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Photonics for technology: topological microwave circuits,

chip-scale LIDAR, and optical neural networks

by

Scott Alexander Skirlo

Submitted to the Department of Physics
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requirements for the degree of
DOCTOR OF PHILOSOPHY

Abstract

This thesis focuses on a wide range of contemporary topics in modern electromagnetics and
technology including topologically protected one-way modes, integrated photonic LIDAR,
and optical neural networks.

First, we numerically investigate large Chern numbers in photonic crystals and explore
their origin from simultaneously gapping multiple band degeneracies. Following this, we
perform microwave transmission measurements in the bulk and at the edge of ferrimagnetic
photonic crystals. Bandgaps with large Chern numbers of 2, 3, and 4 are present in the
experimental results 'which show excellent agreement with theory. We measure the mode
profiles and Fourier transform them to produce dispersion relations of the edge modes, whose
number and direction match our Chern number calculations. We use these waveguides to
realize reflectionless power splitters and outline their application to general one-way circuits.

Next we create a new chip-scale LIDAR architecture in analogy to planar RF lenses.
Instead of relying upon many continuously tuned thermal phase shifters to implement non-
mechanical beam steering, we use aplanatic lenses excited in their focal plane feeding ID
gratings to generate discrete beams. We design devices which support up to 128 resolvable
points in-plane and 80 resolvable points out-of-plane, which are currently being fabricated
and tested. These devices have many advantages over conventional optical phased arrays
including greatly increased optical output power and decreased electrical power for in-plane
beamforming.

Finally we explore a new approach for implementing convolutional neural networks
through an integrated photonics circuit consisting of Mach-Zehnder Interferometers, optical
delay lines, and optical nonlinearity units. This new platform, should be able to perform the
order of a thousand inferences per second, at puJ power levels per inference, with the nearest
state of the art ASIC and GPU competitors operating 30 times slower and requiring three
orders of magnitude more power.

Thesis Supervisor: Marin Soljadid
Title: Professor of Physics
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3-1 Comparison of theoretical gap map and bulk transmission to experimental

transmission measurement in a 2D ferrimagnetic photonic crystal. a) Theo-

retical topological gap map as a function of the magnetic field and the fre-

quency with each bandgap labeled by its gap Chern number. The diagonal

black line indicates the resonance in the effective permeability (Supplementary

Material) b) Theoretical bulk transmission c) Experimental bulk transmission

d) Experimental configuration with the lattice geometry (top metal plate re-

moved). The antenna locations are marked with "1" and "2". e) Simulation

geometry with the green line representing the receiving antenna, and the green

circle representing the transmitting antenna. . . . . . . . . . . . . . . . . . 51

3-2 Experimental edge transmission measurement and Fourier transform (FT) of

mode profiles along the copper boundary. a) S21. b) S12. The bandgaps

that are nontrivial have direction-dependent edge transmission, because the

interface of a nontrivial bandgap with a trivial bandgap (copper boundary)

supports one-way modes. In a) and b) this causes the nontrivial bulk bandgaps

from Fig. ic to be present in one direction (e.g. S12) and be absent in the

other (e.g. S21), which we highlight for the Cgap = -4 bandgap with black

boxes. The trivial bandgaps around 4 GHz do not support one-way modes,

and so do not exhibit direction-dependent transmission. c) Experimental FT

of edge mode profiles and the theoretical edge bandstructures with the edge

modes in red and the bulk bands in gray. The range of wavevectors included

in both plots is the same and includes only one Brillouin zone. The number

of one-way edge modes in both sets of plots agrees with jCgapj from Fig. la,

while the sign of C,p is consistent with the theoretical group velocity (from

the edge mode dispersion) and the directional transmission in a) and b). . . 53
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3-3 Topological one-way circuit implemented using Cgap = 1 (a=2.4 cm) and

Cgap = 2 (a=3.0 cm) photonic crystal. a)-c) Transmission plots showing edge

transmission between antennas at 1,2, and 3 and antenna 4 located at the

center. Shared bulk bandgap for Cgap = 1 and Cgap = 2 crystals is highlighted

in yellow. d) Experimental configuration illustrating crystals with copper

boundary (COgap = 0) on left and antenna locations 1-4. Arrows indicate the

theoretical direction and the number of the edge states at each interface. The

transmission data is consistent with predicted edge state directions, which

confirms that the upper crystal has Cgap > 1. . . . . . . . . . . . . . . . . . 56

3-4 Phase and amplitude measurements for 4.5 cm by 0.735 cm rectangular waveg-

uide with Fourier transform of calculated mode profile. a) Amplitude mea-

sured in waveguide from 0 to 50 cm b) Phase c) Fourier transform of electric

field computed from the measured amplitude and phase data. The peaks of

the Fourier transform appear in red, and their dispersion matches the theoret-

ical predictions in black. Note that the peaks on the right side (the forward

propagating waves) are higher in amplitude. The amplitude of the forward

propagating wave is higher than the backward propagating one because of

absorption at the end of the waveguide by the microwave absorber. . . . . . 60

3-5 Fourier Transform of experimental and simulation data compared to com-

puted bandstructure for Cgap = -3 and -4 from Fig. 2 in main text. Regions

of interest are highlighted in yellow. a) FT of experimentally measured mode

profile. b) FT of simulated mode profile in geometry closely matching exper-

iment. c) Supercell calculation for bulk and edge bands. Note that in the

bandgap we have forward and backward propagating modes, but that each

set of these modes is localized to opposite edges. d)-f) The same data sets for

Cgap = -4. The excellent agreement between these figures provides further

evidence for the experimental observation of multiple one-way edge modes. . 61
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3-6 Comparison of theoretical gap maps and bulk transmission to experimental

transmission measurement in a 2D ferrimagnetic photonic crystal for Cap = 1

(a=2.4 cm) crystal from Fig. 3. a) Theoretical topological gap map as a

function of the magnetic field and the frequency with each bandgap labeled

by its gap Chern number. The black diagonal line indicates the resonance in

the effective permeability (Appendix B) b) Theoretical bulk transmission c)

Experimental bulk transmission d) Experimental configuration with the lattice

geometry (top metal plate removed). The antenna locations are marked with

"1" and "2". e) Simulation geometry with the green line representing the

receiving antenna, and the green circle representing the transmitting antenna. 63

3-7 Experimental edge transmission measurement along copper boundary for Cgap

1 (a=2.4 cm) crystal from Fig. 3. a) S21. b) S12. The bandgaps that are

nontrivial have direction-dependent edge transmission, because the interface

of a nontrivial bandgap with a trivial bandgap (copper boundary) supports

one-way modes. In a) and b) this causes the nontrivial bulk bandgaps from

Fig. S3 to be present in one direction (e.g. S12) and absent in the other (e.g.

S21). The trivial bandgaps around 5 GHz do not support one-way modes, and

so do not exhibit direction-dependent transmission. c) Experimental configu-

ration with the antenna locations and the copper boundary. Insets on the left

and right side of a) and b) respectively show edge band calculations with the

edge modes in red and the bulk bands in blue. Each supercell calculation ap-

plies to a) and b) even though each is shown on only one side for clarity. The

number of one-way edge modes corresponds to |Cap from Fig. S3a, while the

sign of Cga, is consistent with the theoretical group velocity (from the edge

mode dispersion) and the directional transmission in a) and b). . . . . . . . 64
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4-1 Missing analogy between RADAR literature and LIDAR literature. a) Phase-

shifter based approaches from RADAR from [3, 4]. There is an extensive

literature developing phase-shifter based RADARs ranging from only a few

active elements to thousands for large arrays. b) This phase-shifter based

approach has been extensively adopted by integrated-LIDAR architects, who

typically employ ID or 2D arrays of phase shifters for beam forming. Imaged

here is 2D integrated array from [5] with waveguide pitch 6 A x 6 A. c) Another

class of RADAR solutions based on using lenses. Imaged here is Rotman lens

design and patch antenna array from [6]. There is a very rich literature of ID

and 2D dielectric and metallic lens solutions developed in RADAR due to the

expense and difficulty of implementing phase shifter solutions. Despite this

extensive literature which contains many useful techniques, no analog planar

integrated LIDAR solution exists in the literature. Our new solution fills in the

missing piece by contributing a planar lens-based approach in direct analogy

to these RADAR methods, which will enable new benefits and opportunities. 73

4-2 Lens-enabled chip scale LIDAR architecture. We illustrate the functionality of

our optical chip through multiple stages. First a fiber containing an IR signal

is edge coupled into the chip. Subsequently this signal is routed through

an optical switch matrix formed by an array of electrically-controlled Mach-

Zehnder interferometers (MZI). The electrical control lines required for the TO

phase shifters on one arm of these interferometers is omitted. After routing,

the beam is emitted at one point in the focal plane of the lens. The signal

undergoes diffraction until being focused into a plane-wave by the planar

aplanatic lens. Finally the infrared light is scattered out of plane by a iD

grating coupler. The relative dimensions of this figure have been distorted for

visualization, but the SiN waveguides are 200 nm thick and 1pam wide, and the

PolySi layer forming the aplanatic lens is 20-40 nm thick, with the gratings

being the same thickness and material as the lens. An additional upper SiO 2

layer encapsulating all of the components is omitted. . . . . . . . . . . . . . 74
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4-3 Non-mechanical beam steering principle for lens-enabled chip-scale LIDAR.

Changing port excitation changes the in-plane beam steering direction, while

tuning wavelength (red to blue, these are false colors since the device operates

in the IR) roughly changes the out-of-plane angle. The 3D directivity pattern

for the system in each excitation scenario is depicted above the output grating. 75

4-4 Ideal near-field aperture generated from system, the far-field beam angles,

and the far-field directivity for this aperture. a) The ideal aperture pattern

is a parallelogram with tilt q,, width W, and length L, the exponential decay

follows from radiation loss from grating emission in the x direction. The

interference pattern results from the addition of a crystal momentum 2m to

the plane-wave momentum, where A is the grating period and m is the grating

order. b) The computed far-field directivity for the ideal aperture given in a).

The peaks to the left and right of the main beam are known as sidelobes and

originate from the sinc factor in the directivity function. . . . . . . . . . . . 77

4-5 Illustration of theoretical ray-tracing and far-field for lens-enabled chip-scale

LIDAR generated with AO = 1.55 pm, q =0.025pm- 1, A =700nm, dutycy-

cle=0.1, feed beamwidth of 15', and effective indicies ni =1.39 and n2 =1.96

a) Ray-tracing simulations are used to determine the optimal port position

and relative angle. These rays are traced through the grating and form an

aperture pattern. The Fourier transform of the aperture gives the Far-field

pattern. Numerical details of effective index calculations, port phase center,

and feed patterns are detailed in the appendix. b) Heat plot showing far-field

beam spots in u. and u, space. The location of these ports is governed by 4.2,

where the beams along the elliptical curve are generated from port switching,

while the points formed from translating the ellipse to the right and left cor-

respond to frequency tuning over 50 nm around AO =1.55[tm. c) 3D beam

patterns corresponding to those in b). Here the different colors indicate the

different wavelengths used to generate the beam. The drooping effect of the

beams as they turn off-axis is caused by increasing in-plane momentum. . . . 81
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4-6 Schematic of power requirements for phase-shifter-based and lens-based op-

tical beam-steering. a) In the phase-shifter approach power is uniformly fed

to all output antenna elements through a 3dB splitting tree. Approximately

N thermal phase shifters are actively cohered to implement in-plane beam

steering over N resolvable points. b) In the lens-based approach, we achieve

N resolvable points in-plane by switching with an MZI tree between N ports

of a dielectric lens feed. The power requirements of this network scale like

log2 N as compared to N for the architecture in a) because only MZIs associ-

ated with the desired optical signal path need to be activated; rest are "off"

and draw no power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4-7 Block diagram of full integrated LIDAR chip. The products for this year's

project are surrounded by a solid black line and consist of the SiN MZI switch

matrix, the InP amplifier array, and the SiN feed, lens, and grating chip. These

functional blocks implement a nonmechanical optical beam steering system.

On the left hand side, we show several elements required to form a working

LIDAR chip, including a tunable on-chip source, a source for an RF chirp

to be modulated onto this source, heterodyne "IQ" detection (through III-V)

diodes, and external electrical control to drive the optical-switch matrix and

tunable source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4-8 Silicon Nitride Lithography Mask currently being fabricated at MIT Lincoln

Labs. Switch trees, passive beamforming chips, and other test structures are

visib le. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4-9 32, 3-dB overlapped far-field beam patterns. Single port excitation is in red.

Peaks to each side of main peak are sidelobes. These represent power radiated

in unintended directions and may result in false detections. Dotted line in-

dicates -3dB. Port positions are designed to overlap far-field resolvable spots

by 3dB. For 2D aperture this is done along parameterized curve between each

spot in u,, u. space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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4-10 Simulations for design of chip-scale LIDAR. a) Simulation of far-field beam

pattern to extract phase center. b) Simulation of far-field beam pattern to

extract gaussian beamwidth. c) 2D simulation of on-axis port excitation of

lens feed. d) 2D simulation of off-axis port excitation of lens feed. . . . . . . 98

5-1 Convolutional Neural Net (CNN) Architecture. a. Logic Block Diagram:

The input image, a three shown here, is passed through successive layers

of convolution and pooling, nonlinearities (see Fig 2 for further description

), and re-shuffling of the pixels (see Fig 3 for further description). A final

fully connected layer maps the last stage of convolution output to a set of

classification outputs. b Schematic Illustration: First part of CNN implements

convolution of the image with a set of smaller filters. These produce a sequence

of filter-kernel dot products which are passed through a nonlinearity and are

re-shuffled into a new d-dimensional image, where d is the number of filters

in the first layer. The process is then repeated on this new image for many

subsequent layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5-2 General Optical Matrix Multiplication a. Logic: The pixels of the input image

on the left (21 x 21 x 3 colors) are grouped into smaller patches, which have

the same dimension as the kernels of the first layer ( depicted on the right-

hand side). b. Schematic Implementation: Each of these patches is reshaped

into a single column of data that is sequentially fed, patch by patch, into

the optical interference unit. Signal propagation of the optical data column

through the unit implements a dot product of the first layer kernels with

the patch input vector. The result is a time series of optical signals whose

amplitude is proportional to the dot products of the patches with the kernels.

Each output port of the optical interference unit corresponds to a separate

time series of dot products associated with a given kernel. Optical nonlinearity

is applied to each output port of the optical interference unit. . . . . . . . . 106
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5-3 Optical Delay Lines for repatching a. Logic: The output kernel dot products

from the first layer (right hand side Fig2.b) are depicted as cubes on the left

in Fig3. Each cube is labeled with the timestep the corresponding kernel

dot product was computed. The right hand side indicates the repatching

procedure necessary to convert the set of kernel dot products on the left hand-

side into input patches the same size as the next layer's kernels. b. Schematic

Implementation: The optical delay lines are designed such that a sequence of

kernel dot products can be reshuffled in time to form a new patch the same

size as the next layer's kernels. Each delay line is connected through 3-dB

splitters to the original signal line, allowing the data to be copied and then

delayed for synchronization. The reshuffling procedure produces valid patches

only at specific sampling times. The grayed out section at t=6ps indicates an

invalid sampling interval, where the patches have partially wrapped around. 108

5-4 Illustration of optical interference unit with delay lines a. Optical interference

unit: In the first stage an optical interference unit is used to implement a

kernel matrix M1 which processes the patches from the original image. The

red segments on the output of M1 are optical nonlinearity. b. Optical Delay

Lines: In the second stage, optical delay lines properly reform the sequence of

kernel dot products into new patches for input into the second kernel matrix

M2 . c.Optical interference unit: In the third stage the next optical interference

unit is used to implement M2 (partially depicted here). For clarity the actual

number of inputs and outputs have been reduced and the attenuator stage

and subsequent additional optical interference units have been omitted from

M1 and M2 . Additionally we have omitted optical amplifiers required in each

layer which boost the power sufficiently to trigger the optical nonlinearity. . 110
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5-5 After the matrix of phases, E, has been returned by the phase extractor al-

gorithm, the entries are perturbed and the resulting phase matrix is used in

composing a new unitary matrix of weights that builds up a second CNN with

desired perturbations. The perturbed CNN is tested and its inference perfor-

mance on the MNIST dataset is then compared to those of the unperturbed

CNN to analyze the error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6-1 (Color Online) We illustrate an autocorrelation function A(T), whose peak

value is p, highest sidelobe value is s, and whose peak-sidelobe distances are di. 122

6-2 (Color Online) Lowerbounds of smin(p), s l'erI(p) and slower,II(p). p is the

autocorrelation peak. The three matrices on top illustrate the methods of

filling black pixels for regions 1, 11 and III for the matrix construction of

s 'Io (p). The grey pixels show spots to be filled in that region, while the

black pixels are spots that have been filled in previous regions. . . . . . . . 123

6-3 (Color Online) Results of the exhaustive searches for 2 by 2 to 7 by 7 matrices.

a) The optimal matrices from 2 by 2 to 4 by 4 are shown. b),. c) and d) Smin(P)

is plotted in red. The solid grey line is s l 'r(p) while the dotted grey line is

Sower'I(p). The number of the matrices having the maximum d, are plotted

in blue. The circle specifies the location of the optimal matrix. The optimal

matrices are presented as insets below their autocorrelations, which are labeled

with their p and s values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6-4 (Color Online) Results of the exhaustive searches for diagonally-symmetric 8

by 8 and 9 by 9 m atrices. ... . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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6-5 (Color Online) The "horizontal" alignment deviation is shown for the four

alignment marks under various signal-to-noise ratios. The vertical deviation

is almost identical. The color of each plot line borders the corresponding

marker. All markers have been expanded to 35 by 35 pixels to illustrate the

idea of pixel expansion. The top, black line, on the right edge, corresponds

to the 7 by 7 cross, while the second to top, grey line corresponds to the 5 by

5 cross. The second to bottom, blue line corresponds to the optimal 5 by 5

marker, while the bottom, red line corresponds to the optimal 7 by 7 matrix. 128

6-6 (Color Online) Matrices ranked second and third. The first-ranked optimal

matrices are shown in Fig. 6-3. . . . . . . . . . . . . . . . . . . . . . . . . . 133

7-1 Schematic Illustration of Cavity Optical Pulse Extraction in a fiber Bragg

grating. Here the Forward propagating mode is pumped from the right (red),

and pumps a defect mode in the cavity with some quality factor. The defect

mode will also support a local component of the backward propagating portion

of the equations (blue) in steady state. We trigger extraction of power from

the cavity by sending a trigger pulse green, which propagates from right to left,

and which will sweep power from the cavity through cross-phase modulation. 137

7-2 Gaussian mode evolution with 1D mode solver. The plot for the theoreti-

cal Gaussian mode (purple), completely overlaps the numerically integrated

solution (G reen). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7-3 Phase matching between Cavity Modes and propagating Bragg grating modes.

a) In the stationary frame b) In comoving reference frame. . . . . . . . . . . 143

7-4 Phase matching between Cavity Modes and propagating Bragg grating modes

for fast and slow trigger pulse cases. The maximum group velocity of the Bragg

grating is fixed to 1. a) Slow case, phase matching occurs for two points above

or below the band gap. b) Fast case, phase matching occurs at one point above

and one point below the band gap. . . . . . . . . . . . . . . . . . . . . . . . 144
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7-5 Engineering Bragg grating parameter to create periodic cavity modes and

short frequency combs. a) Periodic variation of Bragg grating parameter along

length of the fiber b) Periodic cavity modes supported by nonuniform, peri-

odic Bragg grating parameter. c) Spatial Fourier transform of cavity modes,

yielding a small comb. The COPE process translates this spatial periodicity

into frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7-6 Generation of short frequency combs from COPE. Fourier transform of the

output of the COPE process for different pump pulse group velocities. The

red lines indicate cross sections which we plot as insets. The different colored

streaks in the image indicate phase matching to separate orders of the defect

mode spatial Fourier transform as a function of trigger group velocity and

frequency. The location of these peaks corresponds exactly to the locations

we predict from phase matching. The short frequency combs we generate here

contain four to six peaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7-7 Effect of trigger pulse power and length on COPE spectrum. The plots are

in the same format as Fig. 6 with variable pulse trigger group velocity on

the vertical axis, and frequency on the horizontal axis. From left to right we

see that increasing trigger pulse length causes a narrowing in frequency of the

COPE output spectrum. In addition from the first line to the second, with

increasing trigger power, significantly more power appears in the 1st and 3rd

quadrants vs the 2nd and 4th quadrants. . . . . . . . . . . . . . . . . . . . . 147

7-8 a) Peak COPE power vs cavity defect period and trigger power. The peak

power follows a curve relating the cavity defect period w to the trigger power

resulting in the peak COPE output power Peak in the upper right hand corner.

b) This relationship is exactly equivalent to the detuning required to couple

a defect mode at k = ' to the Bragg dispersion relation. . . . . . . . . . . 148w
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7-9 Snapshot of COPE process in fiber Bragg grating for w = 2.2 and w = 4 at

several different trigger power levels. The trigger pulse is the green Gaussian

curve in the left side of each image, while the forward and backward propa-

gating pump modes are red and blue respectively. Prit, the power calculated

to exactly detune the dispersion relation to intercept the peak of the cavity

defect mode at w = wo and k =2' is indicated as a horizontal blue line. Whenw

the peak energy of the trigger pulse exceeds Prit, we observe that the output

pulse splits in two, with the location of each peak corresponding to where the

trigger pulse power is equal to Pcrit. . . . . . . . . . . . . . . . . . . . . . . 149
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Chapter 1

Introduction

Although Maxwell's equations were complete over 150 years ago, modern advances in ma-

terials, computing and fabrication have enabled continuous scientific development that is to

this day rapidly evolving in beautiful and completely unexpected ways. Often new discov-

eries have significant technological ramifications which transform society and lead to better

science and even better technology. I find this interplay fascinating and while I have studied

many different subjects over the course of my PhD, the common thread among them has

been the scientific investigation of new systems and ideas which can serve as the basis of

future technology, whether it be one-way microwave circuits, or integrated LIDAR.

I have been fortunate to work in a group which invented photonic crystals, periodic

wavelength-scale structures which manipulate the flow of electromagnetic radiation. At

the start of this thesis I examine a type of photonic crystal composed of ferrimagnetic

materials, which are typically used to create RE circulators because of their nonreciprocal

behavior under applied magnetic field. In chapter one, I describe the discovery of bandgaps

in these crystals which support multiple one-way modes at their edge that result from the

simultaneous opening of many band degeneracies. In chapter two, we experimentally realize

these systems and map a range of bandgaps with Chern numbers ranging from -4 to 3.

