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Abstract

Fluorescence microscopy has proven to be immensely powerful for the study of biological
systems at both the cellular and systems biological levels. The ability to specifically label a
single molecular species fluorescently has enabled the study of complex cellular structures
through the visualization of their constituent components both individually as well as in
context of the overall structure. Since the advent of engineered fluorescent proteins (such
as GFP) and other proteins capable of being genetically encoded as fusion constructs, the
utility of fluorescence microscopy has increased exponentially in terms of the ability to
efficiently, specifically label desired molecules while limiting perturbations to the biology
under study. With this enhanced ability of visualization came a hand-in-hand evolution
of computational techniques to extract quantitative information from microscopy images.
In this thesis, I focus on the application of fluorescence imaging at the biophysical level in
living cells: analyzing the motion/dynamics of single molecules and complexes, which are
small relative to the structures of the cell, in order to elucidate their molecular function
and mechanism. The motion of these "particles" within living cells is necessarily related
to their functions as well as their interacting partners, which can vary dynamically during
their lifetimes. Observation and analysis of this motion using a combination of fluorescence
microscopy and robust quantitative analysis allows one to infer these characteristics. Here, I
study three diverse biological systems in the context of live-cell fluorescence microscopy and
biophysical analysis: 1) the transport of 0-actin mRNA particles in primary mouse neurons,
2) kinetochore motion during cell division, specifically focusing on anaphase dynamics, and
3) the motion of cell-growth-implicated membrane proteins in Bacillus subtilis.

Thesis Supervisor: Mark Bathe
Title: Associate Professor of Biological Engineering, MIT
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Chapter 1

Introduction

The central theme of this work is that the function of molecules on a systems-biological
level: their associations and interactions, as well as activity, are driven by their motion. In
order to interact, molecules of course must be in proximity to each other. These interactions
can often be transient, only occurring when specific conditions are met, such as cell-to-cell
signaling events. Additionally, until such requirements for associations, interactions, and
activity are met, cells can often segregate interacting partners in different compartments
until interaction is necessary, as is the case with transcription factor import into the nucleus
to bind DNA only when particular mRNAs need to be expressed.

Here, progress is made in studying the connection between systems-level processes, such
as cell growth and division, and the motion of the molecules themselves which are intimately
involved in these processes. These studies are grounded in fluorescence microscopy and
quantitation thereof, whereby fluorescently-labeled protein and mRNA constructs are studied
for their fundamental biophysical properties of their motion: diffusion coefficients, velocities,
and other statistics, in an attempt to elucidate function through motion.

This work relies heavily on the work of others in the Bathe lab towards developing
quantitative, computational methods towards the treatment of these types of fluorescence
microscopy datasets (HMM-Bayes [46, 44, 36], FCS-Bayes [24, 26, 25, 28]). Without their
efforts, this application-oriented work would not be possible.

1.1 Molecular dynamics in biological systems

First, we begin with a look into the fundamental types of motion that can be found in
biological systems: Brownian motion / diffusion and directed motion / active transport.

1.1.1 Brownian motion

A substantial fraction of molecular motion within a cell is Brownian, driven by thermal
fluctuations [6]. This process is also known as diffusion. Diffusion results in a seemingly
random distribution of molecules throughout their enclosed environment [6]. In biological
processes, diffusion can manifest in ID, 2D, or 3D depending on the environment in which the
molecule of interest finds itself in. Examples of each type of diffusion, in order of increasing
dimension, would be:

i ID: a transcription factor sliding along a DNA strand to find its target site [8].
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. 2D: a membrane-bound molecule diffusing in the plane of the membrane [55, 47, 13].

. 3D: molecules colliding within the cytosolic milieu [20].

While diffusion can be an effective means of distribution of molecules inside a cell and
does not require cellular energy input to facilitate, a limitation of diffusion-driven motion of
molecules within a cell is consideration of the length scale required for a molecule of interest
to reach its destination. The timescale of diffusion is:

TD = D (1.1)

where D is the diffusion coefficient (often given as pm 2 /s), L is the characteristic length
scale of interest, and TD is the timescale.

As the time constant scales with the square of the characteristic length, localization of
molecules at the far reaches of the cell can sometimes be problematic in certain scenarios.
This is especially true, for example, in neurons, where neuronal processes can be orders
of magnitude longer than the "diameter" of the soma (cell body). This problem of cargo
delivery is accounted for, for example, by employing active transport of these molecular
cargos along dendritic processes [21].

Particle diffusion can be modeled as a Gaussian random walk whereby the displacements
observed of a diffusing particle from one observation to the next are normally distributed [6].

For displacements Art in a single dimension:

Art ~ N[0, a2 ] (1.2)

-= f/2DAt (1.3)

1.1.2 Directed motion and active transport processes

Directed motion (also "flow") is another primary form of molecular motion in biology.
Directed motion involves the expenditure of cellular energy (ATP, GTP, others) in order to
direct molecules along a coherent path towards their destinations within the cell [58, 14].
While energetically expensive in comparison to diffusion, the capability to facilitate motion,
including active transport of, for example, cargos along microtubule networks using the motor
proteins kinesin [21] and dynein [21], results in a significantly reduced time of movement
from molecule source to its target. This can be seen in the timescale of flow:

L
TV = - (1.4)

V

The rate of active transport vs. diffusion is represented by the Peclet number and is
defined as the ratio between the two timescales. When the rate of flow dominates the motion
of the particle, the P6eclet number is large:

Pe = TD (1.5)
TV

Lv 
(1.6)

D
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Flow is seen in a number of different contexts, including the polymerization (such as
treadmilling) of cytokeletal filaments [7, 14], cargo delivery by motor proteins as previously
mentioned [21], and enzymatically-driven motion of proteins/enzymes involved constructing
the cell wall of bacteria [19, 11], the latter of which will be discussed in Chapter 5.

1.1.3 Life on the membrane

The membrane is obviously key to the structure and identity of a cell. It has numerous
functions, for example: a permeability barrier to molecules [60], a site of ATP production
through generation of a hydrogen ion gradient [56], and a scaffold to facilitate cell-to-
cell communication and other interactions with the local environment [60]. Many diverse
biological molecules work in tandem to realize these functionalities, including integral and
peripheral membrane proteins, phospholipids, and domain defining regions such as actin
networks [47]. In particular chapters of this work (3, 5), focus will be on membrane proteins
in bacteria - integral or otherwise, which typically diffuse and form (often transient)
complexes with other proteins [17] and interact with membrane-integrated molecules [17]
to perform vital cellular functions such as the aforementioned cell wall construction during
bacterial cell growth. In addition to diffusion, examples of membrane-associated directed
motion will be discussed in these chapters.

In 1972, a key first pass at integrating the then-current knowledge of the structure of
the membrane was attempted: the fluid mosaic model (FMM) [47, 55, 32]. The FMM
dictates, among other membrane properties, that proteins within this fluid are restricted to
lateral diffusion. Today, the cellular membrane is known to be considerably more complex
[47, 17, 40]. For example, the membrane can contain domains of unique function facilitated
by domain-defining proteins such as the flotillins involved in organizing lipid rafts [47].
Cytoskeletal domains defined by actin "corrals" are additional membrane structures which
confine molecules to particular regions on the membrane [47]. Protein-protein [40] and
protein-lipid [17] interactions are major contributors to the highly "mosaic" nature of the
membrane [17]. In such a case, diffusion can become "confined" on longer timescales of
observation [13]. These domains can often be identified through detection of this confinement
phenomenon by quantifying the motion of confined molecules using techniques such as the
mean-squared displacement [45].

1.2 Fluorescence microscopy in systems biology and
biophysics

Fluorescence microscopy in biological applications comprises a powerful set of techniques
for elucidating the mechanisms governing cellular functions. Since the engineering of GFP
towards cell biology applications [30, 29], the ability to genetically encode fluorescent tags
to enable identification and visualization of structures as well as to track the constituent
molecules' motion throughout the cell has been a game-changer in terms of what can be
learned from fluorescence assays, including in living cells. Microscopy has the advantage of
facilitating live, single-cell and subcellular studies, testing biological hypotheses that often
cannot be evaluated with bulk biochemical assays.

There are many kinds of fluorescence imaging modalities, each with their own specialties
and drawbacks. Here, the focus is generally on widefield fluorescence techniques (including
total internal reflection fluorescence (TIRF) microscopy) rather than others such as confocal
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microscopy.

1.2.1 Why live-cell imaging?

Live-cell imaging expands on the advantages provided by fluorescence microscopy imaging,
providing the capability to track dynamic cell behaviors - growth, migration, division,
etc. on a macro scale and behaviors of molecules contributing to these functions on the
nanoscale [22, 46, 7, 54]. Fixing the cells, as is often done in cell fluorescence imaging, on
the other hand, provides only snapshots of biological phenomena and loses resolution of the
time-dependent evolution of cellular behavior.

1.2.2 Imaging at the membrane with total internal reflection fluorescence
microscopy

The signal-to-noise ratio (SNR) is a key parameter for optimization in fluorescence microscopy
[57]. There are many sources of background noise, including photon (shot) noise, the inherent
noise of the camera, and out-of-focus fluorescence from excited molecules not in the current
focal plane [57, 31]. These challenges reduce the ability to resolve the fluorophores of interest
and elucidate the structure and/or dynamics being imaged.

One technique for overcoming out-of-focus fluorescence in the case where imaging close
to the membrane is desired is total internal reflection fluorescence (TIRF) microscopy [3, 2].
TIRF operates through generation of an evanescent excitation wave with low penetration
depth into the sample and an exponential excitation intensity falloff. This is in contrast to
typical epifluorescence imaging whereby the excitation light/laser itself is aimed through
the sample [3]. This wave is generated by reflecting the laser source off the sample/glass
interface using a highly oblique angle, resulting in a "totally reflected" excitation source light.
Total reflection generates an evanescent wave which excites molecules within a low hundreds
of nanometers to the coverslip surface. Utilization of TIRF has the effect of significantly
reducing the background emission light from out of focus fluorophores, enabling considerably
higher signal-to-noise measurements, a key requirement for high-resolution single-molecule
imaging [57, 31].

1.2.3 Single-molecule imaging in living cells

Single-molecule imaging is one modality by which molecular dynamics can be connected to
systems biology-level questions [9, 36, 52]. High-time-resolution imaging allows visualization
of molecules as they move throughout the cell performing their functions [48]. This motion
encodes information regarding their functionalities, which can then be quantified as described
in the following section in order to extract information such as diffusion coefficients and
velocities, as well as how these biophysical properties relate to spatial landmarks and cellular
processes.

1.3 Methods in biophysical analysis of quantitative
fluorescence microscopy

While fluorescence microscopy is unbelievably enabling in terms of elucidating the
localization of structures within cells, their shape, and other macro-characteristics, without
quantitation, these imaging modalities are often somewhat limited to answering less
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sophisticated, sometimes binary questions. For example, upon a perturbation to the system
in question, did the gross localization of a protein change? More subtle phenotypes or
measurements including interaction/co-localization [61, 39], fluctuations in fluorescence

throughout time [28, 25, 39, 37], characteristics of molecular motion [59, 46, 36], and others
cannot necessarily be analyzed in a statistically reliable way without robust quantitation.

This thesis focuses on the application of biophysical quantitation on advanced fluorescence

imaging datasets. There are two primary techniques by which fluorescence signals will be

analyzed throughout this work: single-particle tracking (SPT) and fluorescence correlation

spectroscopy (FCS).

1.3.1 Single-particle tracking

On the level of single molecules or large, moving single "particles" comprising many

molecules, quantifying the dynamics of their motion can lend considerable understanding

into their functions within the broader context of the cell. Single-particle tracking (SPT) is

a quantitative technique whereby particles/objects/single molecules are localized and then
tracked in a two-step process [33, 49].

Algorithms for localization of particles vary depending on appearance/shape of particles

of interest in the fluorescence datasets as well as the accuracy in localization precision desired

(often at the cost of computational processing time required). There is an impressive amount

and variety of localization techniques that exist in the literature. Two primary techniques

used in this thesis are localizations based on centroid fitting for large, non-uniform objects

(see Chapter 4), as well as localizations of fluorescent objects smaller than the diffraction
limit (Chapters 2, 3, 5). In the case of the former, centroid localization simply involves

finding the center of mass of a fluorescence signal within a pre-defined grid of pixels that is

larger than the size of the objects of interest. In the case of diffraction-limited localization,
the process of determining the locations of single particles is somewhat more complex.

Single-particle localization for objects smaller than the diffraction limit of light requires
knowledge about the point-spread function (PSF) of the microscope optical configuration.

The PSF can be visualized from the resulting image generated of a point source of light

captured by an optical system. In the case of a typical widefield fluorescence microscope,
the PSF of the system comprises an Airy disk [64]. Single molecules are largely considerably

smaller than the diffraction limit of light, which constrains resolution of objects to around

half the wavelength of the light observed [1]; a molecule of green fluorescent protein (GFP),
for instance, is approximately 4 nm in length and 3 nm in diameter [63]. In super-resolution
(diffraction unlimited) imaging, it is especially important to localize individual molecules

as precisely as possible. Macromolecular structures such as actin networks can have fine

features on the order of 20 nm [62]. For dynamic molecular imaging, high localization

precision is also essential: swiftly diffusing molecules, for example, must be tracked at high

temporal resolution [41]. For live-cell imaging applications where excitation laser powers

must be minimized to prevent phototoxicity and perturbation of the dynamics of interest

[15, 18], a compromise must be made between collecting as many photons as possible in

this fast imaging regime to enable high localization precision while also avoiding as much

damage to the sample as possible.
The aforementioned a priori knowledge of the shape of the PSF is used in single-molecule

/ particle localization to increase localization precision over PSF-naive techniques such as

centroid fitting. In order to make this PSF-fitting process computationally feasible, an

approximation is often made which treats the PSF as a roughly Gaussian-shaped object. One
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technique that takes advantage of this approximation fits analytical Gaussian functions to
detected local maxima in a single-molecule fluorescence movie for each frame [10, 33]. Other
types of algorithms, such as detecting regions of radial symmetry [49], are also employed
towards the same objective with their own advantages and disadvantages. In addition,
techniques that take into account optics that modify PSFs when objects move along the Z
axis with respect to the focal plane can be used to localize single particles in 3D [4, 50, 42].

Following the localization of particles in individual frames, these single-particle
localizations are tracked frame-to-frame with linking algorithms. Many such algorithms are
based on simplification of the multiple hypothesis testing (MHT) framework, which instates
cost functions that take into account the likelihood of two objects in consecutive frames
having the same identity. This is essential for tracking in ambiguous situations where there
is uncertainty in the assignments when multiple particles are in close proximity [33].

A plethora of tools for localization and tracking of particles can be found in the literature,
each with their own benefits and drawbacks. A review "competing" some available software
packages to find optimal trackers for particular biological applications can be found in [10].

1.3.2 Imaging-based fluorescence correlation spectroscopy

Fluorescence correlation spectroscopy (FCS) [43, 27, 16] can be a highly complementary
technique to single-particle tracking for extracting molecular dynamics in living cells [51, 12,
26]. Instead of quantitating localizations of single molecules or particles and linking them
frame-to-frame, this technique analyzes the fluctuations of intensity signals within single
focal volumes [16]. Fluorescent molecules moving into a focal volume increase the intensity of
emission detected within that volume, and vice versa for molecules leaving. From correlation
analysis of a stationary process of molecular motion causing these ups and downs in the
measured intensity trace, inference of diffusion coefficients, velocities, and other phenomena
can be made by comparing the fit of these datasets to analytical FCS models [53].

Information regarding molecular dynamics is extracted from a fluctuating intensity
trace through calculation of that trace's autocorrelation function (ACF). The formula for
calculation of this function is defined as [25]:

G(T) <6F(t)6F(t + T)> (1.7)
< F(t) >2

6F(t) = F(t)- < F(t) >, (1.8)

Where T is the time lag under consideration, G(r) is the autocorrelation function, and
F(t) is the fluorescence intensity trace at time t.

Each empirical ACF is then used in the fitting of various analytical ACFs derived
from theory (equations of particle motion, particle fluorescence emission characteristics,
fluorescence detection function of the optical system, etc.) to extract the parameters of
motion or other phenomena (such as chemical reactions resulting in fluorescence flucuations).
Solution of the diffusion equation in 3D coupled with the corresponding fluorescence emission
expected within such a focal volume, for example, leads to the analytical form of the 3D
diffusion ACF [25]:
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Variable Meaning
ai correlation amplitude of component i

TD diffusion timescale
s aspect ratio of focal volume

Bi component i brightness

oabs fluorophore absorbance cross-section
qf fluorophore quantum yield

K overall optics transmittance

qD detection device quantum efficiency
Table 1.1: List of variables corresponding to ACF of a diffusion process in a 3D
Gaussian ellipsoid focal volume [25].

Additional models for various molecular dynamics schema can be found in [38].
Commonly, assumptions are made based on a priori knowledge of the biology of interest

in order to select the appropriate model to fit for a particular case. While this has often been
applied to many systems, the molecular dynamics in an in vivo system can be sometimes
unpredictable and quite unintuitive. As such, there was a great need for methods capable of
performing "model selection" to determine the most likely type of motion present given the
available data under analysis, a framework further expounded upon in Chapter 5 [26, 25, 28].
Essentially, for a given system of interest, possible models of motion, e.g., number of diffusion
coefficients present, diffusion vs. the existence of directed transport, etc. are competed to
find the most likely model which explains the given data. The Bathe lab has pioneered a
Bayesian statistical inference software package (FCS-Bayes; fcs-bayes.org) for treatment
of FCS data where the user would like a statistical confidence in the likelihood of certain
dynamics existing relative to other models within an FCS dataset [26, 25].

Fluorescence correlation spectroscopy is commonly employed using confocal-based
platforms whereby a single focal volume is analyzed at a particular time [351. This leads to
lower throughput data collection than can be acquired, for example, using camera sensors
with an array of pixels sampling many focal volumes simultaneously [351. The advantage of
detectors commonly coupled with confocal microscopes such as Avalanche photodiodes
(APDs), however, is the greatly increased time resolution possible. Instead, in this work,
camera-based FCS ("imaging-FCS") is employed with TIRF microscopy to study membrane
dynamics (Chapter 5) [26, 34, 23]. This is possible despite the framerate of common
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EMCCD cameras due to the slower diffusive time scale of molecular dynamics on the
membrane compared to the cytoplasm of typical membrane proteins [51, 5, 12]. Through
this imaging modality, it is possible to collect hundreds to thousands of focal volumes
simultaneously, depending on the frame rate required to image the proteins of interest [35].

The application of imaging-based FCS coupled with FCS-Bayes to living bacteria can be
found in Chapter 5.

1.4 Structure of the thesis

This thesis is divided into essentially two major sections (the first comprising Chapters
2, 3, 4). These first three chapters correspond to three already published journal articles,
preceded by a brief introduction on important background topics and motivations for the
work. These areas of research cover three diverse biological systems: mRNA transport
in neurons (Chapter 2), dynamics of membrane-associated enzymes which contribute to
cell growth in bacteria (Chapter 3), and kinetochore motion during anaphase chromosome
separation (Chapter 4). Following these published results is a final chapter (Chapter
5) covering my unpublished work, which is primarily application of both FCS and SPT
techniques to the study of membrane-associated protein dynamics in the bacterial model
Gram-positive Bacillus subtilis.
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Chapter 2

An HMM-Bayes-based exploration
of transport dynamics of -actin
messenger ribonucleoprotein
complexes in primary mouse
neurons

The work presented in this chapter has been published in:

Nilah Monnier, Zachary Barry, Hye Yoon Park, Kuan-Chung Su, Zachary Katz, Brian P

English, Arkajit Dey, Keyao Pan, lain M Cheeseman, Robert H Singer, and Mark Bathe.

Inferring transient particle transport dynamics in live cells. Nature Methods, 12(9):838-840,
2015

Note: Monnier and Barry are co-first authors of equal contribution.

2.1 Overview and Motivation

Single-particle imaging and tracking is a powerful combination of techniques that enables the

quantification of the motion of particle/molecule behavior in space and in time throughout

their lifetimes. There are common tools for analysis of these trajectories, the list of

localizations built and assigned to single particles, which encode biophysical information

regarding the type of motion present and their respective motion coefficients - diffusion

coefficients and velocities. Analyzing single tracks or multiple trajectories simultaneously

with a diverse number of SPT analysis algorithms can extract this biophysical information.

As mentioned in the introduction to this thesis, the mean squared displacement (MSD)
is one such commonly-employed method. In this chapter, a new method is described

("HMM-Bayes"), which improves significantly on previous approaches to trajectory analysis.

2.1.1 The mean squared displacement metric

Mean squared displacement analysis is a well-trodden path for extraction of biophysical

properties of a particle's motion [21].

MSDs, as can be inferred from the name, can be calculated through squaring all

displacements along a trajectory and taking the mean of these squares. This is done with
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respect to particular timelags - a timelag of one frame, two frames, three, etc., which dictate
how many frames between localizations are considered in the calculation of displacements for
a particular time lag along an MSD curve. Empirical MSDs from single-particle trajectories
are calculated as follows [23]:

MSD(T) = (Ar() 2)

1 N-r (2.1)

N -i- - r

MSDs, like autocorrelation curves from FCS analysis, are useful because of the plethora
of analytical functions that have been derived for them for various types of motion [23].
Simple diffusion and velocity models are available, as well as more complex models such as
confined diffusion, anomalous diffusion, and others. In much the same way as FCS-Bayes
and HMM-Bayes, the Bathe lab has created a tool to perform Bayesian model selection
("MSD-Bayes"; msd-bayes.org) on MSD datasets to find the most likely underlying model of
the motion of the particles under scrutiny [23].

2.1.2 Limitations of the MSD and justifcation for HMM-Bayes

While MSD-based analysis is a well-trodden path and a reliable technique, it has signficant
limitations in its ability to resolve heterogeneity along the trajectories. MSDs are not
capable of granting the user single-frame resolution of changes in motion in single tracks. For
example, cargos such as mRNPs (messenger ribonucleoproteins) [25, 19, 18], as analyzed in
this chapter, are stochastically, actively transported along microtubules in neuronal dendrites
[25]. Reversals in direction as well as pauses of these particles are observed [25]; analysis
of large amounts of these phenomena across many trajectories necessitates an automated
method to curate regions in time along these tracks of "switching" events (e.g., diffusion to
transport), the lifetimes of these states, switching rates, and coefficients of motion along
each portion of the track. Unfortunately, given the realities of the relatively shorter lengths
of tracks in biological datasets (often due to photobleaching), the MSD is sometimes a
suboptimal approach for detecting these heterogeneities [24]. In addition, the nature of MSDs
is such that noise in an MSD curve increases with increasing time lag, and noises between
subsequent time lags are correlated [23, 21]. Shorter trajectories therefore can possess large
amounts of noise even at early time lags, which can significantly impact analysis of MSDs
of diffusing particles, for example. Taken together, this prompted the need to develop a
new tool to achieve single-step resolution of heterogeneous behavior in a signficantly more
sensitive fashion, thus resulting in the development of HMM-Bayes as presented in this
section.

2.1.3 HMM-Bayes

HMM-Bayes is a software package which takes single-particle trajectories and annotates
them according to the type of motion inferred along each displacement, or "step", within
the track. As is implied, this is accomplished using a hidden Markov modeling (HMM)
framework [27], whereby individual displacements correspond to HMM emissions and are
modeled as drawn from a Gaussian distribution [26]. Discrimination between regions where
a particle is undergoing directed motion vs. diffusion is performed by determining whether
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the normal distribution describing the frame-to-frame displacements of the particle contains
a non-zero mean, i.e., a biased diffusion. Diffusion coefficients correspond to the diagonal of
the covariance matrix of the Gaussian (here isotropic). Detailed and thorough derivation
and explanation of the Bayesian implementation of such a hidden Markov model (which
infers both the number of states of motion present as well as whether states contain biased
diffusion) can be found in [22].

2.1.4 d-actin mRNA transport in neurons as a test platform for applying
hidden Markov modeling to molecular transport processes

The work of the author in this publication was in applying HMM-Bayes to analysis of the
transport of -actin messenger ribonucleoproteins in primary mouse neurons towards the end
of extracting information about active transport of these particles through neuronal dendrites.
Statistics were extracted from this analysis including the lifetimes of transport and the bias
of particle directed motion away from the soma, despite anterograde and retrograde velocities
being equal. These mRNA-protein complexes were excellent candidates to demonstrate
the ability of HMM-Bayes to discriminate between pure diffusion and directed transport of
particles based on single-particle trajectory analysis. Due to the extended nature of neuronal
processes as well as the need for local translation of this particular mRNA, these neurons
need to actively transport the particles to their destinations along dendrites to synapses [3].
This transport is mediated by dynein and kinesin-driven motion along microtubules [3]. In
this work, it is shown that mRNPs exhibit stochastic antero- and retro-grade transport with
respect to the soma along the microtubule network to the far reaches of the cell. HMM-Bayes

is shown in a proof-of-concept to be able to readily detect these switches in motion through
analysis of the single-particle trajectories of this motion.

2.1.5 Contribution

The author of this thesis applied HMM-Bayes to the analysis of the -actin neuronal mRNPs.
A platform for automated tracking, HMM-Bayes analysis, and subsequent statistical output

was developed and portions of the software were curated for release to the public. The
neuronal mRNP dataset formed a cornerstone of the effort of this work towards illustrating
the biological relevance of HMM-Bayes. The HMM-Bayes software package can be found at

hmm-bayes.org.

2.2 Abstract

Advances in live-cell imaging and particle tracking provide rich information on mechanisms
of intracellular transport. However, trajectory analysis procedures to infer complex transport

dynamics involving stochastic switching between active transport and diffusive motion are
lacking. Here, we apply Bayesian model selection to hidden Markov modeling to infer
transient transport states from particle trajectories, with application to mRNA-protein

complexes in live mouse hippocampal neurons and metaphase kinetochores in dividing
human cells.
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2.3 Main Text

High-resolution fluorescence imaging is now used routinely to report on the dynamic
behavior of single molecules and macromolecular assemblies in diverse biological contexts
including membrane receptor dynamics [32, 7, 17], long-range mRNA transport [19, 25],
and chromosome segregation [35]. While a variety of advanced particle tracking techniques
are now available [16, 6, 31], model-based inference procedures are needed to extract
mechanistic biophysical information from these trajectories. Classification of local particle

dynamics using physical motion models offers insights into molecular transport mechanisms

that may include the direction and speed of molecular motors that drive transport of
intracellular cargo, as well as the identification of specific intracellular locations of cargo

confinement or transient binding interactions [7, 17]. Because intracellular transport often

exhibits a high degree of heterogeneity depending on the spatial location of cargo within the

cell, combinations of motion models should ideally be considered in the analysis and

annotation of single particle trajectories.

While kymograph and mean-square displacement (MSD) analyses are commonly used
to characterize intracellular motion from particle trajectories [32, 23], hidden Markov
modeling (HMM) has recently proven to be a powerful alternative due to its ability to

spatially annotate heterogeneous motion locally along a single trajectory. In contrast to

MSD analysis, HMMs account for the possibility of stochastic switching between distinct

motion states with single-step temporal resolution without time averaging [7, 8, 4, 26].
This advantage of the HMM approach has been demonstrated for diffusing particles in the
analysis of single receptor dynamics confined by membrane corrals and undergoing transient
cytoskeletal-binding interactions [7, 8, 4] and RNA-binding protein dynamics in bacteria [26].
Incorporation of Bayesian model selection into the inference process additionally enables
objective selection of the simplest stochastic motion model that describes a given trajectory
[26]. However, existing Bayesian HMMs are limited to modeling purely diffusive motion,
whereas intracellular cargo often exhibit combinations of active transport and random
diffusive motion. An important example is long-range transport of mRNAs in complex with
mRNA-binding proteins (mRNPs), driven by molecular motors along microtubule tracks in
neuronal dendrites [25].

Long-range transport of #-actin mRNP complexes to sites of local protein translation
in neurons is implicated in synapse formation and plasticity involved in development and
learning [25]. Endogenous O-actin mRNP transport has recently been assayed in live neuronal
cultures [19, 25], revealing heterogeneous periods of anterograde and retrograde transport
interspersed with pausing events, with a moderate bias towards anterograde transport that
may aid in mRNA distribution to distal sites of translation [25]. Kymographs of /-actin
mRNPs qualitatively confirmed the presence of both stationary and active transport phases
and supported the finding that transport is not fully processive (Fig. 2.1a, Supplementary
Fig. A.1, and Supplementary Note A.1.1). Extracting quantitative information from
kymographs is a subjective process, however, particularly for short-lived phases of motion
(Supplementary Fig. A.1). Quantitative analyses of mRNP trajectories using MSD curves
averaged within local time windows along each trajectory [1] provided additional evidence
for multiple phases of motion (Fig. 2.1b, Supplementary Fig. A.2, and Supplementary Note
A.1.1). However, the intrinsically limited temporal resolution of MSD-based techniques
that require sliding-window averaging was unable to resolve short-lived phases of motion,
and application of sliding-window MSDs yielded variable results depending on user-selected
parameters such as window size (Supplementary Fig. A.2 and Supplementary Note A.1.1).
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While HMM-based procedures can in principle resolve distinct motion states with single
time-step resolution, purely diffusive HMM approaches resulted in erroneous annotations
(Fig. 2.1c) because they neglect the possibility of active transport in the underlying set of
motion models considered.

To overcome these limitations, we developed a versatile HMM procedure that can be
applied both to diffusive switching and to active transport processes interspersed with
random pausing events such as in the motor-driven transport of mRNPs. This HMM
analysis approach requires the statistical hypothesis that a particle explores a finite set
of diffusive and directed transport motion states whose switching can be modeled as a
Markov process. Our procedure, HMM-Bayes (Online Methods and Supplementary Figs.
A.3, A.4, A.5, A.6), models diffusive and directed motion states along particle trajectories
and performs Bayesian model selection to infer the simplest stochastic motion model that
is consistent with the observed particle displacements. The procedure can be applied to
either a single trajectory or a set of pooled trajectories, annotating intermittent periods
of diffusive and directed motion locally along each trajectory to reveal when and where
switching between distinct types of motion occurs in space and time (Figs. 2.1d, 2.2a,b and
Online Methods). We validated our approach using simulated trajectories, first confirming
that it performed similarly to purely diffusive HMMs when applied to stochastic switching
between two distinct diffusivities (Supplementary Figs. A.7, A.8, A.9 and Supplementary
Notes A.1.2 and A.1.3). In addition, our procedure detected stochastic switching between
directed transport and random diffusive motion states (Supplementary Figs. A.10, A.11,
A.12, A.13, A.14 and Supplementary Note A.1.3), whereas existing HMM approaches failed
to detect transport. As expected [26], a minimum number of observed particle displacements
was required to infer the presence of multiple motion states, where this number depended
on the relative values of the motion parameters (Supplementary Figs. A.11 and A.12 and
Supplementary Note A.1.3).

The ability of our procedure to detect directed transport enabled its application to
annotate complex neuronal -actin mRNP transport dynamics consisting of anterograde
and retrograde transport interspersed with random pausing events (Figs. 2.1b and 2.2,
Supplementary Note A.1.4, Supplementary Figs. A.15, A.16, A.17, and Supplementary
Videos 1-3). Our procedure yielded trajectories annotated in detail with the local spatial-
temporal dynamics of when and where each mRNP exhibited retrograde, anterograde or
pausing motion along its trajectory within the cell (Figs. 2.1d and 2.2a-b), as well as the
lifetime of each individual period of motion and population distributions of velocities, diffusion
coefficients, and state lifetimes across a collection of heterogeneous mRNP trajectories from
multiple cells (Fig. 2.2c). We found that #-actin mRNPs existed on average in passive
pausing states longer than in active transport states, and that anterograde transport had a
higher average velocity (0.76 0.45 pm/s) compared with retrograde transport (0.58 t 0.35

pm/s), with large variability in single-molecule mRNP transport rates. Analysis of /3-actin
mRNP trajectories in cells treated with KCl, which induced inhibition of active transport
[25], confirmed that our procedure annotated these trajectories with only a single diffusive
state (Supplementary Fig. A.1). These quantifications produced by our analysis procedure,
combined with secondary labeling of microtubules, cytoskeletal-associated proteins, and
ribosomes, will facilitate interpretation of the molecular origins of these heterogeneous

/3-actin mRNP transport dynamics in future studies.
To confirm the applicability of HMM-Bayes across multiple modes of intracellular motion

in distinct biological systems, we additionally applied it to #-actin mRNP trajectories in
live mouse fibroblasts [18] and to oscillating kinetochores in dividing HeLa cells [5]. As with
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previous HMM procedures [26], trajectories can be pooled to improve inference power (Online

Methods and Supplementary Figs. A.19, A.20, A.21, A.22), which enabled the detection

of multiple diffusive states of fibroblast f-actin mRNPs (Supplementary Fig. A.23 and

Supplementary Note A.1.5) and multiple transport states of oscillating kinetochores without

the need for manual identification of direction reversals (Fig. 2.3, Supplementary Figs. A.24

and A.25, and Supplementary Note A.1.6). Pooling assumes that each trajectory consists of

the same set of underlying hidden motion states and parameter values; therefore, transport

phases annotated within pooled trajectories are assumed to have the same direction and

magnitude of transport velocity across the trajectories. In some cases trajectories can be

projected along specific directions of interest prior to pooling, as in the analysis of kinetochore

dynamics. When transport occurs in random directions across a set of pooled trajectories, a

modified version of HMM-Bayes that incorporates chi-squared emission distributions can

be applied (Supplementary Note A.1.7 and Supplementary Figs. A.26 and A.27). Future

applications of HMM-Bayes may explore the ID projection of 2D and 3D transport along

curvilinear objects such as microtubules, or the use of directional statistics to model changes

in direction of transport. In addition, hierarchical or k-means clustering of trajectories could

be used iteratively with HMM-Bayes to identify similar subsets of trajectories based on

common motion types and parameter values.
In conclusion, consideration of directed motion in the HMM annotation process for particle

trajectories is important because biological transport is often driven by active motor- and

cytoskeletal-driven processes. Our procedure robustly annotates stochastic phases of directed

transport and random motion along individual mRNP and kinetochore trajectories in live

cells. Quantitative information on rates of transport, directional switching, and locations and

durations of pausing can be used to explore complex mechanisms of intracellular transport of

these and other biological particles. Because the formulation of our procedure is general to

single particle motion analysis, it should also apply to the analysis of cell migration in tissue

culture models [9] and developing embryos [33, 10]. The HMM-Bayes software package is

available in open-source for distribution to the broader scientific community (hmm-bayes.org)

and benefits from parallel computing when large biological datasets are considered.

2.4 Materials and Methods

2.4.1 Formulation of a particle trajectory HMM with directed motion

Following previous approaches [8, 4, 26], we model particle displacements as emissions and

motion models as hidden states of a hidden Markov model (HMM). The emission distributions

for the observed displacements are normal distributions whose parameters depend on the

hidden motion states, as described in more detail below. The standard deviations of the

emission distributions depend on the diffusion coefficients of the motion states and on

localization error in the measurement of particle positions (Supplementary Note A.1.2). In

contrast to previous HMM procedures that assume diffusive motion states with zero mean

for the displacement emission distributions [8, 4, 26], here we allow for active transport

states with non-zero mean. This generalization to non-zero means to account for directed

motion introduces multiple additional parameters (Supplementary Table A.1) that can easily

lead to over-fitting of the trajectories, and consequently erroneous trajectory annotation.

We therefore implement Bayesian model selection, also described in more detail below, both

on the number of hidden states and on the inclusion of the non-zero velocity parameter
of appropriate dimensionality (1D, 2D, 3D) within each motion state, thus considering a
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considerably larger set of complex motion switching models (Supplementary Table A. 1) than

previous approaches [26].

In a single dimension, a particle trajectory consists of a sequence of particle positions xt

separated by a time interval At. For a particle undergoing a random walk with drift and

in the absence of localization error [301, the particle displacements Axt = xt+1 - xt along

this dimension follow a normal distribution with a standard deviation that depends on the

diffusion coefficient D according to o = (2DAt) 2 and a mean that depends on the velocity

vx according to [Lx = vxAt. For a two- or three-dimensional particle trajectory with particle

positions rt = {Xt, Yt} or rt = {Xt, Yt, zt}, the displacements become Art = {Axt, Ayt} =

{Xt+1 - xt, yt+1 - yt} or Art = {Axt, Ayt Azt} = {Xt+1 - Xt, yt+1 - Yt, zt+1 - zt} and the
velocity of the particle has multiple components, v = {v, vy } or v = {v, vY, vz}. In this

work we assume isotropic diffusion, so the diffusion coefficient is a scalar value even in

multiple dimensions. Under these conditions, the displacements are distributed according to

a multivariate normal distribution; for example, in three dimensions,

Ar - 1 (AX - vXAt) 2 + (Ay - vy At) 2 + (Az - vzAt) 2  (2.2)
(47rDAt) ep 4DAt

Error in the experimental measurement of particle positions (localization error)

contributes to the standard deviation of the observed displacements and must be taken into

account when converting between a and the diffusion coefficient (Supplementary Note

A.1.2).
In modeling single particle transport dynamics in biological systems, we assume that

particles may experience local changes in their diffusion coefficient, velocity, or both due

to interactions with their surroundings. To infer changes in these motion parameters

from an observed sequence of particle displacements, we model particle displacements

using an HMM, a type of Bayesian network that consists of a Markov chain of hidden

variables, S = {si, ... , ST}, and a corresponding sequence of observed variables or emissions,
e = e, ... , eT, where T is the number of observations. The hidden variables st can each

take a discrete set of values or states, {S1, ... SK}, where K is the number of available states

[11]. The probability of transitioning to a particular state at time t depends only on the

previous state at time t - 1 and is denoted by Dij = Pr(st = Sgjst_1 = Si), while the

probability of starting in state Si at time t = 1 is denoted by 7ri = Pr(si = Si). To model

particle trajectories, we let the hidden states be the unobserved motion states of the particle

characterized by the parameters D and v; thus, each hidden state Si represents a particular

state of motion with a specific diffusion coefficient and velocity, Si = {Di, vi}. Because a

particle may also experience periods of pure diffusion without directed transport, hidden

motion states with zero velocity and only a single motion parameter, Si = {Di}, must also

be considered in the model.

At every time point t, the particle is assumed to exist in one of these possible hidden

states, but the specific state is unknown a priori. Instead, we observe a time series of particle

displacements {Ari, ... , ATT}, where T is the total number of time intervals over which the

particle is tracked. These particle displacements are modeled as the emissions of the HMM.

