediction distributions. This is accomplished through the use of a Gaussian Copula. A copula, C,

is the CDF of a random vector with uniform marginal distributions.

C(U) = P[U1 !! U1, ... , Un !! Un] (35)

Copula theory relies on Sklar's theorem which states that any multivariate cumulative distribution

function can be specified by a copula and its marginal distributions, and the copula is unique if the

marginal distributions are continuous (R-uschendorf, 2013).

A copula takes advantage of the fact that the probability integral transform, Fx(X), of a random

variable is a random variable with a uniform distribution. X is a random variable with an arbitrary

probability distribution. If Y = Fx(X) then Y has a uniform probability distribution U(0,1).

For a vector of random variables, the probability integral transform is applied to each component

to form the vector of uniformly distributed random variables needed for the copula.

(U1,., Un) = (Fxl (X1), ... , (X)) (36)
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If the inverse of each of the CDFs exists, the original margins can be recovered.

X1 = F-f'(U1) (37)

(X1,... ,Xn) = (F~1(U),... ,Fj(Un)) (38)

This method can be used to generate a vector of uniformly distributed random variables with

prescribed correlation. Consider the multivariate standard normal distribution, N(0, Z), where each

component is a standard normal, N(0,1), and the correlation matrix is specified by Z. Applying

the inverse probability integral transform produces a vector of uniformly distributed random

variables, U(0,1), with a ranked correlation matrix XR. The linear correlation between two random

variables is found through:

E [(X1 - PX1) X2 - PXz)]
Px1,x 2 =-. (39)

The ranked correlation matrix, ER, is calculated using the ranked correlation coefficient PR.

PR = p(FX (X1 ),FX2(X2)) (40)

(Papaefthymiou & Kurowicka, 2009) shows the two correlations are related by:

7r
p(X1,X2) = 2sin(-pr(X,X2)) (41)

6

Figure 8 shows this for the two dimensional case with correlation 0.5.
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Figure 8: Inverse Probability Transform for Two Dimensional Standard Normal.
This is an example showing that the correlation between two Gaussian random variables is

maintained after the inverse probability transform is applied to each.

Figure 8 shows two correlated normal random variables that were transformed into two

correlated uniform random variables.
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Figure 9: Scatter Plots Showing the Correlation Between the Generated Random Variables.
The left shows a scatter plot for the two Gaussain random variables. The right shows the

samples from the uniform random variables obtained after the inverse probability transform.

Figure 9 shows that the uniform random variables maintain the correlation after the probability

transform function is applied to the normal random variables.

53

1000

500

0
1.0

Normal 0.504

. -.'

.*-*.



The vector of correlated, uniformly distributed random variables can now be used to generate

samples from the wind distributions.

p1
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M/s
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Figure 10: Example Prediction CDFs for the Winds on Two Pressure.
The red line show the output of the quantile regression models. The block dots show the

distribution of generated samples for these CDFs.

Figure 10 shows, in red, an example of two CDFs prescribed by the output of the quantile

regression functions on two pressure levels for the east winds. 10,000 samples were generated

from these CDFs using the method described thus far and a ranked correlation of 0.5. The black

dots show the distribution of the samples generated from the CDFs in red, and they appear to

match well.
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Figure 11 Samples Generated from Example Uncertainty Distributions.
Two example uncertainty distributions for the winds on separate pressure levels are shown on

the axes. These are the PDFs of the CDFs shown in Figure 10. The scatter plot shows correlated
samples drawn from both distributions.

Figure 11 shows the density functions of the samples generated from the CDFs in Figure 10 on the

axes, and the samples are plotted in the center. The prescribed correlation was 0.5 and the samples

recover that value according to the spearman p coefficient.

The same procedure generalizes from the two dimensional case to the n dimensional case. The

result is many generated wind stick samples that together represent the total uncertainty. For each

wind stick sample, the wind values are integrated through pressure altitudes to get a ballistic wind.

Doing this for each sample wind stick, there are now many samples for what the ballistic wind

value could be according to the prediction CDFs. An outline of the procedure:
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Procedure 4: Ballistic Wind Monte Carlo

1. From the quantile regression models, obtain marginal distributions for the winds on each

pressure levels.

2. Define a covariance matrix, ER, that specifies the dependency you wish to model between

the random variables. This covariance is based on the Spearman rank correlation

coefficient.

3. Generate samples from a vector of Gaussian random variables with the same covariance

E. This covariance is calculated from ZR using the relation between linear correlation, p,

and rank correlation, PR. P(X(1, X 2) = 2sin( pT (X1 , X2))6

4. Apply the Gaussian probability integral transform to the generated Gaussian samples to

get a vector of correlated, uniformly distributed random variables

5. Apply the inverse cumulative distribution function of each marginal defined in (1) to each

component ofthe vector produced in (4). The result is a vector of samples from the margins

specified in (1) with covariance, ER, specified in (2).

6. Estimate a ballistic wind for each sample from the random vector. The accumulation of

these samples specify a discrete probability density function for the ballistic winds.

This procedure is based the work in (Bohdalovai & Slahor, 2014), (Embrechts, Lindskog, &

McNeil, 200 1), and (Papaefthymiou & Kurowicka, 2009) . One of the interesting extensions here

is that the marginal error CDFs are produced using quantile regression.

The correlation matrix, IR, used in the Ballistic Wind Monte Carlo has a large effect the

resultant ballistic wind uncertainty distribution. The correlation matrix specifies the correlation

between predicted wind errors on each pressure level used in the ballistic wind calculation. This

study began by modeling these errors as completely uncorrelated or correlated. The uncorrelated

model simulates that prediction errors on one level do not indicate prediction errors on any other

level. The perfectly correlated model simulates that the wind error on one pressure level fully

specifies the wind errors on the other pressure levels. The uncorrelated model tended to

underestimate the ballistic wind errors, and the perfectly correlated model tended to overestimate
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the ballistic wind errors. Using the knowledge that best answer is somewhere in between, a

method was developed for optimizing the correlation based on the performance in the validation

data set. Note that the validation set is different than the final test set used to qualify

performance.

Intuitively, pressure levels that are closer to each other should have errors that are more

correlated than pressure levels further away from each other. The correlation, p, between

pressure levels is modeled as exponentially decreasing with distance. The correlation between to

pressure levels, i and j, is found using

pij = pjj = eli-il. (42)

The parameter r controls the amount of correlation where a larger value decreases the amount a

correlation and a smaller value decreases the amount of correlation.

The amount of correlation between pressure levels is now controlled by the single parameter, r,

and the distance. r is selected based on the performance in the validation set. The validation set

is set of samples not directly used by the models for fitting, so it gives an idea of how the model

generalizes. Optimizing a parameter using the validation set could limit one's ability to

regularize a model, but it was found to be effective in this case. The procedure for evaluating a

particular r value was as follows:

Procedure 5: Evaluating The Performance of Parameter r

1. Generate CDFs for the errors on each pressure using the quantile regression models for

the data in the validation set.

2. Calculate a correlation matrix ZE using r.
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3. Run the Ballistic Wind Monte Carlo Procedure for each sample from step (1) and the

correlation matrix from step (2).

4. For each validation sample, find the quantile, q, of the true ballistic value in the

uncertainty distribution produced in step (3).

5. Sort the observed quantiles, q, into b bins. The normalized number of observations is

each bin, bi, is denoted as ni.

6. Evaluate the loss,

max1
Lr max - (43)

Procedure 5 is used in a golden interval search (Press, Teukolsky, Vetterling, & Flannery, 2007)

to find an optimal r value. The starting bounds for an interval search is set at 0 and 4. r values

less than 0 result in correlations greater than 1, and r values greater than 4 were observed to

create too much correlation between pressure levels.

