
Development of a Two-Dimensional Model of Blood

Microcirculation Flows

by

Kevin Sabo

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

@ Massachusetts Institute of Technology 2017. All rights reserved.

Author ... Signature redacted
Department of Aeronautics and Astronautics

May 25, 2017

Certified by.........Signature redacted...........
al Wesley L. Harris

C.S. Draper Professor of Aeronautics and Astronautics
Thesis Supervisor

Signature redacted
Accepted by

Youssef Marzouk
Chairman, Department Committee on Graduate Theses

MASSA 0 S INSTITUTE
OF TECHNOLOGY co,

JUL 112017

LIBRARIES

2

Development of a Two-Dimensional Model of Blood

Microcirculation Flows

by

Kevin Sabo

Submitted to the Department of Aeronautics and Astronautics
on May 25, 2017, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract
This thesis presents the development of a dimensionless blood microcirculation

model for the study of blood microcirculation flows. It is a two dimensional, axi-
ally symmetric, incompressible, Newtonian-flow, Krogh cylinder model subjected to
axially periodic boundary conditions. This model formulation allows for the use of
the streamfunction-vorticity formulation of the Navier-Stokes equation, which offers
simplification to boundary conditions and also allows for the use of a non-uniform,
collocated mesh. A streamfunction vorticity formulation of the Immersed Boundary
Method is also developed, specifically for the boundary conditions along the immer-
sed boundary (red blood cell membrane). Periodic boundary conditions are used,
with the assumption of fully-developed flow, in order to focus on the effects of the
transient diffusion of oxygen into the surrounding tissue, orthogonal to the capillary
flow direction.

Thesis Supervisor: Wesley L. Harris
Title: C.S. Draper Professor of Aeronautics and Astronautics

3

4

Acknowledgments

Grandma Sabo, this is for you.
I know you said that I could be a doctor,

but this is as close as I will ever get to blood.

I have many people whom I want to thank. If I forget anyone, I offer my sincerest

apologies because so many have helped me get to where I am today.

First and foremost, thank you to Professor Wesley L. Harris. Professor Harris has

given me a wonderful opportunity to work on a problem, one which I have never seen

before, that offers a complete overview of the engineering process. Also, Professor

Harris has also been an excellent source of wisdom in regards to general daily life as

well. Having known him since I was a wee freshman here at MIT and having him

advise me throughout my undergraduate and graduate careers, I can confidently say

that I would not be here if it were not for his guidance and wisdom.

Next, I want to thank my parents, Steve and Sonya Sabo. They have watched me

grow throughout the years and have always been an unwavering source of love and

support. From sharing in my joy of getting into graduate school to taking a phone

call at four in the morning because I was too stressed out to sleep, I cannot thank

them enough.

I also want to thank all of my friends here at MIT who have helped me out in

many ways. A special thanks goes to Eric Tu, the guy who has been there through

pretty much all of MIT, and is even sitting here next to me as I write this statement

(he has no idea - Hi Eric!). To my friends who have been at my side throughout this

endeavor: Dominique Hoskin, Andrew Koff, Billy Moses, Alex Luh, Zachery Miranda,

Andrew Zmolek, Louis Chen, Chris Gilmore, Jacquie Thomas, Tim Galligan, Haofeng

Xu, Ben Couchman, Tony Tao, Theo Mouratidis, Jinwook Lee, Albert Gnat, Vince

Wang, Derek Paxson, Georgi Subashki, Juju Wang, Maddie Jansson, Dolly Yuan,

5

Dakota Pierce (7{(*#), Grace Yin, and the entire Maseeh 2 gang (past and present),

thanks for being supportive and keeping life around MIT fun.

Finally, I want to thank the entirety of the faculty and staff here at MIT's Depart-

ment of Aeronautics and Astronautics. Thank you Marie Stuppard and Beth Marois,

both of whom keep all the deadlines in order and make it easy for us students to focus

on courses and research. Thank you to Todd Billings and David Robertson, both of

whom have given me countless hours of technical and life advice, as well as increased

my repertoire of jokes and humor topics. Thank you Mark Drela for the laughs and

for answering my endless stream of varied questions, despite being on sabbatical.

6

Contents

1 Introduction 15

1.1 Modeling Blood Microcirculation Flows 15

1.2 Sickle Cell Anemia: Example of The Importance of Understanding

Blood Microcirculation Flows . 17

1.3 Outline of Thesis . 20

2 Previous Research and Motivation 23

2.1 Current Blood Microcirculation Models 23

2.1.1 Fluid Mechanics: Viscous Fluid Modeling of Microculation . . 24

2.1.2 Species Transport: Chemical Modeling of Oxygen Transport in

Capillaries and Surrounding Tissue 26

2.1.3 Membrane Mechanics: Cell Suspension Modeling of Red Blood

C ells . 28

2.2 Motivation for Dimensionless Equations 30

2.3 Motivation: Thesis Hypothesis and Objectives 32

3 Development of Blood Microcirculation Model 33

3.1 Physical Model of Blood Microcirculation and Red Blood Cell System 33

3.2 Fluid Mechanics of the Microcirculation 36

3.2.1 Fluid Mechanics: Boundary Conditions 37

3.2.2 Benefits of Streamfunction-Vorticity Formulations 40

3.3 Oxygen Species Transport within the Microcirculation and Surroun-

ding T issue . 41

7

3.3.1 Oxygen Species Transport: Boundary Conditions 44

3.4 Red Blood Cell Membrane Mechanics and Interactions with the Mi-

crocirculation . 45

3.5 Governing Equations for Blood Microcirculation Model 47

3.5.1 Non-dimensionalization of Governing Equations 49

3.5.2 Non-dimensional Parameters 50

4 Implementation of Numerical Model 51

4.1 Immersed Boundary Method . 51

4.2 Newton-Raphson Iteration Solver . 53

4.3 Domain Discretization . 54

4.4 Finite Difference Modeling of Non-Uniform Grids 56

4.4.1 Lagrange Basis Polynomials for Finite Differentiation 57

4.5 Discretization of Governing Equations 58

4.5.1 Red Blood Cell Body Forces: 60

4.6 Boundary Conditions and Interface Points 64

4.6.1 Periodic Boundary Conditions Along Domain Inlet and Outlet 64

4.6.2 Flux Boundary Conditions Along Sub-Domain Interfaces . . . 64

4.6.3 Lagrangian Mesh: Membrane Boundary Conditions 67

4.7 Residual Formulations . 70

4.7.1 Residual Formulation for Interior Points 70

4.7.2 Residual Formulation for Boundary Conditions 74

5 Concluding Remarks 81

5.1 Discussion of Results . 81

5.1.1 Parametric Study of Blood Microcirculation Flows: A Non-

dimensional Viewpoint . 81

5.1.2 Immersed Boundary Method Using Streamfunction Vorticity

Form ulation . 82

5.2 IBM Coding Challenges . 83

5.3 Future W ork . 84

8

A Derivation of Equations of Motion - Fluid Mechanics 85

B Derivation of Equations of Motion - Oxygen Transport 91

C Derivation of Equations of Motion - Membrane Mechanics 101

D Non-Uniform Differentiation via Lagrange Basis Polynomials 109

E MATLAB Code 115

9

10

List of Figures

1-1 (a) Data points collected, red dots representing presence of HbS gene

and blue dots representing absence of HbS gene. (b) Raster map of

HbS gene frequency. (c) Historical map of malaria endemicity. Figure

and caption from Piel et al.' . 18

1-2 Graphic depicting normal RBC versus sickled RBC behavior with key

difference being blockage of inlet to microcirculation passage. Image

courtesy of NIH (https:www.nhlbi.rih.gov"healthheaith-topics topics"scu). 19

2-1 Experimentally measured dimensionless pressure drop of human blood

plasma (red circles) versus that of water (black dashed line), indicating

non-linear, shear-thinning behavior (figure provided by Brust et al.[91). 26

3-1 Visualization of the problem domain including the capillary, vascular

wall, interstitial space, and muscular tissue sub-domains. 34

4-1 Non-uniform rectilinear grid for capillary sub-domain (unscaled). No-

tice that the top capillary edge has a gradually denser mesh to account

for the boundary layer formation. 55

4-2 Lagrangian mesh (shown in red with circles highlighting individual

mesh points) overlaying the Eulerian mesh (shown in black). 56

4-3 Red blood cell mesh geometry for calculation of constituent relations,

visually defining all necessary variables. 61

B-1 Oxyhemoglobin curve as a function of partial pressure of oxygen. Image

courtesy of www.anaesthesiauk.com. 95

11

C-1 Membrane tension, stress, and moments on a differential line element

of length ds. 102

C-2 Two-dimensional leaflet used for the analysis of membrane bending. . 104

12

List of Tables

3.1 Velocity and physical coefficients and parameters associated with se-

parate sub-domains (from Vadapalli, Goldman, and Popel[7]). 34

3.2 Additional model input values required for generation of governing

equations for oxygen species transport. 35

3.3 Parameters required for the constituent relations of the red blood cell

membrane structural mechanics. 36

3.4 Dimensionless parameters to be studied in the simulations. 50

13

14

Chapter 1

Introduction

1.1 Modeling Blood Microcirculation Flows

The modeling of blood microcirculation flows is important for the study of nu-

merous physiological processes, including the study of oxygen transport and other

molecular transport to muscular tissues as well as various diseases, such as sickle cell

disease. Results from such modeling and simulations can be used to help guide scien-

tists, engineers, and medical professionals in creating new and effective treatment

options for patients afflicted with various ailments and diseases.

There currently exists a large body of work on blood microcirculatory flows. As

summarized by Gompper and Fedosov[1], two prominent observations have come from

the study of these flows: the Fahraeus effect and the Fahraeus-Lindqvist effect. These

effects lead to a seemingly reduced hematocrit in the capillary and an apparent vis-

cosity reduction in the blood flow, respectively. Understanding these effects provides

and understanding for the counter-intuitive results that they are responsible for.

The Fahraeus effect describes a seeming inconsistency regarding the hematocrit,

the volume fraction of red blood cells (RBCs) in a blood vessel, in capillary flows. The

overall hematocrit of the capillary flow is lower than that of the hematocrit observed

at the capillary discharge. The underlying physics behind this effect resides with the

RBCs occupying the center of the capillary flow, thus moving faster on average than

the blood plasma which moves through the capillary.

15

The Fahraeus-Lindqvist effect describes the apparent viscosity reduction in the

blood microcirculation flow as a function of the capillary diameter. This effect arises

from the occupation of RBCs in the center of the capillaries, but in context with the

RBC-free region near the capillary edges. This RBC-free region effects the apparent

viscosity depending on the diameter of the capillary. The maximal reduction in

viscosity is achieved in capillaries that are 7-8 pm in diameter. Below this diameter

ranges results in RBCs producing increased blood plasma shear near the wall. Above

this diameter range, the effect becomes negligible and the viscosity increases. This

effect is quantified for the equivalent Hagen-Poiseuille flow viscosity, which can be

expressed as follows[']:

7F R4
Pap = -Ap- W (2.)

8 (Q + rR2 U)

Here, Ap is the pressure drop, Q is the volume flow rate between the RBC and

capillary wall, U is the average velocity, and Rw is the capillary wall radius.

These effects, along with numerous others, have been studied extensively in micro-

circulation flows. While these effects provide key insight into the underlying physics,

they do not provide a full description of all the effects occurring in these flows.

Instead of tackling specific effects, the aim of this research is to develop a fra-

mework which tracks high-level, non-dimensional effects of various physical blood

microcirculation properties. While some assumptions are made regarding the pro-

perties of the microcirculation flow and surrounding tissue, the methodology behind

the dimensionless formulation is general and can be applied to most systems. Instead

of varying specific coefficients and running a plethora of experiments or simulations,

varying dimensionless groupings of these coefficients can lead to more insight while

decreasing experimentation and simulation time.

16

1.2 Sickle Cell Anemia: Example of The Importance

of Understanding Blood Microcirculation Flows

According to the National Institute of Health's Heart, Lung, and Blood Institute,

sickle cell disease is a genetic blood disorder in which the afflicted patient has abnor-

mal hemoglobin, hemoglobin S (HbS) or sickle hemoglobin, which causes the RBCs

to sickle upon their deoxygenation (source: https://www.nhlbi.nih.gov/health/health-

topics/topics/sca). It is an autosomal recessive disease, requiring a gene mutation

from both parents in order to be phenotypically active.

Sickle cell disease is found all over the world, but is largely concentrated in Africa

and some parts of Asia. The leading hypothesis for this occurrence is that the disease

offers resistance to malaria, a parasitic disease with mosquitoes acting as a primary

carrier. This hypothesis has been confirmed by Piel et all']. A geographical map

showing their Bayesian geostatistical analysis is shown in Figure 1-1. As can be seen,

the malaria holoendemic (defined as when essentially every individual in a population

is infected with a disease) and the frequency of the HbS gene go hand-in-hand. Un-

derstanding how to combat the negative effects of sickle cell anemia would directly

benefit a large population.

The phenotypical signature that sickle cell disease is commonly known for is the

formation of RBCs with a sickled shape, as can be seen in Figure 1-2. When an RBC

releases oxygen (oxygen unbinds from the hemoglobin protein), the RBC retains its

normal shape in a healthy patient. However, in afflicted patients, the RBC sickles,

which can lead to capillary vessel occlusion, a condition when the capillary becomes

clogged. When this event happens, the tissue downstream of the blockage receives

little to no oxygen, leading to painful events called crises.

An understanding of the transient conditions which lead to RBCs sickling can

potentially be found from a blood microcirculation model. In particular, a dimen-

sionless model can isolate which physical effects dominate the transient state from

normal RBC behavior to sickled RBC behavior. While the sickled RBC model requi-

res some extra steps[2 1, a dimensionless microcirculation model framework will help

17

HbGdIP.It Me po 4
-Presenon '
Absence

b

o 0-0.51
- 0.6A2-
M 2.03 - 4.04
M 4.06 -&06
m 6.07 -6.OB
m .0s- 9.0
m 9.61 -11.11
m 11.12 -12.63
M 12.64 -14.65
M 14.86 -1.18

Makaria frue

EpIdsnic

Hyp- dn*
M M-w
Hyperendenlc
Hobkndmic

Figure 1-1: (a) Data points collected, red dots representing presence of HbS gene and
blue dots representing absence of HbS gene. (b) Raster map of HbS gene frequency.
(c) Historical map of malaria endemicity. Figure and caption from Piel et al.[']

18

o Normal red blood cells

Nomnl
red bood
cel (RBC)

COOSS-890110 of FtSC

witin blood ve"s

hermogkkin

Abnoma, sickled, red blood cells
(sickle cells)

Sickle cobs
blocing
blood flow

- Crows-edon of old* all

S~cky sickle cells

AbnonnyM

I*a cause
dieM* shap

Figure 1-2: Graphic depicting normal RBC versus sickled RBC behavior with key
difference being blockage of inlet to microcirculation passage. Image courtesy of NIH
(https: www. nhibi. nih.gov health health-topics topics sca).

19

to uncover trends which govern RBC sickling.

1.3 Outline of Thesis

This thesis is composed of five chapters.

Chapter 1:

The first chapter covers the general importance of modeling blood flows, speci-

fically that of blood microcirculation flows. An example for context is given in the

study of sickle-cell anemia.

Chapter 2:

The second chapter provides an overview of previous research and motivation

for the continual study of research problems in this field. It will first review the

background work done on blood microcirculation models, covering the fluid mecha-

nics, oxygen transport, and membrane mechanics. Next, the importance of non-

dimensionalization is discussed in the context of canonical fluid mechanics problems

and how those techniques may be applied to hemodynamics problems.

Chapter 3:

The third chapter develops the physical model used in this work for the blood

microcirculation problem. The domain and sub-domains are established and the

assumptions pertaining to the problem domain and sub-domains are laid out. The

fluid mechanics of the blood plasma and cellular cytoplasm are explored in depth

with the appropriate modeling assumptions stated. The oxygen transport equations

are also developed for the various sub-domains. The cellular membrane mechanics

are developed from first principles and the resulting constituent relations are found

with the appropriate modeling assumptions. Lastly, the resulting system of equations

are non-dimensionalized in order to obtain the non-dimensional parameters that are

of interest to hemodynamicists.

20

Chapter 4:

The fourth chapter covers the simulation algorithm and code implementation. The

Newton-Raphson Method (or Newton Method) for root-finding is discussed. How this

method is applied to finite difference code is also covered. Non-uniform mesh techni-

ques are developed for the problem in order to mitigate numerical boundary layer

issues. The resulting domain discretization (meshing) is then discussed, paying spe-

cial attention to unique requirements for the Immersed Boundary Technique. Finally,

the discretization of the governing equations is reviewed and the appropriate boun-

dary conditions discussed for the domain, sub-domains, and cellular membrane.

Chapter 5:

The fifth chapter of this thesis is dedicated to the discussing of the results of the

research. Comparisons to previous work are made and recommendations for future

work are presented. The key focuses for future work involve the extended use of

the non-dimensional framework developed as well as potentially better techniques for

simulating the problem, such as a finite element method with adaptive grid generation.

21

22

Chapter 2

Previous Research and Motivation

2.1 Current Blood Microcirculation Models

This chapter presents the high-level thoughts and modeling assumptions of some

previous blood microcirculation models. There is a large body of literature regarding

blood microcirculation modeling techniques, and a summary of this body may be

found in Gompper and Fedosov 1. This chapter provides the essential motivation for

the modeling done in this thesis work.

The model problem is the Krogh cylinder model, developed by August Krogh

in 1919. It first started out as a 3-layer model, consisting of a red blood cell, a

capillary containing blood plasma, and muscular tissue. Its intended use was to model

the effects of oxygen diffusion through a cylindrical capillary tube, and has done so

successfully for nearly 100 years. Vadapalli, Goldman, and Popell7 and Le Floch-

Yin['] have used a more advanced 5-layer model, adding a vascular wall layer and

an interstitial space layer in between the capillary and muscular tissue layers. Also,

the red blood cell contains the oxygen-fixing protein, hemoglobin, and the muscular

tissue includes the oxygen-fixing protein, myoglobin, both layers having their own set

of governing equations.

23

2.1.1 Fluid Mechanics: Viscous Fluid Modeling of Microcula-

tion

Blood microcirculation flows occur in narrow capillaries ranging from 2 Pm to

10 pm in diameter. The flow is not homogeneous due to the fact that red blood cells

exist inside the blood plasma, leading to a coupled interaction between the red blood

cells and the blood plasma.

Blood plasma is approximately 92% water.[9] Previous models [2][8][131 have assu-

med that the blood plasma in the microcirculation is an incompressible, Newtonian,

viscous fluid that can be modeled by the relevant Navier-Stokes equations. Most

recent works also make this assumption, as stated by Sousa et al. [14] However, it has

been experimentally demonstrated with sufficient confidence that blood is a complex,

shear-thinning fluid (refer to Figure 2-1), leading the authors to strongly recommend

the modeling community to incorporate the shear-thinning effects into new models.[9]

The red blood cells are assumed to be fluid-filled "sacks" that contain cellular

cytoplasm and hemoglobin proteins.[2] The fluid properties of the cell are assumed

to be similar to that of the blood plasma (e.g. incompressible, Newtonian, viscous

fluid) surrounding the cell, with a few minor differences (e.g. density and dynamic

viscosity). From a dimensionless perspective, the Reynolds number of the blood

plasma and cellular cytoplasm, relative to the capillary diameter, are different.

Since these fluids have different Reynolds number, it is reasonable to expect that

the red blood cell membrane mechanics will be affected by this change. In previous

work,[2] the density was chosen to remain constant between the blood plasma and

cellular cytoplasm while only varying the dynamic viscosity. The blood plasma and

cellular cytoplasm density was taken as 1025 kg/m3 , despite the latter being reported

to be slightly larger at 1125 kg/m3 . In the Newtonian fluid assumption, the affect on

the Reynolds number due to this difference would be negligible, [2] but this affect is

not negligible in the copmlex, shear-thinning fluid assumption.

In the context of the current research that this thesis presents, the fluid will be

assumed incompressible, Newtonian, and viscous for simplicity in deriving and imple-

24

menting a new non-dimensional model using a streamfunction-vorticity formulation

of the fluid transport equations. It is strongly recommended that viscoelasticity ef-

fects be considered in future research, as Reynolds number of blood microcirculation

flows are 0(1), with Figure 2-1['] showing the sensitivity to Reynolds number at these

lower values.

Limitations of Newtonian Fluid Assumption

The blood microcirculation flow in this work is assumed to be Newtonian in nature,

or for the isothermal, incompressible assumption, that the viscosity coefficient /L is

constant. However, it is observed in reality that blood is a complex fluid due to the

suspension of blood cells, proteins, mineral ions, hormones, and glucose.[9]

The work done by Brust et al. 9] show that blood plasma is a shear-thinning

complex fluid (i.e. the viscosity decreases under increased strain rate). Brust et al.

experimentally showed, via the use of a microfluidic contraction-expansion device, the

dimensionless pressure drop as a function of the Reynolds number for human blood

plasma versus that of water (see Figure 2-1).

Figure 2-1 clearly indicates a non-linear, shear-thinning behavior of human blood

plasma as the Reynolds number increases. However, water exhibits no change in

dimensionless pressure drop as the Reynolds number increases over the indicated

range.

In the upper-right corner of Figure 2-1, the actual pressure drop is measured

against the volume flow rate. Water (black) exhibits a linear relationship while the

human blood plasma (red) deviates slightly in the intermediate flow rate range of

100-600 micro-liters.

Brust et al. conclude that the viscoelastic behavior (shear-thinning) of human

blood plasma is significant and recommend that it should not be ignored in future

blood flow modeling. They also indicate that the viscoelasticity may lead to vis-

coelastic flow instabilities, especially when RBCs are present at values around 50%

hematocrit.

25

1.

25 0

s 1.4- 0
0' 8 40'66 6 1000

16E _ ow Rate (.AfnIn)

- 1.2 -

o Plasmia
a) *-Water

0E 1.

10 150. 20 250 300

Re

Figure 2-1: Experimentally measured dimensionless pressure drop of human blood
plasma (red circles) versus that of water (black dashed line), indicating non-linear,
shear-thinning behavior (figure provided by Brust et al.[1]).

2.1.2 Species Transport: Chemical Modeling of Oxygen Trans-

port in Capillaries and Surrounding Tissue

As stated previously, the Krogh cylinder model was developed for the study of

oxygen flow in blood microcirculation flows. The original 3-layer model has developed

into an advanced 5-layer model[2][13] which has proven versatile in its development

over the past nearly 100 years.

The model used by Secomb et al and Le Floch-Yin consists of a simple cylindrical

geometry that is layered similar to that of a cake (see Figure 3-1). The innermost layer

is the capillary domain which includes the blood plasma and the red blood cell layer.

The capillary is surrounded by the vascular wall, the vascular wall is then surrounded

by the interstitial space, and the interstitial space is surrounded by the muscular

tissue, thus yielding 5 layers. The red blood cell layer contains hemoglobin proteins

which can bind with oxygen and the muscular tissue layer consists of myoglobin

proteins which can also bind with oxygen.

26

In order to model the oxygen concentration dynamics, advecting-diffusion trans-

port equations were developed in the form

Oc(21
-- + (- V) c = DV2 c+R (2.1)
at V

where c represents a scalar quantity (in this case, the concentration of oxygen). Upon

invoking Henry's law

2 = (2.2)
P02

where ao2 is the oxygen solubility coefficient and po2 is the oxygen partial pressure.

This statement leads to the governing equations for oxygen taking the form

O0o 2 R (2.3)
2 + (W. V)Po 2 = - P02 + -

The first term represents unsteady effects, the second advective effects, the third

diffusive effects, and the fourth reaction rate chemistry with the oxygen-fixing protein

effects.

A similar transport equation is developed for the saturation of the oxygen-fixing

proteins, which is coupled to the oxygen partial pressure equations via the reaction

rate term.

as+ (- V) S = DV2S - R' (2.4)

Through the reaction rate terms R and R' (which are not equivalent in this repre-

sentation), the equations are coupled and the effects of the binding and unbinding of

oxygen to the proteins is adequately captured.

The detailed derivation and explanation of these equations can be seen in Chapter

3 and Appendix B.

27

2.1.3 Membrane Mechanics: Cell Suspension Modeling of Red

Blood Cells

In the previous work of Le Floch-Yin, the red blood cell membrane was assumed

to be an axisymmetric, deformable shell. The shell undergoes deformations in time

due to the fluid interactions of the blood plasma and cellular cytoplasm with the

membrane. These interactions are captured via a body force model, represented as

f, which is accounted for in the governing equations for the fluid momentum (for a

full derivation, see Appendix A):

= Vp +vV 2'U+ -f (2.5)
Dt p

However, how the body forces are calculated depends on the mechanics of the red

blood cell membrane. For these mechanics, constituent relations are derived.

The first constituent relations for the red blood cell membrane deformations are

developed in Evans and Skalak's Mechanics and Thermodynamics of Biomembra-

nes:[5

dA
t= o+ K - (2.6)

dAo

td (A2-A2 (2.7)
2 1 + A2

dA'
m=B 1+ dA) (k-ko) (2.8)

dAo

where t is the isotropic mean tension, td is the shear deviatoric term, and m is the

bending moment about a membrane point in any principal direction. Here, o-, is the

membrane's reference state isotropic tension, K is the isothermal area compressibility

modulus, K is the 2-D shear modulus, B is the isotropic bending modulus, dA is thedAO

area change with respect to the reference state, A, and A2 are extension ratios in the

reference directions such that dA = AI 1, k is the total local curvature, and ko is

the reference local curvature.

28

While this model proves to be successful, some modifications to better capture

the interaction between bending and tension forces were carried out by Secomb in

1988.12 Secomb added the assumption of axisymmetry to the model and removed

terms related to area changes that were not of leading order. The new constituent

relations used are:

t o-o + K (2.9)
2 dAO

ta-to 1 1
td - t - - - K(A2 - A - 2) B (ks - ko) (ks + ko - ko) (2.10)

2 2 2

m = B (ks + ko + ko) (2.11)

where s and 0 are curvilinear coordinates following the membrane surface.

Equilibrium equations were derived in order to incorporate the constituent relati-

ons into the body force model:

AP = -1tks - tko Rq) (2.12)
R ds

1 d(Rts) 1 dR (2.13)
-Rds - t _ - qsk5 2.3R ds R ds

dm
0= d + qs (2.14)

ds

where Ap is the local pressure difference between the external and internal fluids

(local normal force per unit area), r is the local shear stress in the s direction (local

tangential force per unit area), and the equation (2.14) represents the local moment

per unit area, which equals zero in this instance as the red blood cell is suspended in

fluid (thus unanchored, so no external moments apply). The new terms introduced

are R, which pertains to the local membrane radius and is a function of s, and q., is

the shear force per unit length in the membrane and is also a function of s. For a

29

complete derivation, see Appendix C.

For future research, it is recommended to use a viscoelastic model which captures

the behavior of the red blood cell membrane with non-negligible viscoelastic effects.

Work done by Tzeren et all 15] [161 develop constitutive relations that model the effects

from the viscoelastic behavior. The viscoelastic modification to equations (2.9) -

(2.11) is only seen in equation (2.10), and is shown below:

1 A) 1 __ (2.15
td= (A 2- A -2) B (ks - ko) (k5 + ko - ko)+ 2pRBC A(2.15)

2 s 5 2 (As Ot

where the viscoelasticity is a time-dependent behavior.

2.2 Motivation for Dimensionless Equations
Studying problems from a dimensionless viewpoint offer advantages for both the

formulation of the problem and the insight gleaned from the results of the problem.

These benefits can be explained in three parts. For a highly detailed explanation,

please refer to B. Zohuri's textbook on dimensional analysis. [101

1. Reduction of Variable Count

First, finding dimensionless parameters may reduce the number of variables in the

problem. Taking the Reynolds number as a common example of fluid mechanics, one

can see that it is made of up four variables. If we were to look for the solution of

some function, the functional form would be as follows:

F = f (U, L, p, p) (2.16)

However, upon non-dimensionalizing the function in equation (2.16), the Reynolds

number is formed:

F f(Re = pUL (2.17)

The effects of this dimensionless form are profound. By reducing the number of

30

variables from four to one, a dimensionless curve can be formed. If a high fidelity

mapping of the function f is desired, such that a minimum of 100 points must be

taken, in the dimensional form, 1004 experiments (calculations, simulations, or other)

are required. By reducing the variables non-dimensionally to one, now only 100

experiments are required.

2. Insight into Governing Equations

The second benefit is that pertaining to the models developed for a particular

governing equation or set of governing equations. As seen in Appendices A, B, and

C, the governing equations naturally form dimensionless parameters. This formation

of dimensionless parameters reveals key insights into the governing physics of the

problem.

For instance, the Reynolds number describes (non-dimensionally) the ratio of ad-

vective forces to frictional forces. By adjusting this parameter, one may characterize

how much advection and diffusion occur in the fluid.

3. Similitude

The third benefit pertains to that of similitude. Similitude has three requirements:

geometric similarity, kinematic similarity, and dynamic similarity.

Take an airfoil as an example. In order to test its flight characteristics, it may

be cumbersome or infeasible to test a full-scale model. Engineers instead will test a

scale model, preserving the shape of the airfoil, but shrinking it to an appropriate

and manageable size for testing.

However, preserving the shape (enforcing geometric similarity) is only one requi-

rement. The second requirement is kinematic similarity. Formally, the fluid over the

airfoil in both the full-scale and scaled test cases must undergo similar time rates of

change or change of motions. In other words, quantities related to motions or how

things move must be similar.

The final similarity requirement is that of dynamic similarity. This requirement

pertains to the ratio of forces acting on the system. In the case of the airfoil, the

Reynolds number is a key measure of the ratio of inertial (advective) forces to viscous

31

(frictional) forces. If the full-scale and scaled cases are ran at the same Reynolds

number, they are said to have dynamic similarity.

If these three criteria are met, a problem is said to have similitude. The non-

dimensional solution to the model that governs a particular problem can then be

rescaled to the required dimensions. Doing this for blood microcirculation flows al-

lows for the scaling of physics pertaining to blood plasma viscosity, oxygen diffusion

throughout the capillary to the muscular tissue, study the effects of variable hemo-

globin and myoglobin concentration, as well as other mechanical and chemical effects.

2.3 Motivation: Thesis Hypothesis and Objectives
The first goal of this thesis work is to provide a dimensionless perspective to blood

microcirculation flows in order to reduce the number of necessary simulations required

to gain valuable insight into the problem and to take advantage of similitude. With

these three principles evoked in the presented model, the results from a database

of parametric studies (future work) should be able to guide medical professionals in

developing new drugs and new therapeutic treatments that directly affect sickle cell

crises.

The second goal of this thesis work is to generate a user-friendly simulation using

the Immersed Boundary Method (IBM) technique. While the IBM is conceptually

intuitive to understand, it presents unique challenges in the approximation of a mo-

ving boundary and its boundary conditions on the flow fields inside and outside of

the moving boundary. In the context of the red blood cell membrane, a zero-velocity

boundary condition and a normal oxygen mass flux boundary condition must be satis-

fied on and across the membrane, respectively. Enforcing these boundary conditions

is a challenging task and leads to some undesirable arbitrariness in their implemen-

tation. The new goal is to understand why the arbitrariness arises and to provide a

clear path forward in the discretization of this problem.

32

Chapter 3

Development of Blood

Microcirculation Model

This chapter presents the blood microcirculation model. First, an overview of the

model is presented, including key assumptions and model geometry. Next, the details

of the model are presented, including the fluid dynamics of the blood microcircula-

tion environment, oxygen species transport, and red blood cell membrane mechanics.

Finally, the governing equations are summarized and non-dimensionalized.

3.1 Physical Model of Blood Microcirculation and

Red Blood Cell System

The model used in this thesis is a modified approach to the work done by Le

Floch-Yin.[2] It consists of a two-dimensional, axially-periodic domain made up of

five sub-domains: the red blood cell, the capillary, the vascular tissue, the interstitial

space, and the surrounding muscle tissue. A visualization of this can be seen in Figure

3-1.

It is assumed to be symmetric about the centerline of the capillary, neglecting any

variations in capillary flow area (and effects associated with vary vessel size) along

the main axis of the capillary. This assumption ensures symmetry across the capillary

while simultaneously reducing code complexity and runtime.

33

Muscular Tissue RI

Interstitial Space R

I Vascular Wall Rc

Figure 3-1: Visualization of the problem domain including the capillary,
vascular wall, interstitial space, and muscular tissue sub-domains.

Each sub-domain has its own set of physical coefficients and parameters. While

some of the coefficients are equivalent, this fact is not generally the case. These values

are listed in Table 3.1 (the data are taken from work done by Vadapalli, Goldman,

and Popell71).

aMV V Dos 2 m/3 [Hb] [Mb] M
(m/s) (M2/s) (M2 /s) (mol/m OIM) (MOI/M3) (MOl/M3/s)

Cytopam (v, vy) 5.2356 -10-6 9.47 -10-10 1.3118. 10-3 21.099 0 0

Plasm (V vy) 1.3659. 10-6 2.40 10-9 1.0906 10-3 0 0 0

Vascular 0 - 8.73 -10-10 1.5097. 10-3 0 0 3.8811 . 10-3
Wall ____

Interstitial 0 - 2.18 -10-9 1.0906. 10-3 0 0 0
Space

Tissue 0 - 2.41-10-9 1.5059. 10-3 0 0.4 6.1321 .10-3

Table 3.1: Velocity and physical coefficients and parameters associated with separate
sub-domains (from Vadapalli, Goldman, and Popel[71).

The velocity vector V' only exists in the RBC cytoplasm and the blood plasma as

those two sub-domains are the only sub-domains with bulk fluid motion. Thus, the

kinematic viscosity v (= p/p) only takes on a value in those two sub-domains. D

represents the diffusion coefficient for oxygen, a the oxygen solubility constant, [Hb]

and [Mb] the molar concentration of hemoglobin and myoglobin , and M a hypot-

34

hesized oxygen consumption rate constant. Not that in some of the sub-domains,

the molar concentration of hemoglobin and myoglobin go to zero, thus eliminating

the associated reaction rate effects in those regions. Also note that the vascular wall

and muscular tissue are the only sub-domains hypothesized in previous work[2 to

consume free oxygen.

These coefficients and parameters arise in the governing equations presented in

the model. However, for the formation of the oxygen transport equations, these pa-

rameters do not make up the complete set of required model inputs. The complete

derivation of these equations can be seen in Appendix B. The additional inputs re-

quired are listed in Table 3.2. Table 3.1 and Table 3.1 complete the list of required

input parameters for the model continuum model.

Input Symbol Value

Kinetic dissociate rate constant, k Hb 44 -1
oxyhemoglobin backwards reaction -1

Kinetic dissociate rate constant, kMb 15 s-1
oxymyoglobin backwards reaction -1

Oxygen partial pressure at equilibrium, Hb 5.3 mmHg
50% hemoglobin saturation P02 5 0 % (706.6 Pa)

Oxygen partial pressure at equilibrium, Mb 29.3 mmHg

50% myoglobin saturation P02 50% (3906.3 Pa)

Diffusivity of oxyhemoglobin DHb 6.10- 10-11 m2 /s

Diffusivity of oxymyoglobin DMb 1.3783 -10-11 m2 /s

Table 3.2: Additional model input values required for generation of governing equa-

tions for oxygen species transport.

The last set of parameters needed are those for the structural mechanics and

associated constituent relations of the RBC membrane. These parameters are listed

in Table 3.3.

The initial isotropic tension in the RBC membrane's resting, unstressed state is

represented as -o. The isothermal area compressibility modulus K, often referred to

as the 2-D bulk modulus, measures the membrane's resistance to surface area changes.

35

Input Symbol Value

Initial isotropic tension in membrane 01- 7- 10-2 kg/s 2

Isothermal area compressibility modulus K 0.5 kg/s 2

Membrane bending modulus B 1.8. 10-19 kg m 2 /s 2

Membrane shear modulus K 4.2 _ 10-6 kg/s 2

Table 3.3: Parameters required for the constituent relations of the red blood cell
membrane structural mechanics.