The probability of observing a particular emission at time t depends only on the state at time

t according to a probability distribution psi(et) = Pr(etlst = Si), which is in this case the

normal distribution in Eq. 2.2 above, parameterized by the unobserved motion parameters

{ Di, vi} of the hidden state. Thus, any local changes in particle transport dynamics are

inferred using the temporal information that is encoded in the time series of emissions.
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The full set of parameters, denoted e, for an HMM with K motion states includes the K
x K matrix of transition probabilities 45ij between all pairs of states, the length-K vector of
starting probabilities 7ri, and the motion parameters {Di, vi } that characterize each hidden
state,

E = {{7ri} -i, {jIg}f .1.{DivN}f1}. (2.3)

These parameter values are inferred for different values of K based on the observed
sequence of particle displacements during the model fitting and selection process described
below.

2.4.2 Model selection framework for the particle trajectory HMM

When analyzing a particle trajectory, we do not know a priori either the number of motion
states K that the particle explores during the time it is observed or the motion parameters
associated with these states. Here we use a Bayesian model selection approach to determine
the appropriate number of motion states K without overfitting. We also assume that each
of the K motion states may or may not include directed motion with nonzero velocity in
addition to random diffusive motion. Because inclusion of a nonzero velocity parameter can
also lead to overfitting, we use our Bayesian model selection framework to choose both the
appropriate K and the number of states within K that have nonzero velocities (directed
transport states). For example, we test three possible 2-state models-one with two diffusive
states (model D-D), one with one diffusive state and one transport state (model D-DV), and
one with two transport states (model DV-DV)-and penalize the total number of parameters,
which increases with the number of transport states. A full set of tested models and their
associated numbers of parameters is shown in Supplementary Table A.1) for HMMs with
up to three hidden states. Note that for a given number of states K, there are K + 1
possible models to be tested, depending on how many of the K states are transport states
with nonzero velocity. Our model selection procedure evaluates the relative probabilities
of these competing models up to some specified maximum number of states Kmax. The
total number of models tested for a particular value of Kmax is thus (Knax + 3 Kmax)/2,
considerably larger than in the case of purely diffusive HMMs [26], which test only a single
motion switching model for each number of states K.

Given an observed sequence of particle displacements, the posterior probability of a
particular model Mk can be expanded according to Bayes' theorem,

Pr(e|Mk)Pr(Mk) c Pr(eIMk) (2.4)
Pr(e)

where the emissions e = {e, ... , eT} are the displacements {Ari, ... , ArT}, as described
above, and the final proportionality holds if the prior probabilities of the models, Pr(Mk),
are assumed equal due to the absence of prior information about the system. Thus, with
uniform prior probabilities, only the likelihood Pr(eMk) must be calculated for each model
to determine the relative model probabilities. This likelihood is found by marginalizing over
the unknown parameter values 8k for each model Mk,

Pr(e|Mk) = J Pr(e|Gk, Mk)Pr(e|Mk)dek (2.5)

where Pr(EklMk) is the prior probability of a particular realization 8 k of the parameter
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values for the model Mk, and Pr(elek, Mk) is the likelihood of the observed emissions given
the model and that particular set of parameters. For an HMM, the likelihood Pr(elek, Mk)
must also be marginalized over all possible hidden state sequences Sk for the model Mk,
since the temporal sequence of hidden states is unknown,

Pr(elk, Mk) = Z Pr(elsk,Ek, Mk)Pr(sk l8k, Mk). (2.6)
Sk

Because of the HMM structure [11], the first term depends only on the emission probability
distributions according to Pr(elsk, 8k, Mk) = f = p,(et), where the emission distributions
are parameterized by the Di and vi values for each state Si as described above, and
the second term depends only on the starting and transition probabilities according to
Pr(sk|9k, Mk) =r 1  f= 2  St-1Sst-ist. Substituting into Eq. 2.2 above, the full equation
for the marginal likelihood in terms of the model parameters becomes,

T T

Pr(e|Mk) = ][(7rS 171 f_ pst(et))]Pr(Ek|Mk)dEk (2.7)
sk t=2 t=1

Although the integral in Eq. 2.7 is intractable in general, the value of the integrand
can be evaluated exactly for a given model Mk at any particular value of its associated
parameters ek, given a uniform parameter prior distribution Pr(EklMk) and using the
forward algorithm [11] to evaluate the summation over hidden state sequences. Therefore,
to compute the likelihood Pr(elMk) for each model Mk, we use a numerical integration
approach in which the integrand is evaluated at stochastically sampled values of Ek as
described below.

2.4.3 Numerical integration of the likelihood

We use Markov Chain Monte Carlo (MCMC), specifically the Metropolis MCMC algorithm[28,
14, 13], to sample the posterior distribution in Eq. 2.7. The value of the integrand in Eq.
2.7, f(ek), is evaluated at a random starting point Ok(0) in parameter space, then new
parameters ek(1) are proposed from a multivariate normal distribution in parameter space
centered at Ek (0), and the new ek(1) is accepted with probability min(1, f(ek (1))/f (ek(0))).
Additional details on these steps are given below. Repeating this process results in sampling
a stationary distribution of parameters that is proportional to f(ek).

For our particle trajectory HMM with directed transport, the full set of parameters to
be sampled is given in Eq. 2.3 above. As discussed in the previous section, however, we also
consider models in which some of the hidden motion states are purely diffusive states with
zero velocity. For any given tested model Mk, let K be the total number of states and Ky
be the number of states with nonzero velocity, where 0 < Ky < K. Then the full set of
parameters that must be sampled is 8 { , ... , 7 K, '411, .-- iKK, Di, ..., DKvl, ..., VKv}.
At each step in an MCMC run, one or more parameter(s) in this set can be selected for
updating. We found that updating a randomly-selected block of related parameters at each
step [13] exhibited fastest and most robust convergence compared with other move-sets,
such as updating all parameters simultaneously or updating only a single randomly-selected
parameter at each step. Motivation for the block updating approach is that parameters with

correlated effects on f(ek) should be updated at the same time to increase the probability of
escaping from local maxima in the likelihood landscape [13]. Here we split the parameters into
three blocks: the probability parameters {7 1, ..., 7K, "D1, ---, IKK}, the diffusion coefficients
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D1, ... , DK, and the velocities {vi, ... , 'vKv }. At each step, one of these blocks is selected
randomly with equal probability, updates are proposed for all of the parameters within that
block, and the update is accepted or rejected according to the Metropolis criterion above.

To initialize each MCMC run, we choose a random point in parameter space that is within
a range defined by the set of observed particle displacements. The maximum likelihood
velocity parameters in each dimension will not be greater than the largest observed single-
displacement velocity or less than the smallest observed single-displacement velocity for that
dimension. Therefore, initial guesses for the velocity parameters v_,i, vy',, and v,, for each
state Si in {S1, ... , SKy } are drawn from uniform distributions on this range; for example,
oM ~ U(mint(Axt)/At, maxt(Axt)/At). Since the velocities are related to the means of the
emission probability distributions by pIL, = vx,idt, in practice we fit the means {i, ... , pKv I
and convert to velocities as a final step in the analysis. Similarly, the diffusion coefficients
{D1 , ... , DK} are related to the standard deviations of the emission distributions by o =

(2DiAt)", so in practice we fit the standard deviations {Oi, ... , OK. These u parameters
must be greater than zero and will generally not be greater than the largest observed width
of the displacement distribution across the dimensions, so we draw initial guesses from a
uniform distribution, o%(O) ~ U(0, max((maxt(A(t) - mint(A(t))), where ( parameterizes
the spatial dimensions of the particle trajectory, e.g. one of {x, y, z} for a three-dimensional
trajectory. Finally, initial guesses for the probability parameters {r, ..., IrK, (11, ... , JKK}
are all set to the same value 1/K, representing uniform distributions over the number of
states K. Multiple re-starts of MCMC are run with different initial guesses for the mean
and standard deviation parameters, with at least 100 restarts for models with more than a
single state.

During each MCMC run from a particular initial parameter guess, parameter values
are updated using a normal proposal distribution centered on the previous value of each
parameter and with a standard deviation 6 that is specific to each parameter type, denoted
as 6 p, 6o,, 67r, and 64. These proposal distribution widths are set adaptively during the series
of MCMC initialization runs to maintain a target acceptance rate, computed separately
for each block of parameters, of between 0.3 and 0.5, which is generally recommended
for efficiently exploring the likelihood landscape [29]. We initialize 6p and 6c to 1/50 of
the initial guess ranges given above for the [ and a parameters, and then update 6p and
6a at the end of each initialization run based on the acceptance rates calculated for that
run. Because the o- parameters are constrained to be positive, parameter updates are
automatically rejected if a o- value below zero is proposed. The probability parameters are
constrained in the range [0, 1] and must satisfy the conditions EN 1ri = l and K1 4j = 1
for all i; therefore, these probabilities are re-normalized after every update of the probability
block and the values of 67r and 6@ are updated based on the minimum distance of the 1ri or
1 ij probabilities, respectively, from either of the boundaries 0 or 1 to maintain a relatively
consistent acceptance rate along the MCMC chain.

Following the MCMC initialization runs, a longer MCMC run is performed, starting
from the parameter values that yielded the highest likelihood during the initialization runs,
and is subsequently used to report the maximum likelihood parameter values for each tested
model, as well as to define the sampling distribution for numerical integration of the desired
integral in Eq. 2.7. For a sampling distribution q(ek), the estimator for the value of the
integral [28] is equal to the mean value of the ratio of the integrand f(ek) to q(ek) over the
sampled values of Ek,
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fk -- ((Ek ), (2.8)
q(ek)

where the subscript q indicates that the mean is calculated over values of 8k sampled from
the distribution q(8). The sampling distribution that gives an estimator with minimum
variance [28] is the distribution proportional to f(ek), which is approximated by the MCMC
samples. We use the MCMC samples to define a sampling distribution q(ek) in which the
parameters {u1, ... , UK} and {pi, ..., tSKV } are each sampled from a normal distribution with
the same mean and standard deviation as the sampled values of that parameter during
the second half of the long MCMC run, so that these parameters are sampled from the
important regions of parameter space identified by MCMC. The probability parameters

{7ri, ..., 7K , (D 11, --- , (IKK} are sampled from K-dimensional simplexes to ensure that each
sampled point meets the conditions EN 17ri = 1 and Ez bI = 1.

This integration approach results in an estimate from Eq. 2.8 of the integral in Eq. 2.7.
The probability density q(ek) of the sampling distribution is computed analytically for each
sampled point ek using the normal distributions and uniform simplexes above. The value

of f(8k) is computed for each sampled point ek using the forward algorithm as discussed
above, and assuming that the prior probability Pr(EklMk) in Eq. 2.7 is constant over a
bounded region in parameter space. For the probability parameters, which are inherently
bounded on K-dimensional simplexes, the prior is uniform over each simplex. For the

emission mean and standard deviation parameters, the uniform bounded region is centered
on the mean of the sampled values of that parameter during the second half of the long
MCMC run above, with a width equal to 200 times the standard deviation of the MCMC
samples, as in previous work [23, 15]. Finally, after computing Pr(eMk) for each model, the
final model probabilities in Eq. 2.4 are calculated by normalizing these values of Pr(eMk)
across the set of tested models.

2.4.4 Pooling multiple trajectories

The preceding sections describe the application of our procedure to an individual particle
trajectory. However, in many biological applications, a large number of short trajectories are
obtained from independent particles that may be assumed to undergo the same dynamical
processes with the same motion parameters for the purposes of multiple hypothesis testing.

When this assumption is valid, pooling the trajectories to perform a joint analysis increases
the inference power of the Bayesian HMM approach and therefore its ability to resolve
complex models with multiple states and parameters [26]. Including multiple independent
trajectories in the likelihood calculation is straightforward, as their individual likelihoods
can be multiplied [26]. For W trajectories, each with a set of observed displacements or
emissions ew, Bayes' rule becomes,

Pr(MkI{ew},W_) - Pr({ew} 1IMk)Pr(Mk) w}ilMk). (2.9)P~~r(Mr({ef} w== )29

Analogous to Eq. 2.5 above, the marginal likelihood is then,

Pr(MkI{ew}w=) = [ 1 Pr(ewJek, Mk)]Pr(eJMk)dek, (2.10)
W=1

which, assuming independent trajectories, becomes,
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w
Pr({e}Jw1|Mk) = J[ Pr(eWlek, Mk)]Pr(eklMk)dEk (2.11)

w=1

The calculation of each individual Pr(ewl8k, Mk) in Eq. 2.11 still follows Eq. 2.6 above.
The MCMC sampling approach above now explores the parameters Ok for each model

Mk based on the full set of pooled trajectories rather than for each trajectory individually.
Therefore, this pooling approach requires that the trajectories explore the same set of
possible motion states with the same motion parameters. The hidden state sequences sw,
on the other hand, are marginalized out by the forward algorithm, and the most likely state
sequence can be obtained for each trajectory independently using the most likely parameters
of the most likely model. Thus, the pooled trajectories are not required to have the same

hidden state sequences and can transition between the different motion states at different

times.

2.4.5 Simulations of single particle trajectories

Diffusive single-particle trajectories were simulated by drawing random step lengths in each

dimension from a normal distribution with zero mean and standard deviation equal to

(2DAt) 2, where D is the diffusion coefficient and At is the time interval for each step.
Directed motion was modeled by adding a fixed displacement of length vAt to the diffusive
component of motion at each time step, where v is the velocity vector.

2.4.6 Imaging mRNA in live neurons

Recent advances in live-cell mRNA fluorescence labeling techniques have enabled the

visualization of #-actin mRNA transport dynamics in live cells using the MS2 bacteriophage
capsid protein system [19, 25]. GFP-tagged MS2 capsid proteins (MCP-GFP) associate
with tandem RNA stem loops knocked into the 3' untranslated region (UTR) of the #-actin
gene in the #-actin-MS2-binding site knock-in (MBS) mouse [19]. All experiments using
animals were carried out under the approval of the Albert Einstein College of Medicine
Institutional Animal Care and Use Committee (IACUC). We used 6-8 week-old male and
female mice to set up timed pregnancies of double homozygous MCPxMBS mice.

Hippocampal neurons were cultured from MCPxMBS mouse pups at postnatal day 0 to 2
as described previously [25]. Briefly, we dissected out hippocampi, dissociated them with
trypsin, and plated 85,000 cells onto poly-D-lysine-coated dishes (MatTek). The cultures
were maintained in Neurobasal-A medium supplemented with B-27, Glutamax, and

Primocin (Invivogen) at 37'C and 5% CO 2 for 14-22 days before imaging. For live neuron
imaging, we removed the media from cell cultures and replaced it with HEPES-buffered
solution (HBS) containing 20 mM HEPES-HCl pH 7.4, 119 mM NaCl, 5 mM KCl, 2 mM
CaCl 2 , 2 mM MgCl 2 , and 30 mM glucose prior to the experiment. Time-lapse images were

taken on an Olympus IX-71 inverted microscope with a UApo 150X 1.45 NA oil immersion
objective (Olympus), an MS-2000 XYZ automated stage (ASI) and an iXon
electron-multiplying charge-coupled device (EMCCD) camera (Andor). The cells were kept
at 37'C with 60% humidity in an environmental chamber (Precision Plastics). The GFP
was excited by the 488 nm line from an argon ion laser (Melles Griot). Emission was filtered

with a 525/30 band-pass filter (Semrock). Wide-field images were acquired at 10 fps using
MetaMorph software (Molecular Devices). Individual localizations of mRNPs were obtained
via single-particle tracking using the u-track-2.0 package [16].
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2.4.7 Imaging mRNA in live fibroblasts

Mouse embryonic fibroblast cell lines derived from the MBS mouse stably express tdMCP-
GFP to label all endogenous -actin mRNA as described previously [18]. Microtubules
were labeled by transient expression of mCherry-alpha-tubulin. mRNPs were visualized
with TIRF excitation on the same microscope setup described above at 35 ms per frame
in streaming acquisition mode. mRNP trajectories were analyzed with the DiaTrack 3.03
package [34] and coordinates were exported for HMM analysis.

2.4.8 Imaging metaphase kinetochore dynamics in tissue culture cells

HeLa cells were maintained in DMEM supplemented with 100 U/ml streptomycin, 100 U/ml
penicillin, 2 mM glutamine, and 10% (vol/vol) fetal calf serum. Cell lines are routinely
validated and checked for mycoplasma contamination using Mycoalert (Lonza). Cells were
cultured at 37'C with 5% CO 2 . Cells expressing GFP-LAP fusions to CSAP [2] and
CENP-A [12] were generated using retroviral infection of HeLa cells with pBABE-Blasticidin-
based vectors. Images were acquired on a Nikon eclipse microscope equipped with a CCD
camera (Clara, Andor). For time-lapse imaging, cells were imaged in C0 2 -independent
media (Invitrogen), supplemented as above for the DMEM culture media, at 37'C. Images
were acquired every 6 seconds using three z sections at 0.7 pm intervals using a 40x Plan
Fluor objective 1.3NA (Nikon). GFP fluorescence was observed using appropriate filters.
Kinetochore positions were manually tracked using the MTrackJ program [20].

2.4.9 Code availability

The HMM-Bayes software package and associated documentation are available online at
hmm-bayes.org.

2.5 Figures
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Figure 2.1: Particle trajectory analysis methods applied to neuronal mRNPs.

(a) Left: Fluorescence image of cultured mouse hippocampal neurons in which endogenous

-actin mRNA molecules are labeled with GFP-tagged MS2 [25]. Trajectories of tracked

-actin mRNA-protein complexes are overlaid in color. Center: Enlargement of the boxed

region at left, showing one transported mRNP complex and its associated trajectory (yellow).

Right: Kymograph of the selected mRNP complex along the neuronal dendrite. (b) Sliding

window MSD analysis of the mRNP trajectory in a, showing the slope (alpha) of a log-log

plot of MSD versus time lag within sliding windows of 10-step width along the trajectory.

The temporal sequence of motion states obtained using a threshold value of alpha (dotted

line) to classify directed transport is illustrated by the vertical bar on the right. Inferred

transport states and diffusive states are pink and blue, respectively, while the non-annotated

steps of the trajectory (half the window size from the start and end) are gray. (c) Analysis of

the mRNP trajectory in a with a diffusive-only HMM approach that does not model directed

transport [26]. The inferred motion model with two diffusive states (D-D) is shown at the

upper left, and the inferred state annotation is shown spatially overlaid on the trajectory

displacements as well as temporally as a vertical bar on the right, as in b. Blue and green

annotations correspond to the states with higher and lower diffusion coefficients, respectively.

(d) Analysis of the mRNP trajectory in a with HMM-Bayes. The inferred motion model

with one diffusive state and one transport state (D-DV) and the inferred state annotation are

shown as in c, with blue and pink annotations corresponding to the diffusive and transport

states, respectively.
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Figure 2.2: HMM-Bayes analysis of a population of neuronal rnRNPs. (a,b)

Two additional -actin mRNP trajectories inferred by HMM-Bayes to undergo directed

transport, illustrated as in Fig. 2.1d. The inferred motion model in b consists of three distinct

motion states, one diffusive and two transport states (D-DV-DV), which are blue, pink and

orange, respectively. (c) Distributions of diffusion coefficients, velocity magnitudes, and the

mean lifetimes of diffusive and transport motion states as inferred by HMM-Bayes across 22

#3-actin mRNP trajectories (from 13 cells) that undergo switching between diffusive motion

and directed transport. Mean lifetimes within each trajectory are shown as a distribution

over trajectories. The diffusion coefficient distribution is over all states, including both

diffusive states and transport states, observed across all trajectories. The velocity magnitude

distribution is over all transport states observed across all trajectories.
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Figure 2.3: HMM-Bayes analysis of oscillating metaphase kinetochores. (a)

Wide-field image of a wild type HeLa cell expressing GFP-CENP-A to label kinetochores

and GFP-CSAP to label the spindle poles (SP). Four pairs of kinetochore trajectories

during metaphase are overlaid in color, from yellow to dark green over time. (b) Enlarged

pair of kinetochore trajectories corresponding to the boxed trajectories in a. (c) Cartoon

of kinetochore (KT) motion showing projection of positions and displacements onto the

direction perpendicular to the metaphase plate (MP). (d,e) Analysis of pooled kinetochore

trajectories from the cell in a with HMM-Bayes. The inferred state annotation from the

inferred motion for one of the kinetochore trajectories from the pair in b is shown overlaid on

its position vs. model, two transport states (DV-DV) with opposite directions of transport

(pink and orange), time measurements (d). The inferred state annotations for the four pairs

of trajectories in a, numbered based on position from top to bottom in a, are shown as

temporal colored bars (e) as in Figs. 2.1 and 2.2.

45

a



2.6 Acknowledgements

Research reported in this publication was supported by grants from the US National Institutes
of Health (NIH) National Institute of Mental Health (U01 MH106011) and the US National
Science Foundation Physics of Living Systems (PHY 1305537) to M.B., an NIH grant from
the National Institute of Neurological Diseases and Stroke (NS083085-19) to R.H.S., a
Scholar award from the Leukemia & Lymphoma Society and an NIH grant from the National
Institute of General Medical Sciences (GM088313) to I.M.C., and a Schroedinger fellowship
from the Austrian Science Fund to K.C.S. We also thank M. Linden for helpful discussions.

Bibliography

[1] Delphine Arcizet, B6rn Meier, Erich Sackmann, Joachim 0 Ridler, and Doris Heinrich.
Temporal analysis of active and passive transport in living cells. Physical Review Letters,
101(24):248103, 2008.

[2] Chelsea B Backer, Jennifer H Gutzman, Chad G Pearson, and lain M Cheeseman.
CSAP localizes to polyglutamylated microtubules and promotes proper cilia function
and zebrafish development. Molecular Biology of the Cell, 23(11):2122-2130, 2012.

[3] Adina R Buxbaum, Young J Yoon, Robert H Singer, and Hye Yoon Park. Single-
molecule insights into mRNA dynamics in neurons. Trends in Cell Biology, 25(8):
468-475, 2015.

[4] Christopher W Cairo, Raibatak Das, Amgad Albohy, Quentin J Baca, Deepti Pradhan,
Jon S Morrow, Daniel Coombs, and David E Golan. Dynamic regulation of CD45
lateral mobility by the spectrin-ankyrin cytoskeleton of T cells. Journal of Biological
Chemistry, 285(15):11392-11401, 2010.

[5] lain M Cheeseman and Arshad Desai. Molecular architecture of the kinetochore-
microtubule interface. Nature Reviews Molecular Cell Biology, 9(1):33-46, 2008.

[6] Nicolas Chenouard, Ihor Smal, Fabrice De Chaumont, Martin Maska, Ivo F Sbalzarini,
Yuanhao Gong, Janick Cardinale, Craig Carthel, Stefano Coraluppi, Mark Winter,
Andrew R Cohen, William J Godinez, Karl Rohr, Yannis Kalaidzidis, Liang Liang,
James Duncan, Hongying Shen, Yingke Xu, Klas E G Magnusson, Joakim Jalden,
Helen M Blau, Perrine Paul-Gilloteaux, Philippe Roudot, Charles Kervrann, Francois
Waharte, Jean-Yves Tinevez, Spencer L Shorte, Joost Willemse, Katherine Celler,
Gilles P van Wezel, Han-Wei Dan, Yuh-Show Tsai, Carlos Ortiz de Solorzano, Jean-
Christophe Olivo-Marin, and Erik Meijering. Objective comparison of particle tracking
methods. Nature Methods, 11(3):281-289, 2014.

[7] Inhee Chung, Robert Akita, Richard Vandlen, Derek Toomre, Joseph Schlessinger, and
Ira Mellman. Spatial control of EGF receptor activation by reversible dimerization on
living cells. Nature, 464(7289):783-787, 2010.

[8] Raibatak Das, Christopher W Cairo, and Daniel Coombs. A hidden Markov model
for single particle tracks quantifies dynamic interactions between LFA-1 and the actin
cytoskeleton. Plos Comput Biol, 5(11):e1000556, 2009.

46



[9] Maxime Deforet, Maria Carla Parrini, Laurence Petitjean, Marco Biondini, Axel Buguin,
Jacques Camonis, and Pascal Silberzan. Automated velocity mapping of migrating cell

populations (AVeMap). Nature Methods, 9(11):1081-1083, 2012.

[10] Nicolas Dray, Andrew Lawton, Amitabha Nandi, D6rthe Jilich, Thierry Emonet, and

Scott A Holley. Cell-fibronectin interactions propel vertebrate trunk elongation via

tissue mechanics. Current Biology, 23(14):1335-1341, 2013.

[11] Warren J Ewens and Gregory Grant. Stochastic processes (i): poisson processes and

Markov chains. Statistical Methods in Bioinformatics: An Introduction, pages 155-173,
2005.

[12] Karen E Gascoigne, Kozo Takeuchi, Aussie Suzuki, Tetsuya Hori, Tatsuo Fukagawa,
and Iain M Cheeseman. Induced ectopic kinetochore assembly bypasses the requirement

for CENP-A nucleosomes. Cell, 145(3):410-422, 2011.

[13] Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain Monte

Carlo in practice. Crc Press, 1995.

[14] Geoffrey Grimmett and David Stirzaker. Probability and random processes. Oxford

University Press, 2001.

[15] Jun He, Syuan-Ming Guo, and Mark Bathe. Bayesian approach to the analysis of

fluorescence correlation spectroscopy data I: theory. Analytical Chemistry, 84(9):3871-
3879, 2012.

[16] Khuloud Jaqaman, Dinah Loerke, Marcel Mettlen, Hirotaka Kuwata, Sergio Grinstein,
Sandra L Schmid, and Gaudenz Danuser. Robust single-particle tracking in live-cell

time-lapse sequences. Nature Methods, 5(8):695-702, 2008.

[17] Khuloud Jaqaman, Hirotaka Kuwata, Nicolas Touret, Richard Collins, William S
Trimble, Gaudenz Danuser, and Sergio Grinstein. Cytoskeletal control of CD36 diffusion

promotes its receptor and signaling function. Cell, 146(4):593-606, 2011.

[18] Zachary B Katz, Amber L Wells, Hye Yoon Park, Bin Wu, Shailesh M Shenoy, and

Robert H Singer. #-actin mRNA compartmentalization enhances focal adhesion stability

and directs cell migration. Genes & Development, 26(17):1885-1890, 2012.

[19] Timothee Lionnet, Kevin Czaplinski, Xavier Darzacq, Yaron Shav-Tal, Amber L Wells,
Jeffrey A Chao, Hye Yoon Park, Valeria De Turris, Melissa Lopez-Jones, and Robert H

Singer. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nature

Methods, 8(2):165-170, 2011.

[20] Erik Meijering, Oleh Dzyubachyk, and Ihor Smal. 9 Methods for Cell and Particle

Tracking. Methods in Enzymology, 504(9):183-200, 2012.

[21] Xavier Michalet. Mean square displacement analysis of single-particle trajectories with
localization error: Brownian motion in an isotropic medium. Physical Review E, 82(4):

041914, 2010.

[22] Nilah Monnier. Bayesian Inference Approaches for Particle Trajectory Analysis in Cell

Biology. PhD thesis, Harvard University, 2013.

47



[23] Nilah Monnier, Syuan-Ming Guo, Masashi Mori, Jun He, P6ter L6nart, and Mark Bathe.
Bayesian approach to MSD-based analysis of particle motion in live cells. Biophysical
Journal, 103(3):616-626, 2012.

[24] Nilah Monnier, Zachary Barry, Hye Yoon Park, Kuan-Chung Su, Zachary Katz, Brian P
English, Arkajit Dey, Keyao Pan, Iain M Cheeseman, Robert H Singer, and Mark
Bathe. Inferring transient particle transport dynamics in live cells. Nature Methods, 12
(9):838-840, 2015.

[25] Hye Yoon Park, Hyungsik Lim, Young J Yoon, Antonia Follenzi, Chiso Nwokafor,
Melissa Lopez-Jones, Xiuhua Meng, and Robert H Singer. Visualization of dynamics of
single endogenous mRNA labeled in live mouse. Science, 343(6169):422-424, 2014.

[26] Fredrik Persson, Martin Lind6n, Cecilia Unoson, and Johan Elf. Extracting intracellular
diffusive states and transition rates from single-molecule tracking data. Nature Methods,
10(3):265-269, 2013.

[27] Lawrence Rabiner and B Juang. An introduction to hidden Markov models. Ieee Assp
Magazine, 3(1):4-16, 1986.

[28] CP Robert and G Casella. Monte Carlo Statistical Methods Springer. New York, 2004.

[29] Gareth 0 Roberts, Andrew Gelman, and Walter R Gilks. Weak convergence and optimal
scaling of random walk Metropolis algorithms. The Annals of Applied Probability, 7(1):
110-120, 1997.

[30] Michael J Saxton. Lateral diffusion in an archipelago. Single-particle diffusion.
Biophysical Journal, 64(6):1766-1780, 1993.

[31] Michael J Saxton. A particle tracking meet. Nature Methods, 11(3):247-248, 2014.

[32] Michael J Saxton and Ken Jacobson. Single-particle tracking: applications to membrane
dynamics. Annual Review of Biophysics and Biomolecular Structure, 26(1):373-399,
1997.

[33] Raju Tomer, Khaled Khairy, Fernando Amat, and Philipp J Keller. Quantitative high-
speed imaging of entire developing embryos with simultaneous multiview light-sheet
microscopy. Nature Methods, 9(7):755-763, 2012.

[34] Pascal Vallotton and Sandra Olivier. Tri-track: free software for large-scale particle
tracking. Microscopy and Microanalysis, 19(02):451-460, 2013.

[35] Elina Vladimirou, Nunu Mchedlishvili, Ivana Gasic, Jonathan W Armond, Catarina P
Samora, Patrick Meraldi, and Andrew D McAinsh. Nonautonomous movement of
chromosomes in mitosis. Developmental Cell, 27(1):60-71, 2013.

48



Chapter 3

Elucidation of a dynamic,
heterogeneous transglycosylase
population in Bacillus subtilis

The work presented in this chapter has been published in:

Hongbaek Cho, Carl N Wivagg, Mrinal Kapoor, Zachary Barry, Patricia DA Rohs,
Hyunsuk Suh, Jarrod A Marto, Ethan C Garner, and Thomas G Bernhardt. Bacterial
cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-
autonomously. Nature Microbiology, 1:16172, 2016

3.1 Overview and Motivation

Questions regarding how cells grow and divide are fundamental in the biological sciences
across all domains of life. Model microorganisms such as E. coli and B. subtilis are often
employed to address these questions in a bacterial context. A major part of the growth
process in bacteria, which is the focus of this chapter, is the addition of new material to
the preexisting cell wall [26]. The cell wall is the structure in most bacteria that confers
shape to these organisms through its resistance to turgor pressure [5] - the cell membrane
expands to fit its container, that being the cell wall. There are, of course, many shapes that
bacterial species can take: spherical, rod-like, and spiraling being prominent examples.

3.1.1 Synthesizing the cell wall peptidoglycan

The cell wall of B. subtilis, a Gram-positive, rod-like bacterium, is primarily composed of
peptidoglycan (PG) and wall teichoic acids (WTAs) [24]. This chapter and publication
focuses on the function and behavior of the enzymes that manufacture the former material
in both B. subtilis as well as E. coli. Peptidoglycan, as can be inferred from the name,
comprises glycan polymers crosslinked by peptide sidechains [26]. Following monomer
synthesis in the cytoplasm and subsequent flipping from the inner side of the membrane to
the periplasmic space (through a flippase [23, 17]), this monomer is added to the elongating
glycan polymer chain in a process known as transglycosylation (TG) [31]. Following
transglycosylation, the peptide sidechain is then covalently attached to a neighboring free
chain through transpeptidation (TP) [31]. The majority of the enzymes responsible for
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performing transglycosylation and transpeptidation in B. subtilis are known as the penicillin

binding proteins (PBPs) [31].

Synthesis of PG contributing to cell elongation is largely governed by a complex consisting
of a cytoskeletal filament (MreB), integral membrane proteins (MreC, MreD, RodA, others),
as well as PBPs responsible for transpeptidation such as PBP2a in B. subtilis [9]. This

complex has been observed to rotate circumferentially along the short axis of rod-like bacteria
where it is participating in the wall synthesis process [9, 6]. This motion is likely produced

by the enzymatic activity of wall synthesis itself [9, 6].

The high molecular weight, bifunctional, class A PBPs possess both GT and TP domains
[26]. As TP enzymes were shown to participate in wall synthesis complex alongside MreB

[9], it was logical to hypothesize that GT activity was also present in this complex: GT
activity polymerizing the glycan chains would then be followed up by TP crosslinking activity.
Interestingly, however, B. subtilis and some other Gram-positive organisms possess viability
without the bifunctional class of PBPs, and GT activity up to this point had only been

observed in the A class [16, 20]. This implied another GT enzyme contributing to GT
activity within B. subtilis and other species.

The following sections comprise a paper exploring the existence of GT activity in a known
integral membrane protein involved in the MreB-associated complex (RodA). In addition,
it was shown that the bifunctional PBP, PBP1a (encoded by ponA), does not exhibit
circumferential motion in either B. subtilis or E. coli. This finding suggested the presence of
two potentially independent systems both contributing to peptidoglycan synthesis.

3.1.2 Contribution

The author of this thesis performed single-particle tracking and analysis for diffusive
trajectories of PBP1a. PBP1a single-particle movies were tracked using utrack-2.0 [12].
Through employing the use of cumulative distribution functions on the displacements
obtained from these particle trajectories, diffusion coefficients were calculated. This analysis

revealed the existence of two subpopulations of PBPla - one "fast" population as well as a
seemingly immobile population. The state could be saturated through the overexpression of
PBP1a. See the following sections for interpretation.

3.2 Abstract

Multi-protein complexes comprising cell wall-synthesizing enzymes and associated integral
membrane proteins which organized by cytoskeletal proteins are essential for cell wall
biogenesis in most bacteria. Current models of the wall assembly mechanism assume
class A penicillin-binding proteins (aPBPs), the targets of penicillin-like drugs, function as
the primary cell wall polymerases within these machineries. Here, we use an in vivo cell
wall polymerase assay in Escherichia coli combined with measurements of the localization
dynamics of synthesis proteins to investigate this hypothesis. We find that aPBP activity is
not necessary for glycan polymerization by the cell elongation machinery as is commonly
believed. Instead, our results indicate that cell wall synthesis is mediated by two distinct
polymerase systems, SEDS-family proteins working within the cytoskeletal machines and
aPBP enzymes functioning outside of these complexes. These findings thus necessitate a
fundamental change in our conception of the cell wall assembly process in bacteria.
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3.3 Main Text

An essential cell wall surrounds most bacteria protecting their cytoplasmic membrane from
osmotic rupture [26]. This structure is built from the heteropolymer peptidoglycan (PG),
which consists of glycan chains with attached peptides used to form inter-strand crosslinks
that generate a matrix-like shell. PG biogenesis is disrupted by many of our most effective
antibiotics and remains an attractive target for the development of new therapies to counter
the growing problem of drug-resistant infections [15].

Rod-shaped bacteria typically use two essential cell wall biogenesis machines to grow and
divide [26]. Cell elongation is promoted by the Rod system, which consists of several integral
membrane proteins, including RodA, a SEDS-family protein, and PBP2, a class B penicillin-
binding protein (bPBP) with transpeptidase (TP) activity that forms cell wall crosslinks. The
Rod system is organized by dynamic filaments of the actin homolog MreB that are thought
to direct new cell wall synthesis to establish and maintain rod shape [26, 13, 9, 6, 29, 28]
(Fig. 3.1A). Cell division is mediated by a different multi-protein machine, the divisome,
organized by the tubulin homolog FtsZ [26, 1]. The proteins composing the divisome are
largely distinct from that of the Rod system, but it contains homologous factors for PG
synthesis like the SEDS-family protein FtsW and PBP3, a bPBP related to PBP2 [26].

Due to the lack of specific in vivo assays, the enzymes that synthesize PG glycans
within the MreB- and FtsZ-directed machines have not been clearly defined. The generally
accepted model is that glycan polymerization by these systems is mediated by the class
A PBPs (aPBPs), which are bifunctional enzymes possessing both PG glycosyltransferase
(PGT/polymerase) and TP (crosslinking) activity [26]. In support of this idea, aPBP
activity is indispensable for growth in many organisms [33, 11, 19]. Additionally, aPBP-
like PGT domains have been the only factors known to possess PG polymerase activity
[21]. However, this functional assignment fails to account for the observation that certain
gram-positive bacteria, including Bacillus subtilis and some species of Enterococcus, are
viable and continue producing PG in the absence of identifiable aPBP-like domains [16, 20].
Moreover, it has remained unclear whether this unidentified polymerase activity is unique
to certain gram-positive species or broadly distributed in bacteria.

3.3.1 A novel in vivo assay for PG polymerase activity

To determine if PG synthesis by the Rod system is dependent on aPBP function, we developed
an in vivo assay to monitor PG polymerase activity. The assay is based on our observation
that TP inactivation by beta-lactams in E. coli leads to the formation of uncrosslinked PG
glycans that are rapidly degraded into turnover products, which can then be quantified as
an indirect measure of PG polymerase activity [2, 27] (Fig 3.1B). Because it specifically
targets PBP2, the beta-lactam mecillinam facilitates the measurement of polymerase activity
within the Rod system [2]. In this assay, cells are first blocked for divisome function, thus
eliminating its contribution to synthesis and focusing the measurement on Rod system activity.
Under these conditions, mecillinam treatment reduces the ability of cells to incorporate
the radiolabeled PG precursor [ 3H]-diaminopimelic acid ([ 3 H]-DAP) into the PG matrix.
Instead, a dramatic increase in labeled turnover products is observed, which reflects PG
polymerization by the Rod system [2] (Fig. 3.2A-B, samples 1 and 2). Consistent with this
interpretation, simultaneous mecillinam treatment and inactivation of the Rod system with
A22, an MreB polymerization antagonist, dramatically reduces both synthesis and turnover
(Fig. 3.1A-B, samples 1 and 6) [2].
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3.3.2 PG polymerization by the Rod system does not require aPBP
activity

The effect of aPBP inactivation on Rod system activity was investigated using an E. coli
strain (HC533) producing a modified PBP1b as its only aPBP. This variant of PBP1b,
referred to as MSPBP1b, harbors a Ser247Cys substitution in its PGT domain allowing
specific inhibition of its polymerase activity using the cysteine-reactive reagent MTSES (2-
sulfonatoethyl methanethiosulfonate) [23]. In the absence of MTSES, HC533 cell growth and
morphology were indistinguishable from WT cells, and PG biogenesis activity was similar to
cells producing an unaltered copy of PBP1b (Fig. B.11A-C). Treatment of [3H]-DAP labeled,
division-inhibited HC533 cells with MTSES reduced PG synthesis without stimulating
turnover (Fig. 3.2A-B, sample 3). This level of PG synthesis inhibition was similar to
that observed upon treatment of an outer-membrane defective strain with the canonical
PGT inhibitor moenomycin (Fig. B.2D). Surprisingly, however, these MTSES-treated cells
retained significant (-20%) PG synthetic activity (Fig. 3.2A-B, sample 3). This synthesis
was not due to residual MSPBP1b activity as analysis by mass spectrometry indicated that
the protein was fully modified by MTSES (Table B.1 and Fig. B.1), and experiments with
the beta-lactam cefsulodin (described below) show that this treatment completely disrupts
aPBP-mediated PG polymerization. Thus, the observed MTSES-resistant synthesis suggests
that, like gram-positive bacteria, E. coli also encodes a non-aPBP-mediated PGT activity.
This MTSES-resistant synthesis was inhibited by co-treatment with A22 and fully converted
to PG turnover products with mecillinam co-treatment (Fig. 3.2A-B, samples 4 and 7),
indicating that the non-aPBP PGT enzyme resides in the Rod system.