The method of selecting an r value is analogous to building a regression model for the ballistic

wind from one drop altitude. The methodology in Section 3.2 built regression models for the

winds on one pressure level at a time. This was done to reduce the dimensionality for any one

regression model and to keep the solution modular. It is possible for an aircraft to release the

dropsonde from a different altitude than the final payload. If a model tried to predict the ballistic

winds directly, one would require a feature set, and model, for each combination of dropsonde

and payload altitudes, or some way of including a dropsonde's position in the feature set. These

models would find relationships between the winds on each pressure level and produce a

dynamic ballistic wind value. The r value and the ballistic wind Monte Carlo are how the

methodology presented thus far balance a modular solution and what might be an optimum

solution found by ballistic wind regression models.
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4 Results and Analysis

4.1 Summary of Findings

The overall goal of this thesis is to produce a method for estimating the winds at a DZ using

deterministic forecasts and a dropsonde released at a distant, remote location. The available

forecasts are formatted as large arrays of multiple variables. Section 3.6.2.1 shows a method for

generating features from the forecasts and iteratively trimming poorly performing features.

Section 4.2 shows how this method successfully reduced the feature space by 69% and decreased

training time by approximately 75%. This methodology could be used to select features for

future models. After Section 3.6.2.1, models were trained using a feature set without the time

derivative features, without the pressure level derivative features, with PCA vectors of length 50,

and without trimming poorly predictive features. The exact features used in this set are shown in

Table 8 in Appendix A. Finding and studying which features are most predictive at different

positions in the weather cube using the iterative trimming method is left for future work.

Section 3.3 details how to fit Tree Boosting models that predict DZ winds using forecasts and a

remote dropsonde. Section 3.8 shows a method for integrating over a set of DZ wind predictions

to produce a ballistic wind estimate and uncertainty. To verify this wind estimation system, it is

first shown that the method is successful when fit using pseudo-dropsondes released 92 km

northeast of a DZ near Yuma, AZ. A variety of mission restrictions might make releasing a

dropsonde exactly 92 km northeast of a DZ impossible, so it is then established that the method

can be repeated for other RLs around the same DZ. If one was interested in performing remote

dropsonde missions at this DZ today, they could use the developed system successfully. Airdrop

missions are conducted all over the globe, so it is next established that the method developed for

the DZ at Yuma could be extended to other geographic locations. Models are trained and
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evaluated using data from DZs near Dyess TX, Riverton WY, and Minot ND. These models have

similar performance when tested on data from the same geographic location as the training site.

Ideally, one would have a history of forecasts and analyses for every location around the globe.

One could then pull the relevant data for a target DZ and fit a model before an airdrop mission.

Unfortunately, this data does not exist with necessary resolution, so for this method to be useful,

it must perform on locations unseen during training. Some preliminary results are shown for

models trained using a few DZs and later tested on data from a different DZ (Section 4.3.4).

In the airdrop community, a wind estimate is only as good as its uncertainty. Section 3.8.3

detailed a quantile regression and Monte Carlo based method for inferring the uncertainty of a

ballistic wind estimate. Section 4.4.3 shows that the dynamically produced uncertainty CDFs are

useful.

The results in this section are taken from a test dataset unless denoted otherwise. Section 3.7

details where the data samples come from and how the complete dataset is split into a training,

validation, and test set. For all experiments in this chapter, 75% of the data was placed in the fit

set, 15% was in the validation set, and 10% was used in the test set. For the data shown in Table

6, 25440 random samples were in the training set, 5088 random samples were in the validation

set, and random 3392 samples were in the test set. The features used to fit these models are

shown in Table 8 in Appendix A.
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4.2 Feature Selection

pca len 50, number of features 1.090 pca len 50, rmse m/s (cross-validated)
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Figure 12: Iteration vs Cross- Validated RMSE for P =50.
Results for the application of Procedure 2: Iterative Feature Trimming. The worst 5%

performingfeatures were removed from the model after each iteration. The figure on the left
shows the number offeatures included in the model after each iteration. The figure on the right

show the 3-fold RMSE for each iteration. The Tree Boosting algorithm effectively chewed
through noisy features from iteration 0 to 21. After iteration 21, the trimming procedure removed

predictive features.

Figure 12 shows the results of the iterative trimming method, Procedure 2, for PCA vectors of

length 50 (P = 50) and data from the 92.5 kPa pressure level, the 92 km northeast RL, a u

model, and a Yuma DZ. The trimming rate, p, was set to 95%. The left plot shows the length of

the feature vector evaluated at each iteration. With this P value, the procedure started at 616

features at iteration 0 and ended with 39 features at iteration 50. The right subplot shows the 3-

fold cross-validation RMSE for each iteration. It was expected that the RMSE plot would show a
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noisy valley where the performance gradually improved to a global minimum then started to get

worse as the trimming began removing useful features. Interestingly, this experiment showed

that the estimation performance improved very gradually, and the global RMSE minimum only

increased the performance by 0.6% from the starting value. This shows the Tree Boosting

algorithm was effective in weeding through the insignificant features at early iterations. If one

chose the iteration with the lowest RMSE, the feature set is reduced by 69%.
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Figure 13 Training Time vs Iteration Number.
This plot show average training time for a model in the 3-fold cross validation. The number of

features decreased at each iteration and the training time decreased accordingly. From (Hastie,
Tibshirani, & Friedman, 2009), the Tree Boosting algorithm's required training time scales

linearly with the number of included features.
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As seen in Figure 14, the reduced feature set allowed models to train more quickly. This gain

will become more important as regression models are trained on larger histories of weather and

data or train models on a variety of DZ.

pca len 50, number remaining
.-. Relative Humidty Height DT

Temperature Vertical Winds M-4 DL
Vwinds PCA Sonde

350 - U winds

300-

250-

E
2 200 - - - -

E 150 -

50

0 10 20 30 40 50
iteration

Figure 14: Number of Features in Categories After Each Trimming Iteration.
The number offeatures remaining in a number of categories is plotted against iteration. The
categories are not mutually exclusive, so the sum of the size of all categories for an iteration

does not equal the feature vector length.

For the same experiment, Figure 14 shows the number of features remaining in different feature

categories after each trimming iteration. Notice that for each iteration the sum of all the

categories does not equal the length of the feature set. The DT and DL categories representing

the discrete time and pressure level derivatives share features with some or all of the other

categories. This plot shows that the DT, DL, and PCA features make up a significant portion of
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the feature space. Perhaps unsurprisingly, these categories quickly shrink. This is better

illustrated in Figure 15.

pca len 50, feat number

10 20 30 40 50
feat number

Figure 15: Ratio of Features Remaining in Each Category After Each Trimming Iteration.
The ratio of remaining features in a category is the number offeatures in a category at iteration
i divided by the number offeatures in that category at iteration 0. This figure illustrates the rate

at which different feature categories were trimmed. It shows that the dropsonde features,
'Sonde', are generally the most predictive category and the features in the 'Vertical Winds'
category are generally the least predictive category. The 'DT' and 'DL'features are also

trimmed very quickly, but this is likely because they make up a large percentage of the total
feature vector length.

Figure 15 shows the ratio of features remaining in each category compared to the starting set.

The slope of each line demonstrates the attrition rate for each category. The sonde features are

trimmed at the slowest rate which reflects the intuition that they would be most predictive of a
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sonde at the DZ. The DL and DT features are trimmed at the fastest rate which implies that they

are generally less predictive than other categories.

The method shown in 3.6.2.1 can also be used to select an appropriate PCA vector length, P.

