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Abstract

Autonomous and multi-agent space operations within the context of in-space robotic
servicing, assembly, and debris removal have received particular attention from both
research and industry communities. The presence of uncertainties and unknown sys-
tem parameters amongst these missions is prevalent, as they primarily deal with
unknown or uncooperative target objects, e.g., asteroids or unresponsive, unsuper-
vised tumbling spacecraft. To lower the inherent risk associated with these types
of operations, possessing an accurate knowledge of the aforementioned characteris-
tics is essential. In order to achieve this, approaches that employ a unified frame-
work between parameter estimation and learning methodologies through a Composite
Adaptation (CA) structure are presented. Furthermore, to evaluate the likelihood of
mission success or objective completion, a probabilistic approach upon the system's
operations is introduced; by employing probability distributions to model the con-
trol system's response and pairing these with the analysis of objectives' requirements
and agents' characteristics, the calculation of on-board feasibility and performance
assessments is presented. A formulation for the estimator and the controllers is de-
veloped, and results for the adaptive approach are demonstrated through hardware
implementation using MIT's Synchronized Position Hold Engage Reorient Experi-
mental Satellites (SPHERES) ground testing facilities. On-orbit test session data is
analyzed, and further improvements upon the initial learning approach are verified
through simulations.
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3



4



Acknowledgments

First of all, I would like to express my gratitude to Dr. Alvar Saenz-Otero and

Professor David Miller for the opportunity of allowing me to join the MIT Space

Systems Laboratory team, and for their mentorship throughout these two years (and

hopefully a couple more).

I am also eternally grateful to the rest of the SPHERES team for embracing me as

their friend and for the endless advices and support that they have given me, specially

Chris, David, and Tim. Special thanks to Dr. Danilo Roascio; words truly fall short

whenever I try to explain how many times you have saved me from catastrophic

situations. If it were not for you, I would still be trying to install the SPHERES sim.

To my friend, office mate, and the best 2nd Lt. out there, Zachary Funke, with

whom it was an honor to have spent countless hours discussing everything from sea-

punk to quantum mechanics, thank you for all the good times. And to my office mate

William David Sanchez, the coolest home-schooled kid out there, thank you for keep-

ing my feet on the ground, for all those reality checks, for the invaluable bodybuilding

and nutrition advices, and most importantly, for your unlimited patience; I promise

you will not leave MIT without knowing how to ride a bike while standing up.

Lastly, even though it goes without saying, I would like to officially thank my fam-

ily for always being by my side and unquestionably supporting my every endeavor.

And saving the very best for the very last, an infinite number of thanks to my part-

ner in crime, confidant, and ever-loving better half Olivia Claire Wolcott Kern for

everything; it has been a wonderful journey.

5



6



Contents

1 Introduction

1.1 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2 SPHERES Facility . . . . . . . . . . . . . . . . . . . . . .

1.3 Research Objective . . . . . . . . . . . . . . . . . . . . . .

1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . .

1.4.1 Spacecraft System Identification Methods . . . . . .

1.4.2 Adaptive Control for Spacecraft Operations . . . .

1.5 Thesis Roadmap . . . . . . . . . . . . . . . . . . . . . . .

2 Theoretical Framework

2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . .

2.1.1 Process Noise Characteristics . . . . . . . . . . . .

2.1.2 Measurement Noise Characteristics . . . . . . . . .

2.2 Current Control Methodologies for SPHERES . . . . . . .

2.2.1 Position Controller . . . . . . . . . . . . . . . . . .

2.2.2 Attitude Controller . . . . . . . . . . . . . . . . . .

2.3 Adaptive Controller Formulation . . . . . . . . . . . . . .

2.3.1 Direct and Indirect Adaptation . . . . . . . . . . .

2.3.2 Model Reference Adaptive Control . . . . . . . . .

2.3.3 Position Controller . . . . . . . . . . . . . . . . . .

2.3.3.1 Stability Analysis . . . . . . . . . . . . . .

2.3.4 Attitude Controller . . . . . . . . . . . . . . . . . .

2.3.4.1 Clohessy-Wiltshire Dynamics Formulation

7

21

21

23

26

27

27

29

30

33

. . . . . 33

. . . . . 36

. . . . . 37

. . . . . 38

. . . . . 39

. . . . . 39

. . . . . 40

. . . . . 40

. . . . . 41

. . . . . 42

. . . . . 44

. . . . . 46

47



2.4 Summary ...............

3 Overcoming System Uncertainties

3.1 Prelude to Adaptive Control ...........

3.1.1 SPHERES Testbed Platform . . . . . . .

3.1.2 InSPIRE-II Program . . . . . . . . . . .

3.1.3 Docking Port Science: TS92 . . . . . . .

3.1.4 Halo Checkout: TS86 . . . . . . . . . . .

3.2 On-Board Learning through MRAC . . . . . . .

3.2.1 Simulation Tests and Results . . . . . .

3.2.2 Glass Table Testing . . . . . . . . . . . .

3.2.2.1 Hardware Configurations . . . .

3.2.2.2 Algorithm and Implementation

3.2.2.3 Results . . . . . . . . . . . . .

3.3 Sum m ary . . . . . . . . . . . . . . . . . . . . .

4 Probabilistic Operation through Composite Adaptation

4.1 Data Analysis through Probability Models . . . . . . . . . . .

4.1.1 Attitude Control Performance Analysis for InSPIRE-II

4.1.2 Likelihood Accretion through Learning . . . . . . . . .

4.1.3 Probabilistic Docking Algorithm . . . . . . . . . . . . .

4.2 Stochastic Operation via Composite Adaptation . . . . . . . .

4.2.1 MRAC's Limitations in Stochastic Environments . . .

4.2.2 Parameter Identification through Kalman Framework .

4.2.2.1 Discretization and State Augmentation . . . .

4.2.2.2 Extended Kalman Filter . . . . . . . . . . . .

4.2.2.3 Parameter Estimates Behavior . . . . . . . .

4.2.3 Composite Adaptation . . . . . . . . . . . . . . . . . .

4.2.3.1 Information and Sources for Inference . . . .

4.2.3.2 System Parameterization . . . . . . . . . . . .

4.2.3.3 Simulation Results . . . . . . . . . . . . . . .

8

51

. . . . . . 51

. . . . . . 52

. . . . . . 53

. . . . . . 54

. . . . . . 57

. . . . . . 61

. . . . . . 62

. . . . . . 66

. . . . . . 69

. . . . . . 69

. . . . . . 72

. . . . . . 77

79

79

80

86

89

91

91

94

95

96

97

99

99

99

101

49



4.3 Applicability and Importance . . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.2 Expansibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.3 Simplified, Smoothed Probabilistic Trajectories . . . . . . . . 104

5 Conclusion 107

5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A MRAC Stability Analysis 111

A.1 Position Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B MRAC Glass Table Testing Data 117

B.1 Configuration #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.2 Configuration #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.3 Configuration #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.4 Summary Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

C Probability Analysis Derivation 131

C.1 <Counselor Model : Ideas Behind the Heuristic . . . . . . . . . . . . 132

C.2 Example using InSPIRE-II Data . . . . . . . . . . . . . . . . . . . . . 133

9



10



List of Figures

1-1 Time lapse of the Halo Flight Hardware build, featuring 2nd Lt. Zachary

Funke, Roedolph Opperman, and Dr. Danilo "the wizard' Roascio.

(Video speed: x10 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1-2 The two flight-certified Halos that were sent to the International Space

Station on April 8, 2016 with SpaceX CRS8. . . . . . . . . . . . . . 25

1-3 SPHERES Suite: hardware attachments currently available on-board

the International Space Station. It is easy to see the many possible

combinations available through the use of multiple peripherals. . . 25

1-4 Sample sequence of actions for recreating an in-space robotic assembly

scenario with the SPHERES hardware. . . . . . . . . . . . . . . . . 26

2-1 Indirect adaptive control block diagram. . . . . . . . . . . . . . . . . 41

2-2 Direct adaptive control block diagram. . . . . . . . . . . . . . . . . . 41

3-1 Some of the attachments available for the SPHERES framework: (a)

a SPHERES equipped with the VERTIGO Avionics Stack (VAS) and

Optics Mount; (b) Orange SPHERES equipped with the Halo expan-

sion device, VAS, and a Universal Docking Port (UDP), while the Blue

SPHERES contains only a VAS and a UDP. . . . . . . . . . . . . . . 53

3-2 Blue and Orange SPHERES attempting to autonomously dock with

their respective VERTIGO Avionics Stacks and Universal Docking

Ports during a run of Test Session 78: SPHERES Docking Port Check-

out. ......... .................................... 55

11



3-3 Video of a Simple Dock (Run #1) maneuver carried out by the SPHERES

ensemble during Test Session 92: Docking Port Science 1.5. (Video

speed: x 80) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3-4 Plots corresponding to the Orange SPHERES satellite during Simple

Dock Run#1 shown in Fig. 3-3: position tracking (a) shows small

deviations from the commanded references, while attitude performance

(b) exhibits non-negligible disturbances (t ~ 170 s). . . . . . . . . . . 56

3-5 Expedition 50 Commander Shane Kimbrough of NASA floating around

with the brand new SPHERES Halos on-board the International Space

Station. Picture taken during TS86: Halo Checkout. . . . . . . . . . 57

3-6 Video of a Position-Hold (Run #4) maneuver carried out by the SPHERES

+ Halo ensemble during Test Session 86: Halo Checkout. (Video speed:

x 16 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3-7 Plots corresponding to the Orange SPHERES satellite during Position-

Hold#4 shown in Fig. 3-6: similar to Blue's behavior, both (a) posi-

tion and (b) attitude tracking show very small deviations from the

commanded references. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3-8 Video of a 40 cm XYZ translation (Run #2) maneuver carried out by

the SPHERES + Halo ensemble during Test Session 86: Halo Check-

out. (Video speed: x16) . . . . . . . . . . . . . . . . . . . . . . . . . 60

3-9 Plots corresponding to the Blue SPHERES satellite during the 2nd run

of the 40 cm XYZ-Translation test shown in Fig. 3-6. . . . . . . . . . 60

3-10 Deterministic MRAC run (perfect full-state feedback): (a) adapted

parameter history for the mass estimate under the absence of persistent

excitation, (b) state, reference, and control input histories; it can be

clearly seen how the adaptation stops after the system reaches a perfect

reference tracking state (at ~ 8 s). Initial estimate rho = 0 kg, true

mass parameter m = 3 kg. . . . . . . . . . . . . . . . . . . . . . . . 64

12



3-11 Deterministic MRAC run (perfect full-state feedback): (a) full char-

acterization under the presence of persistent excitation, (b) state, ref-

erence, control input, and available inference information (yellow); es-

timated value fully converges to the ground truth parameter. Initial

estimate ino = 0 kg, true mass parameter m = 3 kg. . . . . . . . . . 65

3-12 SSL's SPHERES ground testing facilities. . . . . . . . . . . . . . . . 67

3-13 Regulator test overview for comparing the performance of the two con-

trollers. The SPHERES/Halo assembly starts at an offset position

from the origin, and needs to find its way towards the origin of the

glass table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3-14 Hardware configurations used for MRAC/PD comparison. . . . . . . 69

3-15 High level flowchart representing the overview of the SPHERES control

cycle. Within the 1 Hz loop, the Model Reference Adaptive Controller

subroutine is to be called to compute the warranted forces and torques

given a desired state vector. . . . . . . . . . . . . . . . . . . . . . . . 70

3-16 X and Y state histories for Configuration #2 under (a) SPHERES PD

controller and (b) MRAC controller. . . . . . . . . . . . . . . . . . . 73

3-17 Baseline PD controller and MRAC test with hardware configuration

#3 - Halo Expansion device with a docking port, the VERTIGO

stereo-cameras, and a robotic arm. (Video speed: x10) . . . . . . . . 73

3-18 Phase plot comparison between all configuration runs for both con-

trollers. The green shaded regions represents the area in which the

MRAC was able to contain the majority of the trajectories. . . . . . 74

3-19 Attitude control performance comparison between all configuration

runs for both controllers. The green lines encompass the region in

which the MRAC was able to maintain the yaw angle, for all configu-

ration s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4-1 The SPHERES Universal Docking Port (UDP) along with the physical

dimensions of the lance and hole pair. . . . . . . . . . . . . . . . . . 81

13



4-2 Probability model comparison for the Blue SPHERES attitude control

performance in its UDP (top) and Halo (bottom) configuration. . . . 83

4-3 Probability model comparison for the Orange SPHERES attitude con-

trol performance in its Halo configuration; no useful UDP configuration

data was obtained from TS92. . . . . . . . . . . . . . . . . . . . . . 84

4-4 Probability model comparison between the two hardware configura-

tions, in all three attitude degrees of freedom; the Blue SPHERES

plus UDP configuration is assessed against the Orange SPHERES plus

Halo configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4-5 Glass table control performance on the x-position is shown for both

the PD controller and the MRAC; it is apparent that by being able

to adapt to the unknown mass and inertia parameters, a distribution

with less variance is obtained. . . . . . . . . . . . . . . . . . . . . . . 87

4-6 Glass table control performance on the y-position is shown for both

the PD controller and the MRAC. . . . . . . . . . . . . . . . . . . . 88

4-7 Distribution reshaping of the attitude control performance of a SPHERES

satellite with uncertain mass and inertia properties; through the use

of a paired adaptive and control law, better tracking performance is

yielded, and thus an increase in the likelihood of successfully achieving

the mission's objectives. . . . . . . . . . . . . . . . . . . . . . . . . . 88

4-8 Stochastic MRAC run #1 (noisy full-state feedback): bursting con-

ditions caused by the stochastic nature of noisy (real) measurements

rendering a system unstable; the mass estimate diverges by several or-

ders of magnitude, and settles at an incorrect and large value. (Initial

estimate rno = 0 kg, true mass parameter m* = 3 kg) . . . . . . . . . 92

4-9 Stochastic MRAC run #2: trial run showing a slow but correct adapta-

tion estimate correction; this was achieved after tuning the adaptation

gain matrix following the experiment shown in Fig. 4-8 (stochastic

MRAC run #2). Initial estimate rno = 0 kg, true mass parameter

m * = 3 kg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

14



4-10 Stochastic MRAC run #3: trial run to be compared against the one

shown in Fig. 4-9, showing a faster adaptation estimate correction and

an eventual (almost) true value convergence; similarly, by modifying

the adaptation gain matrix, this results are obtained. Initial estimate

no = 0 kg, true mass parameter m* = 3 kg. . . . . . . . . . . . . . . 94

4-11 Full simulation runs for parameter estimation trials using the aug-

mented extended Kalman filtering framework; open-loop control was

exerted upon the system to verify the filter's performance (no tracking

performed). It can be seen that the estimated value stays within a

close vicinity of the true parameter value, but never converges. Initial

estimate no = 1 kg, true mass parameter m = 3 kg. . . . . . . . . . 98

4-12 Diagram showcasing which information sources are being leveraged by

which algorithms. Composite adaptation uses both sources to improve

upon its performance. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4-13 Composite system run #1: a lax but bounded adaptation profile for

the mass estimate is exhibited by the composite adaptation technique

under the presence of noisy measurements. No bursts or divergence

behavior is observed throughout the full duration of the run. Initial

estimate fho = 1 kg, true mass parameter m = 3 kg. . . . . . . . . . 101

4-14 A more aggressive adaptation profile is obtained by adjusting the A,

k, and P' gain values for a better estimation performance; some resid-

ual offset error is shown in (a), while a closer adaptation towards the

ground truth value is shown in (b). Initial estimate ?ho = 1 kg, true

mass parameter m = 3 kg. . . . . . . . . . . . . . . . . . . . . . . . 102

4-15 Spacecraft ensembles with a corresponding belief on their mass value.

As the number of pieces increase, the certainty in the estimate starts

decreasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

15



4-16 Typical relative reference trajectory computed using the target's satel-

lite state information; in can be seen that by "live-tracking" the target

satellite, the chaser spacecraft is required to perform large delta-v ma-

neuvers, which in some cases might render a mission to be infeasible.

......................................... 105

4-17 Simplified and smoothed relative reference trajectory example obtained

using the proposed probabilistic and learning approach for in-space

robotic assem bly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5-1 Sketch of ground testing of autonomous on-orbit assembly systems. . 109

B-1 Phase plot corresponding to the trajectories taken by the satellite while

using the (a) Baseline Proportional-Derivative controller, and (b) the

M RAC control law. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B-2 X and Y state histories for Configuration #1 under (a) SPHERES PD

controller and (b) MRAC controller. . . . . . . . . . . . . . . . . . . 118

B-3 Yaw control performance exhibited for the UDP configuration using

the (a) SPHERES PD controller and (b) the MRAC. . . . . . . . . . 119

B-4 Baseline PD controller test with hardware configuration #1 - Halo

Expansion device equipped with a Universal Docking Port; to be com-

pared with video shown in Fig. B-5. (Video speed: x 10) . . . . . . . 119

B-5 MRAC test with hardware configuration #1 - Halo Expansion device

equipped with a Universal Docking Port; to be compared with video

shown in Fig. B-4. (Video speed: x 10) . . . . . . . . . . . . . . . . . 120

B-6 Phase plot corresponding to the trajectories taken by the satellite while

using the (a) Baseline Proportional-Derivative controller, and (b) the

M RAC control law. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B-7 X and Y state histories for Configuration #2 under (a) SPHERES PD

controller and (b) MRAC controller. . . . . . . . . . . . . . . . . . . 122

16



B-8 Yaw control performance exhibited for the UDP + Optics Mount con-

figuration using the (a) SPHERES PD controller and (b) the MRAC.