Finally, we create a topological power splitter circuit and present the first ever measurement

of the dispersion-relations of multiple one-way edge modes.

Next, I delve into the rapidly growing field of integrated LIDAR. Advances in nanofab-

rication coupled to accelerating commercial and military demand for long range 3D depth
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sensors has driven a surge of interest in non-mechanical optical beamsteering. I provide my

contribution to this rapidly growing field in the form of a new lens-based integrated photon-

ics LIDAR in chapter three. This novel approach was inspired by passive RF beamforming

and has many significant advantages over its more traditional phased array counterparts.

Here I also describe analytic models, ray tracing calculations, and simulations used for the

design and characterization of our system. These devices are currently being fabricated and

tested by collaborators at MIT Lincoln Labs.

Interest in LIDAR has been driven in part by the development of advanced machine

learning algorithms which require massive amounts of real world data. One such class of

algorithms known as convolutional neural networks (CNNs) have in the past five years be-

come extremely effective at classifying image data. In chapter four, we explore a concept for

implementing CNNs optically through integrated photonics. The system we outline poten-

tially lowers the power required per inference by several several orders of magnitude relative

to state-of-the-art digital solutions. This technology may eventually enable the application

of CNNs to a significant fraction of the image and video data generated by the Internet.

Chapter five focuses on the development of new alignment marks for e-beam lithography,

which can potentially improve the fabrication tolerance of devices like those discussed in

chapter three and four. We derive mathematical bounds on the performance of these types

of markers, and identify the best performing ones through exhaustive search.

Finally chapter six reviews my research in Germany on cavity optical pulse extraction,

which uses a trigger pulse at one frequency to extract energy from an optical cavity pumped at

a different frequency through optical nonlinearity. I develop a new technique to numerically

integrate the nonlinear coupled differential equations governing this phenomena and explore

cavity designs to create frequency combs.
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Chapter 2

Multimode one-way waveguides of

large Chern numbers

2.1 Abstract

Current experimental realizations of the quantum anomalous Hall phase in both electronic

and photonic systems have been limited to a Chern number of one. In photonics, this cor-

responds to a single-mode one-way edge waveguide. Here, we predict quantum anomalous

Hall phases in photonic crystals with large Chern numbers of 2, 3 and 4. These new topolog-

ical phases were found by simultaneously gapping multiple Dirac and quadratic points. We

demonstrate a continuously tunable power splitter as a possible application of multimode

one-way waveguides. All our findings are readily realizable at microwave frequencies. This

work is reported in [7].

2.2 Main text

Like the integer quantum Hall effect, the quantum anomalous Hall effect (QAHE) has

topologically-protected chiral edge states with transverse Hall conductance 2 , where C

is the Chern number of the system. Unlike the integer quantum hall effect, the electronic

QAHE requires no external magnetic field and has no Landau levels. The first theoretical

model of the QAHE was proposed by Haldane in a honeycomb lattice [8]. Haldane subse-
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quently extended this electronic topological phase to photonics [9], where the Chern number

equals the number of one-way waveguide modes. This photonic analog to the QAHE was ex-

perimentally realized in a gyromagnetic photonic crystal at microwave frequencies [2]. Very

recently the electronic QAHE has also been experimentally demonstrated in magnetic topo-

logical insulators [10]. Although the Chern number can in principle take arbitrary interger

values, in the very large body of work on the QAHE all photonic and electronic realizations

were limited to 1C = 1. Consequently, finding systems with JCJ > 1 is a fundamental

scientific goal in studying topological phases. The search for higher Chern numbers also

has practical value. In electronics, having more chiral edge states would greatly reduce the

contact resistance for circuit interconnects [11, 12]. For photonic applications, multimode

one-way waveguides have an increased mode density and coupling efficiency. In addition

they enable new devices such as reflectionless waveguide splitters, combiners or even "one-

way photonic circuits".

In this letter, we report topological photonic bandgaps of large Chern numbers |C = 2, 3

and 4 using ab-initio calculations. First, we describe two approaches to implement bulk bands

which have multiple pairs of Dirac cones and multiple quadratic points. The simultaneous

opening of these point degeneracies generates Chern numbers of large magnitudes. Next we

present a topological gap map using the parameters corresponding to Yittrium Iron Garnet,

a common microwave gyromagnetic material, to demonstrate that all examples in this letter

are readily realizable. Finally we put forward an implementation of an adjustable power

splitter as an illustration of a possible practical application and as a way to experimentally

verify the existence of the C = 2 phase. The ideas and results presented can also be applied

to other topological photonic systems [13-19].

It is now known [1, 20] that each of the two bands connected by one pair of Dirac point

degeneracies can acquire nonzero quantized Berry flux, when gapped by T-breaking. Each

Dirac point contributes 7r Berry flux for a total of 27r in each band. Because 27r Berry flux

is exchanged across the bandgap, the Chern number associated with the gap, which we call

the "gap Chern number", is +1. A general way to calculate the gap Chern number (C, =

EZ Ci) is to sum the Chern numbers of all bands below the bandgap [21]. Since a quadratic

point consists of two Dirac points [22], the Berry flux exchanged is 27r and Cg,,p = 1 when
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Figure 2-1: Bulk and edge TM bandstructures showing two one-way edge states (Cgap = 2)
obtained from four Dirac points. The photonic crystal is a square lattice of rods with a
radius of 0.13a, c = 13 and /y = 1. The T-breaking perturbation corresponds to adding
A12 = -A21 = 0.40i to the rods. a) Bulk bandstructure showing the Dirac point along
M - K. The lower inset illustrates the lattice geometry. b) Four Dirac cones between
the 4th and 5th bands plotted in the whole Brillouin zone. c) Bulk bandstructure under
T-breaking perturbation opens a 5.5% complete gap highlighted in yellow. Each band is
labeled with its Chern number. d) Two gapless one-way edge states (red) appear in the
projected edge band diagram when the bulk is terminated by a metallic boundary.
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the quadratic degeneracy is gaped by T-breaking.

When an edge is formed by joining two materials with bandgaps overlapping in frequency,

the number of one-way edge states is equal to the difference of gap Chern numbers across

the interface [21]. If one of the materials is topologically trivial (C,,p = 0) like metal or air,

the other gap Chern number determines the number of topologically-protected one-way edge

states. When a gapped Dirac or quadratic point system is interfaced with a trivial bandgap,

the one-way waveguide formed is single-mode (IC,,p = 11).

To create multimode one-way wavegudies, it is necessary to increase the magnitude of

Cgap or, equivalently, increase the Berry flux exchanged between the bands. This requires

the involvement of more pairs of Dirac points and more quadratic points. In the rest of this

letter, we describe two strategies to achieve this goal. 1

Every two-dimensional (2D) photonic crystal shown in the main text is a square lattice of

gyromagnetic rods of lattice constant a. Results for the transverse magnetic (TM) modes are

presented. The T-breaking perturbation is implemented by applying a static magnetic field

perpendicular to the 2D plane. As a result, the gyromagnetic material develops off-diagonal

imaginary terms (/pL 12 = -/21 , 0) in the magnetic permeability. The full-wave simulations

are done using the RF module of COMSOL Multiphysics. The Chern numbers of a single

isolated band or multiple degenerate bands are calculated following the approach described

in Ref. [23].

The first approach to obtain large gap Chern numbers is to increase the symmetry of

the system so that point degeneracies can come in large multiples at the same frequency.

Under T-breaking, the Berry flux contributed from each symmetry-related point-degeneracy

is identical to the rest. Consequently, they add constructively, which increases Cg,,p. For

example, in a system of four-fold rotational symmetry (C4), Dirac points have to come in

multiples of four. For two bands containing only Dirac degeneracies, the exchange of Berry

flux comes in multiples of 47r and the gap Chern numbers are even.

An example of C,,p = 2 is shown in Fig. 3-11. Fig. 3-11a and Fig. 3-11b show four Dirac

cones found in a system of four-fold rotational symmetry. These Dirac cones are between

'Note that a trivial way to create multimode one-way edge waveguides is to interface two identical
topological gyromagnetic photonic crystals with their magnetic fields reversed. In this case, the number of
one-way edge states is double the gap Chern number.
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the 4th and 5th bands along the K-M line in the Brillouin zone. They are well-isolated from

other bands. In Fig. 3-11c and 3-11d we open a complete gap by applying a T-breaking

perturbation. In Fig. 3-11d, there are two edge states present when this bulk photonic

crystal is interfaced with a metallic boundary (a perfect electric conductor).

By increasing the four-fold rotational symmetry to six-fold (C) in a triangular lattice, we

found six Dirac cones and three one-way edge states (Cgap = 3). These results are presented

in the supplemental material.

The second approach to obtain large gap Chern numbers is to tune multiple symmetry-

unrelated point degeneracies to occur in the same frequency range, so that when a sufficient

T-breaking perturbation is applied, a complete gap opens. Unlike the previous case of

symmetry-related degeneracies, the Berry flux associated with gaping symmetry-unrelated

degeneracies can either add constructively or destructively. When all Berry fluxes are of

the same sign, large Chern numbers can occur. Using this approach, we obtained another

example of C,,p = 3 shown in the supplemental material. There, we brought one quadratic

point to a frequency in the vicinity of four Dirac points to obtain three one-way edge states

by gapping all of them.

The example of Cgap = 4 is shown in Fig. 2. We shifted two quadratic points to

frequencies near four Dirac points. Shown in Fig. 2a and 2b, there are four Dirac points

along M-F, one quadratic point at the K point and another one at the F point. In Fig. 2c

and 2d, the T-breaking opens a complete gap between the 6th and 7th bands, inside which

four one-way edge states appear. The mode profiles of the four edge modes are plotted in

Fig. 2e at a chosen frequency. They have different decay lengths into the bulk from the

metallic boundary, determined largely by how close they are to the band edge in the band

diagram.

All the findings above are readily realizable at microwave frequencies using gyromagnetic

materials such as Yittrium Iron Garnet (YIG), which have been used in experimental studies

of single-mode one-way edge waveguides. We note that the examples from the prior figures

do not necessarily correspond to physical materials, since they were selected to show clear

openings of the band degeneracies. To facilitate the eventual experimental realizations of

multimode one-way edge waveguides, we construct, in Fig. 3, a topological gap map of
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Figure 2-2: Bulk and edge TM bandstructures showing four one-way edge states (Cgap = 4)
obtained from four Dirac points and two quadratic points. The photonic crystal is a square
lattice of rods with a radius of 0.07a, e = 24 and p = 1. The T-breaking perturbation
corresponds to adding p12 = -P21 = 0.40i to the rods. a) Bulk bandstructure showing the
Dirac point along r - M and two quadratic points at r and K respectively. The lower
inset illustrates the lattice geometry. b) Four Dirac cones and two quadratic points between
the 6th and 7th bands plotted in the whole Brillouin zone. c) Bulk bandstructure under
T-breaking perturbation opens a 3.0% complete gap highlighted in yellow. Each band is
labeled with its Chern number. The Chern number of degenerate bands is circled by a
dotted line. d) Four gapless one-way edge states (red) appear in the projected edge band
diagram when the bulk is terminated by a metallic boundary. e) Mode profiles of the four
edge modes close to the metallic interfaces are plotted at the same frequency dotted in d).
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Topological gap map
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Figure 2-3: The TM topological gap map of a photonic crystal consisting of a square lattice
of YIG rods under an applied static magnetic field. The gap Chern number labels each
complete bandgap found. The previously reported single-mode one-way waveguide [1, 2]
corresponds to the blue bandgap of Cgap = -1. The left lower inset illustrates the lattice
geometry with a period of a. The upper right inset illustrates a 2D one-way circuit by
interfacing various photonic crystals of different gap Chern numbers.

photonic crystals made of YIG rods. In the calculation, the material properties used for the

0.84 0.41i 0

YIG rods are p = -0.41i 0.84 0 and c = 15. This corresponds to the response of

0 0 1
YIG at 14.5 GHz at 2020 Gauss of static magnetic field [24]. We scanned the radius of the

YIG rods and mapped out the frequencies of all the complete TM bandgaps found up to

the 7th bulk band. We did not find interesting features when going through higher bands.

The area of each bandgap is colored according to its gap Chern number (Cgap). Shown in

Fig. 3, a wide range of Chern numbers are found from -2, to +4. Negative Chern numbers

represent the negative group velocities of the corresponding one-way edge states. We note

that although the calculations here are done in 2D for TM modes, the designs can exactly

be translated to 3D metallic waveguides in experiments [2,25-28].

The material dispersion does not change the main features in the map, if the material

operation frequency is placed at the center of the gap of interest. Taking into account

dispersion from the gyromagnetic resonance [24], the widest gap for Cgap = 2 decreased from

5.4% to 3.5%, for COgap = 3 from 3.6% to 2.7%, and finally for Cgap = 4 from 2.6% to 2.1%.
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Since in general there are more band crossings in higher order bands, larger gap Chern

numbers are expected to be found there. High-order bandgaps tend to be smaller due to

the greater density of states there, so we expect to find larger gap Chern numbers in smaller

gaps. These trends are clearly observed in Figs. 1,2, 3, and in the supplemental material.

The above multimode one-way waveguides significantly increase the transport channels

that are topologically protected. We show as an example, in the appendix, a total number

of eight one-way modes inside an edge waveguide constructed from domains of +4 and -4

gap Chern numbers. Compared to their single-mode counterparts, these one-way multimode

waveguides have a much larger density of states which gives a much higher input coupling

efficiency.

The wide range of gap Chern numbers found in the topological gap map offers the op-

portunity to make a "topological one-way circuit" [29, 30]. This idea is illustrated as an

inset of Fig. 3, where bulk domains of different gap Chern numbers are joined together.

One-way edge states flow around their interfaces. The number of the one-way waveguide

modes equals the difference of the gap Chern numbers across the interface. At the junction

between three bulk domains, one-way edge states merge together or branch off, enabling

new device functionalities as signal combiners and splitters immune to backscattering from

manufacturing imperfections.

In Fig. 4, we present a concrete design of a tunable power splitter showcasing a possible

application of the multimode one-way waveguides. The splitter is at the junction beneath

a metal wall between two domains with gap Chern numbers of +2 and +1. This junction

couples the power from one multimode waveguide on the left into single-mode waveguides on

the right (channel 1) and bottom (channel 2). A metal scatterer in the multimode waveguide

tunes the power splitting between channel 1 and channel 2.

In the simulations, we placed a mono-frequency point source inside the left waveguide

formed by the metal and Cg,,p = 2 domain. The source excites a linear combination of the two

one-way modes. These modes propagate to the right and are scattered by the metal scatterer.

Since one-way modes cannot backscatter, they only scatter into each other, changing their

amplitudes and phases. The height of the metal scatterer controls the total mode profile

at the junction, and consequently the power splitting between channel 1 and channel 2. In
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Figure 2-4: A power splitter implemented with Cgap =2 and Cgap - 1 gyromagnetic photonic
crystals bordered on the top by a metallic wall. A point source with frequency -a 0.82
couples light into the multimode waveguide to the left of the metal scatterer. The unit cell
size of the Ogap = 2 lattice is a, the unit cell size of the Cgap = 1 lattice is 0.805a and the
rod radius for both lattices is 0.15a. The operating parameters are the same as Fig. 3, so a
in real units is 1.7 cm. a) For a metal scatterer with height 1.65a, the majority of the light
proceeds through channel 2 (bottom waveguide). b) For a metal scatterer with height 1.30a,
the majority of the light proceeds through channel 1 (right waveguide). c) The transmission
to each waveguide as a function of metal scatterer height.

39

I



Fig. 4c, we plot the transmission into each channel as a function of the height of the metal

scatterer. Since there is no reflection or absorption, the total power efficiency of the splitter

is always 100%. Between a metal scatterer height of a and 2a, the transmission into each

channel oscillates between nearly 0 and 1. In Fig. 4a and 4b, we present two field profiles in

which the transmission is maximized into either channel 1 or channel 2. We found that for a

gyromagentic resonance linewidth AH = 0.50e and a dielectric loss tangent of 0.0002, that

the attenuation length in the system varied between 100a and 400a depending on the modal

profile. These attenuation distances are much longer than the dimensions of the device we

propose here.

In the above tunable splitter, we placed the metal scatterer far away from the junction so

the tuning from the metal scatter and the splitting at the junction are spatially seperated.

This type of tuning is only possible when the scatterer is inside a multimode waveguide. If

the left waveguide had only one mode, the metal scatterer could not have changed the field

distribution at the junction, because the mode profile in a single-mode one-way waveguide

cannot be changed by any scatterers far away. Therefore the experimental realization of the

above tunable splitter can verify the existance of the large Chern number.

In conclusion, we predicted photonic analogs of the QAHE with large Chern number

(up to 4) and constructed multimode one-way edge waveguides (up to 8 modes). The im-

plementations are readily experimentally realizable using a square lattice of YIG rods at

microwave frequencies. Using the discovered multimode one-way waveguides, we also pre-

dicted an adjustable power splitter with unity efficiency. Since the first demonstration of

the quantum (anomalous) Hall phase in photonic crystals, there have been a wide range

of theoretical [30-36] and experimental [25-28] efforts to investigate systems with single-

mode one-way edge states. We expect our findings of large Chern numbers and multimode

one-way waveguides to create even wider opportunities in topological photonics. Finally,

our approach to create topological bandgaps of large Chern numbers can also be applied to

electronic systems.
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2.3 Appendix

2.3.1 Numerical Methods

We can rearrange Maxwell's equation into a matrix equation of the following form:

0 +i X E6 0)(2.1)

-iV X 0 H 0p H

0 +iVx X E 0 E
Further we can identify ( , B = Q ) and 4#) = ( . Since

(-iV X 0 0 p- H)
At = A and Et = E, we know that the following equation is a generalized Hermitian

eigenvalue problem:

A 1#) = wB$) (2.2)

As opposed to the regular eigenvalue problem where the inner product is defined as (#iloj),

here the inner product has to include the second Hermitian matrix: (#iI B qj) to have the

expected ortho-normalization properties.

The chief task to numerically solve the system is to efficiently and correctly form the

matrices A and b, while also implementing correct periodic or metallic boundary conditions.

The first step in this process is picking a convention for how to map the 2D real space cell

into a ID vector. Here we picked that each element of the N columns appears row by row

for M rows. This looks like the following for a single component of the tensor 6:

Ell 0 0 ... 0... 0

0 0 0 ... E0Z ... 0

0 0 0 ... 0 ... eNM

Where egz indicates the value of czz in the i-th column and the j-th row.

Besides implementing the material tensors, the derivatives also need to be discretized
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appropriately. We implemented our discretization beginning with the standard difference

matrix on the Yee-grid:

1 -1 0 0 ... 0

0 1 -1 0 ... 0

[Dx] 0 0 1 -1 ... 0

exp(-ikxLx) 0 0 0 ... 1

Here we implemented periodic boundary conditions through the bottom left term which

tracks the phase accumulated for a Bloch-mode of the form Uk(x) exp (-ik -S). For numer-

ical solutions of the bandstructure we instantiated a single A given the material geometry,

and generated separate B for every k-point in the BZ we were interested in solving for.

To properly implement the discretized derivative using a consistent convention, we have

to ensure that the proper elements between the columns and rows are matched. For the

x-derivatives, we just need [Dx] acting on each row, so we just copy this along the diagonals

with a tensor product with an M by M identity matrix: IMM 0 [Dx] = [Mx]. The total

y-difference matrix can be written similarly, except we swap the identity matrix to the

second position, so that the difference between the rows of the Bloch mode is calculated:

[Dy] 0 INN = [M].

We can use these matrices and specialize for the case of TM modes in our array of

gyromagnetic rods, which have Ez, Hx and H. components:

0 -[My] [M(] Ez[EZZ] 0 0 E

-[MY] 0 0 H = 0 [pxx] +i[k] Hx (2.3)

-[M] 0 oJ Hy 0 -i[k] [pHxx] Hy

Metallic boundary conditions can be enforced a number of ways, but we found that the

easiest and most robust way was simply to set the rows of the matrix A to zero which were

required by metallic boundaries on a particular edge.

We wrote a computer program which efficiently generated the A and B matrices based

on specified locations for multiple dielectric shapes and cell geometry, for unit cell and
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supercell calculations, and then used the eigs method from MATLAB to find the smallest

eigenvalues. Using this numerical finite-difference frequency-domain (FDFD) solution, we

were able to calculate the photonic crystal bandstructure and corresponding eigenvectors for

the gyromagnetic photonic crystal rapidly.

2.3.2 Chern number calculation

We can extract topological information about the bandstructure by computing the Chern

number. Although well described in the literature, we briefly describe some key results and

our method for numerically computing the Chern number. We begin by defining the Berry

Connection:

Ank)- -i (UjVk jun~4 (2.4)

We can integrate this quantity around the edge of the 1st BZ to get the Berry phase.