One can generate starting feature sets for different values of P, repeat the trimming method, and

select the feature set with the best performance from all iterations of each P value.
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Figure 16 PCA Selection through Iterative Feature Trimming.
The trimming procedure was repeatedfor vectors with different PCA lengths. All showed a
similar pattern of consistent or improved performance until a minimum and a decrease in

performance after. Future models were trained using the features at the iteration and P value
with the lowest RMSE.
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Figure 16 shows the results for experiments with P values of 5, 15, 25, 35, 50, 60, and 75. For

most P values, the trend from Figure 12 is repeated where performance generally improved until

the point where useful features are trimmed. The best performance was observed at iteration 25

for a P value of 60. At this point the feature vector is of length 187. This P value and reduced

feature set is the recommended value for future models. This procedure can be repeated for

models fit on data from each pressure level and for each wind component.

4.3 Predicting the Winds Over the DZ using Machine Learning

4.3.1 Using a model for a fixed RL to predict the winds at the DZ

The weather cube used in this study is a three dimensional array spanning an east direction, a

north direction, and vertical pressure levels. The first goal was to build a regression model that

could predict the winds at the DZ using features derived from a remote dropsonde and a

deterministic forecast. A regression model for each wind component and for each pressure level

in the weather cube and, eventually, every remote grid point was fit and evaluated separately. A

model was fit for both the u and v wind components seperatly. The first grid point tested was

approximately 92 km northeast of the DZ at gridpoint (15,15). Figure 17 shows how the RMSE,

when predicting DZ winds, for each pressure level's model. For this experiment, the models

were fit on the RAP dataset discussed in Section 3.7. The set of models' performance on the test

data set is shown in this section.
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Figure 17 RMSE for U wind estimate on each pressure level.

The performance of the models for each pressure level and each wind component are shown. The

ML models are shown to consistent outperform Barnes in a test dataset.
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Figure 18: RMSE for V wind estimate on each pressure level.
The performance of the models for each pressure level and each wind component are shown. The

ML models are shown to consistent outperform Barnes in a test dataset.

Figure 17 shows RMSE for the machine learning model (ML) and for the Barnes method. For

both the u and v wind components, the ML model outperforms the Barnes scheme. The wind
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predictions over the DZ for each pressure level are not particularly useful by themselves, but

they are they later used in the ballistic wind estimates which are used to calculate a CARP.

Section 3.8 discusses why the ballistic wind is the most useful wind metric when evaluating wind

assimilation methods for airdrop. The ballistic wind is a density weighted integration of the

winds experienced by a payload falling through the atmosphere. The experiments in this section

m
calculated a ballistic wind for payloads with normalized parameters, - = 1. For drops ofSCD

various mass (m), drag area (s), or drag coefficient (CD), the ballistic wind can be converted

through a post multiply.
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Figure 19: U Ballistic Wind RMSE. Yuma
The Ballistic wind is calculated according to Procedure 3. This plot shows the RMSE ballistic
wind for a drop from each pressure level. Again, the ML models are shown to outperform the

Barnes scheme.
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Figure 20: V Ballistic Wind RMSE. Yuma

The Ballistic wind is calculated according to Procedure 3. This plot shows the RMSE ballistic wind for a

drop from each pressure level. Again, the ML models are shown to outperform the Barnes scheme.

Figure 19 show the ballistic wind RMSE for both the ML Models and the Barnes scheme when

dropping from each pressure level. Figure 17 showed that the ML Models outperformed the

Barnes scheme when estimating winds on each pressure level, and Figure 19 shows that these

gains translate to the ballistic wind errors. Figure 19 was produced from the test data set for

Yuma with the remote location 92 km northeast of the DZ (grid point (15,15)).

4.3.2 Results extended to other RLs around the Yuma DZ

Sections 4.3.1 showed the regression models outperform the Barnes scheme when fit and tested

on dropsonde data from the grid point 92 km northeast of the DZ. Ideally, a remote dropsonde

mission would succeed when the aircraft approaches the DZ from any direction. Figure 21 shows

that similar performance is achieved at each remote location within the wind grid that is greater
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than 50 km away from the DZ. The RLs are taken to be the grid points of the forecasts and

analyses.

lvi 30, RMSE (m/s)

117 ML Model 3.0 117 Banes 3.0
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-11 0.0 -117 -0.0
-1717 -65 0 65 117 -117 -65 0 65 117

km km
Figure 21 RME for pressure level 85 kPa.

Each RL has its own model. All models try to predict the winds at the DZ with a dropsonde at its
location. ML models outperform the Barnes scheme at each remote location. The variance maps

show that he ML models are also more reliable than the Barnes scheme.

For drops from the 85 kPa pressure level, the ML models had a ballistic wind RMSE between

0.8 and 1.1 m/s for each remote location. From the map, it is apparent that the ML models'

performance had some dependence on the distance from the RL to the DZ, but it is a relatively

weak. The Barnes scheme had ballistic wind RMSE values between 1.2 and 2.3 m/s showing its

performance was much worse on average. The Barnes scheme's performance also shows a much

stronger dependence on the distance from the DZ to the RL.

For the 20 x 20 weather grids used in this study, this methodology would require 400 sets of ML

models if one wanted to release a dropsonde at any remote location. This is computationally

expensive, and it might not be necessary. The input feature set essentially masks the location of
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the dropsonde. This was done because, in these initial cases, models are trained using data from

one droposnde location and from one DZ. Any geographic information based on terrain or the

distance from the DZ to the RL is not included in the input features because they are static in the

data set. This limits the models to finding patterns in weather values at the RL and DZ and

patterns in the wind fields. Perhaps it should be expected that the models trained based on one

RL should work reasonably well on data from a different RL.
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Figure 22: ML Models Fit at One RL and Tested at Other RLs, U Ballistic Wind.
The orange heat map shows the RMSE for models trained on datafrom each pixel. On the lower
4 heat maps, the ML Model that was fit at the grid point marked in blue was tested on data from
each of the other grid points. The red heat maps show the additional RMSE over the orange heat
map. The model trained on data from the marked grid point performs well on data from nearby
grid points. The performance decreases as the distance from the training grid point increases.
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Figure 22 shows how a regression model fit at one RL performs based on dropsonde data at

other RLs. The pixels in Figure 22 show the additional error for models trained on data from one

grid point, marked with blue text, and tested on data from each other RL. The performance for

grid points adjacent to the training point are effectively the same. The performance degrades

with the distance from the training grid point.

This is a useful result for a number of reasons. First, it shows the ML Models are generally

robust to positioning errors created by the dropsonde or the aircraft. Second, it shows that

regression models for each RL might not be necessary. One might be able to save computer disk

space and development time by building one set of regression models for a geographic region.

4.3.3 Extending the Methodology to other DZ Locations: Dyess, Minot, and Riverton

Up till now, models have been trained and tested on data from Yuma, AZ. Airdrop missions

could be performed almost anywhere and at any time, so it is pertinent that these results were not

unique for Yuma.
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Figure 23 U and V Ballistic Wind RMSE. Dyess
This figure repeats the procedure shown in Figure 19 and 16, but the data is from Dyess, TX

instead of Yuma. The performance is similar to the model from Yuma, and shows ML models can
work at other geographic locations when they are trained on data from that location.
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Figure 24 U and V Ballistic Wind RMSE. Riverton
This figure repeats the procedure shown in Figure 19 and 16, but the data is from Riverton, UT
instead of Yuma. The performance is similar to the modelfrom Yuma, and shows ML models can

work at other geographic locations when they are trained on data from that location.
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Figure 25 U and V Ballistic Wind RMSE. Minot
This figure repeats the procedure shown in Figure 19 and 16, but the data is from MinotND

instead of Yuma. The performance is similar to the model from Yuma, and shows ML models can
work at other geographic locations when they are trained on data from that location.