............................................ 122

B-9 Baseline PD controller test with hardware configuration #2 - Halo

Expansion device with a docking port, and the VERTIGO stereo-

cameras; to be compared with video shown in Fig. B-10. (Video speed:

x 10 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B-10 MRAC test with hardware configuration #2 - Halo Expansion de-

vice with a docking port, and the VERTIGO stereo-cameras; to be

compared with video shown in Fig. B-9. (Video speed: x 10) . . . . . 124

B-11 Phase plot corresponding to the trajectories taken by the satellite while

using the (a) Baseline Proportional-Derivative controller, and (b) the

M RAC control law. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B-12 X and Y state histories for Configuration #3 under (a) SPHERES PD

controller and (b) MRAC controller. . . . . . . . . . . . . . . . . . . 125

B-13 Yaw control performance exhibited for the UDP + Optics Mount +

Robotic Arm configuration using the (a) SPHERES PD controller and

(b) the M RA C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B-14 Baseline PD controller test with hardware configuration #3 - Halo

Expansion device with a docking port, optics mount, and a robotic

arm; to be compared with video shown in Fig. B-15. (Video speed:

x 10 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B-15 MRAC test with hardware configuration #3 - Halo Expansion device

with a docking port, optics mount, and a robotic arm; to be compared

with video shown in Fig.B-14. (Video speed: x 10) . . . . . . . . . . 128

B-16 Trajectory comparison between each configuration run for both the (a)

SPHERES PD controller, and the (b) MRAC controller. . . . . . . . 129

B-17 Attitude control performance comparison between each configuration

run for both the (a) SPHERES PD controller, and the (b) MRAC

controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

17



C-1 Structure and building blocks upon which the "Counselor Model" is

based. ........ ................................... 132

C-2 The SPHERES Universal Docking Port (UDP) along with the physical

dimensions of the lance and hole pair. . . . . . . . . . . . . . . . . . 134

C-3 Diagram depicting a Chaser and a Target Satellite, and characteristic

distances for analyzing the docking problem. . . . . . . . . . . . . . 134

C-4 Diagram depicting the maximum allowed angle deviation in the chaser's

attitude for docking. A (a) centered case and an (b) off-axis case are

presented, given that docking can still be achieved with the latter con-

ditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C-5 Sample target distributions obtained from the attitude control perfor-

mance requirement through the strategy depicted in the block diagram

from Fig. C-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

C-6 Two sample data sets analyzed for the Blue SPHERES attitude control

error perform ance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

C-7 Probability model comparison for the Blue SPHERES attitude control

performance in its UDP (top) and Halo (bottom) configuration. . . . 139

C-8 Probability model comparison for the Orange SPHERES attitude con-

trol performance in its Halo configuration; no useful UDP configuration

data was obtained from TS92. . . . . . . . . . . . . . . . . . . . . . 140

C-9 Probability model comparison between the two hardware configura-

tions, in all three attitude degrees of freedom; the Blue SPHERES

plus UDP configuration is assessed against the Orange SPHERES plus

Halo configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

18



List of Tables

3.1 Position and attitude tracking error statistics computed for the SPHERES

baseline PD controller's compendium of glass table tests. . . . . . . 76

3.2 Position and attitude tracking error statistics computed for the adap-

tive approach compendium of glass table tests using an MRAC control

law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Attitude tracking error statistics for all 3-Axes computed for the Blue

SPHERES during both Test Session 86: Halo Checkout and Test Ses-

sion 92: Docking Port Science 1.5. . . . . . . . . . . . . . . . . . . . 82

4.2 Attitude tracking error statistics for all 3-Axes computed for the Or-

ange SPHERES during Test Session 86: Halo Checkout. No useful

data was acquired during Test Session 92: Docking Port Science 1.5. 82

19



20



Chapter 1

Introduction

1.1 Motivation

Nowadays, as the objectives of future space missions become more ambitious, the

area of space robotics is gradually starting to play a more prevalent design and op-

erational role [1]. More specifically, autonomous and multi-agent space operations

within the context of in-space robotic servicing, assembly, and debris removal have

received particular attention from both research and industry communities, yielding

the advances within the field to be a paramount component of the technology in

charge of accomplishing such tasks [2, 3].

A constant theme amongst these types of missions is the prevalence of uncertain-

ties and unknown system parameters [4, 51; this can be seen by the fact of having

to deal with unknown or uncooperative target objects - e.g., asteroids or unrespon-

sive, unsupervised tumbling spacecraft - or the propagated parameter uncertainties

arising from docking and aggregative maneuvers - strictly increasing variance of

model's parameters after an assembly step. In order to guarantee a certain degree

of mission success and to be able to lower the inherent risk associated with these

operations, possessing an accurate knowledge of these aforementioned characteristics

is essential [6, 7].

Depending on the specified mission objective, different approaches for dealing

with uncertainties can be taken. In the case in which an accurate knowledge of the
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parameters describing the system is of particular interest, then system identification

(SysId) techniques can be employed to fully characterize the specifications of the

model [8, 9]; an example scenario might include two cooperative satellites, one of

which performs SysId maneuvers to corroborate (or in the case of a broken fuel

gauge, to fully determine) its current mass and inform the servicer the amount of

fuel it needs.

On the other hand, if these properties are of no particular use to the spacecraft's

autonomy cycle and the only objective is to accurately and effectively control the

system's state, then on-board adaptation methods for learning under a strictly need-

to-know basis are adequate [10]; this means that once the system reaches the desired

tracking state, e.g., negligible tracking errors, the need for performing the adaptation

is no longer warranted, entailing that the attainment of the true parameter values

for the estimated quantities in not strictly necessary (e.g., if the mass parameter was

not fully characterized, but the control performance is more than acceptable, that

incomplete mass estimate will be kept and used until further adaptation is warranted).

A common approach for performing system identification through parameter es-

timation actions is to employ an output prediction error obtained by comparing the

sensed system's current output to an analytical prediction of the value at the current

time step [11]. Contrastingly, adaptive approaches employ the information granted

by the system controller's tracking error [12], which is given by the difference between

a desired reference trajectory and the current state of the system.

The purpose of this work is to further investigate a unifying approach between

the two frameworks through a composite adaptation structure in order to assess the

stability and performance of extracting information from both sources - the tracking

error and the output prediction error - and concurrently performing adaptation

and estimation techniques while employing probabilistic models to perform on-board

assessments on the system's performance.

In order to develop such algorithms, not only must the theoretical framework and

formulation be elaborated and proven, but its reliability through rigorous trials and

testing needs to be demonstrated. Since the true spacecraft operating environment
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is not easily accessible (outer space!), the design and development cycle results will

mostly depend on the authenticity level of the simulation and testbeds employed.

Fortunately for the case of autonomy and control algorithms involving spacecraft,

the MIT Space Systems Laboratory SPHERES testbed provides a genuine 6DOF

microgravity environment for development and maturation practices [13].

1.2 SPHERES Facility

The MIT SSL's Synchronized Position Hold Engage Reorient Experimental Satellites

(SPHERES) are a self-contained testbed for control, estimation, autonomy and arti-

ficial intelligence algorithms available aboard the International Space Station (ISS)

for a full 6DOF true microgravity environment, paired with a ground testing segment

that allows for 3DOF testing using an air-bearing system [14].

Each of these SPHERES satellites possesses an expansion port that enables the

attachment of external peripherals such as stereo-vision cameras, docking ports, ad-

ditional avionics stacks, and robotic arms. In order to further research the field of

in-space robotic assembly, the Halo assembly - a peripheral device that acts as an

augmented expansion port for SPHERES, enabling the simultaneous use of up to six

peripheral attachments - was designed, built, and sent to station under DARPA's

InSPIRE-Il program [15]. A time lapse of the build process for the Halo flight units

is shown in Fig. 1-1; the actual flight hardware sent to the ISS can be seen in Fig. 1-2.

The addition of this new Halo hardware, paired with the available SPHERES

suite on board the ISS, allows for the recreation of distinct modular parts of an

in-space robotic assembly final ensemble; as shown in Fig. 1-3, the configuration

space spanned by all of the elements of the SPHERES framework and the unique

microgravity environment it offers, enables not only the design and implementation of

in-space robotic assembly maneuvers, but also an incremental and iterative algorithm

and hardware developing process to further mature this technology.

An example of an achievable scenario using the SPHERES platform would include

an inspector satellite outfitted with a Halo, stereo-vision camera, and docking ports
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Figure 1-1: Time lapse of the Halo Flight Hardware build, featuring 2nd Lt. Zachary
Funke, Roedolph Opperman, and Dr. Danilo "the wizard' Roascio. (Video speed:
x 106)
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Figure 1-2: The two flight-certified Halos that were sent to the International Space
Station on April 8, 2016 with SpaceX CRS8.

Available Hardware
3 SPHERES 2 Halos 2 Optics Mounts 2 VERTIGO 6 Universal Docking Ports

Avionics Stacks 3
__________________ I single SPHERES

combinations...

Figure 1-3: SPHERES Suite: hardware attachments currently available on-board the
International Space Station. It is easy to see the many possible combinations available
through the use of multiple peripherals.
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to use vision-based navigation to autonomously and rigidly dock to a second satellite

equipped with its own Halo and sets of docking ports, shown in Fig. 1-4. This

assembly would then cooperatively aggregate its control resources, hold its position

(or reconfigure), and wait for a third satellite to dock to a port. A translation and

slew maneuver can then be carried out, followed by a reconfiguration maneuver in

which the inspector satellite undocks, circumnavigates the full ensemble, assesses it,

and docks to a different port of the expansion device.

MI4

Figure 1-4: Sample sequence of actions for recreating an in-space robotic assembly
scenario with the SPHERES hardware.

Furthermore, the aforementioned uncertainties governing these types of operation

regimes can be easily identified; since it is intractable to perform system identification

tests for all the possible hardware combinations available, and due to the fact that

the physical properties of the system are intrinsically tied to the control system, a

learning approach to determine these during real-time operations is warranted.

1.3 Research Objective

The problem of in-space robotic servicing and assembly is a multidisciplinary and

multifaceted endeavor; in order for it to be solved, issues that arise in many fields

need to be tackled, such as communication protocols, thermal problems, mechanical

coupling interfaces, control systems, among very many others. The work being done

here is concerned with the control, estimation and autonomy aspect of these types of

missions.

The objective of this thesis is summarized as follows:

e To contribute towards achieving reliable in-space robotic assembly control sys-

tems
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" By leveraging adaptive control and estimation theory to enable on-board real

time learning methods and employing probabilistic approaches to reduce the

mission's complexity and avoid unwarranted unfeasibility claims.

" Using both the controller's tracking error and the estimator's output prediction

error as a joint information source from which to perform parameter adaptation

corrections

" While preserving global asymptotic stability and ensuring tracking error con-

vergence.

1.4 Literature Review

Although much has been done for on-orbit servicing and in-space robotic assembly

missions, to ascertain reliable autonomous space operations, further development of

research areas such as intelligent controls, communication technologies, kinematic

and dynamic model uncertainties, on-orbit model parameters identification, motion

estimation and prediction of target objects, amongst many others, is warranted [16].

1.4.1 Spacecraft System Identification Methods

In terms of on-orbit parameter identification techniques, the most common framework

employed for computing estimates using the so-called innovation term, or output-

prediction error, is the Kalman Framework [17]. Simplified approaches that does not

utilize the full Kalman formulation have also been applied, such as the recursive least

squares formulation and tracking differentiator employed by Xu [18]; in his work, a

comparison between the simplified approach and an Extended Kalman Filter (EKF)

shows that the latter provides more robustness to the estimation scheme, but adds

overhead and complexity to the algorithm by including extra tuning parameters such

as discretization step size, noise matrices and variance values, initial conditions, and

time synchronization. Furthermore, Kim [191 pairs a regressor matrix implementation

of the linear least squares algorithm with an additional Savitzky-Golay filtering step
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to smooth out noise and differentiation disturbances, and is able to estimate the

constant inertia parameters of a satellite through numerical simulations.

Similarly, through an Observer/Kalman filter identification method, Li [20 presents

a technique for estimating the system's unknown parameters through impulse actu-

ations and induced excitations while analyzing the displacement and mode order of

large flexible appendages on satellites; results of identification tests on a single space-

craft were shown through simulation, but the presented methods are not transferable

to or appropriate for small, reconfigurable spacecraft. Additionally, with fuel being

a scant resource for space systems, techniques that estimate at the expense of fuel

consumption are not always available.

The capabilities of the Kalman framework have recently been exploited to the fact

of being able to achieve simultaneous identification and calibration of sensor, as Kiani

[211 shows by introducing a Marginal Modified Unscented Kalman Filter (UMMUKF)

for system identification of a spacecraft's inertia tensor and the calibration of its

magnetometer's parameters. Through modifications to the sigma point sampling

scheme, an increase in accuracy while reducing the computation costs with respect

to the vanilla UKF was demonstrated through Monte Carlo simulations. As with the

previously mentioned works, no hardware validation was acquired.

Although the aforementioned framework clearly provides useful techniques, Chan-

dler [22], while similarly elucidating the importance of on-line system identification

methods for time-varying and reconfigurable systems, touches upon the endemic di-

vergence problems presented by the utilization of a standalone Kalman framework.

He therefore introduces a static approach that includes the formulation of a static

regressor, but still heavily relies on an accurate and detailed model of the system, as

well as in accurate parameter priors.

Another aspect worth mentioning is that the space robotics field has been mostly

impervious to the dramatic impact that the nonparametric estimation world has

had upon ground robotics [23, 24J; while the state-of-the-art learning and adaptive

techniques employed by the robotics community rely nowadays in Bayesian non-

parametrics [25], probabilistic inference through graphical models [26], information

28



theory [271, etc. 1281, such techniques have not been widely or commonly explored

within the spacecraft systems, as far as the author concerns. This leaves much room

for further research into the on-orbit parameter identification methods, specially for

in-space robotic assembly.

1.4.2 Adaptive Control for Spacecraft Operations

Within the control theory realm, adaptive control methods have been largely studied;

excellent references such as Ioannou's [29] textbook on the principles of adaptive

control theory, as well as the variants that Tao [30] introduces in its analyses and

designs of adaptive control systems cover a broad spectrum on the characteristics of

the approach. Nevertheless, these techniques have been shown to be quite intricate,

relying on complex matrix theory factorizations [31, 32, 33] for system decoupling

effects that are not directly translatable into simple real-time control algorithms to

be discretely implemented into a spacecraft's control subsystem.

Discrete-time formulations of adaptive controllers have been recently formulated

by Li [34], in which output sensor uncertainties are taken into account, and general-

ized for cases in which the system's dynamical model is unknown. Similarly, Maiti

[35] show a multivariable formulation of a similar problem, in which validation results

through simulated environments are presented. These types of approaches deal ex-

clusively with linearized dynamical models, and formulate the problem in the Laplace

domain to determine the convergence properties and guarantees of the algorithms.

A different take on adaptive controllers formulation is introduced by Slotine [10],

in which an Invariant Set-like solution for non-autonomous systems is generated to

formulate control and adaptation laws, while analyzing the proposed solution's sta-

bility and guarantees through continuous-time domain formulations. Some of these

ideas are expanded by Yucelen [36] in order to accommodate stochastic operations,

but still preserving a linear system.

The exploration of the aforementioned techniques withing the spacecraft opera-

tions world is scant given that the current space missions can be satisfactorily achieved

by means of more traditional control systems; nonetheless, the majority of efforts lie
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in the adaptive control of space manipulators. By analyzing unknown tumbling tar-

gets, Nguyen-Huynh [37, 38] proposes a scheme based on the momentum conservation

of the system that allows for the new ensemble's inertia parameters to be adaptively

modified. Simulation examples are presented, but no converge proofs or stability

guarantees are offered.

In the realm of satellite control, only a few avenues have been explored. Ul-

rich [39] formulates a passivity-based approach for a Simple Adaptive Control (SAC)

technique, in which no model parameters are adapted,.and the time varying gains

are directly fed into the control law. ClohessyWiltshire relative dynamics are taken

into account, and coarse test scenarios involving flyby maneuvers are demonstrated;

experimental results using MIT's SPHERES 3DOF testbed were obtained for a single

simple step response test, in which the position response was analyzed without taking

into account any attitude information or actuation. Although guarantees are given

by the passivity assumption, no stability analysis is offered for the stochastic case.

The same ClohessyWiltshire dynamics problem is tackled by Singla [40], in which

an output feedback strategy is used to provide stability proofs and convergence prop-

erties, under the assumptions of a known upper bound in the system's properties

and a bounded measurement signal provided by the sensors, modeled under Gaus-

sian noise assumptions. Coarse tracking maneuvers for relative motions are analyzed

through simulations.

Contrasting with the two former approaches, Zhang [41] addresses the nonlinear

equations of motion for rendezvous maneuvers between two spacecraft using an adap-

tive Lypaunov-based controller. Even though only theoretical predictions are posed

as a function of the obtained numerical results, insights on optimal gain selection

strategies for the controller's tuning factors are presented.

1.5 Thesis Roadmap

This thesis consists of five chapters. Chapter 1 offer a motivation for in-space robotic

assembly, a literature review of previous work on learning techniques and adaptive
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control for reconfigurable spacecraft, and formulates the research objective of this

thesis. Chapter 2 formalized the mathematical framework of the problem, introduces

the current control methodologies employed by the SPHERES testbed, and presents

the derivation and formulation of the proposed adaptive controller. Chapter 3 ana-

lyzes on-orbit SPHERES test session data, and elucidates the problem of dealing with

large system uncertainties; a comparison between traditional control methodologies

and adaptive approaches is shown using hardware implementation data. Chapter 4

presents a probabilistic approach which builds upon the data obtained through the

testing shown in chapter 3, exhibits the limitations presented by a standalone adaptive

controller while operating in stochastic environments, and introduces an algorithm

that concurrently and jointly uses an adaptive controller and a parameter identifying

estimator to overcome the problems obtained during the stochastic MRAC operation.

Chapter 5 summarizes the findings of this work, and presents future work areas and

suggestions.
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Chapter 2

Theoretical Framework

To formalize the problematics of space robotic assembly, the mathematical frame-

work is laid through a state space formulation of the problem. The different sources

of external disturbances arising from operating within a stochastic environment are

introduced, and the uncertainties within the system's parameters denoted.

A quick recap on the form of the current control techniques employed within

the SPHERES framework for position and attitude regulation is performed. Subse-

quently, an adaptive control technique called Model Reference Adaptive Controller

(MRAC) is introduced, and the derivation of a position and attitude adaptive con-

troller carried out.

2.1 Problem Formulation

Given the fact that the problem to be dealt with is concerned with the dynamics of

rigid bodies, both the position and orientation, as well as its respective rates of change,

are of interest. For convention, simplicity, and practicality, a state space formulation

of the scenario is carried out. Of particular importance are the individual states -

the set of which is called a state vector - representing the overall condition of the
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system, which in this case are chosen as:

linear velocities angular velocities - T

xp(t) s(t) y (t ) z ( t) a (t) i o(t) n(t)

position orientationJ

y(t) z(t) ]T E Rx 3

y(t) g(t) ]T E R 1x 3

(t) 0(t) ] E RiX3
. . T

6(t) (t) E R X3

position of spacecraft's center of geometry

linear velocity of spacecraft's center of geometry

orientation of spacecraft

angular velocities of spacecraft,

where 0(t) represents the satellite's roll angle at time t, 0(t) its pitch angle, and 0(t)

its yaw angle. In addition to these elements, internal system disturbances such as

a process model noise arising from actuator uncertainties and measurement noises

driven by the sensors' sensitivity is taken into account.

For a free floating spacecraft situated at a location with an absence of a gravity

well, an abstracted system governed by the differential equation

F(t) = m -a(t)

[F,(t) Fy(t) FZ(t) ]T m- [(t) p (t) ( ],

(2.2)

is obtained, where m E R+ represents the unknown ensemble's mass, and a(t) =

d (k,(t)) E R1x3 the time derivative of the spacecraft's linear velocity.

By choosing the first half of the aforementioned state vector and denoting it as

X(t) = [ xP(t) *P(t) ]T, the system dynamics can be expressed as

X(t) = [ k(t) a(t)

= [ 2(t) p(t)= 2(t yM)
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(2.1)
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x,(t)

0 (t)

0 (t)

=[x(t)

= [Mi(t)

= [q#(t)

= [#(t)

z~t)2(t)U~t)z~)]T

z~tM 
T

Fx(t) Fy(t) Fz(t)



which can then be further expressed as a linear time-invariant (LTI) system of the

form

X(t)= A - X(t) + B - u(t),

u(t) E lixr : system's control inputs,

A E Rx": system matrix,

B E R"xa : output matrix,

where i E N is the cardinality of the state vector, and fin E N is the number of available

inputs to the system. This formulation is employed to ease the manipulation of the

multiple input multiple output systems presented in the adaptive control section.