The bending modulus B quantifies the membrane's resistance to bending. Finally, the

membrane's shear modulus r. represents the membrane's resistance to shear stresses

acting on the membrane. These values used are in accordance with the work of Evans

and Skalak 5'] and Halpern and Secombl81 .

3.2 Fluid Mechanics of the Microcirculation

The blood plasma and red blood cell cytoplasm are assumed to be incompressible,

Newtonian viscous fluids. This assumption allows for the use of the incompressible

forms of mass continuity and the Navier-Stokes equations to be used as the fluid

equations of motion, with associated body force f:

V - v = 0 (3.1)

Dii 1 1-
Dt=---Vp+uv2+ -f
Dt p p

(3.2)

Given that the model is assumed to be fully two dimensional, the problem can be

simplified to a streamfunction vorticity formulation:

W + V 2 XV = 0 (3.3)

36

OW 23.1
~+(6 -V)o= vVw +- V x f (3.4)

at pV f

This formulation has the advantage of reducing a three variable vector transport

system of equations to a two variable scalar transport system. The approach allows

for a reduced computation time due to the reduced number of independent variables

as well as a simpler use of a collocated mesh, as opposed to a staggered mesh, to

compute on. While a collocated mesh can be used for the traditional representation

of the Navier-Stokes equations, it is often difficult to run (refer to section 3.2.2).

Bueno and Harris [3] also used this formulation for the blood plasma fluid dynamics,

but did so on a staggered mesh and also left the formulation in its dimensional form.

In order to better characterize the solutions to these governing equations and

isolate the dynamics of the problem, the nondimensional form of equations (3.3) and

(3.4) are used:

w* + v*2* = o (3.5)

+ (z* V*) w* = V2W* + V* x f* (3.6)
at* Re

From the nondimensionalization, the Reynolds number Re is found as a key nondi-

mensional parameter of interest. The Reynolds number measures the ratio of inertial

(advective) forces to viscous (diffusive) forces and can be used to isolate the mecha-

nics of the problem. For instance, in high Reynolds number flows, viscous forces are

small such that momentum diffusion is largely contained primarily in small viscous

layers along solid surfaces (known as boundary layers).

For a more detailed derivation of this model, refer to Appendix A. For a more

in-depth discussion of the Reynolds number, refer to Section ??.

3.2.1 Fluid Mechanics: Boundary Conditions

The boundary conditions for the fluid mechanics of the blood plasma are similar

to that of pipe flows.

37

First, along the outer edge of the capillary sub-domain, a solid wall zero-velocity

(no-slip and no-flux) boundary condition is applied. This boundary condition corre-

sponds to a constraint on the first-derivative of the streamfunction at the capillary

wall, namely the first-derivatives in both the x-direction and y-direction are equal to

0:

U wa - -0 (3.7)
19y

- =0 (3.8)

In the streamfunction vorticity formulation, these are enforced via setting the wall

to be a streamline (i.e. T is equal to a constant) and substituting equations (3.7) and

(3.8) into equation (3.5). Doing so results in the following set of residual equations:

R1j wall - c = 0 (3.9)

2 a *+ 2 =0 (3.10)

where c is a constant, which equals the non-dimensional capillary radius length in

order to satisfy the non-dimensional volume flow rate of the blood plasma through

the capillary.

The boundary condition for the centerline is a symmetric boundary condition.

Physically, this corresponds to a streamline with zero vorticity. Thus, the boundary

conditions are as follows:

R11CL 0 (3.11)

R2cL w* =0 (3.12)

Note that the first residual equation has no constant here as the radius is 0 by de-

38

finition. This value of T corresponds to it being the first streamline in the domain,

while also being the lower bound of the integration over T in order to find the non-

dimensional volume flow rate.

The inlet and outlet of the capillary are periodic boundary conditions. In order to

enforce this boundary condition, it is assumed that the outlet nodes along edge of the

domain are equal to the inlet nodes. The inlet of the domain takes a standard finite

difference stencil, while the residuals for the outlet of the domain take the following

form:

Routlet outlet - * inlet 0 (3.13)

R2I tlet W "'outlet - W*I inlet =0 (3.14)

Lastly, the boundary conditions for the RBC membrane is also a zero-velocity

boundary condition (no-slip and no-flux). Although the RBC membrane is modeled

as an infinitely thin shell, it is a extensible (moveable and deformable) solid boundary

and still acts as a barrier to fluid transit across it. Thus, the first derivative of the

streamfunction in both the x and y-direction is required to be zero along the length

of the membrane. This boundary conditions is expressed as:

qj()n+1-
R1C Xn+ 1 yn+ _4n+1(s)) At (3.15)

yn+1 +I n+1 (y+i- Xn+1(s)") At (3.16)RI Cv- +dx / 3.6

Note that this expression is implicitly solving for the RBC membrane's updated lo-

cation at a time-step n + 1. Formulating the boundary condition in this way ensures

a strong (implicit, minimized numerical round-off error) versus weak (explicit, larger

numerical round-off errors) enforcement of the zero-velocity boundary condition. but

it requires solving the equations simultaneously, which results in a generally longer

code run-time.

39

These are the completed boundary conditions for the capillary domain blood

plasma fluid dynamics. For the derivation of the overall system of equations, see

Appendix A. For a detailed derivation of the boundary conditions relating the plasma-

RBC body force interaction, refer to the detailed explanation in Appendix E.

3.2.2 Benefits of Streamfunction-Vorticity Formulations

As alluded to in section 3.2, the streamfunction-vorticity formulation in two di-

mensions has a few benefits worth noting.

A first benefit is the reduction of variables. In transforming the system from

a dynamic system (u-v-p) to a kinematic system (4-w), the total number of varia-

bles required to generate a physical solution is reduced from 3 to 2. Reducing the

number of variables without losing model fidelity is one excellent reason to use the

streamfunction-vorticity formulation, as the fewer variables results in a (typically)

faster simulation runtime.

A second benefit pertains to the boundary conditions of the fluid problem. Instead

of specifying dynamic boundary conditions in velocities or pressure levels, a kinematic

boundary condition is applied. The boundary conditions on the stream-function T

is set by the volume flow rate of the fluid. Dimensionlessly, this is established when

using the capillary radius as the problem length-scale. The boundary conditions on

the vorticity w are also easily set, either by the definition from equation (3.5) or by

it being 0 across a line-of-symmetry. For a more detailed treatment of the boundary

conditions on 4 and w, refer to section 4.6.

A third benefit pertains to code simplicity. Having fewer dependent variables re-

sults in requiring fewer governing equations to be implemented. This simplifies the

construction of the Newton Method Jacobian matrix (see section 4.7) while simulta-

neously requiring less time to invert and solve the residual system. Incompressible

Navier-Stokes codes commonly use projection methods, an efficient technique develo-

ped by Alexandre Chorin in 1967, which decouple the pressure and velocity terms. An

intermediate velocity term is calculated, but is then corrected by the pressure field in

subsequent step in order to satisfy the velocity divergence constraint (V - = 0) found

40

from the incompressible continuity equation. With a streamfunction-vorticity code,

the equations do not require a projection method and the n + 1 time-step solution

can be solved for in one step, either explicitly or implicity.

The last benefit worth mentioning pertains to domain meshing strategy. Navier-

Stokes codes tend to work better with staggered meshes in order to overcome the

problem of spurious, high-frequency pressure oscillations, known as odd-even decou-

pling [6. These oscillations are non-physical in nature as they do not dampen out

and leave a sawtooth, or checkerboard, pattern in flow solutions. In order to over-

come this problem, staggered meshes are used. However, streamfunction-vorticity

methods do not have this problem, thus a collocated mesh can be used, simplifying

the implementation of the code.

3.3 Oxygen Species Transport within the Microcir-

culation and Surrounding Tissue

The concentration of oxygen is assumed to exist as a continuum so that advecting-

diffusion equations may be used to simulate its transport in the domain. In regions

where no hemoglobin or myoglobin proteins are present, the concentration of free

oxygen, 02, molecules is modeled via the oxygen partial pressure Po2 . In regions where

there is hemoglobin or myoglobin, a saturation transport equation is also present for

measuring the amount of bound and unbound oxygen molecules. (For a detailed

derivation of the oxygen transport equations, please refer to Appendix B).

The first sub-domain examined is the RBC cytoplasm. In this work, hemoglobin

is only assumed to be present inside the RBC. While free hemoglobin proteins may

exist in the blood plasma, those proteins and their associated effects are neglected.

From this assumption, the first set of governing equations for the inside of the RBC

are as follows:

41

O02 a A P 2 _ = D2 2 kHb [H b] Hb Hb Po2 n
t Oy yx axay =aD 2 -2+ - (1 -

(3.17)

+S~ _ (SQbb (0b

OSHb OalpSHb al & SHb DHbV2SHb Hb -Hb _ SHb) P2))
Ot 1y Ox axOy -PQ 25 0/

(3.18)

Equation (3.17) monitors the transport of oxygen in the form of Po2 . Due to the

motion of the RBC, the oxygen transport is unsteady; this effect is quantified via the

first term on the LHS. Also, since the RBC is in motion, the oxygen must be advected

along, thus the LHS velocity terms (second and third) are present (as streamfunction

derivatives). Given that free oxygen is able to diffuse throughout the cytoplasm, the

Laplacian diffusion operator is present on the RHS (fourth term). Since hemoglobin

is found in the RBC, oxygen is free to bind and unbind with it, thus the presence of

the reaction rate term on the RHS (fifth term).

Equation (3.18) is analogous to equation (3.17), except that it measures the ad-

vection and diffusion of the hemoglobin saturation. A key difference is that the

reaction rate term is now negative, as it should be opposite to that of the partial

pressure equation (otherwise, an unphysical and numerical accumulation of oxygen

would ensue).

The second sub-domain treated is the blood plasma. As mentioned previously,

it is assumed to not have any free hemoglobin present, thus no saturation transport

equation is required as the saturation of hemoglobin (as well as myoglobin) is zero

by definition. With this assumption in mind, the reaction rate term is now zero as

[Hb] = 0, and the resulting governing equation is:

aP0 2 a' &J 2 O ay = Do 2 V2 Po 2 (3.19)
at y ax ax ay

Equation (3.19) models the unsteadiness of the oxygen transport as well as its ad-

42

vection and diffusion throughout the capillary.

The third sub-domain treated is the vascular wall. In this region (as well as the

remaining regions), no bulk fluid motion occurs, thus the LHS advection terms are

zero by definition. There are also no hemoglobin or myoglobin proteins present, thus

their respective saturations are zero by definition and reaction rate terms are also zero

by definition. However, a hypothesized oxygen consumption coefficient M is present,

as done previously by LeFloch-Yin.[2] This additional term shows up as a RHS source

term:

O2 - Do 2 V
2Po 2 - M (3.20)

at

The fourth sub-domain treated is the interstitial space. This region also contains

no advection or oxygen binding proteins, nor does it contain a oxygen mass con-

sumption coefficient. Thus, the related terms are zero and no saturation governing

equation is required. As such, the single governing equation is as follows:

O2 = Do2 V
2po 2 (3.21)

at

The final sub-domain treated is the muscular tissue. This region has no advection,

but does have a reaction rate term due to the presence of myoglobin as well as a

hypothesized oxygen mass consumption rate term M.[2]

&po2 = D 0202+ k _b [Mb] Mb _ _hMb P02 M (3.22)
at Z P02 50%

asMb = DMbV2 SM - k sb (Mb Mb) P02 (3.23)t ~- \ --Mb at \ P02 50%

Note that although M is present, it acts as a source term for the oxygen partial

pressure. As oxygen is removed from the system by tissue consumption, the saturation

will adapt as required.

In order to avoid unnecessary redundancy, the dimensionless forms of the previous

43

equations are succinctly presented in subsection 3.5.1 (alongside the dimensionless

equations for the fluid mechanics). For a detailed derivation and explanation of

the non-dimensional parameters, refer to Appendix B and Chapter 5, section ??,

respectively.

3.3.1 Oxygen Species Transport: Boundary Conditions

The boundary conditions for the oxygen transport equations result from periodi-

city of the domain and an oxygen flux constraint (e.g. analogous to that of a heat

flux boundary condition).

The periodic boundary condition at inlet and outlet are enforced in a similar

manner to those of the fluid mechanics. For the capillary domain, the advection and

diffusion terms are approximated at the inlet using information from the outlet and

preceding points (as required). The outlet is set equal to the inlet by definition.

(This enforcement of the boundary conditions is one way to construct it. Many other

methods exist, and this method was chosen for its simplicity).

Across non-periodic boundaries, a normal flux constraint on the oxygen partial

pressure is applied. It is mathematically expressed as:

(aDo2 Vpo2 - ft)1 = - (aDo2 Vpo2 -,h) 12 (3.24)

where 1 and 12 indicate regions 1 and 2 (e.g. cytoplasm region and blood plasma

region).

First, in the capillary, vascullar wall, interstitial space, and tissue sub-domains,

the gradient exists only in the y-direction at the intersections of both domains (see

Figure 3-1). This boundary condition is expressed as:

aD dpo2 =-aDo d dpo2 (3.25)y dy)2

However, across the RBC membrane, the normal derivative is in both the x and

y-directions. The boundary condition for this region is

44

[(ceDo2 Vpo2 -) (X- X(s))] - [(aDo2 VPo 2 - h) 6 - X(s))] (3.26)

where [-]p indications the blood plasma region and [.]c indicates the cytoplasm region.

For the detailed, dimensionless treatment of equation (3.26), refer to Appendix E.

3.4 Red Blood Cell Membrane Mechanics and Inte-

ractions with the Microcirculation

The RBC membrane is modeled as a segmented beam. It is suspended in the

blood plasma and surrounds the cellular cytoplasm. Motion of these surrounding

fluids impart momentum to the membrane and the membrane provides a resistance

to motion in return. The interaction is a two-way reaction, i.e. the fluid motion affects

the RBC membrane motion and the RBC membrane motion affects the motion of the

fluid.

In order to capture this interaction, a body force model is used. The RBC mem-

brane is assumed infinitely thin and is massless, thus it acts as a solid boundary

which separates two distinct fluid regions. Given that it is extensible (can move and

deform), not only must it be integrated into the fluid equations of motion as a body

force, but it must also have unique boundary conditions that update its location

while enforcing the zero-velocity boundary condition in the reference frame of the

local RBC membrane location.

The body force term f = (fr, fy) is expressed as follows:

dFt dF
f =Asin # - cos$ (3.27)

dA dA

dF dF
fy cos + sin # (3.28)

dA dA

where

45

dF- dts ~ do$ (3.29)

dFn dq5 dq8 (3.30)
dA = ds ds

and the constituent relations used to determine t, and q, are

(dsR Ndq5 (d$ ds 2 (R'\ 2 \ 3
ts = o-O + K sR 1) - B d O ko + r, d 2 R)) (3.31)

dsO Ro ds ds 2 dso Ro

ds ds 2

Note that there are no external moments applied to the RBC membrane as it is

suspended in the fluid (thus it is unanchored). As such, the net bending moment,

modeled as

dMz dm S
dA ds 0 (3.33)

which yields equation (3.32). Differentiating each quantity with respect to s yields

the appropriate necessary terms for the body force quantities mentioned previously.

In order to satisfy the fluid boundary condition along the RBC membrane, the

velocity of the local fluid must be equal to the velocity of the local point on the

membrane. As mentioned in subsection 3.2.1, this boundary condition is implicitly

satisfied for a strong enforcement of the boundary conditions. This statement is

mathematically expressed as:

12+1 \f+()

X -dy 6 A (3.34)

dx

For a detailed derivation of the RBC membrane mechanics, refer to Appendix C

46

and for a detailed derivation of the required RBC membrane mechanical boundary

conditions, refer to Appendix E.

3.5 Governing Equations for Blood Microcirculation

Model

The governing equations from the previous sections are summarized below for

each sub-domain. Note that due to the sub-domain and the varying parameters (as

presented in section 3.1), some terms vanish.

The RBC cytoplasm sub-domain, the interior of the RBC:

(3.36)

at Oy x
x2 + V X f

kHb [Hb]
(SHb (1

(3.37)

s~)(P02) n)l\P02 50%
(3.38)

lp OSHb

Oy Ox
p OSHb = DHb 2sHb

Ox Oy
- k Hb SHb SHb)- 1

P02(Hb In)P0250% / /
(3.39)

The capillary sub-domain, 0 < r < R,:

(3.40)

O9W O OW
at Oy 0X OX Oy

VV 2W + V X f

47

0 P02
at

OF OP02
ay x

O_ Op02
Ox Oy

= Do2 V 2Po2 +

OSHb

at

(3.41)

OP02 O'F OP02 al OP02 D 7+p2 ~~O~ _ - Do2 V2po2 (3.42)
at y ax O ay 02 2

The vascular wall sub-domain, Rc < r < Rvw:

2 = Do 2 V
2 PO 2 + M (3.43)at

The interstitial space sub-domain, Rvw < r < Ris:

OP0 2 = D0 2 72Po 2 (3.44)
at

The muscular tissue sub-domain, Ri. < r < Rt:

aP0 2 = D02 V2P02+ kMb [Mb] gMb (1 gMb P_2_

at -e Mb2 O kb[b ~ ~ 0) + M (3.45)
(P0250%

asMb = D Mbv2sMb _k Mb SMb _ SMb 32
at Mb (3Q2 46)J

It should emphasized that the vascular wall, interstitial space, and muscular tissue

sub-domains do not have any governing equations relating to the streamfunction and

vorticity as there is no bulk fluid motion in those regions.

Corresponding to Table 3.1, the capillary, vascular wall, and interstitial space

sub-domains do not have a saturation equation for either of the oxyhemoglobin or

oxymyoglobin protein complexes as they are not usually found in these regions. While

free hemoglobin molecules can exist in blood plasma, this model assumes their affects

to be negligible in comparison to the transport of free oxygen within the blood plasma.

Also, the capillary domain does not have myoglobin proteins, nor does the muscular

tissue have hemoglobin proteins, thus no corresponding saturation transport equation

exists in these sub-domains by definition.

48

3.5.1 Non-dimensionalization of Governing Equations

This subsection summarizes the dimensional governing equations presented pre-

viously. They are now cast into their final non-dimensional form for code implemen-

tation. As can be seen, the non-dimensional parameters at play reveal themselves,

allowing for a non-dimensional characterization of the physics to be performed.

The RBC cytoplasm sub-domain, the interior of the RBC:

+* + V*2q* = 0 (3.47)

Ow* V* OW* alp* BO* I
+ - - - = -V*2W + V* X * (3.48)

at* Oy* Ox* Ox* &y* Re

ao IV* pO v p* Ip [Hb] n

P2 + 02 02 Vp* +DaHb (SHb SHb)
at* ay* Ox* Ox* Oy* Pe0 2 VaPp250%)

(3.49)

OSHb LN,* &SHb - * OSHb 1_V*2 SHb (SHb SHb))n)
V*-~ - DaHb (P0b H

at* &y* Ox* Ox* Oy* PeHb
(3.50)

The capillary sub-domain, 0 < r < R*:

w* + V*2xI* = 0 (3.51)

Ow* O* Ow* DI*OW* 1
+ --- - &- - = V*2W* + V* xf* (3.52)

at* y* Ox* ax* ay* Re

Thevascul *r * wl o * 12 R2ap 2 ~ ~ ~ + 0 0 ,2Po (3.53)
at* ay* ax* Ox* ay* -Pe02 02

The vascular wall sub-domain, R* < r < R* :

49

&P02 _ V*2pO - M*
(9t* Pe02 02

The interstitial space sub-domain, R* < r < R*:

=02 v 02at* Peo2 0

The muscular tissue sub-domain, R* < r < R*:

ap I [Mb]
O0 Pe 2 *2+DaMb aPQ2 5 O%) Mb - (1 - SMb) (rp*)) - rM* (3.56)

SMb 1__V*2SMb - Dasb (Skb - - SMb)
2))Ot -PeMb

(3.57)

3.5.2 Non-dimensional Parameters

As seen in this chapter, the governing equations have a set of dimensionless pa-

rameters pertaining to the desired physics in the problem. For convenience, these

parameters are listed in Table 3.4 with a brief description of what they measure.

Parameter Definition Description

Reynolds Number (Re) UL Inertial ForcesV Viscous Forces

P6clet Number (Pe) UL Advection

Damk6hler Number (Da) k- 1 U Reaction Rate
L Passage Rate

Concentration Number . 1. Saturated Concentration
aP0250% Free Oxygen Concentration

Mass Consumption Number M(L/U) Oxygen Consumption
P250%. Oxygen in Equilibrium

Mb

Partial Pressure Ratio (r)50% Free Oxygen in Equilibrium with Oxymyoglobin
PartialPressureRatio(r) P0 2 50% Free Oxygen in Equilibrium with Oxyhemoglobin

Table 3.4: Dimensionless parameters to be studied in the simulations.

50

(3.54)

(3.55)

Chapter 4

Implementation of Numerical Model

4.1 Immersed Boundary Method

The immersed boundary method (IBM) is a numerical technique used to approx-

imate the effects of an immersed boundary in a fluid["]. Its development largely

stemmed from the need to simulate biomembranes suspended inside a blood micro-

circulation flow. While it has practical applications elsewhere, its original intent was

for the use in extensible membrane problems.

For background, the IBM is a simplified approach (in terms of coding) to deforming

boundary problems. It uses two types of meshes: a static (Eulerian) mesh and a

dynamic (Lagrangian) mesh. The former is the mesh in which all the calculations

take place, and the latter is "sampled" onto the former mesh. The Lagrangian mesh

acts as an immersed boundary in which it provides a feedback mechanism to the flow

field lying underneath it on the Eulerian mesh, thus acting as an effective boundary

to the underlying fluid.

In the context of red blood cells, the membrane is modeled as an immersed boun-

dary (the Lagrangian mesh) and is extensible. It also affects the motion of the un-

derlying fluid. The sampling technique used in capturing of this coupled interaction

is the hallmark feature of the method.

In order to couple the interactions, a discretized delta function, 6(r), must be

developed in order to properly sample the membrane body forces, F, acting upon the

51

fluid, f. This coupling is done in the following way:

f((t)) = f1(X(t))6 ((t) - d (4.1)

where #(t) represents the Eulerian mesh points at time-varying locations and X(t)

represents the Lagrangian mesh points at time-varying locations.

The delta function, 6(r), originally developed by Peskin, but presented here from

Lai and Peskin[17, is expressed in the following way:

Th hr- + V1 + 4L 4hr <

8h - 2rr - -7 + 12i - 4() h< Ir <2h

0 Ir ;> 2

It is simply the discretized variant of the Dirac delta function. Consequently, because

this function also allows for the derivative of the solution to be continuous, it is only

first-order accurate (for more on the accuracy, see Lai and Peskin[17]).

Expressed in a more tractable form for computations, equation (4.1) can be dis-

cretized into

f(t)) = ((s, t)) 6 (em) - Z(st)) As (4.2)

or for a particular time-step n

fh(y) = Z "(Z"(s))6 (-(t) - Z"(s)) As (4.3)
S

Equation (4.3) is a matrix equation that samples the Lagrangian body force vector F

and smears the effects onto the Eulerian mesh via the Eulerian body force vector, f.

In the context of the code, this is an explicitly calculated (time-step n) sub-routine,

which provides for a simpler implementation and reduced runtime.

52

4.2 Newton-Raphson Iteration Solver

The solver of choice used in this work is the iterative Newton's Method. It is a

zero-finding algorithm (root solver) that iterates over a system of residual equations,

driving them to zero by systematically adjusting the values of the dependent vari-

ables at each iteration step. Newton's Method also has the property of quadratic

convergence and is a very robust algorithm, thus being a suitable solver.

Mathematically, the residual function is defined as

R(x) = 0 (4.4)

where x is a single variable.

Equation (4.4) is known from the governing equation(s) of the system a priori. Es-

sentially, all terms in the governing equation(s) are moved to one side of the equation,

equaling 0, and then the residual R(x) is defined to be that resulting equation.

In order to iterate, the derivative of equation (4.4) is first taken and is multiplied

by a Ax:

R(x)A = R'(x)Ax = 0 (4.5)
Ox

Numerically, an initial guess for the roots of the function R(x) is made, xo. From

here, the necessary Ax can be solved for by adding equations (4.4) and (4.5) and

rearranging:

R(xo)Ax = R-(o)(4.6)
R'(xo)

From here, the next x can be solved for: xi = xO + Ax. Note that this xi may

not satisfy equation (4.4) and will require multiple iterations for convergence. These

multiple iterations occur for non-linear problems, such as those encountered in fluid

mechanics, as the residual is linearized about a point xk. Newton's Method iterates

in linear steps from xk to xk+1, thus requiring potentially new linearizations about

the successively iterated solutions. In general, for any Newton step k, the k + 1 step

53

can be solved for by

Xk 1 =Xk - R'(Xk) (4.7)R'(xk)

Generally, a non-linear problem requires multiple iterations to converge to an

accurate solution that satisfies equation (4.4) within a user-chosen tolerance. It is

possible for a non-linear residual function to be satisfied in one iteration, but only if

the initial guess is already close to the actual solution.

4.3 Domain Discretization
The problem domain (see Figure 3-1) must be discretized for the numerical simu-

lation to take place. The Eulerian mesh chosen is a non-uniform, rectilinear mesh.

The reason for choosing a rectilinear mesh is two-fold. First, it is relatively simple

to implement and keep track of point data (e.g. grid location and variable values).

Second, no extensive modifications need to be made to the sampling delta function

6(r), thus the immersed boundary method can still be used.

Near non-periodic domain boundaries and non-symmetric domain boundaries, the

grid must contract (i.e. become progressively more dense) in order to better resolve

numerical boundary layers. For example, in fluid simulations, boundary layers form

near solid boundaries and form high regions of fluid shear. Thus, the value of the local

derivative of the velocity field near these solid boundaries can increase to large values,

requiring higher resolution to more accurately resolve the velocity values and not over

or underestimate the values of their derivatives. Figure 4-1 displays the contraction

of the mesh near the capillary edge at the top of the capillary sub-domain. Note that

no contraction occurs on the left or right edges due to the domain periodicity and no

contraction occurs on the bottom edge due to the domain being axially symmetric

about the length-axis.

For the remaining sub-domains (vascular wall, interstitial space, and muscular

tissue), the boundary interfaces between them are similarly contracted, while the left

and right sub-domain edges are left with uniform grid spacing since axial periodicity

still applies.

54

IIIIEIIIIIIIIIEIIIIIIIIIIIEIIIIIIEIII CIN ENEE II
IIH IIIIIIIIIIEIIIIIIEEIEIIBEEIIIEEEENEEEI

IIH IIIIIIIIIIIIIIIIIIIINIIIEIIIIIIIIBEEII

IIIIIIIIIIIIIIIIIIIIBIEEEEIIIIIIIIIEEEEERGEIIIIIIIIIII HillIIII

Figure 4-1: Non-uniform rectilinear grid for capillary sub-domain (unscaled). Notice
that the top capillary edge has a gradually denser mesh to account for the boundary
layer formation.

55

The Lagrangian RBC membrane mesh is made up of only a curve of points which

obey the constituent relations derived in Appendix C. They are overlaid upon the

Eulerian mesh and sampled according to the delta function shown in section 4.1. The

Lagrangian mesh is shown in Figure 4-2 with the Lagrangian mesh points shown in

red and the Eulerian mesh shown in black. (This mesh is the starting configuration

for a RBC, which is a semi-circle.)

Figure 4-2: Lagrangian mesh (shown in red with circles highlighting individual mesh
points) overlaying the Eulerian mesh (shown in black).

4.4 Finite Difference Modeling of Non-Uniform Grids
Finite difference modeling typically involves the Taylor expansion of a function

about a set of points. The expansions are then summed, canceling out terms, leaving

56

a stencil used for numerical approximations. The most common stencils seen is that

for the approximation of the slope of a line about a point i:

Of _ f(x+i1) - f(Xi) _ f(xi+1) - f(Xi) (4.8)
OX xi+1 - xi AX

Similarly, the slope of a line may also be calculated by taking a point behind xi as

follows:

Of f(xi) - f(xi_1) _ f(Xi) - f(Xi_) (49)
Ox xi - xi_ 1 Ax

The slope of this same line can also be approximated to higher order by using a point

i + 1 and i - 1:

Of _ f(xi+1) - f(xi-1) _ f(xi+1) - f(Xi_1) (4.10)
OX xi+ 1 - xi_ 1 2Ax

where Ax (x i+ - xi) = (xi - xi_1). These equations, which are intuitive to

understand, can also be approximated by the Taylor series expansion about the points

xi_ 1 , xi, and xj+ 1 and appropriate summations.

However, these formulas do not readily work to higher orders of accuracy for non-

uniform grids (meshes) as the Ax in the denominators are no longer equivalent. Also,

in the case of equation (4.10), f(xi) will no longer have a weighting coefficient equal to

0 (instead of 1 or -1), thus the value of f(xi) will be required in order to approximate

the derivative. This work circumvents this issue by using Lagrange basis polynomials

for the derivation of the desired stencils on a non-uniform mesh.

4.4.1 Lagrange Basis Polynomials for Finite Differentiation

Functions can be locally approximated by a polynomial. How this approximation

is carried out can be done multiple ways, one of which is via the use of Lagrange basis

polynomials. To start, the polynomial is defined as

N

f(xi) ~ L(xi) = f(xi)i(x) (4.11)

57

where () is a Lagrange basis polynomial:

N

li(x) = X - m (4.12)
m=1 X- XM
M54i

The Lagrange polynomial can be extended and differentiated out for N points xi

in order to give the desired stencils for numerical approximation. The advantage of

this procedure is that the weights for each point xi are retained until the grid spacing

between points (i.e. the Ax for each grid cell) is defined. Once defined, the weights

are solved for based upon the user-desired mesh resolution and spacing. The full

derivation and explanation of this process and the resulting approximations used (of

which they are boxed) can be seen in Appendix D.

4.5 Discretization of Governing Equations
The governing equations are discretized according to a traditional forward-time

centered-space (FTCS) finite differencing scheme with a second-order upwinding of

the first-derivative terms. This discretization scheme is a commonly employed scheme,

has been extensively studied, and is also used as a common teaching example in

graduate level numerical methods courses, leading to it becoming the discretization

scheme of choice.

The spatial stencils used for the all of the required derivative approximations are

boxed in Appendix D. Note that the first-derivative approximation for upwinding

involves the velocity terms such that

S c , c < 0{u Ox b >C- =
Ox ,

au ;> 0

where c is the local grid speed, u is the generic solution variable, If indicates a

forward differencing, and lb indicates and backwards differencing (whose stencils are,

once again, boxed in Appendix D).

Where required, depending on the local RBC mesh location, forwards and bac-

kwards differencing of the first- and second-derivatives may be strongly enforced,

58

regardless of upwinding, to ensure that the diffusion being approximated is physically

realistic. These instances will be explained in more detail in section 4.6.3.

The governing equations are discretized temporally by a semi-implicit forward

Euler scheme, where the linear terms (e.g. diffusion) are implicit in time and the

non-linear terms are explicit (e.g. advection, body force, reaction rate) in time. All
n+1

constants are also treated explicitly. The implicit terms are denoted by [.]1 and

the explicit terms are denoted by [-] (note that the Hill coefficient n is unchanged

inside the reaction rate terms, and it does not denote a time-step).

For the RBC cytoplasm sub-domain, in the interior of the RBC:

[w* + *2* = 0 (4.13)

n
Ow* + 9J*Ow* [X*c9* 1

at* ay*
- [1V*2,]

n+1

Re

+ [alp* ap a 1 *II V*]n+1 aP*b2 0 P2 _k _P02 = - 0
at* [y* O ax x* y* [Pe02 p 2

[Hb] -1 ~b p))
S[DaHb (Hb Hb Hb n) (4.15)

L cPO2 50%) (

OSHb F * &sHb aql* OSHb 1

at* Oy* ax* Ox* y*
S[~v*2sHb

PeHb .
n

- [DaHb Hb SHb) ()n)] (4.16)

For the capillary sub-domain, 0 < r < R,:

n+1

59

n

+ IV* X f* (4.14)

-0 (4.17)

ax*, aa;*
n+1

[~1
=Re~g2*

OP 2 8*902 aqf* aPb2

at* ay* Ox* ax* ay*

For the vascular wall sub-domain, R. < r < R

ap 2
at I

n+1
1

Pe0 2 p2o

1

Pe0 2

n

+ V*x f*

n+1

17*2]

- [M*]

For the interstitial space sub-domain, R, < r < Ri,:

n+1
OO2 v2 *

at* Pe0 2 P0 2]

For the muscular tissue sub-domain, Rs. < r < Rt:

n+1

Pe0 2
n

[Mb] (S M b S M b)
QMb %b _b 02))J

0250%)

1]n+1

= v*2sMbI
_PeMb _

- [DaMb (SMb S SMb) (rp2)) I

4.5.1 Red Blood Cell Body Forces:

In order to calculate the constituent relations for the body force term f* the

geometry from the Lagrangian mesh is needed. A schematic of the RBC geometry is

shown in Figure 4-3.

Recapitulating the body force vector and constituent relations for the purpose of

60

+w* +[* a*
at* + y -a- * (4.18)

(4.19)

(4.20)

PO2:
at *

(4.21)

+ DaMb
n

- [rM*] I

asMb

at

(4.22)

(4.23)

sk+1

Sk

dsk-1/2

Sk-1

Rk

4k+1/2

Figure 4-3: Red blood cell mesh geometry for calculation of constituent relations,
visually defining all necessary variables.

61

clarity (for their derivations, refer to Appendix C):

f* 2
pU ds*

= pU 2 (ds*

(ds* R*t* = o* + K* ds* R*

- q* dosin(o) -

* dqY- s

s*

-)

ds* R*

ds* R*

-t* d dq*cos(#)

- sin(#)cos(#) + t

B* ds*
ds* (ds*

- k) + -

d R* ds*
+ds* RO* ds*)

dt* 1 d3= K* ds*

d2 #$ / dq$
(2-

ds*2 2ds*

q* =-B* T= d 2

dq,* - d 3q
ds* ds*3

- k*)
d

ds*

ds*2

ds*)

K* (ds* 2 R* 2

2 ds*) R3

d R*: 2

ds* R3)2

As can be seen, the constituent relations depend only upon the RBC geometry and

predetermined constant coefficients.

First, the definition of # and the stencils for the derivatives of # must be shown.

First, 4 is defined from the geometry as

R*s - R*
Ok+1/2 = arccos (s *

wltk+1/2

where upon a line-element weighted average

lk+1/2dsk-1/ 2 + Ok-1/2dsk+1/ 2

ds* + ds*1 1 2

(4.24)

(4.25)

Using a combination of the midpoint formula and the line-element weighted average

(as shown in equation (4.25)), the other derivatives for # can also be shown as:

d #k+k1
ds* Ik dsk+/2

2 - #k-1/2

+ ds_ 1 /2
(4.26)

62

d2

ds*2 k

ds2 ds*-y + ds2 ds*wy
k+1/2 k-d* 2 -1/2k+1/2

dsk+1/2+ dsk-1/2

d3o

ds*3 k

d2o d2o
ds*2 k+1/2 ds*2 k-1/2

k+1/2 k 1/2

(4.27)

(4.280)

The remaining terms that are needed for the constituent relations are listed be-

low in equations (4.29) through (4.34). Once again, a combination of line-element

weighted averaging and the midpoint formula is used.

ds *

ds*

ds* ds*

ds* ks_/ ds* sk+1/2
O,k+1/2 ,k-1/2

ds* 2 + ds-

R*

Rk

d (ds*)

ds* ds;/ k

R*

R* 1 + R*

R0 k+1 + RO,k

k

R* + R*_

0~k + R*O k

(ds*+/2 + d s*-1+/ ks 1/ 2) /2

ds* 2 ds*_ 2
d k 1/2 J ds*k -1/2
0,k+1/2 d ,k-1/2

sk+1/2 Sk-1/2)/

+ + 2

R,k+l + Rk]

2
R* +R*_1
0~k + R*O,k_

(4.34)
(dsk + ds_1)/2

Now, substituting these terms into the constituent relations, and the constituent

63

(4.29)

(4.30)

ds*k-1/2

ds _1/2

k+1/2 ds 1/ 2)/2

_(R*)
d s* \R

(4.31)

(4.32)

dds* s) 2

k

d (R* 2

ds* R0* k

(4.33)

dk+1/2

ds,k+1/2

relations into the body force components f,* and f,*, completes the calculation for

the RBC body force interaction at time-step n. This body force calculation is done

explicitly in the semi-implicit scheme, which is consistent with the calculation of the

other non-linear terms in the governing equations.