Figure 23-24 show the Ballistic wind errors for the RL 92 km northeast of the various DZ. This

shows that models trained on different geographic areas can have similar results when testing at

the training DZ.

4.3.4 Transferring Models from one DZ to a Different DZ

Aircrews could perform airdrops missions almost anywhere in the world. Unfortunately, there is

no set of forecasts and analyses, with a fine enough resolution, that span the globe, and it is

unlikely that one exists. For an attempt at a global solution, models were trained on some set of

DZs and then tested on totally separate DZs.
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Figure 26: Training and testing on separate sets of DZs, U Ballistic Winds.
Previously, it was established that models at different geographic locations could successfully be
fit and tested on data from that location. This figure establishes that models trained on one DZ
can be successfully used on data from another DZ. The model trained on one DZ, Minot, and

tested on another DZ, Yuma, still outperforms the Barnes scheme at lower altitudes. The Model
trained on multiple DZs, Dyess Riverton Minot, outperforms the model trained on one other DZ

and the Barnes scheme.

Figure 26 shows results for models trained and tested on separate sets of DZs. The errors shown

in these plots were all based on test data from Yuma. The models were trained on a single or

multiple DZs. The legend shows the training location for the different models. Unsurprisingly,

the model with the lowest error was the one fit and tested on the same location, Yuma. The

model trained on only one location, Minot, ND, that was different than the test location showed

significantly worse performance, but still outperformed the Barnes scheme at lower altitudes.
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This is an encouraging result that shows, in at least some instances, models fit on one location

can be used at other locations.

Figure 26 also shows errors for a model trained on Dyess, Riverton, and Minot then tested on

Yuma. While this model also did not perform as well as the model trained and tested on the same

location, it outperformed Barnes and the model trained on only one DZ. This increase in

performance, while marginal, over the model trained on only one location shows that training on

multiple locations can improve a model's performance when testing on other DZs.

- Barnes
- Fit at Yuma
- Fit at Mino
- Fit at Dyes

t
s+Riverton+Minot

0.5 1.0
Ballistic Wind RMSE (m/s)

Figure 27: Training and testing on separate sets of DZs, V Ballistic Winds.
This figure repeats the results from Figure 26for the V ballistic winds. This figure establishes
that models trained on one DZ can be successfully used on data from another DZ. The model

trained on one DZ, Minot, and tested on another DZ, Yuma, still outperforms the Barnes scheme
at lower drop altitudes. The Model trained on multiple DZs, Dyess Riverton Minot, outperforms

the model trained on one other DZ and the Barnes scheme at all altitudes.
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Figure 27 repeats the results from Figure 26 for the v ballistic winds. The model trained on data

from only the Minot DZ outperforms the Barnes scheme at lower altitudes, but it is worse at

lower altitudes. The model trained on the data from three DZs, Dyess + Riverton + Minot,

outperforms both the Minot only model and the Barnes scheme at all drop levels. Like the case

for the u ballistic winds, the models trained on other DZs did not recover the performance of the

model trained and tested on the Yuma DZ dataset. This shows a trend where training on multiple

DZs improves performance, and models can be used DZs. Determining how much data is

beneficial is to be determined.

4.4 Quantifying a Dynamic Uncertainty of the Prediction

4.4.1 Estimating the correlation between error CDFs

For each pressure level and for each wind component, a set of quantile regression models

produce a wind CDF for each prediction. A Monte Carlo procedure, outlined in Section 3.5,

integrates through random variables, wind CDFs, associated with each pressure level. One of the

interesting aspects of this Monte Carlo is that the random variables are modeled as correlated

through a Gaussian copula.
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Figure 28 Correlation Matrix for Monte Carlo Procedure 4.
This correlation matrix is used in the ballistic wind Monte Carlo to produce uncertainty CDFs

for the ballistic wind estimate. The correlation matrix was calculated using Procedure 5:
Evaluating The Performance of Parameter r.

Figure 28 shows the correlation matrix for the model at Yuma RL (15,15). Pressure levels that

are close to each other are more correlated than pressure levels that are further away.

4.4.2 Sample Output for Ballistic Wind Error

For each ballistic wind estimate, the Monte Carlo procedure from Section 3.5 produces a

prediction error CDF. This specifies the estimated possible values for the ballistic wind error and

their associated likelihood.
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Figure 29: Sample Monte Carlo Output.
For each drop, the ballistic wind Monte Carlo produces a distribution ofpossible winds over the

DZ. This is an example output for one drop from 85 kPa Pressure Altitude.

Figure 29 shows a sample output for the Monte Carlo for at the Yuma Model with RL (15,15).

The leftmost subplot shows the density for the possible wind and the right plot shows the error

CDF.
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4.4.3 Dynamic Uncertainty Performance

For each drop time and for each pressure level, a new uncertainty CDF is produced. To evaluate

these CDFs, the average observed quantile is observed. The observed quantile can be found for

any sample where a prediction is made and the truth is later observed. The procedure is in

Section 3.5. On average, the observed quantiles should follow a standard uniform distribution

U(0,1).
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Figure 30 U Wind Distribution of Observed Quantiles for Each Pressure Level.
For each pressure level there are a set of quantile regression models that, together, produce an
uncertainty CDFfor the winds on that level. This shows the normalized number of observations

that fall into quantile bins of width 0.01. Ideally, the observations would be unformally
distributed between each quantile bin. This demonstrates an 'average error'for the quantile

regression models. They are well behaved at most quantiles but perform relatively poorly near
the tails. The atmospheric pressure (kPa) is displayed by the y-axis for each pressure level.
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Figure 31: V Wind Distribution of Observed Quantiles for Each Pressure Level.
For each pressure level there are a set of quantile regression models that, together, produce an

uncertainty CDFfor the winds on that level. This shows the normalized number of observations
that fall into quantile bins of width 0.01. Ideally, the observations would be uniformly distributed

between each quantile bin. This demonstrates an 'average error'for the quantile regression

models. They are well behaved at most quantiles but perform relatively poorly near the tails. The
atmospheric pressure (kPa) is displayed by the y-axis for each pressure level.
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Figure 30 shows the distribution of observed quantiles in the test data set for each the prediction

CDFs for each pressure level.

For each sample, the wind prediction system finds an error CDF for the ballistic wind. Ideally,

the true ballistic wind would be less than or equal to the winds at the xrt quantile r * 100% of the

samples.
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Figure 32 U Ballistic Wind QQ Plot for Ballistic Wind CDFs.
This plot shows the performance of the ballistic wind CDFs produced for a drop from the 65 kPa
pressure level. The QQ plot shows actual number of observations below a quantile vs the ideal

number of observations below a quantile. Datafrom the Yuma RL (15,15) model.
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Figure 33 V Ballistic Wind QQ Plot for Ballistic Wind CDFs.
This plot shows the performance of the ballistic wind CDFs produced for a drop from the 65 kPa

pressure level. The QQ plot shows actual number of observations below a quantile vs the ideal
number of observations below a quantile. Data from the Yuma RL (15,15) model.

Figure 323 show the QQ plots for the u and v winds for the Yuma RL (15,15) model. These

plots show that the dynamic uncertainty estimate accurately reflects the error distribution on

average. These error distributions can be used to derive important mission risks like the

probability of a drop landing off of a DZ or the probability of hitting a protected object on the

DZ.