Expressing 2.2 using this form yields the following LTI system:

- (t) 0 0 0 1 0 0 x(t) 0 0 0

y(t) 0 0 0 0 1 0 y(t) 0 0 0 .
Fx(t)

(t) 0 0 0 0 0 1 z(t) 0 0 0
+ Fy . (2.4)

z(t) 0 0 0 0 0 0 i(t) -& 0 0
Fz(t)

j(t) 0 0 0 0 0 0 y(t) 0 0 L
:=u(t)

2(t) 0 0 0 0 0 0 gt) 0 0 1

:=A :=B

In terms of the output of the system, the satellite is taken to be operating under

the assumption that a positioning system is being made available (e.g., by surrounding

larger spacecraft like GPS), and that the craft possesses gyroscopes and accelerom-

eters to sense its angular rate and acceleration. Thus, an output equation of the

form

Y(t) = C -X(t) + D - u(t), with

C = IXh, (2.5)

D = OnXrn
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is obtained. This implies both a strictly proper (D = 0) and fully observable (Ixa

spans R"X") system. The latter can be proved by determining the rank of the system's

observability matrix

o= T (CA)T | (CAfl I (CAf)T 1 (2.6)

by substituting in the values of the matrices, and checking whether the entire state

space is spanned (no unobservable states) by obtaining a full rank matrix, i.e.,

rank Mo = rank (IT (I A)T (IA 5)T] = 6,

which is equal to the number of states. It can easily be seen that if the system were to

lose any of its position measurements, the observability condition would be lost, given

that rank(Mo) < 5 < n. Thus the assumption that no measurements are lost is also

made, given that a lack of these would force the controller to completely rely solely on

the process model estimate (no innovation), which could potentially be problematic

for stability conditions in high uncertainty environments.

2.1.1 Process Noise Characteristics

Knowing that most undoubtedly any real-life system subject to conditions similar

to the ones described above will behave in a non-deterministic manner, a way to

account for this intrinsic stochasticity is needed. To do this, a zero-mean continuous-

time additive Gaussian white noise w(t) model will be considered which, as explained
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in [17], can be expressed as

E [w(t)wT (T)]

QC = Q/TS

-Qc6(t - T), with

autocorrelation of continuous-time noise,

Q equivalent discrete-time noise covariance,

T, :sample period of this latter system,

6(t - T)

Qc6(t)

continuous-time impulse response, and

covariance matrix of continuous-time noise,

yielding a stochastic system

tion

driven by noise and disturbances, expressed by the equa-

XC(t) = A -X(t) + B - u(t) + BW.-W(t).

2.1.2 Measurement Noise Characteristics

To sense their state and the environment around them, spacecraft are equipped with

an array of sensors spanning from star trackers to inertial measurement units (IMUs).

Since full state sensing abilities are being considered, to simulate the data acquisition,

a measurement model with linear properties and additive white Gaussian noise is

utilized, with the form

yk = y(k) = H - X(k) + vk, (2.8)

where the linear matrix H E R"' is the observation operator, ii is the state dimen-

sion, and Vk is a zero-mean white Gaussian noise vector

Vk -- VXk Vyk Vzk

- T

V4, Vk ViII
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with discrete-time covariance matrix

o12 0 0 0 0 0

0 o-2 0 0 0 0

0o2 0 0 0
R=

0 0 0 oV. 0 0

0 0 0 0 or2 0

0 0 0 0 0 o2

where o, denotes the variance of the uncertainty distribution over the state a E

{X(t)}. The measurement noise model can be succinctly described as

Vk ~; j(0, R). (2.9)

Constant additive white Gaussian noise might not be the ideal noise model for

spacecraft sensors, given the extreme conditions to which they are subject; their

environment can radically change from orbit to orbit, going from over 100"C to under

-30'C in a matter of minutes [42]. This effect can impact a spacecraft's sensors [9, 43],

and a more thorough evaluation of the problem might greatly benefit from including

this conditions into the formulation, as well as delving into noise adaptation theory,

activities which will be added to the future work list.

2.2 Current Control Methodologies for SPHERES

The control techniques used for full 3D pose control of the SPHERES satellites rely on

linear and nonlinear PD and PID feedback strategies. These controllers are completely

agnostic to the system's underlying model and properties, and exclusively utilize the

tracking error dynamics to compute a control input driven by the tuned value of the

controllers' weights [441.
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2.2.1 Position Controller

Being one of the most utilized feedback strategies throughout industry [45], a Proportional-

Derivative-Integral control law is utilized to regulate the SPHERES position states.

The control input fed to the plant is calculated using the expression

up(t) = k- ep(t) + ki - e(T) dT+ kd + (ep(t))

/ f d (2.10)
= k,- (e(t)+ -.i ep(T) dTTd- (e(t) ,

with

ep (t) -- xp(t) - xd (t),

where Xd(t) represents the desired reference state.

By assuming decoupled translation movement, the controller is tuned by taking

as reference a second order system and defining a desired time response; this time

response is described by a natural frequency w, and a damping ratio (, both of which

are user defined parameters. Tuning PID controllers is not particularly intuitive and

is commonly performed through frequency domain analysis.

2.2.2 Attitude Controller

The orientation of the satellite within the SPHERES state vector is represented

through a quaternion formulation, which allows the system to overcome issues such as

representation ambiguities and gimbal lock situations [46]. Quaternions are a nonlin-

ear attitude representation, therefore yielding a nonlinear control feedback strategy

when calculating the errors using said representation.

By utilizing the angular rates as well as the attitude quaternion error, which is

computed by establishing a desired orientation and expressing it through a quaternion,

the Proportional-Derivative control law [47] described by equation
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uO(t) = K - qe(t) - C -00(t)

is obtained, with qe(t) denoting the quaternion error. In the 6DOF case, K E 7Z3x4

and C E R3x3 represent the proportional and derivative gains, respectively. Asymp-

totic global stability is guaranteed if and only if one of the following conditions are

met [48]:

C = diag(ci, c 2, c 3 ), ci E V+, and K = kI or K = I or K = ksgn(q4)I, k E R+

2.3 Adaptive Controller Formulation

It has been shown so far how susceptible traditional controllers for spacecraft are

to model uncertainties and unknown parameters [7]. In order to account for these

problems, the derivation of adaptive techniques is carried out throughout this section.

2.3.1 Direct and Indirect Adaptation

Within the adaptive control realm there exist two main types of paradigms: direct

adaptive controllers, and indirect adaptive controllers. The difference between the

two is quite simple, but grants them two very different types of characteristics with

its respective advantages and disadvantages.

Whenever the controller's parameters are a function of the plant's parameters, the

on-line parameter adaptation techniques are first concerned with obtaining estimates

for the latter values (e.g., mass, inertia, etc) and subsequently using these guesses to

compute the corresponding control law [29]. This approach is known as indirect or

explicit adaptive control and its block diagram representation is shown in Fig. 2-1.

Conversely, whenever the plant's model is parameterized in such a way that the

estimated parameters are the controller's parameters directly, the approach is called

direct or implicit adaptive control, given that the plant's model remains implicit [29];

the block diagram corresponding to this approach is shown in Fig. 2-2. Examples of
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output

reference +-error

Controller Law u Pan

Adjust Gains Parameter Adaptation

updated parameters

Figure 2-1: Indirect adaptive control block diagram.

indirect adaptive controllers are self-tuning PID controllers, or controllers in which

the parameters to be calculated are the coefficients of the polynomials found within

a system's transfer function [49].

output
ref ere n ce 6 error 

uotu

Controller Law Plant

Adapt Gains

Figure 2-2: Direct adaptive control block diagram.

For the in-space robotic assembly problem, it is of much interest to be able to

iteratively and recursively learn and adapt to the system's parameters on-line. De-

termining in real time physical properties such as mass, center of mass, products and

moments of inertia, amongst others, would not only allow for a more accurate model

of the system, but also to draw inferences about the status of the spacecraft at a

certain time. It is the fact of having a well-studied model describing the dynamical

interactions within the satellite's environment, paired with these aforementioned rea-

sons, that makes an indirect adaptive control approach to be favored over the simpler

factorized formulation offered by implicit adaptive control techniques.

2.3.2 Model Reference Adaptive Control

A type of indirect adaptive control formulation is the Model Reference Adaptive

Control (MRAC) technique. What an MRAC facilities is the ability to leverage one's

understanding of the underlying physical and dynamical phenomena that describe

the input/output behavior of a system [30]. Using this knowledge, a reference model

can be created and set as a target reference for the to-be-controlled plant to follow;

41



through these manipulations, a control law is formed as a function of the plant's

parameters, some of which may be well known and characterized, while others could

be very uncertain, time-varying, or even completely unknown. The goal that MRAC

seeks to accomplish is to pair the controller law with an adaptation law that allows

the system to learn and adapt the current parameter estimates, yielding a nonlinear

time-varying controller that guarantees stability and parameter convergence to its

ground truth values, asymptotically [10].

While many formulations for MRAC exist - the majority of them operating

within the Laplace domain - an intuitive approach for spacecraft control problems

consisting of equation factorizations, stability analyses, and time-domain control and

adaptation law derivations will be presented using a walked-through example.

2.3.3 Position Controller

Using the problem formulation introduced in Section 2.1, and the dynamics equation

shown in Eq. (2.2), a position controller is derived. In order to encompass an entirely

general case, one in which the force exerted upon the system is a linear combination

of the position, velocity, and acceleration of the plant, an expression of the form

F(t) = m -R,(t) + a - ,(t) + # -xp(t) (2.12)

is formulated, where x,(t) E R3 represents the position states of the satellite. It is

important to note that the coefficients a, 3 E R of the differential equation - or

model - are completely unknown and form part of the parameters to be learned

online.

A transformation of the second order system to a first order system is to be

performed. This yields a more amenable and analogous problem that when solved,

the more complicated second order problem will also be effectively solved [501. To

do this, a sliding mode approach is utilized, and a time-varying surface s, comprised

of a weighted sum of the system's position and velocity tracking errors is defined,
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obtaining

sP(t) = + A) - p(t)

_di,(t)

= + A 
dtx(t),

dt

(2.13)

where n = 2 represents the order of the governing differential equation, A E R+

is a user-defined strictly positive constant that forms part of the design parameters

(weighting factor between the position and velocities), and i, (t) being the position

tracking error defined as

R (t) = xp(t) - Xd (t), with

Xd(t) [xd (t) yd(t) Zd(t) ]T C R3 desired reference trajectory or state.

The complete expression is shown here,

newly defined variables, obtaining

S((t) j - yd(t)

Zd(t)

after plugging in and substituting for the

I y(t)

z(t)

Xd(t)

Yd (t)

Zd()J
I.

Another characteristic that the variable change yields is the fact that the control

input will be present within the expression after taking the first derivative of the sur-

face. This is convenient for the upcoming analysis, in which the functions' derivatives

will be analyzed for convergence properties and guarantees. Thus, although a tad less
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intuitively, Eq. (2.13) can be rewritten as

SP( ) = XP(t) + RP -Mpt

= (I*(t) - d(t)) + A-Xp(t)

= ik(t) - (kd(t) - A - ip(t)) (2.14)

= k(t) - kr(t ).

This part of the controller seeks to adaptively determine and learn the model

parameters m, a, and # through a Model Reference Adaptive Controller (MRAC).

Given their time-varying nature, analyses must be performed to assess the asymptotic

properties of the functions involved in the controlled translational dynamics.

2.3.3.1 Stability Analysis

Since the formulation of the problem involves a non-autonomous system (after time-

discretization and with time-varying parameters such as the mass), traditional Lya-

punov tools and theorems - like the Invariant Set Theorem - cannot be used to

reach any conclusions [10]. Instead, Barbalat's lemma will be employed to evaluate

Lyapunov-like functions and analyze the convergence and stability of the system (for

the full derivation, please refer to Appendix A):

Remark. From Barbalat's Lemma, an analogous to a Lyapunov analysis invariant

set theorem can be expressed. Therefore, if a scalar function V(x, t) satisfies the

conditions

" V(x, t) is lower bounded

" V(x, t) is negative semi-definite

" Y(x, t) is uniformly continuous in time

then V(x,t) -+ 0 as t -+ oc.
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By choosing a Lyapunov-like function of the form

1 1 T
V(s, 0) = s' (t) - mn - s()+ 5T~t 1 PI-T~t,

inf V,(s, t) = 0, and

P, >- 0 E R3x : user-defined system parameter matrix

where

(2.15)

the first condition of Barbalat's lemma is satisfied, given that it is multivariate

quadratic function in terms of the position, velocity, and parameter estimates squared

errors, lower bounded by zero.

By defining the unknown parameters' vector as

(2.16)

and taking the derivative of the candidate function while performing the adequate

matrix factorizations

V (spI t) = - (2sT (t)
(2.17)

a term with the rate of change of the parameter estimates a(t) is obtained; this term

is called the adaptation of the unknown parameters' vector, given that it expresses

how the unknown coefficients of the differential equation are changing with respect

to time.

By defining an adaptation law of the form

(2.18)an(t) := pp Yf (t)Ta-ts (l),r

and pairing it with a control law of the form

F(t) = u(t) := Yp(t) - ap - k - sp(t), where

k E R+ : strictly positive user-defined parameter
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a (t) (t) , I

-m-Ap(t)) + 2- (2ap (t) -Pi -ap(t))
= -k s,(t-st) + (sT (t) _-Yp(t) + k, (t) . p - ,p (t ),

hp(t = -[fn(t)



a negative semi-definite function for the time derivative of the Lyapunov-like function

is obtained,

V(sPt) = -k s,'(t) - s,(t) < 0.T (2.20)

This indicates that, as the lemma and corollaries state, as t -+ 00 the asymptotic

entailments

V (SP It) -+0 ----
dp (t) - 01
sP(t) -+ 0

RP (t) 0

SC (t)-* 0

hold, and the controller tends towards a stable perfect tracking state, provided the

references are bounded and stable (BIBO) U.

2.3.4 Attitude Controller

Given that no linearization steps were performed throughout the formulation for the

position controller, by following the same formulation an adaptive attitude control

law can be formulated by using the differential equation

-r(t) = J -6,(t), (2.21)

and the system matrix and vector factorizations of the form

Oxr(t) Oyr(t) Ozr(t) 0 0 0 0 0 0

Y(t) 0 0 0 Oxr(t) Oyr(t) Oz,(t) 0 0 0

0 0 0 0 0 0 xr(t) y,(t) z ,(t)J

ioat = jXX jX Y jX Z jYX yy Y yz SZ jzy jZz ,

(2.22)

(2.23)
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with k(t) = bd(t) - AO9(t). The system's factorizations are then to be paired with

ao(t) -Po . Y 0 (t)T- so(t) (adaptation law), and (2.24)

r(t) - uo(t) YO(t) -Ao - k * so(t). (2.25)

The model reference adaptive attitude controller is then combination of the adap-

tation law ( 2.24) and the control law ( 2.25), which are a function of the unknown

parameters of the system, and the performed matrix factorizations.

2.3.4.1 Clohessy-Wiltshire Dynamics Formulation

Given that the analysis shown was performed as a function of a general differential

equation expressing the dynamics of a system and an arbitrary state vector, the for-

mulation can easily be extended to handle more complex systems or mathematical

models; one such system of equations is the Clohessy-Wiltshire dynamics used to ex-

press the relative motion between two spacecraft in close proximity. The derivation of

an adaptive controller using these differential equations is relevant, since the objective

of this work is to contribute towards achieving reliable in-space robotic assembly.

By taking the equations

:(t) = 3n2 - x(t) + 2n - y(t)

Xt) = -2n - (t) (2.26)

(t) = -n z(t),

where n = Vy/10 a controlled formulation in matrix form yields

F(t)= k(t) + P -xp(t) + E -xp(t), (2.27)
m
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with coefficient matrices

0

2n

0

, and

-2n 0

0 0

0 0

-3n 2

E= 0

0

0 0

0 0

0 n2

Performing now a sliding mode transformation into a first order system with a sur-

face variable s" (t), a Lyapunov-like function V" (s;", t) can be defined to determine

the factorization utilized within the control and adaptation laws.

By taking the time derivative of the function

VCW(st) =

= s wT (t)m (kp(t) - i:r(t))

= s wT (t)m (IF(t) - kr (t) - < p - p(t) -P (M

= S wT (t) F (t) -
unknown

m

unknown

M-<- r(t) -
known

unknown

-m--iw n
known

-x () ,
known)

(2.28)

and factorizing out the result into

V cw(scw t) = s" T (t) - (F(t) - Ycw (t) -ar')

the control and adaptation law known matrix and unknown regressor vector are ob-

tained,

[rw (t)

Yew = "(

A, (t) = [ rn(t)

y'(t) x(t)

-i(t) 0

0 -1z(t)

- 2^n-h - 3ni2 T
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The control law for a system governed by Clohessy-Wiltshire dynamics would then

take the form

F(t) = u" (t) := Y"(t) - ip" - k -s;"(t), where
(2.31)

k E R+ : strictly positive user-defined parameter

complemented by the adaptation law

ap (t) := -p yc (t)T . scs(t). (2.32)

It is worth noticing the power of the formulation; not only is one now able to per-

form inferences upon the satellites mass characteristics, but also over the spacecraft's

trajectory details. The system identification that comes for free by employing this

control technique (indirect adaptive control) allows for the learning of parameters

such as the orbital radius, given that n = ft/a3 (assuming a known t).

If inference and adaptation wants to be performed over specific parameters, one

just needs to modify the process model to include them in its formulation and per-

form the appropriate factorization for obtaining the desired vector of unknowns. The

control law provides asymptotic stability guarantees, and true parameter value con-

vergence given sufficient richness in the tracking signal.

2.4 Summary

The mathematical framework describing the dynamics of the system, as well as the

sources of disturbances and uncertainties were introduced in the first section of the

chapter. Subsequently, two control methodologies were presented: the traditional

control methods used for SPHERES, which involve linear and nonlinear PD con-

trollers, and a learning approach consisting of a Model Reference Adaptive Control

strategy. Now that their formulation were posed, these approaches will be compared

and contrasted to assess their suitability to the in-space robotic assembly problem.
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Chapter 3

Overcoming System Uncertainties

One key aspect surrounding on-orbit servicing and assembly maneuvers is the level of

uncertainty that comes into play; clearly, it is this stochastic component that poses

a challenge for the traditional control systems designs and approach [7].
In order to elucidate on this aspect, analyses on the control authority and per-

formance achieved during MIT SSL's InSPIRE-II Test Sessions is shown as further

motivation.

Subsequently, a learning approach using a Model Reference Adaptive controller

is analyzed in simulation, and glass table testing results comparing its performance

against the baseline SPHERES controller using unknown hardware configurations is

shown.

3.1 Prelude to Adaptive Control

In spite of the fact that the control theory field is a rapidly evolving area, the vast

majority of control systems designed for spacecraft still utilize the so-called classical

and modern control theory techniques [471. These techniques include Laplace-domain

driven control (e.g., the almighty Proportional-Integral-Derivative controllers), Pole-

Placement methods for dealing with mostly second order systems (e.g., lead and lag

controllers), and more importantly, guarantee-offering robust control formulations

(e.g., '-4). Additionally, whenever a certain performance metric needs to be han-
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dled, criteria-optimizing controllers - such as the Bang-Bang (min-time) or minimum

fuel/energy controllers - are utilized, given that they offer a much more intuitive

and useful methodology for designing control systems with cost functions, being able

to leverage the techniques of the optimal control theory field [51J.

Given an accurate dynamics model of a system, paired with an accurate knowledge

of its parameters' values, these aforementioned control techniques, needless to say,

excel in their performance and accuracy [52]. Within the aerospace realm, this is

almost always the case, given the stringent, extensive, and thorough verification and

validation processes a spacecraft needs to undergo before being put into orbit [531.

The main objective of these exhaustive testing methods is the elimination, or at

least, minimization of the uncertainties within the system that hinder performance

and increase the inherent risk of encountering a failure.

3.1.1 SPHERES Testbed Platform

A testament to these claims is the SPHERES framework, a testbed platform for con-

trol, estimation, and autonomy algorithms that operates on board the International

Space Station (ISS) [541. Given its spherical-like design and the strategic position-

ing of its 12 CO 2 thrusters that enable it to operate in full 6DOF microgravity en-

vironment, the controllability able to be exerted upon the standalone1 satellite is

remarkable. By having its geometric center, ensemble center of mass, and thruster

pivoting points almost perfectly aligned, the degree of control accuracy allowed for

formation flight algorithms [55, 561, soft docking algorithms [57], collision avoidance

algorithms 1581, amongst others, to be successfully demonstrated on-orbit while rely-

ing on traditional control techniques.