4.6 Boundary Conditions and Interface Points
This section treats the boundary conditions for the entirety of the problem domain.

It will recapitulate the physics of the governing equations as well as discretize the

governing equations for use in the IBM.

4.6.1 Periodic Boundary Conditions Along Domain Inlet and

Outlet

The inlet and outlet of the domain (left and right sides, respectively) are periodic

boundary conditions.

The inlet boundary condition takes data from the outlet boundary and preceding

points in the x-direction, as necessary, for advective-upwinding effects and diffusion

effects (the latter being dependent on the RBC membrane position, discussed in

section 4.7.2).

The outlet boundary values are set equal to the inlet values via residual solving,

ensuring that the inlet and outlet are equal.

4.6.2 Flux Boundary Conditions Along Sub-Domain Interfa-

ces

The interfacial boundaries between the capillary centerline, capillary, vascular

wall, interstitial space, muscular tissue, and muscular tissue edge form two sets of

boundary conditions. The two sets are related to the kinematics of the fluid (e.g.

centerline streamline with zero vorticity, no-slip streamline at capillary edge) and

the oxygen transport (e.g. oxygen flux across interfacial boundaries). The capillary

sub-domain employs both of these sets of boundary conditions while the remaining

sub-domains only employ the oxygen transport boundary conditions. (Note that the

64

RBC membrane in the capillary has its own specific boundary conditions - see section

4.6.3 for details.)

Capillary Sub-Domain, 0 < r < R,:

As briefly mentioned previously, the capillary domain (excluding the RBC mem-

brane) has two sets of boundary conditions. For the streamfunction IF*

'F*
y*=o

Iy*= 1

= 0 (4.35)

(4.36)

and for the vorticity w*

*
y*=o

w*

y*= 1

=0

2 , where = 009*2y*

(4.37)

(4.38)

The latter boundary condition where w* has = =0 is enforced via the ghost
y*=1

point method. This implementation will be explained in section 4.7.2.

The oxygen transport boundary conditions for the oxygen partial pressure p02

are, where fi =D:

A 2

ay* Y*=O
a p1 OP*2

aVW Pep ay* Y*=1

=0

1 Op02
Pe,,w O* Y*=1

Recall that the saturation is defined to be zero in the capillary sub-domain as no

hemoglobin or myoglobin are assumed to exist here.

65

(4.39)

(4.40)

Vascular Wall Sub-Domain, R, < r < Rw:

This sub-domain only contains free oxygen transport, thus the saturation is once

again defined to be zero as no hemoglobin or myoglobin are present. With that fact

stated, the flux interface boundary conditions are:

(--a 1 &02

avJ Pe, &y* .

1 Op*2

Pe"' Oy* *=Rvw/Rcap

1 &p02

Pe,,,, iy* Y=

1 ap 2

Pei, (9y* Y*=Rvw/Rcap

Interstitial Space Sub-Domain, R,, < r < Ri,:

Similar to the vascular wall sub-domain, this sub-domain also contains only free

oxygen transport. Thus, the saturation is once again zero. The interface boundary

conditions similarly are:

av(1 p02

as PeVW &y* *=Rvw/Rcap

am)P1 opy, 2

am) Pers B9y * R Ra

1 &P 2 1
Pei, &y* y*=Rvw/Rcap

1 &Pb2

Pe, Oy*

Muscular Tissue Sub-Domain, Ri. < r < Rt:

The final sub-domain contains both free oxygen transport as well as the oxygen-

binding protein myoglobin. Therefore, boundary conditions for both the oxygen par-

tial pressure and the myoglobin saturation are needed. The oxygen partial pressure

interface boundary conditions are:

ais 1 2p62 1 &po2

at Pei, &y* _*Ris/Rcap Pet Oy* RisRcap

oO2 =y=tR 0
09y* y*R/Rp

(4.42)

(4.43)

66

a(
aiss

(4.40)

(4.41)

(4.41)

(4.42)

with a no flux boundary condition at the edge of the muscular tissue sub-domain.

The myglobin saturation boundary conditions are simple no-flux boundary conditions

at both interface edge locations:

OSMb - 0 (4.44)
9y* y*=Ris/Rc.,

OsMb = 0 (4.45)ay* y*=Rt/Rcp

4.6.3 Lagrangian Mesh: Membrane Boundary Conditions

This subsection treats the details of the RBC membrane boundary conditions as

mentioned in subsection 4.6.2. The physics will be recapitulated and mathematically

discretized for use in the IBM.

No-Slip on RBC Boundary

When a fluid comes into contact with a solid boundary (such as a wall or mem-

brane), the fluid comes to rest with respect to the solid boundary. For instance, in

the case of the stationary capillary wall, the velocity of the blood plasma comes to

zero. In the case of the membrane, the blood plasma will move at the speed at which

the local membrane point is moving through the plasma. In essence, the fluid moves

at the speed at which the solid boundary is moving.

Mathematically, this is expressed for the membrane as

dX(t) ((t)) (4.46)
dt

where X(t) represents the local membrane location and i(X(t)) represents the un-

derlying blood plasma velocity at that X(t) location.

In the component form of the streamfunction-vorticity format, the vector equation

(4.46) takes the following form:

67

dX(t) _ d'I(X(t)) (447)
dt dy

dY(t) _ d (X(t)) (4.48)
dt dx

In the discretized format, and solving for the boundary condition implicitly (thus

strongly enforcing it), the equations can be approximated as

X(t + At) =) At (4.49)
dy

Y(t + At) = - A t (4.50)
dx

These equations must be solved simultaneously (thus the "implicit" label). A more

descriptive and implementable form of the above equations are listed below:

IV X n+1,
Xn+1 6 (n+ - Af+ 1 (s)) At (4.51)

Yn+1 _ (n+i - gfl+1(s)) At (.2
- dx X)At(4.52)

Equations (4.51) and (4.52) represent the matrix equations that are implemented in

the code. They translate the membrane (Lagrangian) mesh location to the underlying

blood plasma and cellular cytoplasm (Eulerian) mesh, correctly identifying where the

cell boundary is. The plasma velocity V(t) along the membrane is thus equal to the

local membrane velocity, dX(t)/dt.

Do note that equations (4.51) and (4.52) form their own residuals due to the

introduction of the new variables X and Y, corresponding to the Lagrangian mesh

point locations. A more in depth explanation is given in section [#REF].

68

Oxygen Mass Flux Conservation Across RBC Membrane

The RBC membrane not only separates the cellular cytoplasm from the blood

plasma, but also acts as a semi-permeable membrane for oxygen transport. The

appropriate boundary condition is not a direct oxygen-in/oxygen-out, but rather en-

suring that the normal flux of oxygen times the appropriate diffusion coefficient is

satisfied. This statement is generally written mathematically as

acDP (VPo 2 - f) = -acDc (Vpo 2 ii) (4.53)

The dimensionless form of equation (4.53) can be expressed as:

(Vp2')=- 1 02 - 'h) (4.54)

where Pe. is the P6clet number, V* is the nondimensional gradient operator, p02

is the nondimensional partial pressure of oxygen, and h is the unit-normal vector

pointing outwards from the RBC membrane.

Equation (4.54) must be enforced along the RBC membrane, thus along the La-

grangian mesh. Given this requirement, equation (4.54) is simply multiplied by the

delta function, resulting in:

~) (V*p*, 2 . 69 (- X()) -h (V6po 2 -) -X(s)) (4.55)

Expanding terms and simplifying helps to reach a more tractable form of the above

result:

(cj 1 ap0 2 cos(4) + sin(@)) 6 (X- Z(s)) =
ac Pe, 4x ay

- 1 (p) (
Pe 2 cos(D) + a2 sin(D) 6 - (s) (4.56)

Pec ax 09y

69

/ca~ 1/
L P (cos(I)D ,P-*0 2 + sin()D Y,-*02
ac Pe/

- (cos(D),c 9P* 2 + sin()DycIP*02 (4.57)

where D2,, and)Y,, correspond to a matrix resulting form the multiplication of the

first derivative operator and the delta function on the plasma side of the membrane,

and D2,c and Dy,c correspond to a matrix resulting form the multiplication of the first

derivative operator and the delta function on the cytoplasm side of the membrane.

Note that the resulting difference operators are one-sided differences in that they

take the first-derivative approximation only within the corresponding domain that

the derivative exists in.

Equation (4.57) must be substituted into the governing equations in the residual

formulation. No new variables are introduced, but rather constraints (i.e. oxygen flux

across the membrane is enforced) are put on the current ones in the problem domain.

The nature of this substitution is actually arbitrary, but will be explained in detail

in section 4.7.2.

4.7 Residual Formulations

4.7.1 Residual Formulation for Interior Points

In order to solve the equations of motion for the blood plasma and the oxygen

transport equations, a system of residuals must be formulated for each point in the

domain. This section will examine the capillary domain, as it requires the most re-

sidual equations and the physical interactions between the RBC membrane and the

surrounding blood plasma is nontrivial. The three exterior domains (vascular wall,

interstitial space, and muscular tissue) only use the oxygen transport equations, the-

refore requiring fewer residuals and reverting to solving advective-diffusion equations

on a static mesh.

The residual equations for each point (X, y) in the capillary domain are:

70

R (w* + V* 2 I*) n+1 (4.58)

=0

&w* (9a* w* a9* aw* n 1 a2 C a2, n

R t* ay* x* ax* y* Re (x*2 +y*2

-X* a_ _ n _(4 .5 9)
ay* ax*

=0

+

=p0*2 &'* 2 Ip n 1 +
2p 2 n+1

R 3 a t* ay* (x* ax* by*] Pe. (x*2 ay*2 n

n Hb
DaHb (SH _ (1 - SHb) ()n) + M* (4.60)

ap * 0

=0

&SHb /b* SHb ap* &Sb n 1 (92SHb D2SHb) n+1
4 t* ay* ax* ax* ay* Pe. (x*2 + 0y*2

+ ab(SMb - 1-SMb) (*)n) (4.61)+ DaHb 02b_)b

=0

Note that all the residuals are defined to be an equation that equals 0. When posed

this way, the Newton Method can iterate over the multiple variables and guide the

resulting non-linear system to a vector solution of zeros, thereby converging to a

numerical solution. (The resulting numerical solution must be inspected further to

ensure physical plausibility. In most simulation software, this process is referred to

as code verification.)

Equations (4.58) through (4.61) take on various discretizations depending on whet-

her or not the Eulerian mesh point lies inside or outside the RBC membrane. The

blood plasma and cellular cytoplasm have different valued non-dimensional parame-

ters (e.g. Reynolds, P6clet, and Damkh6ler numbers) based on the matter that makes

up the plasma and cytoplasm. As a result of this domain dependence, the values of

those parameters must be changed accordingly and the approximation of the deriva-

71

tives must be physically consistent (i.e. the approximations must be made inside the

appropriate domain, either inside or outside the cellular membrane, depending upon

the location of the point being approximated).

The residual Jacobian matrix must be constructed and understood. When the

Newton Method is extended to multiple variables and the residual discretizations are

semi-implicit or fully-implicit, a matrix formulation must be used in order to solve

all of the necessary equations simultaneously. The matrix equation takes the general

form as follows:

KSU = -R (4.62)

where K is the Jacobian matrix comprised of local derivative approximations linea-

rized about the n + 1 time-step solution, 6U is the variable step-change vector (to

be solved for), and R is the residual vector composed of both time-step n and n + 1

solution data. This system of equations is solved via the MATLAB \ (backslash)

command:

6U = -K\R (4.63)

In order to visualize what comprises the K matrix, equation (4.58) will be discre-

tized via the standard central difference formula as an example:

x4i,j - 2F*y + XF_1, V*+. -2~y+Wy_

R, = w , + (+ i3 W 10 - (4.64)
iAX" 2 AY *2 i

where the subscripts i, j indicate the local mesh point along with those adjacent to

it.

In order to fill the Jacobian matrix R for the first residual R1 , the derivative of

R1 must be taken with respect to each variable at each point. By inspection, all but

six entries in this residuals respective rows will be zeros. The resulting six derivatives

are:

72

OR1

OW*.

oR1 (2
= - + 2

* Ax* 2 Ay*2

OR1 1
T* . AX* 2

i+1,j

OR1 _1

O'I1, Ax* 2

OR1 1

aT*. AY*2z,j+1 *

OR1 1

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

With these derivatives, K can be built up by inserting those values at the indica-

ted variable location (e.g. I-) in the appropriate columns, in which said columns'

numbers correspond to the rows' numbers in the solution vector 6U. The conceptual

visualization of this matrix is (partially) seen below:

6w

6S bi-

6W

6
pbJ~ij

6
p '.i6*p ~

61* I
i+

6pw l~

RIgj-1j)

R2(i-ig)

Rag(ig)

R4(i-IJ)

RIijgy
R2(ij)

R3(ij)

R4(ij)

Rli+,,j)

R2i+113)

R3(i+13)

R4(i+13)

Note that not all of the residual derivatives are explicitly shown (e.g. aR1 and
ij+1

73

OR, 0 0 0 aR OR 0 0 M 0 0 0

... I w*O 0 00 00 0

... 0 00 0 0 0 0 0

9R' 0 0 0 aR, OR, 0 0 OR 0 0 0

. 8*~. O0 -.. Oi

e9R1 for Ri(i,)). These derivatives are generated for all four residual equations at

each Eulerian grid point (Xi, yj) for i E [0, M] and j E [0, Ncap], where M is the total

number of x-mesh points and Ncap is the total number of capillary sub-domain y-mesh

points (for a total of MNcap Eulerian mesh points).

The other residual equations R 2 , R3 , and R4 and their associated derivatives

are constructed in a similar fashion to R1 and are appropriately inserted into their

respective rows and columns, based on the chosen discretization scheme. Once the

matrix is constructed, it is then solved via equation (4.63) and the solution values are

updated via:

Uk+1 = Uk + 6U (4.71)

If the solution Uk+1 does not satisfy the residual system within the user designated

tolerance, Uk+1 is now used as the new Newton Method initial guess and is iterated

upon again until the residual tolerance is satisfied.

Red Blood Cell Membrane Considerations

In order to prevent nonphysical diffusion modeling (Laplacian terms in fluid mo-

mentum and oxygen transport equations), the location of the Lagrangian points must

be checked so that the underlying Eulerien capillary point approximations can be ad-

justed accordingly.

For instance, if an Eulerian mesh point lies directly to the left of the RBC mem-

brane, it should not use a centered difference approximation for the second deriva-

tive, as the i + 1 point will cross into the interior of the RBC boundary. Thus, a

backwards difference scheme should be used so that the local information regarding

diffusion comes solely from the domain outside the RBC membrane. The appropriate

approximations for this are boxed in Appendix D.

4.7.2 Residual Formulation for Boundary Conditions

Given that the boundary conditions are formed and the residual Jacobian ma-

trix is generally constructed, modifications to it must occur to properly account for

74

boundary conditions. Most boundary condition residuals directly replace the main

governing equations in the residual matrix system. There are a few exceptions to this

replacement rule, which will be exemplified and discussed in depth in the following

sections.

Red Blood Cell sub-domain:

In order to implement no-slip and normal flux boundary conditions on a moving,

deformable mesh, special care must be taken. The boundary condition that must be

implemented is that presented in equations (4.51) and (4.52). Fortunately, two new

variables are introduced in X and Y, the Lagrangian mesh point locations. What

this means is that these equations can form their own residuals and be independently

implemented into the matrix equation (4.62) without the need to modify previously

constructed residuals.

The matrix system that equations (4.51) and (4.52) form for a Lagrangian point

1 can be added to the top of the matrix in the matrix equation (4.62). The residuals

are defined as follows:

- n+1 - (,))

Rx,1 Xd 1 At (4.72)

dySXn+1 -_tN 0

-yn i + Y+ (1) n+1 - n+1l+1(s) At (4.73)
Ry dx

-yn+1+ AtDx* 0

where Dx and DY are the differentiation sampling matrices similar to those in equation

(4.57), but are discretized on both sides of the cellular membrane. Upon differentia-

ting, jth row and the associated 1I*(xi, yj) column entries of Dx and Dy are inserted

into the Jacobian matrix K as follows:

75

X, Rx,

Y, R,

Swi i R2(i1j

Jp02-i R3(il1

bs!'. R4 j1-j

jqq R1~~j

6w. R2(ij)

a'j+1j Rl(i+1.j)

JWj+1.j R2(i+14j)

JIp02+l-j R3(i+lj)

63(1j R4(i+1.j)

Now, the Lagrangian mesh points (XI, Y) can be implicitly calculated such that

the flow along the cellular membrane satisfies the no-slip condition. In other words,

the time-step n + 1 location of the Lagrangian mesh is solved for such that the

velocity along the wall is 0, thus strongly enforcing the no-slip boundary condition

while moving and deforming the mesh appropriately.

The enforcement of the oxygen flux boundary condition across the cellular mem-

brane has additional complications. There are no new variables present in the boun-

dary condition, equation (4.57). Because of this, the existing governing equations

contained in the matrix system must be modified. The modifications involve sub-

stitutions for terms in the governing residual equations for oxygen partial pressure

(namely R3). However, which (xi, yj) point gets modified is arbitrary.

If there are 100 Lagrangian mesh points, 100 substitutions for the oxygen normal

flux boundary condition must be applied to 100 of the R3 residuals (which exist on

the Eulerian mesh). Which 100 R3 residuals are to be chosen are arbitrary. As long as

the residuals and residual derivatives do not form a matrix singularity, a solution will

be converged upon. However, the solutions from different choices of R3 substitutions

may not be consistent with each other. At the time of writing, the author is not

76

0 0 1 0 AtD.(Xjy 1) 0 0 0 At& (xyY) 0 0 0 AtD.(xi+i,yj) 0 0 0
0 0 0 1 AtD,(x_,yj) 0 0 0 AtDh,(xj.yj) 0 0 0 AtDV(x,+.,yj) 0 0 0

0 0 0 0 . . . 0 0 0 OR 0 0 O 0 0 0
alp? ~ ~ -al ,

aware of this issue being seen in practice, but acknowledges that it may diminish the

quality of the results of the simulation.

Capillary sub-domain:

Recalling the capillary boundary conditions in equations (4.35)-(4.40), their resi-

duals are much more tractable and do not require complex substitutions.

For the streamfunction I*, the residuals are:

RBC1,(i,1cap) = cap (4.74)

RBC1,(i,Nap) = ,Ncap - 1; (4.75)

For the vorticity w*, the boundary condition for y* 0 is straightforward:

RBC2,(ilcap) W (4.76)

However, the boundary condition for y* = 1 requires one extra step. This extra step

is referred to as a ghost point substitution, which is a technique used to enforce the

first-derivative boundary condition.

*Nca+1 - ,Ncap i,Ncap -1RBc2,(i,N) WNca + 2 (4.77)

-2** + 2'
= WiN + iNcap ,Ncap- (4.78)

, cap *2
Aycap

where a first-derivative mid-point approximation, set equal to 0 for the boundary

condition on V*, is used as a substitution for X'*N+1 (see equation (4.10)).

In a similar fashion, the oxygen partial pressure equation (4.19) also requires this

substitution. For the y* = 0, where the normal oxygen mass flux across the capillary

centerline is 0, the boundary residual is:

77

n

OP*2 [* + *OP* OT* Opb2
at* [y* ax* ax* &y* J

_ 2,(i+1,c) -202,(i,c P) 0 2 ,(i-1,1cap) + 02 ,(,lp)- 2 PO2 ,(i,caP)

Pe2Ax*2 AY *2[Pe02 (P 2 (1 ea)
2 r~(~la)+* a*2)

(4.79)

For the capillary sub-domain edge where y* = 1, one can substitute the normal

flux boundary condition, equation (4.40), into equation (4.19). A more ad-hoc, but

still valid, residual is to directly discretize equation (4.40) and make it the residual,

being careful to use a one-sided difference for each derivative corresponding to its

relevant sub-domain. With the non-uniform mesh, the weights of the discretization

depend on the mesh chosen by the user. Using the approximations in Appendix D, a

residual can be readily constructed.

Vascular Wall and Interstitial Space sub-domain:

The residuals for the interface boundary conditions for oxygen partial pressure for

the vascular wall and interstitial space sub-domains can be constructed in a similar

manner to that of the capillary sub-domain. Refer to the previous section for details.

Muscular Tissue sub-domain:

The muscuar tissue sub-domain has to account for both the oxygen partial pressure

and the saturation of myoglobin. The oxygen partial pressure boundary conditions

are implemented in the same manner as above, for both the interstitial space muscular

tissue interface and for the muscular tissue edge, using a ghost point method for the

latter condition.

For the myoglobin saturation transport equation, a ghost point method is also

used, but for both domain edges as they both use the no-flux boundary condition.

For completeness, they are listed below:

78

(i -2S f + S ,
Ax*

2 +
2 S b1 2Sb S 1 n+1

2

Ay' JJ
- [DaMb (SMb _ (1 _ SMb) (rP02))] (4.80)

(N -2 S,'N,

AX*2

2Sb -2 b - n+1

+ 2

- [DaMb (SMb - (1 - SMb) (rP02))] (4.81)

79

&SMb

at
1

PeMb

OSMb

at
1EPeMb

80

Chapter 5

Concluding Remarks

This chapter presents and discusses the results from the current presented research.

5.1 Discussion of Results
This thesis provides two contributions to be used in the modeling of blood mi-

crocirculation flows. The first contribution is the development of a dimensionless

streamfunction vorticity model, which offers a host of benefits for the computational

setup and speed. The second contribution is the development of an implicit formula-

tion for the boundary conditions along the immersed boundary in the streamfunction

vorticity form. It is shown how to be implemented in a Newton-Raphson residual

solver Jacobian matrix.

5.1.1 Parametric Study of Blood Microcirculation Flows: A

Non-dimensional Viewpoint

The dimensionless framework and model developed in this work provides versati-

lity for a variety of parametric studies. While the specifics of certain blood disease

models need to be implemented, the general process of the data collection and analysis

is similar.

Dimensionless models offer the ability to adjust physical parameter inputs in a

dimensionless fashion. For example, if the effects from viscosity are wished to be

studied, the Reynolds number is adjusted for a range of values and the effects are

81

then studied in comparison to other dimensionless values (for example, see Figure

2-1). Assessing physical mechanisms in this dimensionless way offers insights about

the blood microcirculation flow and can help doctors assess the importance of effects

such as blood plasma viscosity in comparison to other effects such as the pressure

drop through the capillary, and can quantify when these effects can and cannot be

ignored for the development of new treatments.

5.1.2 Immersed Boundary Method Using Streamfunction Vor-

ticity Formulation

The IBM has been used extensively in simulations with Navier-Stokes (NS) (u-

v-p) formulations as opposed to streamfunction vorticity (SFV) ('-w) formulations.

While the reasons for this preference are unknown to the author, using the latter

formulation is not restricted by the IBM.

The SFV formulation has numerous advantages to its use over NS formulations.

The first advantage is the reduction of variables, leading to decreased runtimes. The

second advantage is that the boundary conditions are kinematic in nature as opposed

to dynamic in nature, leading to a more direct implementation. The third advantage

is the relative simplification of code, in that a simultaneous reduction of governing

equations as well as the form of the governing equations (purely advecting-diffusion)

leads to a direct semi-implicit solve as opposed to, for example, a predictor-corrector

method. The final benefit noted is the use of a collocated mesh as opposed to a

staggered mesh, which simplifies the implementation of the governing equations and

does not suffer from the odd-even decoupling produced by pressure terms in collocated

Navier-Stokes simulations.

The difficulty in using the SFV formulation in IBM arises from the enforcement of

a no-slip boundary condition on a moving surface. In NS formulations, the velocity

is set equal to the speed of the moving boundary surface. However, in the SFV

formulation, the streamfunction derivatives are set equal to the speed of the moving

boundary surface. The formation of differentiation sampling matrices, D_ and DY

(as seen in section 4.7.2), with the appropriate substitution of their individual entries

82

into the residual Jacobian matrix, elegantly resolves the issue of boundary condition

enforcement for SFV IBM techniques. It also offers an elegant way to implicitly solve

for the location of the immersed boundary, strongly enforcing the no-slip boundary

condition along the boundary.

5.2 IBM Coding Challenges

The IBM technique has conjured up a few challenges that were difficult in imple-

menting. The first challenge pertains to the grid construction and one-sided differen-

cing in finite difference codes. The second challenge pertains to the arbitrariness that

is seen in the implementation of the normal oxygen flux boundary condition across

the RBC membrane.

The first challenge of grid construction issue arises in the one-sided differencing of

first and second derivatives when inside the red blood cell. In regions of small radius

of curvature, there exists the potential for one-sided difference stencils to overlap both

the RBC interior and blood plasma domains, which leads to an incorrect diffusion

approximation, both physically (RBC acts as a material barrier, thus no overlap is

allowed) and dimensionlessly (differing Reynolds or P6clet numbers in Laplacian terms

for transport equations). Circumventing this issue requires either a smaller stencil,

resulting in reduced accuracy, or requires some form of interpolation, resulting in

increased code complexity and reduced accuracy.

The second challenge arising with the arbitrariness of the normal oxygen flux

boundary condition comes form the substitution of the boundary condition terms

into the governing residual equations. For example, if there are 100 Lagrangian mesh

points (RBC mesh points), there are 100 oxygen normal flux boundary condition

equations, one for each point. However, given the method in which the IBM samples

the Eulerian mesh beneath the Lagrangian mesh, this sampling results in a depen-

dency on more than 100 Eulerian mesh points. The question arises: which Eulerian

mesh point (i.e. row in the residual Jacobian matrix) does the boundary condition

substitute into for its enforcement? In conversations with colleagues[18], it has been

determined that the substitution is arbitrary so that the 100 Lagrangian boundary

83

conditions can be substituted into any 100 of the 100+ Eulerian mesh point candida-

tes. These generally arbitrary substitutions are concerning because one user-chosen

algorithm for the substitutions, as opposed to different substitution algorithm, may

produce differing simulation results.

5.3 Future Work
This research presents a solid framework for the future studies of a variety of

problems.

Le-Floch Yin['] has developed a model for sickle cell anemia microcirculation

flows that can be implemented into the dimensionless framework of this research

model. The physical effects that he observed can be dimensionlessly studied in order

to better describe the dominant effects that lead to the sickling of red blood cells.

With a dimensionless parametric study of this type, doctors can clearly distill which

physical effects need to be altered in sick patients (e.g. blood plasma viscosity, oxygen

diffusion constants and rates) and how altering those physical properties of the blood

flow affects other blood properties. Ultimately, the dimensionless studies can be used

to guide doctors to develop improved treatment options to afflicted patients.

An important effect that should be accounted for is that of the viscoelastic (shear-

thinning) behavior of blood microcirculation flow[9 1 . The shear-thinning behavior, as

seen in Figure 2-1, is non-linear. Blood microcirculation flows have Reynolds number

of 0(1) to 0(10), dependent upon the capillary diameter. As can be seen in Figure

2-1, the variability in the dimensionless pressure drop is large for Reynolds number

of this small order.

Another research opportunity for blood microcirculation flows, pertaining parti-

cularly to the field of aerospace, is that of the blood flows of astronauts during highly

accelerated rocket launches and in microgravity environments, such as that on the

Internation Space Station (ISS) or on a trip from Earth to Mars. Some questions that

arise are whether or not blood flows in these environments contribute to degradation

of surrounding tissue, and if so, what can be done to mitigate this impact for healthy

living in long-duration space missions.

84

Appendix A

Derivation of Equations of Motion -

Fluid Mechanics

Given the length scales of this research problem, an appropriate model for the

blood plasma and red blood cell cytoplasm is that of continuous medium, or a con-

tinuum, which happens to be that of a fluid. Therefore, the equations of motion for

the blood plasma and cellular cytoplasm will be governed by fluid mechanics.

The differential expression for the law of mass conservation is as follows:

Dtp+ PV -V = 0 (A.1)

Here, p (5, t) is the fluid density, i7(5, t) is the fluid velocity, and V is the spatial

differential del vector operator. Note that S refers to the Eulerian coordinates and

that t refers to time.

The differential expression for the law of momentum conservation in a continuum,

known as the Cauchy Momentum Equation, is as follows:

p t = V - + f (A.2)

Two new variables are introduced in this equation, namely the Cauchy stress tensor

-(5, t) and the body force vector f(5, t).

The stress tensor J can be modeled in many different ways, resulting in the analysis

85

of a many different materials (e.g. steel, shaving cream, air, etc.). For the purposes

of fluid mechanics, it is convenient to split the tensor into its isotropic stress and

deviatoric (traceless) stress tensors. Doing so results in

0 = -pI + T=, (A.3)

where p is the mechanical pressure, or the normal stress applied to a fluid element,

I is the identity matrix, and T= is the deviatoric stress tensor, or the stress resulting

from non-hydrostatic states.

How r= is modeled determines the type of flow that is examined. The present work

assumes the Newtonian observation of linear strain rates, the fluid is isotropic, and

V - r = 0 when the fluid comes to rest. A more complex model can be used to account

for other non-Newtonian effects, which may be of interest for future work. However,

applying these assumptions leads to the following result:

T (V+ V) + A - -A V 6 (A.4)

The first term contains the information regarding the shear stress acting on the fluid

and the second term contains the information for the normal stresses in regards to

volume changes of the fluid element. The term pt is the dynamic viscosity (or shear

viscosity), which is a proportionality coefficient indicating the capability of a fluid to

dissipate momentum. The term A is the bulk viscosity (or volume viscosity) that is

a proportionality coefficient for the ability of the volume change of a fluid element

to dissipate momentum. These terms are assumed to be constant in this work, but

they can have dependencies on certain fluid properties or variables, such as the local

temperature of the fluid.

Substituting equations (A.3) and (A.4) into equation (A.2), the equations of mo-

tion for the fluid are as follows:

D p
S+ pV -= 0 (A.1)

Dt

86

P Dt = \VP + V - 3 V A -[(V -U) + f (

These equations represent the complete equations of motion for a fluid (excluding con-

servation of energy and an equation of state, which are not relevant for this research

- see below).

Given that we are in a low Mach number flow, the fluid may be accurately approx-

imated as an incompressible fluid and may be assumed isothermal (energy conserva-

tion and equation of state are no longer required to solve for the fluid state variables).

These approximations allow for us to neglect temperature changes (eliminating the

need for conservation of energy and an equation of state). This approximation also

states that the substantial derivative of the density p is zero, resulting in the following

velocity divergence constraint from equation (A.1):

V - V= 0 (A.6)

This new constraint allows us to simplify equation (A.5) to the following, incompres-

sible form of Navier-Stokes:

p = -Vp + pV2 + f (A.7)
Dt

The incompressible fluid equations of motion are now presented as equations (A.6)

and (A.7). These equations examine the dynamical effects of the fluid; however, a

kinematic approach can be taken when using a streamfunction vorticity formulation.

In order to arrive at the kinematic representation of the equations of motion in a

two dimensional, Cartesian flow, a streamfunction must first be defined as follows:

aTU - (A.8)
ay

V = -X(A.9)

Next, by taking the curl of equation (A.7), a purely kinematic vector equation

87

results:

DO
p_ = pV20 + V xf(.

Dt
(.0

where

W x Vi (A.11)

Equation (A. 10) is known as the incompressible vorticity transport equation. Howe-

ver, when simplified to the two dimensional case, it becomes a scalar equation (more

precisely, a vector equation entirely orthogonal to the fluid velocity field).

Applying equations (A.8) and (A.9) to equation (A.11) and using the two di-

mensional case of equation (A.10) gives the desired governing equations for the fluid

equations of motion:

W + V2 V = 0 (A.12)

Dw
p = PV2 + V x f (A.13)Dt

In order to complete the derivation of the kinematic form for the equations of

motion, the divergence of equation (A.7) may be taken to yield the pressure Poisson

equation:

_ _p = 2p 2 (A.14)
_52 ay 2 OX~gy

This equation is used in order to compute the pressure levels ex-post-facto in most

solvers.

In order to isolate the dynamic effects which govern the problem, nondimensio-

nalizing the governing equations is required. Using dimensional analysis techniques,

the following definitions are arrived at:

88

x_ Y t* tU
x= y= -L L L

(A.15-A.20)

wL _ _fL

U UL P

Here, the values for L, U, and p are independently chosen so that the geometric and

dynamic scaling of the problem is preserved. The time t is simply the solver time at

some time-step.

Upon substitution in equations (A.12), (A.13), and (A.14), the nondimensional

forms of the governing equations of motion are as follows:

w + V*2* = 0 (A.15)

Ow* 1(v ,(.)1 V* 2w + V+ (V* 2*) + V* x V* (A. 16) at* I Re

v*2p* = 2 [9x* 02 (A.17)
OX*2 ay*2 ax*ay*

where V* = (&/Ox*, Q/0 y*, O/&z*), V*I = (0 /0 y*, -/&x*, 0), and the Reynolds

number is

Re pUL - UL (A.18)
P V

which measures the ratio of inertial forces to viscous forces. Here it is seen that the

Reynolds number is the only unique nondimensional quantity of interest that governs

the mechanics of the system.

Equations (A.15), (A.16), and (A.17) are the final equations of motion for the

blood plasma and cellular cytoplasm. In the same manner as before, the nondimen-

89

sional pressure can be computed ex-post-facto in most solvers.

90

Appendix B

Derivation of Equations of Motion -

Oxygen Transport

Physical phenomena dominated by advection and diffusion can be modeled by the

advective-diffusion equation (often referred to as the convective-diffusion equation).

In the case of oxygen transport, this equation is used to model the concentration of

oxygen in the blood microcirculation and tissue, as well as how it varies in time and

space:

-- + V - (c) = V - (DVc) + R (B.1)
at

Each term in the equation (B.1) corresponds to a specific physical process. The first

term pertains to the unsteadiness of the process. The second term corresponds to

the advection of the variable c by the fluid traveling at velocity v(?, t). The third

term corresponds to the diffusion of c, which is modeled linearly by the divergence

of its gradient multiplied by a diffusion coefficient D. The final term pertains to the

reaction rate R at which a chemical species undergoes a reaction with its surrounding

environment.

It is useful to note that the modeling of oxygen transport in this problem is carried

out with an incompressible fluid, which provides the velocity divergence constraint

developed in Appendix A, equation (A.6):

91

V - = 0 (A.6)

With this constraint, and given that D is a diffusivity coefficient, equation (B.1)

simplifies to:

- + (-V) c = DV 2 c + R (B.2)
(9t

giving the working form of the advective-diffusion equation for this problem.

Oxygen transport in the capillary is carried out in three ways. First, oxygen is

hypothesized to be consumed at a constant rate M in the capillary wall and tissue.

Second, oxygen binds and is released by hemoglobin in the red blood cell. Third,

oxygen binds and is released by myoglobin in the tissue. The latter two rates are

governed by the law of mass action as derived from oxyhemoglobin and oxymyoglobin

dissociation reactions.

The oxyhemoglobin dissociation reaction is assumed to be occurring in equili-

brium:

Hb4 +402 ,-' Hb4 0 8 (B.3)

Hb

RHb - - 4k jj[Hb40 8] - 4k b[Hb4]c4 (B.4)
at

chem

where kHB and kHj are the kinetic dissociation rate constants of the forward and

backward reactions, respectively, and [Hb4] and [Hb408] are the concentrations of

the unbound hemoglobin and bound oxyhemoglobin, respectively. For simplicity, it

is assumed that the oxygen has infinite cooperativity with the hemoglobin proteins,

such that all the oxygen binds or unbinds at once.