4.5 Accuracy in Estimating the Payload Drift

Thus far, Sections 4.3 and 4.4 showed that the machine learning (ML) models outperform the

currently used Barnes scheme. Figure 17 RMSE for U wind estimate on each pressure level.

showed that the ML models outperform Barnes when estimating DZ winds for each pressure

level. Procedure 4 shows a method for integrating the wind stick over the DZ to estimate a
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ballistic wind. This ballistic wind represents the total wind a payload would experience during a

drop. Figure 19 and 16 showed that the ML models also outperform Barnes in predicting ballistic

winds over the DZ. The ballistic wind is found by the drift divided by the time of fall. Section

4.3.1 showed ballistic wind values, plotted against drop pressure levels, for a normalized set of

payload parameters.

-- = 1 (44)
SCd

Where m is the total payload mass, s is the cross-sectional area, and Cd is the drag coefficient.

Answering whether the estimations are accurate enough is dependent on these payload

parameters. If one substitutes typical payload parameters, one can get a better idea of how the

system will perform.
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Figure 34: Percentage On DZ Drops for a DZ of Radius 400 m with Varying Mass.
Drops are from 40 kPa pressure altitude. Data is from the test set for the DZ at Yuma and the
dropsonde location 92 km northeast of the DZ. 'HV' denotes a high-velocity chute, and 'LV'

denotes a low-velocity chute. This plot also shows the ML models outperform the Barnes scheme.
Note that drops with a higher fall rate (high-velocity chute and high payload mass) tend to be
much more accurate. This is simply because wind estimation errors have less time to blow the

payload off target.

Figure 34 shows the percentage of drops that would hit the DZ from the test set at Yuma, AZ and

the RL 92 km northeast of the DZ. A missed drop is defined as landing more than 400 meters

from the DZ. The model was fit and tested based on dropsondes released 92 km northeast of the

DZ. The payload was simulated as released form 40 kPa which is approximately 7,100 meters

altitude MSL. These results are based on using a both high-velocity and low-velocity parachutes

with sCd = 219 m2 , 283.5 M 2 . Clearly payloads with more mass have a higher fall rate than

payloads with less mass. A lower fall rate causes more wind dependent drift, so wind estimation
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errors become more pronounced and cause more off DZ drops when using low-velocity chutes.

For the best accuracy, one should always choose high mass payload with high velocity chutes.

Some payload demand a low impact velocity to prevent damage, so low velocity chutes are used

in some instances. Based on the average results in Figure 34, low-velocity chutes greatly

decrease mission accuracy.
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Figure 35: Percentage of on DZ Drops for a 750 kg payload with Varying DZ Radius.
Drops are from 40 kPa pressure altitude. Data is from the test set for the DZ at Yuma and the
dropsonde location 92 km northeast of the DZ. 'HV' denotes a high-velocity chute, and 'LV'

denotes a low-velocity chute. This plot also shows the ML models outperform the Barnes scheme.
Note that the gains over the Barnes scheme increase with DZ radius for the LV chutes while the

gains decrease with radius for the HV chutes.
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Figure 34 showed the miss percentage based on a DZ with a 400 meter radius. DZs, just like

people, come in all shapes and sizes. Figure 35 shows how the miss percentage varies for a

nominal payload mass, 750 kg, released from 40 kPa. As was shown previously, the high-

velocity chute greatly outperforms the low-velocity chute. Unsurprisingly, the hit percentage

increases as the size of the target increases. For very large DZs, the ML models offer very little

advantage over the Barnes scheme when using high-velocity chutes. The gains over Barnes are

more pronounced with the low-velocity cases, but based on the average performance, it is a risky

mission for either estimation method.
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Figure 36: Miss Percentage for a Various Drop Altitudes for a Nominal Drop.

These results are based on a 750 kg payload and a 400 meter radius DZ. These are both

typical parameterfor real drops. The ML models outperform Barnes again in all cases.

The high-velocity chutes (HV) again are much high performing than the low-velocity

chutes (L V). The hit percentage also increases as the drop altitude decreases. Lower

altitude drops have less time for wind estimation errors to propagate and cause off DZ
drons.

Figure 36 shows the miss percentage for typical payload released from various drop altitudes.

Again, the ML models outperform the Barnes scheme in all cases. The high-velocity chutes also
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prove to much more consistent than the low-velocity chutes. Drops are also much more accurate

from lower drop altitudes. At lower altitudes, there is less time for wind estimation errors to

propagate and push the payload off target.

90



5 Conclusions

Aircrews demand a method for accurately estimating the winds over a drop zone without making

a direct measurement. Discussed thus far is a method for assimilating remote dropsondes with

deterministic forecasts using machine learning. There are a variety of weather measurement

assimilation schemes available, but the method based on machine learning addresses the specific

single pass airdrop problem.

Section 3.6 discussed a methodology for pulling predictive features from the weather forecast

and remote dropsonde measurement. Using unprocessed weather forecasts is unfeasible because

of the large number of states. This study used a generate and test procedure that balanced

intuition with predictive results. Section 4.2 shows the feature selection methodology was

successful in improving cross-validated accuracy by 0.6% and reducing the size of the feature

set by 69%.

Section 4.3 summarizes the predictive accuracy when estimating the winds over of a DZ near

Yuma, AZ. This study first established, that on a per pressure level basis, the machine learning

models outperformed the Barnes scheme by 0.5 to I m/s RMSE. A ballistic wind is a density

weighted integration of the winds in a column of air, and it was shown the machine learning

models also outperform the Barnes scheme in predicting this metric by 0.2 to 0.6 m/s RMSE.

The results were repeated for a map of RLs surrounding the Yuma DZ. The Barnes scheme

showed a strong dependence on the distance between the RL and the DZ with RMSE values

between 1.2 and 2.3 m/s, and the machine learning models showed a much weaker dependence

with RMSE values between .8 and 1.1 m/s.
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Airdrop missions must be conducted on locations without a large historical dataset of weather

forecasts. Section 4.3.4 showed that models trained on a set of DZs outperform the Barnes

scheme when tested on a DZ unseen during training by up to 0.3 m/s RMSE. This shows it is

useful to learn on multiple DZs, and it may be possible to produce a global solution with this

methodology.

Section 3.5 detailed a methodology for inferring the uncertainty of a wind prediction using

quantile regression. Section 4.4 shows that this methodology produces a dynamic uncertainty

estimate unique to each airdrop mission, and the uncertainty estimate accurately reflect the error

in simulated in the drops. This uncertainty estimate is useful for inferring the probability of

various failure scenarios like a payload missing a DZ or a payload hitting a protected object.

Section 4.5 shows the accuracy for various simulated drop scenarios. It is shown that the

machine learning models result in approximately 20% more drops hitting the DZ for nominal

drop weights and altitudes. These simulations are based on the assumption that the winds in the

weather analysis would be the true winds experienced by the payload, and there would be no

other errors during a drop that would push the payload off the DZ. This is a strong assumption,

but the on DZ percentages presented in Section 4.5 are still useful for estimating the effect of

wind estimation errors.

5.1 Comparison to other methods

Thus far, most results have compared the developed ML method with the Barnes scheme. The

Barnes scheme was not designed specifically for this task, and perhaps unsurprisingly, it is not

the best suited. It is treated as a baseline because it is the method currently used to assimilate

dropsondes with deterministic forecasts in the airdrop community. There are a variety of other
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methods that might work for this dropsonde assimilation task, and some might be worth pursuing

in the future.

Section 2.1.1 briefly touched on how the ensemble Kalman filter could be used for the remote

dropsonde mission. It checks most of the mission requirement boxes. One could pick the optimal

dropsonde location based on the ensemble forecast covariance matrix. After releasing a sonde,

the filter could provide an optimal estimate, in the information theory sense, of the winds

anywhere in the weather cube. The final answer would also come with an updated uncertainty

that is dependent on the dropsonde and forecast uncertainty. Current data limitations make the

EKF unusable. In the purest form, a forecast ensemble is typically 12-24 times larger than a

standard deterministic forecast. In some cases this is 12-24 times more data than an aircrew is

able to download before a drop. It might be possible, and worth pursing, to develop a method for

compressing the information in the forecast ensemble to a size small enough to download. There

are many open ended questions when it comes to the ensemble Kalman filter. What is the

accuracy when applied to the remote dropsonde mission? How much data can aircrews download

before a mission? If the data needed to be compressed, how could one compress the data while

maintaining acceptable performance? All of these questions are equally important and require

significant development time before they can be answered.