C = di - n,n(k) (2.5)

Where cn is an integer called the Chern number associated with the n-th band. To show that

cn has to be an integer, we use the observation that Uk on the BZ boundary can be related

to each other through Bloch's theorem: Uk = Uk+G exp(i$). Using this we can write:

1 I
d2 -Vk = cn (2.6)

Which must be an integer since q5 is a single valued function mod 27F. This version of the

Chern number calculation provides a simple intuition for what the Chern number does, it

counts the number of phase vorticies contained within the BZ. Alternatively using Stokes

theorem, we can rewrite the Chern number as an integral over the BZ.

d2 z(Vk x An,n(k)) - Z (2.7)27ri "Z

Where Vk x A,,(k) is called the Berry Flux. This form of the Chern number lays the

foundation for our numerical calculation. Fukui et al [23] showed that a gauge-invariant
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form of the above equation could be written in terms of inner products between Uk around

small placates in the BZ. Specifically we find the Berry flux contribution from a small placate

as:

Fim Iu fiu 2 i,21 B~ i,4u~) u i,4 fB jui) (2.8)

Here we have simplified the index notation such that i addresses a given corner of a grid

and 1, 2,3, 4 indicate elements forming the placate. Note that we have included b in the

inner product for our specific system whose eigenvectors come from a generalized Hermitian

eigenvalue problem. F, essentially extracts the phase accumulated by making the small

loop and can be thought of as exp(i(1,2 + 02,3 + 03,4 + 04,1)). To calculate the total Chern

number, we take the log and imaginary part of each F to find the phase contributed by a

single loop, and sum them to find the total Berry flux:

cn IM log (2.9)

The only other case we have to discuss applies to band degeneracies. When this happens,

we cannot compute the Chern number for a single band anymore. We have to calculate the

more general quantity:

FLD = det(Fm) (2.10)

Where Fjrm is a matrix formed where we compute the above equation between pairs of entan-

gled bands in our set. This method was useful for rapidly calculating the winding number

(or the sum of the Chern numbers of all bands) below the bandgap, since this 'omputa-

tion automatically and correctly sums the Chern numbers of the lower bands regardless of

whether sets of them are entangled or not. This feature was very useful in practice for rapidly

identifying non-trivial bandgaps in complicated band structures.
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Figure 2-5: Bulk and edge TM bandstructures showing three one-way edge states (Cgap = 3)
obtained from four Dirac points and one quadratic point. The photonic crystal is a square
lattice of rods with a radius of 0.10a, E = 15 and M = 1. The T-breaking perturbation
corresponds to adding [12 = -L21 = 0.45i to the rods. a) Bulk bandstructure showing the
Dirac point along ' - K and quadratic point at K. The lower inset illustrates the lattice
geometry. b) Four Dirac cones and one quadratic point between the 5th and 6th bands
plotted in the whole Brillouin zone. c) Bulk bandstructure under T-breaking perturbation
opens a 3.6% complete gap highlighted in yellow. Each band is labeled with its Chern
number. The Chern number of degenerate bands is circled by a dotted line. d) Three
gapless one-way edge states (red) appear in the projected edge band diagram when the bulk
is terminated by a metallic boundary.
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Figure 2-6: Bulk and edge TM bandstructures showing three one-way edge states (Cgap = 3)
obtained from six Dirac points. The photonic crystal is a triangular lattice of rods with
a radius of 0.27a, c = 5 and y = 1. The T-breaking perturbation corresponds to adding
P12 = -P21 = 0.40i to the rods. a) Bulk bandstructure showing the Dirac point along
M - K. The lower inset illustrates the lattice geometry. b) Six Dirac cones between the 6th
and 7th bands plotted in the whole Brillouin zone. c) Bulk bandstructure under T-breaking
perturbation opens a 3.0% complete gap highlighted in yellow. Each band is labeled with
its Chern number. The Chern number of degenerate bands is circled by a dotted line. d)
Three gapless one-way edge states (red) appear in the projected edge band diagram when
the bulk is terminated by a metallic boundary.
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Figure 2-7: The complete bandstructure for a metal-terminated supercell of the Cg,,p = 4
photonic crystal from Fig. 2 of the main text. This edge waveguide is oriented along the
' - K direction. Unlike the other bandstructure plots in this letter, here we did not shade
the bulk bands and we kept the edge modes from both ends of the supercell. This illustrates
the connectivity between the bulk and edge bands.
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Figure 2-8: An example of eight one-way edge states constructed by photonic crystals of
opposite gap Chern numbers (O,,p = 4). We used the gyromagnetic photonic crystals of
Cgap = 4 in Fig. 2 in the main text of this letter. Across the interface, the static magnetic
field is reversed to get opposite Chern numbers.
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Chapter 3

Experimental Observation of Large

Chern numbers in Photonic Crystals

3.1 Abstract

Despite great interest in the quantum anomalous Hall phase and its analogs, all experimental

studies in electronic and bosonic systems have been limited to a Chern number of one.

Here, we perform microwave transmission measurements in the bulk and at the edge of

ferrimagnetic photonic crystals. Bandgaps with large Chern numbers of 2, 3, and 4 are

present in the experimental results which show excellent agreement with theory. We measure

the mode profiles and Fourier transform them to produce dispersion relations of the edge

modes, whose number and direction match our Chern number calculations. This work is

reported in [37].

3.2 Main text

The Chern number [38] is an integer defining the topological phase in the quantum Hall ef-

fect (QHE) [39], which determines the number of topologically-protected chiral edge modes.

The quantum anomalous Hall effect (QAHE) possesses these same properties as an intrinsic

property of the bandstructure with time reversal symmetry breaking [8,40]. Recent exper-

iments have discovered the QAHE and its analogues in ferrimagnetic photonic crystals [2],
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magnetically-doped thin films [10] and in ultracold fermion lattices [41]. However, the Chern

numbers observed in all of these systems were limited to 1. Finding larger Chern numbers

would fundamentally expand the known topological phases [7,11,12,42,43].

Here, we provide the first experimental observation of Chern numbers of magnitude 2, 3

and 4, by measuring bulk transmission, edge transmission, and the edge mode dispersion re-

lations in a ferrimagnetic photonic crystal. The excellent agreement between the experiment

and modeling allows us to identify various topological bandgaps and map out the dispersion

relations of one-way edge modes for the first time in any QHE or QAHE system in nature.

In a 2D system one can realize bands with nonzero Chern numbers, and generate the

QAHE, by applying a T-breaking perturbation [1,9,20]. The Chern number is defined as the

integral of the Berry flux over the entire Brillioun zone. When connected bands are gapped

by a T-breaking perturbation, the bands will exchange equal and opposite Berry flux at each

degenerate point, with the total Berry flux exchanged determining the Chern number. For

instance, two isolated bands connected by one pair of Dirac points gapped by T-breaking will

acquire 27r Berry flux (7r from each Dirac point) and a Chern number associated with the

bandgap ("gap Chern number") of +1. A general way to calculate the gap Chern number

(Cgap = EC) is to sum the Chern numbers of all the bands below the bandgap [23]. A

bandgap with Cg,,p = 0 is trivial, while a bandgap with COp # 0 is topologically nontrivial.

In our previous theoretical study we found that the magnitude of the gap Chern number

can be increased above one by simultaneously gapping multiple sets of Dirac and quadratic

degeneracies. If Berry flux from the gapped degeneracies adds constructively, Cgap can be

large. In Fig. la we present a theoretical topological gap map for a 2D ferrimagnetic

photonic crystal as a function of the externally applied magnetic field and the frequency,

showing nontrivial bandgaps with Cgap from -4 to 3. We studied this same square lattice

in an experiment, to verify these predictions.

The experimental configuration resembles a prior work which demonstrated I Cgap 1 [2].

A square lattice of ferrimagnetic garnet rods is placed between two conductive copper plates.

This configuration forms a parallel-plate waveguide, with the electric field perpendicular to

the plate. Since the electric field for the fundamental mode is constant as a function of

height, this is equivalent to a 2D system. The modes in the photonic crystal are excited by
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Figure 3-1: Comparison of theoretical gap map and bulk transmission to experimental trans-
mission measurement in a 2D ferrimagnetic photonic crystal. a) Theoretical topological gap
map as a function of the magnetic field and the frequency with each bandgap labeled by
its gap Chern number. The diagonal black line indicates the resonance in the effective
permeability (Supplementary Material) b) Theoretical bulk transmission c) Experimental
bulk transmission d) Experimental configuration with the lattice geometry (top metal plate
removed). The antenna locations are marked with "1" and "2". e) Simulation geometry
with the green line representing the receiving antenna, and the green circle representing the
transmitting antenna.
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antennas attached to the top plate and fed to a network analyzer. Around the boundary

of the system we placed an absorber to minimize reflections and outside interference. We

include an overhead image of one of the crystals we constructed in Fig. Id.

To observe the QAHE analog in the experiment, we break T-symmetry by applying a

spatially uniform magnetic field to the ferrimagnetic garnet rods, which acquire off-diagonal

imaginary parts in the permeability tensor [24]. Unlike electrons, the external magnetic

field does not interact directly with photons. However, for this system, Maxwell's equations

can be written in the exact same form as the Schrodinger equation with a periodic vector

potential [1]. This makes the system an analogue of the QAHE. Our photonic crystals were

placed in the MIT cyclotron magnet, and the magnetic field was swept between 0.03 T and

0.55 T to characterize the transmission of the photonic crystal as a function of the magnetic

field and the frequency.

We show the experimental transmission through a bulk photonic crystal in Fig. 1c. Here

the color illustrates the amplitude of the transmission between the antennas in decibels

(S12 = 20 log rn). In the plots there are several deep blue regions of low transmission that

clearly correspond to the locations of bandgaps in the gap map. The sweeping feature that

extends diagonally across the figure is due to the gyromagnetic resonance of the ferrimagnetic

garnet rods (Supplementary Material). The resonant frequency of the effective permeability

is plotted with a black line in Fig. la.

In Fig. lb we present the corresponding theoretical data for transmission through a

lattice of the same size and dimension calculated with COMSOL. One of the transmission

simulations is shown in Fig. le. For direct comparison, the transmission data in Fig. lb is

plotted with the same colorbar scale as the experiment in Fig. 1c. The slight offset of about

0.04 T in the magnetic field between the theoretical and experimental plots is caused by

demagnetization (Supplementary Material). Clearly the theoretical and experimental trans-

mission bear strong resemblance to each other and the topological gap map, showing that a

square lattice of ferrimagnetic rods can contain a wide variety of different C,,p numbers.

Several nontrivial bandgaps in Fig. 1 and in the supplementary material occur even at

low magnetic fields. This indicates that topological effects can be achieved at low applied

magnetic fields(- 0.03 T) enabling various studies and applications. Furthermore, these same
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Figure 3-2: Experimental edge transmission measurement and Fourier transform (FT) of
mode profiles along the copper boundary. a) S21. b) S12. The bandgaps that are nontrivial
have direction-dependent edge transmission, because the interface of a nontrivial bandgap
with a trivial bandgap (copper boundary) supports one-way modes. In a) and b) this causes
the nontrivial bulk bandgaps from Fig. 1c to be present in one direction (e.g. S12) and be
absent in the other (e.g. S21), which we highlight for the C,,p = -4 bandgap with black
boxes. The trivial bandgaps around 4 GHz do not support one-way modes, and so do not
exhibit direction-dependent transmission. c) Experimental FT of edge mode profiles and the
theoretical edge bandstructures with the edge modes in red and the bulk bands in gray. The
range of wavevectors included in both plots is the same and includes only one Brillouin zone.
The number of one-way edge modes in both sets of plots agrees with ICp from Fig. la,
while the sign of C,,p is consistent with the theoretical group velocity (from the edge mode
dispersion) and the directional transmission in a) and b).
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bandgaps would remain open at zero external magnetic field by using ferrimagnetic materials

with remanent magnetization [44]; this way, a future experiment could be performed even

without external magnetic fields.

One-way edge modes are present at the boundary between two crystals with a nontriv-

ial and a trivial bandgap respectively, or at the boundary between crystals with nontrivial

bandgaps with different C,,p [21, 40]. If the bandgaps of two neighboring crystals overlap

in frequency, the number of edge states in the shared frequency gap is determined by the

difference between the gap Chern numbers of each crystal. The sign of this difference deter-

mines the directions of the edge states. This means that with the nontrivial bandgaps we

found, constructing one-way waveguides with up to seven modes is possible. If one of the

materials is trivial (C,,p = 0), like metal or air, the number of edge states equals the gap

Chern number of the crystal, with the sign of this number determining their directions.

To provide more evidence of the topological state of these bandgaps and the one-way

modes we modified the setup to include a highly conductive copper boundary at the edge of

the crystal. This boundary acts as a mirror with a trivial bandgap. We place two antennas

near this edge on each side of the sample and measure the transmission between them. In

Fig. 2a and Fig. 2b we present both the S12 and S21 parameters to describe the direction-

dependent transmission of the edge modes along the metal boundary. S12 refers to exciting

the second antenna and measuring with the first antenna, while S21 is the opposite.

The bandgaps that are nontrivial (Cgap 0) can be identified in Fig. 2 because they will

have direction-dependent edge transmission. Specifically the nontrivial bandgaps measured

in Fig. 1c will appear in either Fig. 2a or b, but not both. We show this explicitly for

the Cgap = -4 bandgap by highlighting the direction-dependent transmission with gray

boxes. This arises from the directional edge states as follows. In one direction, the group

velocity of the edge modes is opposite that required to travel to the receiving antenna, so the

transmission measurement will record the bulk bandgap. However, in the other direction,

the group velocity of the edge modes is in the same direction as is required to get to the

receiving antenna, so the bandgap will appear to be nonexistant. Trivial bandgaps (Ogap = 0)

around 4 GHz do not support one-way edge modes, and so do not exhibit direction-dependent

transmission at the edge.
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To further study the topological nature of these bandgaps we measured the mode profile

at the edge of the photonic crystal. We accomplished this by mounting one antenna for

excitation to the lower plate, and another small dipole antenna for measurement to the

upper plate [45]. During the measurement, the upper plate was translated a total of 47 cm

in 2.5mm steps. At each step both the phase and amplitude of the electric field was recorded

(Supplementary Material). From this spatial data the mode profile in the waveguide can be

reconstructed. The Fourier transform of the mode profile produces the dispersion relation

of the waveguide which we present on the left-hand side of Fig. 2c.

In Fig. 2c on the right-hand side we include a comparison with the edge band calculations

with the bulk bands in gray, and the edge modes in red. It is clear that the calculated edge-

mode dispersion shows an excellent agreement with the dispersion relations extracted from

experiments. The number of edge modes is equal to the gap Chern number for each inset.

The sign of Cgap is consistent with the group velocity of the edge modes and agrees with

the directional edge transmission data in Fig. 2a and 2b. In the supplementary material we

present additional simulations validating these results for Cgap = -3 and -4. These results

consistute the first direct measurement of one-way edge mode dispersion in any QHE system.

To further study the gap Chern numbers of the observed topological bandgaps, we con-

struct a topological one-way circuit [7]. As illustrated in Fig. 3d, this consists of a Cgap = 2

(a=3.0 cm) crystal and C,,p 1 (a=2.4 cm) crystal, with a copper boundary on the edge.

We present the design and calculations characterizing the C,,p = 1 crystal in the Supple-

mentary material, while the results from the Cg,, = 2 crystal are shown in Fig. 1 and Fig.

2. From the rules described earlier, there will be two edge states flowing downwards between

the metal boundary and the C,,p = 2 crystal as indicated with arrows in Fig. 3d. These

edge states will "split" at the junction with one edge state flowing away along the boundary

between the C,,p = 1 and the C,,p = 2 crystal, and the other continuing along the metal

and C,,p = 1 crystal interface.

In Fig. 3a-c we present the transmission between ports 1-3 and a 4 th port located at the

junction as labeled in Fig. 3d. The highlighted yellow region indicates the shared bandgap

between the Cgap = 1 crystal and the Cap = 2 crystal. For each of the measurements, it is

clear that in one direction we have a strong bandgap, with a signal level at the noise floor of
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Figure 3-3: Topological one-way circuit implemented using Cg,,p = 1 (a=2.4 cm) and Cg,,p = 2

(a=3.0 cm) photonic crystal. a)-c) Transmission plots showing edge transmission between
antennas at 1,2, and 3 and antenna 4 located at the center. Shared bulk bandgap for

Cgap = 1 and Cap = 2 crystals is highlighted in yellow. d) Experimental configuration
illustrating crystals with copper boundary (Cgap = 0) on left and antenna locations 1-4.
Arrows indicate the theoretical direction and the number of the edge states at each interface.
The transmission data is consistent with predicted edge state directions, which confirms that
the upper crystal has Cg, > 1.
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about -100 dB, while in the opposite direction there is 50 to 60 dB more transmission. These

edge state directions are consistent with the theoretical predictions and prove the existence

of Ca , 1 for the upper crystal. The results from Fig. 3 were obtained under an applied

magnetic field of 0.365 T, although there was a window extending approximately from 0.32

T to 0.4 T where the Cgap = 2 and Cgap = 1 bandgaps from each crystal were well aligned

(Supplementary Material).

In conclusion, we experimentally constructed a square lattice ferrimagnetic photonic crys-

tal with a bandstructure comprised of high Cg,,p (-4 to 3) bandgaps and measured the disper-

sion relations of the multimode one-way edge waveguides. Fundamentally, having bandgaps

with higher gap Chern numbers greatly expands the phases available for topological photon-

ics. These results can potentially enable multi-mode one-way waveguides with high capacity

and coupling efficiencies, as well as many other devices [26-28,30. A topological photonic

circuit can also be made by interfacing photonic crystals of various Cgap, with one-way edge

states combining together or splitting off at the junctions. Given the rapidly expanding

literature on the QAHE and its analogs for JCgapJ = 1 [13-17,19,40], many more avenues

of research are now possible because of the greater range of topological phases that can be

investigated. Our approach can be readily extended to other systems of Bosonic particles

such as magnons [46], excitons [47], and phonons [48,49].

3.3 Appendix

3.3.1 Experimental Methods

The experimental setup, for the bulk and edge transmission measurements, consisted of two

parallel copper sheets 1 m by 0.5 m attached to aluminum plates for mechanical stability and

were separated by 0.635 cm (0.25 in). In the range of frequencies studied in this work, the

sheets only supported modes which had a uniform electric field perpendicular to the plane

and the magnetic field in-plane. Even though the experiment was in a 3D system, the modes

are effectively uniform in the perpindicular direction and so can be represented by 2D TM

simulations. Microwave absorbers placed around the boundary absorbed stray radiation and
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helped reduce the noise floor of the measurements.

The ferrimagnetic material used to make the crystals was obtained from TCI cermaics

(NG-1850) and consisted of rods 0.795 and 0.823 cm in diameter and 0.635 cm tall. The

smaller rods were used to construct the 2.4 cm square lattice used for the C,,p = 1 photonic

crystal in Fig. 3, and in the supplementary material. The larger rods were used to construct

the 3 cm lattice in Fig. 1-3. The rods had a saturation magnetization (47rM) of 1817

Gauss and a permittivity of 14.23. The loss tangent of the material was 2 - 10-4 and the

gyromagnetic resonance loss width (AH) was 170e. The rods were produced from the same

production batch so that the material parameters were uniform. They were machined down

to different radii to optimize the overlap and size of the Cgap = 1 and Cgap = 2 bandgaps

for the splitter experiment presented in Fig. 3. The material had very little hysteresis

(and residual magnetization) overall since measurements conducted with increasing, versus

decreasing, magnetic field were indistinguishable.

For the mode profile measurements we used a set of lighter and smaller aluminum plates to

facilitate easier translation of the upper plate. The aluminum itself is sufficiently conductive

for most microwave experiments. The transmitting antenna was mounted to the lower plate,

while the receiving antenna was mounted to the upper plate. The upper plate slid along on

top of two aluminum bars which were approximately 1 mm higher than the ferrimagnetic

rods in the experiment. This gap between the upper plate and the rods was necessary for

maintaining smooth translation, and does not invalidate the approximate 2D simulations

we used for modeling [45]. The key for a successful mode profile measurement was smooth

translation of the upper plate and a consistent metal to metal contact of the supporting bars

and the upper plate.

We used a 8719C HP network analyzer for the transmission and mode profile measure-

ments, and a LakeShore Model 410 Gaussmeter for measuring the magnetic field inside the

MIT cyclotron magnet. Approximately one hundred transmission measurements were made

while the magnetic field was swept between 0.03 T and 0.55 T. The frequency data was

smoothed over the neighboring 4 points in post-processing. The experimental results pre-

sented in Fig. 1 and in the corresponding plot in the supplementary material were calibrated

using the S12 parameters calculated for the antennas inside the parallel plate waveguide
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without the lattice of ferrimagnetic rods. This calibration helped remove the variation in

transmission with frequency that results from the intrinsic impedance mismatch of the an-

tenna. All transmission results were normalized by the maximum transmission. No such

normalizations and smoothings were carried out for the mode profile results.

3.3.2 Material Model

Under an applied magnetic field, the permeability tensor of the ferrimagnetic garnet takes

the following form [24]:

ik 0

]=-ik /1 0

0 0 PZZ

Where = 1 o(1 + %0"_2) and k = /o OW . The gyromagnetic resonance frequency, wo(=

goyHint), and wm(= po7yM) are determined by the internal magnetic field Hjat and the

magnetization M where -y is the gyromagnetic ratio. The internal magnetic field, Hist (=H-

XM(H)), is the difference between the external magnetic field H and the demagnetization

field XM(H), where X is the geometry-dependent demagnetization factor and M(H) is

the magnetization function. For our theoretical calculations we took M(H) = Mat, and

Hint = H, since we did not know the low field behavior of M(H). This approximation

causes the small offset of about 0.04 T visible between our transmission experiments and

calculations in Fig. 1 and Fig. S3.

The diagonal sweeping features in Fig. 1,2, S3-4, and S7-8 that go from low frequency

and low magnetic field, to high frequency and high magnetic field are caused by the resonant

peak of the effective permeability (leff = /_2-k 2 [24]). The resonance frequency of the

effective permeability is wO(w0 w). It is important to note that this is different than27r

the gyromagnetic resonance frequency(= g), which is lower. Bandgaps to the left of this

resonance, tend to move upwards in frequency as the magnetic field is increased because

the index of the rods(= Vcepff ) is becoming smaller as Ipeff decreases. On the other side

of the resonance, the bandgap frequencies tend to shift downward as the magnetic field is
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decreased because the index is increasing as I-eff increases.

Loss is included in all of the previous calculations by taking wo -+ wo + ioAH where

AH is the gyromagnetic resonance width.

3.3.3 Mode profile measurement and Cgap = -3 and -4 comparison

to simulation

a Amplitude b Phase c Fourier Transform

9

CO6

3

0 x (cm) 50 0 x (cm) 50 -3 kx (cmA1) 3

Figure 3-4: Phase and amplitude measurements for 4.5 cm by 0.735 cm rectangular waveguide
with Fourier transform of calculated mode profile. a) Amplitude measured in waveguide
from 0 to 50 cm b) Phase c) Fourier transform of electric field computed from the measured
amplitude and phase data. The peaks of the Fourier transform appear in red, and their
dispersion matches the theoretical predictions in black. Note that the peaks on the right
side (the forward propagating waves) are higher in amplitude. The amplitude of the forward
propagating wave is higher than the backward propagating one because of absorption at the
end of the waveguide by the microwave absorber.

In Fig. S1 we present the procedure for extracting the dispersion relation of a rectan-

gular waveguide from the mode profile. For this measurement we constructed a 50 cm long

rectangular waveguide 0.735 cm tall and 4.5 cm wide. We placed microwave absorbers at

the ends of the waveguide which minimized reflections.We first present the raw amplitude

and phase data in Fig. Sla and b. The phase and amplitude for the entire range of fre-

quencies was acquired during a single measurement at a specific position in the waveguide.

We combined the phase and amplitude data to calculate the electric field along the edge.