Fluorescently-tagged MreB displays a dynamic subcellular localization with many discrete
foci rotating around the circumference of the cell cylinder [9, 6, 29]. As MreB rotation
is halted by beta-lactams and other PG synthesis inhibitors, this motion is thought to
reflect new cell wall synthesis [9, 6, 29]. To monitor the effect of aPBP inactivation on
MreB dynamics, we followed the motion of a functional mNeonGreen-MreB sandwich fusion
(MreB-SwmNeon) (Fig. B.4) in cells possessing MSPBP1b as the sole aPBP. MreB-SwmNeon
foci continued rotating following aPBP inhibition by MTSES at a speed undifferentiable
from untreated cells (20 nm/s) until the lack of aPBP activity caused cell lysis (Fig. 3.2C-D,
Online Video Si). Thus, both radiolabeling and imaging indicate that aPBPs are not
required for PG polymerization by the Rod system in gram-negative bacteria as is widely
believed.

3.3.3 RodA and PBP2 display MreB-like circumferential motion in E.
coli

Results from a parallel B. subtilis study indicate that RodA functions as a PG polymerase [18].
We therefore hypothesized that RodA might also be responsible for the aPBP-independent
PG synthesis we observed in E. coli. If true, we reasoned that E. coli RodA should display
MreB-like circumferential motion as has been observed in B. subtilis [6]. Imaging of a mostly
functional sfGFP-RodA fusion (Fig. B.5 A and B) revealed both fast, non-directionally
moving particles consistent with molecules diffusing in the membrane, and particles moving
slowly and directionally at the same rate and angle as MreB (Fig. 3.3 and B.7, and Online
Video S2). SEDS-family proteins form complexes with partner bPBPs [26, 7, 8], suggesting
that RodA is likely to function in conjunction with PBP2. We therefore also investigated
PBP2 dynamics using a functional msfGFP-PBP2 fusion (Fig. B.5A, C, and D, and Online
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Video S3). Imaging at fast acquisition rates (50 or 100 msec/frame) showed what appeared
to be particles rapidly diffusing within the membrane as reported previously [14] (Online
Video S4). However, imaging with longer acquisition times (1 sec/frame), which blurs the
motion of rapidly diffusing particles across many pixels, revealed a subpopulation of PBP2
foci moving slowly and directionally around the cell circumference at the same rate and
angle as MreB and RodA (Fig. 3.2 and B.8, Online Video S4). These two types of PBP2
motions are analogous to what has been observed in B. subtilis for PBP2a [9]. Similarly,
we interpret the slow, rotating particles of RodA and PBP2 as those engaged in active,
MreB-associated PG synthesis. To investigate whether RodA PGT activity is required
for MreB motion, we monitored the effect of a dominant-negative RodA variant (D262N)
(Fig. B.9) on MreB-SwmNeon dynamics. This RodA derivative contains an amino acid
change in a periplasmic loop residue critical for PGT activity [18]. Strikingly, production
of RodA(D262N) but not RodA(WT) led to a gradual, filament by filament cessation of
MreB-SwmNeon motion (Fig. 3.3D, and Online Video S5). We therefore infer that RodA
and PBP2 function as the core PGT/TP pair of the Rod system in both E. coli and B.
subtilis [18].

3.3.4 aPBPs function outside of cytoskeletal complexes in E. coli and B.
subtilis

In current models of PG biogenesis, aPBPs are associated with either the MreB- or FtsZ-
directed synthetic machineries [26], implying that they function primarily within these
complexes and may require cytoskeletal association for activity. However, cell growth and
cell wall synthesis by an uncharacterized activity was previously observed in cells blocked
for both FtsZ and MreB function [30, 25], suggesting a possible cytoskeleton-independent

mode of PG synthesis. Indeed, when PG synthesis and turnover were measured in HC533
cells blocked for both FtsZ and MreB activity by SulA and A22, respectively, significant
PGT activity was still detected (Fig. 3.2A, sample 5). This activity was completely
inhibited upon MTSES treatment to inactivate MsPBP1b, indicating that cytoskeleton-
independent synthesis is mediated by aPBPs (Fig. 3.2A, sample 7). To further test the
dependence of aPBP polymerase activity on cytoskeletal function, we employed the aPBP-
specific beta-lactam cefsulodin [4], which induces increased glycan degradation similar to
mecillinam [2]. This turnover likely reflects PGT activity promoted by aPBP molecules
with a drug-inactivated TP active sites (Fig. 3.1B). Consistent with this interpretation,
treatment of MSPBPlb-producing (HC533) cells with MTSES completely blocked cefsulodin-
induced glycan degradation (Fig. 3.4A-B, samples 1 vs. 3, and 2 vs. 4). This result also
supports the conclusion that MSPBP1b PGT activity is completely inactivated upon MTSES
treatment. In contrast to MTSES addition, cefsulodin-induced turnover was stimulated
by MreB depolymerization with A22 in cells already blocked for FtsZ activity by SulA
(Fig. 3.4A-B, sample 5-6). Thus, glycan synthesis by PBP1b proceeds robustly in cells
lacking all functional cytoskeletal filaments. Similarly, PG synthesis and turnover assays
using cefsulodin and a strain where PBP1a was the sole remaining aPBP also detected
cytoskeleton-independent glycan polymerization by PBP1a (Fig. B.10). The functionality
of aPBPs in the absence of cytoskeletal filaments suggests that aPBPs may operate in a
spatially distinct manner from the MreB- and FtsZ-directed machineries. To investigate this
possibility, we followed aPBP subcellular dynamics in both E. coli and B. subtilis. In E.
coli, a functional msfGFP-PBP1b (Fig. S9) was produced as the sole aPBP. At the lowest
induction level capable of supporting growth (13 [M), imaging at both long (1 sec) and
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short (100 msec) acquisition times like those used for PBP2 and RodA did not reveal any
directional motion (Online Video S6A). We verified this result using single-molecule imaging
of a functional Halo-tagged PBP1b fusion (Halo-PBP1b) labeled with low concentrations
of JF-549 [10] (Online Video S6B). Only motion consistent with membrane diffusion was
observed. Likewise, imaging msfGFP-PBP1b motion during its depletion also did not reveal
any MreB-like directional motion even under conditions where depletion resulted in cell lysis.
Furthermore, an msfGFP-PBPla fusion produced as the sole aPBP in the cell also did not
display MreB-like dynamics (Online Video S7).

To determine if aPBPs also display dynamics distinct from the Rod system in gram-
positive bacteria, we imaged a functional mNeon-PBP1 fusion (Fig. B.10) produced in B.
subtilis as the sole copy of PBP1 or alongside the native protein. No directional motion
was observed either when the fusion was produced from its native promoter or at low levels
that allowed single molecule tracking (Fig. 3.1C-D, S11, Online Videos S8-10). Rather,
analysis of single-molecule trajectories using cumulative distribution functions (CDF) [32, 22]
indicated that PBP1 exists in two states: diffusive (D = 0.004-0.007 Ap 2 /s) and immobile
(D = 0.0003-0.0007 p 2/S) (Fig. 3.4C-D, B.13, Online Videos S8-10). The slow, immobile
particles predominated in cells producing mNeon-PBP1 as the sole source of PBP1 (Online
Video S9). When the fusion was expressed in addition to native PBP1, the fraction of faster
diffusing molecules increased (Online Video S10). This observation suggests a saturable
number of available sites for the immobile particles that may reflect a functional state of
PBP1. We conclude that aPBP polymerases from two different and evolutionarily distant
model organisms display in vivo dynamics distinct from the circumferential motions observed
for Rod system components.

3.3.5 A new view of PG biogenesis in bacteria

Overall, our results indicate that the aPBPs are not essential components of the Rod system
in E. coli and suggest that these enzymes are performing significant roles in PG biogenesis
apart from the complex. Instead of the aPBPs, the SEDS-protein RodA appears to supply
the PG polymerase activity crucial for Rod system function [18]. The RodA polymerase, in
turn, likely works in complex with PBP2, which provides crosslinking activity. By extension,
the SEDS-family FtsW protein and its partner PBP3 are likely providing PG polymerase
and crosslinking activity within the divisome. These findings necessitate a fundamental
change in our view of the mechanism of cell wall assembly in bacteria and furthermore raise
intriguing questions about the relative roles of the different types of PG polymerases in the
process (Fig. 3.4E).

Inactivation of aPBP activity reduces total cell wall synthesis to approximately 20%
normal levels, indicating that these enzymes play major roles in PG biogenesis. The same is
true when the cytoskeletal systems are inactivated and aPBPs remain functional; only about
20-30% of normal PG synthesis activity is detected. Thus, even though the aPBPs and
Rod system components show distinct subcellular dynamics and are unlikely to be working
stably together within the same complex, full cell wall synthesis efficiency requires that
both systems be functional. Therefore, although our data support the idea that there is a
division of labor between the aPBPs and the cytoskeleton-directed SEDS/bPBP systems,
they appear to be only semi-autonomous and are likely collaborating with each other at some
level. This partial interdependence may indicate that the two systems specialize in distinct
but related aspects of the wall biogenesis process similar to how different DNA polymerases
work together to properly complete chromosome replication. For example, the more broadly
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conserved SEDS/bPBP systems [18] may build the primary structural foundation for the

PG matrix while the aPBPs support this foundation by adding to it and filling in gaps

that arise during normal expansion and/or as the result of damage. Testing this and other

possibilities in the context of the new framework provided in this and our companion report

[18] will pave the way for a better mechanistic understanding of bacterial cell wall assembly

and the discovery of novel ways to disrupt this process for antibiotic development.

3.4 Figures

a PG matrix b In vivo PGT assay

PBP2 PBP
(bPBP) TP TP Untreated cells

PGT s d C
RodA PGs+puc

(SEDS) '--.-'((SES)+ P-lactamI

Cytoplasm MreB Measure of PGT activity

Figure 3.1: The Rod system and an in vivo assay of peptidoglycan (PG)

polymerase activity. A. Diagram of the currently accepted model for PG biogenesis by

the Rod system. Polymers of the actin-like MreB protein organize a complex of membrane

proteins including RodA, PBP2, and an aPBP. Glycan polymerization and crosslinking by

this complex is thought to be promoted primarily by the peptidoglycan glycosyltransferase

(PGT) and transpeptidase (TP) activities of aPBPs with additional TP activity provided by

PBP2. B. In untreated cells, PG polymerization and crosslinking by PGT and TP enzymes,
respectively are tightly coupled to form the PG matrix (upper panel). When TP activity

is inhibited by a beta-lactam, the polymerase working with the blocked TP continues to

produce uncrosslinked glycans that are rapidly degraded into fragments that can be isolated

and quantified as a measure of polymerase activity (lower panel).
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Figure 3.2: PG polymerization by the Rod complex does not require aPBP
activity. A-B. Cells of HC533(attAC739) [AlysA AampD AponA ApbpC AmtgA MSponB

(Ptac::sulA)] producing SulA to block cell division were pulse labeled with [3 H]-mDAP
following treatment with the indicated compound(s). Turnover products were extracted
with hot water and quantified by HPLC and in-line radiodetection. PG incorporation
was determined by digesting the pellets resulting from the hot water extraction with
lysozyme and quantifying the amount of label released into the supernatant by scintillation
counting. Compound concentrations used were: mecillinam (10 pg/ml), A22 (10 pg/ml),
MTSES (1 mM). Results are the average of three independent experiments with the error
bars representing the standard error of the mean (SEM). C. Left: Montage with overlaid
tracks highlighting MreB movement in HC546(attAHC897) [AponA ApbpC AmtgA MSponB

(Pac::mreB-SWmNeon)] after 30 min MTSES inactivation of PBP1b showing continuing
MreB motion. Frames 2 s apart, scale bar = 1 pm. Original time-lapse movies are 1 sec/frame.
Right top: Kymographs drawn along trajectories indicated on phase contrast image (1, 2, 3,
left to right). Each tracked particle is highlighted with a colored trajectory with the color of

the track (blue to red) indicating the passage of time. D. Distribution of velocities of MreB
motion taken at different points after aPBP inhibition with MTSES (1 mM). For the tracks
that we can accurately calculate a particle's velocity, the fraction of moving particles only
declines slightly (from 76% to 66%) during the time course following MTSES treatment.
Microscopy results are representative of at least two independent experiments.
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Figure 3.3: PBP2 and RodA display directed, circumferential motions similar

to MreB. A. Left to right: Montage of PBP2 movement with overlaid tracks in

HC596(attHKHC943) [AponA ApbpC AmtgA ApbpA (Pac::msfgfp-pbpA)]. Frames 2 s
apart. Each tracked particle is highlighted with a colored trajectory as in Figure 3.2C.

Trajectories 1, 2, and 3 in kymographs are in order left to right. B. Distribution of velocities

of tracked particles of MreB (n = 807), PBP2 (n=1234) and RodA (n=243). C. Distribution

of angles of PBP2 and RodA trajectories relative to the cell midline. D. Tracked particles

of MreB-swmNeon at 0-30 or 210-240 min after induction of RodA(D262N) from strain

TB28( attHKHC929)/pHC938 [WT(PtetA ::mreB-SWmNeon)/Plac::pbpA-rodA (D262N)]. Each
tracked particle is highlighted with a different color trajectory overlaid on a phase contrast

image. All scale bars are 1 pm. In all cases, original time-lapse movies are 1 sec/frame.

Microscopy results are representative of at least two independent experiments.
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Figure 3.4: aPBPs can function independently from the cytoskeletal machinery.
A-B. PG matrix assembly and turnover were measured as in Figure 3.2 using strain
HC533(attAC739) [AlysA AampD AponA ApbpC AmtgA MsponB (Ptac::sulA)]. Cefsulodin
was used at 100 pg/ml. Results are the average of three independent experiments with the
error bars representing the SEM. C. Tracks of mNeon-PBP1 expressed as (right) the only
copy or (left) in addition to native untagged protein in B. subtilis. Each continuously tracked
particle is highlighted with a different color trajectory. Note that although no MreB-like
directional motion was observed, particles occasionally travel rapidly in one direction for
a few frames as expected for membrane diffusion. D. Graph showing diffusion constants,
and fraction of particles tracked in each diffusion state as determined by CDF analysis.
Microscopy results are representative of at least two independent experiments. E. Schematic
view of a new model for PG biogenesis involving two different classes of PG polymerases
working semi-autonomously. SEDS PGTs and partner bPBPs perform PG polymerization
and crosslinking in the context of the Rod system and divisome (not shown) while aPBPs
function outside of these complexes. Collaboration between the synthases likely occurs but
the mechanism remains to be defined.
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Chapter 4

Biophysical analysis of kinetochore
motion in anaphase

The work presented in this chapter has been published in:

Kuan-Chung Su, Zachary Barry, Nina Schweizer, Helder Maiato, Mark Bathe, and

Iain McPherson Cheeseman. A Regulatory Switch Alters Chromosome Motions at the

Metaphase-to-Anaphase Transition. Cell Reports, 17(7):1728-1738, 2016

4.1 Overview and Motivation

Cell division across all domains of life is an essential process for propagation of a cell's

genetic material across time. Both eukaryotic and prokaryotic cell division have been studied

intensely for over a century and a half [35]. In the eukaryotic sphere, erroneous division
has been considerably, though by no means totally, explored, often towards the end of

understanding the many underlying causes of this phenomenon in human cells. Of course,
cellular fatality is one result of failure to properly complete the division process [45, 16].
Perhaps often more interesting in the world of human health, however, are the consequences
of improper division that do not lead to cell death, the most obvious of which being cancer,
which potentially results from chromosomal missegregation, and thus aneuploidy [19].

The cell cycle as currently understood comprises four highly regulated phases separated

by three checkpoints designed to ensure proper cell growth, DNA synthesis, and subsequent

chromosome separation during the division process [40]. The spindle assembly checkpoint

[39] in mitosis ensures proper chromosomal attachment to spindle microtubules at the

chromatid centromeres, mediated by a protein complex known as the kinetochore [18, 11]
and sister chromatid alignment at the metaphase plate as they prepare for separation during

anaphase. Failure to attach all chromosomes to spindle microtubules results in cell cycle
arrest and prevents progression into anaphase [31].

Traversal through the cell cycle is regulated by the action of cyclin-dependent kinases

(CDKs) and phosphatases on their target substrates. Considerable dephosphorylation (as is

seen of chromokinesin motor proteins [38]) and inactivation of kinases (such as CDK1 as
its subunit cyclin B is degraded [39]) are crucial to this metaphase-to-anaphase transition,
whereby the cohesin tethering the sister chromatids together [15] is cleaved and polar ejection
and kinetochore-derived microtubule polymerization forces are downregulated to enable
sister separation [38].

The dynamics of chromatid motion both during metaphase (oscillations at the metaphase
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plate) and to a lesser extent anaphase (partitioning of the sisters to the opposite spindle

poles) have been subject to enthusiastic study in living cells, largely enabled by high-

resolution fluorescence microscopy [20]. For an advanced biophysical analysis of these

motions, a thorough quantitation has become a necessity for elucidating the mechanisms

and implications of chromosomal motions in metaphase and anaphase. Here, we employ

this combination of fluorescence microscopy with quantitative analysis in order to better

understand the metaphase-to-anaphase regulatory transition and the contribution of specific
implemented factors of this process.

4.1.1 Contribution

The dissertation author was responsible for the biophysical exploration of kinetochore

dynamics from the particle-tracked kinetochore datasets jointly tracked with Kuan-Chung
Su. This included efforts towards proper determination of empirical localization errors,
determining the statistics of metaphase and anaphase poleward / anti-poleward states, and

analysis of the robustness of the algorithms to experimental limitations such as sampling

time. From this quantitation, the mechanisms behind the regulatory switch governing the
met aphase-to-anaphase transition were better understood.

4.2 Summary

To achieve chromosome segregation during mitosis, sister chromatids must undergo a
dramatic change in their behavior to switch from balanced oscillations at the metaphase
plate to directed poleward motion during anaphase. However, the factors that alter
chromosome behavior at the metaphase-to-anaphase transition remain incompletely
understood. Here, we perform time-lapse imaging to analyze anaphase chromosome

dynamics in human cells. Using multiple directed biochemical, genetic, and physical
perturbations, our results demonstrate that differences in the global phosphorylation states
between metaphase and anaphase are the major determinant of chromosome motion
dynamics. Indeed, causing a mitotic phosphorylation state to persist into anaphase
produces dramatic metaphase-like oscillations. These induced oscillations depend on both
kinetochore-derived and polar ejection forces that oppose poleward motion. Thus, our
analysis of anaphase chromosome motion reveals that dephosphorylation of multiple mitotic
substrates is required to suppress metaphase chromosome oscillatory motions and achieve
directed poleward motion for successful chromosome segregation.

4.3 Introduction

During mitosis in vertebrate cells, several sequential phases occur to distribute replicated
sister chromatids to daughter cells. First, during prometaphase, chromosomes form
attachments to spindle microtubules and are moved to the center of the cell in a process
termed congression. At metaphase, chromosomes align at the metaphase plate where they
undergo oscillations [20, 33]. Finally, during anaphase, sister chromatids are separated and
segregated towards opposite spindle poles [24].

Chromosome congression and metaphase chromosome oscillations have been the subject
of intense investigation, including analyses of key molecular players in this process and
the development of mathematical models describing the dynamics of chromosome motion
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(reviewed in [41]). These studies have revealed that multiple factors acting on chromosomes
are integrated to achieve observed chromosome motion. This includes the attachment of

kinetochores to microtubules, changes in microtubule dynamics that act to push or pull

on kinetochores [11, 18], chromosome cohesion between replicated sister chromatids that

provides a spring-like connection between them, and chromokinesin-dependent polar ejection

forces [7, 21].
Despite extensive work on metaphase chromosome dynamics, the nature and molecular

origin of anaphase chromosome motion are less well understood. Here, we established

a procedure to image the metaphase-to-anaphase transition and anaphase chromosome

motion with high temporal resolution in human cells to assess the dynamics of anaphase

chromosome motion and the mechanisms that direct sister chromatid segregation. Our

results indicate that changes in chromosome motion at anaphase onset do not result from

the physical separation of sister chromatids. Instead, we find that poleward chromosome

motion in anaphase requires critical changes to the global phosphorylation state of the

cell. Disrupting this phospho-regulatory transition results in metaphase-like chromatid

oscillations for anaphase chromosomes. These oscillatory anaphase motions depend on both

kinetochore-derived forces and chromokinesin-dependent polar ejection forces, suggesting

that a change in the phosphorylation state of multiple proteins provides a regulatory switch

to alter chromosome motion between metaphase and anaphase. Thus, the regulatory changes

that occur at anaphase onset and the precise timing of sister chromatid separation act

together to ensure the proper segregation of sister chromatids to daughter cells.

4.4 Results

4.4.1 Tracking analysis of anaphase chromosome motion

To analyze the behavior of anaphase chromosome motion in human cells, we generated
human cancer (HeLa) and non-transformed (hTERT RPE-1) cell lines stably expressing the

centromere protein CENP-A and the centriole-component Centrin (CETNI), each fused to

3x tandem repeats of GFP. We performed live-cell imaging of these cells progressing through

mitosis (Figure 4.1) to visualize the trajectories of individual kinetochores and their motion

relative to the spindle pole (Figure 4.1D; Figure C.1A). Using single-particle tracking and

trajectory analysis, we were able to assess anaphase chromosome segregation to distinguish

the anaphase A-based motion of kinetochores towards the spindle poles (Figure 4.1D, E
and 4.2H, lower graphs) and the anaphase B-based separation of the spindle poles (Figure

4.1D, E, 4.2H, upper graphs; Table C.1) in a model-free manner [25]. We found that the

overall dynamics of spindle pole separation and chromosome motion were similar in HeLa

and hTERT-RPE1 cells (see Table C.1).
Prior work in other organisms has found that the forces acting on bi-oriented sister

chromatids prevent spindle elongation until the sister chromatids are separated at anaphase

onset [9]. Consistent with this, we observed that spindle elongation initiated coincident

with visually-discernible sister chromatid separation in both HeLa and hTERT RPE-1 cells

(Figure 4.1D, E and 4.2H). We predicted that the loss of a physical connection between

sisters at anaphase onset would also induce the rapid motion of chromatids towards their

associated poles. However, although hTERT RPE-1 cells displayed a rapid increase in overall

poleward motion shortly following anaphase onset, HeLa cells showed a delay of 80 s in

achieving a maximal rate of average poleward motion (Figure C.21). Once chromosomes

reached a distance of 3 pm from the spindle pole, they maintained this position as the
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spindle poles continued to elongate (Figure C.1D, E and C.2H). At the end of anaphase,
the kinetochore-to-pole distance increased suddenly and synchronously (Figure C.1D and

C.1B), indicating the release of the kinetochores from the spindle poles by eliminating
kinetochore-microtubule interactions. This provides an assay to systematically analyze

anaphase chromosome motion in human cells.

4.4.2 Disrupting the opposing forces acting on sister chromatids is
insufficient to explain the suppression of chromosome oscillations
at anaphase onset

The metaphase-to-anaphase transition is characterized by a switch between metaphase
chromosome oscillations and directional anaphase poleward motion. To analyze this switch
in behavior, we classified distinct periods of kinetochore motion as either poleward or
anti-poleward (see Supplemental Experimental Procedures; Figure C.2F). In cases where a
kinetochore moved less than the experimentally determined localization error (see Figure
C.AC and D) between successive time points, it was classified as having "indeterminate"
motion during this corresponding time-interval.

During metaphase, HeLa cells displayed an equivalent fraction of poleward and anti-
poleward motion, with 33 2% (mean s.d.; mean was measured as cell to cell variation after
averaging kinetochore motion in individual cells; see Supplemental Methods for additional
information) of events classified as poleward and 33 3% anti-poleward events (Table
C.2). In contrast, during the early phase following anaphase onset (240 s in HeLa, 152 s in
hTERT RPE1) we observed both poleward and anti-poleward motion, but the majority of
kinetochore motion was poleward, as expected for anaphase A sister chromatid segregation
(Figure 4.2J; Table C.1). For example, kinetochores in HeLa cells moved poleward for 54 t
2% of events detected during early anaphase, with only 20 3% of their motion spent in
the anti-poleward state. However, in comparison with hTERT RPE1 cells, HeLa cells were
delayed in achieving a maximal proportion of poleward motion (Figure 4.2J, Table C.1).

To determine the molecular origin of the transition from clearly distinct chromosome
motions in metaphase versus anaphase, we first considered the physical connections that
differ between these two phases. At anaphase onset, physical associations between sister
chromatids are eliminated by the cleavage of cohesin molecules [15]. To disrupt sister
chromatid cohesion prematurely in our human cell culture system, we depleted the cohesin
complex subunit Rad2l by RNAi (Figure 4.3A). Rad21-depleted cells displayed separated
sister chromatids that failed to congress to the metaphase plate, but these chromatids
continued to exhibit both poleward (33 5%) and anti-poleward (44 t 8%) motions (Figure
4.3A and C.3A), consistent with prior studies using TEV-induced cohesion cleavage in
Drosophila embryos [27]. We also used laser ablation to eliminate a single kinetochore
from a pair of sister chromatids in a metaphase cell, thereby removing the pulling forces
created by the connection to the opposing spindle pole (Figure 4.3B). In these laser ablation
experiments, the released kinetochore initially moved away from the metaphase plate during
the first 20 seconds after ablation, displaying net poleward motion (69 25% poleward
motion and 13 18% anti-poleward motion). However, these released kinetochores then
displayed a balance of poleward (40 t 8%) and anti-poleward (35 10%) motion (Figure
C.3A) that resembled the behavior of bi-oriented metaphase chromosomes (Figure 4.3A;
C.1B and Table C.2, also see [30]; [34]).

Reciprocally, to cause connections between sister chromatids to persist into anaphase we
treated cells with the topoisomerase II inhibitor ICRF193, which prevents the resolution
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of ultra-fine DNA bridges (UFBs; [44]). UFBs are generated between sister chromatids
during DNA replication, but are resolved in metaphase and early anaphase [23]. Treatment
with 1 pM ICRF193 significantly delayed UFB resolution as detected by the presence of the

UFB marker GFP-PICH [5], resulting in decreased spindle elongation (Figure 4.3C and D).
However, in cells treated with ICRF193, the majority of the kinetochores moved towards the
spindle poles and we did not detect a noticeable increase in anti-poleward motion (Figure
4.3D). We note that UFBs do retard the rate of chromosome movement, possibly by acting
to provide resistance similar to that created by sister chromatid cohesion. In summary,
although a physical connection between sister chromatids controls the amplitude and period
of metaphase chromosome oscillations [3, 42], removing these connections is not sufficient to
induce the change in the proportion of poleward and anti-poleward motion that occurs at

anaphase onset.

4.4.3 Preventing protein dephosphorylation induces dramatic
chromosome oscillations in anaphase

We next considered whether changes to the cell regulatory environment are responsible for
the altered chromosome dynamics at anaphase onset. To test the relative contributions of the

forces acting on the sister chromatid and the cell regulatory state, we generated monopolar
spindles using S-trityl-L-cysteine (STLC) to inhibit the kinesin-5 motor, Eg5, which causes
all poleward-pulling forces to emanate from a single origin. Despite the absence of bi-oriented

attachments in STLC-treated cells, we observed both poleward and anti-poleward motion
(Figure 4.4E). However, triggering anaphase onset by inactivating the spindle assembly
checkpoint using an Mpsl inhibitor was sufficient to induce a synchronous directional motion
towards the single pole (Figure 4.3F; also see [4]).

Protein dephosphorylation is a hallmark of mitotic exit [46] and alters microtubule
dynamics required for chromosome segregation [17]. To inhibit protein dephosphorylation,
we treated metaphase HeLa cells with 1 ptM Okadaic acid, a potent inhibitor of both PP1
and PP2A phosphatases. Okadaic acid treatment resulted in dramatic metaphase-like
chromosome oscillations that persisted into anaphase (Figure 4.5A and B). These oscillations
reflect a statistically significant increase in the proportion of anti-poleward motions (30
5%: Figure 4.6C; Table C.2), with a similar proportion of anti-poleward moving kinetochores

to that observed in metaphase cells (33 + 3%: Figure 4.6D and C.4A). The change in
chromosome movement was not due to the persistence of UFBs based on GFP-PICH

fluorescence (Figure C.4B). In addition to altering the proportion of poleward/anti-poleward
motions, Okadaic acid treatment significantly increased the velocity of both poleward and

anti-poleward moving kinetochores (Figure 4.6C; Figure S3C and D; Table S2). Interestingly,
this rate was higher than that observed for metaphase kinetochores (Figure C.4D; Table

C.2), likely due to opposing forces derived from the attached sister kinetochore in metaphase
that act to retard chromosome motion. We also observed a similar effect following treatment
with the phosphatase inhibitor cantharidic acid (data not shown). This effect is considerably
more severe than that observed in prior work that inhibited a subset of PP1 function by
the depletion of Sds22 or Repo-man, which induced occasional pausing and infrequent

anti-polar motion in anaphase [47]. Previous work expressing high levels of a non-degradable
version of cyclin B, to prevent the down regulation of CDK1 activity, found that this
prevented normal anaphase progression after sister chromatid separation resulting in a

metaphase-like arrest [39]. We found that expression of lower levels of non-degradable
cyclin B permitted full progression into anaphase and cytokinesis, but resulted in dramatic
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anaphase chromatid oscillations (Figure 4.6E), similar to Okadaic acid treatment (Figure

4.5A). Therefore, dephosphorylation of target proteins downstream of CDK1 by PP1 and

PP2A is essential for the changes in chromosome dynamics that occur at anaphase onset.

Allowing a metaphase phosphorylation state to persist into anaphase results in dramatic

metaphase-like chromosome oscillations despite the separation of sister chromatids.

4.4.4 Both chromosome and kinetochore-derived forces contribute to
anaphase anti-poleward motion in okadaic acid-treated cells

We next sought to determine the origin of the induced chromosome oscillations that occur
during anaphase when protein dephosphorylation is perturbed. To assess the sources of
the force acting on the sister chromatids, we first tested whether Okadaic acid-induced
anti-poleward motion require polar ejection forces. The chromokinesins KID and KIF4A act

on the chromosome arms during metaphase to push chromosomes away from the spindle

poles and thereby contribute to metaphase chromosome oscillations [1, 12, 22, 43].

To test the role of polar ejection forces during anaphase, we generated

CRISPR/Cas9-mediated knockout cell lines for the chromokinesins KID and KIF4A (Figure
C.5A). Individual elimination of KID or KIF4A resulted in a reduced distance between
kinetochores and the spindle poles in cells with monopolar spindles, consistent with a role
for these motors in generating polar ejection force. The double KID+KIF4A knockout cell

line displayed an enhanced reduction in the kinetochore-spindle pole distance (Figure C.5B),
consistent with previous RNAi-based experiments [2, 43]. However, despite this strong
effect on chromosome-pole distances during mitosis, the double KID+KI4A knockout cell
line was viable (Figure C.5A).

We next assessed whether polar ejection forces act during an unperturbed anaphase. As
described above, control cells display a plateau in poleward motion during anaphase A such

that they halt their next poleward motion when they reach a distance of 3 Mm away from the
spindle pole. In contrast, we found that the KID+KIF4A double knockout cell line displayed

a reduced kinetochore to pole distance at the end of anaphase A (Figure C.5C). This suggests

that the activity of these chromokinesins persists into anaphase where they contribute to the
plateau in poleward motion (Figure 4.1D). However, KID+KIF4A double knockout cells did
not otherwise display a striking difference in anaphase chromosome dynamics in untreated
cells. Interestingly, we found that the proportion of anti-poleward motion in anaphase was

modestly, but statistically significantly decreased in the KID+KIF4A double knockout in
Okadaic acid-treated cells (Figure 4.7A, B and Table C.2). Thus, chromokinesin-based polar
ejection forces contribute to the Okadaic acid-induced, anti-poleward anaphase motions.

We next tested the contributions of the kinetochore-associated motor Kif18A, which
acts to dampen the chromosome dynamics in metaphase [10, 36, 37]. HeLa cells depleted
of Kif18A by RNAi displayed increased metaphase chromosome oscillations (Figure C.6D),
defects in chromosome congression, and displayed a delay in the mitotic progression (Fig.
S4E). Using the Mpsl inhibitor AZ3146 to control the timing of anaphase onset in Kif18A-
depleted cells treated with 1 pM Okadaic acid, we observed a further increase of anaphase
chromatid oscillations (Figure 4.8C, D and Table C.2), similar to the enhanced metaphase
oscillations that occur in Kifl8A-depleted cells [36].

Finally, to test whether kinetochore-derived forces contribute to the observed anaphase
motion, we used a mutant of the kinetochore protein Skal complex, which we have previously
shown inhibits chromosome oscillations during metaphase [32]. We generated stable cell lines
expressing mCherry fused to RNAi resistant versions of wild type Skal or a mutant of Skal
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lacking the microtubule-binding domain (AMTBD). In cells in which Skal was replaced with

the Ska1AMTBD mutant, we did not detect a significant change in chromosome dynamics

during anaphase in untreated cells (Figure C.6F). Strikingly, we observed a complete loss

of the Okadaic-induced oscillations during anaphase in Ska1AMTBD mutant cells (Figure

4.7E-F). We observed a significant decrease in the fraction of anti-poleward motions and the

rate of both polar and anti-poleward motions such that these were similar to anaphase cells

in the absence of Okadaic acid (Figure 4.7E-H and Table C.2). Together, these analyses

indicate that both chromosome and kinetochore-derived forces are required for the Okadaic

acid-induced chromosome oscillations during anaphase.

4.5 Discussion

4.5.1 A phospho-regulatory switch regulates anaphase chromosome
dynamics

By analyzing the dynamics of chromosome movements under diverse conditions, including
physical, pharmacological, and genetic perturbations, our work demonstrates that the

movement behavior of mitotic chromosomes in human cells is determined primarily by
the cellular regulatory environment (Figure 4.9). The physical connections between sister

chromatids contribute to controlling the period and amplitude of sister chromatid oscillations

during mitosis, but do not control the proportion of poleward and anti-poleward motion.

Indeed, in prometaphase, the premature removal of cohesin or the loss of a connection to

one of the spindle poles does not preclude anti-poleward and oscillatory motion (Figures

4.3A and B), similar to prior observations in Drosophila embryos [27, 28]. Reciprocally,
causing a metaphase regulatory state to persist into anaphase using phosphatase inhibition

or non-degradable cyclin B expression dramatically increases anti-poleward motions (Figure

4.5A and 4.6E; Table C.2). We found that these anti-poleward motions require proteins

that have been implicated in metaphase oscillations, including factors that contribute to

kinetochore-derived forces and polar ejection forces. An overall change in the microtubule

turnover takes place at the metaphase to anaphase transition [48]. Consistent with this,
previous work found that Kif18A [14], which acts to dampen microtubule dynamics, and the

chromokinesin KID [26] are regulated downstream of CDK. A change in their phosphorylation

status at anaphase onset may act to dampen chromosome oscillations and reduce polar

ejection forces. Similarly, kinetochore-derived forces that depend on the Skal complex must

also be altered upon mitotic exit to suppress the persistence of oscillations into anaphase.

Thus, a broad spectrum of targets is regulated directly and indirectly downstream of CDK

and their combined action alters the dynamics of microtubules and chromosome motion.

In summary, our work reveals that the switch of chromosome motion from metaphase to

anaphase is not simply the result of a physical separation of sister chromatids, but additionally

requires changes in the phosphorylation of multiple mitotic targets that collectively regulate

chromosome poleward motion. This may ensure that chromosome segregation is precisely

coordinated with other phosphorylation-regulated steps of mitotic exit, such as furrow

ingression or nuclear membrane reformation, to ensure proper genome separation and

integrity. By analyzing the dynamics of chromosome movements under diverse conditions,
including physical, pharmacological, and genetic perturbations, our work demonstrates that

the movement behavior of mitotic chromosomes in human cells is determined primarily by
the cellular regulatory environment (Figure 4.9). The physical connections between sister

chromatids contribute to controlling the period and amplitude of sister chromatid oscillations
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during mitosis, but do not control the proportion of poleward and anti-poleward motion.
Indeed, in prometaphase, the premature removal of cohesin or the loss of a connection to one
of the spindle poles does not preclude anti-poleward and oscillatory motion (Figures 4.3A
and B), similar to prior observations in Drosophila embryos [27, 28]. Reciprocally, causing a
metaphase regulatory state to persist into anaphase using phosphatase inhibition or non-
degradable cyclin B expression dramatically increases anti-poleward motions (Figure 4.5A
and 4.6E; Table C.2). We found that these anti-poleward motions require proteins that have
been implicated in metaphase oscillations, including factors that contribute to kinetochore-
derived forces and polar ejection forces. An overall change in the microtubule turnover takes
place at the metaphase to anaphase transition [48]. Consistent with this, previous work found
that Kif18A [14], which acts to dampen microtubule dynamics, and the chromokinesin KID
[26] are regulated downstream of CDK. A change in their phosphorylation status at anaphase
onset may act to dampen chromosome oscillations and reduce polar ejection forces. Similarly,
kinetochore-derived forces that depend on the Skal complex must also be altered upon
mitotic exit to suppress the persistence of oscillations into anaphase. Thus, a broad spectrum
of targets is regulated directly and indirectly downstream of CDK and their combined action
alters the dynamics of microtubules and chromosome motion. In summary, our work
reveals that the switch of chromosome motion from metaphase to anaphase is not simply
the result of a physical separation of sister chromatids, but additionally requires changes
in the phosphorylation of multiple mitotic targets that collectively regulate chromosome
poleward motion. This may ensure that chromosome segregation is precisely coordinated
with other phosphorylation-regulated steps of mitotic exit, such as furrow ingression or
nuclear membrane reformation, to ensure proper genome separation and integrity.