In order to make RHb more tractable to solve, a substition for [Hb4] by the total

hemoglobin conentration [Hb4]ot (comprising both bound and unbound states) and

defining the oxyhemoglobin saturation SHb is necessary:

92

[Hb4] = [Hb4]tot - [Hb408]

[Hb408]
KHb = [Hb4 [02]4 (B.6)

SHb - [Hb40 8] KHb [O2] B 4)
[Hb4ltot 1 + KHb[02](

Hb

R Hb H = [Hb4ltot (4k HbSHb - 4k Hb (1 - SHb C4) (B.8)
chem

where KHb is the reaction equilibrium coefficient for hemoglobin, with dependencies on

temperature, blood plasma pH, and other molecules such as CO 2 and 2,3-DPG. Noting

that the ratio of the reaction constants yields the equilibrium oxygen concentration

at 50% saturation, c , and substituting yields:

Hbk~
CHb = ((B.9)

Hb(HbSb\(_

R Hb - 9C Hb - 4k H[b4] 0t - (1 - Hb) C)4 (B.10)
at c1 1H4 otC

Because the concentration of oxygen is coupled to the saturation of oxyhemoglo-

bin, an advective-diffusion equation for it is necessary to determine the saturation

SHb(5, t):

OSHb RHb
+- (V) gHb DHbV2SHb (B.11)

at 4[Hb4] tot

where DHb is the diffusivity of oxyhemoglobin, and the production rate R is determi-

ned by using the above reaction. Now introducing the total hemoglobin concentration

in terms of moles of protein subunits per unit volume, [Hb], equations (B.10) and

(B.11) become:

93

(B.5)

Hb/

RHb _ Oc _ k Hb[Hb] SHb _Hb C 4 (B.12)
Rt C (.)

chem50

&SHb RHb (.3
+ (i V) SHb DHbV2SHb - Hb.13)

at +WV) D[Hb] (

In reality, infinite cooperativity does not occur in the binding of oxygen to hemo-

globin nor the unbinding of oxyhemoglobin. In order to account for this effect without

adding complexity in the form of more reactions and transport equations, experimen-

tal data is used to determine the Hill coefficient n, which replaces the exponent 4

at equilibrium in equation (B.12). This allows us to lie on a realistic hemoglobin

dissociation curve (see Figure B-1). Thus, the resulting in the semi-empirical form of

the reaction rate RHb:

Hb

RHb - cem k Hb] SHb _ (C Hb) (B.14)

where n is approximately equal to 2.2 for normal blood microcirculation flows.

The oxymyoglobin dissociation reaction is also assumed to be occurring in equi-

librium in the muscle tissue. The reaction is similar to that of hemoglobin, except

oxygen has one binding site to the myoglobin protein:

Mb +02,-'MbO 2 (B.15)

Using the law of mass action and following a similar derivation pathway to that of

hemoglobin, the following relations are arrived at:

Mb

RMb - 0 b Mb[Mb] sce - (1 - SMb) (B.16)

sMb RMb
+ (W7. V) SMb = DMbV2sMb - Mb (B.17)

at V[Mb]

where DMb is the diffusivity of myoglobin. In previous works (see [#],[#],[#]), given

that the oxymyoglobin dissociation rate constant k_1"b is sufficiently larger than that

94

LemsdtAMp

DeamIe2-3G-
DecPeased 4+] ,,,,

CD/

of oxyhemoglbin, an asumption oflca eqiliriumbtwe xye ndmo

so , oreused tmni

globi was mployd. Ths wor choo es net ti sumto oheprdc

40 kx nnsd 2-3 DPG
/H 4nged[H+3

zaio, n t ues a iiao fo th preiou assumtion

0 10 20 30 40 90 40 70 Wo 90 100
P02 (WmHg)

Figure B-1: Oxyhemoglobin curve as a function of partial pressure of oxygen. Image
courtesy of www.anaesthesiauk.com.

of oxyhemoglobin, k , an assumption of local equilibrium between oxygen and myo-

globin was employed. This work chooses to neglect this assumption to help reduce

non-linearities in the numerical discretization and scheme, aid with nondimensionali-

zation, and to use as a verification for the previous assumption.

The tracking of oxygen concentration throughout the system is also desired, both

because the oxygenation of tissue is a desired output and because the reaction rates

of oxyhemoglobin and oxymyglobin depend on the relative concentration. To capture

the transport of oxygen, the advective-diffusion equation is once again invoked:

- + (V -V) c = DV~c + R'+ M (B.18)

where ()* is a placeholder for either oxyhemoglobin or oxymyoglobin, which is domain

dependent. The diffusivity coefficient D is that of oxygen and the hypothesized

oxygen consumption rate constant M is domain dependent quantities as the material

properties change across the domains.

95

Invoking Henry's law, the concentration of oxygen c can be expressed in terms of

its partial pressure, which also has the property of being continuous across infinitely

thin membranes:

C = ap02 (B.19)

where a is the solubility constant of oxygen and Po 2 is the partial pressure of oxygen.

Upon substitution:

Opo DV2po + M
+ (V - V)P02 = D0222 + - + -(B.20)at a a

and

RHb hem k1 [Hb] SHb _ (_ Hb (B.14)

Mb

RMb = c em = kMb [Mb] SMb - (1 - SMb) (B.16)

Once again, the oxygen consumption rate M is a hypothesized value and is set prior

to computation start-up.

With a final substitution, the working form of the oxygen partial pressure trans-

port equations are as follows:

a (P 2 +(-V) po = D22 + k_[H b] (~ ~ O(V2 aD pQ2 (SHb - (1-_ S~b) P0b)fl

2PQ 2 50%
(B.21)

a 2+ (i V) Pa2 = aDV 2po2 + k" b[Mb] SMb _ (I _ SMb) 2
at P0250%

(B.22)

The most general form of equations (B.21) and (B.22) is equation (B.20). Thus, in

terms of solver implementation, only equation (B.20) is implemented, but the form

96

of its rate term R' is adjusted for the particular domain.

The final step in this derivation process is nondimensionalizing the two governing

equations. In order to be thorough with the nondimensionalization, equations (B.13),

(B.17), (B.21), and (B.22) will be shown explicitly for clarity. The nondimensional

variables are defined as follows:

X* x Y* y , tU
L L L

(B.22-B.27)

P02 SHb* SHb SMb* SMb
02 Hb

P0250 %

The length and timescale variables, x*, y*, and t* are identical to those defined in

Appendix A. The oxygen partial pressure po 2 is nondimensionalized by the reference

quantity of oxygen partial pressure at at 50% saturation in that of oxyhemoglobin,

Hb The saturation quantities, SHb and SMb, are nondimensional by definition,P0 2 50%

thus no special manipulation is required.

Upon the substitution of the above definitions into equations (B.13), (B.17),

(B.21), and (B.22), their nondimensional forms are:

&SHb1
at* + (V*V*) . V*SHb b V* 2sHb - DaHb (SHb - (1 sHb) (B.23).
at* + * - * =*-PeHb (P)

sb+(V* P*). V*SMb Ie~ V* 2 SMb DaMb (SMb _ (1 _ SMb)()) (B.24)

97

O2 (V* p*).V*p* F e V*2 p02+DaHb (SHb _ (1 SHb) (p)f) M*
&t P02 0250%)/

(B.25)

p2 + (v* x*)-V*P*2 = _v* g-p*2+DaMb [M] r (SMb _ S Mb) * M*
Pe0 2 aP0250%

(B.26)
Mb

where r represents the ratio of equilibrium partial pressures r = P50%

P0 2 50 %

Here, eight nondimensional parameters are immediately evident. The first three

are the P6clet numbers PeHb, PeMb, and Peo2 . The P6clet number measures the

ratio of advective transport to diffusive transport and is defined as follows:

U L
Pe. -- L(B.27)

D-

where (). refers to either the diffusivity of oxyhemoglobin, oxymyoglobin, or pure

oxygen.

The next two nondimensional parameters of importance are the Damkhdler num-

bers DaHb and DaMb. The Damkh6ler number measures the reaction rate of a sub-

stance versus its advective transport rate and is defined as follows:

k-L
Da. = - (B.28)

U

where (). refers to the dissociation rate of either oxyhemoglobin or oxymyoglobin.

In the context of this problem, this measures nondimensionally how quickly oxygen

binds or unbinds to either oxyhemoglobin or oxymyoglobin relative to how quickly

the blood plasma moves through the length of the capillary (how quickly the oxygen

is advected along).

The sixth and seventh nondimensional parameters, Hb and IMb] corre-
ap H250% ap 2Mb

spond to the oxygen concentration present in either oxyhemoglobin or oxymyoglobin,

[Hb] or [Mb], and its diffusive rate. If the product of these parameters with their

98

associated Damkh6ler number is 0 (1) or greater, they are non-negligible and must

be included in the analysis.

The eighth nondimensional number M* is associated with the hypothesized con-

stant oxygen consumption rate M. It takes the following form:

M (L/U)M Hb (B.29)
aP0250 %

Here, M* measures the rate at which oxygen is consumed relative to advective times-

cales.

The nondimensional parameters have been clearly defined and identified, thus

completing the derivation for oxygen transport in the blood microcirculation system.

99

100

Appendix C

Derivation of Equations of Motion -

Membrane Mechanics

For a two-dimensional, extensible (moveable and deformable) membrane, a dif-

ferential line element analysis of tensile and bending stresses is required as well as

a derivation of the necessary constituent relations, which are used to capture the

accurate behavior of the mechanics of the membrane.

Taking a two-dimensional differential line element of length ds (see Figure C-1),

drawing the appropriate forces per unit length, dF, and dF, and moment per unit

length, dMz, and balancing them yields:

dFn = -ts(s + ds) sin (#(s + ds) - O(s)) + q,(s) - q,(s + ds) cos (O(s + ds) - 0(s))

(C.1)

dFt = -ts(s) + t,(s + ds) cos (#(s + ds) - 0(s)) - q,(s + ds) sin (O(s + ds) -O(s))

(C.2)

dMz = -m,(s) + m,(s + ds) - q,(s + ds)ds (C.3)

where t,(s) denotes the tension along the s direction, q,(s) denotes the shear stress

along the s direction, and m,(s) denotes the local moments per unit length along the

s direction. It should also be noted that the total bending moment dMz = 0 as the

101

m,(s) ma(s + ds)

dFn

O(s + ds)

t.) ,(.9 + d.9)

d Mz

q,(s + ds)

Figure C-1: Membrane tension, stress, and moments on a differential line
element of length ds.

102

red blood cell is unanchored, thus no external moments are applied.

The differential line element is considered sufficiently small so that the difference

between angles #(s + ds) - O(s) < 1, thus a small angle approximation for # can be

used. Considering that the forces and moment are derived as forces per unit length,

a division by the differential length ds is necessary to make them compatible with

the body force term in the equations of motion for the blood plasma and cytoplasm.

Dividing equations (C.1), (C.2), and (C.3) by ds gives the following:

dF_ dt, doC
dA ds ds

dFn do dq,
= -t (C.5)dA 8 ds ds

dMz din8d -ds - (C.6)d A ds

In order to properly substitute these relations into the fluid equations of motion

(see Appendix A), the body force vector f = (fl, fv) must be derived from the local

geometry at a particular point on the cellular membrane:

dF. dF
fX = - sin - cos 0 (C.7)

dA dA
dFt dF

f= dA cos 0+ d sin q (C.8)

where ldj- and -dFm are the same as equations (C.4) and (C.5), respectively. This

completes the derivation for the body forces.

However, constituent relations must be developed in order to compute t, and q,

acting on the cellular membrane differential line segment. In order to accomplish this

task, a two-dimensional leaflet body is constructed, as seen in Figure C-2 (a more

general derivation is presented by Secomb[' 2]).

The areas per unit lengths A- and A+ can be approximated to first order by the

local curvature kx as A+ _ A-(1-kxh). Similarly, in the membrane's unstressed state,

A'+ A-(1 - koh), where ko is the unstressed membrane curvature. The isotropic

103

AX+ h

A+Xk

Figure C-2: Two-dimensional leaflet used for the analysis of membrane
bending.

tensions on the upper and lower surfaces can be expressed by T+ = K(A+/A+ - 1)/2

and T- = K(A-/AO - 1)/2, respectively.

In order to include bending stresses in the membrane constituent relations, the

bending moments must be analyzed about the z axis (point out of the page). Given

that m, is the bending moment in the z axis, then

mzAX = h (T+Ax+ - T~Ax-) (C.9)

which, upon substitution gives

mz ~ -B (kx - ko) (C.10)

where B = Kh2/4 is the membrane bending modulus. Higher order terms have been

neglected under, and as a result the bending moments are also isotropic.

Now, analyzing the tension force acting along the x-axis and using the fact that

bending moments are isotropic yields the following relation for tension T':

Tz~x = T+Az+ + T-Ax- (C.11)

and so

104

Tx = Tm - Bkx (kx - ko) (C.12)

and

(OTm
Tm 0 = -+ a = go + Ka (C.13)

(az)T a=0

where o- is the initial isotropic tension in the membrane, K is the isothermal area

compressibility modulus, and a is the area change with respect to the reference state,

where

d A
1 A _ -1= -1 (C.14)

dA0

and A is the membrane extension ratio in the indicated direction. An extensive

derivation of the mean tension Tm can be found in Evans and Shalak[51.

The effects of shear resistance in the membrane can also be accounted for, as

also seen in Evans and Shalak[51. This additional term Tx should be included in the

component Tx, where

T = (A - A2) (C.15)
2 (A z~

where r, is the shear modulus. The principal axes of shear are aligned with the

bending-induced tension according to the assumptions, thus allowing a shear in x to

be approximately equal to that in z. Along with the large shear modulus, r,, this fact

ensure that AxAz ~ 1, even though Az is a constant in this model. Upon substituting,

Tx is found to be:

Tx= -ro + Ka - Bkx (kx - ko) + (A 2 - A -2) (C.16)
2 X (C16

Equation (C.16) is equivalent to equation (4.4.5) in Evans and Shalak 5], except ten-

sion due to bending has now also been accounted for. Given this relation, x can be

taken as the direction of the membrane surface coordinate, s, leading to the basic

subscript change and substitutions:

105

T, = uo + K (AA- - 1) - Bk, (k, - ko) + 2(A - A- 2)

The extension ratios and local radius of curvature can also be expressed based on

local membrane geometry. Keep in mind that the membrane exists a distance R from

the axis, and is RO away from the axis in its initial resting state. The extension ratios

can be expressed as

A 8 ds

dso

R
8 Ro

(C.18)

(C.19)

and the membrane local radius of curvature is

(C.20)
ds

and substituted into equation (C.17), while noticing that t, = T,:

t, = co + K dsR 1)
(dso RO)

do do_ K
- B ko + -

ds \ds 2
ds 2 (R 2

jdsoJ Ro

As for q,, recall that d -

thus:

0, and now m, = m, from from previous assertions,

q - -= -B ds2
(C.22)

Equations (C.21) and (C.22) are the working constituent relations which complete

the model.

The equations should be nondimensionalized so that they can be used in the body

force formulation of the fluid equations of motion. Using the following nondimensional

definitions

106

(C.21)

(C.17)

s* = SS *-
L

_ ts
S pU 2L

R* R

5 pU 2L

and substituting into equations (C.7) and (C.8) yields

f_ (dt* do I do dq*
S =P2 (d - qs ds* sin(o) - -t" ds* ds* cos(5)

f __ *dt* d\ / d dq*
Jy -pU2 sds* * os($) + -t* ds* ds* sin(q$)

where

2)
t=u * (ds* R*) *do d$ _* ds* 2 R*)t - K* 1 - B* k*0ds* R* ds* ds* 0 2 ds* R*

(C.25)

and

q* = -B* d 2 (C.26)

with the nondimensional variants of the material constants defined as follows:

0 pU2 L
B

B* pU 2 L3

K*KK* apU2L

pU 2 L

(C.26-C.27)

(C.28-C.29)

The nondimentional parameters (C.26) - (C.29) describe the initial isotropic tension in

the membrane, the isothermal area compressibility modulus, the membrane bending

modulus, and the membrane shear modulus, respectively.

107

k* 2Lko

S pU 2L 2

(C.23)

(C.24)

108

Appendix D

Non-Uniform Differentiation via

Lagrange Basis Polynomials

In order to minimize the effects of numerical boundary layers, a non-uniform mesh

may be used near the domain boundaries for increased mesh resolution and better

gradient approximations. However, non-uniform meshing results in different finite

difference weights for the derivative approximations as the distance between the node

locations is no longer constant. Thus, a non-uniform stencil must be developed, and

one way to accomplish this task is using Lagrange basis polynomials.

The finite difference approximation is a local approximation method (i.e. the

solution is dependent only on the local neighboring points). A function at location

Xz, f(xi), can be approximated locally by a polynomial:

f(xi) ~ L(xi) f(Xi)l1(X) + ... + f (Xi)li(x) + ... + f(XN)lxN x)

N

= f(Xi)l(x) (D.1)

i=1

where 4i(x) is the Lagrange basis polynomial:

109

X -j X1 X -- X X i+1 X ~~XN() Xi - X 1 ..- Xi Xi - Xi+1 X - XN

N

H X -n (D.2)
m=1 X- Xm
moi

In order to use this approximation, the polynomial is analyzed at the desired point

location xi. Neighboring points are used to generate the desired approximation. In

order to generate the desired second order difference scheme, three points are used.

As an example, for the first-derivative centered difference scheme (also known as the

midpoint formula), points xi_ 1, xi, and xz+1 are used:

f'(xi) ~ (i)f(Xi_1) + l (Xi)f (Xi) + l +1(xi)f(x+1) (D.3)

In order to find l' (xi) = Dlm(xi)/Ox, the Lagrange basis polynomial must be

evaluated over the points m = {i - 1, i, i + 1} at x before being differentiated:

x - xi x - xi+ 1 x 2 _x(z + x+ 1) + xixi+1
li_1 (x) = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Xi_1 - xi Xi_ 1 - xi+1 Axi(Axi + AX 2)

_ X - Xi- 1 x - xij 1 _ 2 _ x(x-1 + xi+1) + xi-1xi+i

xi - Xi-1 Xi - xi+ 1 Ax 1 Ax 2

W (=x - Xi 1 x - xi x2 x(x 1 Xi) + xj-x

Xi+1 - x 1 xi+ 1 - xi AX 2 (Ax 1 + Ax 2)

where Ax= xi - xi_ 1 and Ax 2 = Xi+1 - xi. Now, upon differentiating with respect

to x:

2x - (xi + xi+1)
ilkW) Ax 1 (Ax1 + Ax 2)

l/(X) =2x - (xi_ 1 + xi+1)
Ax1 Ax 2

- 2x - (xi_ 1 + xi)
i+1lX) Ax 2 (AXi + Ax 2)

110

Evaluating the derivatives at point x = xi yields:

2xi - (xi + xi+1) AX 2

- X A 1(AX1 + Ax2) AX 1(Ax1 + Ax2)

/(xi) -2xi - (xi_1 + xi+1) AX 2 - AX 1
A (Ai)A= -

LAl 1L-1X 2

2xi - (xi_ 1 + xi)
+1 iA 2 (AX 1 + Ax 2)

L-XX1L.X2

Axi

AX 2(AXi + AX 2)

Upon substituting these values into equation (D.3), the new approximation is:

AX2
fI'(Xi) ~ - A xf (Xi1)

Ax 1 (Axi + AX 2)f~ii
+ - AXf (Xi) ++AX 1AX 2

Ax 1

Ax 2 (Axi + Ax 2) f +1)

(D.4)

For a uniform mesh where Ax1 = Ax 2 = AX, equation (D.4) simplifies down to the

common midpoint formula:

f'/(f) f + - f (X)-
2Ax

(D.5)

where Ax corresponds to the uniform grid spacing.

For a second-derivative, the methodology is identical. Taking a centered approxi-

mation as an example, lm(x) is differentiated twice with respect to x:

C 2
-(Ax 1 (Axi + Ax 2)

2
W AX 1AX 2

C' 2
+1 x AX 2 (AXi + Ax2)

Upon substitution into a second order centered approximation, the result is:

111

f"(Xi) l'_11(Xi)f (Xi_ 1) + l'(Xi)f(Xi) + 1'1(xi)f (Xi+1)
2f(xi_1) 2f(xi) 2f (xi+1)

AXi(AXi + Ax 2) Ax 1 AX 2 AX 2 (AX 1 + Ax 2) (D.6)

Once again, in the case of a uniform mesh where Ax, = AX 2 = Ax, the common

second-order finite difference stencil is recovered:

f"(I,, f(xi-1) + -2f(xi) + f(xi+1)
f(Xi) r%, X (D.6)

where Ax similarly corresponds to the uniform grid spacing listed previously.

This Lagrange basis polynomial approach can be carried out for any desired sten-

cil, including forward and backward differencing, for any order derivative, provided

enough points are used in the approximation. A follow-up stability analysis should

be performed for less common stencils that are not well studied in order to ensure

that the approximation will not cause numerical divergence.

For convenience, the additional forward and backward first derivative stencils

implemented in the code are listed below. The second-order accurate, first derivative

forward difference is

2Ax + Ax 2 AxI + A 2 AXi
f'(Xi) ~- 2x f(Xi) + fA(1 i+) - -f(Xi+ 2)

Ax 1 (Ax 1 + AX2) AX1iAX2 AX 2 (AXi +I Ax 2)
(D.7)

where Ax1 = Xi+ 1 - Xi+ 2 and AX 2 = Xi+2 - xi+1. The second-order accurate, first

derivative backward difference is

Ax 2 _ Ax 1 + Ax 2 Ax1 + 2AX 2

AX 1 (Ax 1 + Ax2) 2) AX 1 AX 2 Ax 2 (AXi + Ax 2) f x")

(D.8)

where Ax1 = Xi_ 1 - Xi- 2 and Ax 2 = Xi - Xi_1.

The central, forward, and backward second derivative stencils implemented in

112

this code are also listed below. The second-order accurate, second derivative central

difference is

2 2 2

Ax 1 (Ax 1 + AX 2)f(xi1) AXAX2 f(xi) Ax 2 (Ax 1 + AX 2)f(xil)

(D.9)

where Ax1 = xi - xi- 1 and Ax 2 = xi+1 - xi. The second-order accurate, second

derivative forward difference is

,, /6Axi + 4AX2 + 2AX3

Axi (Ax 1 + Ax 2) (AXi + Ax 2 + Ax 3)
4 (Ax 2 + AX 2) + 2AX 3

AX 1AX 2 (Ax 2 + Ax 3))(D.10)

Ax 1 +2(AX 2 +AX 3)
(AXi + Ax 2) Ax 2 AX 3

4Ax1 + 2Ax2

(AXi + Ax 2 + Ax 3) (Ax 2 + Ax 3) AX 3J +3

where Ax1 = Xi+ 1 - Xi, Ax 2 = Xi+2 - xi+1, and Ax 3 = Xi+ 3 - Xi+ 2 . The second-order

accurate, second derivative backward difference is

,, 2Ax 2 + 4AX3
f (xi) ~ - -f (X-3)

AxI (AXi + Ax 2) (Ax 2 + Ax 2 + Ax 3)
2 (Axi + Ax 2) + 4AX3 f (Xi2)
AX 1AX 2 (Ax 2 + Ax 3) (D.11)
2Ax1 + 4 (Ax 2 + Ax 3)
(AXi + Ax 2) AX 2AX3 f(x-i)

2Axi + 4Ax 2 + 6Ax3

(AX + IAx 2 + Ax 3) (Ax 2 + Ax 3) AX 3

where Axi = Xi- 2 - xe 3 , Ax 2 = Xi- 1 - Xi- 2 , and AX 3 = Xi - Xi_1.

113

114

Appendix E

MATLAB Code

Capillary__Driver.m

clear

% ----------------

% Input Parameters

% ----------------

% Time loop controls

unsteady = true;

Nt = 1500;

dt = 0.0005;

ssb = 1;

% Newton loop controls

maxiter = 15;

tol = le-8;

% Plotter Controls

plotType = 2;

contourLines = 51;

resCheck = 0;

% steady vs unsteady

% Number of time-steps

% time-step dt

% steady-state break; 0 = false , 1 = true

% (1 for Surface , 2 for Contours)

% (0 - off , 1 = check between Newton iterations)

% -------------------------

% Nondimensional Parameters

% -------------------------

% Reynolds Number (1 for simple convergence tests)

Re rbc = 1;

Rep = 1;

% Membrane Constituent Relation Constants (1 for simple convergence tests)

sigmap = 1;

K_bup = 1;

K-shp = 1;

Bp = 1;

% Spring test constant (bf-model)

kappa = 0;

115

% ------------------------------

% Grid Parameters and Generation

% ------------------------------

% X inputs

Lx = 2;

nx = 80;

Lxli = 0;
Lxri = Lx;

xextr = 0.2;

xextn = 9;

[xc ,hxJ = GridExt(nx,0 Lx, Lxli ,Lxri xextr ,xextn);

% xpl = 1;

% xp2 = 3;

% xppts = 100;

% [xc,hxJ = GridPack(xc,xpl,xp2,xppts);

nxc = nx;

% Y (radius) inputs

% Capillary

R_cap = 1;

nycap = 40;

Lyli = 0;

Lyri = Rcap-0 .1;

yextr = 0.2;

yextn = 17;

[yccap,hycap] = GridExt(nycap,0 ,R_capLyli ,Lyri ,yextr ,yextn);

% ypl = 0;

% yp2 = Ly-0.25;

% yppts = 50;

% [yc ,hy] = GridPack(yc,ypl,yp2,yppts);

% yc = yc(2:end-1);

% hy = hy(2:end-1);
nyccap = length(yccap);

nt_cap = nyccap*nxc;

% Lagrangian Mesh (RBC)

lpts = 100;

RL = 0.75;

kOp = RL;

theta = (0:2*pi/(lpts):pi)

XL = RL.*cos(theta)+1;

YL = RL.*sin(theta);

XLe = XL;

YLe = YL;

dXL = dif f([XL;XL(1)]);

dYL = di f f ([YL;YL(1)J);

dSL = sqrt(dXL.^2+dYL.^2);

% DO NOT TOUCH

xcd = xc;

ycd = yccap(l:end);
nyc = length(ycd);

nt = nxc*nyc;

[coords cap , -, ~] = GridGenX(xcd' yccap

x_cap = coordscap(:,1);

y_cap = coordscap(:,2);

% Boundary Node Index Points (lexicographic in x)

% Capillary

116

bccapl = 1:nxc:(nyc cap-1)*nxc+1;

bccap2 = 1:nxc;

bccap3 = nxc:nxc:nxc*nyccap;

bccap4 = (nyccap-1)*nxc+1:nxc*nyccap;

figure (1); clf;

hold on

plot(xcap,y_cap, 'ok)

plot (XL,YL, ' -or)

xlabel('x');

ylabel('y');

axis ([0 Lx 0 Rcap])

hold off

% ------------------------

% Boundary Condition Input

% ------------------------

% Wall 1:

vnorml = 1;

vtanl = 0;

% Wall 2:

sfc2 = 0;

vtan2 = 0;

% Wall 3:

vnorm3 = 0;

vtan3 = 0;

% Wall 4:

sfc4 = Rcap;

vtan4 = 0;

% Initial Condition Input

% -----------------------

Psi = zeros(nxc*nyc cap,1);

w = zeros(nxc*nyc-cap,1);

% -------------

% Initial Plots

% -------------

xr=reshape (xcap, nxc ,nyc);

yr=reshape (ycap, nxc ,nyc);

xr-cap=reshape (coordscap (:,1),nxc ,nyc cap);

yr_cap=reshape(coords cap(: 2) ,nxc,nyc cap);

Psir=reshape (Psi , nxc , nyc cap);

wr=reshape (w, nxc , nyccap);

% Surface Plots

if plotType = 1

figure (2); clf;

hold on

xlabel (x');

ylabel('y');

surf(xr,yr,Psir)

colormap (jet

colorbar

grid on

axis(fO Lx 0 Rcap]);

view (45 ,30)

hold off

figure (3); cif;

117

hold on

xlabel('x');

ylabel('y');

surf(xr ,yr ,wr)

colormap (jet

colorbar

grid on

axisO([Lx 0 Rcap]);

view (45 ,30)

hold off

% Contour Plots

elseif plotType = 2

figure(2); clf;
hold on

xlabel('x');

ylabel('y');

contour (xrcap, yrcap , Psir , contourLines , 'linewidth ' ,2)

plot ([XLe;XLe(1)] ,[YLe;YLe(1)] , '-k' , 'linewidth ' ,2)

colormap (j e t)
colorbar

grid on

axis([O Lx 0 Rcap]);

hold off

figure(3); clf;

hold on

xlabel('x');

ylabel('y');

contour(xr cap,yrcap,wr,contourLines ,'linewidth' ,2)

plot ([XLe;XLe (1) ,[YLe;YLe (1)] , '-k' ,'linewidth ' ,2)

colormap (jet)
colorbar

grid on

axis([0 Lx 0 Rcap]);

hold off

end

fprintf(1, '%s \n' 'Press any key to continue with calculation.);

pause

% Set up membrane variables

% Coordinates

skx0 = XL;

sky0 = YL;

skx = skx0;

sky = skyO;

% Total mesh points

nskx = length(skx);

nsky = length(sky);

nskt = nskx+nsky;

% Construct residual differentiation matrices

fprintf (1 ,'%s \n', 'Constructing Residual Differentiation Matrices.

[Dx,Dy] = DifflMatrices Cap(xc,yccap);

D = speye (length (XL) , nxc*nyccap);

Dsmear = D';

L = speye(nskt+2*ntcap);

Res = zeros(nskt+2*ntcap ,1);

% Capillary edges (symmetry line and capillary wall)

L = Matrix CapillaryEdge(L,bccap2 ,2 ,dt ,hx ,hycap);

118

L = Matrix_ CapillaryEdge(L,bccap4,4,dt,hx,hycap);

% ------------------

% Start of time loop
% ------------------

fprintf(1, '%s n' , 'Starting time-loop.

tic

for t = 1:Nt

% ---------------------------------

% Lagrangian Body Force Calculation

% ---------------------------------

% Constituent relationships go here

[tss ,dtss ,qss ,dqss ,dsk,phik ,dphik] =

RBCMeshQuants (skxO , skyO , skx , sky, sigmap , Kbup, Kshp, Bp, k0p);

fx = (dtss -qss.*dphik).*sin(phik)+(tss.*dphik-dqss).*cos(phik);

fy = (dtss - qss.*dphik) .*cos(phik)-(tss.*dphik+dqss) .*sin(phik);

% Fx = kappa.*(XLe - XL);

% Fy = kappa.*(YLe - YL);

% ----------------------------

% Eularian Body Force Smearing

% ----------------------------

[D, DsmearJ = DdsMat(D, Dsmear ,xc , yc _ cap, skx ,sky , dsk , hx , hy_cap);

Dxtil = D*Dx;

Dytil = D*Dy;

Bx = Dsmear* fx;

By = Dsmear*fy;

% [dBxdy,dBydxj = DDUV(BxBy,hx,hv _cap);

dBxdy = Dy*Bx;

dBydx = Dx*By;

curIB = dBydx-dBxdy;

% fx = Dsmear*Fx;

% fy = Dsmear*Fy;

% [dfxdy dfydx] = DDUV(fx , fy ,hxhycap);

% curlf = dfydx-dfxdy;

% --------------------

% Start of Newton loop

% --------------------

% Update previous time-step values

wold = w;

% pold = p;
% Sold = S;

u old = Dy*Psi;

v old = -Dx*Psi;

% [u old , v _old] = SFtoVelX(Psi ,hx,hy _cap);

k = 1; % Newton loop counter initialization

while k <= maxIter

% Update Lagrangian Mesh for Implicit Membrane Feedback

[D, Dsmear J = DdsMat (D, Dsmear ,xc , yc _cap , skx , sky , dsk , hx , hycap);

Dx til = D*Dx;

Dy til = D*Dy;

% Find Eularian points inside RBC Membrane

[inrbc ,dsk ,-,skxsky] = inPolyPeriodic(xcap,y_cap,skxsky ,0);

% Update Differentiation Matrix for Implicit Feedback

L = Matrix_ CapillaryUpdater (L, skx ,sky Rerbc,Rep,dt ,hx, hycap, Dxtil, Dy-til ,in rbc);

% Construct Residuals

119

% Capillary

Res = Residual_ Capillary_ SFV (Res, Psi ,w, w_old, curlf us, vs,

skx , sky , Rerbc , Re pl, dt ,hx,hycap, Dxtil , Dytil , in_ rbc);

Res = Residual_ CapillaryEdge (Res , Psi ,w, sfc ,bccap2 2,

dt , hx, hycap);

Res = Residual_ CapillaryEdge (Res , Psi ,w, sfc ,bccap4 ,4,

dt ,hx,hycap);

Res = Residual CapillarylnletOutlet (Res);

Res = Residual_ CapillaryInletOutlet(Res);

% Calculate and reassign solution deltas

dU = L\-Res;

dskx = reshape(dU(1:2:2*nskx-1),nskx,1);

dsky = reshape(dU(2:2:2*nsky),nsky ,1);

dPsi = reshape(dU(nskt+1:2:2*nt cap-1) ,ntcap,1);

dw = reshape(dU(nskt+2:2:2*ntcap),ntcap,1);

% Reconstruct individual residual vectors

Rskx = reshape (abs (Res (1: 2:2* nskx -1)) ,nskx ,l);

Rsky = reshape(abs(Res(2:2:2*nsky)),nsky ,1);

RPsi = reshape(abs(Res(nskt+1:2:2*nt_cap-1,l)) ,nxc,nyccap);

Rw = reshape (abs (Res(nskt+2:2:2*nt_cap,1)) ,nxc ,nyccap);

% Check max residuals

Rskxmax = full (max(abs(Rskx)));

Rskymax = full (max(abs(Rsky)));

RPsimax = full(max(abs(Res(nskt+1:2:2*nt _cap-1 ,1))));

Rwmax = full (max(abs(Res(nskt+2:2:2*ntcap ,1))));

% Calculate rms of deltas for adequate convergence

drms = sqrt(norm(dskx)^2 + norm(dsky)^2 + norm(dPsi)^2 + norm(dw)^2);

% Print intermediate result checks

fprintf(1,strcat('iter=%i Rskxmax=%9.3c Rskymax=%9.3e

'RPsimax=%9.3e Rwmax=-%9.3c drms=%9.3c \n'),

k , Rskxmax , Rskymax , RPsimax , Rwmax, drms);

% Graphical check of entire domain's residuals

if resCheck = 1

figure(1); cif;
hold on

subplot (1 ,2,1)

surf(xrcap ,yrcap, RPsi)

xlabel ('x'
ylabel('y');

subplot(1 ,2,2)

surf(xrcap,yrcap,Rw)

xlabel ('x'
ylabel ('y '

hold off

pause

end

% Update solution values for next iteration

skx = skx + dskx;

sky = sky + dsky;

Psi = Psi + dPsi;

w = w + dw;

% Break look if rms of deltas is within specified tolerance

120

if drms <= tol

fprintf(1, '%s %7d %s %/d \n' 'Iteration count ',k, drms= ,drms);

break

end

% Update Newton loop iteration counter

k=k + 1;

end

% ------------------

% End of Newton loop

% ------------------

fprintf(1, %s %d \n' ,'Time counter =

% -------

% Plotter

% -------

Psir=reshape(Psi ,nxc,nyccap);

wr=reshape (w, nxc,nyccap);

ur=reshape (us ,nxc ,nyccap);

vr=reshape(vs,nxc,nyccap);

if unsteady = true

i f plotType = 1

figure (2); clf;

hold on

xlabel('x');

ylabel ('y ');

surf(xr ,yr,Psir)

colormap (jet)

colorbar

grid on

axis([O Lx 0 R_cap]);

view (45 30)

hold off

figure (3); clf;

hold on

xlabel ('x
ylabel('y');

surf(xr ,yr ,wr)

colormap (jet)

colorbar

grid on

axis([O Lx 0 R_cap]);

view (45 ,30)

hold off

drawnow;

ciscif plotType = 2

figure (2); clf;

hold on

xlabel ('x'

ylabel('y');

contour (xr cap ,yr cap , Psir ,contourLines ,'linewidth ,2)

plot ([XLe;XLe(1)I ,[YLe;YLe(1) I , '-k' , 'linewidth ' ,2)

colormap (jet)

colorbar

grid on

axis([0 Lx 0 Rcap]);