After we have the total mode profile, we take the Fourier transform to find the peaks in

k-space corresponding to the propagating modes. In Fig. Sic, we plot the FT as a function

of frequency and wavevector, allowing visualization of the mode dispersion in the waveguide.
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The location of the FT peaks matches the theoretically-predicted dispersion relations which

are in black. Note there is more energy on the forward propagating branch of the dispersion

relation, than the backward propagating one. The phase and amplitude information from

the measurement allows us to completely reconstruct the backward and forward propagating

modes independently.

FT of Mode Profile
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3
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3
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Wavevector k /(a)
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Wavevector k/( )
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Figure 3-5: Fourier Transform of experimental and simulation data compared to computed
bandstructure for Cgap = -3 and -4 from Fig. 2 in main text. Regions of interest are
highlighted in yellow. a) FT of experimentally measured mode profile. b) FT of simulated
mode profile in geometry closely matching experiment. c) Supercell calculation for bulk and
edge bands. Note that in the bandgap we have forward and backward propagating modes,
but that each set of these modes is localized to opposite edges. d)-f) The same data sets for

Cgap = -4. The excellent agreement between these figures provides further evidence for the

experimental observation of multiple one-way edge modes.

In Fig. S2 we present a comparison between Fourier transforms computed from simulation

and experiment, and calculated supercell bandstructures for Cgap = -3 and -4 from Fig. 2

in the paper. We have highlighted the regions of interest in yellow. In interpreting the results

it is important to understand some fundamental features of the Bloch modes propagating in

the lattice. In general the electric field E_ in periodic media can be written as u(x, y)eikx
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where u(x, y) = u(x + a, y) is the envelope function and k is the wavevector, we can rewrite

this by expanding u(x, y) in its spatial Fourier components:

E.(x, y) = u(x, y)eikx S aG (Yei(k+G) (3.1)
G

We can make several important observations about this result. The most important

is that we will potentially observe multiple 'copies' of a single dispersion relation, shifted

by reciprocal lattice vectors G. These copies are clearly visible in the experimental and

theoretical results in Fig. S2a and S2b, where we have seperated each BZ by vertical black

lines.

Another important fact is that the Fourier coeffecients aG are functions of y. This means

to reproduce the experimental results precisely that the exact positions of the excitation

and measurement antennas have to be known, in addition to the distance between the metal

boundary and the photonic crystal. In Fig. S2b we attempted to reproduce the experimental

geometry as closely as possible. Despite many variables and nonidealities, the FT from the

simulated mode profile bears close resemblance to that measured in experiment, providing

further evidence for the observation of multiple one-way modes.

Finally in Fig. S2c we present supercell calculations for the bulk and edge bands. Careful

study reveals that many bright-spots in the Fig. S2a and b can be traced back to certain

bands which are being excited. Note that the supercell calculations in general include forward

and backward propagating modes, but that inside the bandgap, one edge mode dispersion is

localized to one end of the computational cell, while the other, oppositely traversing mode

is on the opposite side, so in experiment and simulation only one set will be observed.

3.3.4 Cg,,p = 1 (a=2.4 cm) photonic crystal

In Fig. S3 and Fig. S4 we present the experimental results for the bottom photonic crys-

tal used for the splitter in Fig. 3, which had a lattice period of 2.4 cm. Fig. S3 shows the

agreement between the theoretical gap map, theoretical bulk transmission, and experimental

transmission. This crystal was selected because the Cg,,p = 1 bandgap (the one to the right

of the resonance) occurs in the same frequency and magnetic field ranges as the Cgap = 2
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Figure 3-6: Comparison of theoretical gap maps and bulk transmission to experimental
transmission measurement in a 2D ferrimagnetic photonic crystal for Cgap = 1 (a=2.4 cm)
crystal from Fig. 3. a) Theoretical topological gap map as a function of the magnetic field
and the frequency with each bandgap labeled by its gap Chern number. The black diagonal
line indicates the resonance in the effective permeability (Appendix B) b) Theoretical bulk
transmission c) Experimental bulk transmission d) Experimental configuration with the lat-
tice geometry (top metal plate removed). The antenna locations are marked with "1" and
"2". e) Simulation geometry with the green line representing the receiving antenna, and the
green circle representing the transmitting antenna.

bandgap in the photonic crystal from Fig. 1 and 2, which we discuss in Appendix D. Fig. S4

shows the edge transmission measurements, and these are consistent with the Chern number

and edge mode dispersion from the edge mode calculations. The large C,,p = 1 bandgap

occurring at low magnetic fields is potentially useful for applications. This bandgap can al-

ternatively potentially be opened without an external magnetic field by using a ferrimagnetic

material with remanent magnetization.
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Figure 3-7: Experimental edge transmission measurement along copper boundary for Cg,,p =
1 (a=2.4 cm) crystal from Fig. 3. a) S21. b) S12. The bandgaps that are nontrivial have
direction-dependent edge transmission, because the interface of a nontrivial bandgap with a
trivial bandgap (copper boundary) supports one-way modes. In a) and b) this causes the
nontrivial bulk bandgaps from Fig. S3 to be present in one direction (e.g. S12) and absent
in the other (e.g. S21). The trivial bandgaps around 5 GHz do not support one-way modes,
and so do not exhibit direction-dependent transmission. c) Experimental configuration with
the antenna locations and the copper boundary. Insets on the left and right side of a) and
b) respectively show edge band calculations with the edge modes in red and the bulk bands
in blue. Each supercell calculation applies to a) and b) even though each is shown on only
one side for clarity. The number of one-way edge modes corresponds to lCg,,p from Fig. S3a,
while the sign of C,,p is consistent with the theoretical group velocity (from the edge mode
dispersion) and the directional transmission in a) and b).

64

qap=+1

9

7 
8

qap=+1
9

r/a

Cap=-3



=2 b Experiment Capi

12

10

6-

4-

2-
COO -50 -100 -50 0

0.1 0.3 0.5 0.1 0.3 0.5
Magnetic Field (T)

Figure 3-8: Alignment of bandgaps for C,2, = 2 (a=3.0 cm) crystal and C,2, =I (a=2.4 cm)
crystal from Fig. 3 splitter. a) Transmission for a=3 cm crystal. The nontrivial Cgap = 2
bandgap used in the Fig. 3 splitter experiment is boxed in black. b) Transmission for a=2.4

cm crystal. The nontrivial Cgap = 1 bandgap used in the Fig. 3 splitter experiment is

boxed in black. The Cgap = 2 bandgap and Cgap = 1 bandgap from each crystal show good
frequency alignment over a range of magnetic fields from 0.32 T to 0.4 T
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Figure 3-9: One-way Topological Photonic Circuit. Photonic one-way circuit which can be
constructed using the topological bandgaps we found. Arrows represent one-way edge modes
and each crystal is labeled by its gap Chern number.

3.3.5 Bandgap alignment between Cgap = 2 (a=3.0 cm) and Cgap 1

(a=2.4 cm) photonic crystals

We designed each crystal in the Fig. 3 splitter experiment so that a nontrivial Cgap 2

bandgap from one crystal would be well aligned at a certain magnetic field with the Cgap = 1

bandgap of another crystal for a sufficiently large range of frequencies. The Cgap = 2 crystal

was studied in Fig. 1 and 2, and consisted of a square lattice of rods with lattice constant 3

cm. The Cgap = 1 crystal was studied in Fig. S3 and S4, and consisted of a square lattice of

rods with lattice constant 2.4 cm. The transmission measurements showing the bandgaps of

each crystal are presented in Fig. S5 with the location of each bandgap highlighted with a

black box. For the Cgap = 1 bandgap and the C,,p = 2 bandgap, there is significant frequency

overlap between the bandgaps for magnetic fields between approximately 0.32 T and 0.4 T.

This overlap was acheived through theoretical calculations and experimental tuning of the

lattice constant.

3.3.6 One-way Topological Photonic Circuit

We include an example of a topological photonic circuit using the topological bandgaps

we found in Fig. S6. We assume in this figure that each topological bandgap for each

topological "block" is perfectly aligned in frequency with all of the others. Each topological
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Figure 3-10: Calculation of Cgap by summing Chern numbers below bandgap for the Cgap = 2

(a=3.0 cm) crystal from Fig. 1,2, and 3. On each side of the gap map we have included bulk
bands labeled with their Chern numbers. The sum of the Chern numbers of bands below a
given complete bandgap is the gap Chern number.

"block" is labeled with its gap Chern number. At the junction between three bulk domains,

one-way edge states merge together or branch off, enabling new device functionalities as

signal combiners and photonic logic gates immune to backscattering from manufacturing

imperfections.

3.3.7 Chern Number Sums

In Fig. S7 and S8 we present the topological gap maps for the photonic crystals we con-

structed along with insets illustrating the detailed bandstructure at the minimum and max-

imum magnetic fields. Each band in the insets is labeled with its Chern number. The sum

of the Chern numbers of all bands below a given bandgap is the gap Chern number [21]. We
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Figure 3-11: Calculation of Cg,,p by summing Chern numbers below bandgap for the C,,p = 1

(a=2.4 cm) crystal from Fig. 3, S3, and S4. On each side of the gap map we have included
bulk bands labeled with their Chern numbers. The sum of the Chern numbers of bands
below a given complete bandgap is the gap Chern number.
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labeled each band in the gap map with its gap Chern number determined with this rule. The

insets were computed using fixed point iteration, while the gap map was computed using

transmission calculations as detailed in Appendix G.

3.3.8 Numerical Methods

The bandstructure and transmission plots in this work were calculated using COMSOL which

utilizes the finite element method. The Chern numbers of each bulk band were calculated

using a custom made finite-difference frequency-domain code.

For the bandstructure calculations, we solved a Hermitian eigenproblem of the following

form in COMSOL.

V x (A-V x E) = Ew2E

Since ferrimagnetic materials are dispersive (M depends on w), this is a nonlinear eigen-

problem. Even though COMSOL can only solve linear eigenproblems, we can still find the

solution to the nonlinear eigenproblem using fixed-point iteration. In this method the ma-

terial parameters are evaluated at a trial frequency so that the normal linear eigenvalue

problem can be solved. The new solution is used to evaluate the material parameters again,

and if the initial guess is close enough, the frequency will converge with enough iterations.

We applied fixed-point iteration to calculate the bandstructures in Appendix F.

For the supercell calculations in the paper, the linear eigenvalue problem was solved with

material parameters evaluated at the midgap frequency. Material dispersion will cause the

bandgaps to become smaller without effecting the topological properties. Consequently we

did not include dispersion in the supercell calculations since they contained a large number of

bands and would consequently take too many computing hours. The supercell calculations

were computed using 15 unit cells of the photonic crystal joined at the ends either with

periodic boundary conditions, in the case of the bulk calculations, or metallic boundary

conditions, for edge-mode calculations.

The transmission was also calculated with COMSOL by solving for the time-harmonic

solution at a given frequency and magnetic field. For these calculations the source "antenna"
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was represented by three point current sources of equal magnitude in the normal direction

within a single unit cell of the crystal. The receiving antenna was represented by a short

line on the other side of the crystal over which the power was integrated. The boundaries

of the crystal were padded with perfectly matched layers. The effects of material loss and

material dispersion were included in the calculation.

Additional transmission simulations were conducted to find the gap map in Fig. la and

in the supplementary material. In order to sample the full k-space, the receiving boundary

was expanded to receive all unique incoming waves from the current sources. The low

transmission regions were identified and used to create the gap map. The locations of these

gaps are consistent with the bandstructure calculations as shown in Fig. S7 and Fig. S8.

Here the fixed-point iteration and transmission methods show good agreement in regimes of

low dispersion and loss.
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Chapter 4

Lens-enabled Chip-scale LIDAR

4.1 Introduction

The meteoritic rise of autonomous navigation in real-world settings for self-driving cars and

drones has propelled rapidly growing academic and commercial interest in LIDAR [50,51].

One of the key application spaces that has yet to be filled, but is of great interest, is a non-

mechanically steered LIDAR sensor which has substantial range ( 100-300 m), low power ( 1-

10 W), low cost ( 100s of dollars), high resolution ( 104-106 pixels) and small size ( 10 cm 3 ).

There are several candidate technologies including micro-mechanical mirrors [52,53], liquid-

crystal based devices [54, 55], and integrated photonics that are currently being explored

academically and commercially to fill this niche.

Current state-of-the-art chip-scale integrated-photonic LIDARs are based on ID or 2D

phased array antennas [5,56-63]. In this type of architecture, 1D or 2D arrays of dielectric

grating antennas are connected to electrically-controlled thermo-optic (TO) or electro-optic

phase shifters. These phase shifters are fed by waveguides splitting off from one main dielec-

tric waveguide which brings power from an off-chip or on-chip source. By applying a gradient

to the phases tuning each antenna, in-plane or out-of-plane beam-steering can be enabled.

As shown in Fig. la and 1b, the direct predecessor of this architecture is RF-phased arrays

developed for military and commercial RADARs [3]. Although the detailed implementation

is different because RF primarily relies on metallic waveguides and structures whereas in-

tegrated photonics uses dielectrics, optical phased arrays are essentially based on directly
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replacing RF components with their optical equivalents. We note that this direct translation

brings a significant disadvantage which is immediately obvious: whereas metallic waveguides

can be spaced at sub-wavelength pitches, eliminating parasitic grating lobes, dielectric waveg-

uides have to be separated by several wavelengths to prevent excessive coupling, resulting in

significant grating lobes.

Here we study a new type of integrated photonics solution implied by Fig. 1c. Although

the optical analogy to RF phased arrays has been well explored, there is an entire class

of planar-lens based solutions developed in the RADAR literature that preforms the same

function as RF phased arrays, whose integrated-photonics analogs have not yet been inves-

tigated [6, 64-68]. Here instead of relying upon many continuously tuned thermal phase

shifters to steer beams, we use specially designed lenses excited in their focal plane to gen-

erate discrete far-field beams. We explore our new architecture and design in the following

sections as well as the main advantages this new type of integrated LIDAR has over existing

approaches.

4.2 Architecture and Operation

Inspired by Fig. 1c, we develop a new lens-enabled integrated photonic LIDAR architecture.

We have illustrated the light propagation through each component of this architecture in

Fig. 2. In the first stage we couple a fiber to an on-chip waveguide. The waveguide is formed

by a 200 nm thick and 1 pm wide, Silicon Nitride (SiN) section encapsulated in SiO 2 (the

upper SiO2 layer is omitted from the diagram). This fiber connects to a tunable IR source

centered about 1550 nm. The next stage consists of a switch matrix composed of Mach-

Zehnder interferometers (MZI) which allow switching one input into 2D output ports, where

D is the depth of the tree [69]. The path length of one arm of a single MZI is controlled by an

integrated TO phase shifter (external electronic control lines are omitted) which allows the

optical signal to be electronically switched between two output ports. Each output from the

switch tree feeds into a slab waveguide, patterned to form the focal surface of the aplanatic

lens [70]. The light rapidly diffracts after entering the slab waveguide until being refocused

by the aplanatic lens. The lens is formed by a patterned PolySi layer 20 nm or 40 nm thick.
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Figure 4-1: Missing analogy between RADAR literature and LIDAR literature. a) Phase-
shifter based approaches from RADAR from [3,4]. There is an extensive literature developing
phase-shifter based RADARs ranging from only a few active elements to thousands for large
arrays. b) This phase-shifter based approach has been extensively adopted by integrated-
LIDAR architects, who typically employ ID or 2D arrays of phase shifters for beam forming.
Imaged here is 2D integrated array from [5] with waveguide pitch 6 A x 6 A. c) Another class
of RADAR solutions based on using lenses. Imaged here is Rotman lens design and patch
antenna array from [6]. There is a very rich literature of 1D and 2D dielectric and metallic
lens solutions developed in RADAR due to the expense and difficulty of implementing phase
shifter solutions. Despite this extensive literature which contains many useful techniques,
no analog planar integrated LIDAR solution exists in the literature. Our new solution fills
in the missing piece by contributing a planar lens-based approach in direct analogy to these
RADAR methods, which will enable new benefits and opportunities.
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Matrix Feed Interface Lens

Silicon Nitride PolySilicon

Figure 4-2: Lens-enabled chip scale LIDAR architecture. We illustrate the functionality of
our optical chip through multiple stages. First a fiber containing an IR signal is edge coupled
into the chip. Subsequently this signal is routed through an optical switch matrix formed by
an array of electrically-controlled Mach-Zehnder interferometers (MZI). The electrical control
lines required for the TO phase shifters on one arm of these interferometers is omitted. After
routing, the beam is emitted at one point in the focal plane of the lens. The signal undergoes
diffraction until being focused into a plane-wave by the planar aplanatic lens. Finally the
infrared light is scattered out of plane by a ID grating coupler. The relative dimensions of
this figure have been distorted for visualization, but the SiN waveguides are 200 nm thick
and 1pm wide, and the PolySi layer forming the aplanatic lens is 20-40 nm thick, with the
gratings being the same thickness and material as the lens. An additional upper SiO 2 layer
encapsulating all of the components is omitted.

After collimation, the beam propagates into the ID grating where it is scattered out of the

plane and into free-space. The grating is formed out of a PolySi layer the same height as

the aplanatic lens. In Fig. 2b we depict the actual realization of the components of this

device and test structures in a gdsii file, which we designed and are currently fabricating and

testing at MIT Lincoln Labs.

As depicted in Fig. 3, non-mechanical beam steering for this chip is implemented by two

mechanisms. The first is port switching, which changes the in-plane propagation direction of

the beam as shown in Fig. 3a and 3b. As depicted in Fig. 3c, the wavelength roughly controls

the out-of-plane angle, that is the angle between the beam center and the z-axis. These 2D

beam steering mechanisms are related in spirit to those of RF Rotman lenses feeding arrays

of patch antennas (see Fig. 1c) [71,72]. The 3D directivity patterns of the generated beams
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Figure 4-3: Non-mechanical beam steering principle for lens-enabled chip-scale LIDAR.
Changing port excitation changes the in-plane beam steering direction, while tuning wave-
length (red to blue, these are false colors since the device operates in the IR) roughly changes
the out-of-plane angle. The 3D directivity pattern for the system in each excitation scenario
is depicted above the output grating.

are depicted in each subfigure. The precise mathematical relationship between the emission

angles and the analytic form of the directivity pattern are detailed in the next section.

4.3 Upper Bound on Performance

We begin our discussion of the system design by describing an ideally preforming aperture.

The function of the lens is to generate a plane wave propagating at a finite angle. The

scattered light from the plane wave propagation through the ID grating forms the near-field

of the radiation pattern. Assuming that the plane-wave emitted from the lens is uniform,
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that the lens introduces negligible aberrations, and that the lens and grating parameters are

wavelength and angle independent, we can write down a simplified aperture pattern of the

following form, which is depicted in Fig. 4a:

A(x,y) = {exp(-qx) exp(ikouox) exp(ikouyoy) 0 < x < L, -I + x tan(#') K y K 1 + x tan(#')

0 else

This pattern can be thought of as a parallelogram with uniform amplitude in the y-

direction, and exponentially decaying amplitude in the x-direction, determined by the grating

decay parameter q where L is the length of the grating and W is the width. The inclination

of the parallelogram is determined by the grating propagation angle #', which is derived in

the Appendix and is close in magnitude to the propagation angle of the beam output from

the lens #i,,.

uxO = sin(#o) cos(Oo) and uy,o = sin(#o) sin(Oo) characterize the direction of the emitted

mode, and can be calculated by tracking the phase accumulated by the collimated rays

emitted from the lens and discretely sampling them at the grating teeth. As shown in the

Appendix we can write these as:

uy,o =ni sin(#in)
27rm (4.1)

XO -kx,avg(#in) 

(

, ko ko

Where kx,ag is the average k component in the grating, ni is the effective index of the TE

slab mode in the lens, m is the grating order, and A is the grating period. The function

of the grating can be understood from this equation: it allows phase matching to radiating

modes through the addition of the crystal momentum 2' .

Making the approximation kx,avg ~l nefkocos(inI), where neff is the average effective

index of the gratings, we can show that uXo and uyO satisfy an elliptical equation:

[UO + MA 2 + [] (4.2)
nefAI ni (42
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Figure 4-4: Ideal near-field aperture generated from system, the far-field beam angles, and
the far-field directivity for this aperture. a) The ideal aperture pattern is a parallelogram
with tilt #,, width W, and length L, the exponential decay follows from radiation loss from
grating emission in the x direction. The interference pattern results from the addition of a
crystal momentum 27 to the plane-wave momentum, where A is the grating period and m
is the grating order. b) The computed far-field directivity for the ideal aperture given in a).
The peaks to the left and right of the main beam are known as sidelobes and originate from
the sinc factor in the directivity function.

This elliptical equation has a simple physical interpretation. Switching ports in-plane takes

us along an elliptical arc in u.,o and uv,o space, while tuning the wavelength A tunes this arc

forward and backwards, which we depict in Fig. 6b.

We can analytically calculate the directivity, which characterizes the far-field distribution

of radiation. We find:

Wk 2cos(0o) sinc2 (Iko Au)D(Aux, Au.) = 2 ) x7rq(1 - exp{(-2qL)}) 1 + f (Au. + tan (#)Au%) 2

1-2 cos(koL(Aux + tan(#')Au,)) exp{(-qL)} + exp{(-2qL)}) (4.3)

Where Au, = u, - u.,o and AuY = UY - uy,0 . We plot this in Fig. 4b. There are several

recognizable features to this function such as the sinc from the rectangular aperture, and

the 2 from the exponential decay [73]. The tan#' components introduce a "shear" into

the beam spots and come directly from the tilted aperture pattern.

Additionally we can use this result to calculate estimates for the number of resolvable

points for port switching and wavelength steering. Specifically for wavelength tuning we
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find:

Nwavelength ~ gneff A + (4.4)
A0 c

Where Q is the quality factor of the grating, vg is the group velocity of propagation in

the grating, and AA is the bandwidth. This expression exactly resembles what would be

extracted from other phase-shifter based architectures which rely on frequency tuning for

beam-steering in one direction [56,58,59,63]. We can also estimate the number of resolvable

points for steering in plane to be:

2Dpeak _ 27rW
Ninpane ea -(4-5)Ninpne ~~ 3 3A

4.4 Design

Although the ideal case describes the desired system operation, how to achieve this is less

obvious. Thankfully the extensive literature on lens-based solutions in RADAR provides a

rich source of design methods and work as was the promise from Fig. 1. There are many

types of lens-based solutions invented for use in RADAR, including circularly symmetric

Luneburg lenses [74,75], metallic lenses [65], bootlace lenses [76], etc. We focus primarily on

the literature developed for shaped wide-angle dielectric lenses [66,67,77] since we can most

easily implement these types of solutions in our planar photonic circuit platform.