Nowadays, test sessions involving the standalone SPHERES keep demonstrating

that, even after 10 years of continuous operation inside the ISS, successful results can

still be obtained while relying in these aforementioned traditional control techniques;

'by standalone it is meant without any of the newer SPHERES attachments such as the VER-
TIGO Avionics Stack, the stereo-vision Optics Mount, Universal Docking Ports, or the Halo Expan-
sion Device.
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the Zero Robotics competition is ran semi-annually, yielding adequate performances

from PID controllers, as well as the Tether experiment, which uses a pair of SPHERES

to study the dynamics of tethered ensembles in microgravity.

This is, however, not the case for projects involving external attachments to the

SPHERES satellite that completely modify the mass properties of the original system

(some of which are shown in Fig. 3-1). One such project is the InSPIRE-II program,

which needs to make use of Universal Docking Ports (UDP) and Halo expansion

devices to achieve fully autonomous docking and reconfiguration maneuvers.

(a) (b)

Figure 3-1: Some of the attachments available for the SPHERES framework: (a) a
SPHERES equipped with the VERTIGO Avionics Stack (VAS) and Optics Mount; (b)
Orange SPHERES equipped with the Halo expansion device, VAS, and a Universal
Docking Port (UDP), while the Blue SPHERES contains only a VAS and a UDP.

3.1.2 InSPIRE-II Program

The InSPIRE-II program is a DARPA funded project whose objective is to mature

the guidance, navigation, and control algorithms for in-space robotic assembly and

servicing missions through a risk tolerant, and dynamically authentic environment.

The addition of the UDP and the Halo peripherals were realized as part of the program

in order to fulfill the needed hardware requirements. With this enhanced hardware

suite, the requirements warranted by maneuvers such as autonomous docking and

on-orbit robotic assembly could be met.

The complexity of the augmented hardware ensemble rendered ground system

identification tests to be very complicated; a thorough analysis was not performed,
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and best estimates from CAD models were initially used. In order to improve upon

these characteristics, RGA flights were performed to assess the system's overall func-

tionality and to obtain a new prior on the new physical properties, such as mass and

inertia quantities.

It is clear then that now, the challenge is not only having to deal with a modified

system, whose true mass and inertia properties were not directly measured but in-

ferred from CAD models and on-orbit system identification tests, but also to satisfy

the demands for greater accuracy and precision from the control algorithm posed by

the InSPIRE-II objectives requirements. Moreover, additional sources of uncertainty

that include the actual force value for each of the thrusters, the ultrasound localiza-

tion sensors and metrology estimation, environmental and external disturbances such

as air drag and IR noise, plus the non-negligible 10 years of use that SPHERES have

had on station, only worsen the situation in terms of complexity.

To elaborate on the preliminary results obtained from the program's first test ses-

sions, the latest batch of tests, which include UDP Science 1.5 (TS92, 04.05.2017) and

Halo Checkout (TS86, 02.03.2017), will be briefly discussed. While the Halo Checkout

test session yielded satisfactory results in terms of objectives met (full functionality

of the hardware), both test sessions demonstrated a sheer lack of controllability of

the entire ensemble. Using telemetry data, individual degrees of controllability will

be assessed for each of them separately and then compared.

3.1.3 Docking Port Science: TS92

The objective of Test Session 92, UDP Science 1.5, was to demonstrate autonomous

docking algorithms on-orbit using the SPHERES satellite paired with a VAS and

a UDP, configuration shown in Fig. 3-2. Given that controllability wanted to be

ensured, the entire docking procedure was sliced into all of its simpler components: a

reference tracking step and glideslope translation maneuver, and a reference tracking

attitude correction maneuver. The ability to precisely perform this two movements is

paramount to the success of the more elaborate algorithms, since they represent the

building blocks upon which more complicated tests are formed.
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Figure 3-2: Blue and Orange SPHERES attempting to autonomously dock with their
respective VERTIGO Avionics Stacks and Universal Docking Ports during a run of
Test Session 78: SPHERES Docking Port Checkout.

Despite the complexity reduction of the tests to be performed by the SPHERES

ensemble, satisfactory results were not able to be obtained; not even the simplest of

maneuvers, such as a basic position- and attitude-hold or a one-axis translation, were

able to be performed to such a degree as to be compared to the performance obtained

from previous standalone SPHERES test sessions.

An example of this is shown in Fig. 3-3, in which a so-called simple dock2 ma-

neuver was to be performed. The position and attitude plots for Orange SPHERES

satellite corresponding to that test are shown in Figure 3-4. It can be seen from the

video and data plots that coarse action maneuvers like recovering from poor initial

conditions are able to be decently performed, but once finer and more precise maneu-

vers, like position- and attitude-holding, come into play the satellites do not perform

as expected.

This is especially noticeable in the Orange satellite's behavior, which is supposed

to act as a static target throughout the test. Instead, its control performance is evi-

2the "simple dock" test commands the target satellite to hold position and attitude at a reference
point in the global frame of reference, independent of the chaser satellite, who is commanded to
approach the target satellite's inertial reference position through a series of glideslope maneuvers,
effectively uncoupling all motion between both parties.
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Figure 3-3: Video of a Simple Dock (Run #1) maneuver carried out by the SPHERES
ensemble during Test Session 92: Docking Port Science 1.5. (Video speed: x80)
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(a) Position histories for Orange satellite.

Orange SPH2 Attitude Performance , - X ri) Ette

180- dad

060
50 100 150 200 25

Y (pitch) Esimate

20 -Cmmanded

0

so 5 100 150 200 250 300

-1C _ Co manE a

-180 --- -

001
50 00 150 200 250 300

Time (s)

(b) Attitude histories for Orange satel-
lites.

Figure 3-4: Plots corresponding to the Orange SPHERES satellite during Simple
Dock Run#1 shown in Fig. 3-3: position tracking (a) shows snall deviations from
the commanded references, while attitude performance (b) exhibits non-negligible
disturbances (t ~ 170 s).
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dently lacking, and a limit-cycle type of behavior is obtained. The coupling between

attitude and position control given the thruster's geometry and (unknown) center of

mass location is well represented in Fig. 3-4. The observed pattern is interesting,

since it does not seem to be neither diverging nor converging. The Blue satellite's

performance is significantly better than its counterpart, and its attitude tracking

is only disturbed by a backtracking action commanded by the glideslope algorithm

(returning to a previous gate point due unsatisfied attitude and position constraints).

3.1.4 Halo Checkout: TS86

On the contrary, the main objective of Test Session 86: Halo Checkout was to first

ensure the state of functionality of the hardware; a picture of the newly-arrived (to the

ISS) Halo Expansion devices is shown in Fig. 3-5. Nonetheless, similar controllability

tests as in TS92 for position and attitude were able to be performed, this time utilizing

a SPHERES with its Halo Expansion Device, suited with three Universal Docking

Port peripherals.

Figure 3-5: Expedition 50 Commander Shane Kimbrough of NASA floating around
with the brand new SPHERES Halos on-board the International Space Station. Pic-
ture taken during TS86: Halo Checkout.

With the full ensemble being more massive, given the size of the Halo, the question

of whether better control authority could be exerted upon this bigger assembly was
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sought to be answered. It is important to note that no on-orbit system identification

tests had been run on Halo before, and best estimates of physical parameters obtained

from CAD and the RGA flight were utilized.

The SPHERES behavior during position-hold tests was very stable, as is shown

in Fig. 3-6. The corresponding plots for the Orange satellite are shown in Figure 3-7.

Even though no specific analogous tests such as this one were run during TS92, the

aforementioned "Simple Dock" test includes a simple position-hold maneuver for the

target satellite, which is exactly comparable to this test; it was shown that the Orange

satellite was not able to stabilize its position and attitude states, and that undamped

oscillations were always present, whereas with the attached Halo configuration, no

instabilities were able to be directly observed.

Figure 3-6: Video of a Position-Hold (Run #4) maneuver carried out by the
SPHERES + Halo ensemble during Test Session 86: Halo Checkout. (Video speed:
x 16)

Therefore, some of the position-hold maneuvers with the Halo Expansion assembly

show much promise, given that centimeter accuracy for position and single digit degree

accuracy for attitude was obtained, as can be easily observed from the corresponding
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Figure 3-7: Plots corresponding to the Orange SPHERES satellite during Position-
Hold#4 shown in Fig. 3-6: similar to Blue's behavior, both (a) position and (b)
attitude tracking show very small deviations from the commanded references.

plots. However, the same performance is not entirely obtained when slightly more

complicated tasks such as translation are carried out. A translation test run in which

the satellites had to sequentially travel 40 cm in the positive x-direction, 40 cm in

the positive y-direction, and 40 cm in the positive z-direction is shown in Fig. 3-8.

Unfortunately, as seen in the video, the Orange satellite runs out Of CO2 gas

during the run and thus is not able to successfully complete the test. The data

obtained for the Blue satellite is shown in Fig. 3-9. A more stable response, both in

position and in attitude, as compared to results from TS92 are obtained, although

not with centimeter accuracy as with the position-hold maneuvers previously shown.

In Fig. 3-9(a) the translation histories for each axis composed of slightly overdamped

responses are shown; intuitively, this behavior makes sense, as SPHERES with Halo

form a more massive system that needs to be controlled by the same actuators. In

Fig. 3-9(a), the tracking performance seems to be following the correct trend, but still

large angle errors are seen throughout the test.

During these test sessions, the control strategies employed by the satellites relied

on PID and PD controllers for the position states, and on quaternion feedback strate-

gies 3 for attitude control (using a "proportional" gain for the nonlinear quaternion

3 control law of the form u(t) = -Kqe(t) - C6, with K E RZ314 acting as a proportional gain
multiplying the current orientation error of the satellite expressed in quaternion form, and C E 1 X3
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Figure 3-8: Video of a 40 cm XYZ translation (Run #2) maneuver carried out by the
SPHERES + Halo ensemble during Test Session 86: Halo Checkout. (Video speed:
x 16)
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states and a "derivative" gain on the angular rates). Again, constant values for the

system's physical parameters were considered, and no adaptive techniques were uti-

lized to account for any uncertainty. Needless to say, the approach was unable to fulfill

the accuracy and precision requirements warranted by the InSPIRE-II objectives.

Consequently, much thought has been given to determining the root of the prob-

lem, and causes such as pressure gauge irregularities, metrology and localization as-

pects, or infrared noise have been rendered to be less likely when compared to the

trajectory generating and control algorithms, both of which heavily rely on precise

knowledge of the mass characteristics of the system. This leaves as an ultimate culprit

the fact that the system and its properties are not known accurately enough to exert

sufficient control authority for achieving the program's objectives using the current

algorithms.

Summing-up Even though a slightly better overall performance was shown while

using the SPHERES paired with the Halo devices as compared to the UDP configura-

tion, there is still a need for improving the position and attitude control performance

if maneuvers such as autonomous docking want to be reliably performed. Conclu-

sions and insights on further actions to be taken that could potentially alleviate the

observed problem are proposed and discussed in the following section.

3.2 On-Board Learning through MRAC

So far, it has been shown how extremely effective traditional time-invariant con-

trollers are whenever a plant's model, parameters, and variables are well known. After

all, a perfectly tuned Linear Quadratic Regulator (LQR) or Proportional-Derivative-

Controller (PID) will always outperform an adaptive or iterative learning approach,

given that the latter tend to the former as its parameter value estimates start to

converge to their true value.

Nonetheless, there are scenarios in which high nonlinearities are present through-

acting as a gain for the rate of change of the satellite's orientation, i.e., a derivative gain [59, 47].
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out, and where a high-fidelity characterization of the system's properties is intractable/un-

feasible to obtain [601. Space missions involving on-orbit servicing and assembly ob-

jectives push these systems to operate outside the classical control methods' thriving

regions, which is the space in which one is able to linearize a system, and fully describe

it using a time-invariant model 171.
Simulation results are first be shown to demonstrate the learning behavior of the

algorithm, followed by hardware implementation results from ground testing using

the SPHERES satellites and the glass table facilities.

3.2.1 Simulation Tests and Results

Using the presented formulation for a position MRAC given a system with double

integrator dynamics, an instantiation of such a controller was implemented in order

to assess its performance with respect to the mass characterization of a satellite.

Assuming perfect full-state feedback information within the simulator, several

important characteristics of the Model Reference Adaptive Controller can be observed.

The simulation performed assumed zero prior knowledge of the satellite's mass

property, initializing with a value of r7ho = 0 kg. The ground truth value of the

spacecraft's mass was set to be of m* = 3 kg.

A sinusoidal signal in all three dimensions was utilized as the desired tracking

reference state. This desired state is what then allows for the computation of the

tracking error, which is just the difference between the current state and this reference.

It is exactly this tracking error which acts as the information source for the inferences

taken by the adaptation law; this is easily seen in Eq. 2.18, in which the rate of

change of the estimates is posed as a function of the tracking error sp(t) variable.

Once a perfect tracking state is reached (i.e., zero tracking error obtained), the rate

of change of the estimates in the unknown quantities vector A, would be null, reaching

a constant value for the plant's parameters.

The phenomenon described can be very clearly seen in Figure 3-10. This is an

extremely important characteristic of the MRAC that needs to be taken into consid-

eration when the implementation wants to be carried out in real life. The adaptation
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happens on a so-called "need-to-know" basis, which means that even when the system

hasn't been fully identified and characterized (as is the case for Fig. 3-10 at time

- 8 s), if there is no more need for the adaptation to happen (i.e., perfect tracking

objective fulfilled), then the system just keeps its current parameter estimates, which

are just "good enough" for the perfect tracking to be performed.

Conversely, if sufficient richness within the tracking error signal is available, full

system identification and parameter characterization is possible, as is shown in Fig-

ure 3-11.

It is clear to see in Fig. 3-11(a) that a full characterization of the mass parameter

is obtained, with the estimated value converging to the ground truth at time t a 12 s.

As compared with Fig. 3-10, in Fig. 3-11(b) a larger amount of information carried by

the tracking error signal (larger errors) is shown; it is thus clear that the more drastic

deviations from the reference objective alloted a broader "sufficient richness region",

in which persistent excitation was supplied to the adaptation law and the convergence

properties of the adaptive controller were able to be sufficed. The gap between the full

characterization period region and the sufficient richness region allows one to see that

while a lack of persistent excitation signifies an incomplete characterization procedure

(e.g., see Fig. 3-10), and "excess" of information is of no particular relevance to the

behavior fo the deterministic MRAC; this key point is shown is of great impact for

the stochastic version of the algorithm and is addressed in the following sections.

Persistent Excitation For this aforementioned reason, a term coined persistence

of excitation is used to describe the amount of inference information that a signal is

delivering to the adaptive controller 1611. This allows for the introduction of a very

important caveat, which is the trade-off between performing a full system identifi-

cation upon the satellites parameters and performing as optimal of a maneuver as

possible. It is clear then that for the convergence of the estimates to its true param-

eter values a minimum amount of information needs to be obtained, which in the

MRAC case would be through the tracking error signal.

Hence, to ascertain a parameter estimate convergence, techniques such as pur-
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Figure 3-10: Deterministic MRAC run (perfect full-state feedback): (a) adapted
parameter history for the mass estimate under the absence of persistent excitation, (b)
state, reference, and control input histories; it can be clearly seen how the adaptation
stops after the system reaches a perfect reference tracking state (at ? 8 s). Initial
estimate r^ 0 = 0 kg, true mass parameter m = 3 kg.
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posefully introducing errors to the system, slight intentional deviations from reference

states, or constant actuator usage for obtaining a signal with sufficient richness are

commonly described in the literature [621. However, for space systems, this poses an

unacceptable practice, since fuel is a scant and precious resource that cannot neces-

sarily be wasted in this fashion [63]. This limitation is further analyzed, and solutions

are proposed throughout the next sections of this work.

Perfect Tracking Region As is shown towards the end of the test in both Fig. 3-

10(b) and 3-11(b), once the system enters a perfect tracking region, the parameter

estimates stabilize, remain constant (no learning is available when sp(t) = 0), and

the state gracefully slides along the hypersurface defined by the weighted sum of

the position and velocity tracking errors. This behavior can certainly only happen

whenever perfect full-state feedback is available, which implies operation within a

deterministic framework. Unfortunately, the real world is not as kind, and such

a thing as a perfect sensor or perfect measurement readings does not apple when

transitioning to plausible work environments and scenarios.

Needless to say, such a thing as sp(t) -- 0 would be infeasible given the all-pervasive

effect of noise withing a real-life environment and the truncation errors inherent to

numerical techniques (computers are not perfect). Throughout the next section, the

effect caused by these aforementioned properties to the MRAC while operating in a

stochastic world are shown and analyzed.

3.2.2 Glass Table Testing

The Model Reference Adaptive Controller formulation presented in Subsection 2.3.2

was arranged into an algorithm to be further tested using MIT Space System Labora-

tory's SPHERES ground testing facilities. Using a SPHERES satellite, an air carriage

base, and a glass table, a 3DOF - x and y axis translation plus z axis rotation [yawl

nearly frictionless environment can be recreated. The setup is figured in Fig. 3-12.

To assess the performance of the adaptive controller, a comparison against the

SPHERES standard PD controller was realized. The test chosen for this experiment
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Figure 3-12: SSL's SPHERES ground testing facilities.

was a simple regulator maneuver, in which the satellite was to be initialized at an

offset from the glass table's origin (x : 0.0 m, y : 0.0 m), and the controller had to

then compute the necessary torques and forces to bring the system to the origin and

position-hold at that point. A pictorial depiction of the test overview can be found

on Fig. 3-13.

A formulation for both position and attitude adaptive control was utilized, and

in order to rigorously test them, initial estimates for the mass parameter and for

the moments and products of inertia were taken to be equal to zero (ino = 0 kg,

IO = 03x3). The baseline and standard SPHERES PD controller was granted the

physical properties corresponding to ones determined during a Reduced-gravity flight

experiment with the Halo device, with a Universal Docking Port attached to Halo-

Port 6 (Configuration #1 for the realized tests).

Given the fact the the center of mass will not, almost surely, be aligned with the

thruster's actuation center point, the position and attitude dynamics are certainly

rendered to be coupled. Even if the satellite's initial position starts with an attitude

error close to zero (UDP pointing towards the positive x-axis), the offset in position
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Figure 3-13: Regulator test overview for comparing the performance of the two con-
trollers. The SPHERES/Halo assembly starts at an offset position from the origin,
and needs to find its way towards the origin of the glass table.
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will induce changes in the yaw angle, being able to test both controllers simultane-

ously.

3.2.2.1 Hardware Configurations

It is important to ensure that the adaptation could handle distinct magnitudes of

uncertainty, and for this, three different hardware configurations were considered. All

three of them are shown in Fig. 3-14 with their respective attachments.

Configuration #1
-Docking Port

Configuration #2
-Docking Port
-Optics Mount

Configuration #3
-Docking Port
-Optics Mount
-Robotic Arm

Figure 3-14: Hardware configurations used for MRAC/PD comparison.

All configurations have the SPHERES satellite, the VERTIGO Avionics Stack

computer, and the Halo Expansion Device in common. Configuration #1 includes one

Universal Docking Port as its only attachment, which is the physical configuration to

which the baseline SPHERES PD controller will be tailored. Configuration #2 has,

aside from the Docking Port from Config.#1, a stereo-vision camera optics mount

attached to the Halo device, while Configuration #3 includes all of the former devices,

in addition to a robotic arm. It is worth noticing that the size of the robotic arm,

with respect to the rest of the assembly, is very comparable, a fact which greatly

influences the inertia proportions of this latter configuration.