4.6 Experimental Procedures

4.6.1 Cell culture and cell line generation

HeLa and hTERT RPE-1 cells were maintained under standard tissue conditions [32]. Cells
expressing fluorescent tag fusions of Centrin (CETNI), CENP-A, PICH, Skal wild type
or AMTBD [32] were generated using retroviral infection of cells with pBABEaAbased
vectors as previously described [6]. CRISPR/cas9 mediated knock out cells were generated
by co-transfection of px330 [8] targeting KID (GCAGAGGCGACGCGAGATGG) or KIF4A
(GCTCTCCGGGCACGAAGGAA) with CS2+mCherry (1:10) using Fugene HD according
to manufacturer's instructions and sorting for single cells using mCherry signal after 2 days.
Clones were verified via Western blotting using antibodies (Abcam) against KID (1:1000,
ab69824) or KIF4A (1:2000, ab124903) and a-tubulin (1:2000, ab40742). For a list of cell
lines used in this study, see Supplemental Experimental Procedures.

4.6.2 Drug treatment and cell transfection

Where indicated, cells were incubated in 1 pM ICRF193 (Santa Cruz), 1 pM Okadaic acid
(Santa Cruz) or 2 pM AZ3146 (Tocris) for 5 min or 10 pM S-trityl-L-cysteine (Sigma) for 20
minutes (Figure 4.4E, F) or 2h (Figure C.4C) before imaging. For RNAi, cells were
transfected with 50 nM ON-TARGET plus siRNAs (Dharmacon) targeting RAD21
(AUACCUUCUUGCAGACUGUUU), KIF18A (GCCAAUUCUUCGUAGUUUU), Skal
(pool targeting: GGACUUACUCGUUAUGUUA, UCAAUGGUGUUCCUUCGUA,
UAUAGUGGAAGCUGACAUA and CCGCUUAACCUAUAAUCAA), or a nontargeting
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control using Lipofectamine RNAi MAX (Invitrogen) following instructions of the
manufacturer. Plasmids containing wild type cyclin B1-mCherry or the non-degradable
mutant (R42A and L45A) [13, 39] were transfected into HeLa cells using Fugene HD
(Promega) according to manufacturer's instructions 24 hrs prior to imaging.

4.6.3 Live cell imaging

Cells were imaged in C02-independent media (Invitrogen) at 37'C. All images except laser
microsurgery were acquired on a Nikon eclipse microscope equipped with a CCD camera
(Clara, Andor) using a 40x Plan Fluor objective 1.3NA (Nikon) and appropriate fluorescence
filters. Images of 3xGFP-CENP-A cell lines were acquired every 8 seconds using 3 (HeLa)
or 5 (hTERT RPE-1 and Figure S3C) z sections at 0.7 pm intervals. Where indicated,
cells were imaged at 4s interval using a single plane focus. mNeonGreen-PICH cells were
imaged every 60s at 4 z-sections at 1 pm intervals. The laser microsurgery was conducted
as described previously [29] and is detailed in the Supplemental Experimental Procedures.
An extended description of the analysis of the time-lapse movies and kinetochore motion is
also included in the Supplemental Experimental Procedures.

4.7 Figures
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Figure 4.1: Analysis of anaphase chromosome dynamics in human cells. (A)

Still images from a time-lapse movie of HeLa cells expressing 3xGFP-CENP-A, 3xGFP-

centrin. Box indicates the section used to generate the kymograph. (B) Color-coded

kymograph of the time-lapse movie from A. (C) Representative image of time-lapse series

displayed in A overlaid with selected tracks of particles. (D) Graph showing the distances

over time for the distance between spindle poles (top; to measure spindle elongation) and

the kinetochore to pole distance (bottom; to visualize chromosome motion) using tracks

of a HeLa cell. The average kinetochore to pole distance is indicated as a black line, with

individual kinetochores indicated in color. The time of anaphase onset is indicated by the

dashed line. (E) Average spindle pole-to-pole distance (upper graph) and kinetochore to

pole distance (lower graph) for HeLa cells undergoing anaphase (n=10). Colored dotted

lines indicate standard deviation between cells.
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Figure 4.2: (continued) Analysis of anaphase chromosome dynamics in human

cells. (F-H) Still images from a time-lapse movie of an hTERT RPE-1 cell expressing

3xGFP-CENP-A, 3xGFP-centrin. (G) Color-coded kymograph of time-lapse displayed in F.

(H) Average spindle pole to pole distance (upper graph) and kinetochore to pole distance

(lower graph) of hTERT RPE-1 undergoing anaphase (n=10). Blue dotted lines indicate

standard deviation between cells. (I) Direct comparison of average kinetochore to pole

distances over time for HeLa (from E) and hTERT-RPE cells data (from H). (J) Percentage

of poleward motion over time. Scale bars, 2 pm. See also Figure C.1, Table C.1, C.2 and

Online Movie 1.
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Figure 4.3: Physical connections between sister chromatids are not required

for anti-poleward motion. (A) Still image from a representative time-lapse movie of

a HeLa cell (3xGFP-CENP-A, 3xGFP-centrin; n=20) following depletion of the cohesin

subunit RAD21 (48 h) displaying tracks until current time point of selected kinetochores used

to generate the kinetochore to spindle pole distance graph (right). (B) Image of a HeLa cell

(3xGFP-CENP-A, 3xGFP-centrin) before laser ablation (orange hair cross) to inactivate one

of 2 sister kinetochores (n=29 experiments). Arrowhead indicates the released kinetochore

(red) or unaffected kinetochores (blue) which were tracked to generate spindle to pole

distance graph (right). (C) Maximal intensity projections of still images from representative

time-lapse sequences of HeLa cells expressing mNeonGreen-PICH, 3xGFP-centrin entering

anaphase in presence of DMSO (n=10) or 1 piM of the topoisomerase inhibitor ICRF-133

(n=14). (D) Color-coded kymographs of HeLa cells (3xGFP-CENP-A, 3xGFP-centrin) from
anaphase onwards treated with DMSO (n=5) or ICRF-193 (n=7).
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Figure 4.4: (continued) Physical connections between sister chromatids are not
required for anti-poleward motion. (B) Still image from a time-lapse movie of a HeLa
cell (3xGFP-CENP-A, 3xGFP-centrin) trea *ted with S-trityl-L-cysteine (STLC) to generate
a monopolar spindle (n=-11) showing tracks of the selected kinetochores used to generate
kinetochore to spindle pole distance graph (right). (F) Image from time-lapse movie of a
monopolar HeLa cell (3xGFP-CENP-A, 3xGFP-centrin) treated with STLC and the Mpsl
inhibitor AZ3146 (n=8). Selected tracks were used to generate the kinetochore to spindle

pole distance graph (right). Green arrowheads highlight spindle poles. t=O is beginning of

movie. Scale bars, 2 pm. See also Figure C.3, Table C.2 and Online Movie 2.
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Figure 4.5: Perturbing the cellular phosphorylation state induces anaphase
anti-poleward chromosome motion. (A) (left) Images of untreated HeLa cells

(3xGFP-CENP-A, 3xGFP-centrin) or cells treated with Okadaic acid (n=10 cells). Selected

kinetochore tracks until current time point are displayed. (right) Color-coded kymographs

from the corresponding movies starting at anaphase onset. (B) Selected representative

curves of individual kinetochore to pole distances from the cells shown in A. Color shades

are used to distinguish different tracks. t=0 was set to anaphase onset.
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Figure 4.6: (continued) Perturbing the cellular phosphorylation state induces

anaphase anti-poleward chromosome motion. (C) Comparison of distribution of

motion stages and velocity for the 240 seconds post anaphase onset in untreated or Okadaic

acid treated HeLa cells (3xGFP-CENP-A, 3xGFP-centrin; n=10 each). (D) Comparison

of the proportion of anti-poleward motion during metaphase, untreated anaphase (n=10),
or Okadaic acid-treated (n=18) anaphase HeLa cells (3xGFP-CENP-A, 3xGFP-centrin).

(E) Kymographs as in A for cells expressing either wild type Cyclin B, or a non-degradable

Cyclin B mutant. Arrowheads highlight spindle poles (green). Unpaired t tests were applied

for comparison (**** p<0.0001; ** p=0.0031; Not significant (n.s.) C: p=0.235, D: p=0.117).
Standard deviations were measured across cells using the average behavior for kinetochores

in each cell. Scale bars, 2 pm. See also Figure C.4, Table C.2 and Online Movie 3.
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Figure 4.7: Chromosome and kinetochore-derived forces contribute to anaphase

anti-poleward motion in Okadaic acid-treated cells. (A) Representative color-coded

kymographs of HeLa cells (3xGFP-CENP-A, 3xGFP-centrin) undergoing anaphase either for

control cells (left) or KID and KIF4A double knockout cells (KID+KIF4A KO; right) treated
with DMSO (upper panels; n=10 or 6) or Okadaic acid (lower panels; n=10). (B) Graph

showing selected representative kinetochore to pole distances from A. (C) Kymographs

as A displaying cells treated with non-targeting control siRNAs (left) or KIF18A siRNA

after 24h (right) incubated in DMSO (upper panels; n=6 or 18) or Okadaic acid (lower

panels; n=6 or 5, respectively) and MPS1 inhibitor AZ3146. (D) Graph showing selected

representative kinetochore to pole distances from Okadaic acid treated cells as displayed in

C. (E) Kymographs as A displaying cells in which either wild type mCherry-Skal (left) or

a Ska1AMTBD mutant (right) replaces endogenous Skal(48h RNAi). Cells were treated

with AZ3146 and DMSO (upper panels; n=3 or 4) or AZ3146 and Okadaic acid (lower

panels; n=8 or 5, respectively). (F) Graph showing selected representative kinetochore to

pole distances from E.
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Figure 4.8: (continued) Chromosome and kinetochore-derived forces contribute

to anaphase anti-poleward motion in Okadaic acid-treated cells. (G) Diagrams

display fraction of anti-poleward state of kinetochores 240 seconds post anaphase onset

for conditions A-F. Unpaired t tests were performed to HeLa cells (n=18): KID+KIF4A

KO (n=12) *p=0.0225; KIF18A RNAi (n=5) *p=0.0285; Ska1AMTBD (n=5) **p=0.0096.
(H) Diagram display velocity of kinetochore motion 240 seconds post anaphase onset for

conditions A-F. Unpaired t-tests were performed for poleward motion to HeLa cells (n=18):

KID+KIF4A KO (n=12) n.s. p=0.854; KIF18A RNAi (n-5) ****p<0.0001; Ska1AMTBD

(n=5) ****p<0.0001 and for anti-poleward motion: KID+KIF4A KO (n=12) **p=0.0033;
KIF18A RNAi (n=5) n.s. p=0.3492; Ska1AMTBD (n=5) ****p<0.0001. Arrowheads
highlight spindle poles (green) and examples of anti-poleward motion (white). Scale bars, 2

[im. See also Figure C.5, Table C.2 and Online Movie 4.
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Figure 4.9: Model for the regulatory control of chromosome dynamics at

the metaphase to anaphase transition. In metaphase, chromosome oscillations

are caused by chromokinesin-based polar ejection forces and kinetochore-derived forces.

These activities are controlled by phosphorylation downstream of CDK1. At anaphase

onset, CDK1 is inactivated and phosphatases reverse the phosphorylation of its substrates

to downregulate polar ejection forces and kinetochore-derived forces that act through

microtubule polymerization. This allows chromosomes to display net motion towards the

spindle poles. In the contrast, in the presence of the phosphatase inhibitor Okadaic acid,
dephosphorylation is delayed such that chromokinesins and kinetochore-derived forces remain

active. This maintains a metaphase-like oscillatory chromosome behavior in anaphase even

after sister chromatid separation. Thus, mitosis is characterized by two distinct phases

of chromosome motion - metaphase oscillations to align the chromosomes and poleward

anaphase motion to segregate the chromosomes - and the switch in movement behavior is

controlled by a regulatory transition.
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Chapter 5

Probing protein dynamics in the
membrane of Bacillus subtilis

5.1 Overview

The following material is unpublished work towards the end of applying highly quantitative
TIRF-based single particle tracking and imaging-TIR-FCS analysis in living Bacillus subtilis.
As far as I am aware, this is the first publically-available description of the implementation
of this modality of FCS in bacteria. Here, both techniques are applied to the study of
membrane-associated proteins in three diverse systems - cell wall synthesis, sporulation,
and membrane synthesis. A primary goal of this chapter is the evaluation of TIR-FCS as
a potentially complementary method to extract molecular dynamics in addition to SPT
analysis. As such, quantitative analysis of these molecular dynamics grounded in Bayesian
inference are utilized to compare these two avenues for discerning properties of molecular
motion of membrane proteins in B. subtilis. In addition to the evaluation of imaging-TIR-
FCS as a reliable tool for bacterial application, I specifically explore the biophysics of two
proteins intimately involved in the cell wall synthesis process: the actin homolog MreB and
the transpeptidase Pbp2a. Using HMM-Bayes, I characterize the diffusive and processive
dynamics of these two proteins as well as the incidence of "switching" events between these
two modes of motion.

5.1.1 The peptidoglycan-synthesizing membrane complex

For a detailed description of cell wall synthesis in B. subtilis, please refer to Chapter 3.

Two membrane-associated proteins in B. subtilis involved in the circumferentially
traversing cell wall synthesis complex are MreB and Pbp2a (Figure 5.1) [3, 5]. MreB is a
filamentous actin homolog that may serve as curvature sensor which properly localizes the
rest of the integral membrane proteins and enzymes that comprise this machinery [27].
Pbp2a is one such component and is a transpeptidase which serves to crosslink
peptidoglycan [26]. The circumferential motion of both components is dependent on cell
wall-synthetic enzymatic activity which can be disrupted with enzyme-targeting antibiotics
[5]. Figure 5.1 shows MreB and Pbp2a (TP) in context with other cell wall-synthesizing
enzymes (bifunctional polymerizing/crosslinking penicillin binding proteins) that exist
independent of this complex.
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Figure 5.1: Schematic of two systems involved in integrating nascent

peptidoglycan into the overarching structure of the cell wall. Left: the MreB-

associated synthetic machinery - Pbp2a (transpeptidase), RodA (transglycosylase of newly

elucidated function) and others that exhibit circumerential motion driven by enzymatic

activity. Right: the bifunctional transglycosylase / transpeptidase enzymes function

independently of MreB and do not exhibit such directed motion in B. subtilis or E. coli.

Figure adapted from [3].
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5.1.2 Use of HaloTag for single-molecule and total fluorescence labeling

in living bacteria

The entirety of the imaging shown in this chapter has been performed on strains containing

HaloTag fusion proteins [18]. As described below, HaloTag has significant advantages over

the use of fluorescent proteins (FPs) for live-cell imaging.

HaloTag technology operates through the covalent bonding of a mutant haloalkane

dehalogenase to a modifiable reactive group [18]. This reactive group is then linked to

a small molecule of interest, faciliating covalent linkage of many types of molecules to a

HaloTag fusion protein. I utilize this method to visualize proteins of interest using labeling

with bright, organic dyes [8, 9]. Through titration of the dye concentration which cells are

incubated with preceeding imaging, one can choose to either label all molecules present

with organic dye or only a subset. Labeling with a small concentration therefore allows

visualization of single molecules of the protein under study. This has the tremendous

advantage of being able to perform gross localization of the molecules and their structures as

well as study their dynamics in a single strain with considerably higher signal-to-noise ratio

than can be provided via FPs. Throughout this chapter, I will be using these constructs in

lieu of the FPs.

HaloTag TMR
ligand N-teminus

F272

C-terminus

Functional reporter Reactive linker

TMR ligand N
Ex/Em = 545/575 nm

NN C0 ~ 0

+N - DX
I 2C

Figure 5.2: The structure of HaloTag, a protein derived from a haloalkane

dehalogenase, covalently bonded to a TMR fluorescent dye ligand. Small

molecules of many functions can be tethered to a HaloTag "reactive linker" and added

exogenously to live cultures in order to label a fusion protein of choice fused to the HaloTag

molecule. Here, I use HaloTag to perform SPT and FCS measurements in live B. subtilis

in the same strain by labeling with different concentrations of "JF" dyes developed at the

Janelia Research Campus [8, 9] and generously provided by Luke Lavis. Figure adapted

from [18].
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5.2 Single-molecule tracking analysis of cell wall-synthesizing
proteins reveals novel motion-switching dynamics

5.2.1 MreB and Pbp2a exhibit stochastically-switching membrane
dynamics

It has previously been shown that both MreB and Pbp2a exhibit heterogeneous behavior

regarding their molecular dynamics [21, 5]. The former has been indicated to undergo

reversals in the direction of its circumferential motion, whereas the latter exists in both

circumferentially-moving and diffusing populations. Here, I move towards a more quantitative

take on these observations, utilizing HMM-Bayes analysis on the heterogeneous trajectories

observed to detect regions of "switching behavior" along trajectories - times where molecules

change their motion in some fashion. For example, change in direction of a flowing molecule,
the velocity or diffusion coefficient, or a change from flow to diffusion or vice versa. This

section is a preliminary, quantitative cataloging of such observed phenomena. Though the

amount of data collected and analyzed in this section can be significantly improved, it is the

intention of this section to convey a promising direction for future biological exploration

to more specifically probe the biological significance of these interesting MreB and Pbp2a

dynamics.
The heterogeneous dynamics of MreB-HaloTag and Pbp2a-HaloTag fusion proteins

were studied in closer detail through the use of HMM-Bayes on the single-molecule tracks

acquired from TIRF microscopy. After trajectory filtering by hand or through phase contrast

segmentation, tracks were input into HMM-Bayes to not only calculate coefficients of motion

(diffusion and velocity coefficients), but also annotate where along the tracks these modes

of motion were switching. Through this, I was able to determine the fractions of particles

undergoing both types of motion, as well as the occurence of switching between these

phenomena.
Figure 5.3 is an overlay of trajectories of tracked MreB-HaloTag molecules on top of a

frame of the source fluorescence movie. A large majority of the tracks exhibit solely directed

motion, whereas some trajectories seem to consist of pauses or short periods of diffusion.

Aberrant trajectories were screened prior to analysis. See the Methods Section (5.5) for

details on the tracking procedure.
In the same way as MreB-HaloTag, Pbp2a-HaloTag single molecules were tracked from

TIRF movies. Figure 5.4 shows an example zoom-in on a field of view collected of both

diffusing and flowing Pbp2a-HaloTag. Interestingly, an incident of a diffusing molecule

transitioning to a flowing state has been detected (bottom left of the frame). This and all

other captured trajectories of both MreB- and Pbp2a-HaloTag were subsequently analyzed

with HMM-Bayes.

5.2.2 Resolution of heterogeneous dynamics by HMM-Bayes in the
context of bacterial SPTs

As previously stated, all filtered and masked trajectories were subsequently analyzed

individually with HMM-Bayes to extract both modes of motion and their coefficients (flow,
diffusion) as well as the number of detectable switching events between them. Figure 5.5

shows the results of the HMM-Bayes analysis of the Pbp2a-HaloTag trajectory exhibiting

the diffusive to flow dynamics switch. As can be seen from the analysis, these two regions of

hetergeneous behavior have been adequately captured and annotated by HMM-Bayes
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Figure 5.3: Characteristic single particle trajectories of MreB-HaloTag

molecules labeled with JF5 4 9 . A large majority of the trajectories exhibit circumferential

motion, indicated by the linear trajectories of these molecules. In addition, a reversal of an

MreB-HaloTag molecule can be seen at the bottom of the image as well as regions of pausing

and non-processivity, though these phenomena are considerably rarer than the directed

motion.

89



Figure 5.4: Characteristic single particle trajectories of Pbp2a-HaloTag
molecules labeled with JF5 4 9 and overlaid on a phase image of the field of
view. Pbp2a exhibits both diffusion and processive, circumferential motion, sometimes

with transitions between the two which have been observed (discussed later in this chapter).
The bottom left, green trajectory is such an example of a diffusive molecule which undergoes

a subsequent state switch into a flow motion.
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including the region of the trajectory during which the switching occurs.

Trajectory (ML state sequence) State sequence

3.1

3

2.9

2.8-

1.9 2 2.1 2-2 2.3 2.4 2.6 2.6 0 2 4 6 8 10 12 14
x (prn) Time (sec)

Trajectory displacements
0.16

0.1

0.06

-0.1

-0.16

.2  .0.1 0 0.1
AX (prn)

Figure 5.5: An HMM-Bayes analysis of the aforementioned Pbp2a molecule
which transitions from a diffusive state to a directed motion state. Top left: the

trajectory of the particle overlaid with the particular state of motion (blue: diffusive; red:

directed). Top right: the "state sequence" of the motion of the molecule, indicating the state

that the particle was in over the lifetime of the trajectory. Bottom left: a depiction of the

distribution of displacements along the trajectory in the diffusive and flow states. Bottom

right: the trajectory overlaid on its location in the field of view imaged.

Figure 5.6 is a depiction of the distributions of diffusion coefficients and velocities

reported by HMM-Bayes. Diffusion of MreB-HaloTag was found to be generally significantly

slower than Pbp2a-HaloTag: visually, "diffusion" of MreB seemed to manifest as simply

pausing events, which results in trajectories dominated by localization error [19]. Of note

is the closing-in-on-significant difference in the mean velocities of both species. Through

my observation and the observations of others in the Garner lab, the Pbp2a-HaloTag strain

seems to be wider/fatter than the wildtype, indicating that the tag/linker combination

used in this strain may be suboptimal for cell health. Previously, it has been shown that

depletion of MreC results in a speed up of the remaining complexes [5]. As it appears that

this HaloTag strain has fewer complexes than our msfGFP strain, it may be that this is a

source of the velocity difference through a cell wall perturbed by the fusion protein.

- Table 5.1 summarizes the results of running HMM-Bayes on MreB- and Pbp2a-HaloTag

trajectories. It can be seen that the diffusion coefficient of MreB-HaloTag is of such an order

of magnitude (10-4) as to be reported as practically a paused/static state (similar to Pbpla

in [3]). Pbp2a-HaloTag exhibits more trajectories with switching behavior detectable, though

both have the same amount of trajectories with detectable flow states. The number of

trajectories analyzed, especially for Pbp2a-HaloTag, is admittedly quite deficient. Through

compilation of many additional trajectories (adequate sampling of molecular dynamics across

many movies), many more such switching events could be captured and real statistics formed.
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Figure 5.6: Distributions of diffusion and velocity coefficients from HMM-Bayes
analysis of bacterial SPTs. Student's t-test indicates mild significant difference between
diffusion coefficients (p = 0.042) and a mild non-difference for velocity coefficients (p
0.13). Red line: median. Box: 25th and 75th percentiles.

Species V coefficient D coefficient V fraction Multi-state
MreB-Halo 66.5 13.9 nm 0.0007 t 0.00053 pm2 /s 36.3% 8.1%
Pbp2a-Halo 81 25.4 nm 0.0019 0.002 pm2 /s 32.1% 14.3%

Table 5.1: Results of running HMM-Bayes on individual single particle
trajectories derived from TIRF imaging of MreB-HaloTag (n=919) and Pbp2a-
HaloTag (n=28) strains (labeled with JF549 ). Note that the fraction of tracks
labeled as containing directed motion is not equivalent to the amount of molecules actually
exhibiting this motion. This is strongly influenced by the ability of the HMM to detect flow
in these relatively short trajectories.

5.2.3 Truncation of the active-site domain of Pbp2a leads to loss of
enzyme involvement in peptidoglycan-synthesizing complex

A truncated Pbp2a (Pbp2a (1-273), as in [17]) was generated to observe the effect of loss of
the active-site domain on the ability of this enzyme to participate in the circumferentially-
moving complex. Due to the transient nature of the cell wall-synthesizing complexes, few
observations of co-crystalized structures have been reported, save, for example, the structure
of the cytoplasmic domain of RodZ with MreB [28]. As such, the manner of the connection
of Pbp2a to the rest of the complex is unknown. It was observed previously that truncation
of this domain resulted in considerably faster diffusion of Pbp2a in [17] which could not be
explained simply through the loss of mass as predicted by the Stokes-Einstein equation. In
addition, introduction of mecillinam (a PBP2 inhibitor), or A22 (an MreB inhibitor) to the
E. coli under study did not produce such an increase in diffusion rate [17]. Thus, it seems
that interactions with other proteins of the cell wall-synthesizing complex or the wall itself
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may be what is hindering this faster rate of diffusion.

I analyzed the dynamics of the equivalent truncated Pbp2a (1-273) (with HaloTag) in B.

subtilis to study this phenomenon (Figure 5.7). The same effect of truncation was observed

in this organism as well, where a dramatic increase in the diffusion coefficient occurred upon

loss of the active site domain of the enzyme. This implies a similar phenomenon whereby

when Pbp2a is diffusing in B. subtilis, it is co-diffusing with other molecules in complex,
again mediated by the presence of the active site domain, or possibly interacting with the

cell wall even when not associated with MreB. Alternatively, given a crowded periplasm, the

lack of a signficant periplasmic domain could result in less diffusion constraints from other

proteins. Interestingly, however, the rate of diffusion did not increase nearly to the rate

of diffusion of PBP2 in E. coli, which suggests that the incredibly slow rates of diffusion

observed of the native enzyme are not solely a result of a possibly greater constraint on the

rate of diffusion in B. subtilis compared to E. coli. Note also that I observed this same, slow

diffusion in Pbpla in our previous study as detailed in [3].

Figure 5.7: Characteristic diffusive trajectories of Pbp2a (1-273)-HaloTag
overlaid on phase microscopy of the field of view. This molecule is truncated

before its active site domain. No directed motion is readily observed.

5.2.4 Quantitative, single-molecule analysis of B. subtilis membrane
protein diffusion

I moved on to analysis of the diffusion coefficients and number of diffusive populations of

membrane proteins that I expect to be diffusive (through visual inspection) using SPT and

cumulative distribution function (CDF) analysis of the displacements along the trajectories.

The CDF fitting was coupled with Bayesian model selection to determine the most likely

number of populations of diffusing species present given the data (see Appendix E). Accurate

quantification of these coefficients and numbers of extant states was essential to forming

a reliable basis of comparison for the capability of SPT vs. imaging-TIR-FCS to detect

and quantify these phenomena. Using HaloTag constructs of three protein species - PlsX,
an enzyme central to phospholipid synthesis [22], SpoIIIJ, a protein insertase involved in

later stages of sporulation which exists on the membrane as both a monomer and dimer

[20, 4, 6], and the aforementioned truncated Pbp2a (1-273), I performed single particle

tracking to study their molecular dynamics in living B. subtilis. Of note is that all three

species under study exhibited at least two diffusive populations. See Figures 5.8, 5.9, and

5.10 for examples of empirical CDFs and their fitting for all three species, as well as Figure

5.11 for a summary of the statistics of number of populations and their respective diffusion
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coefficients observed from the data.
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Figure 5.8: An example of analytical CDF fits to an empirical CDF generated

from all the trajectory displacements pooled from single movie of single-

molecule TIRF imaging of Pbp2a (1-273)-HaloTag-PA-JF 5 4 9 . Two populations

were inferred from Bayesian model selection with diffusion coefficients of 0.0499 and 0.0154

Im 2/s and populations weights of 68% and 32%, respectively.
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Figure 5.9: An example of analytical CDF fits to an empirical CDF generated

from all the trajectory displacements pooled from single movie of single-

molecule TIRF imaging of SpoIIIJ-HaloTag-PA-JF5 49. Two populations were

inferred from Bayesian model selection with diffusion coefficients of 0.0599 and 0.0102 pm2 /s

and populations weights of 80% and 20%, respectively. SpoIIIJ exists in both a monomeric

and dimeric form on the membrane as reported in [4].

PlsX was inferred to possess three diffusive populations through Bayesian model selection

on CDF fitting (Figure 5.10). This can potentially be explained biologically by the existence

of three possible states of the protein - monomeric, dimeric [16], and oligomerized [22],

or instead possibly PlsX existing multiple, distinct states of oligomerization. This result
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indicates a potentially interesting direction for future study of the ramifications of these

different populations with regards to membrane synthesis in different growth conditions. In

addition, it has been shown that the protein forms foci under particular growth conditions

which are dynamic and can disassemble [22], supporting the existence of the third, very slow

diffusive population indicated in Figure 5.10.
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Figure 5.10: An example of analytical CDF fits to an empirical CDF generated

from all the trajectory displacements pooled from single movie of single-

molecule TIRF imaging of PlsX-HaloTag-PA-JF 5 4 9. Three populations were

inferred from Bayesian model selection with diffusion coefficients of 0.2022, 0.0595, and

0.0112 [tm2 /s and populations weights of 15%, 75%, and 10%, respectively.
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Figure 5.11: Distribution of diffusion coefficients for PlsX-, truncated Pbp2a-,
and SpoIIIJ-HaloTag trajectories (fusion proteins labeled with photoactivatable

PA-JF5 4 9 [9]) as determined through CDF fitting to the displacements along

captured single particle trajectories. Coefficients are labeled as Dk, where k is an

index to a diffusion coefficient of one population of the diffusive species. For example, PlsX

exhibited three rates of diffusion as detected by the Bayesian CDF model selection procedure.

Red line: data mean. Red box: the 95% confidence interval (1.96 SEM) for the mean

diffusion coefficient. Blue: 1 standard deviation. Each dot represents the results of CDF

fitting the entirety of trajectories from a single field of view.
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5.3 Pioneering imaging-based TIR-FCS at the membrane in

living B. subtilis

Fluorescence correlation spectroscopy (FCS) is a well-established technique for elucidating a

number of biophysical properties of the motion dynamics of molecules both in vitro and in

vivo [11, 14]. Not only can it acquire coefficients of motion, such as diffusion coefficients and

velocities, but FCS also has the potential to reveal information such as chemical reaction

rates and protein-protein associations (the latter with cross-correlation spectroscopy) [2].

Previously, in much the same way as HMM-Bayes, the Bathe group has developed a

Bayesian FCS analysis framework ("FCS-Bayes", [12, 10, 11]) capable of performing model

selection on analytical FCS model fits to autocorrelated fluorescence intensity traces to

determine the most suitable model given the quality of the data (SNR, sampling time,
length of acquisition). This is highly useful to treatment of FCS data, as correlated errors

are present in calculated autocorrelation functions which can cause aberrant model fitting

without such a noise-aware analysis formulation [12]. Here, I employ this tool in order

to analyze the intensity traces acquired from imaging-TIR-FCS of the Bacillus subtilis

membrane-associated proteins discussed previously. This imaging-FCS modality allows

acquisition of hundreds of individual focal volumes simultaneously with high SNR at the

membrane. See Figure 5.12 for a schematic of imaging-TIR-FCS analysis with FCS-Bayes.
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Figure 5.12: A schematic of the FCS-Bayes procedure for analysis of imaging-

TIR-FCS datasets. Intensity traces from each (masked) pixel in a TIRF movie are

autocorrelated and analyzed independently following empirical noise analysis using a blocking

technique on the intensity traces themselves. Analytical FCS motion models (flow, diffusion,
etc.) are then fit to the experimental ACFs and Bayesian model selection is performed to

infer the type of motion present in each pixel. Reproduced from [10].
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5.3.1 A pipeline for TIR-FCS imaging and analysis in live B. subtilis

In developing a pipeline to analyze these bacterial FCS datasets, I desired a procedure that

would result in an objective-as-possible analysis for each protein. This includes the goal

of having an unbiased analysis of particular pixels in a bacterial cell that depends on the

species of interest under imaging. An important particular difference between FCS on a

large, eukaryotic cell and on B. subtilis is that oftentimes a large majority of the usable

area of the chip (depending on framerate desired; the number of pixel rows in the region of

interest caps an EMCCD framerate) can be taken up by a fraction of the cell in the former

(assuming 100x mag, 160 nm/px, 512x512 pixel array Andor iXon 897 EMCCD, the setup

used in this thesis). In the case of bacteria, on the other hand, imaging in this regime entails

that the signal from one B. subtilis cell is approximately 6 pixels wide or less under TIRF

illumination (1 Mm diameter bacteria). Factoring in the curved geometry of this rod-like

organism, the best signal for the intensity traces will come from the centermost pixels of

the cell. Analysis of neighboring pixels comes at the cost of sampling pixels where there is

an exponential excitation intensity falloff due to TIRF [1], leading to a considerably lower

signal-to-noise. In addition, some proteins are capable of forming bright foci [22]. As such,
selecting particular pixels for analysis carefully using the right method (e.g., not based on

background-to-foreground intensity segmentation) is important to appropriately compare

FCS results across different molecular species imaged.

To address this challenge, I have employed Morphometrics [27] to perform segmentation

and subsequently find the midline of all the rod-like cells in the field of view (Figure

5.13). The midline pixels are then the only pixels selected for analysis; all other pixels are

masked out. This masking is performed on a phase image of the bacteria collected before

the fluorescence acquisition. An obvious but essential note is that the phase image and

fluorescence movie are checked for alignment (the absence of significant stage/sample drift)

post-imaging. After masking, the procedure for FCS-Bayes analysis in bacteria follows that

of imaging-TIR-FCS analysis in generally any other scheme.

5.3.2 Application of imaging-TIR-FCS in B. subtilis and comparison with
SPT methods

SpoIIIJ, PbpA (1-273), PlsX, and MreB (the same HaloTag constructs used above) were

imaged in the imaging-TIR-FCS modality to analyze the molecular dynamics of these

proteins through FCS. In order to compare the results of FCS analysis to SPT, there were

two primary goals: 1) evaluation of FCS-Bayes' ability to discriminate between diffusion

and flow in FCS data, and 2) verification of accurate inference of the number of populations

present as well as quantitation of the coefficients themselves. Example ACFs, an ACF fitting,
and the distribution of diffusion coefficients as measured from a PlsX FCS movie are shown

in Figures 5.14, 5.15, and 5.16, respectively.

Interestingly, across all three imaged diffusive proteins, FCS-Bayes did not indicate that

there were two or more populations with different diffusion coefficients present. This could

very well be due to the closeness of the diffusion coefficients for all species, as estimated by the

SPT CDF fitting. The comparison of diffusion coefficients measured by both SPT and FCS

can be found in Figure 5.17. Points of comparison are designated by black brackets: I am

comparing the "fast" diffusive component for each species as determined by the CDF analysis

to the FCS-measured diffusion coefficient. It appears as if FCS is in reasonable accordance

with SPT for measuring the fast component of Pbp2a (1-273)- and SpoIIIJ-HaloTag, whereas
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Figure 5.13: A pipeline for FCS-Bayes analysis of molecular motion in living B.

subtilis. From right to left, top to bottom: 1) a phase image of the field of view is captured

for segmentation. 2) The midline of the cell is determined using the Morphometrics software

package [27] through image segmentation, and these pixels are used for FCS analysis. 3)

A maximum intensity projection (MIP) of the fluorescence movie under consideration. 4)

The MIP with the segmented pixels to be analyzed (yellow). 5) The results of the blocking

analysis [12] (cyan has passed). Only pixels that have passed blocking are considered for

model selection. 6) The final model selection as determined by FCS-Bayes. Blue indicates

diffusion was selected as the best model in a pixel, and grey means the "null" model was

selected - no model of motion properly discernible.
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Figure 5.14: Characteristic empirical ACFs of PlsX-HaloTag diffusion from a

single field of view captured by TIR-FCS imaging of living B. subtilis. The

ACFs are normalized such that the leftmost point in the ACF curve is 1. The shape of the

FCS curves resemble the analytical ACF for diffusion (shown later in Figure 5.15). Frame

duration: At = 30 ms.
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Figure 5.15: An example FCS-Bayes curve fitting comparison for a PlsX-

HaloTag ACF. Competing models in the order of the legend were: 1 component diffusion, 2

component diffusion, flow, diffusion and flow, and the null model. FCS-Bayes has determined

that a single component diffusion model is most appropriate given the data. Error bars are

SEM derived from the FCS-Bayes blocking analysis [12, 10].
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Figure 5.16: Distribution of diffusion coefficients for PlsX from a single movie

by FCS-Bayes. D = 0.11 0.03 pm2 /s (mean s.d.).

for PlsX, the agreement seems rather poor. Refer to Appendix E for simulations testing the

accuracy of diffusion coefficient measurements in this diffusion coefficient/camera framerate

imaging regime. These simulations are essential in order to compare the theoretical accuracy

of SPT vs. FCS quantification of the molecular dynamics of the proteins I am imaging.

Simulations suggest that the PlsX FCS diffusion coefficient measurement should be a slight

overestimate in this coefficient magnitude regime, indicating that there is a good chance

that some other factor is at work in creating this difference.

In much the same way, I tested FCS-Bayes for its ability to detect and quantify directed

motion in B. subtilis. My species of choice in this case was the previously imaged MreB-

HaloTag. Attempts were made to try to image Pbp2a-HaloTag as well in this FCS regime,
but the long acquisitions required to have a reasonable number of pixels pass blocking (~ 25

min) were not compatible with the low amount of Pbp2a protein on the membrane relative

to that of the filamentous MreB. Of consideration is that when imaging over this timescale,
the bacteria have grown signficantly. Due to this, the FCS measurement taking place here is

actually an average of all the MreB signal across the bacteria that entered this pixel. While

this may be acceptable for quantifying the average molecular dynamics between bacterial

chains, this problem precludes a single-cell analysis on a protein flowing in this velocity

magnitude. Note that in addition, all imaging (including the SPT imaging) was performed

in a medium (CH+S750 mix, see Materials and Methods) designed to force straighter chains,

which significantly facilitates the ability to image these MreB chains for long periods of time.

Example ACFs from a single MreB-HaloTag field of view are shown in Figure 5.18;

an example fit in Figure 5.19. From multiple cell chains across multiple movies, it was

determined that directed motion/flow was the dominant resolved FCS model. Velocity

coefficients were then compiled; their distribution for this particular movie is shown in Figure
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Figure 5.17: A comparison of FCS versus single-molecule SPT measurements

of molecular motion for PlsX-, truncated Pbp2a (1-273)-, and SpoIIIJ-HaloTag.

The black brackets indicate diffusion coefficients of consideration for comparison between

FCS and SPT. For all species, FCS-Bayes only detects a single, "fast" component of diffusion,
in disagreement with the CDF fitting. For the fast component, measurements on truncated

Pbp2a and SpoIIIJ seem to be in good agreement. PlsX measurements, however, seem to

considerably differ between the two techniques. Of note, however, is the limited sampling

of PlsX molecular dynamics with FCS (n=2 movies). Red line: data mean. Red box: the

95% confidence interval (1.96 SEM) for the mean diffusion coefficient. Blue: 1 standard

deviation.
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5.20. Due to the difficulty in acquiring 25 min movies for FCS on MreB, I was only able
to collect two movies up to this point (stage/sample drift being the primary issue). Their

velocity estimates were: 70 7.2 nm/s and 67.3 6.8 nm/s (mean. s.d.). Comparing
these measurements to the HMM-Bayes-measured velocity coefficients (Table 5.1; 66.5
13.9 nm/s), it seems like both SPT and FCS are in accordance with each other. Of course, to
conclusively say this, considerably more FCS data for this protein would have to be acquired
to gain adequate statistics.
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Figure 5.18: Characteristic empirical ACFs of MreB-HaloTag flow from a single
field of view captured by TIR-FCS imaging of living B. subtilis. The "elbow"

around T = 100 seconds is characteristic of flow behavior. Fitting for a single ACF is shown

in Figure 5.19. Frame duration: At = 200 ms.