We design our wide-angle dielectric lens by constraining the shape to satisfy the Abbe Sine

condition, which eliminates the Coma aberration (see Appendix) [64,77]. Lenses designed

this way tend to have good off angle performance to t 20 or 30 . In practice this quantity

can translate to a field of view of 800 or more in #0 (see Appendix). The algorithm for

generating the lens takes as input the focal length, lens thickness, and the lens index (the

ratio of effective indices of a TE-mode in a SiN slab (n2) to a SiN slab with a layer of PolySi

(ni)). After creating the lens, the focal plane is identified by conducting ray-tracing through

the lens and optimizing the feed position and angle based on maximizing the 2D directivity

(from the 1D aperture pattern computed from ray-tracing).

Following this, ray-tracing is done through the grating to compute the full 3D directivity

for several optimized port locations and angles. We extract an aperture pattern from ray-
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tracing through the grating in the following way:

.Nrays Ngrat

A(x y)= Z Pn,mJ(x - mA)6(y - yam) exp(-qx) exp{}(in,m) (4.6)

Where we have discretely sampled the ray amplitudes Pn,m and accumulated ray phases On,m

for all Nra by Ngat, ray-grating intersections at [Xn,m, Yn,m]. The physical interpretation of

this is that each ray-grating intersection acts as a point radiation source driven by the travel-

ing wave (see Appendix). We have also artificially "added" an amplitude decay of exp(-qx)

to account for the grating radiation as the rays propagate. The power associated with a

given ray-grating intersection Pnm is calculated from the feed power based on conservation

arguments: Pfeed()d = Pn,m(y)dynm. We illustrate a full ray-tracing calculation and a 2D

aperture pattern extracted by this method in Fig. 5a.

Ray-tracing through the grating is valid in the regime where the grating teeth individually

cause low radiation loss, and small incoherent reflections (i.e. the excitation frequency is

far from the Bragg bandgap). When correct, this method is useful because it can quickly

compute the aperture pattern for a large many wavelength structure while including the

effects of lens aberrations and a nonuniform power distribution, two features which would

be difficult to model analytically, and very costly to simulate through 2D or 3D FDTD. Our

use of ray-tracing to describe planar integrated optical devices builds on experimental and

theoretical work conducted by Ulrich et al which directly verified its application to planar

prism and lens devices [78], and Ura et al who used ray path length arguments to design the

first focusing grating couplers [79].

Following standard RADAR design procedures, once a set of far-field 3D directivity

patterns are calculated, new ports are placed to overlap the gain at each port by 3dB

to provide suitable coverage in the field of view. To confirm the successful operation of

this design, we calculate the aperture patterns for multiple wavelengths between 1500 and

1600 nm for all ports. We include the wavelength dependence of the effective indices and

the grating decay factor q. Directivity patterns are plotted in u, uY space for a range of

wavelengths in 5b, where the 3dB overlapped ports lie along an elliptical arc, and where the

arc is translated forward and backward by tuning the wavelength. These same beams are
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plotted in 3D in 5c. Note that beams towards the edge of the field of view tend to "fall-into"

the device plane because of increasing in-plane momentum (see Appendix).

Ray-tracing was the main method used to design the optical beam-steering chip. The

parameters needed for this method such as the port phase centers, feed beam width, grating

decay length, and the effective indices were extracted from other calculations. In addition

many other simulations were undertaken to validate the assumptions of our ray-tracing com-

putations to account for second order effects. Finally the outcome of the ray-tracing calcu-

lations was compared to the analytically predicted directivity functions and beam directions

to assess the performance and validity. Once a design was validated, cadence layouts of

the necessary components were automatically generated and verified to ensure they satisfied

design rule checks based on fabrication limitations and other physics-based constraints.

4.5 Advantages and Disadvantages

This architecture appears to have several advantages over the phase-shifter based solutions.

One reason RF lenses were developed, was to minimize the use of phase shifters, which are

expensive, lossy, complicated, power hungry and bulky. Some of the same considerations

apply here: TO phase shifters are power hungry components, typically using 10 mW or

more to achieve 7r phase shift [80]. For a thousand pixel device, this requires the order of

1000 phase shifters spread out in a 1mm aperture, dissipating 10 Watts. For our system we

are restricted to using the same types of phase shifters to operate our MZI switch tree, but

we only require log 2 N of these to be on at a given time, where N is the number of ports, as

illustrated in Fig. 6. Consequently a lens-based device with 1000 resolvable points in plane

will dissipate 100 times less power for in-plane steering compared to the phase-shifter based

approach. In general for our lens-enabled LIDAR, the power budget will be dominated by

the optical signal generation, whereas for the phase-shifter architectures, it scales primarily

with the feed size.

Most practical phase-shifter approaches, require active feedback to maintain beam co-

herence, because thermal cross-talk causes changes in the path length of neighboring waveg-

uides. This means either making a measurement of the relative phases on chip through
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Figure 4-5: Illustration of theoretical ray-tracing and far-field for lens-enabled chip-scale
LIDAR generated with Ao = 1.55 pm, q =0.025pLm-', A =700nm, dutycycle=0.1, feed
beamwidth of 150, and effective indicies n1 =1.39 and n2 =1.96 a) Ray-tracing simulations
are used to determine the optimal port position and relative angle. These rays are traced
through the grating and form an aperture pattern. The Fourier transform of the aperture
gives the Far-field pattern. Numerical details of effective index calculations, port phase
center, and feed patterns are detailed in the appendix. b) Heat plot showing far-field beam
spots in u_ and uY space. The location of these ports is governed by 4.2, where the beams
along the elliptical curve are generated from port switching, while the points formed from
translating the ellipse to the right and left correspond to frequency tuning over 50 nm
around AO =1.55tm. c) 3D beam patterns corresponding to those in b). Here the different
colors indicate the different wavelengths used to generate the beam. The drooping effect of
the beams as they turn off-axis is caused by r creasing in-plane momentum.



a) Phase shifter architecture b) Lens-based architecture

Figure 4-6: Schematic of power requirements for phase-shifter-based and lens-based optical
beam-steering. a) In the phase-shifter approach power is uniformly fed to all output antenna
elements through a 3dB splitting tree. Approximately N thermal phase shifters are actively
cohered to implement in-plane beam steering over N resolvable points. b) In the lens-based
approach, we achieve N resolvable points in-plane by switching with an MZI tree between
N ports of a dielectric lens feed. The power requirements of this network scale like log 2 N
as compared to N for the architecture in a) because only MZIs associated with the desired
optical signal path need to be activated; rest are "off" and draw no power.

lenses and detectors or measuring the beam in free space through an IR camera, to provide

feedback [56,59]. Here we do not have to actively cohere thousands of elements: we can use

"binary"-like switching to route the light to the appropriate port, which is a simpler control

problem. Lower power consumption additionally makes thermal fluctuations less severe.

We note that the use of a solid 1D grating immediately eliminates the problem of grating

lobes or high sidelobes that optical phased arrays suffer from. This is at the cost of not being

able to "constrain" the ray path to be in the forward direction and results in having to use

more material for the grating coupler, hence the triangle shape of the grating feed.

There is an alternate realization of this system, outlined in the Appendix, which can

eliminate all TO phase shifters and parallelize the in-plane ports. This architecture paral-

lelizes one scanning direction, as is commonly used in most commercial LIDARs to increase

scanning speed. This modification is not possible with the phase-shifter based approach.

A final significant advantage arising from our architecture is the ability to use alternate

material systems. One of the chief reasons for using Si for phased-array designs is its large

TO coefficient which makes for lower power phase shifters. However, the maximum IR
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power a single Si waveguide can carry is 50 mW which significantly limits the LIDAR

range. SiN has much better properties in the IR and can take the order of 10 W through

a single waveguide, as recently demonstrated [81]. However, noting that the power required

to operate the phase shifter goes like o-, where - is the thermo-optic coefficient and a- is

the conductivity, we expect that phase shifters on the SiN platform to require at least three

times more power than their equivalent Si versions [82,83]. This would exacerbate the power

budget and control problems described above for any phase-shifter approach based on SiN.

The lens-enabled design can still benefit from using SiN, and greatly improve the potential

range, because the feed power is practically negligible.

No architecture is perfect, and there are several non-idealities which can alter the above

story for our lens-based solution. The first is the nonuniform field of view of the device,

which may cause problems for some applications. Another concern is scaling the number of

resolvable points to thousands of pixels in each scanning direction. Although it is simple

to ray-trace a lens which would support up to a thousand resolvable points for in-plane

scanning, implementing such a lens in practice becomes more and more difficult because

the required fabrication tolerances scale as - (see Appendix). An additional concern is the

impact of lens aberrations on the directivity degradation for the full aperture. Although

it was captured by ray-tracing, it was not rigorously modeled to determine the required

tolerances and behavior for high Q gratings.

4.6 Experiments and Future Work

In collaboration with Lincoln Labs the components from Fig. 2 are currently being fabricated

and tested. We created 4 to 128 port devices based on 20 nm and 40 nm thick PolySi lenses,

and gratings 10 nm, 20 nm, and 40 nm thick. The gratings also supported up to 300 resolvable

points from wavelength tuning for the 10 nm variants over a 100 nm bandwidth. Because

of fabrication constraints, the grating PolySi height had to be the same as the lens height.

This resulted in tradeoffs, because thicker gratings had lower Qs, but thicker lenses had a

better index contrast and could support more resolvable points. MZI switching trees of up

to 128 ports are also being fabricated. Testing will verify the expected number of resolvable
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points from port switching and wavelength tuning and confirm successful operation of the

MZI switch matrix. Finally InP amplifier arrays 128 amplifiers in size will be fabricated at

Lincoln Labs and integrated in-between the SiN switch matrix and SiN passive beamforming

chips [?]. Integrating sources with the SiN platform is an important step to generating a

commercial integrated LIDAR chip.

The devices being fabricated this year are depicted in Fig. 7 in a solid black box, con-

sisting of the switch matrix, amplifier array, and passive beam-forming chip. Future work on

this optical beam-steering platform will include further exploring the literature of RADAR

lens solutions, such as bifocal lenses, integrated Luneburg lenses, Rotman lenses, and many

others [64,66,68, 71,84,85]. It also may be fruitful to investigate standard compound lens

architectures such as achromatic doublets to deal with the high waveguide dispersion of the

lens index, which becomes a problem for systems supporting 1000 resolvable points (see Ap-

pendix). Although the overall design approach is simple, there are a myriad of tasks ranging

from enhancing the upward emission of the gratings to minimizing the spillover loss of the

feed power on the lens, which can improve the efficiency, robustness, manufacturability, and

performance of the system.

Future work at Lincoln Labs will consist of integrating tunable sources on chip, separate

transmit and receive apertures or an on-chip circulator, integrated Ge detectors for het-

erodyne detection, and finally external electrical control and signal processing as shown in

Fig. 6. Bringing all of these technologies together compactly, cheaply, and robustly will be

challenging, but the reward will be a new sensor capable of supporting the next generation

of autonomous machines.

4.7 Appendix

4.7.1 Alternate Realizations

In Fig. 8 we depict a realization of the system based on removing the MZI switch ma-

trix and replacing this with parallel illumination of all ports through a 3dB splitting tree.

Beam-steering of this "fan-beam" is accomplished through frequency tuning. A separate
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Figure 4-7: Block diagram of full integrated LIDAR chip. The products for this year's
project are surrounded by a solid black line and consist of the SiN MZI switch matrix, the InP
amplifier array, and the SiN feed, lens, and grating chip. These functional blocks implement a
nonmechanical optical beam steering system. On the left hand side, we show several elements
required to form a working LIDAR chip, including a tunable on-chip source, a source for
an RF chirp to be modulated onto this source, heterodyne "IQ" detection (through III-V)
diodes, and external electrical control to drive the optical-switch matrix and tunable source.
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Figure 4-8: Silicon Nitride Lithography Mask currently being fabricated at MIT Lincoln
Labs. Switch trees, passive beamforming chips, and other test structures are visible.
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aperture with an array of detectors is employed for processing the LIDAR return. Most

commercial LIDAR architectures employ some parallelization to increase the rate of point

cloud acquisition. At 100 m, a raster scan for a megapixel scale sensor would take Is, based

on time-of-flight, far too slow for most applications, whereas parallelization can allow an

acquisition on the scale of ms. The tradeoff is that the power requirements are increased by

a factor of N, and more detector hardware is required.

4.7.2 Analytics

Far-Field Angles

The aperture phase is the most important quantity for our LIDAR antenna, and is completely

determined by the initial ray directions, the grating parameters, and the wavelength. Since

we are propagating through a straight grating, the plane wave ky generated by the lens feed

system will be conserved, so ky,avg = ky. k, on the other hand, will be more complicated

because it changes at each step of the grating. Assuming an initial in-plane angle of #i,, an

index of the starting medium ni, an index of the steps n 2 and a step duty cycle d, we find

that ky and kx,avg are given by the following:

ky =niko sin(in,)

2 (4.7)
kx,avg =dn1 ko cos (#in) + (1 - d)n2ko I - Th' sin2( in))

n2

It's important to note that the effective indices for the grating ni and n 2 are also func-

tions of the wavelength. To compute the emission angle of this aperture, we perform

phase matching between these wavevectors and those of a free-space plane wave with I =

ko[sin(0o) cos(0o), sin(0o) sin(#o), cos (0o)].

ko sin(9 0 ) sin(qo) =nikO sin(Oin)

ko sin(0o) cos(0o) =kx,avg (/in) - 2irm (4.8)
A
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Here we have subtracted a crystal momentum -, which originates from the discrete and

periodic sampling implemented by the scattering from each grating step. We can rearrange

this to derive the following expressions for the far-field angles:

(2im)2 + (niko sin(#in)) 2

00 = asin Vkv~ On Ak 49
( n1 ko sin(in)

q50 = atan kkv~~~nl~~
kavg,x (#in) -

We want to understand how the far-field angles depend on the in-plane angle #in and the

wavelength A. We can immediately identify that #o will be significantly greater than #in. This

results from the grating momentum 2 m being subtracted from kavg,x in the denominator.

This means that relatively small variations in the input angle will greatly change the output

in-plane angle 0, sweeping it across the field-of-view. This feature ultimately allows us to

use the lens in a small angle, aplanatic regime.

As we sweep #in we also expect variations in 00. By examining Eq. (4.9), we see that

the argument of asin seems to increase with #in, and ultimately exceed 1, confining the

beam in-plane. We can derive this cutoff condition (where Oo = 0) more precisely by taking

kavg,x(#in) e neffkocos(#in) where neff = dn1 + (1- d)n2. Even though neff is not truly con-

stant, and it's variations significantly effect the far-field angles, qualitatively this description

holds. We find that the cutoff angle qct satisfies:

1 [fleff cos (]cut) - + n2 [1 - cos (#cut)2 (4.10)

This can be easily rearranged into a quadratic equation and solved for #cut. To get more

intuition into the behavior of this angle, we examine the case of normal (or broadside)

emission at #in = 0 and approximate ni e nfe f. Working this out we find:

1
cos (Oin) 1 - 22 (4.11)

Where tan (#o) n -f- gives the 'corresponding 0 at this point. It makes sense that the

magnitude of the index will control the 0j,, because it determines how rapidly ky increases
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as we move off axis. Overall we can envision how k evolves as a function of #i": starting

from emission normal to the surface, as we adjust #ir, away from 0, k turns rapidly to one

side and falls into the plane.

We can further visualize this trajectory by rearranging Eq. (4.8). Taking u.,o = sin(9 0 ) cos(#o)

and uy,o = sin(Oo) sin(0o), we can manipulate Eq. (4.8) to find:

[U.'+'A]+ 2 '2 = 1 (4.12)
. eff . 1

This is an ellipse centered at [- , 0]. As /i, is varied, the emission direction will traverse

an arc of this ellipse in u,, uY space. Tuning the wavelength A will translate this ellipse

forward and backward in the u. direction. The total field-of-view in u,, uY space will have

the form of a curved band whose thickness will be controlled by the total wavelength tuning

range. We discuss the number of 3dB overlapped beams we can fit inside this field-of-view

in the Number of Resolvable Points section.

Far-Field directivity

We can begin our derivation of the far-field pattern by noting that we can completely specify

the near-field amplitude to have the following form:

A(x, y) = exp(-qx) exp(ikouxox) exp(ikouyoy) (4.13)

Where uxo = sin(Oo) cos(#o) and u, 0 = sin(Oo) sin(#o)

We have implicitly assumed a rectangular beam profile along the y-direction to simplify

our calculations. In general we expect an additional function f(y, x) to modulate the ampli-

tude of the pattern according to the feed pattern, illumination position, and lens geometry.

This derivation however captures the most critical features of the far-field pattern and es-

tablishes an upper bound on the gain. In addition the performance of the aperture is largely

determined by its phase behavior, so smearing the amplitude distribution relative to the

ideal tends to lead to small changes.

The physical aperture we are integrating over will be a parallelogram bounded by the
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following conditions:

0 < x < L (4.14)

w w
+ x tan(') < y - + x tan(#') (4.15)

2 2

Here n' is equal to atan ( ii (sn)ko in(n) ) and is close in magnitude to

#n, from the previous section, but not identical because of the refraction at the grating steps.

To find the far-field pattern we can compute the Fourier transform of this amplitude pattern

over the domain:

F(ux - UO, IuY - UY 0) =

L +x tan#'
dx dy exp(-qx) exp(-iko(ux - uxo)x) exp(-iko(uy - Uyo)y) (4.16)

0 -T +x tan40

Where u, = sin(6) cos(#) and uy = sin(O) sin(), which are the direction angles. For

convenience, from here we denote ux - uxo with Aux and uy - uyo with Auy. We can

evaluate these integrals easily to find:

sin(kolAuy) 1 - exp(-qL) exp(ikoL(u: + tan(')Au))
F(Aux, Auy) = 2 q (4.17)

koAuy q + iko(ux + tan(#')Auy)

The power of the far-field pattern is the magnitude of the field pattern squared, that is

P = IF1 2 . We use the power P below to compute the directivity of the far-field pattern with

the following expression:

D(0, P(9) (4.18)
2,r fo dOsin f dP(0,q$)

The directivity essentially gives the factor of the power emitted in a given direction relative

to an isotropic radiator. A well-designed directional antenna will tend to maximize the peak

gain, the directivity of the main lobe, and minimize the power into sidelobes, because these

waste power and contribute to false detections. We will discuss the directivity more later
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concerning the range of the system and the number of resolvable points.

We can create a simpler expression by expanding the direction angles about the far-field

peak at 0 = 00 and # = #o, we can also take the limits of the integral to infinity. This

creates negligible error in the case of high-gain beams and ultimately allows many of these

gain integrals to be evaluated analytically:

D(As A) ~A0 .A P( AO) (4.19)

It's illustrative to change coordinates of this expression from 0 and 4 to Au, and Aug.

We can find:

Au, = cos(0o) sin(oo)AO + sin(0o) cos(o)A = u, - u.,o (4.20)

AuY = cos(o) cos(O)A - sin(0o) sin(#o)AO = UY - uYo (4.21)

Where we have taken q = qo + A# and 0 = 00 + AO. We can use these expressions to

calculate the following Jacobian, where we have changed variables from # and 0 to A# and

AO:

sin(4o) cos(40)

dA~dA# sin(0o) = dA/udAu sin(0O) cos(oO) cos(Oo)
cos(40) sin(oo)
sin(Oo) -sin(Oo) (4.22)

_dAu.,dAuy

cos(0 0)

Taken together, we can use these results to rewrite our expression for the peak gain as a

function of Au, and Auy:

D(LAu~, Aug) - 27r cos(0o)P(Au, Auy)
f_) 0 dAu, f_0 dAuyP(Au,, Auy)

This unsimplified expression can already tell us something very useful, namely that the

peak gain of a given pattern is directly proportional to cos(Oo). This result emerges because

the far-field gain in general is proportional to the projected area. To first order, neglecting
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additional aberrations and changes in the grating parameters, effective indices, reflections,

and feed illumination, the peak gain fall-off as a function of angle is just determined by

the angle between the emission vector and the z-axis. The other important feature of this

equation is that the peak shape is essentially independent of the center of the main lobe: to

leading order the pattern just changes by the cos(OO) scale factor.

We can directly evaluate these integrals for our far-field pattern:

j dAux dAuyP(Au,,, Aug)=

0du[0dzt sinc 2 (!koAu)

i-coo -o I + (Aux + tan (q))Auy)2

(1 - 2 cos(koL(Aux + tan(#)Auy)) exp{(-qL)} exp{(-2qL)}) (4.24)

We first start by performing a shear transformation on the integrating variables given by:

Au.,, = Aux + tan(#)Auy and Auy,, = AuY. With this transformation the integral now

becomes separable:

j00 dAux, j-0 dAu.,P(ZAux, Aug)=

I+dAu, (1 - 2 cos(koLAux,,) exp{(-qL)} + exp{(-2qL)}) 2 AuYS)
1 ,2 d/y,,sinc 2,

(4.25)

Note that the angle O, does not change the projected area of the aperture, since it just shears

the emitting surface. Consequently we expect it to completely drop out of the integral, which

is indeed the case. Next we remove the dimensions and break the integrals into parts and

evaluate:

2q 0 (1 + exp{(-2qL)}) 2 cos(qLx) exp{(-qL)} / 2 Y

Wkj dx( + 1+x 2  1+ X 2  I yk0snckyJJ

S2qr2 ((1 + exp{(-2qL)}) - 2 exp{(-2qL)} (4.26)
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Using these results, finally we can write the directivity as:

D(Azu, Ay) =
Wk' cos(9o) sinc2 (Q!koAu )

7rq(l - exp{(-2qL)}) 1 + - (Aux + tan (#)Auy) 2

( 2 cos(koL(Aux + tan(O')Auy)) exp{(-qL)} + exp{(-2qL)}) (4.27)

We can also expression the peak directivity as:

(00)Wk2 1 (1 - exp{(-qL)}) 2

rrq 1 + k (1 - exp{(-2qL)})
q2

(4.28)

To gain a little insight into how this function behaves, we can simplify it for large and small

L. For L << 1, we find:
q

lim D(Aux, Auy) =qL-+O

W Lk! 2COS(00) W L20r sinc 2  2 koAU) sinc 2 -ko(Aux + tan(#')Auy) (4.29)

This is just the directivity from a sheared rectangular aperture of length L and width W,

note that the peak gain is WLko cos(Oo) which is directly proportional to the projected area

WL cos(Oo). Taking the opposite limit, we can find another useful simplification:

lim D(Aux, Auy) =
qL-+oo 7rq

sinc2 (! koAu )

1 + k(Aux + tan (#')Auy)2

Here the peak directivity scales as 1L cos(Oo), where - becomes the effective length of theq q

aperture. Even though these expressions are much simpler than the general one we derived,

even if the aperture is several decay lengths long, the effect of the finite length of the

directivity is significant and properly modeling it requires the full expression. An example

of this is in computing the number of far-field resolvable points.
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Number of Resolvable points with wavelength tuning

One of the most important properties of our system is the number of far-field resolvable

points. There are some relatively simple expressions we can derive which will tightly bound

the number of resolvable points we can achieve in a particular system as a function of

the aperture parameters. We will first start with the number of resolvable points we can

achieve through wavelength tuning. Assuming normal incidence from the feed, the far-field

condition for the unit vector in the x-direction is just: nfeffko - 2m = kou., where u. is the

unit vector of the wavevector in the x-direction, neff is the effective index of the grating at

normal incidence, A is the grating period, and m is the grating order.