The results in this study suggest the best method might be another machine learning algorithm.

The Boosted Regression Tree algorithm, that was used in this study, operates on a single

processor core, and therefore scales poorly. Section 4.3.4 showed some encouraging results

where models are trained on sets of multiple of geographic locations (DZs). Training on multiple

DZs greatly increases the training data, and how many DZs should be included in a training set is

still an open question. GPU trained neural networks have been used to solve the greatest
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challenges in the function approximation domain, but they can demand large amounts of data to

be successful. Training on multiple DZs opens up much more data for training, and it is likely

that neural networks could better learn from the increased data set.

5.2 Data Dependency

The results in Chapter 4 were for models fit on data from one or a few geographic locations and

a time period from mid-2012 until late-2016. The size of the dataset is a function of both

development time and data availability. We found that models started to outperform Barnes

when approximately 15,000 samples were available for training. These models were fit using

approximately half of the total available data and tested on data from the same geographic

location, and it was observed that the models generally improved as more training data was used.

This study used the RAP dataset available from NOAA. NOAA is still producing forecasts and

analyses using the RAP system, so it is likely the models could continue to improve as more data

becomes available. There is likely a point where this methodology reaches diminishing returns

for the data set size, but that point has not been reached in this study.

Section 4.3.4 showed some results for models trained on a few DZs and tested on data from a

different DZ. There the performance was shown to increase as more DZs were added, but the

performance did not reach that of the model trained and tested on the same location. It has been

discussed that airdrop missions could be planned for locations where histories of forecasts and

analyses are not available. Even if this data was available for the entire globe, it is

computationally infeasible to train models for every potential DZ. This fosters the demand for

models that can perform on geographic locations different than the fit location. The question of

how much data and how many geographic locations is unanswered in this study.
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5.3 Run Time

(Friedman, 2001) states that the training time for the Tree Boosting algorithm scales linearly

with both the number of features and the number of samples in the model. Figure 13 shows an

example of how the training time scales with the number of features included in the model. If

one was lucky enough to have historical data for a DZ, these figures would give an idea about

the amount of time needed fit a model for the drop. Typically, preliminary planning for a drop

begins days or weeks ahead of time, so there would clearly be enough time to train a model for a

specific location in the event that the data is available. Ideally, a set of models will be trained

offline and either a combination of the set or a selected member from the set will be used for a

drop. This makes the complexity for a producing an estimate from the model the key metric.

Producing an estimate from the models falls into two phases: data preprocessing and execution.

Preprocessing includes: subsampling the forecast area to the DZ, generating the features from

Section 3.6.1.1, producing the PCA features according to Section 3.6.1.2, and preparing the

dropsonde features according to the method in Section 3.6.1.4. Execution includes: obtaining an

estimate for each wind component for the mean winds on each pressure levels, getting quantile

estimates for discrete quantile of each wind component on each pressure level, estimating a

ballistic wind for the mean estimates, and finally running the ballistic wind Monte Carlo outlined

in Section 3.5. Example run times for each phase is shown in Table 7. This is based on a drop

with 30 pressure levels and 10,000 Monte Carlo runs for the both the u and v winds.

Table 7: Runtime for Subprocesses

Data Preprocessing .040 s
Mean Execution .057 s
Quantile Execution .009 s
Monte Carlo Execution 16.9 s
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5.4 Future Work

5.4.1 Scaling to a global solution

The greatest limitation of this study is that it only shows the method works on four DZ locations.

The method also works best for data from geographic locations included in the training set.

Section 4.3.4 shows that there are performance gains over the Barnes scheme when testing on

geographic locations not included in the training set. While this is an encouraging result, it is still

an open question of if or when a model's performance will reach that of model trained on the test

location. The ultimate solution will be a system that can be used at any location.

One solution to the global solution might be training on as many geographic locations as

possible. If a model is exposed to data from every location in North America, would that model

be useful at places outside North America? 4.3.4 shows moderate success for training on three

DZs and testing on a fourth, but learning on hundreds or thousands would likely be a much

different problem.

A different approach to the global solution might be training a representative set of models. One

could define a set of terrain descriptions like: mountainous, coastal, and flat. One could define

another set of climates: tropical, desert, mild, and tundra. One could build a model based on the

cross-product of the terrain set and climate set to form a set of representative DZs. Ideally, there

would be training set of forecasts and analyses matching the characteristic of each of the

representative DZs, and one could train the models for the representative sets. To perform a drop

for any new DZ, one could try to classify the DZ into one of the representative sets or use a

blend of the representative sets. Finding the locations for the representative set, identifying the

best representative set member for a new DZ, and answering how many members of the

representative set is sufficient are all difficult problems.
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5.4.2 Finding the best dropsonde location

Before one could use the methods outlined so far, a dropsonde must be released en route of the

DZ. We have trained models for each potential remote location grid point and evaluated their

average performance. Based on the average performance through time, one would want to

release the dropsonde as close to the DZ as possible when using both ML models and the Barnes

scheme. For any one drop time, the dropsonde location that would give the best final answer

could be anywhere on the map, and again, this true for both the ML models and the Barnes

scheme. A system is needed to pick out the best dropsonde location before the dropsonde is

released. The system would ideally take deterministic forecast as input, and return as output, an

estimate of the miss distance for a remote dropsonde mission for each potential location. This

would be a miss distance estimate for each remote location and each potential release altitude.

The system would allow a mission planner to select the best dropsonde location based on

predicted miss distance.
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Figure 37 Flowchart for Wind Error Estimation Model development.
This model was take forecast features as input and try to predict the final wind error of the wind
estimation models (Model A). The training set would come from Model A's estimations errors in

its test set.

A possible method, shown in Figure 37, for producing this system would be to fit ML models,

wind error models, with forecast features as input and the error from an estimation method, wind

assimilation models, as the response. It would be best to use examples from the test set of the

98

Operational
Wind Assimilation

Model

Machine
Learning

Wind Error
Model

Development

Operational Wind
Error Model

Analyi wind slick at the DZ



wind estimation models, so the total dataset for the wind error model would be severely limited

in comparison.
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Appendix A

Table 8: Features Used to fit Models in Chapter 4.
These features are used to fit models and make predictions for the DZ winds. These are

referenced in Section 4.2. 'rl' refers datafrom the remote location. 'dz' refers to data from the
drop zone (forecast data only). 'mean stick' is the mean of the values in the column of air. 'mean
lvl' is the mean value of a variable from a isobaric pressure level.

value from a column of air. 'var lvl' is the variance of a variable
refers to the features generated in Section 3.6.2. The number in the

'var stick' is the variance of
on a pressure level. 'PCA'
PCA feature strings refers to

their position in the PCA vector.
1 Temperature_rl 99 PCA_U_Winds_40_0 197 PCAUWinds_38_1