3.2.2.2 Algorithm and Implementation

Like the majority of the current control systems, SPHERES uses a discrete digital

control approach for controlling its 12 actuators. Each control cycle is ran once per

69



second, and consists in determining the thruster firing times as a function of the

needed and calculated forces and torques. A high level overview of the SPHERES

control loop is depicted in Fig. 3-15, in which the flowchart shows the position in

which the adaptive control subroutine would be instantiated.

Co.*ol Loope aI Z

Figure 3-15: High level flowchart representing the overview of the SPHERES control
cycle. Within the 1 Hz loop, the Model Reference Adaptive Controller subroutine is
to be called to compute the warranted forces and torques given a desired state vector.

Thus, the presented continuous time formulation must be discretized and a se-

quential algorithm must be devised for its appropriate implementation. The steps

followed by the programming code are shown in Algorithm 1, along with its helper

functions, which are detailed in the following sections. SPHERES Test Projects run

on an on-board DSP; all implementations were written using C programming lan-

guage.

Algorithm 1 Discrete-time MRAC algorithm formulation.

1: procedure DT-MRAC
2: Xk kk, 9 k, @/-'k] <- quat2eul(Xk) # just for attitude
3: Xk +-- X, - Xdk
4: s -e computeSurface (X,m
5: Yk +- matrixFactY (sk)
6: ak umrU+nAdapt atiOLaW (P,kasl)
7: ak - gethurrentEst imates (tk, oav1, aon1)
8: Uk +- getForcesAndTorques(sk, Yg, ak, k)

The following helper functions follow the mathematical equations derived through-

out the MRAC formulation. It is assumed that the necessary variable handle is al-

ready being taken care of, and that the warranted parameters are available inside

each call.
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computeSurf ace (Xk, A) The hypersurface calculation expressed by the variable

change in Equation 2.13 is to be computed utilizing the constant gain A and the

state error vector, following the expression

( [k] [ d[k] x[k] Xd[k]

s[k]= p[k] - pd[k] + A- y[k] - yd[k]

L[k] L[k] z[k] LZ[k]

matrixFactY(sk) The form of the matrix of known quantities Y is ad-hoc and

entirely dependent on the model employed for the MRAC's formulation. For a double

integrator system, the factorization can be found in Equation A.4, while Equation 2.29

expresses the factorization warranted by the Clohessy-Witlshire dynamical system.

runAdaptationLaw(P, Yk, Sk) After obtaining the matrix factorization, the rate of

change of the parameter estimates is to be computed, following the expression

: d[k] i[k] -Jad[k] x[k] xd[k]

[k]=-P - yd[k] y[k] - Yd[k] .

dz[k] j[k] d[k]j z[k] z j[k]

getCurrentEstimates(ak, ak1, ak-1) For the calculation of the current time step's

parameter estimates, a numerical integration step needs to be carried out, using the

values of previous time steps as well as the formerly computed rate of change. Making

use of the trapezoidal rule of integration, one obtains

A[k] = a[k - 1] + a[k - 1] (3.1)
2

getForcesAndTorques(Sk, Yk, ak, k) To finalize the Discrete-Time MRAC call, the

corresponding forces and torques need to be computed. By following the derived
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control law shown in Equation A.6, the discretized version can be computed as

I, k 2 k x [k ]

u[k] = ?h[k] Pr[k] +&[k] p[k] + 3[k] y[k]

[k] [[k] z[k]

[k] id[k] x[k] xd[k]

- k p[k] - pd[k] +A- y[k] - yd[k] .

{ [k] [d[k] z[k] zd[k]

3.2.2.3 Results

After finalizing the algorithm's implementation, multiple runs for each controller, for

each configuration, were performed in order to collect data sets, video recordings, and

assess their performance difference. Graphical comparisons will be showed through

phase plots and state histories, and performance metrics in terms of error character-

istics will be determined using the compounded tests for each of the controllers (the

full data set plots, videos, and comparison is shown in Appendix B).

A sample test run for both the baseline and the Model Reference Adaptive Con-

troller using configuration#2 is shown in Fig. 3-16. A similar behavioral trend from

both controllers is observed throughout the glass table testing session; large position

and attitude overshoots exhibited by the baseline controller, and a slower, more pre-

cise control actuation from the adaptive controller's part that incurs lower tracking

errors.

The most drastic difference between the two controllers' performance is shown

while using configuration#3, which includes a docking port, the stereo-vision optics

mounts, and a robotic arm. Arguably the hardest of the three, given the non-negligible

change in the inertia properties induced by the addition of the robotic arm, the test

clearly shows how unstable can gross uncertainties in model parameters render a

traditional PD type of algorithm; even though the baseline controller is able to stop

the spinning motion and counteract it, it was not able to exhibit any converging
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PD Config. #2: UDP+Goggles - X and Y state history
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(a) Config.#2 baseline xy-states. (b) Config.#2 MRAC xy-states.

Figure 3-16: X and Y state histories for Configuration #2 under (a) SPHERES PD
controller and (b) MRAC controller.

stability properties given the alloted test time. This behavior is shown in Fig. 3-

17(a).

(a) Baseline (b) MRAC

Figure 3-17: Baseline PD controller and MRAC test with hardware configuration #3
- Halo Expansion device with a docking port, the VERTIGO stereo-cameras, and a
robotic arm. (Video speed: x10)

Quite conversely, the story for the adaptive controller throughout configuration

#3's trial run turned out to be entirely different, as seen in Fig. 3-17(b). Transla-

tion is again achieved with almost no attitude error, and position holding is initially

accurately kept at a steady point. After some instants, it seems as if the weight

and inertia of the robotic arm start inducing a spin in the yawing axis; the satellite

tries to compensate for the error but it cannot completely, and then starts to slowly

diverge from the set point. Despite that, the performance difference in comparison to
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the baseline PD controller is quite significant, yielding its results to be satisfactory.

More importantly, notwithstanding the fact that zero prior knowledge about the

physical properties of the system was given, a stable system was observed.

The complete plots detailing the x- and y-state histories, the attitude control

performance (yaw angle), and the individual phase plots corresponding to each of the

tests, for each configuration, can be found in Appendix B.

By merging all phase plots into a single graph, the performance difference between

both controllers can be quickly and pictorially seen. Shown in Fig. 3-18, a comparison

of all hardware configuration runs for both controllers is presented. The dashed

lines represent the baseline PD controller trajectories, while the solid ones depict the

MRAC's trajectories.
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Figure 3-18: Phase plot comparison between all configuration runs for both con-
trollers. The green shaded regions represents the area in which the MRAC was able
to contain the majority of the trajectories.

A noticeable trend followed by each controller can be seen; the baseline controllers
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tend to travel initially towards the positive x-axis, always overshooting its target and

needing to subsequently correct the error by curving around, and position-holding

close to the origin (except for the baseline's arm run). In contrast to this, the MRAC

tends to command to the satellite forces and torques that take it in a much straighter

direction, tending not to overshoot neither in the x- nor the y-axis direction. In fact,

a shaded region encompassing the MRAC's trajectories can be overlaid on top of

the phase plot, more or less indicating the common operation region taken by the

controller, for any hardware configuration.

A similar comparison for the attitude control performance in the yaw angle is

presented in Figure 3-19. Again, the solid lines represent the z-axis rotation history

exhibited by the tests using the Model Reference Adaptive Controller, while the

dashed lines denote the baseline PD controller.

MRAC vs Baseline - Yaw Control Comparison
100- T I MRAC#1

- MAC#2
80- -- MRAC3 -

-asen#l
60 -Baselne#2

- Baseline#3

40 - - Targetre
- MtRAC area
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-20-

-40-

-60-

-80-

-100-i
0 20 40 60 80 100 120 140

time [s]

Figure 3-19: Attitude control performance comparison between all configuration runs
for both controllers. The green lines encompass the region in which the MRAC was
able to maintain the yaw angle, for all configurations.

Although the errors are definitely not negligible, the MRAC tracking performance

largely surpasses the baseline controllers'. It can be seen that the yaw tracking error

for the adaptive approach is kept within some bounds delineated by the green lines,

and that smaller and less energetic oscillations are present throughout the tests. A

steadier trend in the yaw history is observed for the MRAC, especially after the

translation-induced transients have passed; towards the end of the tests, the histories

for the yaw angles tend to flat-line for the adaptive controller, meaning that the
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Table 3.1: Position and attitude tracking error statistics computed for the SPHERES
baseline PD controller's compendium of glass table tests.

Baseline Controller Error Statistics

mean - t std - a var - a2

X-Pos Ctrl 9.92 cm 19.18 cm 368 cm 2

Y-Pos Ctrl 11.61 cm 24.76 cm 613 cm 2

Yaw Control -1.230 30.920 9560 2

Table 3.2: Position and attitude tracking error statistics computed for the adaptive
approach compendium of glass table tests using an MRAC control law.

MRAC Controller Error Statistics

mean - it std - a var - a 2

X-Pos Ctrl -2.2 cm 7.94 cm 64 cm 2

Y-Pos Ctrl 7.99 cm 15.17 cm 230 cm 2

Yaw Control -3.010 10.770 1160 2

satellite was able to attitude-hold.

Using the bulk of information acquired from the glass table tests, statistical mea-

sures for the tracking errors are able to be computed. The data corresponding to

the baseline PD controller is shown in Table 3.1, while the one corresponding to the

adaptive approach can be found in Table 3.2.

Summing-up The implementation and glass table testing results obtained indicate

that a move towards less conventional control techniques, such as an adaptive and

learning approach, appears to be quite promising. Even when the PD controller

was expected to outperform the adaptive approach for the test run with hardware

configuration #1 (since it was entirely tailored for those specific physical properties),

the MRAC was able to yield smaller tracking errors and an overall more acceptable

performance.

The implications these results have are very important, since they indicate that

the knowledge of the system's actual true parameter values are not as well known as

expected. These large uncertainties governing the system's operations and the control

authority that the algorithms are able to exert upon it are the ones that this work

intends to lessen, in order to be able to reach the performance requirements warranted
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by space missions such as autonomous docking and on-orbit robotic assembly.

3.3 Summary

An in-depth motivation through InSPIRE-II test sessions' analysis was firstly intro-

duced to elucidate on the main problems encountered during on-orbit operations. In

order to overcome the uncertainties that govern the system, an MRAC control ap-

proach was first analyzed through simulation to assess its learning capabilities and

subsequently implemented on ground hardware to perform a direct comparison to

the baseline SPHERES PD controller. The obtained results show promise in terms

of increasing tracking performance, and are further analyzed in the next section to

determine the best way to leverage them for working towards reliable autonomous

in-space robotic assembly operations.
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Chapter 4

Probabilistic Operation through

Composite Adaptation

Based upon the conclusions drawn from the aforementioned analyses, and to deter-

mine how the learning approach impacts the controllability of the system, a prob-

abilistic approach for assessing the control performance level of a system will be

introduced. A metric to gauge the effectiveness of control algorithms employed for

in-space robotic assembly that allows for a more incremental development cycle is

proposed, and preliminary results for its utilization are shown.

Additionally, the limitations for operating within a stochastic environment ex-

hibited by the MRAC approach are shown through simulated examples, and an im-

provement upon the algorithm that would allow for a better adaptation behavior is

formulated.

4.1 Data Analysis through Probability Models

It is unnatural to think of the docking problem in a deterministic sense, since it will

never be possible for neither the chaser nor the target satellites to be able to perfectly

hold their pointing directions towards a single and corresponding mutual location,

and then just simply thrust to finish the docking maneuver. Hence, a probabilistic

approach on the analysis of a satellite's control performance can be taken, in terms
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of assigning a metric that, on expectation, would allow one to describe the likelihood

for an objective to be achieved, such as autonomous docking.

By having some specifications describing the characteristics of a system, i.e., phys-

ical properties, performance capabilities, etc., it is possible to develop a set of require-

ments that specify the attributes warranted for the success of a certain objective. This

deterministic group of statements can then be translated into a probability model that

accounts for the variation that the system is able to tolerate and still achieve a mission

success outcome.

Concurrently, data regarding the controllable aspect of the system is to be ana-

lyzed, and the useful information that is able to be gathered needs to furthermore be

fitted to a second probability model. This allows for some probabilistic comparison

to be performed upon the two models, and a metric to be computed given the two

pieces of information.

4.1.1 Attitude Control Performance Analysis for InSPIRE-II

Utilizing the physical characteristics of the SPHERES docking ports, shown in Fig. 4-

1, an analysis can be performed to determine the off-nominal situations under which

the docking maneuver can still be successful. An example of these tolerable errors

intrinsic to the system would be the capacity of successfully accomplishing a docking

maneuver even when a SPHERES docking port comes in slightly tilted, or with an

off-centered position.

From this characterization, maximum error bounds on the satellites' state vector

can be computed. For the attitude control of the spacecraft, a value for the maximum

angle deviation allowed (0max) for the chaser to still perform a successful docking

maneuver can be calculated to be 0max ~ 2.50. This implies that, at the time of

docking (while position-holding in front of the target), the chaser's attitude controller

performance should yield errors of less than 2.50 in all axes (for the full derivation,

please refer to Appendix C).

The data utilized for the elaboration of the probability models for both the target

and the attitude error distributions consists of over 4880 data points spanning around
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Figure 4-1: The SPHERES Universal Docking
dimensions of the lance and hole pair.

five to six test runs, per satellite, per test session.

Target Distribution By reasoning about the problem in a stochastic manner, this

latter requirement can be posed as a Gaussian probability density function (pdf); in-

stead of using a strict bound, probability masses can be employed. Hence, a Gaussian

pdf with a 3o- = 0max parameter can be utilized in lieu of the requirement. By setting

the 6
max value to be three times the normal distribution's standard deviation (-), it is

being specified that at least 99.7% (basically ALL) of the attitude error performance

data points obtained should be lower than said value. This would yield a probability

model encoded with the requirements and described by

target distribution :~ Q M = 0, o- = Omax

Attitude Error Distributions In order to perform a comparison against the

target distribution, probability models of the system need to be generated. For this,

test data or real time data can be analyzed to determine the statistics behind the

performance of a spacecraft. In the InSPIRE-II case, given the observed error between

the attitude tracking estimates and references in each of the three degrees of freedom,

a probability distribution is able to be determined for the roll <$, pitch 0, and yaw 0

control of the two ensembles (SPHERES + VAS + UDP and SPHERES + Halo and

friends).
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Table 4.1: Attitude tracking error statistics for all 3-Axes computed for the Blue
SPHERES during both Test Session 86: Halo Checkout and Test Session 92: Docking
Port Science 1.5.

Blue SPHERES Attitude Control Error Statistics

mean - p std - a var - -2

Roll Error (A) -2.2 cm 7.94 cm 64 cm2

Q Pitch Error (AO) 7.99 cm 15.17 cm 230 cm 2

Yaw Error (AV)) -3.010 10.770 11602

Roll Error (Z#) -2.2 cm 7.94 cm 64 cm 2

- Pitch Error (AO) 7.99 cm 15.17 cm 230 cm2

Yaw Error (A$) -3.010 10.770 1160 2

Table 4.2: Attitude tracking error statistics for all 3-Axes computed for the Orange
SPHERES during Test Session 86: Halo Checkout. No useful data was acquired
during Test Session 92: Docking Port Science 1.5.

Orange SPHERES Attitude Control Error Statistics

mean - p std - a var - a2

Roll Error (A#) -2.2 cm 7.94 cm 64 cm 2

Te Pitch Error (AO) 7.99 cm 15.17 cm 230 cm2

Yaw Error (A4) -3.010 10.770 11602

Thus, one probability model for each SPHERE (Blue and Orange) for each con-

figuration (Halo and UDP) should be able to be obtained. Unfortunately, there were

no successful nor acceptable position-holding tests for the Orange SPHERE during

TS92, so no model was able to be calculated for the Orange SPH + UDP hardware

configuration. The error statistics for the three probability models are captured in

Tables 4.1 and 4.2.

Comparison and Objectives After obtaining the probability models, the com-

parison with the target distribution can be performed. It is important to remember

that what the target distribution expresses is the area on which the majority of the

collected attitude data points prior to the docking maneuver (e.g., position holding

right in front of the target) must lie in order to probabilistically say that the docking

maneuver will succeed. It is completely dependent on the mechanical properties of

the docking ports and the Halo and UDP configuration (distance from GC to lance

tip, hole dimension, etc).
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The comparison between the Blue SPHERES models and the target distribution is

shown in Fig. 4-2, while the one for the Orange SPHERES can be found in Fig. 4-3. In

this case, wider distributions signify a poorer performance (larger variance), meaning

that the spread of the tracking error points is larger. Additionally one would want for

the mean tracking error to be identical to zero, but offsets can certainly be observed

in the data results.
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Probability model comparison for attitude control requirement, Blue SPHERES in Halo config
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Figure 4-2: Probability model comparison for the Blue SPHERES attitude control
performance in its UDP (top) and Halo (bottom) configuration.

The comparison between the probability models obtained for the Orange SPHERES

is shown in Fig. 4-3, in which only the Halo configuration is plotted. From these re-

sults, it is quite interesting to observe that the roll 0 control distribution for the

Halo configuration is almost identical to the target distribution, not only in width

(variance), but also in its center point (pg 4 00!). This signifies that the Orange

satellite should, in expectation, have no problem with the docking maneuver in terms

of controlling its roll # attitude, since it accurately satisfies the derived requirement.

This result is very informative, since this same attitude axis could not be correctly

controlled, at any moment, by the Orange and UDP configuration during TS92. The
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Figure 4-3: Probability model comparison for the Orange SPHERES attitude control
performance in its Halo configuration; no useful UDP configuration data was obtained
from TS92.

possibility that Orange's actuation capabilities were the culprit for the instabilities

observed during this latter test session can be ruled out, leaving as possible failure

causes both the poor system characterization of the ensemble and the control and

path planning algorithms.

Another aspect that can be easily assessed is the difference in degree of controlla-

bility between the Halo and UDP configuration. For this, it is particularly informa-

tive to contrast the Orange SPHERES probability models to the ones for the Blue

SPHERES. The comparison is shown in Fig. 4-4.

Just by inspection, it can easily be seen that the control authority exerted upon

both systems is very comparable; in the roll # direction, the Halo system is in fact

much better controlled than the UDP ensemble. The pitch 0 angle is in both cases

the worst controlled degree of freedom, represented by a very wide distribution; for

the UDP system, the probability model appears to be more aligned with the target

distribution, meaning that the mean AO errors for the Blue satellite are closer to

zero. The only clear difference is noticed in the yaw V) angle, in which there is a

better performance exhibited by the UDP system.

Overall, it is not particularly clear which configuration is more controllable, al-

though it seems that the UDP system might be marginally better behaved. This

assessment, paired with the fact that for TS86b no previous system identification

tests were performed for the Halo system (best estimate parameter values from CAD
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Probability model comparison for between Blue SPHERES in UDP configuration and Orange SPHERES in Halo configuration
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Figure 4-4: Probability model comparison between the two hardware configurations,
in all three attitude degrees of freedom; the Blue SPHERES plus UDP configuration
is assessed against the Orange SPHERES plus Halo configuration.
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were used for inertia, mass, center of mass, etc, as no better guesses were available)

allows for the conclusion that the Halo ensemble shows more promise in terms of

performance improvement. This follows ones intuition, as the Halo ensemble's mass

is much more evenly distributed along the XY-plane, and even though more massive,

it can likely be rendered much more controllable than the UDP ensemble.