121

hold off

figure (3); clf;

hold on

xlabel('x');

ylabel(y');

contour (xrcap ,yrcap ,wr, contourLines linewidth '2)

plot ([XLe;XLe (1)] ,[YLe;YLe(1)], '-k' , 'linewidth ' ,2)

colormap(jet)

colorbar

grid on

axis([O Lx 0 R_cap]);

hold off

drawnow;

end

figure (6); clf;

hold on

plot(ur(1 ,:) ,yrcap(1 ,:) ,ur(floor (nxc/2) ,:),yrcap(floor (nxc/2) ,:)
ur(end,:) ,yr_cap(end,:) , 'linewidth ' ,2)

xlabel ('U');

ylabel('y/R');

grid on

axis([O 1.5 0 1]);

hold off

if k > maxIter

fprintf(1,'%s \n','Maximum iteration exceeded.);

break

elseif k = 1 && ssb = 1

fprintf(1,'%s \n','Steady-state reached, proceeding to next time-step.');

break

end

end

end

toc

% ----------------

% End of time loop

% ----------------

122

GridExt.m

function [pts , hpts] = GridExt(nt , Linit ,Ldom,LextO, Lextl, ratio nr)

%UNTITLED8 Summary of this function goes here

% Detailed explanation goes here

dptsnew = (Lext1-LextO)/(nt-1);

ptsnew = LextO:dpts new:Lexti;

if LextO = Linit && Lexti = Ldom

pts = ptsnew;

hpts = diff(pts);

return;

end

if nr = 1 &&z Lexti = Ldom

pts = [Linit pts new];

return;

elseif nr - 1 && LextO = Linit

pts = [ptsnew Ldom];

return;

end

i f (ratio==1)

alpha = 1.0;

factor = 1.0/nr;

else

texp = 1/(nr-1);

alpha = ratio-texp;

factor = (1.0-alpha)/(1.0-alpha-nr);

end

if Lexti -= Ldom

delta=(Ldom- Lext)* factor;

for i=2:1:nr+1

ptsnew = [pts_new ptsnew(end)+delta];
delta = delta*alpha;

end

end

if LextO -= Linit

delta=(LextO - Linit)* factor

for i=2:1:nr+1

ptsnew = [pts_new(1)-delta pts_new];

delta = delta*alpha;

end

end

pts = pts_new;

hpts = diff(pts);

end

123

GridGenX.m

function [coords nodevals benodes] = GridGenX(xc,yc)

%UNTITLED8 Summary of this function goes here

% Detailed explanation goes here

nx = length(xc);

ny = length(yc);

xgrid = []

ygrid =

nodevals =

bcnodes = [J;

k=1;

for j = 1:1:ny

xgrid = [xgrid xc '];

for i = 1:1:nx

ygrid = [ygrid yc(j)J;

nodevals = [nodevals kJ;

if j = 1 11 J = ny 1| i = 1 | i = nx

bcnodes = [bcnodes k];

end

k=k + 1;

end

end

coords = [xgrid ' ygrid '];

end

124

Diffi Matrices Cap.m

function [Dx,Dy] = DifflMatricesCap(xcap,ycap)

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

nx = length(xcap);
ny = length(ycap);

hx = diff(xcap);

hy = diff(ycap);

% Initialize Dx,Dy

Dx = zeros(nx*ny);

Dy = zeros(nx*ny);

% First Derivative Weights (central)

alx = -hx(2:end). /(hx(1:end-1). *(hx(2:end)+hx(1:end-1)));
bix = (hx(2:end) -hx(1:end-1)). /(hx(1:end-1). *hx(2:end));
clx = hx(1:end-1)./(hx(2:end).*(hx(2:end)+hx(1:end-1)));
aly = -hy(2:end). /(hy(1:end-1). *(hy(2:end)+hy(1:end- 1)));
bly = (hy(2:end) -hy(1:end-1)). /(hy(1:end-1). *hy(2:end));

cly = hy(1:end- 1). /(hy(2:end). *(hy(2:end)+hy(1:end-1)));

% First Derivative Weights (forwards)

% alxf = -(hx(2:end)+2.*hx(1:end-l)). /(hx(1:end-1).*(hx(2:end)+hx(1:end-1)));

% blxf = (hx (2:end)+hx(1:end-1)). /(hx(l:end-1).*hx(2:end));
% cIxf = -hx(1:end-1) . /(hx(2:end). *(hx(1:end-1)+hx(2:end)));

% alyf = -(hy(2:end)+2.*hy(1:end-1)). /(hy(1:end-1).*(hy(2:end)+hy(1:end-1)));

% blyf = (hy (2:end)+hy (1:end-1)). /(hy (1:end-1) .*hy(2:end));

% clyf = -hy(1:end-1). /(hy(2:end).*(hy(1:end-1)+hy(2:end)));

% First Derivative Weights (backwards)

% alxb = hx(2:end)./(hx(l:end-).*(hx(i:end-l)+hx(2:end)));
% bxb = -(hx(2:end)+hx(l:end-1))./(hx(l:end-1).*hx(2:end));

% clxb = (2.*hx(2:end)+hx(l:end-))./(hx(2:end).*(hx(2:end)+hx(l:end-1)));

alyb = hy(2:end). /(hy(1:end-1).*(hy(:end-1)+hy(2:end)));

blyb = -(hy(2:end)+hy(l:end-1))./(hy(l:end-1).*hy(2:end));

clyb = (2. *hy(2:end)+hy(1:end-1)) . /(hy(2:end). *(hy(2:end)+hy (1:end- 1)));

% Dx

for i = 1:1:nx

for j = 1:1:ny

if i==1 % periodic

Dx((j-l)*nx+i,(j)*nx) = ax(l);

Dx((j -1)* nx+i,(j -1)*nx+i) = blx (1);

Dx((j-1)*nx+i ,(j-1)*nx+i+1) = clx(l);
ciseif i==nx % periodic

Dx((j-l)*nx+i,(j-l)*nx+i-1) = alx(end);
Dx((j-l)*nx+i,(j-l)*nx+i) = blx(end);

Dx((j-l)*nx+i,(j-l)*nx+l) = clx(end);
else % typical central appx

Dx((j-l)*nx+i,(j-l)*nx+i-1) = alx(i-1);

Dx((j-l)*nx+i,(j-l)*nx+i) = blx(i-1);

Dx((j-1)*nx+i ,(j-1)*nx+i+1) = clx(i-1);
end

end

end

125

% Dy

for i = 1:1:nx

for j = 1:1:ny

if j==1 % use axisymmetry

Dy((j-1)*nx+i,(j)*nx+i) = aly(1)+cly(1);

Dy((j-1)*nx+i,(j-)*nx+i) = bly(1);

elseif j==ny % need backward diff

Dy((j -1(j-l),(j-1)*nx+i) = ciyb(end);

Dy((j-1)*nx+i,(j-2)*nx+i) = blyb(end);
Dy((j-1)*nx+i,(j-3)*nx+i) = alyb(end);
else % typical central appx

Dy((j-1)*nx+i,(j-2)*nx+i) = aly(j-1);

Dy((j-1)*nx+i,(j-1)*nx+i) = bly(j-1);

Dy((j-1)*nx+i,(j)*nx+i) = cly(j-1);

end

end

end

Dx = sparse(Dx);

Dy = sparse(Dy);

end

126

RBCMeshQuants.m

function [tss ,dtss ,qss ,dqss ,dsk ,phik ,dphik) =

RBCMeshQuants(skxO ,skyQ ,skx, sky , sigma ,K_bu,K_sh,B, kO)

%JNTITLED Summary of this function goes here

% Detailed explanation goes here

V/do Geometry Relations

% derivatives of elementary quantities

dsk5 = sqrt((skx(2:end)-skx(l:end-1)).-2 + (sky(2:end)-sky(1:end-1)).^2);

phik5 = acos ((sky (2:end) -sky (1:end-1)) . /dsk5(1:end));

dsk5e [dsk5(1); dsk5; dsk5(end)];

phik5e = [- phik5 (1); phik5; phik5(end) 1;

dsk (dsk5e(l:end-1)+dsk5e(2:end)) ./2;

phik = (phik5e (2:end).* dsk5e(1:end-1)+phik5e (1:end-1) . *dsk5e(2:end)) ./..

(dsk5e (1:end-1)+dsk5e (2:end));

dphik = (phik5e (2:end) - phik5e (1:end-1)). /((dsk5e (1:end-1)+dsk5e (2:end))./ 2);

ddphik5 = (dphik(2:end)-dphik(1:end-1))./dsk5;

ddphik5e = [ddphik5(1); ddphik5; ddphik5(end)]; % may require - sign at start/end

ddphik = ,(ddphik5e (2:end) . *dsk5e (1:end-1)+ddphik5e (1:end-1). *dsk5e (2:end)) . /

(dsk5e (1:end-1)+dsk5e (2:end));

dddphik = (ddphik5e(2:end)-ddphik5e(1:end-1)). /((dsk5e(l:end-1)+dsk5e(2:end)) . /2);

% derivatives of non-elementary quantities

skye = [sky(2); sky; sky(end-1)];

sky0e = [skyO(2); skyO; skyO(end-1)];

sky5e = skye(1:end-1)+skye(2:end);

skyO5e = sky0e(1:end-1)+sky0e(2:end);

sky505er = sky5e./sky05e;

dskO5 = sqrt((skxO(2:end)-skxO(1:end-1)) .^2 + (skyO(2:end)-skyO(1:end-1)). -2);

dsk05e = [dsk05(1); dskO5; dsk05(end)];
dsds0e = dsk5e./dskO5e;

dsdsO = (dsds0e(2:end).*dsk5e(i:end-1)+dsds0e(1:end-1).*dsk5e(2:end))./...

(dsk5e (1:end-1)+dsk5e (2:end));

RRO = sky./skyO;

% first deriv

ddsdsO = (dsds0e (2:end)- dsds0e (1:end-1)) . /((dsk5e(2:end)+dsk5e (1:end-1)) . /2);

dRRO = (sky55er(2:end)-sky55er(1:end-1))./((dsk5e(1:end-1)+dsk5e(2:end))./2);

% squared deriv

ddsds02 = (dsds0e(2:end).^2-dsds0e(1:end-1).^2)./((dsk5e(2:end)+dsk5e(1:end-1))./2);

dRRO2 = (sky5O5er (2:end). ^2-sky5O5er (1:end-1). ^2). /((dsk5e (1:end-1)+dsk5e(2:eld)) . /2);

iWs Membrane Constituent Relations

tss = sigma+Kbu.*(dsdsO.*RRO-1)+K sh./2.*(dsdsO.^2+RRO.-2)-B.*...

dphik.*(dphik -kO);
dtss = K bu.*(ddsds.*RR--dsdsO.*dRRO)+Ksh./2.*(ddsds2-dRR02)-...

B.*ddphik.*(2.*dphik-kO);

qss = -B.*ddphik;

127

dqss = -B.*dddphik;

end

128

DdsMat.m

% function !D,D2,Ds,Dsmear] = DdsMat(D,D2,Ds,Dsmearxc,ycXL,YL,dshxhy)

function [D,Dsmear] = DdsMat(D,Dsmear,xcyC,XL,YL,ds,hx,hy)

%UNTITLED Summary of this function goes here

% Detailed explanation goes here

L = length(XL);

nx = length(hx)+1;

ny = length(hy)+1;

for 1 = 1:1:L

for i = 1:1:nx

for j = 1:1:ny

if i = nx && j = ny

D(l ,((j -1)*nx+i)) = dfr((xc(i)-XL(l)),hx(end)).*dfr((yc(j)-YL(1)) ,hy(end));

Dsmear(((j-1)*nx+i),l) = (1/(hx(end)*hy(end))).s...
dfr((xc(i)-XL(l)),hx(end)).*dfr((yc(j)-YL(l)),hy(end)).*ds(l);

elseif i == nx

D(l ,((j -1)*nx+i)) = dfr((xc(i)-XL(l)) ,hx(end)).*dfr((yc(j)-YL(l)) ,hy(j));
Dsmear(((j -1)*nx+i) ,1) = (1/(hx(end)*hy(j))) ...

dfr ((xc(i)-XL(l)) ,hx(end)).*dfr ((yc(j)-YL(l)) ,hy(j)) .*ds(1);

ciseif j = ny

D(I ((j -1)*nx+i)) = dfr((xc(i)-XL(l)) ,hx(i)) .*dfr((yc(j)-YL(l)) ,hy(end));

Dsmear(((j-1)*nx+i),l) = (1/(hx(i)*hy(end))).* ...

dfr ((xc(i)-XL(l)) ,hx(i)).*dfr ((yc(j)-YL(l)) ,hy(end)).*ds(l);

else

D(l ,((j -1)*nx+i)) = dfr((xc(i)-XL(l)),hx(i)) .*dfr((yc(j)-YL(l)),hy(j));

Dsmear(((j-1)*nx+i),1) = (1/(hx(i)*hy(j))) .*..

dfr ((xc(i)-XL(l)),hx(i)).*dfr ((yc(j)-YL(1)),hy(j)).*ds(1);

end

end

end

end

end

129

dfr.m

function [d] = dfr(r ,h)

% dfr(r,h)

% r: input (X-x) or (Y-y); (Lagrangian - Eulerian) value

% h: input local dx or dy; local Eulerian grid displacement value

if abs(r/h) <= 1

d = (1/8)*(3-2*abs(r/h)+sqrt(1+4*abs(r/h)-4*abs(r/h)^2));

elseif abs(r/h) > 1 && abs(r/h) <= 2

d = (1/8)*(5-2*abs(r/h)-sqrt (-7+12*abs(r/h)-4*abs(r/h)^2));

elseif abs(r/h) > 2

d = 0;

end

end

130

inPolyPeriodic.m

function [intPntMat ,dsk,phik ,skxsky] = inPolyPeriodic(xcapmatycap mat,

skx ,sky , plotter)
% [intPntMat,dsk,phik] = inPolyPeriodic(xcap-mat,ycap-mat,skxsky)

% Finds points inside periodically wrapped curve for capillary domain.

% INPUTS:

% xcap mat: x-coordinates of Eulerian mesh

% ycap mat: y-coordinates of Eulerian mesh

% skx: x-coordinates of Lagrangian mesh

% sky: y-coordinates of Lagrangian mesh

% plotter : 0 or 1, off or on (recommended to keep at 0 unless this function

% is used for periodic testing)

% OUTPUTS:

% intPntMat: matrix of 0 and 1 values indicating if value inside curve skx.

% sky

% dsk: corrected distance between curve points for periodic wrapping

% phik: corrected phi angle at curve points for periodic wrapping

xMax = max(xcapmat);

for i=1:1:length(skx)

if skx(i)>xMax

skx(i)=skx(i)-xMax;

end

end

dskx = diff(skx);

dsky = diff(sky);

for i=1:1:length(dskx)

if abs(dskx(i))>xMax/2

dskx(i) = skx(i+1)-(skx(i)+xMax);

end

end

dsk5 = sqrt((dskx).2 + (dsky).^2);

phik5 = acos ((sky(2:end)-sky(1:end-1))./dsk5(1:end));

dsk5e = [dsk5(1); dsk5; dsk5(end)J;
phik5e = [-phik5(1); phik5; phik5(end)];

dsk = (dsk5e(l:end-1)+dsk5e(2:end))./2;

phik = (phik5e (2:end).* dsk5e(1:end-1)+phik5e (1:end-1) .*dsk5e (2:end)) ./
(dsk5e (1:end-1)+dsk5e (2:end));

[- ,index] = min(skx);

if index-=length(skx)

skxtl = [skx(1:index); skx(index+1)-xMax; skx(index+1)-xMax; skx(1); skx(1)];

sky_tl = [sky(1:index); sky(index+1); -0.1; -0.1; sky(1)];

skxt2 = [skx(index+l:end); skx(end); skx(index)+xMax; skx(index)+xMax; skx(index+1)];

skyt2 = Isky(index+1:end); -0.1; -0.1; sky(index); sky(index+1)];

if plotter==1

figure (1); clf;

131

hold on

plot (skxti sky_t , '-or' ,skxt2 ,skyt2 , '-or',' line width ' 2);

end

inl. = inpolygon(xcap matycapmat,skx_tI.,sky_tl);

in2 = inpolygon(xcapmatycap_mat,skx_t2,skyt2);

intPntMat = logical(inl+in2);

else

skx_tl = [skx(1:end); skx(end); skx(1); skx(1)J;

sky_tl = [sky(l:end); -0.1; - 0.1; sky(l)];

if plotter==1

figure(1); clf;

hold on

plot(skxtl ,sky_tl ,'-or ','linewidth ' 2);

end

in = inpolygon(xcapmat,ycap mat,skx_t 1 ,sky_tl);

intPntMat = logical(in);

end

end

132

Matrix_ CapillaryUpdater.m

function [L] = Matrix_ Capillary_ Updater(L,skxsky, Re rbc,Re pl,dt ,hx,hy,Dx_til ,Dytil ,inrbc)

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

% Total Grid Points

nx = length(hx);

ny = length(hy);

% number of Lagrangian X points

nskx = length(skx);

% number of Lagrangian Y points

nsky = length(sky);

% total number of Lagrangian (X,Y) points * 2

nskt = nskx+nsky;

% nDxr - Dx rows , corresponds to Lagrangian points

% nDxc = Dx columns, corresponds to Eulerian points

[nDxr,nDxcJ = size(Dx til);

% Non-dimensional Vectors

Re vec = zeros(nx*ny,1);

% Second Derivative Weights (centered)

a2x = 2. /(hx (1:end-1) . *(hx(2:end)+hx (1:end-1)));
b2x = -2. /(hx (1:end-1) . *hx (2:end));
c2x = 2. /(hx(2:end).*(hx(2:end)+hx(1:end-1)));

a2y = 2. /(hy(1:end-1).*(hy(2:end)+hy(1:end-1)));
b2y = -2./(hy(1:end-1).*hy(2:end));

c2y = 2. /(hy(2:end). *(hy(2:end)+hy(1:end-1)));

% Second Derivative Weights (forwards)

a2xf = (6. *hx(l:end-2)+4. *hx(2:end-1)+2. *hx(3:end)) ./
(hx(1:end-2) . *(hx(1:end-2)+hx(2:end-1)) . *(hx(l:end-2)+hx(2:end-1)+hx(3:end)));
b2xf = -(4 . *(hx(1:end-2)+hx(2:end-1))+2.*hx(3:end)) ./...
(hx(l:end-2). *hx(2:end-1). *(hx(2:end-1)+hx(3:end)));

c2xf = (hx(1:end-2)+2. *(hx(2:end-1)+hx(3:end))) ./...
((hx(1:end-2)+hx(2:end-1)).*hx(2:end-1).*hx(3:end));

d2xf = -(4.*hx(l:end-2)+2.*hx(2:end-1))./...

((hx(1:end-2)+hx(2:end-1)+hx(3:end)). *(hx(2:end-1)+hx(3:end)) . *hx(3:end));
a2yf = (6 .*hy (1:end-2)+4. *hy (2:end-1)+2.*hy (3:end)) ./ ...
(hy(l:end-2) . *(hy(1:end-2)+hy(2:end-1)) . *(hy(1:end-2)+hy(2:end-1)+hy(3:end)));

b2yf = -(4. *(hy(1:end-2)+hy(2:end-1))+2.*hy(3:end)) ./...

(hy(1:end-2).*hy(2:end-1). *(hy(2:end-1)+hy(3:end)));
c2yf = (hy(1:end-2)+2. *(hy(2:end-1)+hy(3:end)))./ ...
((hy(1:end-2)+hy(2:end-1)).*hy(2:end-1).*hy(3:end));

d2yf = -(4.*hy(1:end-2)+2.*hy(2:end-1))./...

((hy(1:end-2)+hy(2:end-1)+hy(3:end)).*(hy(2:end-1)+hy(3:end)).*hy(3:end));

% Second Derivative Weights (backwards)

a2xb = -(2.*hx(2:end-1)+4.*hx(3:end))./...

(hx (1: end- 2) . * (hx (:end-2)+hx (2:end-1)) . *(hx (:end-2)+hx (2:end-1)+hx (3:end)));
b2xb = (2.*(hx(i:end-2)+hx(2:end-1))+4.*hx(3:end))./ ...
(hx(l:end-2).*hx(2:end-1). *(hx(2:end-1)+hx(3:end)));

c2xb = -(2.*hx(l:end-2)+4.*(hx(2:end-1)+hx(3:end))) ./...

((hx(l:end-2)+hx(2:end-1)).*hx(2:end-1).*hx(3:end));

d2xb = (2.*hx(1:end-2)+4.*hx(2:end-)+6.*hx(3:end))./...
((hx(1:end-2)+hx(2:end-1)+hx(3:end)). *(hx(2:end-1)+hx(3:end)). *hx(3:end));
a2yb = -(2.*hy(2:end-1)+4.*hy(3:end))./...

(hy(1:end-2). *(hy(1:end-2)+hy(2:end-1)). *(hy(1:end-2)+hy(2:end-l)+hy(3:end)));

133

b2yb = (2.*(hy(1:end-2)+hy(2:end-1))+4.*hy(3:end))./...

(hy(1:end-2) . *hy(2:end-1) . *(hy(2:end-1)+hy(3:end)));

c2yb = -(2. *hy(1:end-2)+4. *(hy(2:end-1)+hy(3:end))) ./.

((hy(1:end-2)+hy(2:end-1)). *hy(2:end-1). *hy(3:end));
d2yb = (2.*hy(1:efnd-2)+4.*hy(2:end-1)+6.*hy(3:end))./..,

((hy(1:end-2)+hy(2:end-1)+hy(3:end)) . *(hy(2:end-1)+hy(3:end)) *hy(3:end));

% Assign domains ' Reynolds numbers into vector format

for i =1:1:nx

for j=1:1:ny

if inrbc((j-1)*nx+i)==1

Revec((j-1)*nx+i) = Rerbc;

else

Revec((j-1)*nx+i) = Re_pl;

end

end

end

% Lagrangian Mesh Implicit Feedback Derivatives

for 1 = 1:1:nDxr

L(2*1-1,2*1-1) = 1;

L(2*1,2*1) = 1;

for k = 1:1:nDxc

L(2*l-1,nskt+4*k-3) = -dt.*Dy_til(l,k);

L(2*1,nskt+4*k-3) = dt.*Dxtil(l,k);

end

end

% Lexicographical Ordering: x followed by y, reduce bandwidth

for i = 2:1:nx-l

for j = 2:1:nx-l

97 Residual 1

% Check if points are inside or outside cell determines if

% discretization scheme needs to be adjusted for second

% derivative approximations.

% Point lies completely inside/outside cell s.t. centered

% approximation for second derivative is physically valid

if (in _rbc((j-1)*nx+i+)==1 && in rbc((j-1)*nx+i-1)==1 && ...

in rbc((j-2)*nx+i)==1 && in_ rbc((j)*nx+i)==1) 11 ...

(inrbc((j-1)*nx+i+1)==O && in rbc ((j -1)*nx+i -1)==O&&

in_ rbc ((j -2)* nx+i)==O && inrbc ((j)nx+i)==O)

% Residual 1
L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) = (b2x(1) + b2y(j -1));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i+)-1) = c2x(1);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i -1)-i) = a2x(1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j)*nx+i)-) = a2y(j-1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-2)*nx+i)-1) = c2y(j-1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(b2x(1)+b2y(j-1));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i+1)) =

-(dt/Revec((j-1)*nx+i)).*c2x(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i -1)) =

-(dt/Revec((j-1)*nx+i)).*a2x(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*a2y(j-1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-2)*nx+i)) =

134

-(dt/Re vec((j-1)*nx+i)).*c2y(j-1);

% Point lies to left of cell edge

elseif (inrbc((j-1)*nx+i)-=in rbc((j-1)*nx+i+1))

% Point lies to right of cell edge

if (in _rbc((j -1)*nx+i)-=in_ rbc((j -i)*nx+i -1))

break ;

% Point lies below cell edge

elseif (inrbc((j-1)*nx+i)-=in rbc((j)*nx+i))

% Point lies above cell edge

if (in rbc((j-1)*nx+i)-=inrbc((j-2)*nx+i))

break ;

% Residual

else

% No periodic overlap required for second derivative

if (((j-1)*nx+i)-3)-((j-1)*nx+)>=

% Residual 1

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(d2xb(i)+d2yb(j -2));

L(nskt+2*((j-1)*nx+i)-i,nskt+2*((j-1)*nx+i -1)-i) =

c2xb(1);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j -1)*nx+i -2)-i) = .

b2xb (1);
L(nskt+2*((j -1)snx+i)-1,nskt+2((j-1)snx+i -3)-) =

a2xb (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-2)snx+i)-) =

c2yb(j -2);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j-3)*nx+i)-1) =

b2yb(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-4)*nx+i)-1) =

a2yb(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-i)*nx+i)) =

1-(dt/Revec((j -1)*nx+i)) . *(d2xb(1)+d2yb(j -2));

L(nskt+2*((j -1)*nx+i) , nskt+2*((j -1)*nx+i -1)) =

-(dt/Revec((j -1)*nx+i)) .*c2xb(1);

L(nskt+2*((j -1)*nx+i) ,nskt+2*((j-1)*nx+i -2)) =

-(dt/Re_vec((j-1)*nx+i)).*b2xb();

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i -3)) =

-(dt/Re-vec((j-1)*nx+i)).*a2xb();

L(nskt+2*((j-1)*nx+i),nskt+2*((j-2)*nx+i)) =

-(dt/Re-vec((j -1)*nx+i)) .*c2yb(j -2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-3)*nx+i)) =

-(dt/Re_vec((j -1)*nx+i)) .*b2yb(j -2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-4)*nx+i)) =

-(dt/Re_vec((j-1)*nx+i)).*a2yb(j-2);

% Periodic overlap required for second derivative

elscif (((j-1)*nx+i)-3)-((j-1)*nx+1)==-1

% Residual 1

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(d2xb(1)+d2yb(j -2));

L(nskt+2*((j -1)*nx+i)-1 nskt+2*((j -1)*nx+i -1)-1) =

c2xb(1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i -2)-i) =

b2xb (1);

L(nskt+2*((j -)nx+i)-1 ,nskt+2*(j*nx)-i) =

a2xb (1);

L(nskt+2*((j -1)snx+i)-1 ,nskt+2*((j-2)*nx+i)-1) =

135

c2yb(j -2);

L(nskt+2*((j -1)snx+i)-1,nskt+2*((j-3)*nx+i)-1) =

b2yb(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-4)*nx+i)-1) =

a2yb(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(d2xb(1)+d2yb(j -2));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i-1)) =

-(dt/Revec((j-1)*nx+i)).*c2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i -2)) =

-(dt/Revec((j -1)*nx+i)) .*b2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*(j*nx)) =

-(dt/Revec((j -1)*nx+i)) .*a2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-2)*nx+i)) =

-(dt/Revec((j -1)*nx+i)) .*c2yb(j -2);

L(nskt+2*((j -1)*nx+i) ,nskt+2*((j -3)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*b2yb(j-2);

L(nskt+2*((j -1)*nx+i) ,nskt+2*((j -4)*nx+i)) =

-(dt/Revec((j -1)*nx+i)) .*a2yb(j -2);

% Periodic overlap required for first /second derivative

elseif (((j -1)*nx+i) -3)-((j -1)*nx+1)==-2

% Residual 1
L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(d2xb(1)+d2yb(j -2));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i -1)-i) =

c2xb (1);
L(nskt+2*((j-1)*nx+i)-1,nskt+2*(j*nx)-1) =

b2xb (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*(j*nx-1)-1) =

a2xb (1);

L(nskt +2*((j -1)*nx+i) -1 ,nskt+2*((j -2)*nx+i) -1) =

c2yb(j -2);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j -3)*nx+i)-1) =

b2yb(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-4)*nx+i)-1) =

a2yb(j -2);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(d2xb(l)+d2yb(j -2));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i -1)) =

-(dt/Revec((j-1)*nx+i)).*c2xb(l);

L(nskt+2*((j-1)*nx+i),nskt+2*(j*nx)) =

-(dt/Re vec((j-1)*nx+i)).*b2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*(j*nx-1)) =

-(dt/Revec((j-1)*nx+i)).*a2xb(l);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-2)*nx+i)) =

-(dt/Revec((j-1)*nx+i)) .*c2yb(j -2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-3)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*b2yb(j -2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-4)*nx+i)) =

-(dt/Revec((j-1)* nx+i)).*a2yb(j -2);

% Periodic overlap required for first /second derivative

elseif (((j-1)*nx+i)-3)-((j-1)*nx+1)==-3

% Residual 1

136

L(nskt +2*((j -1)*nx+i) -1 ,nskt+2*((j -1)*nx+i)-1) =

(d2xb(1)+d2yb(j -2));

L(nskt+2*((j-1)*nx+i)-nskt+2*(jr*nx)-1) =

c2xb (1);
L(nskt+2*((j-1)*nx+i)-l,nskt+2*(j*nx-l)-1) =

b2xb (1);

L(nskt+2*((j-l)*nx+i)-l,nskt+2*(j*nx-2)-l) =

a2xb (1);
L(nskt+2*((j-1)*nx+i)-nskt+2*((j-2)*nx+i)-1) =

c2yb (j -2);
L(nskt +2*((j -1)* nx+i) -1 ,nskt +2*((j -3)*nx+i) -1) =

b2yb(j -2);

L(nskt+2*((j-1)*nx+i)-lnskt+2*((j-4)*nx+i)-1) =

a2yb(j -2);

L(nskt+2*((j-1)*nx+i)-lnskt+2*((j-1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j -1)*nx+i)) . *(d2xb(1)+d2yb(j -2));

L(nskt+2*((j-1)*nx+i i),nskt+2*(j*nx)) =

-(dt/Revec((j-1)*nx+i)).*c2xb(1);

L(nskt+2*((j -1)*nx+ii),nskt+2*(j*nx-1)) =

-(dt/Revec((j-1)*nx+i)).*b2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*(j*nx-2)) =

-(dt/Re vec((j-1)*nx+i)).*a2xb(l);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-2)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*c2yb(j -2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-3)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*b2yb(j -2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-4)*nx+i)) =

-(dt/Re vec((j-1)*nx+i)).*a2yb(j-2);

end

end

% Point lies above cell edge

elseif (inrbc((j-1)*nx+i)-=in rbc((j-2)*nx+i))

% No periodic overlap required for second derivative

if (((j-1)*nx+i)-3)-((j-1)*nx+1)>=O

% Residual 1
L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(d2xb(1)+a2yf(j -2));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i -1)-i) =

c2xb (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i -2)-1) =

b2xb (1);

L(nskt +2*((j -1)* nx+i) -1 ,nskt+2*((j -1)*nx+i -3) -1) =

a2xb (1);

L(nskt +2*((j -1)* nx+i) -1 ,nskt +2*((j)*nx+i)-1) =

b2yf(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j+)*nx+i)-1) =

c2yf(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j+2)*nx+i)-1) =

d2yf(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/RevecC((j-1)*nx+i)).*(d2xb(1)+a2yf(j-2));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i -1)) =

-(dt/Revec((j-1)*nx+i)).*c2xb(l);

137

L(nskt+2*((j -1)*nx+i) , nskt+2*((j -1)*nx+i -2)) =

-(dt/Revec((j -1)*nx+i)) . *b2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i -3)) =

-(dt/Revec((j-1)*nx+i)).*a2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*b2yf(j-2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j+1)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*c2yf(j-2);

L(nskt+2*((j -1)*nx+i),nskt+2*((j+2)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*d2yf(j-2);

% Periodic overlap required for second derivative

clscif (((j-1)*nx+i)-3)-((j-1)*nx+1)==-1

% Residual 1

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(d2xb(1)+a2yf(j -2));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i-1)-1) =

c2xb (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i -2)-1) =

b2xb (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*(j*nx)-1) =

a2xb (1);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j)*nx+i)-1) =

b2yf(j -2);

L(nskt+2*((j-1)*nxi)-1,nskt+2*((j+1)*nx+i)-1) =

c2yf(j -2);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j+2)*nx+i)-1) =

d2yf(j -2);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(d2xb(l)+a2yf(j -2));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i -1)) =

-(dt/Revec((j-1)*nx+i)).*c2xb(l);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i-2)) =

-(dt/Revec((j-1)*nx+i)).*b2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*(j*nx)) =

-(dt/Revec((j-1)*nx+i)).*a2xb(l);

L(nskt+2*((j-1*((j)i),nskt+2*(j)*nx-i)) =

-(dt/Revec((j-1)*nx+i)).*b2yf(j-2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j+1)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*c2yf(j-2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j+2)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*d2yf(j-2);

% Periodic overlap required for first/second derivative

elseif (((j-1)*nx+i)-3)-((j-1)*nx+1)==-2

% Residual 1

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(d2xb(l)+a2yf(j-2));

L(nskt+2*((j-1)*nx+i)-1,nskt+2C((j-1)*nx+i-1)-1) =

c2xb (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*(j*nx)-1) =

b2xb (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*(j*nx-1)-1) =

a2xb (1);
L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j)*nx+i)-1) =

b2yf(j -2);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j+1)*nx+i)-1) =

c2yf(j -2);

138

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j+2)*nx+i)-1) =

d2yf(j -2);

L(nskt+2((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Re vec((j-1)*nx+i)).*(d2xb(1)+a2yf(j-2));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i-1)) =

-(dt/Revec((j-1)*nx+i)).*c2xb(l);

L(nskt+2*((j-1)*nx+i),nskt+2*(j*nx)) =

-(dt/Re vec((j-1)*nx+i)).*b2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*(j*nx-1)) =

-(dt/Re vec((j-1)*nx+i)).*a2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j)*nx+i)) =

-(dt/Re vec((j-1)*nx+i)) .*b2yf(j-2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j+1)*nx+i)) =

-(dt/Re vec((j-1)*nx+i)).*c2yf(j-2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j+2)*nxi)) =
-(dt/Re vec((j-1)*nx+i)).*d2yf(j -2);

% Periodic overlap required for first /second derivative
elscif (((j-1)*nx+i)-3)-((j-1)nx+1)==-3

% Residual 1
L(nskt+2*((j-1)*nx+i)-1,nskt+2((j-1)*nx+i)-1) =..