5.3.3 In silico simulations of TIRF microscopy for validation of FCS
analysis

Please see Appendix D for simulations validating FCS-Bayes model selection and coefficient

estimation for the imaging regime of these measured diffusion and flow results.
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Figure 5.19: An example FCS-Bayes fitting of a measured MreB-HaloTag FCS

ACF. Flow and a two component flow + diffusion models both well describe the empirical

ACF, however, FCS-Bayes selects flow as the most likely model given the low residual

improvement in selecting the more complex model (flow + diffusion) as well as the noise in

the ACF. Error bars are SEM derived from the FCS-Bayes blocking analysis [12, 10].
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Figure 5.20: Distribution of velocity coefficients for MreB-HaloTag measured

by FCS-Bayes from a single field of view. V = 67.3 6.8 nm/s (mean s.d.).
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5.4 Conclusions

High-resolution, live-cell fluorescence imaging techniques coupled with robust, quantitative
analysis comprise a powerful platform upon which subtle dynamics of molecules can be
detected: their localizations in the cell, the presence of subpopulations of a molecular species
exhibiting heterogeneous (and switching) motion, as well as interactions between molecules.
Here, I have moved in the direction of integrating HMM-Bayes, FCS-Bayes, and Bayesian
CDF fitting into a system for discriminating between the types/modes and subpopulations
of motion as well as for detecting events of switching between such states for a molecular
species in B. subtilis. Such integration of complementary biophysical analyses can be a
useful step towards more sophisticated (and potentially accurate/robust) evaluations of the
biophysical properties of a biological system in question. It is the intent of this chapter
to provide a survey of my preliminary results applying these three analyses in concert in
bacteria so as to spark interest in one or more of these computational tools in other scientists
using live-cell fluorescence microscopy to push the characterization of their systems and
drive biological insight thereof even further.

5.4.1 Considerations of the viability of FCS in bacteria

While the preliminary results presented here comparing SPT and FCS to elucidate molecular
dynamics in B. subtilis seem promising, I have found that choosing to use FCS requires very
careful consideration of the limitations/requirements of the technique in order to be feasible,
namely, the signal-to-noise requirement vs. the intrinsic properties of the fluorophores
in use as well as the number of molecules of the protein present in the cell. For my
diffusing proteins, I have designed these HaloTag fusion proteins to be overexpressed from
the amyE locus. In my prior experience, choosing to build strains with native replacements
instead of overexpressing often came at the cost of protein levels too low to get adequate
sampling of the dynamics of interest (to decrease noise in the ACF curves). Unfortunately,
ectopic overexpression can come at the cost of obscuring the true dynamics (or fractions of
subpopulations) present for the molecular species of interest, as I have shown in Chapter 3
and [3]. As such, one should carefully consider whether making the decision as to overexpress
a lower copy number protein so as to make it compatible with FCS's requirements is worth
the potential perturbation of the true population dynamics. In addition, the use of HaloTag
enabled the use of organic fluorophores bright enough and stable enough to image for long
periods of time. I had previously attempted to image many of these strains using fluorescent
proteins (mNeonGreen, monomeric sfGFP), but I found the SNR in my ACFs I obtained
from them (influenced by lower quantum yield, photobleaching) to be subpar in order for
my analysis to be reliable.

5.4.2 Future directions in SPT-FCS complementation

While single-particle tracking techniques are quickly advancing in their ability to detect
heterogeneity in molecular motion and interactions with landmarks and other molecules
in two+ color setups [15], they can be limited in detecting interactions in the regime of
high numbers of molecules and lower numbers of interaction events. Photoactivation or
sparse multi-color labeling-based imaging in a regime where hundreds or more molecules
of each species are present may be less effective at capturing many events of co-motion in
a single cell. Thus, collection of statistics regarding these interactions might be unfeasible
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with a single-molecule imaging modality in such a situation. Fluorescence cross-correlation

spectroscopy (FCCS) offers an alternative and complementary technique to SPT in detecting
such interactions. In addition, not only can FCCS detect protein-protein associations in
cells, but also identify stoichiometries and ratios of interacting to non-interacting molecules.
On the other hand, single-particle analysis is much more capable of detecting heterogeneities
in motion including stochastic switching events along the trajectory of an observed molecule.
As such, these technologies should be considered potentially synergistic in revealing the
underlying biophysical phenomena of a system, though care must be taken to consider the
disadvantages or specific use cases where certain techniques fail, especially in the case of
FCS.

5.5 Materials and Methods

5.5.1 Imaging media

B. subtilis strains were imaged in a 50-50 mix of CH [25] and S750 [13] spiked with 100

mM MgCl 2 . This allowed the chains of bacteria in the field of view to grow considerably
straighter, which was necessary for imaging FCS on the MreB strain.

5.5.2 Bacterial culture pre-imaging

B. subtilis strains were innoculated into CH+S750 culture medium and grown for
approximately 3.5 hours at 37'C or before an OD6 00 of 0.6 was reached. Cells were then
diluted into fresh medium and incubated at 37'C (with 1 mM IPTG for full induction of the

Phyperspank strains), then imaged between OD6 0 0 0.3 and 0.6. Before imaging, cells were
concentrated through centrifugation at 1500 x g for 2 min. Bacteria were applied to no 1.5
coverglass and then topped with a 2% agarose pad containing culture medium. This pad
was encased in a glass concave slide so as to prevent dehydration, enabling longer term
imaging. IPTG was not present in the pads.

5.5.3 Labeling with JF HaloTag dyes

Immediately before imaging, cells were incubated with JF5 49 or photoactivatable PA-JF5 49
for 10 minutes at 37*C. For full labeling in the case of FCS imaging or labeling with the
photoactivatable dye, 250 nM of either dye was used. Pbp2a- and MreB-HaloTag were
labeled with 50 pM JF5 49 for single-molecule microscopy. Samples labeled with JF5 4 9 were
not washed, whereas PA-JF5 49 samples were washed with culture medium twice following
centrifugations.

5.5.4 TIRF microscopy

Imaging was conducted on a Nikon Eclipse Ti with a Nikon Plan Apo A 100x 1.45 NA
objective. Two cameras were employed depending on the strains imaged and analysis of
choice. All imaging for FCS analysis used an Andor iXon 897 EMCCD camera. Single-
particle tracking imaging for the truncated Pbp2a, SpoIIIJ, and PlsX strains also called
for the Andor. In imaging MreB and Pbp2a for single-particle tracking, a Hamamatsu
ORCA-Flash 4.0 V2 sCMOS was utilized. An Agilent laser box was used; photoactivation
using a 405 nm laser and imaging with a 561 nm. Excitation/emission dichroic/filters from
Chroma (TIRF 405/488/561/640nm quad-band set).
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FCS and SPT movies for the diffusing proteins were captured with 30 ms consecutive
acquisitions. MreB was imaged at 500 ms for SPT and 200 ms for FCS. Pbp2a was at 400
ms for SPT.

5.5.5 Cell segmentation

Prior to fluorescence imaging for all strains except for MreB-HaloTag, a phase contrast
image was acquired and used to perform cell segmentation such that only regions inside the
cells were used for SPT or FCS analysis. For MreB, tracks were manually selected for their
presence inside the cells.

In the case of FCS imaging, the software package Morphometrics [27] was employed.
This package took the phase contrast images, screened for objects of rod-like shape, and
then built meshes for each object meeting this criterion. The midline of the meshes was
used to determine the center pixels that would be selected for FCS analysis.

For SPT, phase images were Wiener filtered and then Otsu-thresholded (with three
levels). Segmented cell regions were then cleaned up through image morphology.

5.5.6 Single-particle tracking

Single-particle tracking was performed using the TrackMate plugin in the FIJI software
package (a distribution of ImageJ) [23, 24] with the Laplacian of Gaussian (LoG) algorithm.
Trajectories were imported into MATLAB where they were then screened for presence inside
the cells through the segmentation procedure above. A trajectory was determined to have
originated from inside a cell if the average position of the track was within the mask. Only
tracks of 5 steps or more were considered for downstream analysis. For both HMM-Bayes
and CDF analysis, displacements along the trajectories were calculated from neighboring
frames. See Appendix E for the CDF analysis procedure.

5.5.7 Strain information

See [3] for a general description of the strain construction process using isothermal assembly
[7]. Strains were all derived from the Py79 B. subtilis strain.

Construct Strain Name Strain Creator
amyE::Phyperspank Halo-plsX bZB102 The Author

amyE::Phyperspank Halo-pbpA (1-273) bZB105 The Author
amyE::Phyperspank spoIIIJ-Halo bZB 112 The Author

Native mreB-Halo bYS40 Yingjie Sun
Native pbpA-Halo bYS201 Yingjie Sun

Table 5.2: The strains utilized for SPT and FCS analysis in this chapter.

5.5.8 Primers used

amyE:
Upstream homology (forward): oMD191 - TTTGGATGGATTCAGCCCGATTG
Up-anti cassette (reverse): - ACGAACGGTAGTTGACCAGTGCTCCCTGTCTTG...
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ACACTCCTTATTTGATTTTTTGAAGAC
Downstream homology (forward): oMD196 - GGGCAAGGCTAGACGGG
Downstream homology (reverse): oMD197 - TCACATACTCGTTTCCAAACGGATC

antibiotic cassette fragment (erm):
Forward: oJM29 - CAGGGAGCACTGGTCAAC
Reverse: oJM28 - TTCTGCTCCCTCGCTCAG

Phyperspank fragment:
Forward (anti cassette): oMD234 - ATACGAACGGTACTGAGCGAGGGAGCAGAA...
TAATGGATTTCCTTACGCGAAATACG
Reverse: oMD232 - GGTAGTTCCTCCTTAAAGCTTAATTGTTATCCGCTCACAAT

HaloTag:
Phyper-Halo: oZB144 ACAATTAAGCTTTAAGGAGGAACTAC...
CATGGCAGAAATCGGTACTGG
Halo-15 AA linker: oZB145 TGGCCTGAGCCCGGTCCCTGGCCAGATC...
CCTCGAGGCCGCTGATTTCTAAGGTAG
15 AA linker-Halo: oZB149 - TCTGGCCAGGGACCGGGCTCAGGCCAAGG...
AAGCGGCATGGCAGAAATCGGTACTGG

PbpA (1-273):
Forward: (15 AA linker): oZB111 - CTGGCCAGGGACCGGGCTCAGGCCAAGGA...
AGCGGCATGAGGAGAAATAAACCAAAAAAGC
Reverse (Truncated + stop + amyE homology): oZB143
TCTTTCGGTAAGTCCCGTCTAGCCTTGCC-CTCACAATCCTTCATTAGAGCTG

PIsX:
Forward: (15 AA linker): bAB185 - ACCGGGCTCAGGCCAAGGAAGCGGCA...
TGAGAATAGCTGTAGATGCAATGG
Reverse (+ stop + amyE homology): oZB147
CCCGTCTAGCCTTGCCCCTACTCATCTGTTTTTTCTTCTTTCACTTC

SpoIIIJ:
Forward: (Phyper): oZB162 -
CTTTAAGGAGGAACTACCATGTTGTTGAAAAGGAGAATAGG
Reverse (15 AA linker): oZB163
GGTCCCTGGCCAGATCCCTCGAGCTTTTTCTTTCCTCCGGC
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Appendix A

Supplement for An
HMM-Bayes-based exploration of
transport dynamics of -actin
messenger ribonucleoprotein
complexes in primary mouse
neurons

The work presented in this chapter has been published in:
Nilah Monnier, Zachary Barry, Hye Yoon Park, Kuan-Chung Su, Zachary Katz, Brian P

English, Arkajit Dey, Keyao Pan, lain M Cheeseman, Robert H Singer, and Mark Bathe.
Inferring transient particle transport dynamics in live cells. Nature Methods, 12(9):838-840,
2015

Note: Monnier and Barry are co-first authors of equal contribution.

A.1 Supplementary Notes

A.1.1 Kymograph and MSD analysis of neuronal mRNP trajectories

Kymographs computed along the dendrite axis for each of the three mRNPs in Figs. 2.1
and 2.2 of the main text are shown in Supplementary Fig. A.1 for comparison to the state
annotation from HMM-Bayes. In general the state annotations reflect local changes in slope
of the kymographs, as expected; however, the HMM-Bayes state annotations incorporate
information from both dimensions of particle motion rather than just the single dimension
of the kymographs. Short-lived states are also difficult to identify in the kymographs. In
contrast to the state annotations and associated parameter values inferred by HMM-Bayes,
the kymographs are not straightforward to quantify and are typically analyzed by manually
drawing straight or diagonal lines on the paths of particles over time, corresponding to
stationary or diffusive motion and active transport, respectively. An example set of manually-
drawn annotations of the mRNP kymographs is shown in Supplementary Fig. A.1, but these
annotations are necessarily subjective and are likely to vary between individuals performing
the analysis, particularly for short-lived motion states such as those in Supplementary Fig.
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A.1c. Thus, while kymograph analysis offers a potentially detailed source of information
about particle motion, due to its manual nature it is not reproducible across investigators
nor does it easily scale to large numbers of trajectories.

MSD analysis is also commonly used to quantify motion parameters from particle
trajectories [16, 12]. However, this analysis requires time averaging along the trajectory that
loses detailed information about local heterogeneity in transport dynamics. While MSD
analysis can be adapted to detect local motion states by averaging within local time windows
rather than over the entire trajectory [1], the choice of window size involves a tradeoff
between temporal resolution (which benefits from small windows) and obtaining sufficient
statistics on the MSD values (which benefits from large windows). This tradeoff renders local
inference of motion type challenging, as well as subjective due to the dependence on time
window size (Supplementary Fig. A.2). For a given window size, a threshold value of the
exponent (alpha) of the MSD versus time lag curve can be used to classify the sub-trajectory
within each sliding window as directed or diffusive motion (as illustrated in Fig. 2.1b of the
main text), based on the fact that the theoretical value of alpha for pure diffusion is 1 and
for pure transport is 2 [16]. However, changing the alpha threshold introduces additional
variability into the resulting state sequences. Thus, while sliding-window MSD analysis
offers quantitative information about particle dynamics, it is limited in temporal resolution
and requires subjective choices of parameters including window size and alpha threshold,
thereby also limiting its reproducibility across investigators.

A.1.2 Effect of localization error

In practice, particle trajectories contain error in the measurement of particle position at each
time point, termed localization error [11]. In a given dimension, the observed position xt is
then the sum of the true position x* and the error ct that is assumed to be a random variable
distributed normally with zero mean and standard deviation o, according to E - N[0, U2].

Observed particle displacements are then given by,

Axt = Xt+1 - Xt = (X*+ 1 + Et+1) - (X2 + Et)

= (xt*+1 - xt*) + (Et+1 - Et) (A.1)
= Ax*+ (Et+1 - Et)

Because the true displacements Ax* are distributed according to the normal distribution
in Eq. 2.2 with the true displacement standard deviation a* of interest, N[AX, a* 2], and both
of the terms Et+1 and ct are distributed independently according to the normal distribution
N[O, 0, 2], the observed displacements Axt in Eq. A.1 are distributed according to a normal
distribution with the sum of the variances of the three component distributions,

Ax ~ N[px, o*2 + 2U, 2] (A.2)

In the case of nonzero localization error, we therefore observe an effective displacement
distribution with an effective standard deviation a equal to,

a = (O*2 + 2U62) (A.3)

Now the equation for computing the diffusion coefficient from the standard deviation of
the displacement distribution is modified from the equation given in Chapter 2 and becomes,
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D = a*2/2At = (0 2 - 2U6 2 )/2At (A.4)

HMM-Bayes outputs the estimated standard deviation o- of the observed displacement
distribution. This estimate can be converted to a diffusion coefficient by using either the
conversion in Chapter 2 or Eq. A.4, depending on whether the localization error 0- is
considered to be negligible or has been estimated by the user.

A practical means of estimating localization error from single-particle trajectories is to
use mean-square displacement (MSD) analysis, in which the localization error appears as
a constant offset to the MSD curve [11, 12]. For our analysis of mRNA-protein complexes
(mRNPs), we applied this MSD-based method to 15 mRNP trajectories that exhibited only
diffusion or stationary/confined diffusion with no directed motion. These mRNP trajectories
were taken from three of the movies used in our main analysis of neuronal mRNP transport.
Each of the 15 trajectories was split into 35-point sub-trajectories and the MSD within
each sub-trajectory was calculated out to 4 time lags. From these sub-trajectory MSDs, the
average MSD with error was calculated and fit in MATLAB with the analytical model for
diffusion with localization error, MSD(T) = 4u, 2 + 4Dr, where D is the diffusion coefficient,
a. is the localization error, and T is the time lag [11, 12]. This MSD analysis is illustrated
in Supplementary Fig. A.16. Localization error estimates across the 15 trajectories were
averaged, giving a mean estimate of 25 9 nm.

Simulations of the effect of localization error on the models and parameters inferred by
HMM-Bayes confirm that localization error increases the number or length of trajectories
required to infer complex motion models and results in a higher effective emission standard
deviation (Supplementary Fig. A.8), as expected from Eq. A.4. Thus, not accounting for
localization error will result in a higher inferred value of the effective diffusion coefficient
of the analyzed trajectories, with the magnitude of the effect depending on the relative
magnitude of localization error versus the true diffusion coefficient.

An additional complication of localization error is that it introduces correlated errors
into nearest-neighbor particle displacements [2] that cannot be easily accounted for in the
standard HMM inference process [19]. In particular, the HMM formulation assumes that
the emissions are conditionally independent given the hidden states. Proper treatment of
these nearest-neighbor correlations requires substantial additional theoretical development
that is beyond the scope of this paper. However, the Markovian assumption of the HMM
formulation is still a valid assumption in many cases even in the presence of localization
error, for example as shown in Supplementary Fig. A.8. The impact of localization error on
transport model inference is also reduced when coarsening trajectories to reduce sampling
rate or increase At (as illustrated in Supplementary Fig. A.17). For stationary or confined
particles, positional noise due to localization error will be annotated identically to diffusive
motion because both have displacement distributions with zero mean.

A.1.3 Validation of HMM-Bayes on simulated trajectories

To demonstrate that our approach is capable of reproducing the behavior of previous HMM-
based approaches that model diffusion but ignore active transport mechanisms, we first
tested the ability of HMM-Bayes to detect switching between two diffusive states with
distinct diffusion coefficients. HMM-Bayes applied to simulated trajectories undergoing such
diffusive switching infers the correct number of motion states, as long as the trajectories
are above a minimum length that depends on the relative parameter values, and identifies
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them correctly as diffusive states with no directed motion (Supplementary Fig. A.7). HMM-

Bayes also finds the maximum likelihood sequence of these two diffusive motion states over
time along each simulated trajectory, and this inferred state sequence closely approximates

the true state sequence used to simulate the trajectory, similar to the results of previous
methods [6, 3, 5, 15]. To directly compare our model selection approach to a previous

Bayesian HMM approach for diffusion-only model selection, vbSPT [15], we applied both
methods to the same set of simulated trajectories (Supplementary Fig. A.9). Because vbSPT
uses a variational Bayes approach for model selection, it requires prior distributions on
parameter values that are peaked around a particular user-supplied guess of the diffusion
coefficient. The performance of vbSPT therefore varies depending on the accuracy of this
guess (Supplementary Fig. A.9b). In contrast, HMM-Bayes is independent of the user and
does not require a prior guess of any of the model parameters. We find in our tests that the

inference power of vbSPT for diffusive-only trajectories is slightly better than HMM-Bayes
when the prior guess of diffusion coefficient is within one order of magnitude of the true
diffusion coefficients, but is worse for prior guesses that are off by more than one order of

magnitude (Supplementary Fig. A.9).
We next explored the ability of HMM-Bayes to identify motion states with directed

transport, which cannot be detected by prior particle trajectory HMM approaches [6, 3, 5, 15].
We simulated trajectories undergoing switching between one purely diffusive state and one
state that includes directed transport. Applied to a single long trajectory of 300 steps,
HMM-Bayes correctly infers the two motion states, one directed and one random, that
generated the trajectory (Supplementary Fig. A.10a). The inferred maximum likelihood
parameters and sequence of motion states along the trajectory closely match the simulated
values except for the loss of short-lived state transitions (Supplementary Fig. A.10b), which
is expected for maximum likelihood inference of the hidden state sequence when the emission
distributions for the two states are largely overlapping. As found previously for diffusive
trajectories [15], the ability of the Bayesian inference procedure to resolve complex models
with multiple motion states depends on the number of observed particle displacements. As
expected, we find that the ability of the procedure to resolve the two distinct motion states
and the presence of directed transport is reduced as the number of steps in the trajectory
decreases (Supplementary Fig. A.11).

The conditions under which the true two-state motion model can be resolved clearly
depend on the relative parameter values between the two motion states. In the case of purely
diffusive motion states, the ability to resolve switching between the states depends on the
ratio of diffusion coefficients D1/D 2 (Supplementary Fig. A.7). When directed transport
is also present, a second essential quantity is the ratio of the difference in displacement
means to the difference of the displacement standard deviations, (A2 - [11)/(91 + U2) or
VLt/2(v 2 - vi)/(./DIj + ./D 2 ). For the specific case of switching between a purely diffusive
motion state with a zero mean (i.e., zero velocity) and a state with the same diffusion
coefficient plus nonzero velocity, the relevant ratio simplifies to pi2/o or v 2 v/ t/D ignoring
constant factors. Increasing this ratio by increasing the simulated velocity of the directed
motion state shifts the crossover point to the left (Supplementary Fig. A.12), meaning that
fewer steps in the trajectory are required to detect both motion states.

In cases where trajectories are too short to resolve complex motion from individual
trajectories, as is often the case for protein-based photoactivatable probes with short imaging
lifetimes, it is possible to use information from multiple pooled trajectories to fit the particle
trajectory HMM by multiplying likelihoods of the individual trajectories (Chapter 2) [15].
Pooling trajectories increases the number of available observations of displacements, such
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that the effective trajectory length is the sum of the lengths of all of the pooled trajectories.
For the simulation parameters in Supplementary Fig. A.19, we find that 20 steps in a single
trajectory is not sufficient to resolve the two motion states, as expected from the trajectory
length analyses in Supplementary Figs. A.11 and A.12, whereas pooling 15 such 20-step
trajectories resolves the two motion states (Supplementary Fig. A.19b). For a variable
number of trajectories, the crossover point at which the two-state model can be resolved
closely matches that observed for the individual trajectory analysis above (Supplementary
Fig. A.20).

A.1.4 Additional details of HMM-Bayes analysis of neuronal mRNP
trajectories

As discussed in the main text, single mRNA molecules and mRNA-protein (mRNP) complexes
exhibit complex, long-range heterogeneous transport dynamics [14]. HMM-Bayes annotates
these mRNP trajectories with inferred heterogeneous transport dynamics, as shown in Figs.
2.1d and 2.2 of the main text, including rates of switching transport direction or switching
from passive diffusion to active transport. The output of HMM-Bayes analysis for the mRNP
trajectory in Fig. 2.1 is shown in more detail in Supplementary Fig. A.15, and detailed
outputs for the other mRNP trajectories are provided online. Localization error for the
mRNP trajectory dataset was estimated to be 25 nm using MSD analysis of 15 diffusing
particles, as described above in Supplementary Note A.1.2 and illustrated in Supplementary
Fig. A.16. The HMM-Bayes annotation results indicate that individual mRNPs exhibit
a complex variety of motion dynamics, including switching between anterograde versus
retrograde flow and intermediate regions of pausing. Secondary labeling of microtubules and
cytoskeletal-associated proteins will be needed to interpret the molecular origins of these
heterogeneous motion behaviors.

We also explored the effect of coarsening the mRNP trajectories (decreasing the sampling
rate and temporal resolution) on model selection and parameter inference, testing whether
similar state sequence annotations are obtained by HMM-Bayes at different temporal
resolutions (Supplementary Fig. A.17). As expected, coarsening reduces the ability to detect
short-lived states but increases the ability to detect directed motion, due to fact that the
contribution of velocity to step size depends linearly on time lag while the contribution of
diffusion to step size depends on the square root of time lag [12], but the overall annotations
are similar for the different levels of coarsening (Supplementary Fig. A.17).

A.1.5 HMM-Bayes analysis of fibroblast mRNP dynamics

Beta-actin mRNP trajectories were also analyzed from mouse embryonic fibroblasts [10, 9],
where they are not transported over as long distances as in neurons. For a pooled analysis
of beta-actin mRNP trajectories in fibroblasts, HMM-Bayes finds evidence of two distinct
motion states with different diffusion coefficients (Supplementary Fig. A.2). We hypothesize
that the lower diffusion coefficient corresponds to a condition in which the mRNPs are
bound by other molecules in the cell, likely ribosomes, which may be confirmed in future
experiments using ribosome-disrupting agents. HMM-Bayes does not detect a consistent
direction of active transport across these pooled fibroblast mRNP trajectories.
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A.1.6 HMM-Bayes analysis of metaphase kinetochore dynamics

We also applied HMM-Bayes to analyze chromosome oscillations during mitosis in human
tissue culture cells. These chromosome motions are driven by connections between the
chromosome-bound kinetochores and dynamic microtubules emanating from the spindle
poles [4]. During mitosis, the replicated sister chromatids are held together by cohesion
molecules such that a pair of chromosomes moves together. Oscillations of kinetochores and
their attached chromosomes are caused by cycles of polymerization and depolymerization
of spindle microtubules to align the chomosomes at the metaphase plate and ensure that
paired sister chromatids are attached to microtubules from opposite spindles to avoid errors
in chromosome segregation. Recent quantitative studies of chromosome oscillations have
used Fourier transforms to extract oscillation frequencies and manual annotation of phases
of movement towards and away from the spindle poles [18, 7].

HMM-Bayes provides a means of automatically annotating trajectories based on their
motion state and determining the associated oscillation rates and velocities. We manually
tracked the positions of kinetochores and spindle poles in HeLa cells during metaphase
and analyzed the motions using HMM-Bayes (Fig. 2.3 and Supplementary Fig. A.24).
Following previous analyses of kinetochore dynamics [17], we projected the displacement of
each kinetochore at each time point along the direction perpendicular to the metaphase plate.
This projection takes advantage of prior biological knowledge about the relevant axes and
reference points in the system to improve inference power by reducing the number of velocity
parameters that must be inferred by HMM-Bayes to a single parameter for each velocity
rather than a 2D vector of parameters. These projected displacements were pooled across
kinetochores and analyzed by HMM-Bayes, which identified two directed motion states with
opposite directions of velocity relative to the metaphase plate. Although previous studies
have also classified pole-ward and anti-pole-ward motion of kinetochores [18, 7, 17], these
studies relied either on manual classification or ad-hoc classification metrics, such as, for
example, defining switches in motion using a threshold number of consecutive steps in a
particular direction to annotate motion states. HMM-Bayes offers an objective alternative
to annotate such oscillatory behavior across datasets.

The motion model state-sequence annotations of the individual kinetochore trajectories
inferred by HMM-Bayes can be used to find correlations between the motion of different
kinetochores within the spindle (Supplementary Figs. A.24b and A.25), similar to
correlation analysis of the raw kinetochore displacements [17]. The two correlation metrics
have somewhat different biological interpretations, as correlations between state sequence
annotations reflect whether two kinetochores tend to move in the same direction at the
same time, whereas correlations between raw displacements also reflect whether the
magnitudes of the steps taken by each kinetochore are similar. Both metrics are related to
the degree of mechanical coupling between kinetochores via either direct or indirect
molecular interactions. We computed correlations between inferred kinetochore motion
state sequences, revealing the highest correlation values between kinetochores within a pair
and weaker correlations detected across distinct pairs (Supplementary Fig. A.25).

A.1.7 Modified HMM-Bayes with chi-squared emission distributions

As noted in the main text, pooling trajectories assumes that the explored hidden states
have the same parameter values for all trajectories. Recall that the states are parameterized
by both a diffusion coefficient and a velocity vector, Si = {Di, vi}. If any of the motion
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states has a nonzero velocity, then in order for the components of the velocity vector to
be the same for all pooled trajectories, the trajectories must all be flowing in the same
direction. While this may be the case for some biological processes, such as large-scale
cellular rearrangements during tissue morphogenesis or chromosomes transport during cell
division, there are other processes in which particles may all have a directed component to
their motion but be directed in different directions.

To extend the particle trajectory HMM approach described above to the case of pooled
trajectories flowing in different directions, we developed a modified version of the HMM-
Bayes algorithm in which the emissions are not the vector displacements of the particle but
rather the squared displacement magnitudes. For a three-dimensional trajectory,

et = IArt1 2

= (Xt+l - Xt) 2 + (yt+i - yt)2 + (zt+1 - zt) 2

These emissions are now scalars instead of vectors, and their distribution is no longer
a normal distribution. Instead, note that the random variable et is the sum of squares of
normally-distributed random variables A = t+i - t for C {x, y, z}, each with mean
P = ovAt and standard deviation - = V/2DAt. Sums of squares of normal random variables
with nonzero means follow a noncentral chi-squared distribution, which is defined as follows
[8]. When the variables have different means {pg IE xyz} but the same standard deviation

(-, then the quantity e = E eCX'Y'Z}AC2 is distributed according to,

1 C-+PI-p (d/4-1/21 NPe(A6
e - 2 exp( 2u pId/2-1( ),(A.6)

where d is the total number of summed variables, or in our case the number of dimensions,
and Id/2-1 is a modified Bessel function of the first kind. The parameter p is the squared

magnitude of the mean vector across all the dimensions,

p = E pg2 (A.7)
4e{x,y,z}

This parameter p can also be written in terms of the velocity magnitude v = Z 2

as p = (vAt 2 ).

The X2 -HMM uses Eq. A.6 as the emission probability distribution, with emissions
defined as squared displacement magnitudes as in Eq. A.5. Note that the emission probability

distribution now depends on only two parameters, - and p, that are related to the particle

diffusion coefficient and velocity magnitude (or speed), respectively. Unlike for the original
HMM above, the number of velocity parameters does not grow with the number of dimensions

in which the particle was observed. The advantages of this approach, therefore, are that

there is no dependence on d and that the pooled particle trajectories do not need to have

the same directional velocity but only the same speed for each DV state that they explore.

We compare the performance of the original HMM-Bayes algorithm and the X2-HMM-
Bayes algorithm on simulated trajectories with directed motion in the same or different

directions in Figure A.26. When the particles are all flowing in the same direction, both

algorithms correctly infer the presence of nonzero velocity (Supplementary Fig. A.26a).

However, when the same particle trajectories are rotated to random orientations, the original

HMM no longer detects a nonzero mean for the displacement distributions, as expected.
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The X2-HMM, on the other hand, still detects the presence of directed motion in these

randomly-oriented trajectories (Supplementary Fig. A.26b).

The X 2-HMM is, therefore, more generally applicable than the original HMM. However,
this greater inference power for randomly-oriented trajectories has a trade-off in power when

the trajectories do in fact have the same direction of velocity. The reason for this trade-off

is that X2 distributions have more overlap than their normal distribution counterparts for

the same underlying values of y and - in the different dimensions. In other words, a X2
distribution has lost any directional information that was present in a corresponding normal

distribution; this loss of information is a benefit if the directional information is inconsistent

between trajectories, but reduces inference power in the case where the particles are all

aligned. To illustrate the decrease in performance for the case of consistent directional

information, we compared the original and X2 -HMM algorithms using individual trajectories

undergoing flow in a constant direction and varying the pj/- ratio (Supplementary Fig.

A.27). The X2-HMM requires a much larger value of p/o- to resolve directed motion than

the original HMM for a trajectory of the same length.

A.2 Figures
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Figure A.1: Kymograph analysis of neuronal mRNP trajectories. (a-c) The

three neuronal /-actin mRNP trajectories from Figs. 1 and 2 of the main text are shown

annotated with transport (pink) and diffusive (blue) states and with the corresponding

temporal state bars output by HMM-Bayes. The raw kymograph for each particle is shown

alone (left) and with an example manual annotation overlaid (right).
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Figure A.2: Sliding-window MSD analysis of a neuronal mRNP trajectory.

Top: Neuronal 3-actin mRNP trajectory with HMM-Bayes annotation, reproduced from

Fig. 1 of the main text. The directed transport state is pink and the diffusive state is blue.

Bottom: Sliding-window MSD analyses of this 45-position (44-step) trajectory with variable

window sizes from 8 to 20 steps. For each window size and for each window position sliding

along the trajectory, MSD values were computed for time lags up to half of the number of

steps in the window. Fit values of the slope (alpha) of the log-log plot of MSD versus time

lag are plotted for each window position. Alpha values close to 2 indicate directed transport;

alpha values close to 1 indicate diffusion; and alpha values below 1 indicate sub-diffusion.

Note the high variability in these sliding-window MSD results for different window sizes.

State annotations based on thresholding these alpha values vary considerably depending on

the choices of window size and threshold value.
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Figure A.3: HMM modeling of particle displacements with directed transport.

(a) Input data are provided to HMM-Bayes in the form of raw particle displacements. Each

particle trajectory is broken down into a time series of displacements, shown here for a

two-dimensional trajectory. Due to the nature of isotropic diffusion, these displacements are

stochastic samples from a circularly symmetric Gaussian probability distribution whose mean

and standard deviation depend on the motion type and motion parameters. An example

scatterplot of displacements is shown for a simulated particle undergoing directed motion

with a displacement probability distribution with mean [px pM] and standard deviation

o- (illustrated by pink circles at one, two, and three standard deviations). (b) Example

HMM-Bayes switching model and output motion parameters for trajectories undergoing

switching between a diffusive motion state (blue) and directed transport state (pink). A

cartoon of the stochastic switching model and its associated switching rates (transition

probabilities) k 12 and k21 is shown, along with equations relating the expected state lifetimes

-r1 and r2 to the fit parameters k12 and k21, and relating the motion parameters of each state

(diffusion coefficient D and velocities v, and vy) to the fit parameters o-, px, and p. Note

that only directed motion states have nonzero values of p, and py, since purely diffusive

motion states by definition have zero velocity.

122

a



n 1 np=2

DD| n,= 5 DDV n= 6 DVDV n= 7

@D states (v= O) @DV states (v # 0)

Figure A.4: HMM motion switching models with one and two states. HMM-

Bayes considers all possible stochastic switching models (HMMs) characterizing switching

between different motion types, as illustrated here. Top row: Single-state models describe

particles that experience only a single type of motion, either random diffusion (blue)

or directed transport (pink), and do not switch between motion types. A schematic

one-dimensional Gaussian displacement probability distribution is shown for each model,
illustrating the non-zero mean in the case of directed transport. The number of parameters

np of each model is given for one dimensional motion. A full breakdown of model parameters

for particle motion in one-, two-, and three-dimensions is given in Supplementary Table A.1.

Bottom row: Two-state models for particles that switch between two different motion states.

Since each of the individual motion states can be either purely diffusive (blue or green) or

directed (pink or orange), there are three possible two-state switching models. HMM-Bayes

evaluates these one- and two-state models, as well as models with three or more states, and

determines which model is most likely to characterize the observed trajectories, using a

Bayesian inference approach to penalize models with larger numbers of parameters.
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Figure A.5: MCMC convergence. (a) MCMC convergence for one-state active

transport (DV model). Convergence of the log likelihood and the emission mean /I3, are

shown for 10 re-starts of the MCMC iterations starting from different randomly-initialized

parameter values for an example trajectory simulated with 100 displacements drawn from

a normal distribution with mean (p, piy) = (1, 0) and o- = 1. The red line indicates the

empirical value of 1t., across the 100 simulated displacements. The MCMC runs all rapidly

converge to the actual parameter values. (b) MCMC convergence for two-state active

transport and random diffusion (D-DV model) finds several log likelihood peaks (left), the

same peaks as found by the expectation-maximization (EM) Baum-Welch algorithm (right).