We want to count the number of full-width half-maximums AUFWHM, we can fit inside

total tuning range of Aurange. Aurang, in this case is just given by "A, where AA is the

tuning wavelength, and is typically 50-100 nm for integrated tunable sources. With this we

can write a simple expression for the number of resolvable points with wavelength tuning

Nwavelength:

mAA +1(3)
Nwavelength ~ + 1 (4.31)

In the case of a finite length grating, AUFWHM has to be computed numerically from the full

directivity formula to give a precise calculation of the number of resolvable points. However,

in the case of a long grating, we can determine exactly that AUFWHM - Plugging this

in gives the following relationship:

SAA m
Nwavelength ~ Xr + 1 (4.32)

Ao qA0

Assuming that at A 0, that the grating is emitting at normal incidence, and using our expres-

sion relating the decay length q to the grating quality factor Q, we find that:

AA vg
Nwavelength Qneff A + 1 (4-33)
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Number of resolvable points from in-plane steering

We assume that we can determine the number of resolvable points from the field pattern at

the lens aperture, as opposed to the pattern after being emitted from the grating.

In ID the directivity of a far-field pattern A(O) is defined by . Assuming that1 f A(G~d

the power is confined to a single lobe of angular width AO, we can approximate Dpeak as

Neglecting lens aberrations, the directivity can be written:

D(O) = cos (0) (4.34)
AO

The steering range in this situation is limited by the minimum acceptable gain usable by the

system. Typically RADARs are designed to have a directivity fall-off of 3dB or 0.5 at the

edge of their usable FOV. This gives an effective steering range of ! radians. Conveniently3

approximating the beam-width to be constant, we find that:

Nin-piane ~ 2Dpeak - 27W (4.35)
3 3A

Where we have substituted in the peak directivity of a rectangular aperture of size W. This

equation accurately reflects the scaling of the number of resolvable points when is between

10 and 40 or so. Beyond this, the path error for off-axis scanning angles begins to become

an appreciable fraction of the wavelength (since the error is directly proportional to the lens

size). The 3dB scanning limit will be squeezed inwards as R increases.

Abbe Sine condition

As shown in [64, 77], we can shape a lens to satisfy the Abbe sine condition. Satisfying

the Abbe sine condition eliminates Coma aberration on-axis and reduces it off axis in the

regime where sin(#) = 0. We briefly outline the procedure for generating a shaped lens given

input parameters thickness T, focal length F, effective focal length F, and index n. The

inner surface of the lens is defined by r, 0, while the outer surface is defined by x, y. In this

coordinate system, we satisfy the Abbe sine condition when y = Fe sin(9). We can further
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relate r and 9 to x and y from the following expression calculated from ray-propagation:

r +V(y-rsin(9))2+ (x- rcos())2 - x = (n - 1)T (4.36)

This can be written as a quadratic equation for x and solved. Once x is solved, r can be

advanced by computing:
dr nr sin(0 - 9') (437)
d9 n cos( - 0') - 1

Where:

9' tan-1 [(Fe - r)sin()] (4.38)
x - r cos(O)_

These equations can be solved iteratively to generate the entire lens surface, beginning with

9 = 0 and r = F. Other methods can be used to generate shaped lens surfaces such as

designing the aperture power pattern based on the feed power pattern, or by forcing the lens

to have two off axis focal points.

LIDAR Range

The minimum detectable received power Pr,min from a LIDAR return determines the max-

imum range of the device. Pr,min is determined by the integration time and sensor archi-

tecture, which can be based on frequency modulated continuous wave (FMCW) or pulsed

direct detection type schemes. If a target has a cross section -, the maximum range we can

observe that target is given by the standard RADAR equation:

D(0, 0)2772 A 2

Pr,min (4)3-pt (4.39)
max

Where D(9, #) is the directivity, r is the device efficiency, Rmax is the maximum range,

and Pt is the transmitter power. We see here that the primary determinant of the LIDAR

preformance beyond the detection backend are the antenna characteristics given by D(9, q)

and r.

In the case that the beam spot from the LIDAR is contained completely within the target,

which is a common application mode for LIDARs, we can derive an alternate constraint,

which is more forgiving than the standard RADAR range equation in terms of distance
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Figure 4-9: 32, 3-dB overlapped far-field beam patterns. Single port excitation is in red.
Peaks to each side of main peak are sidelobes. These represent power radiated in unintended
directions and may result in false detections. Dotted line indicates -3dB. Port positions are
designed to overlap far-field resolvable spots by 3dB. For 2D aperture this is done along
parameterized curve between each spot in us, u, space.

falloff:

Prmin D(1 0 Pt (4.40)
(47) 2 R2 ax

4.7.3 Overview of numerical methods and verification

Because of the large scale of the structures used and their lack of periodicity, full 3D FDTD

simulations were not possible. However, we were able to do smaller 2D and 3D FDTD

simulations of individual components to help verify the system performance.

First we conducted simulations of the waveguides generated from the routing algorithms

to verify that they were defined with enough points, were not too close, and satisfied mini-

mum bend radius requirements. Unfortunately having 3dB spaced far-field spots, results in

wavelength spaced ports in the focal surface. Although the waveguides can be wavelength-

spaced for short lengths without significant coupling, generally the feed geometry results

in excessively high coupling between waveguides. We fixed this problem by decimating the

ports by a factor of two.

Next we simulated the interface between the waveguide and the SiN slab. With these

simulations, we visualized the creation of an effective point dipole source when the waveguide

terminated at the slab, and determined the far-field radiation pattern and effective phase
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Figure 4-10: Simulations for design of chip-scale LIDAR. a) Simulation of far-field beam
pattern to extract phase center. b) Simulation of far-field beam pattern to extract gaussian
beamwidth. c) 2D simulation of on-axis port excitation of lens feed. d) 2D simulation of
off-axis port excitation of lens feed.
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center [86, 87]. By fitting circles to the phase front, we were able to extract a location for

the phase center which we show in Fig. 10a. The phase front was approximately 1 Am

behind the interface between the waveguide slab and the waveguide. The far-field power as

a function of angle was well described by a Gaussian with a beam-width of 13.5 0, as shown

in Fig. 10b. The phase center and beam-width did not change if the waveguide was incident

at an angle on the interface: the phase center and beam-profile remained the same relative

to the orientation of the waveguide. This feature was useful because it allowed us to angle

the waveguides to minimize the spillover loss (the radiation that misses the lens), without

having to be concerned about the beam-width or phase center changing.

Another set of simulations we preformed concerned the interface of the lens and the slab.

One of the key assumptions of this project, which has also been a feature of other works on

integrated planar lenses [78], is that we can describe the in-plane propagation in terms of

the effective mode indices. We did several calculations of TE slab modes impacting 20 nm

and 40 nm Si slab "steps" to verify this assertion, and to quantify the radiation loss at these

interfaces. We found that for a wide range of angles, the radiation loss was less than 5 % in

line with previous experimental results for incident angles less than 40 0 [88].

We also performed effective 2D FDTD simulations of the waveguides, the lens feed, and

the lens itself to verify that beam-steering worked properly. We see this in Fig. 10c and d.

We confirmed the directivity derived from these simulations closely matched those produced

by ray-tracing. We also verified that the expected lens roughness for fabrication would not

result in excessive gain degradation [89]. 2D grating simulations of a 1D grating were used to

extract the grating Q as a function of wavelength. The emission angle was compared to that

predicted from the average grating index and good agreement was obtained. Additionally

we modeled the photonic bandstructure using meep to confirm that our excitation was far

from the Bragg band edge.

Finally we extracted the grating Q as a function of angle and wavelength from meep

calculations. We confirmed the on-axis performance matched that predicted from the FDTD

simulations. Additionally we confirmed that the Q did not change too much for off-axis

propagation. Generally the behavior within +20 0 was well-behaved, but beyond that there

were large fluctuations. For the ray-tracing simulations, in the regime we were interested in,
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the grating Q could be considered constant, but in general we found it was a complicated,

rapidly varying function. Future studies should attempt to rigorously model Q as a function

of angle because the dependence can be unexpectedly strong in certain regimes.

4.7.4 Index error

The effective index ratio n2/ni of the experimental system will be different than that used

in ray-tracing simulations, because of finite fabrication tolerance, wavelength dispersion,

temperature variation, etc. In general an error in the index will cause the focal plane to shift

by some amount. For a parabolic lens, we find that the change is:

f2Af = -- An (4.41)
R

Since the depth of focus scales as A, R - f, and f ~ AN, where N is the number of

resolvable points, we have that our effective index tolerance scales inversely with the number

of resolvable points that the imaging system supports:

1
An ~(4.42)

N

Without any kind of external tunablity, meeting this constraint for large N becomes increas-

ingly difficult. For more than 100 ports, wavelength dispersion over a 100 nm bandwidth

already exceeds this constraint for a 40 nm thick lens. In general for proper operation of

a device with 100 ports at a single wavelength we require better than 1 nm of precision

in the layer heights, and better than 0.01 tolerance in the material index. Addressing these

index tolerance issues is one of the most important engineering tasks required for scaling the

system to 1000s of resolvable points.
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Chapter 5

Optical Convolutional Neural

Networks

5.1 Introduction

Exploration of neuromorphic computing architectures began in the late 1950s with the in-

vention of the preceptron, which functioned as a binary classifier with a linear decision

boundary [90]. The preceptron worked well for certain tasks, but further progress was hin-

dered by a lack of understanding on how to handle multilayer versions. Progress slowed

on neuromorphic computing until the 1990s, when Lecun et al introduced a new architec-

ture based on convolving images with kernels, known as Convolutional Neural Networks

(CNNs) [91-93]. This architecture consists of successive layers of convolution, nonlinearity,

downsampling followed by fully connected layers (see Fig. la). The key to the success of

CNNs was that convolution handled the translation invariance of image features efficiently,

while the nonlinearity between layers allowed greater flexibility in training than the single-

layer approaches.

Although the CNN architecture successfully managed to implement digit classification

at human performance levels and compared favorably to other machine learning techniques,

it was not until improvements in processing speeds and the creation of large human-labeled

image databases from the Internet, that the full potential of CNNs became apparent [94].

Using GPU-accelerated backpropagtion, AlexNet achieved record breaking results on Ima-
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geNet for a thousand categories using a CNN architecture composed of five convolutional

layers and three fully connected layers [94,95]. Following AlexNet's lead, modern CNNs of

dozens or hundreds of layers, and hundreds of millions to billions of parameters, can achieve

better than human level performance in image classification tasks [96, 97]. Recent break-

throughs with DeepLearning in winning the game of Go, combining Q-learning and CNNs,

have convinced many that these networks are the tools for a new machine learning golden

age with applications ranging from pedestrian detection for self-driving cars to biomedical

image analysis [98-104].

A big part of this success story was the advent of GPU-acceleration for large matrix-

matrix multiplications, which are the essential and most time intensive step of back-propagation

in CNN training. Despite significant gains, training large CNNs takes weeks utilizing large

clusters of GPUs. More practically, GPU-accelerated CNN inference is still a computation-

ally intensive task, making image analysis of the vast majority of the image and video data

generated by the Internet prohibitively difficult. Youtube itself, in 2015 experienced uploads

of 300 hours of video every minute [105]. This would require a cluster of 18000 Nvadia Titan

X GPUs to process continuously with CNNs, drawing 4.5 Megawatts, with the hardware

costing 44 million US dollars [106].

Given that this is just one company and that video traffic is predicted to grow to be 80%

of the Internet by 2020 [107], this problem is going to get harder and will far outpace the

current computing paradigm, requiring investment in specialized neuromorphic hardware

architectures. There are many proposals and experimental demonstrations to accomplish

this through analog circuits, digital ASIC designs, FPGAs, and other electronic technologies

[108-114].

Here we explore a new approach for implementing CNNs through an integrated photonics

circuit consisting of Mach-Zehnder Interferometers (MZIs), optical delay lines, and optical

nonlinearity units [115]. The system we outline is closely related to a recently published

work which implemented fully connected optical neural networks [116]. Here we bridge the

gap between the fully connected optical neural network implementation and an optical CNN

through the addition of precisely designed optical delay lines connecting together successive

layers of optical matrix multiplication and nonlinearity. This new platform, should be able
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to perform the order of a thousand inferences per second .(at detector limited rates), at 10[pJ

power levels per inference, with the nearest state of the art ASIC competitor operating 30

times slower and requiring 1000 times more power per inference [114]. 600 of these photonic

circuits, if implemented with suitable electronic I/O, would be required to process all of

the Youtube uploads in real time in the above example. Although the implementation of

this photonic circuit would be an extreme engineering challenge, the benefits of successfully

realizing it are difficult to understate.

Our work follows a long history of optical-accelerated computing which includes optical

implementations of unitary matrix multiplication, optical memory, all optical switching, op-

tical interconnects, photonic spike processing and reservoir computing [5,116-124]. We focus

primarily on integrated photonics as a computation platform because it currently provides

the highest raw bandwidth currently available of any technology that is mass manufacturable

and has standardized components.

5.2 Architecture

As depicted in block diagram form in Fig. la, and pictorially in Fig. 1b, the CNN algorithm

consists of several main steps, each of which we will need to execute optically. First the

image is convolved with a set of kernels. The output is a new image with dimensions

[(W - K)/S + 1] x [(W - K)/S + 1] x [d], where W is the original image width, K is

the kernel dimension, S is the convolution stride and d is the number of kernels. Next,

the new image is subject to pooling, where the image produced by convolution is further

downsampled by selecting the maximum value of a set of pixels (max pooling) or taking

their average (average pooling). After pooling, a nonlinearity is applied to each pixel of

the downsampled image. This nonlinearity can consist of the rectified linear unit (RELU),

sigmoid, tanh, or other functions. Following nonlinearity, the entire process is repeated with

new sets of kernels and the same nonlinearity. After a number of these convolution layers, a

fully connected neural network is applied to the output to preform the final processing steps

for classification.

We begin our discussion of an optical kernel convolution, with the description of a related
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Figure 5-1: Convolutional Neural Net (CNN) Architecture. a. Logic Block Diagram: The
input image, a three shown here, is passed through successive layers of convolution and
pooling, nonlinearities (see Fig 2 for further description ), and re-shuffling of the pixels

(see Fig 3 for further description). A final fully connected layer maps the last stage of
convolution output to a set of classification outputs. b Schematic Illustration: First part
of CNN implements convolution of the image with a set of smaller filters. These produce
a sequence of filter-kernel dot products which are passed through a nonlinearity and are
re-shuffled into a new d-dimensional image, where d is the number of filters in the first layer.
The process is then repeated on this new image for many subsequent layers.
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GPU algorithm [125]. One of the chief advantages of utilizing GPUs for machine learning

is their ability to execute large matrix-matrix multiplications rapidly. For fully connected

neural networks, it is obvious how this capability can lead to large speedups. To see how

this works for CNNs, we first depict the conversion of an image into a set of "patches",

the same dimension as the kernels in Fig. 2a. In a GPU algorithm, these patches can be

converted into a "patch matrix" by vectorizing and stacking each patch. The patch matrix

can then be efficiently multiplied by a "kernel matrix", formed by vectorizing and stacking

each kernel. The output is a matrix composed of kernel-patch dot products which can then

be "re-patched" for multiplication by the next layer's kernel matrix.

Our recent work utilized networks of MZIs and variable loss waveguides for optical matrix

multiplication for fully connected neural networks [115,116]. Here we propose using the same

MZIs and variable loss waveguides to implement the kernel matrix, as depicted in Fig 2b.

The patch matrix takes the form of a sequence of coherent optical pulses whose amplitude

encodes the intensity of each patch pixel from an image. In turn, each output of the photonic

circuit will correspond to a time series of Kernel-patch dot products with the amplitude and

phase (0 or 7r) of each pulse encoding the output of the computation. Fig. 2b depicts this

process schematically, where the photonic circuit outputs at different times have been drawn

in their corresponding locations in the next layer's image.

In addition to implementing convolution with kernel matrices, the photonic circuit in Fig.

2 is also providing two other functions: pooling and nonlinearity. Pooling (or downsampling)

is realized by taking the stride of the convolution to be greater than one. This step occurs

when the patches are formed from the input image. This provides a necessary information

filtering function required to reduce the image to only a few bits of information identifying

its class. CNNs working this way have been shown to have the same performance as those

using max or average pooling [126]. Finally, optical nonlinearity is applied to each output

of the circuit, providing the remaining ingredient for a complete CNN layer.

The input for the next convolution layer has to be prepared by re-patching, that is re-

formatting the output data from the previous layer to form a patch matrix for multiplication

by the next layer's kernel matrix. We propose to re-patch through a set of optical delay lines

and splitters. The requirements for the splitting and delay procedure can be understood
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Figure 5-2: General Optical Matrix Multiplication a. Logic: The pixels of the input image
on the left (21 x 21 x 3 colors) are grouped into smaller patches, which have the same
dimension as the kernels of the first layer ( depicted on the right-hand side). b. Schematic
Implementation: Each of these patches is reshaped into a single column of data that is
sequentially fed, patch by patch, into the optical interference unit. Signal propagation of
the optical data column through the unit implements a dot product of the first layer kernels
with the patch input vector. The result is a time series of optical signals whose amplitude
is proportional to the dot products of the patches with the kernels. Each output port of the
optical interference unit corresponds to a separate time series of dot products associated with
a given kernel. Optical nonlinearity is applied to each output port of the optical interference
unit.
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from Fig. 3a. Here we depict the time sequence of kernel-patch dot products from Fig. 2b,

as a single image, with each pixel of the image labeled with the timeslot associated with the

computation. This image needs to be converted into four patches on the right of Fig. 3a,

which will need to appear as a time sequence input for the next optical matrix multiplication.

How this is accomplished is illustrated in Fig. 3b. Here a given output from the previous

layer is split into four separate waveguides and subject to different delays. Each d.elay line

is selected such that at a given time, the outputs from the previous layer are synchronized

in time and form a new patch for input into the next layer's kernel matrix. Since in this

example we are forming two by two patches, a delay line of one time unit is required for the

top right signal to arrive at the same time as the top left. Further delay lines of three and

four time units are required for the bottom left and right signals to arrive with these. We

illustrate the formation of new patches on the right hand side of Fig. 3b, where at specific

times we have formed the four desired patches from Fig. 3a. Note that the grayed out section

indicates a sampling time when an invalid patch is formed, that is the wrong set of pixels

have arrived simultaneously. Since the original length of the patch matrix input is nine time

units long, and since there are only four patches for input into the next system, there will

be five such invalid sampling times in the period of the original input signal.

5.3 Physical Implementation

Figure 4 shows a full implementation of the envisioned architecture using optical matrix

multiplication, optical nonlinearity and optical delay lines. To illustrate the fundamental

features of the photonic integrated circuit, we have omitted the required optical amplifiers

for each convolution layer, and some parts of the optical matrix multiplication.

The first part of the circuit consists of an optical interference unit. The matrix Mi encodes

the kernels for a given convolution layer. From SVD decomposition we know that Mi = UEV,

where V and U are unitary and E is some real diagonal matrix. U and V are implemented

through Reck-encoding of the MZI matrix, and E through tunable waveguide loss [115,116,

127,128]. An incorrect realization of the unitary matrices (among many other possible errors)

will degrade a network's inference capability, which we explore in the Appendix through a
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cube is labeled with the timestep the corresponding kernel dot product was computed. The
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b. Schematic Implementation: The optical delay lines are designed such that a sequence of
kernel dot products can be reshuffled in time to form a new patch the same size as the next
layer's kernels. Each delay line is connected through 3-dB splitters to the original signal
line, allowing the data to be copied and then delayed for synchronization. The reshuffling
procedure produces valid patches only at specific sampling times. The grayed out section
at t=6ps indicates an invalid sampling interval, where the patches have partially wrapped
around.
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numerical example. In Fig. 4 we have omitted the optical implementations of E and V for

simplicity.

The next stage consists of optical nonlinearity applied to each output waveguide of the

MZI matrix. As suggested in our previous work, optical nonlinearity can be realized by using

graphene, dye, or semiconductor saturable absorbers [129-133]. Additionally we showed

that the nonlinear response of saturable absorbers has a suitable functional form for training

neural networks. The power budget required for operating AlexNet, utilizing a saturable

absorber nonlinearity operating at ~1mW input powers is detailed in the Appendix. We

find there that a single inference can be computed with Pif power, which is given by:

4.17. 1O7 AtP = Pinf (5.1)

Taking P = 1mW, At = I = 1 ns, where f - 1 GHz is the throughput (from the maximumf

delay-line bandwidth), we find that we require 42 [tJ per inference, which is over 1000 times

more efficient than GPU-enabled inference with AlexNet and any other foreseeable digital

implementation (see Appendix).

Finally a single convolution layer ends with repatching logic consisting of a tree of 3dB

splitters feeding into variable length delay lines. The exact length of the delay lines for

each layer can be determined (see Appendix), but the maximum delay line length can be

estimated through the observation that the CNN algorithm will require image data at the

beginning of the "patch matrix" data stream to interact with data at the end. This condition

requires a delay line at least half the length of the patch matrix in time. Given that the

initial layer of AlexNet consists of 55 x 55 input patches, this will require a delay line of

100OAt.