(d2xb(1)+a2yf(j-2));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*(j*nx)-1) =

c2xb (1);
L(nskt+2*((j-1)*nx+i)-1,nskt+2*(j*nx-1)-1) =

b2xb (1);
L(nskt+2*((j-1)*nx+i)-1,nskt+2*(j*nx-2)-1) =

a2xb (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j)*nx+i)-1) =

b2yf(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j+1)*nx+i)-1) =

c2yf j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j+2)*nx+i)-1) =

d2yf(j -2);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(d2xb(l)+a2yf(j-2));

L(nskt+2*((j-1)*nx+i),nskt+2*(j*nx)) =

-(dt/Revec((j-1)*nx+i)).*c2xb(l);

L(nskt+2*((j-1)*nx+i),nskt+2*(j*nx-1)) =

-(dt/Re-vec((j-1)*nx+i)).*b2xb(1);

L nskt+2*((j-1)*nx+i),nskt+2*(j*nx-2)) =

-(dt/Revec((j-1)*nx+i)).*a2xb(1);

L nskt+2*((j-1)*nx+i),nskt+2*((j)*nx+i)) =

-Cdt/Re-vec((j-1)*nx+i)) .*b2yf(j-2);

L(nskt+2*((j -1)*nx+i) ,nskt+2*((j+1)*nx+i)) =

-(dt/Revec((j-1)*nx+i)) .*c2yf(j-2);

L(nskt +2*((j -1) * nx+i) ,nskt +2* ((j +2)*nx+i)) =

-(dt/Revec((j-1)*nx+i)). d2yf(j-2);

end

% Residual

else

% Periodic accounting for left of cell edge -

% first -derivative must be upwinded/downwinded

139

% accordingly

% No periodic overlap required for second derivative

if (((j-1)*nx+i)-3)-((j-1)*nx+1)>=O

% Residual 1

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(d2xb(1)+b2y(j-1));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i -1)-i) =

c2xb(1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i -2)-1) =

b2xb (1);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i -3) -1) =

a2xb (1);
L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j)*nx+i)-1) =

c2y (j -1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

a2y (j - 1);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j -1)*nx+i)) .*(d2xb(1)+b2y(j -1));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i-1)) =

-(dt/Revec((j-1)*nx+i)).*c2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i-2)) =

-(dt/Revec((j-1)*nx+i)) .*b2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i -3)) =

-(dt/Revec((j-1)*nx+i)).*a2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j)*nx+i)) =

-(dt/Revec((j -1)*nx+i)) .*c2y (j -1);

L(nskt+2*((j -1)*nx+i) ,nskt+2*((j -1)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*a2y(j-1);

% Periodic overlap required for second derivative

elseif (((j-1)*nx+i)-3)-((j-1)*nx+1)==-1

% Residual 1

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(d2xb(1)+b2y(j-1));

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i -1)-i) =

c2xb(1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i-2)-1) =

b2xb (1);

L(nskt +2*((j -1)* nx+i) -1 ,nskt+2*(j *nx) -1) =

a2xb (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j)*nx+i)-1) =

c2y(j -1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

a2y (j -1);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(d2xb(1)+b2y(j -1));

L(nskt+2*((j -1)*nx+i) ,nskt+2*((j -1)*nx+i -1)) =

-(dt/Revec((j-l)*nx+i)) .*c2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i -2)) =

-(dt/Revec((j-1)*nx+i)) .*b2xb(l);

L(nskt+2*((j-1)*nxi),nskt+2*(j*nx)) =

-(dt/Revec((j-1)*nx+i)).*a2xb(l);

L(nskt+2*((j-1)*nx+i),nskt+2*((j)*nx+i)) =

-(dt/Revec((j-1)*nx+i)) .*c2y(j-1);

140

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

-(dt/Revec((j-1)*nx+i)) .*a2y(j -1);

% Periodic overlap required for first/second derivative

elseif (((j-1)*nx+i)-3)-((j-1)*nx+1)==-2

% Residual 1

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nxti)-1) =

(d2xb(1)+b2y(j -1));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nxti -1)-1)

c2xb(1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*(j*nx-1)-1) =

b2xb(1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*(j*nx)-1) =

a2xb(1);

L(nskt+2*((j-1)*nx+i)-,nskt+2*((j)*nx+i)-1) =

c2y(j -1);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)-1) =

a2y(j -1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Re vec((j-1)*nx+i)).*(d2xb()+b2y(j -1));
L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i -1)) =

-(dt/Revec((j-1)*nx+i)).*c2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*(j*nx)) =

-(dt/Revec((j-1)*nx+i)).*b2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*(j*nx-1)) =

-(dt/Revec((j-1)*nx+i)).*a2xb(l);

L(nskt+2*((j-1)*nx+i),nskt+2*((j)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*c2y(j-1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

-(dt/Re vec((j-1)*nx+i)).*a2y(j-1);

% Periodic overlap required for first /second derivative

elseif (((j-1)*nx+i)-3)-((j-1)*nx+1)==-3

% Residual 1

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(d2xb(l)+b2y(j-1));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*(j*nx)-1) =

c2xbC 1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*(j*nx-1)-1) =

b2xb (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*(j*nx-2)-1) =

a2xb (1);

L(nskt +2*((j -1)* nx+i) -1 ,nskt +2*((j)*nx+i)-1) =

c2y(j -1);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)-1) =

a2y (j - 1);

L(nskt +2*((j -1)* nx+i) -1 , nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Re vec((j-1)*nx+i)).*(d2xb(l)+b2y(j-1));

L(nskt+2*((j-1)*nx+i),nskt+2*(j*nx)) =

-(dt/Re vec((j -1)*nx+i)) . *c2xb(1);

L(nskt+2*((j-1)*nx+i),nskt+2*(j*nx-1))

-(dt/Re vec((j-1)*nx+i)).*b2xb(1);

L(nskt+2*((j -1)*nx+i) ,nskt+2*(j*nx-2)) =

-(dt/Re vec((j -1)*nx+i)) .*a2xb(1);

L(nskt+2*((j -1)*nx+i) ,nskt+2*((j)*nx+i)) =

141

-(dt/Revec((j-1)*nx+i)).*c2y(j -1);

L(nskt+2*((j -1)*nx+i), nkt+2*((j -1)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*a2y(j-1);

end

end

% Point lies to right of cell edge

elseif (inrbc((j-1)*nx+i)-=inrbc((j-3)*nx+i-1))

% Point lies below cell edge

if (inrbc((j-I)*nx+i)-=in _rbc((j) nx+i))

% Point lies above cell edge

if (inrbc((j-1)*nx+i)-~=in_ rbc((j-2)*nx+i))

break ;

% Residual

else

% No periodic overlap required for second derivative

if (((j-l)*nx+i)+3)-(j*nx)<=O

% Residual 1

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(a2xf(1)+d2yb(j -2));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i+1)-i) =

b2xf (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i +2)-1) =

c2xf (1);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j-1)*nx+i+3)-1) =

d2xf (1);
L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j-2)*nx+i)-1) =

c2yb(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-3)*nx+i)-1) =

b2yb(j -2);

L(nskt +2*((j -1)* nx+i) -1 ,nskt +2*((j -4)* nx+i) -1) =

a2yb(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j -1)*nx+i) ,nskt+2*((j -1)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(a2xf(1)+d2yb(j-2));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i+1)) =

-(dt /Revec((j -1)*nx+i)) . *b2xf (1);

L(nskt+2*((j -1)*nx+i), nskt+2*((j -1)*nx+i+2)) =

-(dt/Revec((j -1)*nx+i)) .*c2xf (1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i+3)) =

-(dt/Revec((j-1)*nx+i)).*d2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j -2)*nx+i)) =

-(dt/Revec((j -1)*nx+i)) .*c2yb(j -2);

L(nskt+2*((j -1)*nx+i) , nskt+2*((j -3)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*b2yb(j -2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j -4)*nx+i)) =

-(dt/Revec((j -1)*nx+i)) .*a2yb(j -2);

% Periodic overlap required for second derivative

elseif (((j-1)*nx+i)+3)-(j*nx)==1

% Residual 1

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(a2xf(1)+d2yb(j -2));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i+)-1) =

b2xf (1);

L(nskt+2*((j -)nx+i)-1,nskt+2*((j-1)*nx+i+2)-1) =

c2xf (1);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j -1)*nx+1)-1)

d2xf (1);

142

L(nskt+2*((j-1)*nx+i)-1,nskt+22*((j-2)*nx+i)-1) =

c2yb(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-3)*nx+i)-1) =

b2yb(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-4)*nx+i)-1) =

a2yb(j -2);

L(nskt+2*((j -1)*nx+i) -1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(a2xf(1)+d2yb(j-2));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i+1)) =

-(dt/Revec((j-1)*nx+i)).*b2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-)*nxi+2)) =

-(dt/Revec((j-1)*nx+i)).*c2xf(1);

L(nskt+2*((j -1)*nx+i),nskt+2*((j -1)*nx+1)) =

-(dt/Revec((j-1)*nx+i)).*d2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-2)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*c2yb(j-2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-3)*nx+i)) =

-(dt/Re vec((j-1)*nx+i)).*b2yb(j-2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-4)*nx+i)) =

-(dt/Re vec((j-1)*nx+i)).*a2yb(j -2);

% Periodic overlap required for first /second derivative

elscif (((j-1)*nxti)+3)-(j*nx)==2

% Residual 1

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j-1)*nx+i)-1) =

(a2xf(1)+d2yb(j -2));

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j-1)*nx+i+1)-i) =

b2xf (1);
L(nskt+2*((j -1)*nx+i) -1, nskt+2*((j -1)nx+1)-1) =

c2xf (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+2)-1) =

d2xf (1);

L(nskt +2*((j -1)* nx+i) -1 ,nskt +2*((j -2)*nx+i)-1) =

c2yb (j -2);
L(nskt +2*((j -1) * nx+i) -1 nskt +2*((j -3) * nx+i) -1) =

b2yb(j - 2);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j-4)*nx+i)-1) =

a2yb (j - 2);

L(nskt+2*((j -1)* nx+i) -1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(a2xf(1)+d2yb(j-2));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i+1)) =

-(dt/Revec((j-1)*nx+i)).*b2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+1)) =

-(dt/Re vec((j-1)*nx+i)).*c2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+2)) =

-(dt/Revec((j-1)* nx+i)).*d2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-2)*nx+i)) =

-(dt/Re vec((j-1)*nx+i)).*c2yb(j-2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j -3)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*b2yb(j -2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-4)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*a2yb(j -2);

% Periodic overlap required for first /second derivative

elseif (((j -1)*nx+i)+3)-(j*nx)==3

143

% Residual 1

L(nskt+2+((j -1)*nx+i)-1,nskt+2*((j -1)*nx+i)-1) =

(a2xf(1)+d2yb(j -2));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+1)-1) =

b2xf (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+2)-1) =

c2xf (1);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j -1)*nx+3)-1) =

d2xf (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-2)*nx+i)-1) =

c2yb(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-3)*nx+i)-1) =

b2yb(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-4)*nx+i)-1) =

a2yb(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j-1)*nxti)).*(a2xf(1)+d2yb(j -2));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+1)) =

-(dt/Revec((j-1)*nx+i)).*b2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+2)) =

-(dt/Revec((j-1)*nx+i)).*c2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+3)) =

-(dt/Revec((j-1)*nx+i)) .*d2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-2)*nx+i)) =

-(dt/Revec((j-1)*nx+i)) .*c2yb(j -2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-3)*nx+i)) =

-(dt/Revec((j-1)*nx+i)) .*b2yb(j -2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-4)*nx+i)) =

-(dt/Revec((j-1)*nx+i))-*a2yb(j-2);

end

end

% Point lies above cell edge

elseif (inrbc((j-1)*nx+i)-=inrbc((j-2)*nx+i))

% No periodic overlap required for second derivative

if (((j -1)*nx+i)+3)-(j*nx)<=O

% Residual 1
L(nskt+2*((j-1)*nx+i)-,nskt+2*((j-1)*nx+i)-1) =

(a2xf(1)+a2yf(j -2));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i+1)-1) =

b2xf (1);

L(nskt+2*((j-1) nx+i)-1,nskt+2*((j-1)snx+i+2)-1) =

c2xf (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i+3)-1) =

d2xf (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j)*nx+i)-1) =

b2yf(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j+1)*nx+i)-1) =

c2yf(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j+2)*nx+i)-1) =

d2yf(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(a2xf(1)+a2yf(j -2));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i+1)) =

-(dt/Revec((j-1)*nx+i)).*b2xf(1);

144

L(nskt+2*((j -1)*nx+i),nskt+2*((j -1)*nxti+2)) =
-(dt/Re_vec((j-1)*nx+i)).*c2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nxti+3)) =
-(dt/Re-vec((j-1)*nx+i)).*d2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j)*nx+i)) =

-(dt/Re-vec((j-1)*nx+i)).*b2yf(j-2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j+1)*nx+i)) =

-(dt/Re-vec((j-1)*nx+i)).*c2yf(j-2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j+2)*nx+i)) =

-(dt/Revec((j -1)*nx+i)) .*d2f(j -2);

% Periodic overlap required for second derivative

elseif (((j-1)*nx+i)+3)-(j*nx)==1

% Residual 1

L(nskt+2*((j-1)*nx+i)-i,nskt+2*((j-1)*nx+i)-1) =

(a2xf(i)+a2yf(j -2));

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j -1)*nx+i+1)-1) =
b2xf(1);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i +2)-1) =

c2xf(1);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j -1)*nx+1)-1) =

d2xf (1);

L(nskt +2*((j -)*nx+i) -1 ,nskt+2*((j)*nx+i) -1) =

b2yf(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j+1)*nx+i)-1) =

c2yf(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j+2)*nx+i)-1) =

d2yf(j -2);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(a2xf(1)+a2yf(j-2));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i+)) =

-(dt/Revec((j-1)*nx+i)).*b2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-)*nxi+2)) =

-(dt/Revec((j-1)*nx+i)).*c2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+1)) =

-(dt/Revec((j-1)*nx+i)).*d2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j)*nx+i)) =

-(dt/Revec((j-i)*nx+i)).*b2yf(j-2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j+1)*nx+i)) =

-(dt/Re-vec((j-1)*nx+i)).*c2yf(j-2);

L(nskt+2*((j-i)*nx+i),nskt+2*((j+2)*nx+i)) =

-(dt/Re-vec((j-i)*nx+i)) .*d2yf(j-2);

% Periodic overlap required for first /second derivative

elseif (((j-1)*nx+i)+3)-(j*nx)==2

% Residual 1

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(a2xf(1)+a2yf(j -2));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i+1)-1) =

b2xf(1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+)-1) =

c2xf(1);

L(nskt+2*((j-1)*nx+i)-i,nskt+2*((j-1)*nx+2)-1) =

d2xf(1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j)*nx+i)-1) =..

b2yf(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j+1)*nx+i)-1) =

c2yf(j-2);

145

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j+2)*nx+i)-1) =

d2yf(j -2);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(a2xf(1)+a2yf(j-2));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i+1)) =

-(dt/Revec((j-1)*nx+i)) .*b2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+1)) =

-(dt/Revec((j-1)*nx+i)).*c2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+2)) =

-(dt/Revec((j-1)*nx+i)).*d2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*b2yf(j-2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j+1)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*c2yf(j-2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j+2)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*d2yf(j-2);

% Periodic overlap required for first /second derivative

elseif (((j-1)*nx+i)+3)-(j*nx)==3

% Residual 1

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(a2xf(1)+a2yf(j -2));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+1)-1) =

b2xf (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+2)-1) =

c2xf (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1) *nx+3)-1) =

d2xf(1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j)*nx+i)-1) =

b2yf(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j +1)*nx+i)-1) =

c2yf(j -2);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j2)*nx+i)-1) =

d2yf(j -2);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(a2xf(l)+a2yf(j-2));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+1)) =

-(dt/Revec((j-1)*nx+i)).*b2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+2)) =

-(dt/Revec((j-1)*nx+i)).*c2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+3)) =

-(dt/Revec((j-1)*nx+i)).*d2xf(l);

L(nskt+2*((j-)*nx+i),nskt+2*((j)*nx+i)) =

-(dt/Revec((j -1)*nxi)) .*b2yf(j -2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j+1)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*c2yf(j -2);

L(nskt+2*((j -1)*nx+i),nskt+2*((j+2)*nx+i)) =

-(dt/Revec((j-1)*nx+i)). d2yf(j-2);

end

% Residual

else
% No periodic overlap required for second derivative

if (((j -1)*nx+i)+3)-(j*nx)<=O

146

% Residual 1
L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(a2xf(1)+b2y(j -1));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i+1)-1) =
b2xf (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i+2)-1) =
c2xf(1);

L(nskt+2*((j-1)*nx+i)-,nskt+2*((j-1)*nx+i+3)-1) =
d2xf(1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j)*nx+i)-) =

c2y(j -1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-2)*nx+i)-1) =

a2y (j - 1);
L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Re-vec((j-1)*nx+i)).*(a2xf(1)+b2y(j-1));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nxi+1)) =
-(dt/Re vec((j-1)*nx+i)).*b2xf(1);

L(nskt+2*((j -1)*nx+i),nskt+2*((j-1)*nx+i+2)) =
-(dt/Re vec((j-1)*nx+i)).*c2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i+3)) =
-(dt/Re-vec((j-1)*nx+i)).*d2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j)*nx+i)) =

-(dt/Re-vec((j-1)*nx+i)).*c2y(j-1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-2)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*a2y(j-1);

% Periodic overlap required for second derivative

elscif (((j -1)*nx+i)+3)-(j*nx)==1

% Residual 1

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j-1)*nx+i)-1) =

(a2xf(1)+b2y(j -1));

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j-1)*nx+i+1)-1) =
b2xf(1);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j -1)*nx+i+2)-1) =
c2xf(1);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j-1)*nx+1)-1) =

d2xf(1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j)*nx+i)-1) =..

c2y(j -1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-2)*nx+i)-1) =

a2y (j -1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j -1)*nx+i) ,nskt+2*((j -1)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(a2xf(1)+b2y(j-1));

L(nskt+2*((j -1)*nx+i),nskt+2*((j -1)*nx+i+1)) =

-(dt/Re-vec((j-1)*nx+i)).*b2xf(1);

L(nskt+2*((j -1)*nx+i), nskt+2*((j -1)*nx+i+2)) =

-(dt/Revec((j-1)*nx+i)).*c2xf(1);

L(nskt+2*((j -1)*nx+i), nskt+2*((j -1)*nx+)) =

-(dt /Revec((j -1)*nx+i)) .*d2xf (1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j)*nx+i)) =

-(dt/Re vec((j-1)*nx+i)) .*c2y(j -1);

L(nskt +2*((j -1)* nx+i) , nskt +2*((j -2)*nx+i)) =

-(dt /Revec ((j -1)*nx+i)) . *a2y (j -1);

% Periodic overlap required for first /second derivative

147

elseif (((j -1)*nx+i)+3)-(j*nx)==2

% Residual 1
L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(a2xf(1)+b2y(j -1));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i+1)-1) =

b2xf (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j -1)*nx+1)-1) =

c2xf (1);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j -1)*nx+2)-1) =

d2xf (1);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j)*nx+i)-1) =

c2y (j -1);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j-2)*nx+i)-1) =

a2y(j-1);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(a2xf(1)+b2y(j-1));

L(nskt+2*((j -1)*nx+i),nskt+2*((j-1)*nx+i+1)) =

-(dt/Revec((j-1)*nx+i)).*b2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+1)) =

-(dt/Revec((j-1)*nx+i)).*c2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+2)) =

-(dt/Revec((j-1)*nx+i)).*d2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*c2y(j-1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-2)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*a2y(j-1);

% Periodic overlap required for first /second derivative

elseif (((j-1)*nx+i)+3)-(j*nx)==3

% Residual 1
L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(a2xf(1)+b2y(j-1));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+1)-1) =

b2xf (1);
L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j -1)*nx+2)-1) =

c2xf (1);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j -1)*nx+3)-1) =

d2xf (1);

L(nskt +2*((j -1)* nx+i) -1 ,nskt +2*((j)*nx+i)-1) =

c2y(j -1);

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j-2)*nx+i)-1) =

a2y (j -1);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Revec((j-1)*nx+i)).*(a2xf(1)+b2y(j-1));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+1)) =

-(dt/Revec((j-1)*nx+i)).*b2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+2)) =

-(dt/Revec((j-1)*nx+i)).*c2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+3)) =

-(dt/Revec((j-1)*nx+i)).*d2xf(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*c2y(j-1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-2)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*a2y(j-1);

148

end

end

% Point lies below cell edge

else if (inrbc((j-1)*nx+i)-=inrbc((j)*nx+i))

% Point lies above cell edge

if (inrbc((j-1)*nx+i)-=inrbc((j-2)*nx+i))

break ;

% Residual

else

% Residual 1

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)-1) =

(b2x(1)+d2yb(j -2));

L(nskt+2*((j -1)*nx+i)-1,nskt+2*((j-1)*nx+i+1)-1) =

c2x (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i -1)-i) =

a2x (1);
L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -2)*nx+i)-1) =

c2yb(j -2);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -3)*nx+i)-1) =

b2yb(j -2);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -4)*nx+i)-1) =

a2yb (j - 2);

L(nskt+2*((j -1) *nx+i)-1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Re vec((j-1)*nx+i)).*(b2x(1)+d2yb(j-2));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i+1)) =
-(dt/Re vec((j-1)*nx+i)).*c2x(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i-1)) =
-(dt/Re vec((j-1)*nx+i)) .*a2x(1);

L(nskt+2*((j-1)*nx+i),nskt+2*((j-2)*nx+i)) =

-(dt/Re-vec((j-1)*nx+i)).*c2yb(j-2);

L(nskt 2*((j-1)*nx+i),nskt+2*((j-3)*nx+i)) =

-(dt/Revec((j -1)*nx+i)) .*b2yb(j -2);

L(nskt +2* ((j -1)*nx+i) , nskt +2*((j -4)*nx+i)) =

-(dt/Re-vec((j-1)*nx+i)).*a2yb(j-2);

end

% Point lies above cell edge

% Residual

elscif (inrbc((j-1)*nx+i)-=inrbc((j-2)*nx+i))

% Residual 1

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i)-1) =

(b2x(1)+a2yf(j -2));

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j-1)*nx+i+1)-1) =

c2x (1);

L(nskt+2*((j-1)*nx+i)-1 ,nskt+2*((j-1)*nx+i-1)-1) =

a2x (1);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j)*nx+i)-1) =

b2yf(j -2);

L(nskt +2*((j -1)* nx+i) -1 ,nskt +2*((j+1)*nx+i)-1) =

c2yf(j -2);

L(nskt+2*((j-1)*nx+i)-1,nskt+2*((j+2)*nx+i)-1) =

d2yf(j -2);

L(nskt+2*((j -1)*nx+i)-1 ,nskt+2*((j -1)*nx+i)) = 1;

% Residual 2

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i)) =

1-(dt/Re vec((j-1)*nx+i)).*(b2x(1)+a2yf(j-2));

L(nskt+2*((j-1)*nx+i),nskt+2*((j-1)*nx+i+1)) = ..

149

-(dt/Revec((j-1)*nx+i)).*c2x(1);

L(nskt+2*((j -1)*nx+i),nskt+2*((j-1)*nx+i--1)) =

-(dt/Revec((j-1)*nx+i)) .*a2x(1);

L(nskt+2*((j -1)*nx+i) ,nskt+2*((j)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*b2yf(j-2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j+1)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*c2yf(j-2);

L(nskt+2*((j-1)*nx+i),nskt+2*((j+2)*nx+i)) =

-(dt/Revec((j-1)*nx+i)).*d2yf(j-2);

end

end

end

end

150

MatrixCapillaryEdge.m

function [L] = Matrix CapillaryEdge(L,nodes, side ,dt ,hx,hycap)

cUNTITLED2 Summary of this function goes here

% Detailed explanation goes here

% Total Grid Points

nx = length(hx)+1;

lbc = length(nodes);

if side = 2

% Lexicographical Ordering: x followed by y, reduce bandwidth

for i = 1:1:lbc

% Psi

L(nodes(i).*2-1,nodes(i).*2-1) = 1;

% Omega

L(nodes(i).*2,nodes(i).*2) = 1;

end

elseif side - 4

% Lexicographical Ordering: x followed by y, reduce bandwidth

for i = 1:1: lbc

% Psi

L(nodes(i).*2-1,nodes(i).*2-1) = 1;

% Omega

L(nodes(i).*2,nodes(i).*2) = 1;

L(nodes(i).*2,nodes(i).*2-1) = -2/hy cap(end) -2;

L(nodes(i).*2,(nodes(i)-nx).*2-1) = 2/hy cap(end)^2;
end

end

end

151

MatrixCapillaryInletOutlet.m

function [L = Matrix _CapillarylnletOutlet(L,skx ,sky,Rerbc,Re pl,dt ,hx,hy,Dx_til ,Dytil ,inrbc)

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

% Total Grid Points

nx = length(hx);

ny = length(hy);

% number of Lagrangian X points

nskx = length(skx);

% number of Lagrangian Y points

nsky = length(sky);

% total number of Lagrangian (XY) points * 2

nskt = nskx+nsky;

% nDxr = Dx rows , corresponds to Lagrangian points

% nDxc = Dx columns, corresponds to Eulerian points

[nDxr,nDxc] = size(Dxtil);

% Non- dimensional Vectors

Revec = zeros(nx*ny,1);

% Second Derivative Weights (centered)

a2x = 2. /(hx(l:end-1) . *(hx(2:end)+hx(1:end-1)));
b2x = -2. /(hx(l:end-1). *hx(2:end));

c2x = 2. /(hx(2:end). *(hx(2:end)+hx(l:end-1)));

a2y = 2. /(hy(1:end-1). *(hy(2:end)+hy(1:end-)));
b2y = -2. /(hy(l:end-1).*hy(2:end));

c2y = 2./(hy(2:end).*(hy(2:end)+hy(1:end-1)));

% Second Derivative Weights (forwards)

a2xf = (6. *hx(l:end-2)+4 . *hx(2:end-1)+2. *hx(3:end)) ./.

(hx(1:end-2). .(hx(1:end-2)+hx(2:end-1)) . *(hx(1:end-2)+hx(2:end-1)+hx(3:end)));
b2xf = -(4. *(hx(l:end-2)+hx(2:end-1))+2 . *hx(3:end)) . /..

(hx (1 end- 2) . * hx (2:end-1) . *(hx (2:end-1)+hx(3:end)));

c2xf = (hx(l:end-2)+2. *(hx(2:end-1)+hx(3:end))) ./..

((hx(1:end-2)+hx(2:end-1)).*hx(2:end-1).*hx(3:end));
d2xf = -(4.*hx(l:end-2)+2.*hx(2:end-1))./ ...

((hx(l:end-2)+hx(2:end-1)+hx(3:end)). *(hx(2:end-1)+hx(3:end)).*hx(3:end));

a2yf = (6.*hy(1:end-2)+4.*hy(2:end-1)+2.*hy(3:end)) ./...
(hy(1:end-2). *(hy(1:end-2)+hy(2:end-1)). *(hy(1:end-2)+hy(2:end-1)+hy(3:end)));
b2yf = -(4 . *(hy(1:end-2)+hy (2:end-1))+2. *hy(3:end)) ./ ...
(hy (l:end- 2). hy (2: end- 1) . * (hy (2: end-l)+hy (3:end)));
c2yf = (hy(1:end-2)+2.*(hy(2:end-1)+hy(3:end)))./ ...
((hy(1:end-2)+hy(2:end-1)).*hy (2:end-1).*hy(3:end));
d2yf = -(4.*hy(1:end-2)+2.*hy(2:end-1))./ ...
((hy(1:end-2)+hy(2:end-1)+hy(3:end)).*(hy(2:end-1)+hy(3:end)).*hy(3:end));

% Second Derivative Weights (backwards)

a2xb = -(2.*hx(2:end-)+4.*hx(3:end))./...

(hx (1:end-2). *(hx (l:end-2)+hx(2:end-1)) .*(hx(1:end-2)+hx(2:end-1)+hx(3:end)));

b2xb = (2. *(hx(l:end-2)+hx(2:end-1))+4.*hx(3:end))./ ...
(hx(1:end-2). *hx(2:end-1). *(hx(2:end-1)+hx(3:end)));

c2xb = -(2.*hx(1:end-2)+4.*(hx(2:end-1)+hx(3:end)))./...

((hx(1:end-2)+hx(2:end-1)).*hx(2: end-1).*hx(3:fend));
d2xb = (2. *hx(1:end-2)+4. *hx(2:end-1)+6. *hx(3:end)) ./

((hx(1:end-2)+hx(2:end-1)+hx(3:fend)) . *(hx(2:end-1)+hx(3:end)) .*hx(3:end));
a2yb = -(2.*hy(2:end-1)+4.*hy(3:end)) ./.. ..
(hy(l:end-2). *(hy(1:end-2)+hy(2:end-1)). *(hy(1:end-2)+hy(2:end-1)+hy(3:end)));

152

b2yb = (2.*(hy(1:end-2)+hy(2:end-1))+4.*hy(3:end))./...
(hy(1:end-2). *hy(2:end-1). *(hy(2:end-l)+hy(3:end)));
c2yb = -(2. *hy(1:end-2)+4. *(hy(2:end-1)+hy(3:end))) ./...
((hy(1:end-2)+hy(2:end-1)) -*hy(2:end-1).*hy(3:end));
d2yb = (2.*hy(1:end-2)+4.*hy(2:end-1)+e.*hy(3:end))./ ...
((hy(1:end-2)+hy(2:end-1)+hy(3:end)) *(hy(2:end-1)+hy(3:end)) *hy(3:end));

% Assign domains ' Reynolds numbers into vector format

for i =1:1:nx

for j=1:1:ny

if in rbc(bnodes(i))==1

Revec(bcnodes(i)) = Re-rbc;

else

Revec(bcnodes(i)) = Repl;

end

end

end

% Lagrangian Mesh Implicit Feedback Derivatives

for I = 1:1:nDxr

L(2*1-1,2*1-1) = 1;

L(2 1 ,2*1) = 1;

for k = 1:1:nDxc

L(2*1-1,nskt+4*k-3) = -dt.*Dy_til(l,k);

L(2* ,nskt+4*k-3) = dt.*Dx_til(i,k);

end

end

% Lexicographical Ordering: x followed by y, reduce bandwidth

for i = 2:1:nx-1

for j = 2:1:nx-1

Wo Residual 1

% Check if points are inside or outside cell . determines if

% discretization scheme needs to be adjusted for second

% derivative approximations.

% Point lies completely inside/outside cell s.t. centered

% approximation for second derivative is physically valid

if (inrbc(bcnodes(i)+1)==1 && inrbc(bcnodes(i)+nx-1)==1 && .

inrbc (bcnodes (i) -nx)==1 && in _ rbc (benodes (i)+nx)==1) .

(in rbc(bcnodes(i)+1)==O &A inrbc(bcnodes(i)+nx-1)==O &&

inrbc(bcnodes(i)-nx)==O && in _ rbc(bcnodes(i)+nx)==O)

% Residual 1

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i))-1) = (b2x(1) + b2y(j-1));

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i)+1)-1) = c2x(1);

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i)+nx-1)-1) = a2x(1);

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i)+nx)-1) = a2y(j-1);

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i)-nx)-1) = c2y(j-1);

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i))) = 1;

% Residual 2

L(nskt+2*(bcnodes(i)),nskt+2*(bcnodes(i))) =

1-(dt/Re vec(bcnodes(i))).*(b2x(1)+b2y(j-1));

L(nskt+2*(bcnodes(i)),nskt+2*(bcnodes(i)+1)) =

-(dt/Re vec(bcnodes(i))).*c2x(1);

L(nskt+2*(bcnodes(i)),nskt+2*(bcnodes(i)+nx-1)) =

-(dt/Re vec(bcnodes(i))).*a2x(1);

L(nskt+2*(bcnodes(i)) nskt+2*(bcnodes(i)+nx)) =

-(dt/Revec(bcnodes(i))).*a2y(j-1);

L(nskt+2*(bcnodes(i)),nskt+2*(bcnodes(i)-nx)) =

153

-(dt/Revec(bcnodes(i))) .*c2y(j-1);

% Point lies to left of cell edge

elseif (inrbc(bcnodes(i))-=inrbc(bcnodes(i)+1))

% Point lies to right of cell edge

if (in _rbc(bcnodes(i))-=in_ rbc(bcnodes(i)+nx-1))

break;

% Point lies below cell edge

elseif (inrbc(bcnodes(i))-=inrbc(bcnodes(i)+nx))

% Point lies above cell edge

if (inrbc(bcnodes(i))-=inrbc(bcnodes(i)-nx))

break ;

% Residual

else

end

% Point lies above cell edge

elseif (in_ rbc(bcnodes(i))~=inrbc(bcnodes(i)-nx))

% Residual

else

end

% Point lies to right of cell edge

elseif (inrbc(bcnodes(i))=inrbc(bcnodes(i)-2*nx-1))

% Point lies below cell edge

if (inrbc(bcnodes(i))-=inrbc(bcnodes(i)+nx))

% Point lies above cell edge

if (inrbc(bcnodes(i))-=inrbc(bcnodes(i)-nx))

break ;

% Residual

else

end

% Point lies above cell edge

elseif (inrbc(bcnodes(i))-=inrbc(bcnodes(i)-nx))

% Residual

else

end

% Point lies below cell edge

elseif (inrbc(bcnodes(i))-=inrbc(bnodes(i)+nx))

% Point lies above cell edge

if (in_ rbc(bcnodes(i))-=in_ rbc(bcnodes(i)-nx))

break;

% Residual

else

% Residual 1

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i))-1) =

(b2x(1)+d2yb(j -2));

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i)+i)-i) =

c2x (1);

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i)+nx-1)-1) =

a2x (1);

154

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i)-nx)-1) =

c2yb(j -2);

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i)-2*nx)-1)

b2yb(j -2);

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i)-3*nx)-1)

a2yb(j -2);

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i))) = 1;

% Residual 2

L(nskt+2*(bcnodes(i)),nskt+2*(bcnodes(i))) =

1-(dt/Revec(bcnodes(i))).*(b2x(l)+d2yb(j -2));

L(nskt+2*(bcnodes(i)),nskt+2*(bcnodes(i)+1)) =

-(dt/Re vec(bcnodes(i))) .*c2x(1);

L(nskt+2*(bcnodes(i)),nskt+2*(bcnodes(i)+nx-1)) =

-(dt/Revec(bcnodes(i))).*a2x(1);

L(nskt+2*(bcnodes(i)),nskt+2*(bcnodes(i)-nx)) =

-(dt/Revec(bcnodes(i))).*c2yb(j-2);

L(nskt+2*(bcnodes(i)),nskt+2*(bcnodes(i)-2*nx))

-(dt/Re vec(bcnodes(i))).*b2yb(j-2);

L(nskt+2*(bcnodes(i)),nskt+2*(bcnodes(i)-3*nx)) =

-(dt/Revec(bcnodes(i))).*a2yb(j-2);

end

% Point lies above cell edge

% Residual

elseif (inrbc(bcnodes(i))-=inrbc(bcnodes(i)-nx))

% Residual I

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i))-1) =

(b2x(l)+a2yf(j -2));

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i)+1)-1)

c2x (1);

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i)+nx-1)-1)

a2x (1);

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i)+nx)-1) =

b2yf(j -2);

L(nskt+2*(bcnodes(i))-1,nskt+2*(bcnodes(i)+2*nx)-1)

c2yf(j -2);

L (nskt +2*(bcnodes i))-1 ,nskt +2*(bcnodes(i)+3*nx)-1)
d2yf(j -2);

L(nskt+2*(bcnodes(i))-1 ,nskt+2*(bcnodes~i))) = 1;

% Residual 2

L(nskt+2*(bcnodes(i)) ,nskt+2*(bcnodes(i)))

1-(dt/Revec(bcnodes(i))).*(b2x(1)+a2yf(j-2));

L(nskt+2*(bcnodes(i)) ,nskt+2*(bcnodes(i)+1))

-(dt/Revec(benodes(i))).*c2x(1);

L(nskt+2*(bcnodes(i)) ,nskt+2*(bcnodes(i)+nx-1)) =

-(dt/Revec(bcnodes(i))).*a2x(1);

L(nskt+2*(bcnodes(i)),nskt+2*(bcnodes(i)+nx)) =

-(dt/Revec(bcnodes(i))).*b2yf(j-2);

L(nskt+2*(bcnodes(i)),nskt2*(bcnodes(i)+2*nx)) =

-(dt/Revec(bcnodes(i))).*c2yf(j-2);

L(nskt+2*(bcnodes(i)),nskt+2*(bcnodes(i)+3*nx)) =

-(dt/Revec(benodes(i))).*d2yf(j-2);

end

end

end

end

155

Residual Capillary_SFV.m

function [Res] = Residual_ Capillary_ SFV(Res,Psi ,w,wold, curlf us ,vs,
skx ,sky ,Re-rbc,Re-pl,dt ,hx,hy,Dx_til ,Dytilinrbc)

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

% Total Grid Points

% Eulerian

nx = length(hx)+1;

ny = length(hy)+1;

% Lagrangian

nskx = length(skx);

nsky = length(sky);

nskt = nskx+nsky;

% Non-dimensional Vectors

Revec = zeros(nx*ny,1);

% First Derivative Weights (forwards)

alxf = -(hx(2:end)+2.*hx(1:end-1))./(hx(1:end-1).*(hx(2:end)+hx(1:end-1)));

blxf = (hx(2:end)+hx(1:end-1)) . /(hx(1:end-1). *hx(2:end));

c1xf = -hx(1:end-1)./(hx(2:end).*(hx(1:end-1)+hx(2:end)));
alyf = -(hy(2:end)+2.*hy(1:end-1)). /(hy(1:end-1). *(hy(2:end)+hy(1:end-1)));
blyf = (hy(2:end)+hy(1:end-1)) . /(hy(1:end-1). *hy(2:end));

clyf = -hy(1:end-1)./(hy(2:end).*(hy(1:end-1)+hy(2:end)));

% First Derivative Weights (backwards)
alxb = hx (2:end) . /(hx (1:end-1) . *(hx (1:end-1)+hx(2:end)));

blxb = -(hx(2:end)+hx(1:end-1)). /(hx(1:end-1).*hx(2:end));

clxb = (2.*hx(2:end)+hx(1:end-1)). /(hx(2:end).*(hx(2:end)+hx(1:end-1)));

alyb = hy (2:end) . /(hy (1:end-1) . *(hy (1:end-1)+hy (2:end)));

blyb = -(hy(2:end)+hy(1:end-1)) . /(hy(1:end-1) . *hy(2:end));

clyb = (2. *hy(2:end)+hy(1:end-1)) . /(hy(2:end). *(hy(2:end)+hy(1:end-1)));

% Second Derivative Weights (centered)

a2x = 2. /(hx(1:end-1). * (hx(2:end)+hx(1:end-1)));

b2x = -2. /(hx(1:end-1) .*hx(2:end));

c2x = 2. /(hx(2:end). *(hx(2:end)+hx(1:end-1)));

a2y = 2. /(hy(1:end-1). *(hy(2:end)+hy(1:end-1)));

b2y = -2. /(hy(1:end-1).*hy(2:end));

c2y = 2. /(hy(2:end) . *(hy(2:end)+hy(1:end-1)));

% Second Derivative Weights (forwards)

a2xf = (6.*hx(.:end-2)+4.*hx(2:end-l)+2.*hx(3:end))./...