Convergence of the log likelihood is shown for selected MCMC iterations and EM iterations

starting from the same set of initial parameter guesses for an example trajectory simulated

with 200 displacements that switches between a normal distribution with (p, py) = (0, 0) and

o- = 1 to a normal distribution with (pL, py) = (2, 0) and a = 1 with switching probabilities

k12 = k21 = 0.1.
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Figure A.6: Estimation of log likelihood by Monte Carlo integration. (a) Mean

and variance of the estimator for the integrated log likelihood of the D-DV model, as a

function of the number of Monte Carlo samples used to obtain the estimate, for the simulation

in Supplementary Fig. A.5b. (b) Integrated log likelihoods for the set of tested models

with up to three states using 200,000 MC samples. The true D-DV model has the highest

likelihood (dark-blue bar). Note that the inclusion of at least one nonzero velocity parameter

greatly increases the likelihood because the true displacements have a nonzero mean in the

second state. Inclusion of additional nonzero velocity parameters reduces the likelihood due

to the increased penalty on complexity. Here the three-state models have lower likelihood

than the corresponding two-state models because they include more parameters than are

necessary to describe the displacements that were simulated from the two-state D-DV model.
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Figure A.7: HMM-Bayes analysis of diffusive switching. (a) Two example
simulated two-dimensional particle trajectories with 300 steps undergoing a single switch

between two diffusive motion states with higher (blue) and lower (green) diffusion coefficients,
corresponding to the ratio D1/D 2 = 3. The trajectory is shown annotated with the 'true'

simulated sequence of motion states (top) and with the inferred sequence of motion states by
HMM-Bayes (bottom). The temporal sequence of motion states is also shown as a colored

bar in each case. (b) Model probabilities inferred from HMM-Bayes analysis of individual

simulated diffusive switching trajectories with the same motion states and parameters as in

(a) but with a variable trajectory length, as shown along the x-axis. (c) Model probabilities

inferred from HMM-Bayes analysis of individual simulated diffusive switching trajectories

as above, but with a greater difference between the two diffusion coefficients: D1 /D 2 = 10.
Probabilities are shown as means (symbols), standard errors (solid errorbars), and standard

deviations (dotted errorbars) over six repeats of the simulation and analysis procedure for

each trajectory length.
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Figure A.8: Effect of localization error on inference power and parameters.
(a) Model probabilities (left) and standard deviations s of the displacement probability

distributions (right) inferred from HMM-Bayes analysis of pooled simulated 10-step

trajectories undergoing random switching between two diffusive states with O1 = 1 and

02 = 0.5. A variable number of pooled trajectories is shown along the x-axis. Probabilities

and parameters are shown as means (symbols), standard errors (solid errorbars), and standard

deviations (dotted errorbars) over 20 repeats of the simulation and analysis procedure for

each number of trajectories. True a values are shown as dotted lines. (b) Same as (a)

but with a localization error of o, added to each position of the particle trajectories. The

inferred standard deviations for the two motion states now converge to the effective values
a = Vlo2 + 2o2 given in Eq. A.2; in this case, the effective al is 1.06 and effective a2 is
0.61. Inference power in the presence of localization error is also slightly decreased, requiring

around 50 trajectories for robust inference of the true D-D model rather than around 30

trajectories in (a), due to the decreased ratio between the effective al and U2.
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Figure A.9: Comparison of HMM-Bayes and vbSPT analysis of diffusive
switching. Particle trajectories were simulated undergoing stochastic switching with
switching probability 0.1 between a diffusive state with D1 = 0.5 and a diffusive state with
D2 = 0.125 (arbitrary units), corresponding to a ratio D2 /D 1 = 0.25, for 10 steps each. (a)
Probability of the 2-state diffusive model (correct model) when the simulated trajectories are
analyzed by HMM-Bayes, as a function of the number of pooled trajectories in the analysis.
The set of models tested by HMM-Bayes is listed below the plot (D = motion state with
pure diffusion, DV = motion state with directed motion plus diffusion, as in Supplementary
Fig. 4). (b) Probability of the 2-state diffusive model (correct model) when the simulated
trajectories are analyzed by vbSPT [15] with different user-defined initial guesses for the
diffusion coefficients. Inference power improves as the initial guesses for D get closer to the
true values used in the simulation. Models including directed transport are not included as
competing hypotheses in the model selection process for vbSPT.
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Figure A.10: HMM-Bayes analysis of active transport switching. (a) A

simulated two-dimensional particle trajectory with 300 steps undergoing switching with

probabilities k 12 = k21 = 0.1 between a purely diffusive motion state (blue) with a = 1

and a directed motion state (pink) with [M, py] = [1.5,0] and or = 1. The trajectory is

shown annotated with the 'true' simulated sequence of motion states (top) and with the

inferred sequence of motion states by HMM-Bayes (bottom). The temporal sequence of

motion states is also shown as a colored bar in each case. Note the similarity between

the true and inferred motion state sequences, except for the loss of short-lived switches in

the inferred sequence. (b) Scatterplots of the observed displacements from the simulated

trajectory are shown overlaid with the true displacement probability distributions (top)

for the purely diffusive (blue) and directed (pink) motion states and with the inferred

displacement probability distributions (bottom). Each point in the scatterplots is colored

blue or pink based on whether it occurred during a period of diffusive or directed motion,

respectively, corresponding to the state sequences in (a). Values of the mean and standard

deviation parameters characterizing these probability distributions, as well as values of the

switching probabilities k 12 and k21 and their corresponding expected mean state lifetimes Tr

and r2 (as shown in Supplementary Fig. A.3) are listed. The distributions of state lifetimes

(the number of steps in each state before a switch) for the true and inferred state sequences

are shown at the right.
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Figure A.11: Dependence of model inference and parameter estimation on
trajectory length. Model probabilities (a) and values of selected motion parameters (b)
inferred from HMM-Bayes analysis of individual simulated trajectories with the same motion
states and parameters as in Supplementary Fig. A.10 but with a variable trajectory length,
as shown along the x-axis. Probabilities and parameters are shown as means (symbols),
standard errors (solid errorbars), and standard deviations (dotted errorbars) over 12 repeats
of the simulation and analysis procedure for each trajectory length. True parameter values
in (b) are shown as dotted lines.
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Figure A.12: Dependence of model inference on trajectory length and transport
velocity. Two-dimensional particle trajectories were simulated with a variable number
of steps (x-axis) and undergoing switching with probabilities k12 = k2 l = 0.1 between a
diffusive motion state with o = 1 and a directed motion state with a = 1 and [pv, p] = [p, 0]
with variable p (y-axis) taking on values 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.75, 2, 2.5, and 3, which
correspond to variable particle velocities. As discussed in Supplementary Note A. 1.3, the key
ratio governing the ability of HMM-Bayes to infer the directed motion state is p/u-. Each
trajectory was analyzed by HMM-Bayes to find the probability of the true model (D-DV).
For each combination of length and i shown in the plot, the model probability was averaged
over the results of analyzing 12 independent trajectories.
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Figure A.13: HMM-Bayes analysis of periodic switching with regular time
intervals. (a) A simulated trajectory with 300 steps undergoing switching between a

purely diffusive motion state (blue) and a directed motion state (pink) with the same
parameters as in Supplementary Fig. A.10 but with regular switching every 10 steps. The
HMM-Bayes inferred sequence of motion states (bottom) closely matches the true simulated

states (top). (b) Model probabilities (left) and transition probabilities (right) inferred
from HMM-Bayes analysis of individual simulated trajectories with the same motion states
and parameters as in (a) but with a variable trajectory length, as shown along the x-axis.
Probabilities and parameters are shown as means (symbols), standard errors (solid errorbars),
and standard deviations (dotted errorbars) over 12 repeats of the simulation and analysis
procedure for each trajectory length. Expected transition frequencies (one switch per 10
steps) are shown as dotted lines.
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Figure A.14: HMM-Bayes analysis of spatially heterogeneous motion states.

(a) Top: An example simulated trajectory with 200 steps whose diffusion coefficient depends

on spatial location (the displacement standard deviation is 1 in white squares and 0.3 in

yellow squares). Bottom: Model probabilities (left) and selected parameters (right) inferred

from HMM-Bayes analysis of individual simulated trajectories when U2 in the yellow squares

is varied from 0.1 to 1. Probabilities are shown as means (symbols), standard errors (solid

errorbars), and standard deviations (dotted errorbars) over 12 repeats of the simulation and

analysis procedure for each value of -2. (b) Top: An example simulated trajectory with 200

steps whose transport depends on spatial location. The displacement mean is 0 in white

squares (no transport) and 2 along the x-direction in yellow squares (active transport), while

the displacement standard deviation is 1 in both cases. Bottom: Model probabilities (left)

and selected parameters (right) inferred from HMM-Bayes analysis of individual simulated

trajectories when the magnitude of transport in the yellow squares, reflected by p1 x,2, is

varied from 1 to 3. Probabilities are shown as means (symbols), standard errors (solid

errorbars), and standard deviations (dotted errorbars) over 12 repeats of the simulation and

analysis procedure for each value of Ax,2-

133

M



T"aectory (M L etatse)

9

86

7.6

2 2-5 3 3.6

x(m)

1..I.
0.6

- 0.4

0.2

0 L1_
" 5 10 16 20

Tme (s)

Infened pameterm

Average Iietimev
,3.400 s

1 000 s

ML (estinated) parmeters

D 0 00169 pm
2

/s
VI [000000] pm/s

02 0 00358 pm 2/s

v2
0 204;0 361) pm/s

Trajectory dWplacenments

0.2 \

0.1

-0.2 0 0.2

Ax (pm)

Step size dlseibution

1210

% 6

0 0.2 0.4
Step size (Imn)

Figure A.15: Detailed analysis of neuronal mRNP trajectory 1. Additional

details of HMM-Bayes analysis of the mRNP trajectory shown in Fig. 2.1 of the main text.

The top row depicts the trajectory colored with the inferred maximum likelihood (ML) state

sequence, model probabilities for each tested HMM motion model up to a maximum of

three states, and the corresponding temporal state sequence. The D-DV model with one

diffusive state (blue) and one transport state (pink) is selected as the highest probability
motion-switching model for this trajectory. The bottom row shows the inferred maximum

likelihood parameters for each state in the most probable model, the trajectory displacements
colored by the state to which they were assigned by HMM-Bayes (with the inferred HMM

emission distribution of each state depicted as circles corresponding to the first and second
standard deviations of the emission distributions, centered at the x's), and the displacement

distribution for each state.
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Figure A.16: Localization error estimation for neuronal mRNP trajectories.
(a) A representative mRNP trajectory without active transport that was included in the

localization error estimation. (b) Mean-squared displacement (MSD) values calculated as a

function of time lag for the trajectory in (a). The trajectory was split into 8 sub-trajectories

whose MSD values (light gray curves) were used to calculate an overall mean MSD (black

curve) with error, following our previous approach for MSD analysis [12]. The mean MSD
curve was then fit with a model of diffusion plus localization error, a linear model in which

the localization error defines the constant offset of the MSD curve [12]. Additional details

are provided in Supplementary Note 2. (c) Distribution of localization errors found for 15

mRNP trajectories analyzed as in (a) and (b). The mean localization error is estimated as

25 9 nm.
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Figure A.17: Effect of trajectory coarsening on model inference and trajectory
annotation. Changing the trajectory sampling rate involves a tradeoff between temporal

resolution and the ability to detect active transport over background diffusion and localization
error. (a) The trajectory from Fig. 2.1 and Supplementary Fig. A.15, shown at a two-fold
higher temporal resolution (same as the raw imaging data). HMM-Bayes inference with
this higher temporal resolution loses one of the periods of active transport compared with

the analysis in Supplementary Fig. A.15, because the contributions of localization error
and diffusive motion to the observed displacements increase relative to the contribution of
directed transport for shorter time intervals. (b) The same trajectory at a 1.5-fold lower
temporal resolution than in Fig. 2.1 and Supplementary Fig. A.15. Active transport is
easier to detect but comes at the cost of reduced resolution of the timing of switching events.
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Figure A.18: Neuronal mRNP trajectory analysis after KCl treatment. #-actin
mRNPs were tracked in cultured neurons incubated with KCl and analyzed with HMM-

Bayes. Left: Kymograph showing five mRNP particles whose transport has been inhibited

by KCl [14]. Top middle: One example trajectory from the particle marked with the red

arrowhead on the kymograph. Bottom middle: HMM-Bayes analysis of this trajectory finds

that the single-state diffusion model is the most probable, confirming the lack of active

transport. Right: Temporal state bar output by HMM-Bayes; single-state diffusion results

in no switching between motion types over time.
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Figure A.19: Improved inference power by pooling trajectories. A set of 15

simulated two-dimensional particle trajectories with 20 steps each, undergoing switching

between a diffusive motion state (blue) and a directed motion state (pink) with the same

probabilities and motion parameters as in Supplementary Fig. 10. Top panel: The trajectories

are shown annotated with their 'true' simulated motion state sequences, and colored bars

illustrating the temporal sequence of motion states along each trajectory are shown on the

right. Bottom panel: HMM-Bayes analysis of one of the individual simulated trajectories

(inset at upper left) versus the pooled set of all 15 trajectories. Note that the single 20-step

trajectory does not contain enough information for HMM-Bayes to identify the two different

motion states. Analysis of the pooled set of trajectories, on the other hand, successfully

identifies both the diffusive and the directed motion states, and the trajectories are shown

annotated with their inferred motion state sequences by HMM-Bayes. The distribution of

state lifetimes for the inferred state sequences across all of the pooled trajectories is shown

on the left.
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Figure A.20: Dependence of model inference and parameter estimation on the
number of pooled trajectories. (a) Model probabilities and (b) values of selected
motion parameters inferred from HMM-Bayes analysis of pooled simulated trajectories with
the same motion states and parameters as in Supplementary Fig. A.19 but with a variable
number of pooled trajectories, as shown along the x-axis. Probabilities and parameter values
are shown as means (symbols), standard errors (solid errorbars), and standard deviations
(dotted errorbars) over 12 repeats of the simulation and analysis procedure for each number
of trajectories. True parameter values in (b) are shown as dotted lines.
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Figure A.21: Heterogeneity in velocity between pooled trajectories. Trajectories

were simulated undergoing directed transport with varying velocities around a mean velocity

value. A set of 25 trajectories of 4 steps each was simulated with parameters a = 1 and

ft drawn independently for each trajectory from a normal distribution with mean 1 and

standard deviation as shown along the x-axis. These 25 heterogeneous trajectories were

pooled and analyzed together with HMM-Bayes. (a) Model probabilities inferred by HMM-

Bayes for varying levels of heterogeneity. Probabilities are shown as means (symbols),

standard errors (solid errorbars), and standard deviations (dotted errorbars) over 12 repeats

of the simulation and analysis procedure at each point. (b) Model parameters inferred by

HMM-Bayes are shown for both the true DV model (transport with no switching) and the

D-DV model (switching between diffusion and transport) that is selected at high levels of

heterogeneity.
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Figure A.22: Heterogeneity in diffusion coefficient and switching rate

(transition probability). (a) Trajectories were simulated undergoing switching between

pure diffusion and directed transport with varying diffusion coefficients. A set of 25

trajectories of 4 steps each was simulated with parameters it = 3 for the transport

state, switching probabilities ofk 12 = k21 = 0.1, and a common o for both states drawn

independently for each trajectory from a normal distribution with mean 1 and standard

deviation as shown along the x-axis. These 25 heterogeneous trajectories were pooled and

analyzed together with HMM-Bayes for each level of heterogeneity. Model probabilities

inferred by HMM-Bayes are shown as means (symbols), standard errors (solid errorbars),

and standard deviations (dotted errorbars) over 12 repeats of the simulation and analysis

procedure at each point. Selected model parameters fit by HMM-Bayes are also shown. (b)

Trajectories were simulated undergoing switching between diffusion and directed transport

with varying switching probabilities. A set of 25 trajectories of 4 steps each was simulated

with parameters 1L = 3 for the transport state, a common a = 1 for both states, and switching

probabilities drawn independently for each trajectory from a normal distribution with mean

0.1 and standard deviation as shown along the x-axis. These 25 heterogeneous trajectories

were pooled and analyzed together with HMM-Bayes for each level of heterogeneity. Plots

are shown as in (a).
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Figure A.23: HMM-Bayes analysis of pooled fibroblast mRNP trajectories.

(a) Fluorescence image of a mouse embryonic fibroblast in which all endogenous #-actin
mRNA molecules are labeled with GFP (green) [10]. Tubulin is shown in pink. (b) HMM-

Bayes analysis of a set of pooled -actin mRNP trajectories from the cell periphery finds

that the trajectories switch between two diffusive motion states with different diffusion

coefficients (blue = higher D, green = lower D), corresponding to a two-state diffusive

switching model ($D-D'I). HMM-Bayes analysis annotates the individual steps of each

trajectory as corresponding to either the high diffusion state (blue) or the low diffusion state

(green). Although active transport states are not identified in this analysis, they may remain

undetected due to heterogeneity in the direction of transport between different trajectories

in the population. (c) Zoomed view of three example trajectories, indicated in (b) by the

orange box. (d) Motion parameters inferred by HMM-Bayes, specifically the mean lifetimes

and diffusion coefficients for the two diffusion motion states, as well as the distribution of

lifetimes of these two motion states across the full set of pooled trajectories.
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Figure A.24: Detailed HMM-Bayes annotations of kinetochore pairs. (a) HMM-

Bayes annotations along the four kinetochore pairs shown in Fig. 2.3, ordered from top to

bottom. Distances between each of the paired kinetochores and the metaphase plate are

shown colored according to the HMM-Bayes state annotation, with the intra-pair kinetochore

distance shown on the bottom. State sequences found by HMM-Bayes are also shown as

colored bars. (b) Correlation between the state sequences found by HMM-Bayes (green

lines) and the raw displacement sequences relative to the metaphase plate (gray lines) for

the two kinetochores in each pair.
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Figure A.25: Correlations between kinetochore state annotations. (a)
Correlation coefficients between the state sequences annotated by HMM-Bayes for the
four kinetochore pairs shown in Fig. 2.3 and Supplementary Fig. A.24. The null distribution

of correlation coefficients for randomly-generated uncorrelated trajectories with the same

HMM motion model and parameter values as discovered for the kinetochores is shown on

the right. (b) Scatter plot of the correlation between HMM-Bayes state sequences for all of

the kinetochores in (a) versus their mean distance from each other.
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Figure A.26: Chi-squared HMM-Bayes identifies transport in random
directions. (a) Top: 50 simulated trajectories with 2 steps each, drawn from normal
distributions with /-t = 3 and - = 1. Bottom: Model probabilities for the two one-state
models pure diffusion and diffusion plus transport obtained by the original Gaussian HMM

and the chi-squared HMM. Note that both HMMs identify the transport behavior. (b) Same
as (a), except that each trajectory has been rotated through an angle drawn at random from

a uniform distribution on [0, 27r]. The original HMM with Gaussian emission distributions

no longer identifies transport, in contrast to the chi-squared HMM.
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Figure A.27: Chi-squared HMM-Bayes has reduced inference power. DV model
(true model) probabilities found by the original Gaussian HMM-Bayes and the chi-squared

HMM-Bayes algorithms for 100-step trajectories simulated with a single diffusion plus flow
state with o- = 1 and p/o- ratio as shown along the x-axis. The DV model probabilities are

shown as means and standard deviations over 50 repeats of the simulations and analysis for
the original HMM, and over six repeats of the simulations and analysis for the chi-squared

HMM. Note that the performance of the original HMM varies slightly with the number of
dimensions in which the particle trajectory is observed, due to the fact that the number of
parameters in the fit velocity vector increases with the number of dimensions (Supplementary
Table A.1).
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of states # of Independent parameters #o TOTAL
Model total (K) D (v=0) DV n 9 D v dimension. PARAMETERS

0 1 i

D 1 1 0 0 0 1 0 2 1

0 3 1
1 1 2

DV 1 0 1 0 0 1 2 2 3
3 3 4
0 1 5

D-D 2 2 0 1 2 2 0 2 5
0 3 5
1 1 6

D-DV 2 1 I 1 2 2 2 2 7
3 3 a
2 1 7

DV-DV 2 0 2 1 2 2 4 2 9
1_ 6 3 11

0 1 11

D-D-D 3 3 0 2 6 3 0 2 11

0 3 11

1 1 12
D-D-DV 3 2 1 2 6 3 2 2 13

3 3 14
2 1 13

D-DV-DV 3 1 2 2 6 3 4 2 15
6 3 17
3 1 14

DV-DV-DV 3 0 3 2 6 3 6 2 17

9 3 20

Table A.1: Model parameters for HMM-Bayes models with up to three motion

states. Comparison of the tested motion models with up to three states. Each state can

either have a zero or nonzero velocity (D and DV states, respectively). For example, there
are two one-state models to be tested, one with a single parameter Di (model D) and one
with both D1 and a non-zero v, parameter (model DV), where the number of independent
components of v, depends on the number of dimensions of the trajectory. Similarly, there
are three two-state models to be tested, one in which both states have just Di parameters

(model D-D), one in which both states also have nonzero vi parameters (model DV-DV),
and one in which only one of the two states has a non-zero vi (model D-DV). The total

number of independent parameters in each model is shown in the right-most column; note
that the number of velocity parameters depends on the number of dimensions in which the
trajectory was observed, since velocity is a vector quantity.
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Appendix B

Supplement for Elucidation of a
dynamic, heterogeneous
transglycosylase population in
Bacillus subtilis

B.1 Materials and Methods

B.1.1 Media, bacterial strains, plasmids, and culture conditions for E.
coli strains.

Cells were grown in LB (1% tryptone, 0.5% yeast extract, 0.5% NaCl) or minimal M9
medium supplemented with 0.2% casamino acids (CAA) and carbon source (0.4% glycerol
or 0.2% glucose or maltose) as indicated. The bacterial strains and plasmids used in this
study are listed in Tables B.2 and B.4, respectively, and a description of their construction
or isolation in the genetic selection is given below.

B.1.2 Construction of E. coli strains with multiple deletions

E. coli strains with multiple deletion mutations were made by sequential introduction of
each deletion from the Keio mutant collection 27 via P1 transduction followed by removal
of the aph cassette using FLP expressed from pCP20, leaving a frt scar sequence at each
deletion locus. Correct orientation of the DNA flanking frt sequences in multiple deletion
mutants was confirmed for all the deletions in each mutant.

B.1.3 Construction of an MTSES-sensitive E. coli PBP1b variant

To test the effect of aPBP inhibition on cell wall synthesis and turnover, we sought a
way to rapidly block the PGT activity of aPBPs. Moenomycin, a known inhibitor of the
PGT activity of aPBPs, is not ideal for aPBP inhibition in WT E. coli because it cannot
cross the outer membrane layer to access aPBPs. Instead, it was recently shown that a
small cysteine-reactive molecule, MTSES [sodium (2-sulfonatoethyl)methanethiosulfonate],
can be used in conjunction with a cysteine-substitution mutant to specifically block the
activity of a surface exposed enzyme [9]. PBP1b was chosen for the development of a
MTSES-blockable aPBP system because it is the major aPBP in E. coli and a structural
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information was also available for this protein [10]. Thirteen cysteine substitution variants
of PBP1b were constructed with changes mapping within the moenomycin binding surface
of PBP1B [10]. Alleles encoding each variant were cloned under control of the lac promoter
in the CRIM plasmid pHC872 backbone (attHK022, Plac::ponB) and the resulting plasmids
were integrated into HC518 [6ponA::frt Para::ponB]. The functionality of each ponB allele
was assessed by testing their ability to correct the PBPla- PBP1b- synthetic lethality of
HC518 grown on M9 glucose minimal medium supplemented with 100 AM IPTG.

Cysteine substitution mutants that were functional were further screened for the loss of
activity upon MTSES treatment. This screen utilized the rapid lysis phenotype manifested
in cells inhibited for aPBP activity in combination with 10 pg/mL cephalexin.

Treatment of WT E. coli with 10 pg/mL cephalexin causes continued growth as cell
filaments. However, lysis is observed in 20 min when aPBPs are also inhibited. We therefore
screened the functional PBP1b cysteine substitution mutants for their response to treatment
with 10 pg/mL cephalexin with or without 1mM MTSES using a VersaMax microplate
reader (Molecular Devices). PBP1b(S247C) was identified as a variant that supports the
growth similar to WT PBP1b but specifically leads to rapid lysis when cells producing the
variant as the main aPBP are treated with 10 pg/mL cephalexin and 1mM MTSES.

B.1.4 Introducing ponB(S247C) mutation at the native E. coli locus

Allele exchange of ponB(247C) at the native locus was performed by using a
temperature-sensitive plasmid pMAK700 as described 29. Eighteen hundred bases of DNA
flanking the ponB(S247C) mutation were PCR amplified from pHC873 using primers
5'-GCTAATCGATGAAAATCGGGCTTTTGCGCCTGAATATTGC-3' and 5'-
GCTAGCTAGCAGATTTACCGTCGGCACGTTCATCG-3'. The resulting PCR product
was digested with NheI and Clal and ligated with pMAK700 digested with the same
enzymes to generate pHC878. Plasmid integration and excision events at the ponB locus
were selected utilizing the temperature-sensitive replication initiation of pHC878 to obtain
strains with ponB(S247C) mutation at the native chromosomal locus.

B.1.5 Introduction of the imp4213 allele

The imp4213 allele was introduced into recipient strains by P1 transduction using its genetic
linkage to leu marker. First, a leu::TnlO marker was introduced into the recipient strains by
selecting for tetracycline resistance. Then, imp4213 was introduced into the leu auxotrophs
by P1 transduction followed by selection for leucine prototrophy on M9-glucose agar plates.
For efficient P1 lysate preparation from an imp4213 strain, a strain that has a suppressor
mutation at the bamA locus in addition to imp4213 (JAB027) was used. The resulting P1
transductants were screened for the sensitivity to 10 pg/mL erythromycin to identify isolates
that acquired imp4213 allele along with the WT leu locus.

B.1.6 Generation of mreB sandwich fusions at the native E. coli mre
locus

Sandwich fluorescent protein fusions of mreB were introduced at the native locus using
the recombineering strain CH138/pCX16, which harbors a defective lambda prophage as a
temperature-inducible source of the recombination genes [12]. CH138/pCX16 is also deleted
for native galK and has a galK cassette inserted in the middle of mreB (replacing the codon
for G228). The strain is viable due to suppression of the Rod system defect by elevated
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FtsZ levels promoted by sdiA on pCX16. Fragments with one kb of sequence flanking
mNeonGreen or mCherry in plasmid-borne mreB-fluorescent protein sandwich fusions
were amplified with the primers 5'-AACGGTGTGGTTTACTCCTCTTCTGTG-3' and
5'-TTCCAGTGCAACCATTACCGCGCTCAC-3' using pFB262 or pHC892 as templates.
After the recombineering with the resulting PCR products, cells that replaced galK with
fluorescent protein fusions at the mreB locus were selected on M9 minimal agar containing
0.2% 2-deoxy-galactose, which is converted to toxic 2-deoxy-galactose-1-phosphate if cells
remain GalK+.

B.1.7 Generation of E. coli ArodA::aph

A rodA deletion was constructed similar to deletions in the Keio collection 27 using a
TB1O(attHKCS8) recombineering strain that expresses rodA under control of the lac
promoter. A PCR product for ArodA::aph construction was amplified using pKD13 [3] as a
template with the primers 5'-AAAATCCAGCGGTTGCCGCAGCGGAGG-
ACCATTAATCATGATTCCGGGGATCCGTCGACC-3' and
5'-CTTACGCATTGCGCACCTCTTACACGCTTT-
TCGACAACATTGTAGGCTGGAGCTGCTTCG-3' and recombineering was performed as
described previously [13].

B.1.8 E. coli plasmid construction

pHC872 and pHC873 The ponB gene was amplified with primers
5'-GTCATCTAGAGAAAATCGGGCTTTTGCGCCTG-3' and
5'-GTCACTCGAGATGGGATGTTATTTTACCGGATGGC-3'. The resulting fragment was
digested with XbaI and XhoI and ligated to pTB183 digested with XbaI and SalI to
generate pMM15. The bla antibiotic resistance cassette of pMM15 was replaced with a cat
cassette from pHC514 by replacing the NotI-XbaI fragment to generate pHC872. The
ponB(S247C) mutation was introduced in pHC872 using QuikChange mutagenesis with the
primer 5'-CATGATGGAATCAGTCTCTACTGCATCGGACGTGCGGTGCTGGCA-3' to
generate pHC873.

pHC897 The mCherry sequence of pFB262 was replaced with E. coli codon-optimized
mNeonGreen (IDT synthesis) using XhoI and AscI to generate pHC892. The mreB-SWmNeon

fragment of pHC892 was removed with XbaI and HindIII and cloned under control of the
lac promoter of a pHC514 derivative to generate pHC897.

pHC929 The mreB-SWmNeon fragment was liberated from pHC892 by digestion with
XbaI and HindIII and tetR-PtetA (IDT synthesis) digested with BglI and XbaI were
assembled in a pTB183 derivative using BglII and HindIII to generate pHC929.

pHC938 pHC938 was generated by introducing the rodA (D262N) mutation into pHC857
using an overlap extension mutagenesis protocol. rodA (D262N) was amplified using primers
5'-AAATCCGGTACCGCTCAGGTC-3' and 5'-GTATCGGTGATAAGCTTCTGC-3' and a
mutagenizing primer set 5'-CCGAACGCCATACTAACTTTATCTTCGCGGTACTGG-3'
and 5'-GCGAAGATAAAGTTAGTATGGCGTTCGGGGAGAAATTC-3'. The mutated
base is indicated in bold. The resulting PCR product for rodA(D262N) was digested with
KpnI and HindIII and ligated to pHC857 digested with the same enzymes to generate
pHC938.

pHC933 The sfgfp fragment was liberated from pTB230 with XbaI and BamHI
digestion and rodA amplified with 5'-GTCAGGATCCGAGGCCATTACGGCCATGACGG-
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ATAATCCGAATAAAAAAACATTCTGGG-3' and
5'-GTCAGTCGACTTATTATTGGCC-GAGGCGGCCTTACACGCTTTTC-3' and
digested with BamHI and SalI. The fragments were assembled in pNP20 using XbaI and
SalI to generate pHC933.

pHC942, pHC943, and pPR104 E. coli codon-optimized msfgfp (IDT synthesis)
digested with XbaI and BamHI, and the ponB sequence amplified with
5'-GTACGGATCCCCGCGCAAAGGTAAGGG-3' and
5'-GTCACTCGAGATGGGATGTTATTTTACCGGATGGC-3' and digested with BamHI
and XhoI were assembled in pNP20 by using XbaI and SalI to generate pHC942. The ponB
of pHC942 was then replaced with pbpA sequence amplified with
5'-GCTAGGATCCAAACTACAGAACTCTTTTCGCGACTATACG-3' and
5'-CTTCACGTTCGCTCGCGTATCGGTG-3' using BamHI and HindlIl to generate
pHC943. pPR104 was constructed by replacing ponB of pHC942 with ponA sequence
amplified with 5'-GCTAGGATCCAAGTTCGTAAAGTATTTTTTGATCC-3' and
5'-GCTAAAGCTTAGAACAATTCCTGTGCCTCGCCAT-3' using BamHI and HindIII.

pHC949 Halo Tag sequence was amplified by using pDHL940 as a template with
5'-GCTATCTAGATTTAAGAAGGAGATATACATA-
TGGCAGAAATCGGTACTGGCTTTCCATTC-3' and
5'-GCTAGGATCCGGAAATCTCCAGAGTAGACAGC-3'. The resulting PCR product was
digested with XbaI and BamHI, and ligated to pHC942 digested with the same enzymes to
replace msfgfp sequence with Halo Tag sequence.

B.1.9 Measurement of PG synthesis and turnover

The effect of blocking aPBP activity with MTSES on PG synthesis and turnover in
beta-lactam-treated E. coli cells was examined essentially as described previously [2].
HC533(attAHC739), a AlysA AampD strain which expresses PBP1b(S247C) as a sole
aPBP, was grown overnight in M9-glycerol medium supplemented with 0.2% casamino acids.
The overnight culture was diluted to an OD600 = 0.04 in the same medium and grown to
an OD600 between 0.26 - 0.3. Then, divisome formation was blocked by inducing sulA
expression for 30 min from a chromosomally integrated Ptac::sulA construct (pHC739) by
adding IPTG to 1 mM. After adjusting the culture OD6 00 to 0.3, MTSES (1mM), A22 (10
pg/mL), mecillinam (10 Ag/mL), and/or cefsulodin (100 [g/mL) were added to the final
concentrations indicated and cells were incubated for 5 min. Following drug treatment, 1

pCi of [3H]-meso-2,6-Diaminopimelic acid (mDAP) was added to 1mL of each drug-treated
culture and incubated for 10 min to label the newly synthesized PG and its turnover
products. After the labeling, cells were pelleted, resuspended in 0.7 ml water, and heated at
90*C for 30 min to extract water-soluble compounds. After the hot water extraction,
insoluble material was pelleted by ultracentrifugation (200,000 x g for 20 min at 4C). The
resulting supernatant was then removed, lyophilized, and resuspended in 0.1% formic acid
for HPLC analysis and quantification of turnover products as described previously [2]. To
determine [3H]-mDAP incorporated into the PG matrix, the pellet fraction was washed with
0.7 mL buffer A (20 mM Tris-HCl, pH 7.4, 25 mM NaCl) and resuspended in 0.5 mL buffer
A containing 0.25 mg lysozyme. The suspensions were incubated overnight at 37'C.
Insoluble material was then pelleted by centrifugation (21,000 x g for 30 min at 4C), and
the resulting supernatant was mixed with 10 mL EcoLite (MP biomedicals) scintillation
fluid and quantified in Microbeta Trilux 1450 liquid scintillation counter (Perkin-Elmer).
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B.1.10 Quantification of MTSES labeling of PBP1b(S247C)

To quantify the efficiency of MTSES binding to PBP1b(S247C) under experimental growth
conditions, a culture of HC533(attAHC739) (100 mL) was grown to OD6 00 = 0.3 in M9-
glycerol medium supplemented with 0.2 % casamino acids at 30'C with sulA induction for 30
minutes. Then, the culture was split into two 50 mL portions and treated with either 1mM
MTSES or DMSO for 5 min. Immediately after MTSES/DMSO treatment, cultures were
cooled on ice and cells pelleted at 4,000 x g for 5 min at 4C. The cell pellets were washed
once with IX ice-cold PBS, resuspended in 500 pL IX PBS containing 10 mM EDTA and 20
mM 2-iodoacetamide, and incubated for 20 min at room temperature to alkylate the cysteine
residues not modified by MTSES. After the 20 min incubation, 20kU of Ready-lyse lysozyme
(Epicentre) was added to each cell suspension and incubation was continued for a further 10
min at room temperature. Cells were disrupted by sonication and membrane fractions were
pelleted by ultracentrifugation at 200,000 X g for 20 min at 4C. The membrane fractions
were then washed with IX PBS once and resuspended in 1 mL immunoprecipitation (IP)
buffer (100mM Tris, pH7.4, 300mM NaCl, 2% Triton X-100). Ten microliters of anti-PBP1b
antiserum was added to the resuspension and the resuspension was incubated overnight
in the cold room with gentle agitation. The samples were then mixed with 50 [L of IP
buffer-equilibrated protein A/G magnetic beads (Millipore) and incubated for further 4 hrs
in the cold room with gentle agitation. Then, the beads were washed three times with IP
buffer and then three times with a buffer containing 100mM Tris, pH7.4 and 300mM NaCl.

Proteins bound on the beads were fragmented by on-bead digestion with 0.1pig trypsin

(#V511C, Promega) in 300l buffer (20mM Tris-HCl, pH8, 150mM NaCl) overnight at
37'C with gentle agitation. After digestion, peptide samples were acidified with 10% TFA
to a pH between 1-2, desalted using a 96-well plate embedded with C18 resin (Thermo
Scientific) and dried by vacuum centrifugation. Samples were resolubilized in 20 [d of 0.1%
TFA and 5 /l of each sample was analyzed by nanoLC-MS/MS 33 with a HPLC gradient
(NanoAcquity UPLC system, Waters; 5% 35% B in 110min; A=0.1% formic acid in water,
B=0.1% formic acid in acetonitrile). Peptides were resolved on a self-packed analytical
column (50cm Monitor C18, Column Engineering) and introduced to the mass spectrometer
(Q Exactive HF) at a flow rate of 30 nl/min (ESI spray voltage=3.5kV). The mass
spectrometer was programmed to operate in data dependent mode such that the ten most
abundant precursors in each full MS scan (resolution=120K; target=5e5; maximum
injection time=500ms; scan range= 300 to 2,000 m/z) were subjected to HCD

(resolution= 15K; target=5e4; maximum injection time=200ms; isolation window=1.6m/z;
NCE=27, 30; dynamic exclusion=15seconds). MS/MS spectra were matched to peptide
sequences using Mascot (version 2.2.1) after conversion of raw data to .mgf using multiplierz
scripts [1]. Search parameters specified trypsin digestion with up to two missed cleavages, as
well as variable oxidation of methionine and carbamidomethylation of cysteine residues.
Precursor and product ion tolerances were 10 ppm and 25 mmu, respectively. Targeted scan
experiments were performed in a similar fashion while dynamic exclusion was disabled and
inclusion was enabled for the following peptides: HFYEHDGISLYCIGR (carbamidomethyl
cysteine: z=4, m/z=467.4703; z=3, m/z=622.9579; z=2, m/z=933.9332),
HFYEHDGISLYCIGR (MTSES-cysteine: z=4, m/z=488.2050; z=3, m/z=650.6042; z=2,
m/z=975.4026), VWQLPAAVYGR (z=2, m/z=630.3484), LLEATQYR (z=2,
m/z=497.2718), QFGFFR (z=2, m/z=401.2058), DSDGVAGWIK (z=2, m/z=524.2589).
Peak area integration was carried out using the Thermo Xcalibur Qual Browser (version
3.0.63, Thermo Fisher Scientific).
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B.1.11 Bocillin-binding assays

Cultures of HC545, HC596(attHKHC943), and HC576(attHKHC942) were grown overnight
at 37'C in M9-glucose medium supplemented with 0.2% casamino acids, with induction
of msfgfp-pbpA or msfgfp-ponB with 25 pM IPTG. Cells in the overnight cultures were
washed to remove IPTG and diluted to an OD60 0 = 0.001 in 15 ml of M9-glucose medium
supplemented with 0.2% casamino acids and the indicated concentrations of IPTG. The
cultures were then incubated at 37*C until the OD600 reached 0.4 to 0.5. A subset of cultures
were treated with 10 pg/mL mecillinam (specific for PBP2) or 100 Pg/mL cefsulodin (specific
for PBP1b) for 5 min prior to harvesting. Cells were then harvested by centrifugation at
4C, washed with ice-cold 1X phosphate-buffered saline (PBS) twice, resuspended in 500 PL
IX PBS containing 10 mM EDTA and 15 pM Bocillin (Invitrogen), and incubated at room
temperature for 15 min. After the incubation, the cell suspensions were washed with IX
PBS once, resuspended in 500 pL IX PBS, and disrupted by sonication. After a brief spin
for 1 min at 4,000 X g to remove undisrupted cells, membrane fractions were pelleted by
ultracentrifugation at 200,000 X g for 20 min at 4*C. The membrane fractions were then
washed with IX PBS and resuspended in 50 pL IX PBS. Resuspended samples were mixed
with 50 [iL 2X Laemmli sample buffer and boiled for 10 min at 95'C. After measuring the
total protein concentrations of each sample with NI-protein assay (G-Biosciences), 25 pg of
total protein for each sample was then separated on a 10% SDS-PAGE gels and the labeled
proteins were visualized using a Typhoon 9500 fluorescence imager (GE Healthcare) with
excitation at 488 nm and emission at 530 nm.

Bocillin-binding assays for Bacillus subtilis strains were performed basically in the same
way as in E. coli strains. Overnight cultures grown in CH medium at room temperature
were diluted to OD6 00 = 0.04 - 0.07 in 5 mL fresh CH medium containing the indicated
concentrations of IPTG and incubated at 37'C. When the cultures reached exponential
phase, cells were pelleted, washed with ice-cold IX PBS, and resuspended with 100 PL IX
PBS containing 15 pM Bocillin (Invitrogen), and incubated for 15 min at room temperature.
Then, cells were washed in 1X PBS, resuspended 0.5 mL IX PBS containing 20kU Ready-
lyse lysozyme (Epicentre), and incubated for 15 min at room temperature. The cells were
disrupted by sonication and the membrane fraction was isolated by ultracentrifugation. A
total of 16 pg of protein for each sample was separated on a 10% SDS-PAGE gels and
visualized as described above for E. coli.

B.1.12 Microscopy of E. coli cells

Overnight cultures with strain-specific inducer levels were diluted in fresh culture medium
and grown for at least 3 hours at 37*C to an OD60 0 below 0.6. Cells were concentrated by
centrifugation at 7,200 x g for 3 min and applied to No. 1.5 cover glass under 5% agarose
pads with culture medium, except for microscopy with MTSES, which was performed using
the CellASIC ONIX microfluidic platform from EMD Millipore.

For msfGFP-PBP2 tracking, M9-glucose-CAA medium was used with 25 pM IPTG.
For sfGFP-RodA tracking, M9-maltose-CAA medium was used with 80 [IM IPTG. For
msfGFP-PBP1b imaging, M9-glucose-CAA medium was used with a beginning concentration
of 20 pM IPTG, diluted to 13 pM final IPTG before expansion at 370 C. For MreB-SwNeon
tracking with MTSES treated cells, M9-glucose-CAA medium was used with 100 pM.

For MreB-SwNeon tracking following RodA(WT) or RodA(D262N) overproduction,
M9-maltose-CAA medium was used with the addition of 0.8 ng/pL anhydrotetracycline
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before growth at 37'C. For experiments following the effect of RodA variant production
after 210 min induction, cells were first grown in liquid culture for 120 min under inducing
conditions (1mM IPTG) before concentration and imaging. IPTG (1 mM) was included in
the agarose pads used for imaging.