2 Temperaturedz 100 PCAUWinds_41_0 198 PCAUWinds_39_1

3 Temperature_rlmeanstick 101 PCAUWinds 42 0 199 PCAUWinds_40_1

4 Temperature_dzmeanstick 102 PCAUWinds_43_0 200 PCAUWinds_41_1

5 Temperature mean_lvi 103 PCAUWinds 44_0 201 PCA U Winds_42_1

6 Temperature_rlivarstick 104 PCA U Winds_45_0 202 PCAUWinds_43_1

7 Temperaturedz varstick 105 PCA U Winds_46_0 203 PCAUWinds_44_1

8 Temperature var lvi 106 PCAUWinds 47_0 204 PCA U Winds_45_1

9 Relative humidityrl 107 PCA_U_Winds_48_0 205 PCAUWinds_46_1

10 Relative humiditydz 108 PCA_U_Winds_49_0 206 PCAUWinds_47_1

11 Relative humidity rl meanstick 109 PCAVWinds_0_0 207 PCA U Winds_48_1

12 Relative humidity dz_meanstick 110 PCA_V_Winds_1_0 208 PCAUWinds_49_1

13 Relative humiditymean_lvl 111 PCA_V_Winds_2_0 209 PCA_V_Winds_0_1

14 Relative humidity rlvarstick 112 PCAVWinds_3_0 210 PCAVWinds_1_1

15 Relative humiditydz var stick 113 PCA V Winds_4_0 211 PCA V Winds 2_1

16 Relative humidityvar_lvi 114 PCA V Winds 5_0 212 PCA V Winds 3_1

17 UWinds_rl 115 PCA_V_Winds_6 0 213 PCA_V_Winds_4_1

18 UWinds dz 116 PCAVWinds_7_0 214 PCA V Winds_5_1

19 UWinds rlmean stick 117 PCAVWinds_8_0 215 PCA_V_Winds_6_1

20 UWinds dz mean stick 118 PCAVWinds_9_0 216 PCAVWinds_7_1

21 UWinds mean lvI 119 PCAVWinds_10_0 217 PCAVWinds_8_1

22 UWinds_rlvarstick 120 PCA_V_Winds_11_0 218 PCA_V_Winds_9_1

23 UWinds dz var stick 121 PCA V Winds 12_0 219 PCA V Winds_10_1

24 UWinds var lvl 122 PCAVWinds_13_0 220 PCAVWinds_11_1

25 VWinds_rl 123 PCA_V_Winds_14_0 221 PCA_V_Winds_12_1

26 VWinds_dz 124 PCA_V_Winds_15_0 222 PCAVWinds_13_1

27 VWinds rlmean stick 125 PCAVWinds_16_0 223 PCAVWinds_14_1

28 V Winds dz mean stick 126 PCAVWinds_17_0 224 PCA_V_Winds_15_1

29 VWinds mean IvI 127 PCAVWinds_18_0 225 PCAVWinds_16_1

30 VWinds ri var stick 128 PCAVWinds_19_0 226 PCAVWinds_17_1

31 VWinds dz var stick 129 PCA V Winds 20 0 227 PCA V Winds 18 1

32 VWinds var lvl 130 PCA_V_Winds_21_0 228 PCAVWinds_19_1

33 VerticalWinds_rl 131 PCAVWinds_22_0 229 PCAVWinds_20_1

34 VerticalWinds_dz 132 PCA_V_Winds_23_0 230 PCAVWinds_21_1

35 VerticalWinds_rlmeanstick 133 PCAVWinds_24_0 231 PCAVWinds_22_1

36 VerticalWinds dz mean stick 134 PCAVWinds_25_0 232 PCAVWinds_23_1

37 Vertical Winds meanlvl 135 PCAVWinds_26_0 233 PCAVWinds 24 1

38 Vertical Winds rlvar stick 136 PCAV Winds 27_0 234 PCAVWinds_25_1
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40 Vertical Winds var lvl 138 PCAVWinds_29_0 236 PCAVWinds_27 1

41 Geopotentaii_Height rl 139 PCAVWinds_30_0 237 PCAVWinds_28_1

42 Geopotentail_Height dz 140 PCAVWinds_31_0 238 PCAVWinds_29_1

43 Geopotentail _Height rl meanstick 141 PCAVWinds_32_0 239 PCAVWinds_30_1

44 GeopotentailHeight dz meanstick 142 PCAVWinds_33_0 240 PCAVWinds_31_1

45 GeopotentailHeight meanlvi 143 PCAVWinds_34_0 241 PCAVWinds_32_1

46 GeopotentailHeight var lvi 144 PCAVWinds_35_0 242 PCAVWinds_33_1

47 sonde u on lvl 145 PCAVWinds_36_0 243 PCAVWinds_34_1

48 sonde v on lvl 146 PCAVWinds_37_0 244 PCAVWinds_35_1

49 Forecast Error u on lvl 147 PCA V Winds 38 0 245 PCA V Winds 36 1

50 Forecast Error v on Ivi 148 PCA V Winds 39 0 246 PCA V Winds 37 1

51 rierr u on lvi 149 PCAVWinds_40_0 247 PCAVWinds_38_1

52 rierr_v_onlvl 150 PCAVWinds_41_0 248 PCAVWinds_39_1

53 DerivLvlsonde_u_on_lvi 151 PCAVWinds_42_0 249 PCAVWinds_40_1

54 DerivLvlsonde_v_onlvl 152 PCAVWinds_43_0 250 PCAVWinds_41_1

55 DerivLvl Forecast Error u on lvi 153 PCA V Winds 44 0 251 PCA V Winds 42 1

56 DerivLvi Forecast Error v on lvi 154 PCAVWinds 45 0 252 PCA V Winds 43 1

57 DerivLvl_rlerr_u_on_lvi 155 PCAVWinds_46_0 253 PCAVWinds_44_1

58 DerivLvl_rierr_v_on_lv 156 PCAVWinds_47_0 254 PCA VWinds_45_1

59 PCAUWinds_0_0 157 PCAV Winds_48_0 255 PCAVWinds_46_1

60 PCA U Winds_1_0 158 PCAVWinds_49_0 256 PCAVWinds_47_1

61 PCA UWinds_2_0 159 PCAUWinds_0_1 257 PCA_V_Winds_48_1

62 PCA U Winds_3_0 160 PCAUWinds_1_1 258 PCAVWinds_49_1

63 PCA U Winds_4_0 161 PCAUWinds 2 1

64 PCAUWinds_5 0 162 PCAUWinds 3 1

65 PCAUWinds_6_0 163 PCA UWinds_4_1

66 PCAUWinds_7_0 164 PCAUWinds_5_1

67 PCA UWinds_8_0 165 PCA U Winds 6 1

68 PCA U Winds 9 0 166 PCA U Winds_7_1

69 PCAUWinds_10_0 167 PCAUWinds_8_1

70 PCAUWinds_11_0 168 PCAU Winds_9_1

71 PCA_U_Winds_12_0 169 PCAUWinds_10_1

72 PCA U Winds 13 0 170 PCAUWinds_11_1

73 PCAUWinds_14_0 171 PCA_U_Winds_12_1

74 PCAUWinds_15_0 172 PCA_U_Winds_13_1

75 PCAUWinds_16_0 173 PCAUWinds_14_1

76 PCA U Winds_17_0 174 PCAUWinds_15_1

77 PCA U Winds_18_0 175 PCAUWinds_16_1

78 PCAUWinds_19_0 176 PCA U Winds 17 1

79 PCA_U_Winds_20_0 177 PCAUWinds_18_1

80 PCA U Winds_21_0 178 PCAUWinds_19 1

81 PCAUWinds_22_0 179 PCA U Winds 20 1
82 PCAU Winds_23_0 180 PCAUWinds_21_1

83 PCA UWinds_24_0 181 PCAUWinds_22_1

84 PCAUWinds_25_0 182 PCAUWinds 23 1
85 PCA U Winds_26_0 183 PCA_U_Winds_24_1

86 PCAUWinds_27_0 184 PCA U Winds_25_1

87 PCA UWinds_28 0 185 PCAU_Winds_26_1

88 PCA U Winds_29_0 186 PCAUWinds_27_1

89 PCA U_Winds_30_0 187 PCA_UWinds_28_1
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39 VerticalWinds-dz-var stick 137 PCAVWinds_28_0 235 PCAVWinds_26_1