(hx(1:end-2).*(hx(1:end-2)+hx(2:end-1)).*(hx(1:end-2)+hx(2:end-1)+hx(3:end)));

b2xf = -(4. *(hx(:end-2)+hx(2:end-1))+2.*hx(3:end)) ./.

(hx(1:end-2) .*hx(2:end-1) . *(hx(2:end-1)+hx(3:end)));

c2xf = (hx(1:end-2)+2.*(hx(2:end-1)+hx(3:end)))./ ...

((hx(1:end-2)+hx(2:end-1)).*hx(2:end-1).*hx(3:end));

d2xf = -(4.*hx(l:end-2)+2.*hx(2:end-1))./...

((hx(6:end-2)+hx(2:end-)+hx(3:end)). *(hx(2:end-)+hx(3:end)).*hx(3:end));
a2yf = (6.*hy(i:end-2)+4.*hy(2:end-i)+2.*hy(3:end))./ ...

(hy(1:end-2) .*(hy(l:end-2)+hy(2:end-1)) .*(hy(1:end-2)+hy(2:end-1)+hy(3:end)));

b2yf = -(4.*(hy(1:end-2)+hy(2:end-1))+2.*hy(3:end))./...

(hy(l:end-2) .*hy(2:end-1). *(hy(2:end-1)+hy(3:end)));

c2yf = (hy(1:end-2)+2. *(hy(2:end-1)+hy(3:end)))./ ...
((hy(1:end-2)+hy(2:end-1)).*hy(2:end-1).*hy(3:end));

d2yf = -(4.*hy(1:end-2)+2.*hy(2:end-1))./...

156

((hy(1:end-2)+hy(2:end-1)+hy(3:end)) . *(hy(2:end-1)+hy(3:end)) . *hy(3:end));

% Second Derivative Weights (backwards)

a2xb = -(2.*hx(2:end-1)+4.*hx(3:end))./ ...
(hx(1:end-2) . *(hx(1:end-2)+hx(2:end-1)) . *(hx(1:end-2)+hx(2:end-1)+hx(3:end)));

b2xb = (2.*(hx(1:end-2)+hx(2:end-1))+4.*hx(3:end))./...

(hx(1:end-2).*hx(2:end-1).*(hx(2:end-l)+hx(3:end)));

c2xb = -(2.*hx(1:end-2)+4.*(hx(2:end-1)+hx(3:end)))./...

((hx(1:end-2)+hx(2:end-1)).*hx(2:end-1).*hx(3:end));

d2xb = (2.*hx(1:end-2)+4.*hx(2:end-1)+6.*hx(3:end))./...

((hx(1:end-2)+hx(2:end-1)+hx(3:end)) . *(hx(2:end-1)+hx(3:end)) . *hx(3:end));
a2yb = -(2.*hy(2:end-1)+4.*hy(3:end))./ ...
(hy (1:end- 2) . *(hy (1:end-2)+hy (2:end-1)) . *(hy (1:end-2)+hy (2:end-1)+hy (3:end)));
b2yb = (2. *(hy(1:end-2)+hy(2:end-1))+4.*hy(3:end)) ...
(hy (1:end-2) . *hy (2:end-1) . *(hy (2:end-1)+hy (3:end)));

c2yb = -(2. *hy(1:end-2)+4. *(hy(2:end-)+hy(3:end)))./ ...
((hy(1:end-2)+hy(2:end-1)).*hy(2:end-1).*hy(3:end));

d2yb = (2.*hy(1:end-2)+4.*hy(2:end-1)+6.*hy(3:end))./ ...
((hy (1: end- 2) +hy (2: end- 1) +hy (3: end)) . *(hy (2: end- 1) +hy (3: end)) .*hy (3: end));

% u+, u- , v+, v-
up = max(us,O);

vp = max(vs,O);

un = min(us 0);

vm = min(vs ,0);

% Reynolds number vector

for i=1:1:nx

for j =1:1:ny

if inrbc((j-1)*nx+i)==1

Revec((j-1)*nx+i) = Re rbc;

else

Revec((j-1) nx+i) = Re pl;

end

end

end

% Lagrnagian (finish comment)

for 1 = 1:1:nskx

Res(2*1 -1,1) = skx(1)-dt.*Dytil(,:)*Psi;

Res(2*l ,1) = sky(1)+dt.*Dx _til(1 ,:) Psi;

end

% Lexicographical Ordering: y followed by x, reduce bandwidth

for i = 2:1:nx-1

for j = 2:1:ny-1

Wo Residual 1

% Check if points are inside or outside cell determines if

% discretization scheme needs to be adjusted for second

% derivative approximations.

% Point lies completely inside/outside cell s.t. centered

% approximation for second derivative is physically valid

if (in _rbc((j-1)*nx+i+)==1 && in rbc((j-1)*nx+i-1)==1&&

inrbc ((j -2)*nx+i)==1 && in rbc ((j)*nx+i)==1) 11 ...

(in_ rbc ((j -1)*nx+i+1)==o && in rbc ((j -1)*nx+i -1)==0 && ...

inrbc((j-2)*nx+i)==0 && inrbc((j)*nx+i)==0)

% Residual 1

Res(nskt+2*((j-1)*nx+i)-1,1) = (b2x(1) + b2y(j-1)).*Psi((j-1)*nx+i) +

c2y(j-1).*Psi((j)*nx+i) + a2y(j-1).*Psi((j-2)*nx+i) + ...

157

.Vo

c2x(1) .*Psi ((j -1)*nx+i+1) + a2x(1) . Psi ((j -1)*nx+i -1) +

w((j-1)*nx+i);

% Residuji 2
Res(nskt+2*((j-1)*nx+i),1) = w((j-1)*nx+i) + dt.*(up((j-l)*nx+i).*

(alxb(i-1).*wold((j-1)*nx+i-2)+blxb(i-1).*w_old((j-1)*nx+i-1)+clxb(i -1).*wold((j-1)*nx+i))

um((j-1)*nx+i).*(alxf(i).*wold((j-1)*nx+i)+blxf(i).*w_old((j-1)*nx+i+1)+clxf(i).*w_old((j -1)*nx+i+2))) +
dt.*(vp((j-1)*nx+i).*(alyb(j-1) .*w_old((j-3)*nx+i)+blyb(j-1) .*w_ old((j-2)*nx+i)+clyb(j-1) .*w_old((j -1)*nx+i))
vrn((j-1)*nx+i).*(alyf(j).*w_old((j-1)*nx+i)+blyf(j).*wold((j)*nx+i)+c1yf(j).*wold((j+1)*nx+i))) -
(dt/Revec((j-1)*nx+i)). ((b2x(1) + b2y(j-1)).*w((j-1)nx+i) +

c2y(j-1).*w((j)*nx+i) + a2y(j-1).*w((j-2)*nx+i) +

c2x(1).*w((j -1)*nx+i+1) + a2x(1).*w((j-1)*nx+i -1)) -

wold((j-1)*nx+i) - dt. curlf((j-1)*nx+i);

% Point lies to left of cell edge

elseif (inrbc((j-1)*nx+i)-=inrbc((j-1l)*nx+i+i))

% Point lies to right of cell edge

if (inrbc((j-1)*nx+i)-=in rbc ((j -1)*nx+i -1))

break;

% Point lies below cell odge

elseif (in_ rbc((j-1)*nx+i)-=inrbc((j)*nx+i))

% Point lies above cell edge

if (inrbc((j-1)*nx+i)-=inrbc((j-2)*nx+i))

break;

% Residual

else

% No periodic overlap required for second derivative

if (((j-1)*nx+i)-3)-((j-1)*nx+1)>=O

% Residual 1

Res(nskt+((j -1)*nx+i)*2-1) = (d2xb(1)+d2yb(j-2)) .*Psi((j-1)*nx+i) +

c2yb(j-2).*Psi((j-2)*nx+i) + b2yb(j-2).*Psi((j-3)*nx+i) +

a2yb(j-2).*Psi((j-4)*nx+i) + c2xb(1).*Psi((j-1)*nx+i-1) +

b2xb(1).*Psi((j-1)*nx+i-2) + a2xb(1).*Psi((j-1)*nx+i-3) +

w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*us((j-1)*nx+i).*...

(alxb(i -1) . *wold ((j -1)*nx+i -2)+blxb(i -1) . *wold ((j -1)*nx+i -1)+clxb(i -1) .*w old ((j -1)*nx+i)) +

dt. *vs ((j -1)*nx+i) . *(alyb(j -1) . *w_old ((j -3)* nx+i)+blyb (j -1) . *w_old ((j -2) nx+i)+clyb (j -1) .*wold ((j -1) nx+i)) -
(dt /Revec ((j -1)* nx+i)) . *((d2xb(1)+d2yb(j -2)) .*w((j -)nx+i) +

c2yb(j-2).*w((j-2)*nx+i) + b2yb(j-2).*w((j-3)*nx+i) +

a2yb(j-2).*w((j-4)*nx+i) + c2xb(1).*w((j-1)*nx+i-1) +

b2xb(1).*w((j-1)*nx+i -2) + a2xb(1).*w((j-1)*nx+i -3)) -

w old((j - 1)*nx+i) - dt. * curlf ((j-1) *nx+i);

% Periodic overlap required for second derivative

elseif (((j-1)*nx+i)-3)-((j-1)*nx+1)==-1

% Residual 1
Res(nskt+((j -1)*nx+i)*2-1) = (d2xb()+d2yb(j-2)) .*Psi((j-1)*nx+i) +

c2yb(j-2).*Psi((j-2)*nx+i) + b2yb(j-2).*Psi((j-3)*nx+i) +

a2yb(j-2).*Psi((j-4)*nx+i) + c2xb(1).*Psi((j-1)*nx+i-1) +

b2xb(1).*Psi((j-1)*nx+i-2) + a2xb(1).*Psi(j*nx) +

w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*us((j-1)*nx+i).*...

(alxb(i -1).*w_old((j-1)*nx+i-2)+blxb(i -1).*wold((j-1)*nx+i-1)+clxb(i -1).*w_old((j-1)*nx+i)) +

dt.*vs((j-1)*nx+i).*(alyb(j-1).*w_old((j-3)*nx+i)+blyb(j-1).*w_old((j-2)*nx+i)+clyb(j-1) .*w_old((j-1)*nx+i))

(dt/Revec((j-1)*nx+i)).*((d2xb(1)+d2yb(j-2)) .*w((j-1)*nx+i) + .

c2yb(j-2).*w((j-2)*nx+i) + b2yb(j-2).*w((j-3)*nx+i) +

a2yb(j-2).*w((j-4)*nx+i) + c2xb(1).*w((j-1)*nx+i-1) +

158

b2xb(1).*w((j-1)*nx+i -2) + a2xb(1).*w(j*nx)) -
wold((j-1)*nx+i) - dt.*curlf((j-1)*nx+i);

% Periodic overlap required for first/second derivative

elseif (((j-1)*nx+i)-3)-((j-1)*nx+1)==-2

% Residual 1

Res(nskt+((j -1)*nx+i)*2-1) = (d2xb(1)+d2yb(j -2)) .*Psi ((j -1)*nx+i) +
c2yb(j-2) .*Psi((j-2)*nx+i) + b2yb(j-2) .*Psi ((j-3)*nx+i) +
a2yb(j-2).*Psi((j-4)*nx+i) + c2xb(1).*Psi((j-1)*nx+i-1) +
b2xb(1).*Psi(j*nx) + a2xb(1).*Psi(j*nx-1) +
w((j -1) * nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*us((j-1)*nx+i).*...

(alxb(i -1).*w_old(j*nx)+blxb(i -1).*w_old((j-1)*nx+i-1)+clxb(i -1).*w_old((j-1)*nx+i)) +
dt.*vs((j-1)*nx+i).*(alyb(j-1).*w_old((j-3)*nx+i)+blyb(j-1).*w_old((j-2)*nx+i)+clyb(j-1).*w_old((j-1)*nx+i)) -
(dt/Revec((j-1)*nx+i)).*((d2xb(1)+d2yb(j-2)).*w((j-1)*nx+i) +
c2yb(j-2).*w((j-2)*nx+i) + b2yb(j-2).*w((j-3)*nx+i) +
a2yb(j-2).*w((j-4)*nx+i) + c2xb(1).*w((j-1)*nx+i-1) +
b2xb(1).*w(j*nx) + a2xb(1).*w(j*nx-1)) -

w_old((j -1)*nx+i) - dt.*curlf((j -1)*nx+i);

% Periodic overlap required for first/second derivative

elscif (((j-1)*nx+i)-3)-((j-1)*nx+1)==-3

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (d2xb()+d2yb(j-2)) .*Psi((j-1)*nx+i) +
c2yb(j-2).*Psi((j-2)*nx+i) + b2yb(j-2)..*Psi((j-3)*nx+i) +
a2yb(j-2).*Psi((j-4)*nx+i) + c2xb(1).*Psi(j*nx) +
b2xb(1).*Psi(j*nx-1) + a2xb(1).*Psi(j*nx-2) +
w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*us((j-1)*nx+i).* ...
(alxb(i -1) .*w old(j*nx-1)+blxb(i-1).*w_old(j*nx)+clxb(i -1).*w_old((j-1)*nx+i)) +
dt.*vs((j-1)*nx+i).*(alyb(j-1).*w_old((j-3)*nx+i)+blyb(j-1).*w_old((j-2)*nx+i)+clyb(j-1).*w_old((j-1)*nx+i)) -
(dt/Revec((j-1)*nx+i)).*((d2xb(1)+d2yb(j-2)).*w((j-1)*nx+i) +
c2yb(j-2).*w((j-2)*nx+i) + b2yb(j-2).*w((j-3)*nx+i) +

a2yb(j-2).*w((j-4)*nx+i) + c2xb(1).*w(j*nx) +
b2xb(1).*w(j*nx-1) + a2xb(1).*w(j*nx-2)) -

wold((j-1)*nx+i) - dt.*curlf((j-1)*nx+i);

end

end

% Point lies above cell edge

elseif (in _rbc((j-1)*nx+i)~=in rbc((j-2)*nx+i))

% No periodic overlap required for second derivative

if (((j-1)*nx+i)-3)-((j-1)*nx+1)>=O

% Residual 1

Res(nskt+((j -1)*nx+i)*2-1) = (d2xb(1)+a2yf(j -2)) .*Psi ((j -1)*nx+i) +
b2yf(j-2) .*Psi((j)*nx+i) + c2yf(j-2) .*Psi ((j+1)*nx+i) + ...

d2yf(j-2).*Psi((j+2)*nx+i) + c2xb(1).*Psi((j-1)*nx+i-1) +

b2xb(1).*Psi((j-1)*nx+i-2) + a2xb(1).*Psi((j-1)*nx+i-3) +

w((j -1)*nx+i);

% Residual 2

Res(nskt+2*((j-1)*nx+i),1) = w((j-1)*nx+i) + dt.*us((j-1)*nx+i).*...

(alxb(i-1) .*w_old((j-1)*nx+i-2)+blxb(i -1) .*w_old((j-1)*nx+i-1)+clxb(i -1).*w_old((j-1)*nx+i)) +
dt.*(vs((j-1)*nx+i).*(alyf(j).*w_old((j-1)*nx+i)+blyf(j).*w_old((j)*nx+i)+clyf(j).*w_old((j+1)*nx+i))) -
(dt/Re vec((j-1)*nx+i)).*((d2xb(1)+a2yf(j-2)).*w((j-1)*nx+i) +

b2yf(j-2)..*w((j)*nx+i) + c2yf(j-2).*w((j+1)*nx+i) + ...

159

d2yf(j-2). w((j+2)*nx+i) + c2xb(1).*w((j-1)*nx+i -1) +

b2xb(1).*w((j-1)*nx+i -2) + a2xb(1).+w((j-1)*nx+i -3)) -

w_old((j -1)*nx+i) - dt. *curlf ((j-1)*nx+i);

% Periodic overlap required for second derivative

elseif (((j-1)*nx+i)-3)-((j-1)*nx+1)==-1

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (d2xb(1)+a2yf(j-2)).*Psi ((j-1)*nx+i) +

b2yf(j-2).*Psi((j)*nx+i) + c2yf(j-2).*Psi((j+1)*nx+i) + ...

d2yf(j-2).*Psi((j+2)*nx+i) + c2xb(1).*Psi ((j-1)*nx+i -1) +

b2xb(1).*Psi((j-1)*nx+i-2) + a2xb(1).*Psi(j*nx) +

w((j-1)*nx+i);

% Residual 2

Res(nskt+2*((j-1)*nx+i),1) = w((j-1)*nx+i) + dt.*us((j-1)*nx+i).*...

(alxb(i-1) .*w old((j-1)*nx+i-2)+blxb(i-1) .*wold((j-1)*nx+i-1)+clxb(i-1) .*wold((j-1)*nx+i)) +

dt.*(vs((j-1)*nx+i).*(alyf(j).*w_old((j-1)*nx+i)+blyf(j).*w_old((j)*nx+i)+clyf(j).*w_old((j+1)*nx+i))

(dt/Revec((j-1)*nx+i)) .*((d2xb(1)+a2yf(j-2)).*w((j-1)*nx+i) +

b2yf(j-2).*w((j)*nx+i) + c2yf(j-2).*w((j+1)*nx+i) + ...

d2yf(j-2).*w((j+2)*nx+i) + c2xb(1).*w((j-1)*nx+i-1) +

b2xb(1).*w((j-1)*nx+i-2) + a2xb(1).*w(j*nx)) -

w_old((j-1)*nx+i) - dt.*curlf ((j-1)*nx+i);

% Periodic overlap required for first /second derivative

elseif (((j-1)*nx+i)-3)-((j-1)*nx+1)==-2

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (d2xb(1)+a2yf(j -2)) .*Psi ((j -1)*nx+i) +

b2yf(j-2).*Psi((j)*nx+i) + c2yf(j-2).*Psi((j+1)*nx+i) + .

d2yf(j-2) .*Psi((j+2)*nx+i) + c2xb(1) .*Psi ((j-1)*nx+i -1) +

b2xb(1).*Psi(j*nx) + a2xb(1).*Psi(j*nx-1) +

w((j-1)*nx+i);

% Residual 2

Res(nskt+2*((j-1)*nx+i),1) = w((j-1)*nx+i) + dt.*us((j-1)*nx+i).*...

(alxb(i-1).*w_old(j*nx)+blxb(i-1).*wold((j-1)*nx+i-1)+clxb(i-1).*w__old((j-1)*nx+i)) +
dt.*(vs((j-1)*nx+i).*(alyf(j).*wold((j-1)*nx+i)+blyf(j).*wold((j)*nx+i)+clyf(j).*w_old((j+l)*nx+i))) -
(dt/Revec((j-1)*nx+i)) .*((d2xb(1)+a2yf(j -2)).*w((j-1)*nx+i) + .

b2yf(j-2).*w((j)*nx+i) + c2yf(j-2).*w((j+1)*nx+i) + ...

d2yf(j-2).*w((j+2)*nx+i) + c2xb(1).*w((j-1)*nx+i-1) +

b2xb(1).*w(j*nx) + a2xb(1).*w(j*nx-1)) -

w_old((j-1)*nx+i) - dt.*curlf((j-1)*nx+i);

% Periodic overlap required for first /second derivative

elseif (((j-1)*nx+i)-3)-((j-1)*nx+1)==-3

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (d2xb(1)+a2yf(j-2)).*Psi((j-1)*nx+i) +

b2yf(j-2).*Psi((j)*nx+i) + c2yf(j-2).*Psi((j+1)*nx+i) +

d2yf(j-2).*Psi((j+2)*nx+i) + c2xb(1).*Psi(j*nx) +

b2xb(1).*Psi(j*nx-1) + a2xb(1).*Psi(j*nx-2) +

w((j -1)*nx+i);

% Residual 2

Res(nskt+2*((j-1)*nx+i),1) = w((j-1)*nx+i) + dt.*us((j-1)*nx+i).*...

(alxb(i-1).*w_ old(j*nx-1)+blxb(i-1).*w_old(j*nx)+clxb(i-1).*w_old((j-1)*nx+i)) +
dt.*(vs((j-1)*nx+i).*(alyf(j).*w_old((j-1)*nx+i)+b1yf(j).*w_old((j)*nx+i)+clyf(j).*w_old((j+1)*nx+i)))

(dt/Revec((j-1)*nx+i)).*((d2xb(1)+a2yf(j-2)).*w((j-1)*nx+i) +

b2yf(j-2).*w((j)*nx+i) + c2yf(j-2).*w((j+1)*nx+i) +

d2yf(j-2).*w((j+2)*nx+i) + c2xb(1).*w(jsnx) +

b2xb(1).*w(j*nx-1) + a2xb(1).*w(j*nx-2)) -

w_old((j-1)*nx+i) - dt.*curlf ((j-1)*nx+i);

160

end

% Residual

else

% Periodic accounting for left of cell edge -

% first -derivative must be upwinded/downwinded

% accordingly

% No periodic overlap required for second derivative

if (((j-1)*nx+i)-3)-((j-1)*nx+1)>=O
% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (d2xb(1) + b2y(j-1)).*Psi((j-1)*nx+i) +

c2y(j-1).*Psi((j)*nx+i) + a2y(j-1).*Psi((j-2)*nx+i) + ...
c2xb(1).*Psi((j-1)*nx+i-1) + b2xb(1).*Psi((j-1)*nx+i-2) +

a2xb(1).*Psi((j-1)*nx+i-3) + w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*us((j-1)*nx+i).*...

(alxb(i-1).*w_old((j-1)*nx+i-2)+bxb(i-1).*w_old((j-1)*nx+i-1)+clxb(i-1).*w_old((j-1)*nx+i)) +

dt.*(vp((j-1)*nx+i).*(alyb(j-1) .-*w_old((j-3)*nx+i)+blyb(j-1) .*wold((j-2)*nx+i)+clyb(j-1).*w_old((j-1)*nx+i)) +
vm((j-1)*nx+i).*(alyf(j).*w_old((j-1)*nx+i)+blyf(j).*w_old((j)*nx+i)+clyf(j).*wold((j+1)*nx+i))) -
(dt/Revec((j-1)*nx+i)).*((d2xb(1) + b2y(j-1)).+w((j-1)*nx+i) +

c2y(j-1).*w((j)*nx+i) + a2y(j-1).*w((j-2)*nx+i) + ...

c2xb(1).*w((j-1)*nx+i-1) + b2xb(1).*w((j-1)*nx+i-2) +

a2xb(1).*w((j-1)*nx+i-3)) - wold((j-1)*nx+i) - dt.*curlf((j-1)*nx+i);

% Periodic overlap required for second derivative

elscif (((j-1)*nx+i)-3)-((j-1)*nx+1)==-1

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (d2xb(1) + b2y(j-1)).*Psi((j-1)*nx+i) +

c2y(j-1).*Psi((j)*nx+i) + a2y(j-1).*Psi((j-2)*nx+i) + ...

c2xb(1) .*Psi((j-1)*nx+i-1) + b2xb(1).*Psi((j-1)*nx+i-2) +

a2xb(1).*Psi(j*nx) + w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*us((j-1)*nx+i).*...

(alxb(i-1).*w_old((j-1)*nx+i-2)+blxb(i-1).*wold((j-1)*nx+i-1)+clxb(i-1).*wold((j-1)*nx+i)) +
dt.*(vp((j-1)*nx+i).*(alyb(j-1).*w_old((j-3)*nx+i)+blyb(j-1).*w_old((j-2)*nx+i)+clyb(j-1).*w_old((j-1)*nx+i)) +
vr((j-1)*nx+i).*(alyf(j).*w_old((j-1)*nx+i)+blyf(j).*w_old((j)*nx+i)+clyf(j).*w_old((j+)*nx+i))) -

(dt/Re vec((j-1)*nx+i)).*((d2xb(1) + b2y(j-1)).*w((j-1)*nx+i) +

c2y(j-1).*w((j)*nx+i) + a2y(j-1).*w((j-2)*nx+i) + ...

c2xb(1).*w((j-1)*nx+i-1) + b2xb(1).*w((j-1)*nx+i-2) +

a2xb(1).*w(j*nx)) - wold((j-1)*nx+i) - dt.*curlf((j-1)*nx+i);

% Periodic overlap required for first/second derivative

elscif (((j-1)*nx+i)-3)-((j-1)*nx+1)==-2

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (d2xb(1) + b2y(j-1)).*Psi((j-1)*nx+i) +

c2y(j-1).*Psi((j)*nx+i) + a2y(j-1).*Psi((j-2)*nx+i) +

c2xb(1).*Psi((j-1)*nx+i-1) + b2xb(1).*Psi(j*nx) +

a2xb(1).*Psi(j*nx-1) + w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*us((j-1)*nx+i).*...

(alxb(i -1) .*w_old(j*nx)+blxb(i-1).*w_old((j-1)*nx+i-1)+clxb(i -1) .*wold((j-1)*nx+i)) +

dt.*(vp((j-1)*nx+i).*(alyb(j-1) .*wold((j-3)*nx+i)+blyb(j-1).*w old((j-2)*nx+i)+clyb(j-1).*w_old((j-1)*nx+i)) +

vm((j-1)*nx+i).*(alyf(j).*w _old((j-1)*nx+i)+blyf(j).*w_old((j)*nx+i)+clyf(j).*w_old((j+1)*nx+i))) -

(dt/Revec((j-1)*nx+i)).*((d2xb(1) + b2y(j-1)).*w((j-1)*nx+i) +

c2y(j-1).*w((j)*nx+i) + a2y(j-1).*w((j-2)*nx+i) +

c2xb(1).*w((j-1)*nx+i-1) + b2xb(1).*w(j*nx) + ...

a2xb(1).*w(j*nx-1)) - wold((j-1)*nx+i) - dt.*curlf((j-1)'*nx+i);

161

A

Periodic overlap required for first second dcriv at ic
else if (((j-1)* nx+i) -3) -((-1) *nx+1)==-3

% Residual 1

Res(nskt+((j -1)*nx+i)*2-1) = (d2xb(1) + b2y(j-1)) .*Psi ((j-1)*nx+i) +

c2y(j-1).*Psi((j)*nx+i) + a2y(j-1).*Psi((j-2)*nx+i) +

c2xb(1).*Psi(j*nx) + b2xb(1).*Psi(j*nx-1) +

a2xb(l).*Psi(j*nx-2) + w((j-1)*nx+i);

'K llciltiai 2

Res(nskt+((j-l)*nx+i)*2) = w((j-1)*nx+i) + dt.*us((j-l)*nx+i).*

(alxb(i-1).*w_old(j*nx-l)+b1xb(i-1).*w_old(j*nx)+cxb(i-).*wold((j-)*nx+i)) +

dt.*(vp((j-1)*nx+i).*(alyb(j-1).*w_old((j-3)*nx+i)+blyb(j-1).*w_old((j-2)*nx+i)+clyb(j-1).*w_old((j-1)*nx+i)) +

vm((j-1)*nx+i).*(alyf(j).*w_old((j-1)*nx+i)+blyf(j).*w_old((j)*nx+i)+clyf(j).*wold((j+1)*nx+i))) -

(dt/Revec((j-1)*nx+i)).*((d2xb(l) + b2y(j-1)).*w((j-1)*nx+i) +

c2y(j-1).*w((j)*nx+i) + a2y(j-1).*w((j-2)*nx+i) +

c2xb(1).*w(j*nx) + b2xb(1).*w(j*nx-1) + ...

a2xb(1).*w(j*nx-2)) - w-old((j-1)*nx+i) - dt.*curlf((j-)*nx+i);

end

Cnid

% Point lie to right of cell edg(
elseif (inrbc((j-1)*nx+i)-=inrbc((j-3)*nx+i -1))

% Point lies below cell edge

if (inrbc((j-1)*nx+i)-=inrbc((j)*nx+i))

% Point lies above cell edge

if (inrbc((j-1)*nx+i)-=inrbc((j-2)*nx+i))

break;

% Residual

else

% No periodic overlap required for second derivative

if (((j -1)*nx+i)+3)-(j*nx)<=O

% Residual 1
Res(nskt+((j-1)*nx+i)*2-1) = (a2xf(1) + d2yb(j-2)).*Psi((j-1)*nx+i) +

c2yb(j -2). *Psi ((j -2)*nx+i) + b2yb(j -2). *Psi ((j -3)*nx+i) + a2yb(j -2). *Psi ((j -4)*nx+i) +

b2xf(1).*Psi((j-1)*nx+i+1) + c2xf(1).*Psi ((j-1)*nx+i+2) +

d2xf(1) .*Psi((j-1)*nx+i+3) + w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*...

us((j -1)*nx+i) . *(alxf(i) .*w_old((j -1)*nx+i)+blxf(i) .*wold((j-1)*nx+i+1)+clxf(i).*w_old((j -1)*nx+i+2)) +

dt.*(vs((j-1)*nx+i).*(alyb(j-1).*w_old((j-3)*nx+i)+blyb(j-1).*w_old((j-2)*nx+i)+clyb(j-1).*w_old((j-1)*nx+i))) -

(dt/Revec((j-1)*nx+i)).*((a2xf(1) + d2yb(j-2)).*w((j-1)*nx+i) + ...

c2yb(j-2).*w((j-2)*nx+i) + b2yb(j-2).*w((j-3)*nx+i) + a2yb(j-2).*w((j-4)*nx+i) +

b2xf(1).*w((j-1)*nx+i+1) + c2xf(1).*w((j-1)*nx+i+2) + ...

d2xf(1).*w((j-1)*nx+i+3)) - wold((j-1)*nx+i) - dt.*curlf((j-1)*nx+i);

% Periodic overlap required for second derivative

elseif (((j -1)*nx+i)+3)-(j*nx)==1

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (a2xf(1) + d2yb(j-2)).*Psi((j-l)*nx+i) +

c2yb(j-2).*Psi((j-2)*nx+i) + b2yb(j-2).*Psi((j-3)*nx+i) + a2yb(j-2).*Psi((j-4)*nx+i) +

b2xf(l).*Psi((j-1)*nx+i+1) + c2xf(1).*Psi ((j-1)*nx+i+2) +

d2xf(1).*Psi ((j-1)*nx+1) + w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*...

us((j-1)*nx+i).*(alxf(i).*w_old((j-1)*nx+i)+blxf(i).*w_old((j-1)*nx+i+1)+clxf(i).*w_old((j-1)*nx+i+2)) +

dt.*(vs((j-1)*nx+i).*(alyb(j-1).*w_old((j-3)*nx+i)+blyb(j-1).*w_old((j-2)*nx+i)+clyb(j-1).*w_old((j-1)*nx+i))) -

(dt/Revec((j-1)*nx+i)).*((a2xf(1) + d2yb(j-2)).*w((j-1)*nx+i) + ...

c2yb(j-2).*w((j-2)*nx+i) + b2yb(j-2).*w((j-3)*nx+i) + a2yb(j-2).*w((j-4)*nx+i) +

162

b2xf (1) .*w((j -1)*nx+i+1) + c2xf (1) . *w((j -1)*nx+i+2) + . ..
d2xf(1).*w((j-1)*nx+1)) - wold((j-1)*nx+i) - dt.*curlf((j-1)*nx+i);

% Periodic overlap required for first/second derivative
elscif (((j-1)*nx+i)+3)-(j*nx)==2

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (a2xf(1) + d2yb(j-2)).*Psi((j-1)*nx+i) +
c2yb(j-2).*Psi((j-2)*nx+i) + b2yb(j-2).*Psi((j-3)*nx+i) + a2yb(j-2).*Psi((j-4)*nx+i) +
b2xf(1) .*Psi((j-1)*nx+i+1) + c2xf(1) .*Psi ((j-1)*nx+1) +
d2xf(1) .*Psi ((j -1)*nx+2) + w((j -1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*...
us((j-1)*nx+i) .*(alxf(i).*wold((j-1)*nx+i)+blxf(i) .*wold((j-1)*nx+i+1)+clxf(i).*wold((j-1)*nx+1)) +
dt.*(vs((j-1)*nx+i).*(alyb(j-1).*wold((j-3)*nx+i)+blyb(j-1).*wold((j-2)*nx+i)+clyb(j-1).*wold((j-1)*nx+i)))

-
(dt/Re vec((j-1)*nx+i)).*((a2xf(1) + d2yb(j-2)).*w((j-1)*nx+i) + ...
c2yb(j-2).*w((j-2)*nx+i) + b2yb(j-2).*w((j-3)*nx+i) + a2yb(j-2).*w((j-4)*nx+i) +
b2xf(1) .*w((j-1)*nx+i+1) + c2xf(1).*w((j-1)*nx+1) + ...
d2xf(1) .*w((j-1)*nx+2)) - wold((j-i)*nx+i) - dt.*curlf((j-1)*nx+i);

% Periodic overlap required for first /second derivative
elscif (((j-1)*nx+i)+3)-(j*nx)==3

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (a2xf(1) + d2yb(j-2)).*Psi((j-1)*nx+i) +
c2yb(j-2).*Psi((j-2)*nx+i) + b2yb(j-2).*Psi ((j -3)*nx+i) + a2yb(j-2).*Psi((j-4)*nx+i) +
b2xf(1).*Psi((j-1)*nx+1) + c2xf(1).*Psi((j-1)*nx+2) +
d2xf(1) .*Psi ((j -1)*nx+3) + w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*...
us((j-1)*nx+i).*(alxf(i).*w_old((j-1)*nx+i)+blxf(i).*w_ old((j-1)*nx+1)+clxf(i).*w_old((j -1)*nx+2)) +
dt.*(vs((j-1)*nx+i).*(alyb(j-1) .*w_old((j-3)*nx+i)+blyb(j-1) .*w_old((j-2)*nx+i)+clyb(j-1).*w_old((j-1)*nx+i))) -
(dt/Revec((j-1)*nx+i)).*((a2xf(1) + d2yb(j-2)).*w((j-1)*nx+i) + ...
c2yb(j-2).*w((j-2)*nx+i) + b2yb(j-2).*w((j-3)*nx+i) + a2yb(j-2).*w((j-4)*nx+i) +
b2xf(1).*w((j-1)*nx+1) + c2xf(1).*w((j-1)*nx+2) + ...
d2xf(1).*w((j-i)*nx+3)) - wold((j-1)*nx+i) - dt.*curlf((j-1)*nx+i);

end

end

% Point lies above cell edge

elseif (in rbc((j-1)*nx+i)-=inrbc((j-2)*nx+i))

% No periodic overlap required for second derivative

if (((j-1)*nx+i)+3)-(j*nx)<=O

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (a2xf(1) + a2yf(j-2)).*Psi((j-1)*nx+i) +
b2yf(j-2) .*Psi((j)*nx+i) + c2yf(j-2).*Psi((j+2)*nx+i) + d2yf(j-2).*Psi((j+2)*nx+i) +
b2xf(1).*Psi((j-1)*nx+i+1) + c2xf(1) .*Psi ((j -1)*nx+i+2) +
d2xf(1) .*Psi ((j -1)*nx+i+3) + w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*...

us((j-1)*nx+i).*(alxf(i).*w_old((j -1)*nx+i)+blxf(i).*w_old((j-1)*nx+i+1)+clxf(i).*w_old((j-1)*nx+i+2)) +
dt.*(vs((j-1)*nx+i).*(alyf(j).*w old((j-1)*nx+i)+blyf(j).*wold((j)*nx+i)+clyf(j).*w_old((j+1)*nx+i)))

(dt/Re vec((j-1)*nx+i)).*((a2xf(1) + a2yf(j-2)).*w((j-1)*nx+i) + ...
b2yf(j-2).*w((j)*nx+i) + c2yf(j-2).*w((j+2)*nx+i) + d2yf(j-2).*w((j+2)*nx+i) +
b2xf(1).*w((j-1)*nx+i+1) + c2xf(1).*w((j-1)*nx+i+2) + ...

d2xf(1).*w((j-1)*nx+i+3)) - wold((j-1)*nx+i) - dt.*curlf((j-1)*nx+i);

% Periodic overlap required for second derivative

elscif (((j-1)*nx+i)+3)-(j*nx)==1

% Residual 1

163

Res(nskt+((j-1)*nx+i)*2-1) = (a2xf(1) + a2yf(j-2)).*Psi((j-1)*nx+i) + ...

b2yf(j -2) .*Psi ((j)*nx+i) + c2yf(j -2) .*Psi ((j+2)*nx+i) + d2yf(j -2) .*Psi ((j+2)*nx+i) +

b2xf(1).*Psi((j-1)*nx+i+1) + c2xf(1).*Psi ((j-1)*nx+i+2) +

d2xf(1) .*Psi ((j -1)*nx+1) + w((j -1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*...

us((j-1)*nx+i) .*(alxf(i).*w_old((j -1)*nx+i)+blxf(i).*wold((j-1)*nx+i+1)+clxf(i) .*w_old((j-1)*nx+i+2)) +

dt.*(vs((j-l)*nx+i).*(alyf(j).*w_old((j-1)*nx+i)+blyf(j).*w_old((j)*nx+i)+clyf(j).*w old((j+1)*nx+i))) - ..