B.1.13 Microscopy of B. subtilis cells

Overnight cultures grown in CH medium were diluted in fresh medium and grown for at
least 3 hours at 37'C to an OD 600 below 0.3. Cells were concentrated by centrifugation at
6000 x g for 30 seconds and applied to No. 1.5 cover glass under 2% agarose pads with
CH medium. For PBP1 imaging, no inducer was added to the cultures; leaky expression of
mNeonGreen-PBP1 was sufficient for particle tracking experiments. All cells were imaged at
37'C under an agar pad with the top surface exposed to air.

For measurements of growth rate, overnight cultures grown in LB medium were diluted
in fresh medium and grown for at least 3 hours at 37'C and to an OD600 below 0.3. The
culture was diluted to an OD60 0 of 0.07, and its growth curve was measured in a Growth
Curves USA Bioscreen-C Automated Growth Curve Analysis System.

For measurements of cell widths, overnight cultures grown in CH medium were diluted
in fresh medium (with addition of 10 pM IPTG where indicated) for at least 3 hours at
37'C and to an OD6 00 below 0.3. Cells were stained with FM 5-95 (ThermoFisher Scientific)
and imaged under agarose pads as described above.

B.1.14 Particle tracking microscopy

Total internal reflection fluorescence microscopy (TIRF-M) and phase contrast microscopy
were performed using a Nikon Eclipse Ti equipped with a Nikon Plan Apo A 10OX 1.45
objective and a Hamamatsu ORCA-Flash4.0 V2 (C11440-22CU) sCMOS camera. Except
where specified, fluorescence time-lapse images were collected by continuous acquisition with
1,000 ms exposures. Microscopy was performed in a chamber heated to 37'C.

B.1.15 Widefield epifluorescence microscopy

Widefield epifluorescence microscopy was performed on the instrument described above, and
for some samples, on a DeltaVision Elite Microscope equipped with an Olympus 60x Plan
Apo 60x 1.42 NA objective and a PCO.edge sCMOS camera. Cell contours and dimensions
were calculated using the Morphometrics software package [11].

B.1.16 Particle tracking

Particle tracking was performed using the software package FIJI [7, 8] and the TrackMate
plugin. For calculation of particle velocity, the scaling exponent a, and track orientations
relative to the midline of the cell, only tracks persisting for 7 frames or longer were used.
Particle velocity for each track was calculated from nonlinear least squares fitting using the
equation MSD(r) = 4DT + (VT) 2 , where MSD is mean squared displacement, T is time
lag, D is the diffusion coefficient, and v is speed. The maximum time interval used was
80% of the track length. Tracks were excluded from further evaluation if the contribution
of directional motion to the MSD was less than 0.01 nm/s. Tracks were also excluded if

R2 for log(MSD) versus log(r) was less than 0.9, indicating a poor ability to fit the MSD
curve. For PBP2, R 2 and speed filtering together resulted in the exclusion of 50% of
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detected tracks. Track overlays in figures include all tracks 7 frames or longer to illustrate
the performance of the track detection algorithms. Track angles relative to the cell axis were
taken to be the direction of the line produced by orthogonal least squares regression using
all of the points in each track; cell axis angles were determined by finding cell outlines and
axes using the Morphometrics software package [11].

B.1.17 Analysis of PBP1 diffusion

Tracking of B. subtilis mNeon-PBP1 in strains MK210 and MK287 was performed using
the u-track 2.0 software package [5]. Resulting trajectories were then manually filtered to
minimize particle detection and linking errors. The frame-to-frame vector displacements
along these trajectories were then calculated. The magnitude of each of the displacements
was taken, and the cumulative distribution function (CDF) of the pool of displacements
across all movies in a condition was calculated. The CDF of the displacement magnitudes
was then fit to an analytical function describing a diffusion process whereby one or more
unique states of diffusion were occurring. The analytical form of the two-state model used
in the results is:

r2___ r
2

P(r, At) = 1 - we 4D - (1 - w)e 4D2 Ai (B.1)

where P(r, At) is the cumulative probability of a displacement of magnitude r given the
observation period At, diffusion coefficients D 1 , D2 , and the relative fractions between those
two states w. For a simpler, one-state model, w = 1. The fitting was performed in MATLAB
using a nonlinear least-squares algorithm with 500 restarts to the initial parameters so as to
find a close approximation to the true parameters of the model. Residuals of the model fit
were calculated and used in the determination of the number of distinct diffusive species
present within the dataset.

B.1.18 B. subtilis strain construction

For MKO05 [AponA] construction, the homology region upstream of ponA was amplified
from Py79 DNA using oligos oMKO01 and oMKO02. The cat cassette was amplified from
pGL79 using oligos oJM28 and oJM29. The homology region downstream of ponA was
amplified from Py79 DNA using oligos oMKO06 and oMKO13. The three fragments were
fused using isothermal assembly [4] and transformed into Py79 to give MKO05 by selecting
on chloramphenicol agar.

For MK095, a native functional fusion of mNeonGreen to PBP1 was constructed by
isothermal assembly [4] and was recombined into the chromosome of Py79 using
counterselection to produce a marker-less strain without any remaining scars. The
homology region upstream of ponA, fused to the first 30 bases of the coding sequence of
mNeonGreen, was amplified from Py79 DNA using oMKOO1 and oMK027. The cat cassette,
the Pyi promoter sequence, and the mazF coding sequence were amplified as a fused
fragment from template DNA using primers oMK047 and oMK086. The coding sequence of
mNeonGreen was amplified from a gBlock using primers oMK078 and oMK087. The
downstream homology region encoding a portion of the PBP1 (ponA) coding sequence was
amplified from Py79 DNA using oMKO09 and oMK050. These fragments were fused using
isothermal assembly and transformed into Py79 to give MK093 upon selection for
chloramphenicol resistance. Since the primers oMK078 and oMKO09 contained the sequence
for a 15-amino acid flexible linker, the fused product encoded an mNeonGreen-PBP1 fusion
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protein. The presence of a fragment of the mNeonGreen coding region upstream of cat

provided a direct repeat to allow for spontaneous removal of the cat-mazF sequence by

recombination. MK093 was grown in LB medium for 4 hours to allow time for

recombination, and 200 pl cells were plated on a LB plate containing 30 mM xylose. This

selected for cells in which removed the cat-mazF, yielding a scar-less functional fusion

protein under the control of the native PBP1 promoter.

Strains MK210 and MK287 encoding an inducible version of the mNeonGreen-PBP1

fusion protein were constructed by isothermal assembly. The homology region upstream of

amyE, the erm cassette, and the LacI-Phyperspank promoter construct were amplified as a

fused fragment from template DNA using primers oMD191 and oMD232. The mNeonGreen-

PBP1 coding sequence was amplified from MK095 DNA using primers oMK100 and oMK138.

The homology region downstream of amyE was amplified from Py79 DNA using oMD196

and oMD197. The fragments were fused using isothermal assembly and transformed into

Py79 to give MK210. Genomic DNA from MK005 (AponA::cat) was transformed into

MK210 to give MK287, a strain in which the mNeonGreen-PBP1 fusion protein was the

only copy of PBP1.

B.2 Figures

Supplementary Table 1. Mass spectrometry analysis of MS-PBP1b modification by

MTSES.

peptide sequence' mono- nVz (charge) peak peak signal Intensity
Isotopic Integration Integration ratio

mass (DMSO? (MTSES? (MTSES/DMSO)

HFYEHDGISLYcaCIGR
3 1865.8519 933.9332 (+2) 1.03E+09 n.d.' 0

HFYEHDGISLYcaCIGR
3 1885.8519 622.9579 (+3) 4.76E+09 4.04E+07 0.008

HFYEHDGISLYcaCIGR
3 1865.8519 467.4703 (+4) 1.27E+09 n.d.5 0

HFYEHDGISLYseCIGR
3  1948.79 975.4026 (+2) n.d.8  1.56E+09 -

HFYEHDGISLYseCIGR 1948.79 650.6042 (+3) n.d.8  2.76E+09 -

VWQLPAAVYGR
4  1258.6822 630.3484 (+2) 1.71E+10 1.71E+10 1.00

LLEATQYR
8  992.5291 497.2718 (+2) 4.59E+07 4.21 E+07 0.919

QFGFFR
6  800.387 401.2058 (+2) 2.03E+10 1.76E+10 0.866

DSDGVAGWIK' 1046.5033 524.2589 (+2) 7.58E+08 7.93E+08 1.05

caC stands for carbamidomethylated cysteine generated by lodoacetamide treatment
used to protect Cys-containing peptides during sample preparation. seC stands for
sulfonatoethyl sulphide-linked cystelne generated by MTSES treatment.
2 Signals corresponding to the peptides of the indicated m/z were integrated from the
extracted ion chromatograms of DMSO-treated and MTSES-treated samples,
respectively. The identity of each peak was further confirmed by tandem mass spectra.
3 Peptide corresponding to PBP1b amino acids 236-250. Contains S247C substitution.
4 Peptide corresponding to PBP1b amino acids 99-109.
5 Peptide corresponding to PBP1b amino acids 127-134.
6 Peptide corresponding to PBP1b amino acids 191-196.
7 Peptide corresponding to PBP1b amino acids 829-838.
a not detected

Table B.1: Mass spectrometry analysis of MSPBP1b modification by MTSES.
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A 01 B all aPBPs PBP1b(WT) only MSPBP1b only

-- all aPBPs + DMSO
-- all aPBPs + MTSES
+ PBP1b(WT)only+DMSO

-- PBPsb(WT) only + MTSES
o + *PBP1b only + DMSO

-+, PBPb only + MTSES

0.011. . . .

Time after treatment (min)

Figure B.1: Functionality of MsPBP1b and specificity of inhibition with

MTSES. A. MTSES-sensitive growth is only observed for cells containing MSPBPlb

as their sole aPBP. Cells of MG1655 [WT] (labeled all aPBPs), HC545 [AponA ApbpC

AmtgA MsponB(WT)] (labeled MSPBP1b(WT) only), and HC546 [AponA ApbpC AmtgA

MSponB] (labeled MSPBP1b only) were grown overnight in M9-glucose supplemented with

0.2% casamino acids at 37'C. The resulting cultures were diluted 1:100 in the same medium

and grown at 37'C to exponential phase. The OD 600 of each culture was adjusted to 0.1

with fresh medium and DMSO (control) or MTSES (1mM) were added as indicated. A small

volume of each culture (150 pl) was then transferred to Corning 96-well plates (ref. 3598)

and OD6 0 0 was monitored during growth with shaking at 37'C in a VersaMax microplate

reader (Molecular Devices). Note, OD6 0 0 values from the plate reader are lower than those

measured from cultures due to a difference in path length. B. Effect of MTSES on cell

morphology. Cells prepared from cultures grown similarly to those in (A) were harvested

and fixed 45 min after treatment with DMSO (control) or MTSES (1mM). Fixed cells were

then imaged on agarose pads using DIC optics. Scale bar equals 4 microns. Arrows point to

lysed cells.
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C PG synthesis D
PBP1b(WT) msPBP1b

80- all aPBPs only only

60-
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20-

MTSES- +- +-+

PG synthesis

PBP1b(WT) msPBP1b
21 only only

1

Moe - +-+

Figure B.2: (continued) Functionality of MSPBP1b and specificity of inhibition
with MTSES. C. Specificity of PG synthesis inhibition by MTSES. Overnight cultures
of HC516 [AlysA AampD] (labeled all aPBPs), HC526 [AlysA AampD AponA ApbpC
AmtgA ponB(WT)] (labeled PBP1b(WT) only), and HC533 [AlysA zampD AponA ApbpC
AmtgA MsponB] (labeled MSPBP1b only) all harboring an integrated Ptac::sulA construct
(attAHC739) were diluted to OD600 = 0.04 in fresh M9-glycerol medium supplemented with
0.2% casamino acids. Cultures were then grown at 30'C to OD60 0 between 0.27-0.30, at
which time IPTG (1 mM) was added to induce sulA expression. D. PG synthesis is inhibited
by moenomycin to a similar degree as MTSES-treatment of MSPBP1b-containing cells. Cells
of HC590 [imp4213 AlysA AponA ApbpC AmtgA ponB(WT)] (labeled PBP1b(WT) only),
and HC591 [imp4213 AlysA AponA ApbpC AmtgA MSponB] (labeled MSPBP1b only)
harboring an integrated Ptac::sulA construct (attAHC739) were grown and labeled with
[ 3 H]-mDAP as above. However, in place of MTSES, cells were treated with 10 Ag/mL
moenomycin (Moe). Note that the strains used here are outer membrane compromised
(imp4213) derivatives of the strains in (C) to allow for moenomycin entry. Microscopy and
growth data are representative of at least two independent experiments. Radiolabeling
results are the average of three independent experiments with the error bars representing
the standard error of the mean.
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Figure B.3: Mass Spectrometry analysis of MsPBP1b modification by MTSES.

Shown are extracted ion current (XIC) chromatograms for the indicated tryptic peptides of

MSPBP1b prepared from cells with or without MTSES treatment. The Cys247-containing

peptide (left, z = +3 species) was only detected in the mock (DMSO) treated sample,

indicating virtually complete modification by MTSES. However, equivalent levels of the

peptide from residue 99-109 (right) were detected regardless of treatment. Note, caC

indicates carbamidomethylated cysteine generated by iodoacetamide treatment used to

protect Cys-containing peptides during sample preparation. Also see Table B.1. Results are

from a single experiment with multiple samples.

-.e-MreB (WT)7--MreB-wm Neon

Time (hr)

B

C
mreB allele length width measured

(mean std) (mean std) cell number

mreB(WT) 2.91 0.67 pm 0.89 0.05 pm 327

mreB-swmNeon 2.90 0.61 pm 1.05 0.05 pm 187

mreB-swRFP 2.71 0.53 pm 1.03 0.07 pm 154

Figure B.4: Functionality of the MreB-SwmNeon fusion. A. Growth of MreB-

SWmNeon producing cells is normal. Cells of HC546 [AponA ApbpC AmtgA MsponB] and

its derivative HC583 harboring mreB-SwmNeon replacing mreB at the native locus, were

grown and OD 60 0 was monitored as in Figure B.1A. Results are representative of duplicate

experiments. B-C. Cell morphology is largely normal in MreB-SWmNeon producing cells.

Overnight cultures of the strains in (A) as well as HC582, also a derivative of HC546, but

with mreB-SWRFP at the native mre locus, were diluted (1:100) in M9-glucose medium

supplemented with 0.2% casamino acids and grown at 37'C to an OD6 0 0 of 0.3. Cells were

then imaged on agarose pads using phase contrast optics. Scale bar, 4 microns. Panel (C)

shows length and width measurements of cells imaged as in (B). Measurements were made

using Oufti [6]. Results are representative of duplicate experiments.
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A B ArodA (P.::sfgfp-rodA) WT
+ IPTG No IPTG

Dilution Factor
-1 -2 -3 -4 -5 -6 -1 -2 -3 -4 -5 -6

WT NEE ggc gggQ iT
ArodA R

(P7::sfgfp-rodA) sfGFP-RodA functionality C PPB1b only
ApbpA(P ::msfgfp-pbpA) PPB1b only

PPB1b only No

PPB1b only, ApbpA
(P,::msfgfp-pbpA) msfGFP-PBP2 functionalityN

Figure B.5: Functionality of PBP2 and RodA fluorescent protein fusions.
A. RodA or PBP2 fusion production corrects the growth phenotypes of rodA or pbpA
deletion mutants, respectively. Overnight cultures of TB28 [WT], HC595(attHKpHC933)

[ArodA (Piac::sfgfp-rodA)], HC545 [AponA ApbpC AmtgA ] (labeled PBP1b only) or
HC596(attHKHC943) [PBP1b only ApbpA (Pjac::msfgfp-pbpA)] were serially diluted and
spotted on M9 minimal maltose agar for the RodA functionality test or M9 minimal glucose
agar for the PBP2 functionality test. Media was additionally supplemented with 0.2%
casamino acids as well as IPTG as indicated (100 ILM for sfgfp-rodA or 25 paM msfgfp-

pbpA). B-C. Cell morphology of the fluorescent protein fusion strains grown with or without

induction of fluorescent protein fusions. Overnight cultures of the strains in (A) grown in
the presence of IPTG were washed with M9 minimal medium, diluted to an OD 60 0 of 0.001,
and grown to exponential phase in M9 minimal medium with or without IPTG induction.

Sugar, casamino acid, and IPTG supplementation were as in (A).
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Figure B.6: (continued) Functionality of PBP2 and RodA fluorescent protein
fusions. Measurement of relative msfGFP-PBP2 concentration by Bocillin binding.

Overnight cultures of HC545 [AponA ApbpC AmtgA ] (labeled PBP1b only) or

HC596(attHKHC943) [PBPlb only ApbpA (Piac::msfgfp-pbpA)] were diluted and grown
as in (B-C). Cells harvested from 15 ml of exponential cultures were labeled with Bocillin

(see Methods). A subset of cultures were treated with 10 pg/mL mecillinam, which reacts
with the TP active site of PBP2 and blocks Bocillin binding, 5 min prior to harvesting and
labeling. All results are representative of at least duplicate experiments.

A-

B r
Mvontage MIP Kymo

Figure B.7: RodA moves circumferentially around the the cell cylinder. A.
Montage of RodA movement in HC595(attHKpHC933) [ArodA (Piac::sfgfp-rodA)] shows
directional motion. Maximal intensity projection (MIP) and kymograph (Kymo) frames
were collected every 1 s, montage frames every 2 s. Displayed are raw trajectories not filtered
for speed or log log fits to a. B. Phase contrast images with track overlays show additional
examples of RodA directional motion. Scale bars are 1 pm. Results are representative of
two independent experiments.
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Figure B.8: PBP2 moves circumferentially around the the cell cylinder. A.

Histogram of directionally moving particles (velocity > 0.01 nm/s) without filtering by a fit as

described in Materials and Methods. B. Histogram of all velocities, including non-directional

particles (velocity < 0.01 nm/s). C. Histogram of all angles to the cell midline without

filtering on R2 fits to a line. D. Histogram of the scaling exponent a (filtered for linear fits

to the log-log of a and velocity > 0.01 nm/s as described in Materials and Methods) with

a median value of 1.65, indicating directed motion. E. MSD vs. T for randomly selected

individual PBP2 tracks. F. MSD vs. r for randomly selected individual B. subtilis PBP1

tracks from strain MK210. Results are representative of two independent experiments.
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A Dilution Factor
-1 -2 -3 -4 -5 -6 -1 -2 -3 -4 -5 -6

PL::pbpA-rodA(WT)

P,::pbpA-rodA(D262N)
No IPTG + IPTG

B
NoIPTG +IPTG

P,::pbpA-rodA(WT)

P,::pbpA-rodA(D262N)

Figure B.9: Dominant-negative activity of RodA(D262N). A. Overexpression of

RodA(D262N) causes a growth defect. Cells of TB28 [WT] harboring both an integrated

PtetA::mreB-SwmNeon construct (attHKHC929), and either pHC857 [Plac::pbpA-rodA (WT)]

or pHC938 [Plac::pbpA-rodA(D262N)], were grown overnight at 37'C in M9-maltose

supplemented with 0.2% casamino acids and 10 pg/mL chloramphenicol. Serial dilutions

of these cultures were spotted onto agar plates of the same medium composition, with or

without 1 mM IPTG. B. Effect of RodA(D262N) overexpression on cell morphology. The

cultures described in (A) were diluted to an OD6 00 of 0.05 and grown at 37'C until the

OD60 0 reached between 0.2 and 0.3. These exponential-phase cultures were then further

diluted (to an OD60 0 of 0.005) in the presence or absence of 1 mM IPTG. Cells were fixed

when the OD6 0 0 reached between 0.1 and 0.15, then imaged on agarose pads using DIC

optics. Scale bar, 4 microns. Results in both panels are representative of two independent

experiments.
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Figure B.10: PBP1a polymerizes PG without a functional cytoskeleton.

A-B. PG matrix assembly and turnover were measured upon treatment of strain

PR70(attHKHC739) [AlysA AampD ApbpC AmtgA AponB (Ptac::suA) with cefsulodin

and/or A22. Measurements were made as described in Figure fig:nmicf2 and fig:nmicf4.

Cefsulodin and A22 were used at 100 pg/ml and 10 pg/mL, respectively. Note that this

strain produces PBPla as its only aPBP. Significant PG synthesis activity is detected upon

A22 treatment (sample 3), which inactivates MreB in cells already inactivated for FtsZ by

SulA expression. This activity is converted to turnover by the PBPla-specific betalactam

cefsulodin (sample 4). We thus conclude that, like PBP1b, PBPla remains active when all

cytoskeletal elements are inactivated in E. coli. Results are the average of three independent

experiments with the error bars representing the standard error of the mean.
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Figure B.11: Functionality of msfGFP-PBP1b. A. msfGFP-PBP1b supports

growth as the sole aPBP. Cultures of HC545 [AponA ApbpC AmtgA] (labeled PBP1b only)

and HC576(attHKHC942)[AponA ApbpC AmtgA AponB (Plac::msfgfp-ponB)] (labeled

AaPBPs) were grown overnight in M9-glucose medium supplemented with 0.2% casamino

acids with 25 pM IPTG. Cell were then washed and serially diluted in the same medium

lacking IPTG. Aliquots (5 pL) of each dilution were then spotted on M9-glucose agar

supplemented with 0.2% casamino acids with or without 25 piM IPTG as indicated. The

plates were incubated for 24 hrs at 37'C and imaged. B. Measurement of relative msfGFP-

PBP1b concentration by Bocillin binding. Cultures of the strains in (A) were diluted, grown,

and labeled with Bocillin as in Fig. B.4D. Indicated cultures were treated with 100 Pg/mL

cefsulodin for 5 min prior to harvesting and labeling. Note that the doublet band for PBP1b

in lane one corresponds to the alpha and gamma forms of PBP1b produced from alternate

start codons. The msfGFP-PBP1b fusion is to the shorter gamma form. Results in both

panels are representative of at least two independent experiments.
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Figure B.12: Functionality of mNeon-PBP1 fusion in B. subtilis. A.

Growth curves of Py79 [WT] and MK095 [ponA::mNeonGreen-ponA] strains. B. Cell

width measurements of Py79 [WT], MKO05 [AponA], MK287 [AponA; amyE::Pyperspank-
mNeonGreen-ponA], and MK095 [ponA::mNeonGreen-ponA], strains. For MK287, mNeon-

PBP1 was induced by addition of 10 1 iM IPTG. Measurement of relative mNeon-PBP1

concentration by Bocillin binding. C. Overnight cultures of strains Py79, MKO05, MK287,
and MK095 (left to right) were diluted into fresh CH medium, grown for two hours at 37'C,

and labeled with Bocillin as in Fig. B.4D. Note that the concentration of mNeon-PBP1

expressed from its native promoter (MK095, rightmost lane) is much less than that in wild-

type (Py79, leftmost), explaining the failure of native mNeonGreen-ponA (ponA::mNG-ponA)

to suppress the width phenotype of ponA deletion in MK095. Results are representative of

two independent experiments.
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Figure B.13: Diffusion coefficient comparison for B. subtilis PBP1 constructs.
A. Cumulative distribution function (CDF) fitting of PBP1 displacements reveals two-state
diffusive behavior. Top row: the analytical (blue) and experimental (black) CDF curves
for haploid (MK287) and merodiploid (MK210) strain datasets. Bottom row: respective
residuals for CDF model fits corresponding to the above CDF plots. The single-state haploid
fitting has considerable residuals corresponding to the location of where a faster state of
diffusion manifests, necessitating the introduction of a second state of diffusion for this
enzyme into the CDF fitting. B. Comparison of the CDF model fits between merodiploid and
haploid strains. The characteristic displacement magnitude of the two-state haploid strain
CDF where the residuals hit the maximum value in the one-state model closely corresponds
to that of the fast state of the merodiploid strain, suggesting both of these fast states may
result from the same underlying biological phenomena. Microscopy data are representative
of two independent experiments.
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Supplementary Table 2. Bacterial strains used in this study.

Strain Genotypeo SoureReference'

EmS strains

M01655

TB10

T828

MC4100

TUl116

rph HVG rbo-50

rphi ivG rb-50 )Acro-bio nad::Tn10

M01655 AMacLZYA::frd

F- araDt3S A(argF-Iac)169 psL150 reA t msW I
deoCi psIF25 absR

MG1655 AscLZYA::ftfAponB::aph

HC439/pHC817 MG1655 ApbpA::aph / P::pbpA

HC534(attHKCSO) TBIO AradA:ph fP1 .::rodA)

HC516 MG1655 AysA:: ItAampD:fit

HCS1S MG1655 AysA::frAponA:: frth-P..::pon8

HC523 M(31&% lyaA ::ftAponA::frtAphpC:IrtAmtgA::f f

HC526 MG1655 AysA::frtAponA:: rAphpC:frtAmtgA:: I
Aarnp.:ft

HC532 MG11655 AysA::friAponA::frtApbpO:fr(AmgA::frt
pona(S247C)

HC533 M01655 AyeA::frtAponA::ftAppC :IrtAmgA:: ft
ponB(S247C) Aanp&:f t

HC545 MG1655 AponA:rt ApbpC:frt AmA::rt

HC546 MG1655 Aponk::t AppC:frit AmgA::fri
panB(8247C)

CH138ApCX16 TB28 AgajK (W1857 (cro-bioA)::TatARI mre&:Pmr
gaK AyhdE:.a / Pm::ad A

HC582 HC546 mre'-nmCherry-mr8 AyhdE::cat

HC583 HC546 mrv8'-mNaonGren-'fraB AyhdE::at

JABO27 MC41 00 I p42l3 bsmA6

HC590 M01655 A At AponA::frtApbpC ::H Am#A:: ft
&p

42
13

(Guyer et al., 1981)

(Johnson et al, 2004)

(Bemhardt and de
Boar, 2004)

Lab Stuck

(Paradis-Bteau at al,
2010)

(Cho et al, 2014)

This Study

This Study

This Study

This Study

This Study

This Study

This Study

This Study

This Study

gif from de Boar lab

This Study

This Study

This Study

P1(JAS027) X HC523-
Isu::TnIO

Table B.2: Bacterial strains used in this study.
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Strain Genotype Surcem uerence

HC591 MG1655 A4ysA::fht AponA::frAppC-:rt AmIgA::h P1(JAS027) X HC532-

ponB(S247C) imp4213 lew::TnO

HC595(ttHKHC933) TB28 ArodA::aph (Pw::sfpW-rodA) PI(HC534) X
TB2G(aMtKHC933)

HC596(attHKHC943) HC545 ApbpA:xph (Pc::mffp-pbpA) P1(HC439) X
HC545(atHKHC943)

HC576(attHKHC942) HC545 AponB::ph (P.::msfp-ponB) PI(TUl16) X
HC545(attHKHC942)

HC576(attHKHC949) HC645 ApoeB::aph (Pi.::HxHb-ponB) Pi(TUI 16) X
HC545(attHKHC949)

PR71(atHKPRI04) HC545 AponB::aph (P.::mskgIp-ponA) P1(TU1 16) X
HC545(attHKPR104)

PR70 MG1655 A 'sA::t hAppC6 hArnlgA::frf AampDA:h This Study

HC527 M01655 A.sA::hi ApbpC::i AmigA::h Aampi:rt This Study

asubdtilis strains

PY79 WT Gamer lab stock

MK005 PY79 AponA This Study

MK095 PY79 ponA::mNeonGreen-ponA This Study

MK210 PY79 amyE::Ps.ap r-mNeonGreen-ponwA This Study

PY79 AponA, amyE::P..w- This Study
MMIFmNeon~reen-ponA

The aph and cat cassette are flanked by hi sites for removal by FLP recombinase. An it scar remains
following removal of the cassette using FLP expressed from pCP2O.

b Strain constructions by P1 transduction are described using the shorthand: PI(donor) x recipient.

Table B.3: (continued) Bacterial strains used in this study.

Supplementesy Table 3. Plasmids used in this study.

PlesMid Genotype Ori Sourceffefsrance

pKD13 bh, sph cassete Ranked by t sequence Jor R6K (Dateenko and Wanner,
recombineering 2000)

pCP20 cat bie cil7 Ps::FLP pSCO101(fs) (Datsenko and Wanner,
2000)

pHC739 atnA cat iscPPm::sut R6K (Cho et at 2014)

pCX16 adA adA pSC101 (BSndezu and de Boer,
2006)

pCS8 aftHKO22 bla lawf P.::rodA R6K (Sham at at, 2014)

pMM15 afiHK022 bla Aac? Pw::ponO R6K This Study

pHC872 affHK022 cat Iscf Pw::ponB R6K This Study

pHC873 &flHKO22 cat fac? Pm::ponW(8247C) R6K This Study

pHC878 cat ponB(S247C) pSC101(is) This Study

pF8262 bin AacF Ps::mB-emCherry-WreB CoEl (Bendezu et al. 2009)

pHC892 bin acPPs::reB'-mNonGr~en-'mre8 CoEl This Study

pHC97 aMiA cat lacf P5 ::mrnB-nvNeonGreen-nreB R6K This Study

p1C929 afiHKO22bia Asv wPw::mrveB- R6K This Study
mNaonGreen-Wve8

pHC81
7  

cat Pe::pbpA CoES (Cho at al, 2014)

pHC657 cat Pe::pbpA-rodA CoEl (Cho at al, 2014)

pHC938 cat Pm::pbpA-rodA(D262N) CoE1 This Study

pHC933 aftHK022 letAR AscI P::sIg)-rod4 RSK This Study

pHC942 sffHKO22 etAR acfP::msgip-poB R6K This Study

pHC943 aftHK022 fetAR lac'P::msgt)-pbpA R6K This Study

pDHL940 pUC19-HaloTeg H7-FRT-Kan"-FRT pUC (Ke et al., 2016)

pHC949 affHK022 etAR AcfP.::HaA,-pon8 R6K This Study

pPR104 aftHKO22 teAR lacP.::msAg*-ponA R6K This Study

P, P,.., Pm,. and PUSA indicate the phage AR, trpAacUV5 hybid, lac operon, and tetracycline resistance

promoters, respectively.

Table B.4: Plasmids used in this study.
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Supplementary Table 4. B. subtills primer list

primer name sequence (5'-3)

oMD191 TTTGGATGGATTCAGCCCGATTG

oMK138 TCTTTCGGTAAGTCCCGTCTAGCCTTGCCCTCACCGAAAGGT
GACGGCTTTTTGT

oMKIOO ATAACAATTAAGCTTTAAGGAGGAACTACCATGGTTTCOAAAG
GAGAGGAGG

oMKO87 AAAATTAACGTACTGATTGGGTAGTCTAGAATGGTTTCGAAAG
GAGAGGAGGATAATATG

oMKO86 ATGGTTTCGAAAGGAGAGGAGGATAATATGCAGGGAGCACTG
GTCAACTACCG

oMKO78 TGGOCTGAGCCCGGTCOCTGGOCAGATCCCTCGAGCTTATAG
AGTTCATCCATAOCCATC

oMK050 GAGTCATCAATTTGTTCGTATGTGGACC

oMKO47 TCTAGACTACCCAATCAGTACGTT

oMKO27 AACATCTCAACCTTTCGTTAATCAACC

oMKO13 GTAGTTGACCAGTGCTCCCTGTAAAACACAAACAAACTCATCA
TC

oMKO09 CTGGCCAGGGACCGGGCTCAGGCCAAGGAAGCGG
CATGTCAGATCAATTAACAGCCGTG

oMKO06 CGTGTACAAGCAAAGCAGAATGAAC

oMKO02 CTGAGCGAGGGAGCAGAACATCTCAACCTTTCGTT
AATCAACC

oMKO01 GCCTTATCC1TCCTCCGCC

oMD232 ggtagtcctcctaAAGCTTAATTGTTATCCGCTCACAAT

oMD197 TCACATACTCGTTTCCAAACGGATC

oMD196 GGGCAAGGCTAGACGGG

oJM29 CAGGGAGCACTGGTCAAC

oJM28 TTCTGCTCCCTCGCTCAG

Table B.5: B. subtilis primer list.

171



Bibliography

[1] Manor Askenazi, Jignesh R Parikh, and Jarrod A Marto. mzAPI: a new strategy for

efficiently sharing mass spectrometry data. Nature Methods, 6(4):240-241, 2009.

[2] Hongbaek Cho, Tsuyoshi Uehara, and Thomas G Bernhardt. Beta-lactam antibiotics

induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell, 159

(6):1300-1311, 2014.

[3] Kirill A Datsenko and Barry L Wanner. One-step inactivation of chromosomal genes in

Escherichia coli K-12 using PCR products. Proceedings of the National Academy of

Sciences, 97(12):6640-6645, 2000.

[4] Daniel G Gibson, Lei Young, Ray-Yuan Chuang, J Craig Venter, Clyde A Hutchison,
and Hamilton 0 Smith. Enzymatic assembly of DNA molecules up to several hundred

kilobases. Nature Methods, 6(5):343-345, 2009.

[5] Khuloud Jaqaman, Dinah Loerke, Marcel Mettlen, Hirotaka Kuwata, Sergio Grinstein,
Sandra L Schmid, and Gaudenz Danuser. Robust single-particle tracking in live-cell

time-lapse sequences. Nature Methods, 5(8):695-702, 2008.

[6] Ahmad Paintdakhi, Bradley Parry, Manuel Campos, Irnov Irnov, Johan Elf, Ivan

Surovtsev, and Christine Jacobs-Wagner. Oufti: an integrated software package for high-

accuracy, high-throughput quantitative microscopy analysis. Molecular Microbiology,

99(4):767-777, 2016.

[7] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark

Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Benjamin

Schmid, and J Y Tinevez. Fiji: an open-source platform for biological-image analysis.

Nature Methods, 9(7):676-682, 2012.

[8] Caroline A Schneider, Wayne S Rasband, and Kevin W Eliceiri. NIH Image to ImageJ:

25 years of image analysis. Nature Methods, 9(7):671, 2012.

[9] Lok-To Sham, Emily K Butler, Matthew D Lebar, Daniel Kahne, Thomas G Bernhardt,
and Natividad Ruiz. MurJ is the flippase of lipid-linked precursors for peptidoglycan

biogenesis. Science, 345(6193):220-222, 2014.

[10] Ming-Ta Sung, Yen-Ting Lai, Chia-Ying Huang, Lien-Yang Chou, Hao-Wei Shih, Wei-

Chieh Cheng, Chi-Huey Wong, and. Che Ma. Crystal structure of the membrane-bound

bifunctional transglycosylase PBP1b from Escherichia coli. Proceedings of the National

Academy of Sciences, 106(22):8824-8829, 2009.

[11] Tristan S Ursell, Jeffrey Nguyen, Russell D Monds, Alexandre Colavin, Gabriel Billings,
Nikolay Ouzounov, Zemer Gitai, Joshua W Shaevitz, and Kerwyn Casey Huang. Rod-

like bacterial shape is maintained by feedback between cell curvature and cytoskeletal

localization. Proceedings of the National Academy of Sciences, 111(11):E1025-E1034,
2014.

[12] Soren Warming, Nina Costantino, Nancy A Jenkins, and Neal G Copeland. Simple and

highly efficient BAC recombineering using galK selection. Nucleic Acids Research, 33

(4):e36-e36, 2005.

172



[13] Daiguan Yu, Hilary M Ellis, E-Chiang Lee, Nancy A Jenkins, and Neal G Copeland.

An efficient recombination system for chromosome engineering in Escherichia coli.

Proceedings of the National Academy of Sciences, 97(11):5978-5983, 2000.

173



174



Appendix C

Supplement for Biophysical
analysis of kinetochore motion in
anaphase

The work presented in this chapter has been published in:
Hongbaek Cho, Carl N Wivagg, Mrinal Kapoor, Zachary Barry, Patricia DA Rohs,

Hyunsuk Suh, Jarrod A Marto, Ethan C Garner, and Thomas G Bernhardt. Bacterial
cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-
autonomously. Nature Microbiology, 1:16172, 2016

C.1 Supplemental Experimental Procedures

C.1.1 Cell Lines Used in This Study

ckc156: HeLa - 3xGFP-CENP-A, 3xGFP-centrin
ckc094: hTERT RPE-1 - 3xGFP-CENP-A, 3xGFP-centrin
ckcl52: HeLa - mNeonGreen-PICH, 3xGFP-centrin

HeLa3xGFP-CENP-A
HeLa3xGFP-CENP-A
HeLa3xGFP-CENP-A
HeLa3xGFP-CENP-A
HeLa3xGFP-CENP-A
HeLa3xGFP-CENP-A
HeLa3xGFP-CENP-A
HeLa3xGFP-CENP-A

3xGFP-centrin,
3xGFP-centrin,
3xGFP-centrin,
3xGFP-centrin,
3xGFP-centrin,
3xGFP-centrin,
3xGFP-centrin,
3xGFP-centrin,

KID knockout
KID knockout
KIF4A knockout
KIF4A knockout
KID knockout, KIF4A knockout
KID knockout, KIF4A knockout
mCherry-Skal-WT (hardened)
mCherry-Skal-iTMTBD (hardened)

C.1.2 Laser microsurgery

Single kinetochores were ablated by eight consecutive pulses (10 Hz repetition rate; pulse
width: 8-10 ns; pulse energy: 1.5-2 pJ) derived from a doubled-frequency Elforlight laser
(FQ-500-532) mounted on an inverted microscope (TE2000U; Nikon) equipped with a CSU-
X1 spinning-disk confocal head (Yokogawa Corporation of America). Cells were imaged

using a 100x 1.4 NA Plan-Apochromatic differential interference contrast objective (Nikon).
Images were detected with an iXonEM+ EM-CCD camera (Andor Technology), using the
NIS-Elements software (Nikon Instruments Inc.).
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C.1.3 Image processing

Time-lapse images of 3xGFP-CENP-A cell lines were background subtracted (rolling ball
radius: 2 pixels), sum projected and brightness/contrast adjusted in ImageJ/Fiji before
further processing or analysis. Generation of kymographs was performed as described
previously [5]. Briefly, guided-kymographs were generated after manual spindle pole tracking,
the coordinates of which were used to compensate for spindle rotation and translation over
time, thereby stabilizing a virtual equator in the horizontal center of the kymograph. To
collapse the kymograph, a routine was used that assigns an RGB color gradient to the
vertical axis of each kymograph frame.