91 PCA_U_Winds_32_0 189 PCAUWinds_30_1

92 PCA U Winds 33 0 190 PCAUWinds 31 1

93 PCA_U_Winds_34_0 191 PCA U Winds_32 1
94 PCA U Winds 35 0 192 PCA U Winds 33 1

95 PCA_U_Winds_36_0 193 PCA U Winds_34_1

96 PCA_U_Winds_37_0 194 PCAUWinds_35_1

97 PCA U Winds 38 0 195 PCA U Winds 36_1

98 PCA U Winds 39 0 196 PCAU Winds 37 1

Table 9: Features From the Best Scoring Trimming Iteration.
These features are the result of the feature trimming procedure Procedure 2. 'rl' refers data

from the remote location. 'dz' refers to data from the drop zone (forecast data only). 'mean stick'
is the mean of the values in the column of air. 'mean lvl' is the mean value of a variable from a
isobaric pressure level. 'var stick' is the variance of value from a column of air. 'var lvl' is the

variance of a variable on a pressure level. 'PCA' refers to the features generated in Section
3.6.2. The number in the PCA feature strings refers to their position in the PCA vector. Features

are listed in order of importance as returned by the Tree Boosting algorithm.

1 rlerr u onlvl 96 DTPCA_ U_4

2 UWinds dz 97 DT_VWinds dz mean-stick

3 sonde_u_onlvl 98 PCA V_0

4 DL dl ferr_u_onlvl 99 DLDTTMPPOL1O GLCOmeanlvi

5 UWinds rlvar stick 100 DTVWinds_rl

6 Temperature_ 101 PCA_ U_22

7 VWinds rlmeanstick 102 VerticalVelocity_rlivarstick

8 Geopotential_Heightdzvarstick 103 DLPCA_ U_38

9 U Winds dz var stick 104 PCA_ U_16

10 UWinds dzmeanstick 105 U Winds rl

11 V Winds dz_meanstick 106 GeopotentialHeightdz

12 Relative Humiditydz meanstick 107 D LPCA_ V_54

13 sonde v_on lvl 108 PCA_ U_43

14 PCA_U_4 109 DLPCA_ U_40

15 U Windsvarlvl 110 DLPCA_ U_13

16 Geopotential_Heightrlvarstick 111 VerticalVelocity dz varstick

17 VWinds dzvarstick 112 PCA_ U_13

18 PCAU_5 113 DLPCA_13

19 DL dl sonde v on lvi 114 DLVerticalVelocitymean lvl

20 Geopotential_Heightvarlvl 115 DTVerticalVelocityrl

21 VWindsvar lvl 116 Relative Humiditydz

22 Relative Humidityrl var stick 117 DLVerticalVelocityvar lvi

105

90 PCAUWinds_31_0 PCAUWinds_29_1188



24 Relative Humiditydz var stick 119 DLPCA_U_8

25 DL sonde u on lvl 120 DTTMP_PO_LIOGLCOdzvarstick

26 DLRelative Humiditymean lvl 121 DL rlerr_u onlvl

27 PCAV_4 122 DLDTTMP_POL1OGLC0_rl

28 dlsonde u_on lvl 123 DLPCAU_30

29 UWinds rlmeanstick 124 PCA_ U_28

30 PCAU_0 125 DTRelative Humidityrlvar stick

31 Relative Humidityvar lvl 126 TMP_P0_L100_GLCO_dz_meanstick

32 PCA_ U_1 127 PCA_ U_30

33 DLVWinds mean lvl 128 DLPCA_ U_16

34 Relative Humiditymean lvl 129 DL_rlerr_v_onlvl

35 Relative Humidityrlmean stick 130 DL_PCA_ U_6

36 PCAV_1 131 PCA_ U_9

37 GeopotentialHeightdzmean stick 132 PCA_ V_14

38 PCA_ U_6 133 DLPCAU_27

39 PCA_ U_3 134 DT PCAV 3

40 DLGeopotentialHeightvar lvl 135 DLPCAU_32

41 VWinds_rlvarstick 136 DLPCA_U_4

42 DLPCAV_1 137 PCAV_39

43 rlerr_v_onlvl 138 DLDTU_Winds dz

44 PCA_ U_8 139 DTPCAU_14

45 PCA_ U_11 140 DLVWinds var lvi

46 PCA_9 141 DLPCA_11

47 GeopotentialHeightrl 142 DTVWinds dz var stick

48 DLGeopotential_Heightdz 143 DLPCA_ U_33

49 PCA_11 144 DTPCA_ U_17

50 DL dlferr v on lvl 145 PCA_ V_21

51 PCA_6 146 DLPCA_22

52 ferr v on lvl 147 DLPCA_ U_24

53 ferr u on lvl 148 PCA_ V_31

54 DL ferr u on lvl 149 PCA_ V_5

55 DTU_Winds dz 150 PCA_ V_47

56 dl sonde v onlvl 151 DTTMPPOLiOGLCO_rl varstick

57 DLGeopotentialHeightr 152 Relative Humidityrl

58 PCA_2 153 DLPCA_33

59 PCA_3 154 DLDTTemperature_

60 DLTMPPOL1G LCO_rl 155 PCA_ V_18

61 Geopotential_Heightrl_mean stick 156 PCA_ V_10

62 DLU_Winds dz 157 DLPCA_ V_27

63 DLPCA_5 158 DLDT_ VPCA_2
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23 UWinds-mean-lvl 118 DTPCAV_3



65 TMP_P0_L1OGLCO dz var stick 160 DLPCA_ U_1

66 dl ferr u on lvl 161 DTPCA_ V_11

67 PCA_ U _7 162 DLPCA_4

68 PCAU 2 163 PCAV_41

69 DTVerticalVelocitymeanlvl 164 PCA_ U_39

70 DTPCA_ U _6 165 DLDTPCA_9

71 PCA U 25 166 PCA_ U_44

72 VerticalVelocityvarlvl 167 PCA_ U_28

73 PCA_ U 17 168 DLPCA_ U_52

74 DLTMPPOL100_GLCOmeanlvl 169 VerticalVelocity_rl

75 DL dl rlerr u onlvl 170 PCA_ U_45

76 DLPCA_ U _5 171 DLPCA_ V_9

77 DL dl sonde u_onlvl 172 DLPCA_ V_30

78 DLPCA_47 173 DLPCA_ U_36

79 DTRelative Humidityvar lvl 174 PCA_ V_38

80 DTGeopotentialHeightrlmean stick 175 DLDTRelative Humiditymean lvl

81 DLPCA_9 176 DLPCA_ V_12

82 PCA_ U 29 177 DTPCA_ U_5

83 PCA U10 178 PCA_4V_7

84 DTRelative Humidityrl mean_stick 179 DTPCA_ U_18

85 DLPCA_ U 16 180 DLPCA_ V_26

86 DL ferr v on lvi 181 DLPCA_ U_56

87 PCA_ V_18 182 PCA_ V_34

88 PCA_ V_33 183 PCA_U_22

89 VerticalVelocitydz mean stick 184 DLPCA_ U_48

90 DLPCA_ V_2 185 PCA_ U_21

91 DLPCA_ V_24 186 PCA_ U_23

92 DLRelative Humidityvar lvl 187 PCA_ U_17

93 PCA_ V_8

94 DLTemperature_

95 DT U Winds dzvarstick
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