Delay lines have been engineered 1 ns long with a 3 GHz bandwidth using 200 ring

resonators on 0.2mm 2 area [134-137]. Assuming we are using this technology, and At - 1ns,

we will require about 1000 of these delay units for lys of delay. Since there are 256 outputs for

the final AlexNet layer [95], we have to assume we would require at least this many maximum

delay line chips with a total area of ~ 500cm2 . Obviously engineering and integrating delay

lines of such length is an extreme engineering challenge.
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M_1

M_2

a. Optical Interference Unit b.Optical Delay Lines c.Optical Interference Unit

Figure 5-4: Illustration of optical interference unit with delay lines a. Optical interference
unit: In the first stage an optical interference unit is used to implement a kernel matrix
M1 which processes the patches from the original image. The red segments on the output
of M1 are optical nonlinearity. b. Optical Delay Lines: In the second stage, optical delay
lines properly reform the sequence of kernel dot products into new patches for input into
the second kernel matrix M2 . c.Optical interference unit: In the third stage the next optical
interference unit is used to implement M2 (partially depicted here). For clarity the actual
number of inputs and outputs have been reduced and the attenuator stage and subsequent
additional optical interference units have been omitted from M1 and M2. Additionally we
have omitted optical amplifiers required in each layer which boost the power sufficiently to
trigger the optical nonlinearity.
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5.4 Discussion

We have outlined the operation of a novel photonic integrated circuit that is capable of

implementing high speed and low power inference for CNNs. This system could play a

significant role in processing the thousands of terabytes of image and cat video data generated

daily by the Internet.

Future work on this system and its components should focus on increasing the band-

width. This task is critical for maximizing the inference rate of the system, shortening the

delay line length, and decreasing the power consumption per inference. However every com-

ponent, including the optical nonlinearity, MZIs, optical detectors, and signal generators,

can potentially limit the bandwidth. Currently we are limited in bandwidth by the present

state-of-the-art compact delay lines [136]. Beyond this, a significant limiting factor will be

optical detectors which operate up to 120 GHz [138].

Assuming that we are able eventually to realize a 1 THz bandwidth through heroic

engineering efforts, the power consumption could be reduced to nJ levels per inference,

and the inference rate increased to over 106 franies per second. For comparison, the best

digital implementation would still operate at GHz clock speeds, with a throughput of at

best 103 frames per second, and require at minimum a mJ per inference (see Appendix).

Consequently, when pushed to the physical limit, this architecture could provide a crucial

capability for keeping up with the exponentially growing digital world.

5.5 Appendix

5.5.1 Analysis of MZI phase encoding and error

Although the analog nature of our optical CNN can allow for high precision computation, it

also suffers significantly more than equivalent digital architectures from error propagation.

There are many sources of error within our system that include variable waveguide loss,

variable optical nonlinearity, variable amplification, and shot noise. We do not discuss these

here, but for the purposes of providing a basic model of error propagation through the

circuit, we calculate the classification error from incorrect phase settings of a Reck-encoded
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MZI matrix [127,128,139].

To estimate how errors in MZI phase settings effect classification accuracy, a simulation

was done on a toy model of a digit recognition CNN. Our toy CNN was comprised of

two convolution layers and two fully connected layers and was trained on the MNIST digit

recognition data set. After training the reference CNN (which had a classification accuracy of

97% on the test data set), the kernel matrix for each layer was exported to a phase extractor

program that calculated the phase settings necessary to implement the unitary component

of these matrices with MZIs (i.e. U and V from SVD decompostion of M = UEV).

We describe how we can calculate a phase encoding for any real valued unitary matrix.

By applying a rotation matrix Tj,(9) to real unitary matrix U, with appropriate 0 we can

null elements in the ith row and jth column, where Ti (9), with i = j - 1, is an identity

matrix with elements Ti, Ti, Tj, Tjj replaced by a two by two rotation matrix:

1 0 ... ... ... 0 uU . -... ...- -.. 0 ... 0)

0 -
0

U = cos( ,j_1,) sin( 3 .._., 3 ) . . (5.2)
- sin(O6_i1,) cos( 3 _1,y)

.0
0 ... ... 1 dN

To determine 9 in Ti,, (9) such that the ijth element of the matrix is nulled, 9 must satisfy

the following equation:

= cos(9 j_1,)ujj + sin(oj-1,j)ui+1,j = 0

tn - . . (5.3)
tan(oj_1,j) = ''

ui+1,j

If we apply these rotations starting with the first element of the far-right column and

working downwards we find that:

U(N - 1) 0

TN,N-lTN,N-2 ..'. TN,2TN,1U( N) =({5.4)

0---. a
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Now we note that the block matrix U(N - 1) can undergo the same process, and thus

after (N - 1) + (N - 2) - N(N-1) rotations the right hand side will turn into a diagonal2

real matrix D (this is only true if U is real, which it is for conventional CNNs). In total U

can be written in the following way [127] [128]:

U = (T2 ,1T3,2T3 ,1T4,3 ... TN,N-1 ... TN, 1)~D (5.5)

We can extract a matrix of phase encodings E with the following pseudocode:

function PhaseExtractor

for i from N to 2 :

for j from 1 to i

E3,j+1 = tan-1()

Update U = Tj+1(E2,j+1)U

end for

end for

return E

The algorithm nulls the elements of a given unitary matrix starting from U1,N and moving

downward until reaching a diagonal element, upon which it moves to the next column to the

left. The below schematic shows the order in which the algorithm nulls the elements and

extracts the corresponding phases:
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Higher Iterations

di u{,2 -. U, ,-1 UI,N

d2  U 2 , -1 U2,N

UN ,N-1

dN-1 UN 1,

dN

Each element of the resulting phase matrix e is randomly perturbed with a distribution

given by p(AEig,) = 1 exp{ [ - ' This perturbed matrix is used to create a new U

(in M = U'EV'), which is in turn used to generate the kernel matrices of a perturbed CNN.

The results of this perturbed network's digit classification on MNIST are then compared to

those of the trained unperturbed CNN such that the network is assumed to be "error free"

if it gives the same results as the reference network, not if it has 100% correct classification.

These results are plotted in Fig. 5.

We find that for an error distribution with o > 0.01, that the performance of the per-

turbed network is significantly degraded relative to the unperturbed version. This corre-

sponds to about 8-bit accuracy in the phase settings, which has been achieved in our previ-

ous work on fully connected optical neural networks. These results are promising, but larger

CNNs need to be examined with this method to assess their tolerance to the phase setting

errors, and the others mentioned briefly above.

5.5.2 Power consumption for optical implementation of AlexNet

Since we are feeding each patch at a rate of f - 1GHz each optical nonlinearity unit con-

sumes roughly E = O1 ~ 10-"J/waveguide/patch, where the factor of 10 comes from thef
amplifier efficiency, and PO = 1mW is the power required to operate the optical nonlinearity.

Consequently if we sum the number of kernel output waveguides multiplied by the number

of patches in each layer, and scale them by this power factor, we will get an estimate for the

power requirements for this optical CNN implementation:
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Performance of Digit Recognition Network on MNIST Dataset
Vs. Training Parameter Perturbation

\L

1P--

0.04 0.06
Perturbation Variance

0.08 011

Figure 5-5: After the matrix of phases, E, has been returned by the phase extractor al-
gorithm, the entries are perturbed and the resulting phase matrix is used in composing a
new unitary matrix of weights that builds up a second CNN with desired perturbations.
The perturbed CNN is tested and its inference performance on the MNIST dataset is then
compared to those of the unperturbed CNN to analyze the error.
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# of RELU units # of Input Patches Layer Energy

Consumption(J)

1st Conv 96 55 x 55 290400 x 10-"

2nd Conv 256 55 x 55 774400 x 10-11

3rd Cnv 384 55 x 55 1161600 x 10-"

4th Conv 384 55 x 55 1161600 x 10-"

5th Conv 256, 55 x 55 774400 x 10-"

1st FC 4096 1* 4096 x 10-1

2nd FC 4096 1 4096 x 10-

3rd FC 1000 1 1000 x 10-11

Total Energy 4, 171,592 x 10-"

Consumption

Which yields a total energy consumption per inference is 41 pJ for AlexNet [95]. We can

further rewrite this as 4.17. 10.tP0 .

The number of input patches decreases to one for the fully connected layers because

we employ electro-optic converters to extract one valid patch from the convolutional layer

output. In principle this technique could be employed to extract and re-emit only valid

patches from previous layers, but we do not discuss this here, because we are primarily

interested in an all-optical implementation.

5.5.3 Power consumption for electronic implementation of AlexNet

Electronic computers consume a fixed amount of energy per floating point operation. Since

data movement (i.e. data transfer between hard drive and RAM, etc.) represents additional

significant "overhead" for memory intensive algorithms like CNNs, and minimizing this is

the chief objective of new neuromorphic digital architectures, calculating the total number

of floating point operations required for AlexNet gives us a good estimation of the best case

performance for a digital implementation of that algorithm:
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Kernel Size Number of Input Number of Ker- Layer FLOPs

Patches nals
lst Conv 11 x 11 x 3 55 x 55 96 105415200 x 2

2nd Conv 5 x 5 x 96 27 x 27 256 447897600 x 2

3rd Conv 3 x 3 x 256 13 x 13 384 149520384 x 2

4th Conv 3 x 3 x 384 13 x 13 384 224280576 x 2

5th Conv 3 x 3 x 384 13 x 13 256 149520384 x 2

lst FC 13 x 13 x 256 1x 1 4096 177209344 x 2

2nd FC 1 x 1x 4096 1x 1 4096 16777216 x 2

3rd FC 1 x 1 x 4096 1 x 1 1000 4096000 x 2

Total FLOPs 2,549,433,408

Electronic computers have an average performance rate of 1  P [114], so the lower bound

on the total energy consumed by a digital computer (ASIC, GPU, CPU) running AlexNet

is 2, 549,433,408 FLOPs x 1 ~ 2.55mJ [95].FLOP '-
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Chapter 6

Binary matrices of optimal

autocorrelations as alignment marks

6.1 Abstract

We define a new class of binary matrices by maximizing the peak-sidelobe distances in the

aperiodic autocorrelations. These matrices can be used as robust position marks for in-

plane translational spatial alignment. The optimal square matrices of dimensions up to 7 by

7 and optimal diagonally-symmetric matrices of 8 by 8 and 9 by 9 were found by exhaustive

searches. This work is reported in [141].

6.2 Introduction

Binary sequences [142, 143] and matrices with good autocorrelation properties have key

applications in digital communications (radar, sonar, CDMA and cryptography) [144] and

in coded aperture imaging [145]. Several works have conducted exhaustive searches for the

optimal matrices of these applications [146-149]. A less developed application of binary

matrices with good aperiodic autocorrelations is two-dimensional (2D) translational spatial

alignment. For example, it has been shown in electron-beam lithography [150-153 that

position marks based on such binary matrices are immune to noise and manufacturing errors.

However, the symbols that were used in these prior works were borrowed from different
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applications, noticablely the 1D Barker sequences of +1 from communications. There have

been no studies on the optimal patterns for translational alignment.

In this paper, we define and report the optimal binary matrices as alignment marks.

Section 6.3 sets up the problem. Section 6.4 defines the criteria for the optimal matrices.

Section 6.5 discusses previous work related to this problem. Section 6.6 works out the

useful bounds. Section 6.7 explains the exhaustive computer searches and lists the results.

Section 6.8 discusses several key observations of the optimal marks. Section 6.9 compares the

performance of optimal and non-optimal marks through simulations. Section 6.10 discusses

the potential applications of the matrices found. Section 6.11 concludes the paper.

6.3 Preliminaries

An alignment mark is made by creating a surface pattern different from the background so

that the pattern information transforms into a two-level signal when a digital image is taken.

This image can be represented as a binary matrix where 1 represents the (black) pattern

pixels and 0 represents the (white) background pixels or vice versa.

The 2D aperiodic autocorrelation (A) of an M by N binary matrix with elements Ri, is

defined as
M N

A(Ti, T2 ) = Ri Ri+j+r2  (6.1)
i=1 j=1

where T1, T2 are integer shifts. The peak value is A(0, 0) while all other values are sidelobes.

A is an inversion-symmetric [A(-ri, T2 ) = A(-ri, -T2)] (2M - 1) by (2N - 1) matrix. The

crosscorrelation between R and the data image matrix Dij is expressed as

M N

C(T1, T2) = Z Ri,Di+,+r2. (6.2)
i=1 j=1

When the data D is a noisy version of the reference R, the peak value of the crosscorrelation

determines the most probable position of the mark.

It is important to note that all the matrices are implicitly padded with Os for all the

matrix elements of indices exceeding their matrix dimensions.
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A linear transformation of the data matrix results in a linear transformation of the

correlation as long as the reference matrix is kept the same. This can be seen from

DI = cDij + d (6.3)
M N

C'(Ti, - 2) = cC(T,1,T2) + d Z ZRij (6.4)
i=1 j=1

where the second term of C' is a constant. The data matrix can thus be arbitrarily scaled

(c # 0) while keeping the correlation equivalent and the alignment results identical.

6.4 Criteria for the optimal binary matrices

Depending on the quantities being optimized, the criteria for the optimal matrices are dif-

ferent. For alignment purposes, we list two criteria here. The first is to minimize the

misalignment probability. The second is to minimize the misalignment deviation. The first

criteria depends on the values of the autocorrelation sidelobes, while the second criteria also

depends on their positions relative to the central peak.

In this paper, we chose to minimize the probability that misalignment happens. A

misalignment occurs when one of the sidelobes exceeds the central peak [p = A(0,0)]; this

probability is analytically expressed in Appendix 6.12.1. Under the same noise condition,

the less the peak-sidelobe distance the higher the misalignment probability. Consequently

the criteria for ranking the matrices is based on their peak-sidelobe distances.

The peak-sidelobe distances are illustrated in Fig. 6-1. We plotted an autocorrelation

matrix A(r) with peak value p and highest sidelobe value s. The shortest peak-sidelobe

distance is denoted as dl, where d, = p - s. The other distances are defined as di+1 = di + 1

for i > 1, as shown for di through d4 in Fig. 6-1. ni gives the number of times di occurs in

the autocorrelation and Zni = (2M - 1)(2N - 1) - 1. The histogram of an autocorrelation

matrix can be expressed as {dini, n2 , ... ,n(,+1}-

The criteria for finding the optimal matrix is to maximize di then minimize ni sequentially

in the dictionary order. This criteria is completely justified in the low noise limit in Appendix

6.12.1 , although a general criteria depends on the amount of noise in the data matrices.
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Matrices of any size can be compared using this criteria. In general, the distances (di) of

the autocorrelation increase with the size of the matrix. Without restricting the matrix

dimension, the optimal matrix will diverge in size. Consequently, we study the optimal

matrix for each fixed dimension. Interestingly, the optimal matrices found in this paper are

unique as discussed in Sec. 6.8.

A(T)

d.
d.

d

-4 -3 -2 -1 0 1 2 3 4
T

Figure 6-1: (Color Online) We illustrate an autocorrelation function A(r), whose peak value
is p, highest sidelobe value is s, and whose peak-sidelobe distances are di.

6.5 Related Work

Previous works on 1 and -1 matrices with 0 background [146,149] in digital communications

are different than our work on 1 and 0 matrices. The former representation has three levels

(1,-1,0) while our binary matrices have only two levels. The aperiodic autocorrelations of

these matrices are not equivalent.

Other works on binary matrices of Is and Os with aperiodic autocorrelations have used

different criterias selected for applications in radar and sonar. In the Costas-array prob-

lem [147], only one black pixel is placed per column and row and the maximum sidelobe is

fixed to one. In the Golomb-Rectangle problem [148], the number of black pixels is maxi-

mized with the restriction that the sidelobe still be fixed to one [154]. However, our criteria

does bear some resemblance to those in some of the works on one dimensional -1 and 1 (three

levels) sequences [143].
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6.6 Two Upper bounds of dimax (p)( d p) and dum (P)ofd p) uPax, 1 ,max(P

N
e e

M mn

I II III
MN

- s lSerI1p)

s i (p)
-p P/

0/
0 N1  N2  MN

Number of ones (p)

Figure 6-2: (Color Online) Lowerbounds of smin(p), slower (p) and s ower,I (p). p is the au-
tocorrelation peak. The three matrices on top illustrate the methods of filling black pixels
for regions 1, 11 and III for the matrix construction of sor'j(p). The grey pixels show spots
to be filled in that region, while the black pixels are spots that have been filled in previous
regions.

For a binary matrix R, the peak value p of its autocorrelation A equals the number of

ones in the matrix (R). The largest d, for all matrices with a given p, of a fixed dimension,

is di,max(p). di,max(p) = p - Smin(P), where smin(p) is the minimum highest sidelobe value as

a function of p.

In this section, we constructed an upperbound of di,max(p), dm'" I(p), by maximizing

p - A( l, 0). The A(il, 0) computed here forms a lower bound on smin(P), Si' (p). This

construction is illustrated in Fig. 6-2, where we assume the matrix R used to construct our

bound is of dimension M x N with M < N.
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We find:

Sp E [0,N1] I

d1 '(p)= , p E [N1 ,N2 ] II (6.5)

M(N+1)-p, p E [N2 ,MN] III

where N1 = N, N2 = M + M when MN is even and N, = MN+ 1 , N2 = MN+1 + M - 1

when MN is odd.

This upperbound can be derived by starting out with a matrix Rij = 0 for all (i,j) and

'filling in' with ones in a particular pattern. In region I, ones can be placed anywhere in Ra,,

where i + j is odd. When p = N1, we have formed a "checkerboard pattern". In region II,

we place ones wherever i +j is even for i = 1 or i = N. In region III, the remaining locations

without ones are filled.

The autocorrelation function A(Ti, - 2 ) equals the number of black squares that are con-

nected by a displacement vector (ri, -2). We can use this property to construct a second

lower bound s orjI(p). This approach is similiar to the method used in Ref. [154].

Since the autocorrelation is invariant under inversion, there are ((2M-1)(2N-1)-1)/2 =

2NM-N-M unique non-zero displacements; a matrix of p ones fills p(p-1)/2 of them. Asp

increases, there are repeated displacements because p(p- 1)/2 quickly exceeds 2NM-N-M.

We can find a lowerbound slowerII (p) by assuming that the displacements added to the

autocorrelation function distribute uniformly, that is IA(ri, T2 ) - A(Tr, T2) I < 1 for nonzero

displacements. This gives s lerI'(p) = ceil[4 N -PP- 2M], where ceil[x] rounds to the nearest

integer greater than x. Consequently, die =P - 4P(P1M)

As illustrated in Fig. 6-2, smi r,(p) is a better bound for small p, while smin '(p) is a

better bound for large p. The first bound slower'I(p), which keeps track of the pixel positions,

becomes exact when p approaches "MN" (filled) . While the second bound sinrh(p), which

ignores the actual pixel locations, becomes exact when the matrix is sparse and p approaches

"0" (empty).
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6.7 Exhaustive computer searches for the optimal square

matrices

b)

20

4x4

- smin(P)

lowerISmin (P)
lower,11()S min (P)

-p
6x6

C)-

30 -23 
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- j
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Figure 6-3: (Color Online) Results of the exhaustive searches for 2 by 2 to 7 by 7 matrices. a)
The optimal matrices from 2 by 2 to 4 by 4 are shown. b), c) and d) Smin(p) is plotted in red.
The solid grey line is s .I (p) while the dotted grey line is s (p). The number of the
matrices having the maximum d, are plotted in blue. The circle specifies the location of the
optimal matrix. The optimal matrices are presented as insets below their autocorrelations,
which are labeled with their p and s values.

Physical in-plane alignment usually requires equal alignment accuracies in both direc-

tions; this calls for square matrices (M N). We applied exhaustive searches to find the

square matrices with the maximum d1 [= max(di,max(p))] . The resulting matrices were

ranked using the criteria in Sec. 6.4 to obtain the optimal matrices.
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Figure 6-4: (Color Online) Results of the exhaustive searches for diagonally-symmetric 8 by
8 and 9 by 9 matrices.

Backtrack conditions based on symmetries and sidelobes have been found useful in ex-

haustive searches for binary matrices [146,154,155]. Matrices related by symmetry oper-

ations are considered the same matrix. The symmetry operations for square matrices are

horizontal and vertical flips and rotations by multiples of 90 degrees. For this study, a

backtrack condition based on eliminating redundant matrices related by horizontal flips was

implemented. Backtrack conditions based on sidelobe levels are useful if the sidelobes are

being minimized. However, we are maximizing the peak-sidelobe distance dj, so the sidelobe

backtrack condition was not used.

The search algorithm we implemented works by exhaustively generating matrices row

by row. The algorithm continues generating rows until a backtrack condition occurs, or a

matrix is completely specified. The matrix is stored for later ranking if it has the same or

greater d, than the existing maximum di.

Several techniques were implemented to speed up the algorithm. Each matrix row was

represented as a binary word so that fast bit-wise operations could be used. In addition

lookup tables were created to calculate the horizontal flips and correlations of rows. For

our binary matrices, the maximum sidelobes were typically located near the autocorrelation

peak. Because of this, the sidelobe values were checked in a spiral pattern around the peak

to quickly determine if a matrix had a d, less than the stored maximum.

The search results for square matrices of size up to 7 by 7 are presented in Fig. 6-3.
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Fig. 6-3a) gives the optimal matrices for 2 by 2, 3 by 3 and 4 by 4. In Fig. 6-3b), c) and

d) we plot, in red, smin(p) for matrices of sizes 5 by 5, 6 by 6 and 7 by 7. This red curve

is indeed bounded from below by the grey s .Twrj (p) and s lower,II (p) constructed in Sec. 6.6.

The number of the matrices having the maximum d, is plotted in blue. This curve peaks

around the intersection of the dujpj" and duj1'I upperbounds. The circle on the blue line

specifies the location of the optimal matrix ranked first by the criteria in Sec. 6.4. The

optimal matrices and their autocorrelations are shown as insets. The two numbers on the

y-axes of the autocorrelation plots are the p and s values of the optimal matrices. The

matrices ranked second and third and their distance spectra are listed in Appendix 6.12.2.

The runtime for 7 by 7 matrices was 3 hours on 1000 Intel EM64T Nodes with 2.6 GHz

clock speed. Exhaustive searches of square matrices of size 8 by 8 are not accessible to us,

since the size of the search space increases exponentially with the number of matrix elements

as 2

6.8 Observations on the optimal square matrices

The first interesting observation is that most top-ranked matrices in Fig. 6-3 and 6.12.2

are diagonally symmetric. Because of this if we restrict our searches to symmetric matrices

of larger sizes, we still expect to find top-ranked matrices [155]. The search results for

diagonally-symmetric matrices of 8 by 8 and 9 by 9 are presented in Fig. 6-4.