Summing-up A clear takeaway from this approach is the fact that if some guar-

antees on the likelihood of docking success are sought to be given, then an increase

in control performance is warranted. In terms of the probability models, this means

the reshaping of the distributions in order to increase a certain degree-of-freedom

metric score. An approach with preliminary results on how to accomplish this aspect

is proposed in this next section.

4.1.2 Likelihood Accretion through Learning

Through the analysis of test data from the InSPIRE-II ISS sessions, the observed

lack of control authority upon the satellites was attributed to be due to the poor

parameter estimates of our plant's model. This means that the level of uncertainty

surrounding the physical properties of the system such as the center of mass, moments

and products of inertia, ensemble mass, etc., are hindering the satellites capabilities

of achieving the mission objectives. The fact that the system can't be characterized

as accurately enough as demanded by traditional control methods' requirements war-

rants for solutions to be sought elsewhere; an adaptive approach is shown to yield

promising results on this issue.

In order to overcome these problems, an adaptive approach in which the satellites

gradually learn the unknown plant's parameters through control theory and estima-

tion methods is proposed. It is then claimed that if on-board learning is performed,

an increase on the likelihood of successfully achieving a docking maneuver is to be

observed. This is denoted as likelihood accretion through learning.
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Preliminary results from glass table testing. As compared to the InSPIRE-II

analysis, this time no target distribution is used, since no requirements were flowed-

down given the nature of the test, and sheer comparisons between each degree-of-

freedom performance will be assessed for the two control approaches. Probability

models will be generated with the statistics calculated from the glass table test runs

shown in Tables 3.1 and 3.2.

Results for the x-position performance models between the baseline controller and

the MRAC are shown in Fig.4-5. The fact of operating under gross uncertainties in

terms of the physical properties of the system definitely affects the performance of

the baseline PD controller. The noteworthy part is how, through on-board learning,

the probability model undergoes a reshaping transformation which yields a lower-

variance Gaussian distribution. Since our interest lies on the 3u-probability mass

spread and location, the fact that this type of behavior is observed is remarkable,

since the increase in certainty implies, for instance, an increment in the likelihood of,

in expectation, achieving a successful docking maneuver.

Probability model comparison between baseline PD and adaptive MRAC
I I I I I I I 1 1

0.05 - MRAC X-Ctrl Az" : Ar~- (pz, ax)

M
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adaptation0
-50 -40 -30 -20 -10 0 10 20 30 40 50

position error AX, [cm]

Figure 4-5: Glass table control performance on the x-position is shown for both the
PD controller and the MRAC; it is apparent that by being able to adapt to the
unknown mass and inertia parameters, a distribution with less variance is obtained.

Similarly, for the y-position control performance, the same type of behavior is

obtained. The results for this degree-of-freedom are shown in Fig. 4-6. It's clear

that not only is the certainty of the probability model increased, but also its mean
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is shifted towards the origin, which is the desired transformation to be obtained (a

zero-mean error performance is the goal). Finally, and perhaps the most drastic, the

increase in attitude control performance about the yaw 0 axis is shown in Fig. 4-7.

Probability model comparison between baseline PD and adaptive MRAC
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Figure 4-6: Glass table control performance on the y-position is shown for both the
PD controller and the MRAC.
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Figure 4-7: Distribution reshaping of the attitude control performance of a SPHERES
satellite with uncertain mass and inertia properties; through the use of a paired
adaptive and control law, better tracking performance is yielded, and thus an increase
in the likelihood of successfully achieving the mission's objectives.

Summing-up Thus, an approach for incrementally analyzing and obtaining a

performance metric given a set of requirements was shown. With it, a heuristic that
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expresses, in expectation, the likelihood of achieving a particular mission objective was

introduced. Finally, through actual hardware implementation and glass table testing,

it was demonstrated how an adaptive approach on control strategies employed by

systems working under non-negligible parameter uncertainties is beneficial in terms

of increasing the plant's tracking performance. By piecing everything together, an

algorithm that allows the system to reason about its performance can be introduced;

since autonomous docking is the main objective, the general algorithm is tailored to

handle this problem.

4.1.3 Probabilistic Docking Algorithm

By considering the entire autonomy cycle and using the probabilistic metric at a

higher level, rather than just at the lower control level, the information about the

current performance of the system obtained from the probability assessment could

potentially be utilized within algorithms such as the path planner, the scheduler, and

a higher-level decision making executive, such as an on-board feasibility examiner.

The proposed structure for the algorithm can be shown in Algorithm 2, where the

control system is included as the last step of the autonomy loop cycle. An overview

on the mechanics of the functions utilized within the algorithm are provided in this

section.

Algorithm 2 Probabilistic docking algorithm for autonomous operations.

1: procedure PROBDOCK
2: targetDist ~A(p*, *) <- computeTargetStats(- ) # Tim's work?
3: plantModels <- {0}
4: for d E {degrees of freedom} do
5: pdf (d) ~ (pAd, c-d) +- analyzePerfmData(---)
6: plantModels *- plantModels U pdf (d)

7: -# obtain success likelihood and heuristic
8: , h +- CounselorModel(targetDist,plantModels)
9: plan, actions +- Planner (, h)

10: U, A <- runAdaptiveMethods (plan, actions)
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computeTargetStats (...) The objective of this function is to compute a probabil-

ity model of the target satellite by accounting for the mission objective requirements,

the system's characteristics (both chaser and target), as well as the history of the

available states of the target. This procedure was briefly demonstrated above in the

calculation of the attitude performance target distribution, and the complete analysis

steps are shown in Appendix C.

analyzePerfmData(- -- ) The aforementioned probability models regarding the per-

formance of the chaser satellite are determined by analyzing the state histories through-

out the mission operation phases. Depending on the requirements driving the mission

objectives', distinct analyses can be performed utilizing the real-time estimate of the

state vector; in the previously shown example for attitude control performance analy-

sis, position-holding roll, pitch, and yaw histories were employed for the computation

of performance statistics, which were then translated into probability models.

CounselorModel(targetDist, plantModels) An analysis tool denoted as the <Coun-

selor Model >, whose objective is to inform how well the system is performing with

respect to the mission objectives, takes as its arguments the target distribution and

the plant models in order to compute a success likelihood metric. The full model

derivation is shown in Appendix C.

Planner (, I) In order to perform a fully autonomous mission and be able to

cope with the stochasticity of operating within a changing environment, an on-board

planning and scheduling algorithm needs to be employed. By passing the success

likelihood metric and a heuristic as arguments to this internal algorithm, a better

informed plan and set of subsequent actions can be generated to increase the success

likelihood of achieving the docking maneuver.

runAdaptiveMethods(plan, actions) After computing the plan and the set of

actions to be carried out, the control and learning algorithms, such as the Model

Reference Adaptive Controller through its control and adaptation laws, translate
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these semantic representations into quantitative information using the mathematical

framework laid in ch. 2.

The proposed probabilistic docking algorithm leverages both the adaptive con-

trol techniques presented in the previous section and the probabilistic analysis tool

described in the current chapter. This algorithmic approach towards the autonomy

cycle of a system allows for graph search ideas and techniques, such as the com-

putation of optimal policies (e.g., LQR-Trees [641) or informed search approaches

(e.g., randomized A* 1651), to be employed in conjunction with the proposed learning

methods.

Although promising results have been shown thus far, both through simulation

and hardware implementation, it is shown below that the performance of the proposed

learning methods is hindered by the stochastic nature of a real environment. This

characteristics will be further analyzed, and a method for enhancing the solutions is

proposed.

4.2 Stochastic Operation via Composite Adaptation

The transition of the adaptive approach from a deterministic framework to a stochas-

tic environment is analyzed through simulations. A strategy to deal with the lim-

itations arising from said change is introduced, and an augmented solution to the

problem presented. Finally, simulations are employed to assess the learning behavior

of the augmented algorithm's new formulation.

4.2.1 MRAC's Limitations in Stochastic Environments

To analyze the MRAC's behavior under imperfect and noisy conditions, a stochastic

process model and measurement model will be considered, just as described through-

out the problem formulation found in section 2.1.

If no modification is to be performed upon the deterministic version of the MRAC

controller, then results such as the ones shown in Fig. 4-8 are to be expected. It is

clear from Fig. 4-8(a) that the control input is severely suffering from a chattering
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type of response, in which the actuators are constantly and rapidly being saturated

in both directions. As for the adaptation process, Fig. 4-8(b) shows a tremendous

divergence in the estimation of the mass parameter value; this "explosive" response is

known as a burst [661, and in this case is due to the effect of the measurement noise

characteristics and imperfect state feedback on the system's derivative properties.

Estimation of the mass parameter
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Figure 4-8: Stochastic MRAC run #1 (noisy full-state feedback): bursting conditions
caused by the stochastic nature of noisy (real) measurements rendering a system
unstable; the mass estimate diverges by several orders of magnitude, and settles at
an incorrect and large value. (Initial estimate rio = 0 kg, true mass parameter
m* = 3 kg)

Although bursting conditions render the parameter estimates uninformative, the

system will still exhibit a bounded response to the controller's input, as is shown in

Fig. 4-8. In this case, the tracking error cannot really be minimized, and only the

reference signal's trend is able to be tracked (sinusoidal shape). Thus, the MRAC

guarantees offered by a full-state feedback approach, even under sufficiently rich condi-

tions (the tracking error is never eliminated in this case), are not directly transferable

to the stochastic case.

To overcome these adversities, the adaptation gain matrix parameter Pp intro-

duced in Eq. A.9 is to be modified to control the rate of adaptation to be exerted

upon the parameters under this uncertain conditions. One such example is shown

in Figure 4-9, in which a slower adaptation rate is chosen for the mass estimate as
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compared to the simulation shown in Fig. 4-8.

Estimation of the mass parameter
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Figure 4-9: Stochastic MRAC run #2: trial run showing a slow but correct adaptation

estimate correction; this was achieved after tuning the adaptation gain matrix fol-

lowing the experiment shown in Fig. 4-8 (stochastic MRAC run #2). Initial estimate

ng mtr0 kg, true mass parameter m* = 3 kg.

From Fig. 4-9(b), it can be seen that the bursting behavior is still present at the

beginning of the simulation, but as the controller performs the tracking maneuvers,

the parameter estimate starts to slowly tend towards the ground truth. Nonetheless,

the control action exerted upon the system shown in red in Fig. 4-9 still suffers

from extreme chattering jolts, dramatically saturating the actuators in both directions

throughout the duration of the test.

If the adaptation rate tuning is further refined -ad-hoc variations to the weight-

ing matrix PP, to adhere to the desired actuator bandwidth -then smoother results

are to be obtained. Showcasing such an effort is the simulation presented in Fig. 4-10.

Comparing this simulation to the previously shown ones offers quite a contrasting

difference in terms of results. It is evident that given the parameter estimate value

recovery towards the ground truth region shown in Fig. 4-10(b), the control input

is able to avoid the saturation limits while simultaneously reducing the chattering

frequency, which is mainly given by the sensors' and filter's characteristics. The

burst is able to be contained within an order of magnitude of deviation from the true
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Figure 4-10: Stochastic MRAC run #3: trial run to be compared against the one
shown in Fig. 4-9, showing a faster adaptation estimate correction and an eventual
(almost) true value convergence; similarly, by modifying the adaptation gain matrix,
this results are obtained. Initial estimate iino = 0 kg, true mass parameter m* = 3 kg.

parameter, and an overall better behaved response is apparent.

Nevertheless, the actuator bandwidth demands, the sudden parameter estimate

bursts, and the poor tracking errors are still very much of a concern when the require-

ments of space missions are considered. Due to this limitations, further exploration

into theoretical improvements to bound and contain the bursts will be performed in

upcoming sections.

4.2.2 Parameter Identification through Kalman Framework

In order to probabilistically deal with the added signal uncertainties, a filtering ap-

proach was devised to optimally merge the measurement information with the dy-

namics process model output. Not only is the state able to be estimated, but an

augmentation of the state vector with the model parameters of interest can be per-

formed in order to estimate its value through the parameters' correlation with the rest

of the state space. This additional source of information is then exploited to perform

parameter identification upon the system; this second estimate of the parameters is

then jointly used with the learning controller's output to stabilize the adaptation
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behavior during stochastic operations.

4.2.2.1 Discretization and State Augmentation

To perform the parameter identification step, an augmented Kalman Filter (AKF) is

designed and implemented, augmenting the state vector with the mass of the satellite.

Given the nature of the implementation, a first order discretization upon the laws of

motion is performed, obtaining

V (n+ =(n) + -F (") dt, and
m

x(n+ = (n) + V(n+1) dt.

Considering a discretization time step of At, the difference equations governing the

system dynamics take the form

Xk+1 =

Xk+1

Yk+1

Zk÷1

zk+1

-k+1.

Xk + Xk+1 At

Yk +k1 - At

Zk + Zk+1 At

Xk + -Uk

Yk + -Uk - At

Zk + -L - At

+ Wk

(4.1)

= f (Xk,k+, Uk, m, Wk, At).

The augmented system then takes the form

= Xk+ 1 f (Xkk+l uk, , Wk, At w

mk+1 +yw"
(4.2)

in which the persistence model is chosen for the parameter to be estimated, with the

addition of an artificial small noise to induce a random walk that would allow for

the estimate to keep updating and seek the best possible value given the acquired
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information [67]. The measurement equation then becomes

Y+ = HXa+l+Vk
k+1 k1 +Xk+

= [H 0] ] + Vk

_Mk+l.

= H * Xk+1 + Vk = Yk+1,

keeping our original measurements vector Yk+1 E RnX1 by defining a null-space aug-

mented observation operator of the form H = [H 0 ], which excludes the additional

added states from the process.

4.2.2.2 Extended Kalman Filter

To work with the newly obtained nonlinear system, an Augmented Extended Kalman

Filter (AEKF) will be formulated. The following time update equations were obtained

X+1 = f (Xi, Uk, m , At) (4.3)

T

Qa i = Aa Qa' - Aa + Wa, (4.4)
k k k + Wa

where the corresponding linearized system matrix takes the form

1 0 0 At 0 0 0

0 1 0 0 At 0 0

0 0 1 0 0 At 0

Ik - OXa k 0 0 0 1 0 0 -U . (4.5)

0 0 0 0 1 0 -

0 0 0 0 0 1 -z.AT
Mk

0 0 0 0 0 0 1
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The measurement update equations were taken to be

X+1= X" + K + Yk - H X+1] (4.6)

k+1 = [I - K+ 1H Q+ (4.7)

Q"+ [HQ+ 1  T + Rk] (4.8)

where it is interesting to note how the Kalman gain and the a posteriori calculation

remain decoupled, yielding

Kx QxHT (HQxHT + R)

Km QTmHT (HQxHT + R)-J

where Qa= L-QxQ- m

QfM~ Qrn

being it easy to see that the information to perform the inference over the parameter

m to be estimated comes from the correlation between the system's states and the

mass.

4.2.2.3 Parameter Estimates Behavior

Simulation results for an open-loop controlled plant are presented, in which the state

was augmented to account for the parameter estimation of the spacecraft's mass.

Figure 4-11 shows two entire simulation trials with very low artificial noise - just

enough to allow it to search for the true value while keeping it within a close vicinity

of the true value.

While the observed performance yields estimated values close to the true mass

parameter of the spacecraft, it can easily be seen that the estimate is not truly

converging towards a particular value. This is due to the fact that the parameter

identification is being driven by the fictitious noise added to the persistent model of

the augmented state.
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Figure 4-11: Full simulation runs for parameter estimation trials using the augmented
extended Kalman filtering framework; open-loop control was exerted upon the system
to verify the filter's performance (no tracking performed). It can be seen that the
estimated value stays within a close vicinity of the true parameter value, but never
converges. Initial estimate ^ 0 = 1 kg, true mass parameter m = 3 kg.

The combination of the persistent model - which is chosen due to the assumption

that the mass is a constant value to be identified - with the additive random per-

turbation is the reason that the estimate presents a random walk type of trajectory;

the step size of this stochastic motion is a function of the fictitious noise magnitude.

This added stochastic component is the main limitation of the approach, since no

convergence guarantees or asymptotic trends can be offered.

Another important characteristic of this parameter estimation approach is the

form in which the inferences are performed; by using the information provided by

the correlation matrices of the augmented space and the state space, any wrong

data association can potentially wreak havoc in the value of the parameter estimate

(somewhat analogous of an erroneous loop-closure within the SLAM framework [68]).

Therefore, without stability proofs and guarantees, the use of this technique within

risk-averse systems, such as spacecraft, is definitely not advised. To enable this

inference to be employed, a joint solution involving adaptive controllers is explored.
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4.2.3 Composite Adaptation

So far, a learning approach through an adaptive controller was shown yields a signifi-

cant performance improvement, given its ability to overcome large system uncertain-

ties. Unfortunately, whenever the system operates within a stochastic environment,

some issues such, such as bursting, were observed. To overcome these problems, the

estimation results obtained through the parameter identification framework will be

employed to contain the bursts and offer an improved performance. The combination

of these two techniques is known as composite adaptation [10.

4.2.3.1 Information and Sources for Inference

The fact that the system is able to learn using both adaptive controllers as well as

parameter estimation schemes signifies that either there is a single source of informa-

tion from which the two algorithms draw inferences, or that each algorithm extracts

information from a separate source. As it can easily be seen from their formulation,

the latter is the correct assessment.

The Model Reference Adaptive Controller formulation was shown exploits the

tracking error encapsulated in the time-varying surface s(t), which was defined as a

weighted sum of errors and their derivatives. On the contrary, given that the estimator

is agnostic to the type of control being used, the information source used by parameter

estimation schemes is the so-called output prediction error, commonly referred to as

the innovation term in the Kalman framework, defined as ya = Yk - HI - X- . The

architecture of the composite adaptation scheme is shown in Fig. 4-12.

Such an adaptation scheme doesn't only maintain the guarantees offered by the

adaptive controller, such as global stability [69], but also improves its convergence

performance by using the innovation term for adaptation.

4.2.3.2 System Parameterization

In order to employ the composite adaptation technique, a correct parameterization of

the system is to be performed. Typically a linear parametrization model is utilized, in
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output prediction tracking error
error

k = Yk - k - X k Xdk

parameter estimation adaptive control
schemes schemes

Figure 4-12: Diagram showcasing which information sources are being leveraged by
which algorithms. Composite adaptation uses both sources to improve upon its per-

formance.

which the vector is comprised of the unknown and wanted parameters of the system.

To leverage both approaches, the adaptation equations from both techniques are

taken and merged to obtain

MRAC: a-(t) = -pyTs(t)
Composite: a(t) = -P'(t) . (YTs + WTR(t)y),

estimation: &(t) = -IW T (t)&(t)

(4.9)

where P' denotes the system's new uniformly positive definite adaptation gain, s(t)

is the adaptive control surface posed as a function of the tracking errors, y(t) is the

Kalman filter innovation term or output prediction error, and W(t) represents the

signal matrix obtained after the system parametrization

E)(t) = W (t) - P --- E(t) = F(t) M

Lf F (t) dtj

with e(t) being the system output vector, and 1 the regressor for the parameters of

interest. The matrix R(t) is a uniformly positive definite matrix indicating the level

of importance of the current prediction errors.s
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4.2.3.3 Simulation Results

To assess the performance of the enhanced algorithm operating within a stochastic

environment, in which not only are a noisy process model and corrupted measurements

present, but also high uncertainties in the physical parameters of the system. In

addition, a prior knowledge upon the initial mass estimate of no = 1 kg will be

given, with a ground truth value of m* = 3 kg.