(dt/Revec((j-1)*nx+i)).*((a2xf(1) + a2yf(j-2)).*w((j-1)*nx+i) + ...

b2yf(j-2).*w((j)*nx+i) + c2yf(j-2).*w((j+2)*nx+i) + d2yf(j-2).*w((j+2)*nx+i) +

b2xf(1).*w((j-1)*nx+i+1) + c2xf(1).*w((j-1)*nx+i+2) + ..

d2xf(1).*w((j-1)*nx+1)) - wold((j-i)*nx+i) - dt.*curlf((j-1)*nx+i);

% Periodic overlap required for first/second derivative

elseif (((j -1)*nx+i)+3)-(j*nx)==2

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (a2xf(1) + a2yf(j-2)).*Psi((j-1)*nx+i) +

b2yf(j-2).*Psi((j)*nx+i) + c2yf(j-2).*Psi((j+2)*nx+i) + d2yf(j-2).*Psi((j+2)*nx+i) +

b2xf(1).*Psi((j-1)*nx+i+1) + c2xf(1).*Psi ((j-1)*nx+1) +

d2xf(1).*Psi((j-1)*nx+2) + w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*...

us((j-1)*nx+i).*(alxf(i).*w_old((j-1)*nx+i)+bxf(i).*wold((j-1)*nx+i+1)+clxf(i).*w_old((j-1)*nx+1)) +
dt.*(vs((j-1)*nx+i).*(alyf(j).*w_old((j-1)*nx+i)+blyf(j).*wold((j)*nx+i)+clyf(j).*w old((j+1)*nx+i))) -
(dt/Revec((j-1)*nx+i)).*((a2xf(1) + a2yf(j-2)).*w((j-1)*nx+i) + ...

b2yf(j-2).*w((j)*nx+i) + c2yf(j-2).*w((j+2)*nx+i) + d2yf(j-2).*w((j+2)*nx+i) +

b2xf(1).*w((j-1)*nx+i+1) + c2xf(1).*w((j-1)*nx+1) + ...

d2xf(1).*w((j-1)*nx+2)) - wold((j-1)*nx+i) - dt.*curlf((j-i)*nx+i);

% Periodic overlap required for first/second derivative

elseif (((j -1)*nx+i)+3)-(j*nx)==3

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (a2xf(1) + a2yf(j-2)) .*Psi((j-1)*nx+i) +

b2yf(j-2).*Psi((j)*nx+i) + c2yf(j-2).*Psi((j+2)*nx+i) + d2yf(j-2).*Psi((j+2)*nx+i) +

b2xf(1) .*Psi((j-1)*nx+1) + c2xf(1) .*Psi ((j -1)*nx+2) +

d2xf(1).*Psi((j-1)*nx+3) + w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*...

us((j-1)*nx+i).*(alxf(i).*wold((j-1)*nx+i)+blxf(i).*w_old((j-1)*nx+1)+clxf(i).*wold((j-1)*nx+2)) +
dt.*(vs((j-1)*nx+i).*(alyf(j).*wold((j-1)*nx+i)+blyf(j).*w_old((j)*nx+i)+clyf(j).*w_old((j+1)*nx+i))) -

(dt/Revec((j-1)*nx+i)).*((a2xf(1) + a2yf(j-2)).*w((j-1)*nx+i) + ...

b2yf(j-2).*w((j)*nx+i) + c2yf(j-2).*w((j+2)*nx+i) + d2yf(j-2).*w((j+2)*nx+i) +

b2xf(1).*w((j-1)*nx+1) + c2xf(1).*w((j-1)*nx+2) + ...

d2xf(1).*w((j-1)*nx+3)) - w_old((j-1)*nx+i) - dt.*curlf((j-1)*nx+i);

end

% Residual

else

% No periodic overlap required for second derivative

if (((j -1)*nx+i)+3)-(j*nx)<=O

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (a2xf(1) + b2y(j-1)).*Psi((j-1)*nx+i) +

c2y(j-1).*Psi((j)*nx+i) + a2y(j-1).*Psi((j-2)*nx+i) + .

b2xf(l).*Psi((j-1)*nx+i+1) + c2xf(1).*Psi ((j-1)*nx+i+2) +

d2xf(1) .*Psi((j-1)*nx+i+3) + w((j-1)*nx+i);

% Residual 2

164

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*...

us ((j -1)*snx+i) . *(alxf(i) . *w_old((j -1)*nx+i)+blxf(i) .*w _old ((j -1)*nx+i+1)+clxf(i) .*w_old((j -1)*nx+i+2)) +

dt.*(vp((j-1)*nx+i).*(alyb(j-1) .*w_old((j-3)*nx+i)+b1yb(j-1).*w_old((j-2)*nx+i)+clyb(j-1) .*w_old((j-1)*nx+i)) +

vm((j-1)*nx+i) .*(alyf(j).*w_old((j-1)*nx+i)+blyf(j).*w _old((j)*nx+i)+clyf(j).*w_old((j+1)*nx+i))) -

(dt/Revec((j -1)*nx+i)) *((a2xf(1) + b2y(j -1)) *w((j -1)*nx+i) +

c2y(j-1).*w((j)*nx+i) + a2y(j-1).*w((j-2)*nx+i) + ...

b2xf (1) .*w((j -1)*nx+i+1) + c2xf (1) . *w((j -1)*nx+i+2) +

d2xf(1).*w((j-1)*nx+i+3)) - wold((j-1)*nx+i) - dt.*curlf((j-1)*nx+i);

% Periodic overlap required for second derivative

elseif (((j-1)*nx+i)+3)-(j*nx)==1

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (a2xf(1) + b2y(j-1)).*Psi((j-1)*nx+i) +

c2y(j-1).*Psi((j)*nx+i) + a2y(j-1).*Psi((j-2)*nx+i) + ...

b2xf(1) .*Psi ((j -1)*nx+i+1) + c2xf(1) .*Psi ((j -1)*nx+i+2) +

d2xf(1) .*Psi ((j -1)*nx+1) + w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*...

us((j-1)*nx+i).*(alxf(i).*w_old((j-1)*nxti)+blxf(i).*w_old((j-1)*nx+i+1)+clxf(i).*w_old((j -1)*nx+i+2)) +

dt.*(vp((j-1)*nx+i).*(alyb(j-1) .*w_old((j-3)*nx+i)+blyb(j-1).*w old((j-2)*nx+i)+c1yb(j-1).*w_old((j-1)*nx+i)) +

vm((j-1)*nx+i).*(alyf(j).*w_old((j-1)*nx+i)+b1yf(j).*w old((j)*nx+i)+clyf(j).*w_old((j+1)*nx+i))) -

(dt/Re vec((j-1)*nx+i)).*((a2xf(1) + b2y(j-1)).*w((j-1)*nx+i) +

c2y(j-1).*w((j)*nx+i) + a2y(j-1).*w((j-2)*nx+i) + ..

b2xf(1).*w((j-1)*nx+i+1) + c2xf(1).*w((j-1)*nx+i+2) +

d2xf(1).*w((j-1)*nx+1)) - wold((j-1)*nx+i) - dt.*curlf((j-1)*nx+i);

% Periodic overlap required for first /second derivative

elscif (((j -1)*nx+i)+3)-(j*nx)==2

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (a2xf(1) + b2y(j-1)).*Psi((j-1)*nx+i) +

c2y(j-1).*Psi((j)*nx+i) + a2y(j-1).*Psi((j-2)*nx+i) + ...

b2xf(1) .*Psi((j-1)*nx+i+1) + c2xf(1) .*Psi ((j -1)*nx+1) +

d2xf(1) .*Psi((j-1)*nx+2) + w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*...

us ((j -1)*nx+i) .*(alxf(i) .*w_old((j -1)*nx+i)+blxf(i) .*w_old((j-1)*nx+i+1)+clxf(i) .*w_old((j -1)*nx+1)) +

dt.*(vp((j-1)*nx+i).*(alyb(j-1).*w_old((j-3)*nx+i)+blyb(j-1).*w_old((j-2)*nx+i)+c1yb(j-1).*wold((j-1)*nx+i)) +

vmn((j-1)*nx+i).*(alyf(j).*w_old((j-1)*nx+i)+blyf(j).*w_old((j)*nx+i)+clyf(j).*wold((j+1)*nx+i))) -

(dt/Revec((j-1)*nx+i)).*((a2xf(1) + b2y(j-1)).*w((j-1)*nx+i) +

c2y(j-1).*w((j)*nx+i) + a2y(j-1).*w((j-2)*nx+i) + ...

b2xf(1).*w((j-1)*nx+i+1) + c2xf(1).*w((j-1)*nx+1) +

d2xf(1).*w((j-1)*nx+2)) - wold((j-1)*nx+i) - dt.*curlf((j-1)*nx+i);

% Periodic overlap required for first/second derivative

elscif (((j-1)*nx+i)+3)-(j*nx)==3

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (a2xf(1) + b2y(j -1)).*Psi ((j-1)*nx+i) +

c2y(j-1).*Psi((j)*nx+i) + a2y(j-1).*Psi((j-2)*nx+i) +

b2xf(1).*Psi((j-1)*nx+1) + c2xf(1).*Psi((j-1)*nx+2) +

d2xf(1) .*Psi ((j -1)*nx+3) + w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*...

us((j-1) *nx+i) .*(alxf(i) .*w_old((j -1)*nx+i)+blxf(i) *w_old((j- 1)*nx+1)+c1xf(i).*wold((j-1)*nx+2)) +

dt. *(vp((j -1)*nx+i) .*(alyb(j -1). *w old((j -3)*nx+i)+blyb(j -1). *w_old((j -2)*nx+i)+clyb(j -1). *w_old((j -1)*nx+i)) +

vm((j-1)*nx+i).*(a1yf(j).*w_old((j-1)*nx+i)+blyf(j).*w_old((j)*nx+i)+clyf(j).*w_old((j+1)*nx+i))) -

(dt/Revec((j-1)*nx+i)).*((a2xf(l) + b2y(j-1)).*w((j-1)*nx+i) +

c2y(j-1).*w((j)*nx+i) + a2y(j-1).*w((j-2)*nx+i) +

b2xf(1).*w((j-1)*nx+1) + c2xf(1).*w((j-1)*nx+2) +

165

d2xf(1) .*w((j -1)*nx+3)) - wold((j -l)*nx+i) - dt.*curlf((j -1)*nx+i);

end
end

% Point lies below cell edge

elseif (inrbc((j-1)*nx+i)-=inrbc((j)*nx+i))

% Point lies above cell edge

if (in rbc((j -1)*nx+i)-=in rbc ((j -2)*nx+i))

break ;

% lR> itial

Res(nskt+((j -1)*nx+i)*2-1) = (b2x(1) + d2yb(j -2)) .*Psi ((j -1)*nx+i) +
c2yb(j-2).*Psi((j-2)*nx+i) + b2yb(j-2).*Psi((j-3)*nx+i) + a2yb(j-2). *Psi((j-4)*nx+i) +...

c2x(1).*Psi((j-1)*nx+i+1) + a2x(1).*Psi((j-1)*nx+i -1) +

w((j -1)*nx+i

e
-csidual 2

Res(nskt+((j -1)*nx+i)*2) = w((j -1)*nx+i) dt. *(up((j -1)*nx+i).*

(alxb(i -1).*w_old((j-1)*nx+i-2)+blxb(i -1).*wold((j-1)*nx+i-1)+clxb(i -1). *wold((j-1)*nx+i)) +

u-((j -1)*nx+i) . *(alxf(i) .*wold((j -1)*nx+i)+bxf(i) .*w_old((j -1)*nx+i+1)+clxf(i) .*w_old((j -1)*nx+i+2))) +
dt. *(vs((j -1)*nx+i) . *(alyb(j -1) .*w_old((j -3)*nx+i)+blyb(j -1) .*wold((j -2)*nx+i)+clyb(j -1) .*wold((j -1)*nx+i)))

(dt/Re vec((j -1)*nx+i)) . *((b2x(1) + d2yb(j -2)).*w((j -1)*nx+i) + ...

c2yb(j-2).*w((j-2)*nx+i) + b2yb(j-2).*w((j-3)*nx+i) + a2yb(j-2).*w((j-4)*nx+i) +

c2x(1) .*w((j-1)*nx+i+1) + a2x(1) .*w((j-1)*nx+i-1)) -

w_old((j -1)*nx+i) - dt.*curlf((j -1)*nx+i);

end

% Point lies above cell edge

% Residual

elseif (inrbc((j-1)*nx+i)-=in_rbc((j-2)*nx+i))

% Residual 1

Res(nskt+((j-1)*nx+i)*2-1) = (b2x(1) + a2yf(j-2)).*Psi((j-1)*nx+i) +

b2yf(j-2).*Psi((j)*nx+i) + c2yf(j-2).*Psi((j+1)*nx+i) + d2yf(j-2).*Psi((j+2)*nx+i) +...

c2x(1) .*Psi((j-1)*nx+i+1) + a2x(1).*Psi((j-1)*nx+i-1) +

w((j-1)*nx+i);

% Residual 2

Res(nskt+((j-1)*nx+i)*2) = w((j-1)*nx+i) + dt.*(up((j-1)*nx+i).* ...

(alxb(i-I).*w_old((j-1)*nx+i-2)+blxb(i -1).*w_old((j-1)*nx+i-1)+clxb(i-1).*w_old((j-1)*nx+i)) +

um((j-1)*nx+i).*(alxf(i).*w_old((j-1)*nx+i)+blxf(i) .*wold((j-1)*nx+i+1)+clxf(i).*w_old((j-1)*nx+i+2))) +

dt.*(vs((j-1)*nx+i).*(alyf(j).*wold((j-1)*nx+i)+blyf(j).*w_old((j)*nx+i)+clyf(j).*w_old((j+l1)*nx+i))) -

(dt/Revec((j-1)*nx+i)).*((b2x(1) + a2yf(j-2)).*w((j-1)*nx+i) + ...

b2yf(j-2).*w((j)*nx+i) + c2yf(j-2).*w((j+1)*nx+i) + d2yf(j-2).*w((j+2)*nx+i) +---

c2x(i).*w((j-1)*nx+i+1) + a2x(1).*w((j-1)*nx+i-1)) -

w_old((j-1)*nx+i) - dt.*curlf((j-1)*nx+i);

end

end

end

end

166

ResidualCapillaryEdge.m

funct ion [Res] = Residual_ CapillaryEdge (Res, Psi ,w, sfc nodes , side

dt , hx , hy cap)

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

% Total Grid Points

nx length(hx)+1;

lbc = length(nodes);

if side = 2

for i = 1: 1: lbc
% Psi

Res(nodes(i).*2-1) = Psi(nodes(i)) - sfc;

% Omega

Res(nodes(i).*2) = w(nodes(i));

end

elseif side = 4

% Lexicographical Ordering: y followed by x, reduce bandwidth

for i = 1:1:lbc

% Psi

Res(nodes(i).*2-1) = Psi(nodes(i)) - sfc;

% Omega

Res(nodes(i).*2) = w(nodes(i)) +

2./(hy-cap(end).^2).*(Psi(nodes(i)-nx) - Psi(nodes(i)));

end

end

end

167

ResidualCapillaryInletOutlet.m

function [Res] = Residual _ CapillaryInletOutlet (Res, Psi ,w,w_old, curlf ,us ,vs
Rerbc, Re_pl, bcnodes , side , dt , hx, hy)
%UNTITLED9 Summary of this function goes here

% Detailed explanation goes here

% Total Grid Points

% Eulerian

nx = length(hx)+1;

ny = length(hy)+1;

lbc = length(bcnodes);

% Lagrangian

nskx = length(skx);

nsky = length(sky);

nskt = nskx+nsky;

% Non-dimensional Vectors

Revec = zeros(nx*ny,1);

% First Derivative Weights (forwards)
alxf = -(hx(2:end)+2.*hx(1:end-1))./(hx(1:end-1).*(hx(2:end)+hx(1:end-1)));

blxf = (hx(2:end)+hx(1:end-1)). /(hx(1:end-1).*hx(2:end));
clxf = -hx(1:end-1). /(hx(2:end).*(hx(:end-l)+hx(2:end)));
alyf = -(hy(2:end)+2.*hy(1:end-1)). /(hy(1:end-1).*(hy(2:end)+hy(1:end-l)));
blyf = (hy(2:end)+hy(1:end-1)). /(hy(1:end-1).*hy(2:end));
clyf = -hy(1:end-1). /(hy(2:end). *(hy(1:end-l)+hy(2:end)));

% First Derivative Weights (backwards)

alxb = hx(2:end). /(hx(1:end-1).*(hx(1:end-1)+hx(2:end)));
blxb = -(hx(2:end)+hx(1:end-1)). /(hx(1:end-1). *hx(2:end));
clxb = (2.*hx(2:end)+hx(1:end-1)). /(hx(2:end). *(hx(2:end)+hx(1:end-i)));
alyb = hy(2:end). /(hy(1:end-1). *(hy(1:end-1)+hy(2:end)));
blyb = -(hy(2:end)+hy(1:end-1)). /(hy(1:end-l).*hy(2:end));
clyb = (2.*hy(2:end)+hy(1:end-1)). /(hy(2:end).*(hy(2:end)+hy(1:end-1)));

% Second Derivative Weights (centered)

a2x = 2. /(hx(1:end-1) . *(hx(2:end)+hx(1:end -1)));
b2x = -2. /(hx (1:end-1) . *hx(2:end));
c2x = 2. /(hx (2:end). * (hx (2:end)+hx (1:end-)));
a2y = 2./(hy(1:end-1).*(hy(2:end)+hy(1:end-l)));

b2y = -2. /(hy(1:end-1).*hy(2:end));

c2y = 2./(hy(2:end)..(hy(2:end)+hy(1:end-1)));

% Second Derivative Weights (forwards)

a2xf = (6.*hx(1:eld-2)+4.*hx(2:end-1)+2.*hx(3:end))./ ...
(hx(1:end-2). *(hx(1:end-2)+hx(2:end-1)) . *(hx(1:end-2)+hx(2:end-1)+hx(3:end)));

b2xf = -(4. *(hx(1:end-2)+hx(2:end-1))+2.*hx(3:end))./ ...
(hx(I:end-2). *hx(2:end-1). *(hx(2:end-l)+hx(3:end)));
c2xf = (hx(1:end-2)+2. *(hx(2:end-1)+hx(3:end))) . /..
((hx (1:end-2)+hx (2:end-1)). *hx (2:end-1). *hx (3:end));
d2xf = -(4.*hx(1:end-2)+2.*hx(2:end-1))./ ...
((hx (1:end-2)+ hx (2:end-1)+hx (3:end)).* (hx (2:end-1)+hx (3:end)) . *hx (3:end));
a2yf = (6.*hy(1:end-2)+4.*hy(2:end-1)+2.*hy(3:end))./ ...
(hy(1:end-2). *(hy(1:end-2)+hy(2:end-1)) . *(hy(1:end-2)+hy(2:end-1)+hy(3:end)));

b2yf = -(4. *(hy(1:end-2)+hy(2:end-1))+2.*hy(3:end)) ./...
(hy (1:end- 2) . *hy (2:end-1) . *(hy (2:end-1)+hy (3:end)));
c2yf = (hy(1:end-2)+2.*(hy(2:end-1)+hy(3:end))) ./...
((hy(1:end-2)+hy(2:end-1)).*hy(2:end-1).*hy(3:end));

168

d2yf = -(4.*hy(1:end-2)+2. hy(2:end-1)). /...
((hy(1:end-2)+hy(2:end-1)+hy(3:end)) . *(hy(2:end-1)+hy(3:end)) . *hy(3:end));

% Second Derivative Weights (backwards)

a2xb = -(2.*hx(2:end-1)+4.*hx(3:end))./...

(hx(1:end-2).*(hx(1:end-2)+hx(2:end-1)).*(hx(1:end-2)+hx(2:end-1)+hx(3:end)));

b2xb = (2. *(hx(1:end-2)+hx(2:end-1))+4.*hx(3:end))./...

(hx(1:end-2) .*hx(2:end-1).*(hx(2:end-l)+hx(3:end)));

c2xb = -(2.*hx(1:end-2)+4.*(hx(2:end-)+hx(3:end)))./...

((hx(1:end-2)+hx(2:end-1)).*hx(2:end-1).*hx(3:end));

d2xb = (2.*hx(1:end-2)+4.*hx(2:end-1)+6.*hx(3:end))./...

((hx(1:end-2)+hx(2:end-1)+hx(3:end)) .*(hx(2:end-1)+hx(3:end)) . *hx(3:end));

a2yb = -(2.*hy(2:end-1)+4.*hy(3:end))./...

(hy(1:end-2) . *(hy(1:end-2)+hy(2:end-1)). *(hy(1:end-2)+hy(2:end-1)+hy(3:end)));

b2yb = (2. *(hy(1:end-2)+hy(2:end-1))+4.*hy(3:end)) ./...

(hy(1:end-2).*hy(2:end-1).*(hy(2:end-1)+hy(3:end)));

c2yb = -(2.*hy(1:end-2)+4.*(hy(2:end-1)+hy(3:end)))./...

((hy(1:end-2)+hy(2:end-1)). *hy(2:end-1). *hy(3:end));

d2yb = (2.*hy(1:end-2)+4.*hy(2:end-1)+6.*hy(3:end))./...

((hy(l:end-2)+hy(2:end-1)+hy(3:end)). *(hy(2:end-1)+hy(3:end)) .*hy(3:end));

% U+-, u-, v+. V-
up = max(us ,0);

vp = max(vs,0);

um = min(us,0);

vm = min(vs ,0);

% Reynolds number vector

for i=1:1:nx

for j=1:1:ny

if inrbc(bcnodes(i))==1

Re vec(bcnodes(i)) = Rerbc;

else

Revec(bcnodes(i)) = Repl;

end

end

end

if side = 1

for i = 1:1:lbc

Wo Residual 1

% Check if points are inside or outside cell determines if

% discretization scheme needs to be adjusted for second

% derivative approximations.

% Point lies completely inside/outside cell s.t. centered

% approximation for second derivative is physically valid

if (inrbc(bcnodes (i)+1)==1 && inrbc ((bcnodes(i)+nx-1)==1 && ...

inrbc(bcnodes(i)-ny)==1 && in _ rbc(bcnodes(i)+ny)==1)) ,

(in _rbc (bcnodes (i)+1)==0 && in _ rbc(bcnodes(i)+nx-1)==0 &&

in-rbc(bcnodes (i)-ny)==0 && in_rbc(bcnodes(i)+ny)==0)

% Residual 1

Res(nskt+2*(bcnodes(i))-1,1) = (b2x(1) + b2y(j-1)).*Psi(bcnodes(i)) +

c2y(j-1) .*Psi(bcnodes(i)+nx) + a2y(j-1).*Psi(bcnodes(i)-nx) +

c2x(1).*Psi(bcnodes(i)+1) + a2x(1).*Psi(bcnodes(i)+nx-1) +

w(bcnodes (i));

% Residual 2

Res(nskt+2*(bcnodes(i)),1) = w(bcnodes(i)) + dt.*(up(bcnodes(i)).*...

(alxb(i-1) .*w_old(bcnodes(i)+nx-2)+b1xb(i-1).*w_old(bcnodes(i)+nx-1)+c1xb(i-1).*w_old(bcnodes(i))) +

169

um(bcnodes(i)) .*(a xf(i).*w_old(bcnodes(i))+blxf(i) .*w_old(bcnodes(i)+I)+cxf(i).*w_old(bcnodes(i)+2))) +

dt. *(vp(bcnodes(i)) .*(alyb(j -1).*w old(bcnodes(i)-2*ny)+...

blyb(j -1) .*w_old(bcnodes(i)-ny)+c1yb(j -1) .*w_old(bcnodes(i))) +

vm(bcnodes(i)).*(alyf(j).*w_old(bcnodes(i))+blyf(j).*w old(bcnodes(i)+ny)+clyf(j).*w_old(bcnodes(i)+2*ny))) -

(dt/Re vec(bcnodes(i))).*((b2x(1) + b2y(j-1)).*w(bcnodes(i)) +

c2y(j-1).*w(bcnodes(i)+ny) + a2y(j-1).*w(bcnodes(i)-ny) +

c2x(1) .*w(bcnodes(i)+1) + a2x(1) .*w(bcnodes(i)+nx-1)) -

w-old(bcnodes (i)) - dt. *cur lf (bcnodes (i));

% Point I), to left of Ceil edg

elseif (in_ rbc(bcnodes(i))-=in-rbc(bcnodes(i)+1))

% Point lies to right of cell edge

if (inrbc(bcnodes(i))-=inrbc(bcnodes(i)+nx-1))

break;

% Point lies below cell edge

elseif (inrbc(bcnodes(i))-=in-rbc(bcnodes(i)+ny))

% Point lies above cell edge

if (inrbc(bcnodes(i))-=iin rbc(bcnodes(i)-ny))

break ;

%IRS
ttlsi

end

% Point lies above cell edge

elseif (inrbc(bcnodes(i))-=in rbc(bcnodes(i)-ny))

,1, 1Isk i d ia

elsi

end

% Point lies to right of cell edge

elseif (inrbc(bcnodes(i))-=inrbc(bcnodes(i)-2*ny-1))

% Point lies below cell edge

if (inrbc(bcnodes(i))-=inrbc(bcnodes(i)+ny))

% Point lies above cell edge

if (inrbc(bcnodes(i))-=in rbc(bcnodes(i)-ny))

break ;

% Residual

else

end

% Point lies above cell edge

elseif (in_ rbc(bcnodes(i))-=in_ rbc(bcnodes(i)-ny))

% Residual

else

end

% Point lies below cell edge

elseif (in rbc(bcnodes(i))-=inrbc(bcnodes(i)+ny))

% Point lies above cell edge

if (in _rbc(bcnodes(i))-=in_ rbc(bcnodes(i)-ny))

break ;

% Residual

else

% Residual 1

Res(nskt+(bcnodes(i))*2-1) = (b2x(1) + d2yb(j-2)).*Psi(bcnodes(i)) +

c2yb(j-2) .*Psi(benodes(i)-ny) + b2yb(j-2).*Psi(bcnodes(i)-2*ny) + a2yb(j-2).*Psi(bcnodes(i)-3*ny) +...

170

c2x(1).*Psi(bcnodes(i)+1) + a2x(1).*Psi(bcnodes(i)+nx-1) +

w(bcnodes(i));

% Residual 2

Res(nskt+(bcnodes(i))*2) = w(bcnodes(i)) + dt.*(up(bcnodes(i)).*...

(alxb(i-1).*w_old(bcnodes(i)+nx-2)+blxb(i-1).*wold(bcnodes(i)+nx-1)+clxb(i1).*w_old(bnodes(i))) +
um(bcnodes(i)).*(alxf(i).*w_old(bcnodes(i))+blxf(i).*w_old(bcnodes(i)+1)+clxf(i).*w_ old(bcnodes(i)+2))) +
dt.*(vs(bcnodes(i)).*(alyb(j-1).*w_old(bcnodes(i)-2*ny)+...

blyb(j-1) .*w_old(bcnodes(i)-ny)+clyb(j-1) .*w_old(bcnodes(i)))) -

(dt/Re vec(bcnodes(i))).*((b2x(1) + d2yb(j-2)).*w(bcnodes(i)) +

c2yb(j-2) .*w(bcnodes(i)-ny) + b2yb(j-2).*w(bcnodes(i)-2*ny) + a2yb(j-2).*w(bcnodes(i)-3*ny) +...

c2x(1).*w(bcnodes(i)+1) + a2x(1).*w(bcnodes(i)+nx-1)) -

w_old(bcnodes(i)) - dt.*curlf(bcnodes(i));

end

% Point lies above cell edge

% Residual

elseif (inrbc(bcnodes(i))-=inrbc(bcnodes(i)-ny))

% Residual 1

Res(nskt+(bcnodes(i))*2-1) = (b2x(1) + a2yf(j-2)).*Psi(bcnodes(i)) +

b2yf(j-2).*Psi(bnodes(i)+ny) + c2yf(j-2).*Psi(bcnodes(i)+2*ny) + d2yf(j-2).*Psi(bcnodes(i)+3*ny) +...
c2x(1).*Psi(bcnodes(i)+1) + a2x(1).+Psi(bcnodes(i)+nx-1) +

w(bcnodes (i));

% Residual 2

Res(nskt+(bcnodes(i))*2) = w(bcnodes(i)) + dt.*(up(bcnodes(i)).*

(a1xb(i-1).*w_old(bcnodes(i)+nx-2)+b1xb(i-1).*w_old(bcnodes(i)+nx-1)+c1xb(i-1).*wold(bcnodes(i))) +

um(bcnodes(i)).*(aixf(i).*w_old(bcnodes(i))+blxf(i).*w_old(bcnodes(i)+1)+clxf(i).*w_old(bcnodes(i)+2))) + .
dt. *(vs (bcnodes (i)) .*(alyf(j).*w_old(bcnodes(i))+...

blyf(j).*w_old(bcnodes(i)+ny)+clyf(j).*w_old(bcnodes(i)+2*ny))) -

(dt/Revec(bcnodes(i))).*((b2x(1) + a2yf(j-2)).*w(bcnodes(i)) +

b2yf(j-2).*w(bcnodes(i)+ny) + c2yf(j-2).*w(bcnodes(i)+2*ny) + d2yf(j-2).*w(bcnodes(i)+3*ny) +...

c2x(1).*w(bcnodes(i)+1) + a2x(1).*w(bcnodes(i)+nx-1)) -

w_old(bcnodes(i)) - dt.*curlf(bcnodes(i));

end

end

elseif side - 3

for i = 1:1:lbc

% Psi

Res(bcnodes(i)*4-3) = Psi(bcnodes(i)) - Psi((i-1)*nx+1);

% Omega

Res(bcnodes(i)*4-2) = w(bnodes(i)) - w((i-1)*nx+1);

end

end

end

Other Functions:

All other functions not listed here that are used Capillary Driver.m are exis-

ting MATLAB functions with documentation available through MathWorks.

171

172

Bibliography

[1] Gompper, G., Fedosov, D.A.(2015) Modeling microcirculatory blood flow: cur-
rent state and future perspectives. WIREs Syst Biol Med 2016, 8:157-168. doi:
10. 1002/wsbm. 1326

[2] Le Floch-Yin, F.T. (2010). Design of a Numerical Model for Simulation of Blood
Microcirculation and Study of Sickle Cell Disease. Doctoral Thesis, Massachusetts
Institute of Technology.

[31 Bueno, G., Harris, W.L. (2016). A Two-Dimensional Spectral Model of Blood
Plasma Flow with Oxygen Transport and Blood Cell Membrane Deformation.
Ninth International Conference on Computational Fluid Dynamics (ICCFD9).

[41 Piel, F.B., Patil, A.P., Howes, R.E., Nyangiri, O.A., Gething, P.W.,
Williams, T.N., Weatherall, D.J., Hay, S.I. (2010). Global distribution of
the sickle cell gene and geographical confirmation of the malaria hypothesis. Nature
Communications, 1:104, DOI: 10.1038/ncomms1104

15] Evans, E. A., and Skalak, R. (1980). Mechanics and Thermodynamics of
Biomembranes. CRC Press, Inc., Boca Raton, Florida.

[6] Dullemond, C.P., and Kuiper, R. (2008). Lectures on Numerical Fluid Dyn-
amics, Chapter 5. Online lecture notes, University of Heidelberg.

[7] Vadapalli, A., Goldman, D., and Popel, A.S. (2002). Calculations of Oxygen
Transport by Red Blood Cells and Hemoglobin Solutions in Capillaries. Art. Cells,
Blood Subs., and Immob. Biotech., 30(3), 157-188.

[8] Halpern, D., Secomb, T.W. (1989). The squeezing of red blood cells through
capillaries with near-minimal diameters. J. Fluid Mechanics, 203, 381-400.

[9] Brust, M., Schaefer, C., Doerr, R., Pan, L., Garcia, M., Arratia, P.E.,
and Wagner, C. (2013). Rheology of Human Blood Plasma: Viscoelastic Versus
Newtonian Behavior. American Physical Society, PRL 110, 078305.

[10] Zohuri, B. (2015). Dimensional Analysis and Self-Similarity Methods for En-
gineers and Scientists. Springer International Publishing Switzerland, Chapter
2.

173

[11] Peskin, C.S. (2002) The immersed boundary method. Acta Numerica, pp. 479-
517, DOI: 10.1017/SO962492902000077.

112] Secomb, T.W. (1988). Interaction Between Tension and Bending Forces in
Bilayer Membranes. Biophys. J., Biophysics Society, Volume 54, 743-746.

[13] Secomb, T.W., Skalak, R., Ozkaya, N., and Gross, J.F. (1986) Flow of
Axisymmetric Red Blood Cells in Narrow Capillaries. Journal of Fluid Mechanics,
Volume 163, 405-423.

[14] Sousa, P.C., Pinho, F.T., Oliviera, M.S.N., and Alves, M.A. (2011). Ex-
tensional Flow of Blood Analog Solutions in Microfluidic Devices. Biomicrofluidics
5, 014108.

[15] Tbzeren, A., Skalak, R., Sung, K.P., and Chien, S. (1982) Viscoelastic
behavior of erythrocyte membrane. Biophys. J., 39, 23-32.

[16] Tizeren, A., Skalak, R. Fedorciw, R., Sung, K.P., and Chien, S.(1984)
Constitutive equations of erythrocyte membrane incorporating evolving preferred
configuration. Biophys. J., 45, 541-549.

[17] Lai, M.C., Peskin, C.S.(2000) An Immersed Boundary Method with Formal
Second-Order Accuracy and Reduced Numerical Viscosity. Journal of Computati-
onal Physics 160, 705-719.

[18] Peraire, J., Harris, W.L. (2017) Personal communications. Massachusetts
Institute of Technology.

174