C.1.4 Analysis of kinetochore motion

All computational analyses of particle trajectories and the downstream analysis of
kinetochore motion were performed using MATLAB 2014a. Single-particle trajectories
(SPTs) of kinetochore motion were generated from sequential spatial localizations using the
MTrackJ software package [4] provided in Fiji/ImageJ. Individual kinetochore localizations
were obtained manually using centroid fitting with a 9x9 pixel grid. Care was taken to
avoid invalid assignments in which one kinetochore trajectory was connected with an
unrelated kinetochore trajectory. With this in mind, merging and splitting events (two
objects overlapping/separating), as well as gap closing (connecting objects that disappear
and reappear in a later frame [3] were forbidden to eliminate the chances of these
occurrences. In cases where there was uncertainty in sequential particle localizations
between two frames, trajectories were terminated.

To determine the localization error in associated with estimated kinetochore positions,
HeLa cells were fixed (10 min in 4% formaldehyde) and static kinetochores were imaged using
the same imaging protocol that was applied to live cells. Kinetochores were tracked using
the same parameters in MTrackJ (centroid fitting) to generate time-series single particle
trajectories of stationary kinetochores. Motions of individual points along each trajectory
were assumed to be due solely to independent localization errors, excluding stage drift and
thermal motion. Under this assumption, the spatial localizations of individual particles can
be modeled as distributed according to a Gaussian with the mean centered on the true (fixed)
particle position and a standard deviation that is equal to the localization error. Figure
C.1C shows the localization error and fitting procedure for a single example kinetochore,
where ae is the localization error associated with the normal distribution fit to the sequential
localization measurements. Analyses of eighteen such trajectories of stationary kinetochores
were performed with their localization errors individually computed in this manner (Figure
C.1D). The overall distribution from compiling the individual localization errors for each
trajectory estimated in this manner was then used to obtain the final mean-value estimate
of the localization error that was subsequently used for classification of kinetochore motion
behaviors (34.2 5.8 nm; mean s.d.). Kinetochores and spindle poles were assumed to
have equal localization errors.

To classify poleward and anti-poleward moving kinetochores (Figure C.2F), we analyzed
the single-step-level dynamics of individual kinetochore trajectories. Kinetochore trajectories
were assigned to their corresponding spindle poles based on the minimum mean distance
during anaphase. In KIF18A-depleted cells, chromosomes do not align to form a proper
metaphase plate, so the assignment of the corresponding spindle pole was based on the
minimum distance of the last tracked frame for the kinetochore in question. The time of
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anaphase onset for each individual cell was defined as the time point immediately prior to
the separation of sister chromatid populations as annotated manually using visual inspection
based on the distance between the kinetochore-spindle pole groups. For anaphase motion,
we analyzed the first 240 seconds in HeLa cells or 152 seconds in hTERT-RPE1 cells after
anaphase onset. For metaphase, we analyzed motions of the first 320 seconds of a >600
second movie in which the cell remained in metaphase throughout the imaging process.

After the assignment of kinetochores to spindle poles, the change in distance
(displacement) between each kinetochore and their corresponding spindle poles was
computed over time. Measurements of these displacements will be slight underestimates due
to the possibility of out-of-plane motion that is lost in projection of kinetochore and spindle
pole positions to the imaging plane. Displacements were then carefully analyzed to
determine whether a kinetochore was moving poleward or anti-poleward. Note that to
classify poleward/anti-poleward motion based on the change in distance between the
kinetochore in question and its assigned spindle pole, the uncertainty in the distance, UD,

between the two objects rather than simply the localization error, ae, of each object itself
must be considered. This distance uncertainty is derived from the propagation of error in
computing the distance from the localizations of the kinetochores and spindle poles, where
the uncertainty in the distance is related to the localization error by OD = V'2o. An event
was defined as "indeterminate" if the kinetochore displacement (Ax) between two time
points was smaller than ./-20D. Adjusting this ad hoc threshold results in a trade-off
between the detectability of kinetochore poleward/anti-poleward motions and the
mis-assignment of localization noise to these motion states in the analysis.

Cell-to-cell heterogeneity in kinetochore displacement as well as velocity distributions
were characterized following annotation of trajectories into poleward and anti-poleward
states. Additionally, the percentage of time spent in each state across all kinetochores for
each individual cell was computed over the anaphase period. These analyses were performed
across the trajectories from individual cells separately. The sample mean of each metric
for each cell was used to compute the overall distribution of the metric for each condition
or cell line. For the calculation of statistical significance between treatment conditions or
perturbations, Prism 6 (GraphPad) was used to perform unpaired, two-tailed Student's
t-tests. Independent samples tested represent measurements from distinct cells in a given
condition, with the set of individual trajectories per cell contributing to the mean behavior
for that cell. The numbers of independent samples, which were greater than or equal to five,
were chosen as experimentally feasible movies of adequate quality were available. Similar
motion dynamics were detected between cells from the same condition or perturbation. To
highlight this point, distributions of both poleward and anti-poleward velocities were plotted
for each cell and are consistent within their groups. The cell-by-cell distributions of velocities
for cells analyzed in Figures 1, 3 and 4 can be found in the Supplemental Dataset along
with the complete data set from our tracking of each individual cell and condition as both
MATLAB .mat data files as well as MTrackJ (a tracking package plugin for ImageJ) .mdf
trajectory files.

We additionally evaluated the sensitivity of classified kinetochore behaviors to imaging
frame rate, including the classification of poleward versus anti-poleward motion and their

associated state lifetimes. For this analysis, untreated HeLa cell kinetochore trajectories
obtained using 4 seconds/frame imaging conditions were "coarsened" computationally to
decrease sampling to 8 and then 12 seconds/frame by omitting data from neighboring

time-points. Results indicate that trajectory coarsening results in an overall increase in
displacement magnitude between successive frames, as expected for a random process with
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drift (Figure C.2F; [1]). Accordingly, a smaller fraction of kinetochore displacements is

classified as "indeterminate" (Figure C.1E) because more displacements per trajectory exceed

the localization error threshold. Associated estimations of the lifetimes of individual motion

states are also observed to depend strongly on sampling frequency because of the similar

dependence of active versus diffusive transport on the time-scale of observation. Thus, the

local lifetime of a given poleward/anti-poleward processive motion depended strongly on

sampling frequency, and was omitted from analysis.

An example "coarsened" (4s, 8s, 12 s/frame) trajectory is shown in Figure C.2F. This

trajectory is annotated in color using its "state sequence" corresponding to the intervals that

the algorithm has classified as poleward, anti-poleward, or indeterminate. At 4 s/frame, a

large fraction of the intervals annotated fall below the minimum threshold for labeling a

particular displacement as poleward or anti-poleward. This is due to the average step size

that the kinetochore moves during the 4 second interval falling near or below the detection

threshold that is imposed by the localization error. Decreasing temporal resolution (4

s/frame to 8 s/frame) results in larger displacements, leading to more intervals that are

positively annotated as having motion beyond the noise threshold. Trajectories can be

coarsened further (8 s/frame to 12 s/frame) at the cost of decreased temporal resolution,
which may result in the failure to detect motion dynamics on faster timescales. Given this

sensitive dependence of motion state lifetimes on sampling frame rate, we refrained from

reporting motion state lifetime information.

C.2 Figures

Cell Type Anaphase Spindle Length Maximum Pole Separation Speed

Early Late Velocity Reached at Time After
Anaphase Onset

HeLa "12 pm ~20 pm 2.7 0.6 pm/min -1 min

hTERT-RPE1 ~12 pm ~19 pm 2.6 0.6 pm/min '1.3 min

Cell Type Anaphase Kinetochore to Pole Distance Averaged Maximum Kinetochore to Pole Motion

Early Late Velocity Reached at Time After
Anaphase Onset

HeLs 6.13 0.2 pm 3.2 0.3 pm 1.17 0.2 pm/min "2 min

hTERT-RPE1 5.9 0.6 pm 3.1 0.6 pm 2.04 0.7 pm/min ~0.66min

Cell Type Early Anaphase (240s HeLa, 152s hTERT-RPE1)
Poleward Average Poleward Anti-poleward Average Anti-poleward

State Motion Speed Pause State State Motion Speed

HeLm 54.5 2.4% 1.63 0.17 pm/min 25.8 3.8% 19.8 2.6% 1.46 0.19 pm/min

hTERT-RPE1 62.6 4.2% 2.03 0.16 pm/min 17.7 2.5% 19.7 3.6% 1.76 0.20 pm/min

Table C.1: Parameters of Anaphase Spindle and Kinetochore Motion. Related

to Figure 4.1.
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Figure C.1: Characterization of anaphase chromosome dynamics from single-
particle tracking and trajectory analysis. Related to Figure 4.1. (A) Kinetochore-
to-pole distances for an example untreated HeLa cell. Representative distance trajectories
over time are labeled in blue. The average distance measured over all trajectories in this
cell over time is depicted by the bold black line. Anaphase onset is labeled as t = 0. (B)
Color-coded kymograph of the time-lapse movie corresponding to Figure 4.2D aligned to one
pole. The dashed lines indicate distinct anaphase events from sister chromatid separation
onwards. (C) Example serial localizations from a single kinetochore tracked in a fixed HeLa
cell (solid blue dots) plotted together with the mean position of the kinetochore (magenta
'x') determined from the average of the serial kinetochore localizations. Red circles denote
successive standard deviations from the mean measured by a normal distribution fitted to
the localizations. The estimated localization error for this single kinetochore corresponds
to the standard deviation. (D) Histogram of localization errors estimated from multiple
kinetochores as depicted in Figure 4.1C. The localization error determined from this fixed
cell (n = 18 kinetochores) was 34.2 5.8 nm (mean s.d.). (E) State ratio comparison
of untreated HeLa cells during metaphase (left) or anaphase (right) imaged at 4 second
intervals and subsequently coarsened to 8 and 12 second intervals by omitting successive
time-frames (n=8 cells).
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Sampling Analysis on Kinetochore Trajectory
- Poleward indeterminate - Anti-PolewardF
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Figure C.2: (continued) Characterization of anaphase chromosome dynamics

from single-particle tracking and trajectory analysis. (F) Example kinetochore

distance trajectory in anaphase imaged at 4 seconds/frame. Top: relative distance of the

kinetochore from its spindle pole over the entire observed trajectory. Each curve is annotated

using colors that denote the state of motion of the kinetochore during the corresponding

interval. Middle: displacements (change in distance between successive time points) along the

distance trajectory. The top and bottom dotted lines denote the localization error threshold

that determines whether kinetochore motion is classified as poleward/anti-poleward or

indeterminate. A positive displacement represents an anti-poleward motion in this regime

(an increase in distance from the spindle pole). Bottom: the state sequence, or series of

annotations of poleward/anti-poleward/indeterminate kinetochore motions, at successive

time points in the trajectory. From left to right, the temporal sampling of the original

trajectory is "coarsened" computationally from the original experimental imaging time

sampling of 4 seconds/frame to 8 and 12 seconds/frame to test the role of temporal sampling

on motion classification.
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Figure C.3: Effects of removal of physical connections between sister

chromatids on chromosome dynamics. Related to Figure 4.7. Comparison of

distribution of kinetochore motion stages (A) and velocity (B) during in HeLa cells (3xGFP-

CENP-A, 3xGFP-centrin) during untreated Metaphase or Anaphase (n=10 each), after

cohesin subunit SCC1 RNAi (n=13) or Laser ablation (n=29).
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Figure C.4: Effects of Okadaic acid on anaphase cell behavior and comparison
to metaphase. Related to Figure 4.5. (A) Color-coded metaphase kymograph of an

untreated (left n=10) HeLa cell (3xGFP-CENP-A, 3xGFP-centrin). (B) Representative

time-lapse stills (maximal intensity projections) of HeLa cells expressing mNeonGreen-PICH,

3xGFP-centrin entering anaphase in presence of DMSO (upper row, n=10) or Okadaic acid

(lower row, n=8). (C) Graphs showing distribution of motion stages, the average poleward

velocity (left) or anti-poleward velocity (right) in untreated HeLa cells or Okadaic acid

treated HeLa cells (3xGFP-CENP-A, 3xGFP-centrin) over time (n=10 cells each). (D)
Comparison of distribution of anti-poleward motion in metaphase cells, untreated anaphase,

or Okadaic acid-treated anaphase HeLa cells (3xGFP-CENP-A, 3xGFP-centrin; n>10 each;
Unpaired t-test results: **** p<0.0001, ** p=0.0017). Scale bars, 2 pm.
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Figure C.5: Characterization of Cell lines and Perturbations. Related to Figure

4.7. (A) Western blots probed for KIF4A, KID and a-tubulin (as a loading control) for

HeLa cells (3xGFP-CENP-A, 3xGFP-centrin) in which the chromokinesins KID and/or

KIF4A were eliminated using CRISPR/Cas9-mediated gene editing approaches. Asterisks

indicate cells lines used in this study. (B) Kinetochore to pole distance in STLC treated

cells with monopolar spindles (n>20 cells each). 2 independent single and double knock out

cell lines of KID, KIF4A were compared to their progenitor HeLa cell line (3xGFP-CENP-A,

3xGFP-centrin). Error bar indicate standard deviation (C) Distribution of kinetochore to

pole distance between control cells and KID, KIF4A double knock out HeLa cells (3xGFP-

CENP-A, 3xGFP-centrin) 6 minutes after anaphase onset (n>174 kinetochores each pooled

from 7 cells). Lines indicate average and standard deviation. P indicates unpaired t-test

result.
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Figure C.6: (continued) Characterization of Cell lines and Perturbations. (D)
Representative color-coded metaphase kymograph of an untreated (n=10) HeLa cell (3xGFP-
CENP-A, 3xGFP-centrin) or treated with siRNA against KIF18A after 48h (right n=20).
(E) Average nuclear envelope breakdown (NEB) to anaphase duration of cells after Control

(n=104) or KIF18A (n=114) RNAi. P indicates unpaired t-test result. (F) Comparison of
relative ratio of states and velocity between untreated HeLa cells (n=10) and cells expressing
Skal-dMT mutant (n=5) after depletion of the endogenous protein.

Table C.2: Kinetochore Dynamics of HeLa Cells.
4.8.

Related to Figure 4.1 through
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D
Kinetochores

Condition Frequency of State (%) Velocity (pm/min)

(Number of Cells) Poleward Indeterminate Anti-poleward Poleward Anti-poleward

Untreated Metaphase (10) 33.1 2.0 34-2 2.9 32 7 29 1.39 0.11 1.25 0.08

Untreated Anaphase (10) 54.5 2.4 25.8 3.8 19.8 2.6 1.63 0.17 1.46 0.19

Prometaphase: RAD21 33.7 4.6 22.2 6.5 44.1 8.3 2.27 0.39 1.66 0.21RNAI (13)

Laser Ablation: First 20s 69.0 24.7 18.1 21.0 12.9 18.4 3.50 1.11 2.45 1.08(29) ________

Laser Ablation: After 20s 40.3 7.8 24.7 9.1 35.0 10.3 2.96 0.76 2.48 0.60
(20) ____

Anaphase In Okadalc Acid 52.6 4.4 17.6 2.1 29.8 5.3 2.040 .18 1.84 0.10(18)

AnaphaseoflDKIF4A 57.0 5.4 18.1 3.5 24.8t5.9 2.01 0.27 1 68 0 18KO in Okadalc Acid (12)

Anaphase of KIF18A RNAI 49.5 3.5 14.5 2.6 35.9 4.8 2.62 0.31 1.91 0.22In Okadalc Acid (5)

Anaphase of SKA-AMTBD 46.4 8.6 32.4 7.1 21.1 8.5 1.54 0.24 1.20 0.21in Okadaic Acid (5) 1
Untreated Anaphase of 58.8 1.9 23.4 1.5 17.9 2.0 1-62 0.03 1.50 0.05
SKA1 - AMTBD (5)



Bibliography

[1] Howard C Berg. Random walks in biology. Princeton University Press, 1993.

[2] Hongbaek Cho, Carl N Wivagg, Mrinal Kapoor, Zachary Barry, Patricia DA Rohs,
Hyunsuk Suh, Jarrod A Marto, Ethan C Garner, and Thomas G Bernhardt. Bacterial

cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning

semi-autonomously. Nature Microbiology, 1:16172, 2016.

[3] Khuloud Jaqaman, Dinah Loerke, Marcel Mettlen, Hirotaka Kuwata, Sergio Grinstein,
Sandra L Schmid, and Gaudenz Danuser. Robust single-particle tracking in live-cell

time-lapse sequences. Nature Methods, 5(8):695-702, 2008.

[4] E Meijering. MTrackJ: A Java program for manual object

tracking. University Medical Center Rotterdam, [online] Available:

Http://wwwimagescienceorg/meijering/software/mtrackj, 2006.

[5] Ant6nio J Pereira and Helder Maiato. Improved kymography tools and its applications

to mitosis. Methods, 51(2):214-219, 2010.

185



186



Appendix D

Simulations validating
TIR-imaging-FCS analysis of B.
subtilis membrane proteins

Fluorescence correlation spectroscopy (FCS) is a technique that can be prone to artifacts that
are sometimes non-intuitive and can dramatically affect the shape of the ACF curves and
the measurements obtained from them. Here, we analyze robustness of FCS measurements
through simulation of fluorescence imaging data of diffusing and flowing molecules.

To begin, Brownian dynamics simulations of either diffusing or flowing molecules were

performed. Erom these simulations, a simulation of TIRF microscopy was performed for each

simulation frame to generate artificial fluorescence movies resulting from the localizations

of the simulated molecules throughout time [2, 1]. ACFs for the intensity traces of each

simulated pixel were then calculated and input into-FCS-Bayes for analysis with the intention
of verifying that both models of motion and the coefficients of motion could be properly
resolved. The parameters for particle motion (diffusion coefficients, velocities), imaging

conditions, and FCS-Bayes analysis were designed to closely match that observed in the
actual imaging experiments detailed in Chapter 5.

The simulation software used in this thesis for validation of the FCS analysis was
developed by Jun He and Syuan-Ming Guo during their tenure in the Bathe group. Table
D.1 shows the general simulation parameters common to all simulations unless otherwise

noted.

Parameter Value Notes

pm/pixel 0.160 pm
Fluorophore brightness 5000 photons/s

PSF FWHM 316 nm From Chapter 5 microscope

Max corr. time (diffusion sims) 10 s

Table D.1: Standard parameters for simulation of TIRF FCS movies & FCS-
Bayes analysis.
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D.1 FCS diffusion simulations
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Figure D.1: Autocorrelation function curves generated from simulations of

particles diffusing in a plane. The legend denotes the increasing diffusion coefficients

corresponding to a left shift in the ACFs. This range of diffusion coefficients covers the

diffusion coefficients measured for all the proteins imaged in Chapter 5. Each curve is

the mean of ACFs from approximately 256 pixels (depending on how many pixels passed

blocking for a particular simulation). Movie At = 0.03 s.
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Figure D.2: Measured average diffusion coefficients from the simulations used

to generate Figure D.1. The average coefficient is a mild-to-moderate overestimation

of the simulated coefficient for all values of coefficient until 0.5 Pm2 /s, which is a huge

overestimate. This indicates that the experimental 30 ms/frame imaging condition used

in Chapter 5 for all diffusing molecules of interest appears to be satisfactory based on the

values of the coefficients measured in the experiments.

D.2 FCS measurements on periodic flow

Due to the nature of circumferential motion of MreB in B. subtilis, care had to be taken

to account for the effect of periodic motion on an ACF curve (Figure D.3). In this section,
periodic, directed motion of particles is simulated, and these movies analyzed with FCS-

Bayes. I show that for perfectly periodic motion where particles solely travel with respect to

the short axis of the cell cylinder, there are both the expected periodic correlation in the

ACF at the characteristic period as well as "random" correlations that crop up when more

than one particle revolves periodically through a particular pixel during the movie (Figure

D.4). In my experimental realization of circumferential motion in B. subtilis, MreB actually

has a long-axis drift due to the growth of the cell over the long imaging course of the movies

(25 min). This was previously estimated to be approximately 2 nm/s in E. coli [3], but was

not measured in this work. Given a 160 nm pixel size, a period of approximately 100 seconds,
and assuming relatively the same rate of cell elongation, the effect of periodic motion on the

random correlations in the ACF curves is lessened compared to the simulations here. As

such, the extreme truncation of the ACFs used here for FCS-Bayes analysis was not required

in the experimental datasets in Chapter 5.

189



8000- A

6000

4000

2000

0-4 . .

1 2 3 4 5
Frequency (Hz)

1.06

1.04

1.02

1.00

0.98

6 7 8

I
0.01 0.1

Figure D.3: An example obtained from the FCS literature of periodic flow

(Wohland group) [4], though without the complication of circumferential motion

of multiple particles (Figure D.4). In this regime, an analytical model exists which

can be used to describe this periodic motion.
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Figure D.4: Two simulations of periodic, circumferential motion resembling in

vivo MreB behavior. Left: the intensity trace of a single pixel over time. Right:
the corresponding ACFs of two pixels of such characteristic intensity traces. In the top

simulation, there was only one particle that revolved through a pixel throughout the movie.
In the bottom, there were two staggered particles entering and exiting the same pixel,
which can be seen from the groups of two periodic intensity spikes in the plot. The ACFs
of the one particle per pixel simulations (top) demonstrate the effect of periodic motion

normally expected (as in Figure D.3). The two particle-per-pixel simulations demonstrate
the "random" correlation effect. Along with the expected periodic peaks in the ACFs as in

the above plot, there are also correlation spikes introduced between these peaks as well as

between the first periodic peak and the correlation decay from the particle flow. Of note

is that these correlations are designated "random" because they result from the random

spacing of particles on the cylinder from each other in simulation or as would occur in vivo.
Changing this distance modulates these correlation spikes, and as a result, each FCS curve

will have a different pattern of correlations depending on the arrangement of possibly many

molecules which travel through that pixel. This makes it difficult to find an appropriate

analytical curve to describe the entirety of the ACF.
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Figure D.5: Top: all ACFs from a simulation of a cylinder randomly patterned

with molecules. Each ACF shows considerably different correlation peaks between the

first true periodic peak (at approximately 100 s) and the characteristic flow decay. Bottom:

such correlations are also present in experimental data (MreB-msfGFP imaged at 25'C),
though they are not as extreme due to the elongation of the cells. Cells with MreB-HaloTag

analyzed in Chapter 5 were imaged at 37'C, which appeared to further minimize this effect.
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Figure D.6: An example of the complete failure of fitting an analytical FCS

model to a curve containing MreB-like periodic motion (expected).
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Figure D.7: Heavily truncated curves from simulations of MreB-like motion

allow the flow model to be properly resolved.
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Figure D.8: Distribution of velocities measured from the same simulation as

generated Figure D.7. The simulated velocity was 60 nm/s. Note that the mean in this

simulation is strongly shifted by the presence of the high-velocity outlier. Mean s.d.
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Appendix E

Development of a Bayesian tool for
extracting diffusive states from
SPT datasets

The aforementioned MSD-Bayes and HMM-Bayes developed by the Bathe lab are both
excellent tools for extracting biophysical information from single particle tracking datasets.

While effective in discriminating between complex models of motion (flow vs. diffusion,
confined/anomalous diffusion, etc.) and heterogeneity in motion along trajectories, there are

particular drawbacks associated with each method. In the case of MSD-Bayes, because of the
short-lived nature of single particle trajectories in many biological experiments, trajectories
are short and therefore must be pooled together to properly treat the detection of noise in

the data. When all trajectories do not contain the same type of motion model, this is a
problem when averaging over all of the MSDs. It may be possible to first group trajectories
before analysis, but no attempt has been made to implement this into MSD-Bayes as of

yet. In the case of HMM-Bayes, the Bayesian model selection process heavily involves
Monte Carlo procedures including integration to determine model probabilities, which are

computationally intensive processes. For my thesis work tracking diffusing molecules in B.

subtilis, I am specifically trying to get at only heterogeneity in diffusion coefficients, not

being concerned with where these coefficients occur in the cell or whether switching between

states occurs in single trajectories. This is due to my primary goal being the comparison of

SPT and FCS techniques for the evaluation of the rates of motion of molecules.

Instead of MSD-Bayes or in particular HMM-Bayes for the analysis of my SPT data in

Chapter 5, I have developed a Bayesian tool to analyze SPT datasets in order to determine

both the number of diffusion coefficients (and their values) in a sample as well as the relative

prevalences of these coefficients, or weights. This is based in the calculation of cumulative

distribution functions (CDFs) from pooling the displacements of all the trajectories in an

SPT movie. In a manner highly similar to MSD-Bayes and HMM-Bayes, the empirical

CDFs then undergo curve fitting to analytical models encoding different numbers of diffusion

coefficients potentially present. From Bayesian model selection applied to the success of the

curve fitting for the varying number of diffusion component models, the most likely number
of diffusion coefficients given the data is then returned to the user. The following appendix

details the development and evaluation of this procedure.

Many thanks go out to Syuan-Ming Guo for being heavily involved in the derivation of

the noise profile of the cumulative distribution function and for assistance in modifying the
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FCS/MSD-Bayes codebase.

E.1 Theory and development of a Bayesian CDF fitting
procedure

Assume 2D diffusion. Art is the magnitude of the trajectory displacement at time t.

Axt, Ayt ~ N[O, 2DAt] (E.1)

Art= AXt 2 + Ayt 2  (E.2)

In a CDF fitting to determine diffusion coefficients, the directional information encoded
in Axt and Ayt is not necessary. The displacement magnitudes are thus taken for further
analysis.

E.1.1 Estimating diffusion coefficients with cumulative distribution
functions

The CDF of a distribution of displacement magnitudes has an analytical solution which
has been previously solved [1]. Here, I use this analytical form, which can be adapted to
an arbitrary number of diffusion coefficients, to perform curve fitting to the empirically
measured CDF. The curve fitting provides both diffusion coefficients and fractions/weights
of those diffusive populations. From the goodness-of-fit of these curves, as determined by
Bayesian inference, the most likely number of diffusion coefficients is inferred.

For one diffusion coefficient, the analytical CDF fit to the PDF histogram is:

CDF(Ar, At) = 1 - exp (- ) (E.3)
4DAt

In the case of two diffusion coefficients:

CDF(Ar, At) = 1 - w exp - Ar 2 (1-w) exp Ar2  (E.4)
4DiAt 4D2At

where 0 < w < 1. Adding more diffusion coefficients is simply a matter of adding more
exponential terms with the weights now a vector, the sum of which is 1.

E.1.2 Bayesian CDF fitting with the Laplace approximation

Note: much greater detail on the implementation of Bayesian inference through non-linear
least squares can be found in the derivations of MSD-Bayes [4] and FCS-Bayes [3, 2].

As previously mentioned, the fundamental question of how many diffusive populations
are likely to be present is answered by Bayesian inference on the model fits to the empirical
curve. First, non-linear least squares is utilized to fit the analytical CDFs to the data. This
is performed using a covariance matrix encoding information about the uncertainty of the
data at each CDF point which we formerly determined analytically. In the case of this
analysis, which assumes (approximates) the noise in each point in the CDF is independent
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from other points, this covariance matrix becomes diagonal, and thus weighted least squares
is the specific form used.

The Bayesian inference procedure based on the fit of each model to the CDF data is

performed in the same way as MSD-Bayes and FCS-Bayes implement their model selection:

the maximum likelihood estimate of the model parameters is determined (through weighted
least squares), and the Laplace approximation to the data likelihood is then applied to this

estimate to determine the relative probability of a model describing a particular number of

diffusive populations to the other possible models. In essence, through Bayes' theorem, the
probability P(Mkly) of each model Mk given the data y is determined:

P(MkIy) = P(YIMk)P(Mk) (E.5)
P(y)

Through the integration of P(y Mk), the probability of witnessing the observations

given the particular model, over the maximum likelihood model parameters /k, the model

probabilities are determined:

P(ylMk) = P(y|I3, , M )P(WkIMk dk (E.6)

Fully expanded and assuming a Gaussian noise profile for each of the estimates along

the CDF curve, the final likelihood is:

P(yIMk) = n/2C exp ( (y - fk(x,/3k)) TC- 1 (y - fk (xf0)) P(3lMk)d3k

(E.7)

where C is the aforementioned covariance matrix and fk is the value of the analytical

model. The covariance matrix, as previously stated, is approximated as diagonal (no noise

correlations between CDF points), giving the following definition of C:

CDF1  0 0 ... 0

S CDF2 ... 0

C= 0 0 .. 0 (E.8)

o o 0 ... 0
_ 0 0 --- CDFK-

The key to the posterior estimation by MSD-Bayes, FCS-Bayes, and the Bayesian CDF
fitting here is the application of the Laplace approximation to this integration.

E.1.3 Binning of displacements

The probability density function (PDF) of the displacement magnitudes is a chi distribution.

In order to determine the CDF of an SPT dataset, these magnitudes must be binned into

a histogram. Let k be the histogram bin number, N the total number of displacement

magnitudes, K total number of bins, and Nk the number of displacements in histogram bin

k. The total number of bins K is defined as V.
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The standard deviation of the number of objects in a histogram bin comes from a
multinomial distribution:

Nk 2

a-(Nk)= Nk N (E.9)k N

~vNk (E.10)

(approximately V1N when N >> Nk in any particular bin [Poissonian]).

E.1.4 Calculation of the cumulative distribution function and noise
analysis

The CDF is then calculated from the histogram-estimated PDF through a recursive sum of
the PDF:

CDF 1 N (E.11)
N

In a Bayesian model selection procedure, the goal is to select the most appropriate model
to explain the data given both the amount of data (in this case, the number of displacements)
and its quality (the noise present). As the noise increases in a dataset, more samples are
needed in order to properly resolve the true underlying model. As such, it is necessary to
take into account the amount of noise in the dataset in question such as to avoid erroneous
model selection, particularly overfitting by inferring the presence of too many diffusive states.

Much like the variance of the number of displacements that fall into particular histogram
bins, as described above, the variance of the estimates of the CDF can be approximated
analytically. To conceptualize this phenomenon, pick a point on the CDF curve x. A
displacement from the trajectory pool picked at random has the probability P(X < x) of
falling in or to the left of this point. The chance that a displacement falls into this range
can be thought as an independent, success/failure experiment. As such, the variance of the
points along a CDF can be described by a binomial distribution. The general form for a
binomial probability mass function (PMF) is:

P(kin, p) = ()Pk (1 - P)n-k (E. 12)

o2(P) = np(1 -p) (E.13)

where n is the number of trials, p the probability of a success in each trial, and k is
the number of successes. In our case, p = CDFk and n = N, indicating that the standard
deviation of each CDF point is:

o-(CDFk) = NCDF(1 - CDF) (E.14)

It is important to note that in actuality, each subsequent CDF value CDFk has noise
correlated with every previous value, leading to a non-diagonal covariance matrix. Here,
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we approximate assuming a simply diagonal covariance matrix with curve fitting utilizing

weighted least squares to fit analytical CDFs to the empirical CDF curve. I demonstrate

that this is a reasonable approximation through simulations in the following section.

E.2 Evaluation of the Bayesian CDF fitting procedure

In this section, I test this Bayesian CDF analysis against numerous simulations of diffusing

particles in order to determine the effectiveness of the model selection procedure. This is

in order to evaluate its potential for analyzing real-world SPT datasets and to build trust

in its reliability when comparing SPT to FCS results in Chapter 5. I first show that the

analytical noise model that the procedure is centered around is correct and then move on

towards quantitative metrics of the performance of the algorithm in determining the amount

of diffusing populations present as well as the ability to estimate the diffusion coefficients of

those populations. Figure E.1 demonstrates an example of the Bayesian CDF fitting to a

well-separated three-population simulation.
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Figure E.1: An example of CDF fitting for a simulation of three populations of

diffusing particles. Black dotted line: the empirical CDF of the simulation. Magenta

line: the analytical fitting results assuming 1, 2, or 3 diffusive populations present (left

to right). Shown below the fittings are the CDF probability residuals for the model fits.

Diffusion coefficients: 0.001, 0.1, 10 jum2 /s, At = 0.03s.

E.2.1 Evaluation of analytical model for PDF and CDF noise

characteristics

As the performance of the Bayesian model selection and non-linear least squares fitting

procedures rely on knowledge of the noise / uncertainty in the data being handled, it is

important to make sure that the underlying model for the noise properly treats this issue.
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Here, I show that the noise models for both the PDF and CDF well match the variability
found from simulations from particle diffusion.

Cumulative densities of all simulations overlaid
I

0 .8 - -- - - - ----

0.7 -- -

0.26 - - --

O0 1 02 03 04 . . . .

sp m s (.m)

0.4 E .2:..bser ..d ..e ..r.gen... y.... C D.s.. r...2...si.u.a....s.....ar.....

wit inreaingnumersof ispaceDislaentie p )

Fiurer t Observie thettroeaneityialnos CD e erdeaes fo 20siu ationsoprier
diffsionD withsets, displacemarts eraachDn sim ,At (on poultinndthi

displacements pooled (ily atganale for uanSTxed.rie).3 is varae ecrftese

simulations. The error bars between the curves for the PDF and CDF show agreement
between the standard deviation observed empirically through simulation and the predicted
deviation from the analytical model, suggesting the binomial model for the CDF noise is
appropriate for the Bayesian model selection procedure to follow.

E.2.2 Model selection and coefficient estimation performance testing

Following the validation of the noise model, I implemented the CDF fitting procedure with
this noise calculation into the existing framework of FCS-Bayes' model selection algorithm
utilizing the Laplace approximation. Diffusing particles in two populations were simulated to
test the robustness of the algorithm in two regimes- decreasing numbers of displacements
in the pool and a ratio of diffusion coefficients in the two populations approaching 1. As this
ratio approaches 1, it becomes increasingly difficult to discriminate between these populations
as the resolvability of the "kinks" in the CDF corresponding to the different populations
becomes worse, leading to lower and lower residuals between one and two diffusion coefficient
model fits. Similarly, as discussed earlier, lower numbers of observations increase the variance
in the CDF, leading to uncertainty which impacts confidence in the goodness-of-fit of each
model. Also tested is the effect of localization error (denoted Ue) on the aforementioned
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Figure E.3: Calculated PDFs (top) and CDFs (bottom) of 200 simulations

of particle diffusion (2000 displacements each) depicted as averages of the

simulations. - The green and red curves are the same. The green and red bars indicate

the measured and analytically-approximated standard deviations of the curves, respectively.

D = 1pum2/s, / t =O.03s.

criteria, set to 40 nm as an approximation of relatively poor single-molecule localization

(twice that used in [5]).
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Figure E.4: Evaluation of the Bayesian CDF fitting procedure's ability to

accurately detect the existence of two diffusive populations with respect to

the ratio of diffusion coeffients and the number of displacements in the pool

(legend). Localization error a, = 0 nm. Note that the ratio D2 /D = 1 indicates the

existence of a single population, and anything greater than 0 at this point in the topmost

graph would be therefore a false positive.
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Figure E.5: Evaluation of the Bayesian CDF fitting procedure's ability to

accurately detect the existence of two diffusive populations with respect to

the ratio of diffusion coeffients and the number of displacements in the pool

(legend) in the presence of localization error. Localization error a, = 40 nm. Note

that the ratio D 2 /D1 = 1 indicates the existence of a single population, and anything greater

than 0 at this point in the topmost graph would be therefore a false positive. Each data

point comprises 500 simulations.
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Figure E.6: Percent error in measuring the diffusion coefficients of a two-

population diffusion scenario with respective to the coefficient ratio and the

number of displacements in the pool. Localization error Ce = 0 nm.
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Figure E.7: Percent error in measuring the diffusion coefficients of a two-

population diffusion scenario with respective to the coefficient ratio and the

number of displacements in the pool in the presence of localization error.

Localization error cr = 40 nm. Each data point comprises 500 simulations.
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E.3 Conclusions and future directions

The Bayesian CDF fitting algorithm that I have designed appears to be able to readily

discriminate between different numbers of distinct populations of diffusing molecules. As

expected, proper model resolution (number of states) decreases with decreasing numbers of

pooled displacements or a ratio of diffusion coefficients between two populations approaching

unity. As is ideal in a Bayesian analysis, inadequate information mostly results in underfitting

- it is much more desirable to not detect populations than to declare discovery of a biological

population that does not actually exist. Interestingly, it appears that model selection in the

presence of 40 nm localization error is hardly impacted.

The runtime of this approach is sub-second for a max three population, hundreds of

thousands of observations pool simulation run on an Intel Core i7 4770k. This enables the

rapid evaluation of huge datasets; this is highly enabling as a method for quick screening

of datasets. Considering this, it is also highly complementary to HMM-Bayes, as it allows

the user to screen datasets for interesting phenomena (here, the presence of multiple

diffusing populations) before running the necessarily computationally more intensive (though

considerably more informative), hidden Markov model analysis.

Future work would include moving towards the utilization of a full covariance matrix to

properly model the noise in the CDF curves. This may help to decrease the non-zero false

positive rate of the algorithm as diffusing populations become harder to discriminate. In

addition, instead of modeling noise analytically, it might be worth testing whether measuring

noise through the data itself is a more effective option. Empirical noise covariance matrices

are used both in MSD- and FCS-Bayes. This may come at the cost of a longer runtime,

though it is unknown whether this would be signifcant due to rapid speed of this procedure.

Finally, comparisons of model / coefficient resolutions between this CDF fitting procedure

and HMM-Bayes should be made to cross-evaluate these algorithms' effectiveness.
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Appendix F

A fusion protein alternative to
organic dye-based membrane
visualization in B. subtilis with
reduced phototoxicity

FM dyes commonly used to visualize cellular membranes are known to have phototoxic

properties [2]. As such, dye concentration and imaging source light intensity must be

carefully modulated to avoid cellular damage that can result in highly deformed cells and

disrupted biology F.1. Regardless of care in avoiding toxicity, long timelapses can still result

in toxic effects, necessitating another method of membrane visualization that can overcome

this substantial drawback of this labeling modality.
Through use of a B. subtilis protein involved in later stages of sporulation, SpoIIIJ

(see also Chapter 5) [6, 1, 3], I visualize the membrane without the consequence of high

susceptibility to phototoxicity with severe disruptions to the biology of the cells (Figures F.1

and F.2). SpoIIIJ is an integral membrane protein with an apparent low cytoplasmic presence

relative to membrane levels (Figure F.2). I fused SpoIIIJ to HaloTag on the c-terminus (the

N-terminus is cleaved during membrane insertion). Through labeling with HaloTag-based

organic fluorophores [4, 5], the membrane was visualized with high SNR for extended periods

of time without gross changes to morphology as observed with FM dyes imaged on the same

time scale. Longer periods of observation can be enabled through tagging with a fluorescent

protein, however, I opted for the ability to modulate the fluorescence emission spectrum in

this particular study in order to enable compatibility with a variety of existing B. subtilis

strains.
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Figure F.1: Phototoxicity comparison of FM5-95 membrane staining (top) and

HaloTag-SpoIIIJ-JF 5 8 5 (bottom) for live-cell visualization of the membrane over

time. FM5-95 stained cells were imaged every 2 minutes. SpoIIIJ-JF58 5 cells imaged every

minute.

Figure F.2: SpoIIIJ-HaloTag labeled with JF5 4 9 [4], expressed via an inducible

Phyperspank promoter and integrated into the amyE locus.
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