Estimation of the mass parameter

GJ

E
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L-
E
CL
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0
0 5 10 15 20 25

Time [s]

Figure 4-13: Composite system run #1: a lax but bounded adaptation profile for the

mass estimate is exhibited by the composite adaptation technique under the presence

of noisy measurements. No bursts or divergence behavior is observed throughout the

full duration of the run. Initial estimate iho = 1 kg, true mass parameter m = 3 kg.

A first attempt on a composite adaptive approach is shown in Fig. 4-13. The

main takeaway from this initial simulation's performance is the absence of bursts and

diverging behavior previously observed in the stochastic MRAC simulations. The

oscillatory behavior signifies that the weight on the rate of adaptation is not sufficient

to drive the parameter estimate towards its true value, since equal importance was

given to the tracking error and the output prediction error. The stochastic random

101

estimate
ground truth

-......... ...



walk component imparted by the parameter identification part of the scheme is clearly

noticeable.

Estimation of the mass parameter Estimation of the mass parameter

E

E

15

10

0

0

0 10 20 30 40 50 0 10 20 30 40
Time [s] Time [s]

(a) Composite system run #2. (b) Composite system run #3.

Figure 4-14: A more aggressive adaptation profile is obtained by adjusting the A, k,
and P' gain values for a better estimation performance; some residual offset error is

shown in (a), while a closer adaptation towards the ground truth value is shown in

(b). Initial estimate ino = 1 kg, true mass parameter m = 3 kg.

The lax adaptation profile shown in Fig. 4-13 can be defeated by modifying the

composite adaptive controller tuning parameters. By choosing higher weights on

the sliding surface contribution, more aggressive adaptation profiles are obtained, as

shown in Fig. 4-14. A slight overshoot is present at first, which is characteristic of the

stochastic MRAC, and then, the converging properties take over to drive the estimate

towards the ground truth value.

4.3 Applicability and Importance

4.3.1 Summary

By analyzing the on-orbit data from InSPIRE-II SPHERES test sessions, a lack of

controllability that impairs the enablement of successful and reliable autonomous

docking operations was discovered. Subsequently, using probabilistic model analysis,

it was found that by enabling on-line learning algorithms through an adaptive MRAC
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approach, uncertainties in the systems' parameters could be overcome and a clear

increase in tracking performance could be obtained.

Nonetheless, limitations in the controller's formulation while operating in stochas-

tic environments impede a sole MRAC approach from overcoming a performance

barrier imposed by the disrupted learning behavior mainly characterized by sudden

bursts and divergence patterns. In order to trounce this roadblock and obtain a better

learning scheme, a composite adaptation solution that leverages both the adaptive

controller's information as well as a paired estimator's information was shown to

exhibit the sought parameter adaptation properties within a stochastic environment.

Some of the benefits obtained when considering the proposed approach for on-

orbit operations over conventional path planning and control methods are illustrated

through examples in the following section.

4.3.2 Expansibility

In-space robotic assembly can be thought of as a succession of multiple docking ma-

neuvers to be carried out between systems of distinct spacecraft and pieces. Given

the inherent uncertainty in the physical properties of each assembly element, the con-

fidence on the characteristics of the full ensemble will start to decrease as the number

of satellites or the number of reconfiguration maneuvers increase. This is pictorially

and simply depicted in Fig. 4-15, in which the belief on the assembly's full mass starts

decreasing as the system continues to get incrementally built.

If the final system is comprised of a small number of well known pieces, then

system identification methods (e.g., mass identification through known thruster firing

sequences) could potentially still be realizable, but as the number of components start

to increase, an exponential number of combinations becomes available and running

system identification tests on every single one of them rapidly becomes intractable

(especially on-orbit). Hence, learning techniques and adaptive algorithms that are

able to concurrently stabilize the system while fully characterizing the ensemble, such

as the proposed adaptive composite algorithm, were demonstrated to be an elegant

solution to the problem.
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Figure 4-15: Spacecraft ensembles with a corresponding belief on their mass value.
As the number of pieces increase, the certainty in the estimate starts decreasing.

4.3.3 Simplified, Smoothed Probabilistic Trajectories

The impact that the proposed composite adaptive probabilistic approach has upon

a mission objective likelihood of success, or even feasibility, can be demonstrated

through the analysis of a simple docking maneuver. A typical algorithm provides

a reference trajectory that is a function of the target satellite's state and motion,

as can be shown in Fig. 4-16. This "live-tracking" behavior, as the chaser starts to

close in to the target, can likely demand large relative displacements to the chaser at a

certain frequency w, given that it is highly unlikely that the target is deterministically

and statically pointing in one single orientation. If the target's chattering behavior

crosses a certain threshold, the delta-V maneuvers required from the chaser might

exceed its maximum thrust capabilities, thus not being able to satisfy the objective's

requirement, rendering the mission to be unfeasible.

Conversely, if the probabilistic approach described throughout the previous sec-

tions is to be taken for the same scenario, a feasible objective is to be obtained by

not imposing unwarranted requirements upon the chaser (impossible delta-V maneu-

vers given the chaser's available total thrust). Instead of commanding a "live-track"

reference trajectory, a probability model can be fitted over the observed or known

behavior of the target satellite, and a simpler, smoothed reference can be computed

; an example of this is shown in Fig. 4-17 (the mean of the chattering movement of
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Figure 4-16: Typical relative reference trajectory computed using the target's satellite
state information; in can be seen that by "live-tracking" the target satellite, the chaser
spacecraft is required to perform large delta-v maneuvers, which in some cases might
render a mission to be infeasible.

the target, in this case).
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Figure 4-17: Simplified and smoothed relative reference trajectory example obtained
using the proposed probabilistic and learning approach for in-space robotic assembly.

By utilizing a composite adaptive approach, the chaser satellite will be able to

generate a probability model of its own performance, and modify it on-board through

its learning capabilities. At the moment of docking, the chaser will be able to as-

sess whether its hitherto performance satisfies the requirements to probabilistically

say that, in expectation, a successful docking can be carried out, further aiding the

decision making processes and the full autonomy subsystem of the spacecraft.
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Chapter 5

Conclusion

Through the analysis of on-orbit data obtained from SPHERES test sessions, the

complexity that arises from having to deal with large system uncertainties - such

as unknown thruster forces, position of the center of mass, moments and products of

inertia, etc - was able to be shown. For in-space robotic assembly operations, such

a scenario is highly likely to be obtained; an example of this was shown in Fig. 4-15,

in which the mass estimate variance of the growing assembly starts to increase given

the compounded uncertainties of the available prior information.

In order to overcome these adversities, an adaptive controller technique based on

a Model Reference Adaptive Control law was formulated and implemented using the

SPHERES ground testing facilities. It was demonstrated that the ability to cope

with gross uncertainties in the system's mass properties was greatly benefited by the

enablement of on-board learning algorithms to be executed in real-time utilizing the

formulated techniques.

An algorithm that employs the formulated technique and the proposed proba-

bilistic operation approach for in-space robotic assembly situations was elaborated,

and was analyzed by applying it to the InSPIRE-II test sessions data. Although an

improvement upon the likelihood of successfully achieving a docking maneuver was

observed, a barrier in the performance increment was encountered when analyzing

the learning properties of the MRAC under stochastic environments.

It was found that by combining the learning approach granted to the adaptive
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controller by the tracking error information source with a learning approach based off

of an output prediction error information source, the system parameters' adaptation

behavior could be greatly improved, being able to avoid adverse conditions such as

bursting phenomena or diverging actions. The combination of these techniques is

known as composite adaptation.

In spite of having demonstrated the composite adaptive algorithm's behavior only

through stochastic simulation environments, the observed results appear to be very

promising for being able to obtain an algorithm that would allow for reliable in-space

robotic assembly operations. Further research on the topic will continue to be carried

out, and a list of possible future work will be delineated in the following sections.

5.1 Contributions

The main contributions of this work are:

" Demonstration of the benefits and impact of adaptive controller approaches for

dealing with non-negligible system uncertainties shown through improvements

in SPHERES ground testing operations.

" Hardware validation of a learning algorithm approach enabled by Model Refer-

ence Adaptive Controller techniques.

" The proposal of an algorithm to augment the MRAC's learning capabilities by

pairing the controller with a parameter identification technique via a Composite

Adaptation approach, and its validation through simulation.

" A probabilistic approach for on-board decision making through feasibility and

performance analysis consisting on the derivation of probability models from

the target satellite's characteristics and motion, and from the chaser satellite's

sensed performance information.

" A method for computing a metric using probability density functions to specify,

in expectation, the likelihood of success of an in-space robotic autonomous
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docking maneuver.

e The introduction of a path planning scheme in which simplified and smoothed

trajectories for in-space robotic assembly are generated by analyzing the target

satellites' motion using probability models.

5.2 Future Work

e Hardware demonstration of the proposed algorithm and techniques through

ground and on-orbit test sessions, with the introduction of more complex, dy-

namically changing ensembles, as the one presented in Fig. 5-1.

Figure 5-1: Sketch of ground testing of autonomous on-orbit assembly systems.

" Further exploration into the implementation of a full autonomy cycle algorithm

(e.g., probabilistic docking algorithm (2)) with proposed metrics, heuristic,

planner, and adaptive learning controllers.

* In order to accelerate the convergence properties of the adaptation, and to

further prevent undesirable drifting and bursting conditions, a parameter pro-

jection method to keep the estimates within a convex bounded set could be

explored [70].

* To account for highly time-varying parameters (e.g., in the middle of recon-

figuration maneuvers), exponential resetting and forgetting techniques can be
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implemented within the parameter identification framework, allowing for an im-

provement in performance throughout poorly excited regimes of operation [711.

" Adaptive learning scheduling through e-modification techniques for avoiding

over- and un-learning behaviors is an important characteristic to include to the

algorithm [72].

" For the probabilistic docking algorithm, temporal constraints can be added to

the planning strategy in order to determine a probability model with the feasible

time windows in which an action could be successfully performed.

110



Appendix A

MRAC Stability Analysis

A.1 Position Controller

Since the formulation of the problem involves a non-autonomous system (after time-

discretization and with time-varying parameters such as the mass), traditional Lya-

punov tools and theorems - like the Invariant Set Theorem - cannot be used to

reach any conclusions [10]. Instead, Barbalat's lemma will be employed to evaluate

Lyapunov-like functions and analyze the convergence and stability of the system.

Lemma A.1.1. Barbalat's lemma

Let t -* F(t) be a differentiable function with a finite limit as t -÷ o. If P is

uniformly continuous, then F(t) -+ 0 as t -+ oc [73].

A simple modification for control systems' stability analysis yields the following:

Lemma A.1.2. Let M be a continuous, positive definite function and x be an abso-

lutely continuous function on R. If Ix(-)|H|I < oc, and limm_,, fr M(x(t)) dt < o0,

then x(t) -+ 0 as t - o [73].

An immediate and very practically useful corollary follows from these lemmas,

which can be stated as:

Corollary A.1.2.1. If the differentiable function F(t) has a finite limit as t -+ 00,

and is such that F exists and is bounded, then F(t) -+ 0 as t -+ o [741.
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Remark. From these results, it can be easily seen that an analogous to a Lyapunov

analysis invariant set theorem can be expressed. Therefore, if a scalar function V (x, t)

satisfies the conditions

" V(x,t) is lower bounded

" V(x,t) is negative semi-definite

" V(x, t) is uniformly continuous in time

then 1(x,t) -+ 0 as t -+ o0.

Traditionally, Lyapunov functions (Lyapunov-like, in this case) that resemble some

sort of energy expression (bounded quantity) are chosen as initial candidates. In

this case, since it is also of interest to prove the controller's stability and proper

convergence for an ideal tracking performance, the initial candidate function will be

in terms of the surface s,(t) so that not only an energy-like function is obtained, but

also a strictly positive squared error of both the position and the velocity, yielding

V (sP, t) = s, (t) -M -SP (t), (A. 1)

where sp(t) is just our defined surface, m is the unknown mass of the system, and the

1/2 is just added for convenience, given the fact that the derivative of the quadratic

function will need to be taken, and any extra terms are not desired to be carried

around. It is trivial to see how this function allows for the satisfaction of the first

condition, given that a squared-error function is lower bounded by 0.

Taking the derivative of the function, and conveniently using Eq. (2.14) to substi-

tute the value of the tracking error surface and Eq. (2.12) for the systems' dynamics,
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an expression of the form

E (S, 0) = - (2sTI(t) . m . AP(t))

= sTI(t)m (:Rt - r()

= sT(t)m F(t) - R,(t) - -( - ,(t) (A.2)

unknown unknown unknown

known known known

is obtained. Is it important to reiterate that a negative semi-definite derivative is

sought. From the last line of Eq. (A.2) it can be seen that the right hand side of

the expression within the parenthesis can be broken up into two parts; a vector of

unknown comprised of the model parameters m, a, 3, and a known part encompassing

Rr(t), ip(t), xp(t), which are only functions of the current and desired states.

To further simplify the expression, the definition of the vector of unknowns

aa [ m Z O]T, (A.3)

and the definition of a matrix of known expressions

Yp(t) = [5ir(t) kP(t) xP(t) ]T

t)~~ 2tx(t)
(A.4)

allows for Eq. (A.2) to be rewritten as

V(s,, t) = sT(t) (F(t) - Y(t) - ap) , (A.5)

where F(t) is the control input to the system, which can be any arbitrary expression

that the control system engineer conjures. Thus, keeping in mind that a negative
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semi-definite function is desired, one could simply define a control law of the form

F(t) = u(t) := Yp(t) - ap - k -sp(t), where
(A.6)

k E R+ : strictly positive user-defined parameter

which, after substitution into Eq (A.5), would yield

V,(s, t) = sP'(t) (Yg .)--'; - k - s(t) - Y(A7)--a'))

- -k sT (t) . sP(t)<

the negative semi-definite derivative function to the Lyapunov-like candidate, satis-

fying another condition of Barbalat's lemma.

Unfortunately, given the fact the the parameters in ap are unknown, and therefore

not exact, the performed cancellation cannot be carried on. Instead, only time-varying

estimates of the parameters are available, which are defined as

p (t) = i r(t) & (t) (t) ,(A.8)

yielding a derivative of the form

V(s, t) = st (Yp(t) - Ap(t) - k - sp(t) - Yp(t) - ap)

= sT (t ) -k -sp(t) + Yp(t) :Ap(t) - apP Ne _") )(A.9)

= -k sT'(t) s,(t) + s'(t) .Y,(t) . i,(t) ; 0

-< arbitrary

It can be noted that by simply eliminating the second term of Eq. (A.9), the

expression would be able to satisfy the negative semi-definiteness property of the

lemma's second condition. In order to do this, some modifications to Eq. (A.2)

need to be made; specifically, it is sought to add a term such that, after taking the

derivative, the second part of the expression gets canceled.
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Thus, rewriting Eq. (A. 1), the complete Lyapunov-like candidate function is

added term

(s~,,t) = sT (t ) - m - s,(t) +- a (t) . 5,'(t), where

(A.10)
inf V(sp, t) = 0, and

Pp >- 0 E R3 x3 : user-defined system parameter matrix

which again satisfies the first condition of Barbalat's lemma by being a multivariate

quadratic function in terms of the position, velocity, and parameter estimates squared

errors, lower bounded by zero.

Now, by taking the derivative of the candidate function

4I(sp, t) = - (2sT'(t) m Tn A(t)) + I (2, (t) - (t))

= -k s,'(t) sp(t) + sT(t) . Y,(t) _ ,p(t) + & T(t) P ,(t) (A.11)

V,(sP,t) V(sp,t) extra term

= ks'T (t) + s(t ) .-YP(t) + IT(t ) -P - A(t)

a term with the rate of change of the parameter estimates &,(t) is obtained; this term

is called the adaptation of the unknown parameters' vector, given that it will express

how the unknown coefficients of the differential equation will be changing with respect

to time.

Given that this adaptation "law" is, similarly to the control law, to be chosen by

the designer, one could ensure to choose a form that would eliminate the extra term

in Eq. (A.11) in order to satisfy the second condition of Barbalat's lemma. With this

in mind, if the adaptation law

-A>(t) = -sppt) -Y(t) -pt
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is chosen, when substituted into Eq. (A.11), the sought cancellation

S)=T(t) -Y((t) + (t)- P-t)

-P(St k s(t)s(t) U a

(A.13)

can be performed, and a negative semi-definite function is finally obtained, success-

fully satisfying Barbalat's lemma second condition.

Finally, it is needed to show that the aforementioned third condition of Barbalat's

lemma - 6PI sup 1,(s, t) = 6 holds to prove that the proposed controller yields

a stable system, and that the parameters converge to their true values.

By calculating the second time derivative of the candidate function V,(sp, t) =

-2k s,'(t)-iT(t) and since it was already proventhat inf Vt(s), t) = 0, i.e., ,(s, t) 0,

paired with the fact that the monotonically decreasing function V,(s,, t) -< 0, which

indicates that there exists some y such that sup ,(s,, t) = , it can be concluded

that both s-(t) and aS(t) are bounded. Since the closed-loop dynamics of the system

can be expressed as nt(t) = f(s, ai) (a function of bounded values), it follows that

s(t) is also bounded.

This indicates that, as the lemma and corollaries state, as t o the asymptotic

entailments

sp(t) -+ 0 f) c *(t) + of

lema 3 1sup(sp, t) = 6 - hlst rv httepooe otolryed

hold, and the controller tend was ards a stable perfect tracking state, provided the

references are bounded and stable (BIBO) .
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Appendix B

MRAC Glass Table Testing Data

After finalizing the algorithm's implementation, multiple runs for each controller, for

each configuration, were performed in order to collect data sets, video recordings, and

assess their performance difference. This section will start by showing a recording per

test for both the baseline SPHERES PD controller and the Model Reference Adaptive

controller. Afterwards, the matching plots for each test will be analyzed, and to

conclude, performance metrics in terms of error characteristics will be determined

using the compounded tests for each of the controllers.

B.1 Configuration #1

In this section the data obtained for both the MRAC and the baseline SPHERES PD

controller will be shown.

Figures B-4 and B-5 correspond to the hardware configuration #1; the satellite's

behavior during each run can be observed in the embedded videos.

As it can be clearly seen from the video shown in Fig. B-4, even though the baseline

PD controller was using the physical properties that correspond to this exact hardware

configuration, the satellite exhibited notable overshoots while trying to translate from

its initial position to the origin. Given the fact that position and attitude are coupled,

large deviations in the yaw angle are induced by the translation motion which are not

able to be corrected by the controller throughout the remaining test time.
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(a) Config.#1 baseline phase plot. (b) Config.#1 MRAC phase plot.

Figure B-1: Phase plot corresponding to the trajectories taken by the satellite while
using the (a) Baseline Proportional-Derivative controller, and (b) the MRAC control
law.
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PD Config. #1: UDP - Yaw Control
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(a) Config.#1 baseline yaw history. (b) Config.#1 MRAC yaw history.

Figure B-3: Yaw control performance exhibited for the UDP configuration using the

(a) SPHERES PD controller and (b) the MRAC.
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Figure B-4: Baseline PD controller test with hardware configuration #1 - Halo
Expansion device equipped with a Universal Docking Port; to be compared with
video shown in Fig. B-5. (Video speed: x 10)
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Figure B-5: MRAC test with hardware configuration #1 - Halo Expansion device
equipped with a Universal Docking Port; to be compared with video shown in Fig. B-
4. (Video speed: x 10)
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Similarly, during the MRAC controller's run for configuration #1, shown in Fig. B-

5, a large deviation on the yaw angle is induced by the initial translation motion

from the glass table's corner to the center of the volume. Nonetheless, the adaptive

controller presents a smoother response to these large errors, avoiding the back-and-

forth overshoot behavior presented by the PD controller. It is important to remember

that the baseline controller was using the best estimate for the physical parameters

corresponding to this hardware configuration, while the MRAC was initialized with

both its mass and inertia matrix equal to zero.

B.2 Configuration #2

PD Config. #2: UDP+Goggles - Phase plot: XY plane MRAC Config. #2: UDP+Goggles - Phase plot
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(a) Config.#2 baseline phase plot. (b) Config.#2 MRAC phase plot.

Figure B-6: Phase plot corresponding to the trajectories taken by the satellite while
using the (a) Baseline Proportional-Derivative controller, and (b) the MRAC control
law.

For the second hardware configuration, comprised of the previously attached dock-

ing port and the addition of a stereo-vision optics mount, Figures B-9 and B-10

contain the test trials' videos.

A very similar performance to the one obtained for configuration #1 using the

baseline controller is exhibited throughout the test for the PD controller's configura-

tion #2 run, shown in Fig. B-9; large yaw angle deviations while translating, followed

by a slight overshoot in the negative y-axis. This time, a more aggressive behavior is

observed in attitude, clearly recognizable by the faster oscillation frequency arising
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Figure B-8: Yaw control performance exhibited for the UDP + Optics Mount config-
uration using the (a) SPHERES PD controller and (b) the MRAC.
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Figure B-9: Baseline PD controller test with hardware configuration #2 - Halo
Expansion device with a docking port, and the VERTIGO stereo-cameras; to be
compared with video shown in Fig. B-10. (Video speed: x 10)
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from incorrectly tuned gains (likely higher gains in this case). The SPHERES is able

to reach the origin and hold its position within some small ball of a few centimeters.

UTIM

Figure B-10: MRAC test with hardware configuration #2 - Halo Expansion device
with a docking port, and the VERTIGO stereo-cameras; to be compared with video
shown in Fig. B-9. (Video speed: x 10)

Probably one of the better performing runs throughout the testing trials, the

behavior obtained by the adaptive controller using configuration #2, which can be

observed in Fig. B-10, is truly superb. The satellite is able to almost perfectly hold

its attitude while translating, incurring nearly zero errors in its yaw angle, and once it

reaches the origin, to hold its position very steadily. There are some very faint oscil-

lations in the yaw angle during the position hold maneuver, but overall, an incredibly

stable performance is exhibited.
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PD Config. #3: UDP+Goggles+Arm - Phase plot: XY plane
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(a) Config.#3 baseline phase plot. (b) Config.#3 MRAC phase plot.

Figure B-11: Phase plot corresponding to the trajectories taken by the satellite while
using the (a) Baseline Proportional-Derivative controller, and (b) the MRAC control
law.
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Figure B-13: Yaw control performance exhibited for the. UDP + Optics Mount +
Robotic Arm configuration using the (a) SPHERES PD controller and (b) the MRAC.

B.3 Configuration #3

For the last configuration - which includes the Universal Docking Port, the stereo-

vision optics mount, and a relatively large robotic arm - the performance of both

controllers can be observed in Figures B-14 and B-15.~ Arguably the hardest of the

three, given the non-negligible change in the inertia properties induced by the addition

of the robotic arm, this test yields drastically different results for the two approaches.

Basically self-explanatory, the video of the baseline PD controller shown in Fig. B-

14 makes it clear that given the addition of the latest attachment the system is

rendered uncontrollable by the traditional controller's approach. Even though it is

able to stop the spinning motion and counteract it, not enough time was alloted to

the test for the controller to exhibit converging stability properties.

Surprisingly, the story for the adaptive controller throughout configuration #3's

trial run turned out to be quite different. Translation is again achieved with almost no

attitude error, and position holding is initially kept at a steady point, quite accurately.

After some instants, it seems as if the weight and inertia of the robotic arm start

inducing a spin in the yawing axis; the satellite tries to compensate for the error but

it cannot completely, and then starts to slowly diverge from the set point. Despite

that, the performance difference in comparison to the baseline PD controller is quite
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Figure B-14: Baseline PD controller test with hardware configuration #3 - Halo Ex-
pansion device with a docking port, optics mount, and a robotic arm; to be compared
with video shown in Fig. B-15. (Video speed: x 10)
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Figure B-15: MRAC test with hardware configuration #3 - Halo Expansion device
with a docking port, optics mount, and a robotic arm; to be compared with video
shown in Fig.B-14. (Video speed: x 10)
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significant, yielding its results to be satisfactory.

B.4 Summary Plots

The complete plots detailing the x- and y-state histories, the attitude control perfor-

mance (yaw angle), and the individual phase plots corresponding to each of the tests,

for each configuration, are shown here.
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Figure B-17: Attitude control performance comparison between each configuration
run for both the (a) SPHERES PD controller, and the (b) MRAC controller.
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Appendix C

Probability Analysis Derivation

The fact that carrying out autonomous docking maneuvers poses a prerequisite to

almost every InSPIRE-II program objective, successfully and robustly accomplishing

it has been taken as the only "boolean" metric for these latest test sessions (UDP

Science, Halo Checkout, etc.); if one is able to dock, then a successful status is

obtained, otherwise, independent to the actions that occurred within the session, a

failure is given. This type of standard is both uninformative and useless within the

incremental approach that SPHERES Test Sessions follow, in which distinct levels

of complexities are handled throughout the course of different sessions to gradually

advance towards achieving a said objective.

Another intuitive reason behind the approach is the fact that a chaser satellite

does not want to actively track and match the docking axis corresponding to a tar-

get satellite's docking face, since at close proximities, where small angle deviations

translate into large translation distances for the chaser's center of mass, and limit

cycles arising from even the smallest of oscillations expressed by the target would be

present. The situation would then only worsen when phase lags due to the discrete

nature of modern control systems and effects such as actuator saturation are taken

into consideration.

By fitting performance data to a probability density function, such as a Gaussian

distribution, a granular improvement metric that assigns a likelihood for achieving

a docking maneuver can be obtained (i.e., for assigning some value to how well the
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current system is behaving).

C.1 «Counselor Model : Ideas Behind the Heuristic

What this approach aims to perform is to provide the system with a heuristic, that

is, some sort of metric or piece of information - derived from the mission objectives,

requirements, and system characteristics - from which autonomy and decision mak-

ing algorithms can draw inferences to choose appropriate and best-informed courses

of action.

The approach will be referred to as the "Counselor Model", as it will provide

advices but will not have any decision making capabilities. The idea behind the

concept is pretty intuitive, and a high level overview of is presented in Fig. C-1.

- hI.uIIiIr0

ASinmubsytioest/m

Figure C-i: Structure and building blocks upon which the "Counselor Model" is based.

By having some specifications describing the characteristics of a system, i.e., phys-

ical properties, performance capabilities, etc., it possible to develop a set of require-
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ments that specify the attributes warranted for the success of a certain objective. This

deterministic group of statements can then be translated into a probability model that

accounts for the variation that the system is able to tolerate and still achieve a mission

success outcome.

Concurrently, data regarding the controllable aspect of the system is to be ana-

lyzed, and the useful information that is able to be gathered needs to furthermore be

fitted to second probability model. This allows for some probabilistic comparison to

be performed upon the two models, and a metric to be computed given the two pieces

of information. The point of computing this additional heuristic is to then pass it

along to the autonomy subsystem of the control module for additional evaluations to

be made available.

C.2 Example using InSPIRE-II Data

The application of this approach is demonstrated by using data obtained from the

InSPIRE-II on-orbit test sessions.

System Characteristics The first step is to analyze the characteristics of the

system given the mission objectives. In this case - since docking is taken as the

ultimate objective - the docking port characteristics of the UDP, as well as the

SPHERES ensemble physical dimensions are taken into account; the dimensions of

the docking port's lance and hole pair are shown in Fig. C-2, and are defined as the

hole's diameter d,,d = 2.28 cm and radius r,,d = 1.14cm.

Along with the dimensions imposed by the mechanical interface, the entire SPHERES

ensemble needs to then be taken into account. A high-level pictorial overview along

with important distances is presented in Fig. C-3. It is of importance to know the

vector connecting the geometric center of the satellite (which is used to localize the

craft in the ISS reference frame using global metrology) to the tip of the docking

port's lance; this distance is denoted as geometric center to lance tip GC2LT.

Additionally, assuming that the chaser satellite is aligned along the target satel-
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1 cmQ 0.5 cm

Fiducials Lance Hole Camera

Figure C-2: The SPHERES Universal Docking Port (UDP) along with the physical
dimensions of the lance and hole pair.

Target Satellite

Docking Axis Offset

GC to Lance Tip -~- ~

Distance to Go

Chaser Satellite 0 Geometric Center
4L Objective (hole)

Figure C-3: Diagram depicting a Chaser and a Target Satellite, and characteristic
distances for analyzing the docking problem.

lite's docking axis, the distance to go (D2G) can be taken to be the distance between

the chaser's lance tip to the target's docking port face (green distance in Fig. C-3).

Lastly, in case that the satellites are correctly aligned in attitude, but an offset be-

tween the GC2LT axis and the target's docking axis exists, the distance to be corrected

will be denoted as the docking axis offset (Do ckAxOf f, blue distance in Fig. C-3).

After introducing these variables, an approximation of how the distances are re-

lated can be formed. The relationships are outlined in Fig. C-4, where

e = GC2LC + D2G ,
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and given the fact that f > r ( ~ 35 cm vs r ~ 1 cm), the approximation r ~ rudp

can be taken. A value for the maximum angle deviation allowed (0max) for the chaser

to still perform a successful docking maneuver is then calculated as

r r,,d = 1.14 cm
Omax - GC2LC + D2G

and with the value for f at very close proximities (chaser waiting in front of the target

to finalize the docking maneuver) being roughly GC2LC + D2G ~ 35 cm, a maximum

deviation angle of Omax = 1.8660 is obtained.

(absolutely NOT to scale) (absolutely NOT to scale)

Target's Docking Port Hole Target's Docking Port Hole

. r +5
emax0,x6

Chaser Satellite Chaser Satellite
centered case off-axis case

(a) (b)

Figure C-4: Diagram depicting the maximum allowed angle deviation in the chaser's

attitude for docking. A (a) centered case and an (b) off-axis case are presented, given

that docking can still be achieved with the latter conditions.

However, as it is depicted in Fig. C-4(b), a successful docking maneuver can also

occur even whenever the chaser satellite is slightly off-axis, that is, whenever a small

value for DockAxOf f is present. This signifies that slightly higher tolerances on the

allowed values for the possible deviations can be alloted, which are represented by

the 6r, 60, and Re terms in Fig. C-4(b). By including this variations, the new value

for the maximum allowed deviation would be 0
max = 1.5 cm/35 cm ~ 2.50.
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Requirements After the system's characteristics have been analyzed, require-

ments spurred by the obtained specifications can be fabricated. In this case, a max-

imum deviation angle 0max at the last stage of the approach maneuver conducted

by the chaser satellite was obtained. This means that, at the time of docking, an

attitude requirement can be imposed upon the chaser's control performance:

" At the time of docking, the chaser satellite shall present attitude deviations no

greater than 2.50 from the target's docking axis, or

" At the time of docking, the chaser satellite shall attitude control errors no greater

than 2.50, as measured from the target's docking axis.

Given that this requirement applies to the scenario where the chaser satellite is at

very close proximity to the target and ready to perform the final docking maneuver,

by performing a derivation approach it can be directly translated into a lower-level

requirement that specifies an attitude control performance demand for the satellite's

position-hold capabilities; for instance

e The chaser's position-holding maneuver shall yield attitude errors of less than

2.50 in all axes.

Requirement-Driven Probability Model After crafting the necessary set of

requirements, a probability model can be built on top of its specifications; for this

example, normal distributions will be employed.

By reasoning about the problem in a stochastic manner, this latter requirement

can be posed as a Gaussian probability density function (pdf); instead of using a strict

bound, probability masses can be employed. Hence, a Gaussian pdf with a 3- = 0 max

parameter can be utilized in lieu of the requirement. By setting the 0 max value to be

three times the normal distribution's standard deviation (-), it is being specified that

at least 99.7% (basically ALL) of the attitude error performance data points obtained

should be lower than said value. This would yield a probability model encoded with
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the requirements and described by a

target distribution :~ ' ( = 0, a= 3)

which is pictorially shown in Fig. C-5 along with the less stringent target distributions

with variance defined as 2a = 0max and - = 9 max.

Sample target distributions for attitude performance, with distinct o values
0.5

r-- (0, 0./3)
g- (0,0./2)

0.4 - r~-(0, 0.) -

0.3 -

S0.2 -

0.1 -

0
-6 -4 -2 0 2 4 6

attitude error AO [deg]

Figure C-5: Sample target distributions obtained from the attitude control perfor-
mance requirement through the strategy depicted in the block diagram from Fig. C-1.

Test/Real Time Data -+ Probability Model Now that the requirements have

been translated into probability models, test data or real time data from the actual

system needs to be adequately analyzed, as depicted in Fig. C-1. Given that require-

ments have been imposed into the position-holding maneuvers of the chaser satellite,

data from those maneuvers performed during Test Session 86: Halo Checkout and

Test Session 92: Docking Port Science 1.5 is utilized.

Each maneuvers for both test sessions was analyzed and data from the satellites'

performance, after transients, was included into the analysis; some of the test data

utilized for the analysis is shown in Fig. C-6. The objective now is to fit all of this

information into a probability model, and by determining the statistics corresponding

to the error between attitude tracking commands and references in each of the three

attitude degrees of freedom, a probability distribution is able to be determined for
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the roll, pitch, and yaw control of the two ensembles (SPHERES + VAS + UDP and

SPHERES + Halo and friends).

Blue SPH1 Attitude Control Performance, Halo Checkout Pooltlon-Hold#4
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Figure C-6: Two sample data sets analyzed for the Blue SPHERES attitude control
error performance.

Analysis/Comparison The error variance and standard deviation from the col-

lected data sets can then be compared against the target distribution corresponding

to the tolerable errors; just for recap, this latter one was defined as the distribution

that has as a 3- value the maximum allowed angle deviation under which docking

can still be successful, taking into consideration that docking can also take place even

when the SPHERES are off-axis.

Thus, one probability model for each SPHERE (Blue and Orange) for each con-

figuration (Halo and UDP) should be able to be obtained. Unfortunately, there were

no successful nor acceptable position-holding tests for the Orange SPHERE during

TS92, so no model was able to be calculated for the Orange SPH + UDP hardware

configuration.

After obtaining the probability models, the comparison with the target distribu-

tion can be performed. It is important to remember that what the target distribution

expresses is the area on which the majority of the collected attitude data points prior
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to the docking maneuver (e.g., position holding right in front of the target) must lie in

order to probabilistically say that the docking maneuver will succeed. It is completely

dependent on the mechanical properties of the docking ports and the Halo and UDP

configuration (distance from GC to lance tip, hole dimension, etc).

The comparison for the Blue satellite in its two configurations is presented in

Fig. C-7; it can be seen that the best controlled axis for the UDP configuration is

in the roll 0 direction, followed by the yaw 0 axis, yielding the pitch 0 degree of

freedom as the most poorly controlled one (widest pdf). Still, by just observing the

distributions' first moment, it can also be seen that the roll # direction is the most

shifted one, while the pitch 9 aligns almost perfectly with the target distribution's

mean (meaning that the mean attitude error in pitch is very close to zero).

Probability model comparison for attitude control requirement, Blue SPHERES in UDP config
0.5

Ro AO: :K~ (p,fo-)

0.4 - -- Pitch AO :N - (pe,oe)
Yaw AiO : N- (p, ao)

. Target Dist - (0, ,./3)

0.3

0.2 -

0.1 -

0
-5 -4 -3 -2 -1 0 1 2 3 4 5

attitude error AW [deg]

Probability model comparison for attitude control requirement, Blue SPHERES in Halo config
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Figure C-7: Probability model comparison for the Blue SPHERES attitude control
performance in its UDP (top) and Halo (bottom) configuration.

Contrastingly, for Blue's Halo configuration, the worst controlled axis is the roll

4. The pitch 9, angle in this case turns out to be in second place, and is represented

by a curve almost identical to the one for the UDP configuration, except for a slight

mean pe shift. The best controlled attitude degree of freedom for the Halo device
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and Blue SPHRES pair is the yaw 0 angle, with a slight better performance than in

pitch, but further away from the target's mean.

The comparison between the probability models obtained for the Orange SPHERES

is shown in Fig. C-8, in which only the Halo configuration is plotted. From these re-

sults, it is quite interesting to observe that the roll # control distribution for the

Halo configuration is almost identical to the target distribution, not only in width

(variance), but also in its center point (p , ~0!). This signifies that the Orange

satellite should, in expectation, have no problem with the docking maneuver in terms

of controlling its roll # attitude, since it accurately satisfies the derived requirement.

Probability model comparison for attitude control requirement, Orange SPHERES in Halo config
0.5 1 1 1 1 1 1 1

-Roll A : M- (p#, a#)
--_ Pitch AO: X- (po, ae)

0.4 Yaw A*:- ~ (p*,0#)
Target DistW ~ (0, ,./3)

0.3

0.2

0.1

0
-5 -4 -3 -2 -1 0 1 2 3 4 5

attitude error AW [deg]

Figure C-8: Probability model comparison for the Orange SPHERES attitude control
performance in its Halo configuration; no useful UDP configuration data was obtained
from TS92.

This result is very informative, since this same attitude axis could not be correctly

controlled, at any moment, by the Orange and UDP configuration during TS92. The

possibility that Orange's actuation capabilities were the culprit for the instabilities

observed during this latter test session can be ruled out, leaving as possible failure

causes both the poor system characterization of the ensemble and the control and

path planning algorithms.

Another aspect that can be easily assessed is the difference in degree of controlla-

bility between the Halo and UDP configuration. For this, it is particularly informa-

tive to contrast the Orange SPHERES probability models to the ones for the Blue

SPHERES. The comparison is shown in Fig. C-9.

Just by inspection, it can easily be seen that the control authority exerted upon
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Probability model comparison for between Blue SPHERES in UDP configuration and Orange SPHERES in Halo configuration
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Figure C-9: Probability model comparison between the two hardware configurations,
in all three attitude degrees of freedom; the Blue SPHERES plus UDP configuration
is assessed against the Orange SPHERES plus Halo configuration.

both systems is very comparable; in the roll <0 direction, the Halo system is in fact

much better controlled than the UDP ensemble. The pitch 0 angle is in both cases

the worst controlled degree of freedom, represented by a very wide distribution; for

the UDP system, the probability model appears to be more aligned with the target

distribution, meaning that the mean AO errors for the Blue satellite are closer to

zero. The only clear difference is noticed in the yaw 4 angle, in which there is a

better performance exhibited by the UDP system.

Overall, it is not particularly clear which configuration is more controllable, al-

though it seems that the UDP system might be marginally better behaved. This

assessment, paired with the fact that for TS86b no previous system identification

tests were performed for the Halo system (best estimate parameter values from CAD

were used for inertia, mass, center of mass, etc, as no better guesses were available)

allows for the conclusion that the Halo ensemble shows more promise in terms of
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performance improvement. This follows ones intuition, as the Halo ensemble's mass

is much more evenly distributed along the XY-plane, and even though more massive,

it can likely be rendered much more controllable than the UDP ensemble.

A clear takeaway from this approach is the fact that if some guarantees on the

likelihood of docking success are sought to be given, then an increase in control per-

formance is warranted. In terms of the probability models, this means the reshaping

of the distributions in order to increase a certain degree-of-freedom metric score.
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