The second observation for our optimal matrices shown in Fig. 6-3, is that d, always oc-

curred in the first four neighbors of the autocorrelation peak [A(0, +1), A(t1, 0)]. Since di is

the most likely point for misalignment, these matrices, although optimized for misalignment

probability, also have low misalignment deviation discussed in Sec. 6.4. Another interesting

property of the autocorrelation is that the ratio of A(0,)-A( 1,0) or A(0,0)-A(O,il) is invariantN N 1 nain

under symbol expansion (i.e. expanding the number of pixels making up the original marker

pixel). This property allows us to define a new quantity for the optimal matrices in this work

called sharpness A = L. Since A is scale-invariant, d, can be easily obtained for different

scaling factors and used to evaluate the alignment performance. The sharpness (A) of the

optimal matrices increases with the size of the matrices.

127



The third observation is that all of the optimal matrices shown in Figs. 6-3 and 6-4 are

connected through their black pixel (1s) and all but 3 by 3 are connected through their white

pixels. A pixel is connected if one or more of its eight neighboring pixels has the same value.

Connectedness is a preferred topological property for alignment marks; it makes the marks

self-supportive, suspendible and robust against mechanical disturbances.

The fourth observation is that the optimal matrices found in Figs. 6-3 and 6-4 are unique;

there is only one matrix with the optimal histogram ranked by the criteria from Section 6.4

In general, the mapping from histograms to correlations is not unique. For example the

11 1 0
2 by 2 matrices of and have identical histograms. It is unclear whether

0 0 0 1
this property holds for optimal matrices of all sizes.

6.9 Alignment accuracies of the optimal matrices

E0.1 -~-

-16 -15 -14 -13 -12 -11 -10 -9
Signal-to-noise ratio (dB)

Figure 6-5: (Color Online) The "horizontal" alignment deviation is shown for the four align-
ment marks under various signal-to-noise ratios. The vertical deviation is almost identical.
The color of each plot line borders the corresponding marker. All markers have been ex-
panded to 35 by 35 pixels to illustrate the idea of pixel expansion. The top, black line, on the
right edge, corresponds to the 7 by 7 cross, while the second to top, grey line corresponds to
the 5 by 5 cross. The second to bottom, blue line corresponds to the optimal 5 by 5 marker,
while the bottom, red line corresponds to the optimal 7 by 7 matrix.

We study the performance of the optimal matrices by comparing the optimal alignment

marks to the cross patterns. The matrices were embedded in a white "0" background with a
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size 5 times that of the symbol. Uniform Gaussian noise was added to all pixels to simulate

a noisey image. This was correlated with its noise-free version. The alignment accuracy was

determined by the deviation of the correlation peak from the center for 10000 trials.

In Fig. 6-5, we plot the alignment deviation as a function of signal-to-noise ratio for

two optimal marks from Fig. 6-3 and the crosses. The y-axis is the horizontal alignment

deviation in pixels while the x-axis is the signal-to-noise ratio in decibels (= 20log ). At

a signal-to-noise ratio of 0 dB, the markers are barely discernible by eye. All markers were

expanded to the same area, of 35 by 35 total pixels and embedded in a background of 175

by 175 pixels, for direct comparison.

Applying the criteria from Section 6.4, using the expanded 35 by 35 symbols, the 7 by 7

mark is ranked first, followed by the 5 by 5 mark, and then the crosses. The quality of the

optimal alignment marks should improve with increasing size, which provides a motivation

to continue the search for larger optimal matrices.

6.10 Applications

Correlation detection from a digital image is a simple, efficient and reliable way to determine

the position of an alignment mark. In practice, the crosscorrelations can be calculated by

fast-Fourier-transforms. The peak of the correlation can further be interpolated to obtain an

alignment accuracy better than the distance represented by a single pixel of the image [150].

The matrices reported in this paper are the desirable patterns to use in this context; they

can replace the cross-type patterns widely in use today as position markers. Alignment using

these matrices is very robust against noise in the imaging system and partial damage of the

mark, providing the strongest peak signal for accurate sub-pixel interpolation. The potential

applications of the matrices found in this paper include, but are not limited to, electron-

beam lithography [151], planar alignment in manufacturing [156], synchronization [157] and

digital watermarking [158].

129



6.11 Conclusions

We introduced a new class of binary matrices (two level signals) which have maximial peak-

to-sidelobe distances in their aperiodic autocorrelation. Optimal square matrices of dimen-

sions up to 7 by 7 and optimal diagonally-symmetric matrices of 8 by 8 and 9 by 9 were

found using a backtrack algorithm. Useful bounds, notable properties and the performances

of the optimal matrices were discussed.

130



6.12 Appendix

6.12.1 Probability of misalignment

The crosscorrelation between the data image and the reference matrix is denoted as C(T 1 , 72 ).

The autocorrelation of the binary reference matrix is denoted as A(Ti, T2 ). The data image

is essentially a copy of the reference matrix with noise added to it. We assume the noise

is Gaussian and the standard deviation for each pixel is o-. The "black" and "white" pixel

values of the data image are denoted as bi and wi, whose expectation values are = 1,

i = 0 and C7= A.

Misalignment happens if C(0, 0)-C(T1, T2 ) = xl,, 2  0, representing a sidelobe [C(ri, T2 )]

exceeding the central peak [(C(0, 0))] in the crosscorrelation. Below we write this inequality

in detail,

1 =2 C(0, 0) - C(Ti, 7 2 ) -

P P-dr,,2 d,1,72

S bi - 0 b-2) + d'r1 2  < 0 (6.6)
_= += i=1

p = A(0, 0), d,, 2 = A(0, 0) - A(Ti, T2 ) > 0

The first term in the inequality represents C(0, 0), where each element of the reference

matrix with value 1 multiplies the corresponding bi. The sum includes all p pixels of bi. The

two terms in the brackets represent C(r, T2 ), when the reference and data matrices are offset

by (Ti, T2 ). b1 1") is a subset of bi which multiply elements of value 1 in the reference matrix.

w"') is a subset of wi which multiply the remaining elements of value 1 in the reference

matrix.

xr,,-2 is a sum of Gaussian variables and so is also a Gaussian variable with an expectation

value X7i,,'2 = d7l,. 2 ' By bookkeeping the terms in Eq. 6.6, one finds the standard deviation

0* = 2d-rl 72.
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The probability of misalignment due to the sidelobe at (r1 , 72 ) is M(x1 ,2 < 0).

-(x1 ,,2 : 0 d-r,r2)

f-00exp 2o2dxl,

1d d
- Erfc( r'T) = M( T'T)2 2a 0_2

Here, the complemantary error function is Erfc(t) = dt'exp{(-t' 2)}.

The probability of misalignment (PoM) is the union of the probability in the spaces

bounded by all the inequalities (x,,,2 < 0) at sidelobe positions ('ri, T 2 -/ 0, 0). The indi-

vidual spaces bounded by the inequalities overlap in general making the exact calculation

of PoM difficult. However, it is easy to find an upper bound for the PoM by assuming no

overlap between these spaces. Specifically, PoM < Z T1,T2$O,O) M(x 1,,r 0) [143] where the

sum is over all sidelobes.

M( d ) decreases as the distance d 1,,2 increases. Consequently a good criteria should

tend to maximize the overall di in order to minimize the probability of misalignment. Also,

it is of higher priority to maximize the smaller distance, which contributes more to the

PoM. This is the basis of our ranking criteria, which is completely justified in the low noise

limit. Under the low noise limit, the terms of larger di make vanishingly small contributions

compared to the term of smaller di. We show this in Eq. 6.7 by noticing that Erfc(t) can be
2exp(_2)}

approximated by _ e for large t (or small o-).

lim M~di~ll-= lim exp [- ] = 0 (6.7)0-+0 M(di/, 2) xPO\f[ 2o.2  jdif + 1

However, the ranking criteria, in general, depends on the noise level o. We note, due to the

central limit theorem, the above results still hold for non-Gaussian noise distributions, when

the matrix size is large.
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6.12.2 Distance spectra

In order to provide additional useful matrices and to illustrate our ranking criteria, we tab-

ulated, in Table 6.1, part of the peak-sidelobe distance spectra for the top-three ranked

square matrices from the exhaustive search results. The values of the first four distances

(di, d2 , d3 , d4 ) and the numbers (ni, n2 , n3 , n4) of the corresponding sidelobes are listed.

Those top-three binary square matrices are shown in Fig. 6-3 and in Fig. 6-6.

second third

3xa

4x4

5x5

6x6

7x7

Figure 6-6: (Color Online) Matrices ranked second and third. The first-ranked optimal
matrices are shown in Fig. 6-3.
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Table 6.1: Peak-sidelobe distance spectra of the top-three ranked square matrices from the
exhaustive search results.
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Chapter 7

Numerical Investigation of Cavity

Optical Pulse Extraction

7.1 Abstract

Fiber Bragg gratings have been studied for many years in numerous contexts. Not only can

they provide the simplest example of ID bandgaps, they can also exhibit numerous interesting

nonlinear effects, such as optical bistability. As shown recently by my collaborators at

Friedrich-Schiller-University in Jena, a trigger pulse can be used to create a separate pulse

from the light stored in a Bragg cavity defect. This effect, known as cavity-optical pulse

extraction or COPE, is a new method for creating ultrashort pulses at arbitrary frequencies.

Firstly, I discuss my work at Friedrich-Schiller-University concerning the creation of FDTD

solvers to study COPE. After this I will review some particular insights I had in generating

small frequency combs. Finally I will mention how this system resembles "White hole"

physics and how the analogy can be improved further and explored.

7.2 Introduction

One of the major applications of the coupled mode equations in a Bragg grating is the

description of the so-called optical pushbroom effect. In order to describe the optical push-

broom effect, it is instructive to go back to considerations first pointed out by Winful [159].
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Winful showed that Bragg gratings can create large changes in the fiber dispersion and that

they have regions of negative group velocity dispersion. SPM, and XPM can be used to

compress pulses if a negative group velocity dispersion is present. In SPM the pulse will

frequency chirp itself, leading to compression, while in XPM the chirp comes from another

pulse.

The optical pushbroom effect was first predicted theoretically and simulated by de Sterke

[160] [161]. He advanced the ideas of Winful by noting that XPM could be used to compress

pulses in a fiber Bragg grating in the region of negative group velocity dispersion. The

experimental arrangement the authors envisioned involved a slowly propagating probe pulse

tuned below the bandgap. The "pushbroom" part of the effect comes in when a large pump

pulse is applied far away from the bandgap. Through XPM, the front edge of the pump

pulse lowers the slow probe's frequency, causing it to speed up through the negative group

velocity dispersion. The pump pulse goes much faster than the probe pulse, so the net

effect is that the low intensity continuous probe pulse, is swept up into one large pulse,

that sits on the front of the probe pulse. Since de Sterke's prediction, there have been

several experimental studies of the optical pushbroom effect [162] [163] [164] which have

been confirmed by simulation.

Eilenberger et al [165] showed that the optical pushbroom effect could be enhanced by

utilizing a cavity. The cavity essentially allows the output power to be multiplied by Q, the

quality factor of the cavity, relative to the original pushbroom effect. As with the optical

pushbroom effect, COPE can be used to generate ultrashort laser pulses at a greater range of

frequencies. As long as a CW source is available at a given frequency, it can be converted into

a pulsed source utilizing this effect. Eilenberger et al investigated some analytic models of the

effect in certain regimes and provided simplified numerical examples to a set of two coupled

1st order differential equations for the forward propagating and backward propagating field

envelopes. He also assumed that the only dominant nonlinear interactions were between the

trigger field and the forward and backward field envelopes. General nonlinear interaction

terms between each field were ignored.

We explored a more thorough numerical solution to the general 2nd order coupled dif-

ferential equations describing COPE. In addition, we developed a solver to efficiently and
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Physical System

Forward Backward

propagating propagating Trigger pulse P
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Defect or modulation in /Space
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Figure 7-1: Schematic Illustration of Cavity Optical Pulse Extraction in a fiber Bragg grat-
ing. Here the Forward propagating mode is pumped from the right (red), and pumps a
defect mode in the cavity with some quality factor. The defect mode will also support a
local component of the backward propagating portion of the equations (blue) in steady state.
We trigger extraction of power from the cavity by sending a trigger pulse green, which prop-
agates from right to left, and which will sweep power from the cavity through cross-phase
modulation.

correctly solve for the evolution of these three coupled field envelopes with strong nonlin-

earities. Further, we created new cavity engineering techniques to generate small frequency

combs. In turn we used these techniques to investigate how trigger pulse parameters such

power and pulse width influenced the output of the COPE process and the observation of a

"double peaked" output pulse for certain parameter ranges.

7.3 Numerical solution to Nonlinear Coupled Mode

Equations for Fiber Bragg Gratings with a defect

In this section we outline a thorough numerical investigation of the COPE scheme and details

of how all nonlinear interactions, dispersion, Bragg gratings, and resonant cavity effects can

be incorporated efficiently for three interacting field envelopes.

As shown in the Appendix, a forward propagating field envelope for the pump AF, the

backward propagation field envelope for the pump AB, and the trigger pulse P, can be

written as the following set of coupled second order differential equations:
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[i d+(WO) + i /d 3 2 d2 +iAA(2|AB 2 AF 12) + i2yAp JP 2]AF + I,(z)AB 0Ldz WdA~(t 2 dt2

(7.1)

[-d + J(WO) + i 3d 2 d 2 +i7AA(2|AF1 + JAB 2) + i2yAp P2 ]AB + r(z)AF 0dz dt 2 dt2

(7.2)

[-i- + Zip-d -- d_2 + i27Ap(|AF 2  JAB 12) iypP 2 ]P 0
dz dt 2 dt2

(7.3)

Here #1 and #1p are the group velocities of the pump and trigger fields, #2 and #2p are the

corresponding group velocity dispersions, 6(wo) is the cavity detuning of the pump frequency

from the band center of the Bragg grating, n(z) is the envelope of the coupling parameter

for the Bragg grating, and the -ys give nonlinear self-phase and cross-phase terms between

the various field parameters. The i'(z) term represents the change in the envelope of the

Bragg grating strength as a function of position. For instance, a uniform grating would have

,(z) = 1, where AB is the Bragg grating period and 6n is the Bragg grating strength. In

general the grating strength 6n, or the grating phase, can vary with position, and this will

be encoded in ri(z). The total system and associated fields is indicated schematically in Fig.

1.

Each of these equations support Soliton propagation, and could potentially be solved

in the same way as typical Soliton propagation problems through the split-step method.

However, a problem with employing this procedure is the presence of i'(z), which is not

present in most standard computations of Soliton propagation, and which makes the spatial

Fourier transform step difficult. It turns out that the most efficient method for simulating

this propagation is direct FDTD with Runge-Kutta integration.

Naively we may begin by writing down the set of coupled 1st order differential equations,
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and trying to solve them directly through a 1st order solver:

dP' 2 dPd = -[-i- + i2yAp(|AF 2  AB I)P i'yppj 2P + 01P'] (7.4)
dt 2P dz

dP
=P -P ' (7.5)dt

Unfortunately this method for splitting P up by its first and second derivatives is unstable

since #2P can in general be zero or very small. We can write + __-__ , and d 2
P

P+1+P2-j2P . Plugging these in, we can find the following stable solution for integrating in2At

time [1663:

At[i21AP(|AF 2 + B 2) + 4pp 2 _ i + f] 2- + iI3 1P]p
At~i-y~(IA JAB [,8P _'13P ] z A 2A 2 = Pi+1 (7.6)

[#2Pifl1P]
2At 2

We still need to employ spatial discretization on the y term. At first we might try to dodz

a special discretization for the leftward and rightward propagating fields. That is lets say

we defined the derivative such that the cells on the "receiving" end of the propagating wave

are simply not included in the evolution. In turn the two cells at the opposite edge of the

simulation are fed with the corresponding values necessary to introduce a constant pump

signal, a Soliton, or a Gaussian mode.

dPi -P+ 2  4pin+1 (7.7)
dz 2Az

This spatial discretization, although avoiding complications from introducing absorbing

boundary conditions, is unstable. It turns out that the following symmetric spatial derivative

is stable. We can introduce a constant field on the left or right boundaries by simply setting

the value to a constant, a Gaussian mode, or a Soliton mode at the single pixel immediately

outside the boundary.
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dP- P!+-1 Pn-'
-~(7.8)

dz 2Az

If the boundary is not fixed with a mode source, then it needs to be handled with a type of

absorbing boundary condition. We found that 1D Mur absorbing boundary conditions of the

following form were suitable for creating stable simulations which had minimum reflections

at the boundary:

pn +cAt [ 1

pr1  1 -Ax
=A ptm-+I [ - Ftm] (7.9)Pi+ 1 = E" +1

In essence we are forcing the cells at the boundary to satisfy a one-way wave equation

of the form l = -1i3jp 4 . This works for a general non-dispersive wave equation, but with

the inclusion of finite 32, and nonlinearities, this means that the boundary conditions are

not perfectly absorptive for our system. In practice the reflections were minimal.

We tested our solver with the Gaussian modes of the following form:

exp [-" Ut- B ]Z

G(z, t) =}(7.10)
Q1 - io.2 #3

2 pZ

We confirmed that the wavepacket broadening and phase evolution followed this expression

exactly. We show a few spatial plots of the Gaussian pulse evolution in Fig. 2. We also

verified Soliton propagation.

To prepare the system for a trigger pulse, the cavity needed to be stabilized over roughly

Q cycles to fully charge the defect cavity. This could be accomplished by applying a constant

power level to the forward propagating pump boundary condition. In practice, it was actually

best to "precalculate" the expected defect mode shape, by solving the coupled equations for
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Figure 7-2: Gaussian mode evolution with ID mode solver.
Gaussian mode (purple), completely overlaps the numerically

The plot for the theoretical
integrated solution (Green).

the cavity at DC, neglecting nonlinearity:

.dAF
+id + K(z)AR = 0

dz
dAR

dz + K(z)AF = 0

(7.11)

(7.12)

Integrating these solutions, we find that the stable defect modes are given by: AF =

Aocosh(fL i(z')dz') and AR = iAosinh(f Z K(z')dz'). Even after initializing this mode

shape, we found that we still had to wait for the system to equilibrate because of the addi-

tional optical nonlinearities, especially if the cavity Q was high.

7.4 Engineering Bragg Grating Defects for short Fre-

quency Combs

In this next section we detail how the COPE process operates in certain regimes and how

we can tailor the emission of the COPE process to create small frequency combs. We first

start by providing a schematic illustration of how COPE transfers energy from the cavity to

propagating Bragg grating modes, and then provide further numerical examples using the

solver we developed above to give concrete examples.

Fig. 3 provides a schematic illustration of some phase matching conditions between

propagating Bragg grating modes and cavity defects. The Bragg grating itself has a disper-
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sion relation given by w = +v/K 2 + k2 , where n is the grating strength, and determines the

bandgap size. When a defect is introduced to the grating, defect modes are introduced into

the bandgap. These modes do not propagate, but they do have a finite size, so they have

some spread in k-space about the bandgap.

When the system is stationary, w is a conserved quantity. However, when we introduce a

traveling shock front in the system, implemented by our trigger pulse, W is no longer a good

conserved quantity because the "potential" induced by the trigger pulse is time-dependent.

To understand what we expect to be conserved, we write simplified equations for the pump

fields:

.d d
[ 6(wo) + io,1- + i21ApIP(x - Vt)1 2]AF + KAB = 0 (7.13)
dz dt

[-i-++(wo) +i - + i2yApP(x -vt)1 2] AB + KAF = 0 (7.14)
dz dt

If P(x - vt) = 0, we can immediately assume plane wave solutions for AF and AB as

exp(i(wt + kz)). If we took v = 0, this solution would still work, where w would be conserved

and P(Ak) = FT(P(x)), would serve to couple together different k solutions. We can still

realize this useful property by transforming to the comoving reference frame with the pump

field. Taking z' = z + vt, we can reexpress the plane-wave solutions in our old frame as

exp(i(w - kv)t + kz')). This means that w - kv should be conserved while, k will still be

coupled to other k through P(Ak).

In Fig. 3a and 3b we illustrate how this conservation property works in practice. In the

stationary frame, lines of w' = w - vk , for a given w are conserved. In Fig 3b, this result is

presented more intuitively as conserved w in the comoving reference frame. The key idea is

that the pump pulse provides momentum 6k to scatter modes from the defect state onto the

propagating Bragg grating modes, in the same way any defect in a stationary system can

scatter k-state modes. Since the stationary version is in a comoving frame, this means in

practice that the scattering process will modify the frequency relative to the original defect

mode frequency depending on its position in k-space.

In Fig. 4 we illustrate a more general example of phase matching for an arbitrary mis-

match between the group velocities of the pump and trigger pulse. Taking the limiting group
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Figure 7-3: Phase matching between Cavity Modes and propagating Bragg grating modes.
a) In the stationary frame b) In comoving reference frame.

velocity _ = 1, we illustrate specific cases with phase matching conditions to the different

branches of the Bragg grating dispersion for specific cases of 01p = 0.5 and 2. If the trigger

pulse travels faster than the pump modes, we have phase matching to two points above or

below the band gap (Fig. 4a). In the other case, we have phase matching to one point above

and one point below the bandgap (Fig. 4b).

We can use these general phase matching properties to investigate creating small fre-

quency combs, by engineering i'(z). Since the cavity mode k is translated into some W

around the grating frequency in a linear way, it means features in the cavity mode spectrum

in k can be translated into frequency with the trigger pulse. Specifically we can engineer

i(z) to be periodic. The periodicity w of the cavities creates a frequency comb separated by

2 from a trigger pulse traveling at speed v. We illustrate one example of in Fig. 5 of how

,(z) can be specified to yield periodic cavity modes.

We confirmed this intuition by directly simulating the COPE process for periodic I'(z) in

Fig. 6 to generate short frequency combs with four to six peaks. We swept over a range of

group velocities for the pump pulse to reveal systematic changes in the generated frequency

combs. This plot reveals several phase matching points which move with changing group

velocity, and exactly follow our expected predictions for the phase matching conditions.
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Figure 7-4: Phase matching between Cavity Modes and propagating Bragg grating modes
for fast and slow trigger pulse cases. The maximum group velocity of the Bragg grating is
fixed to 1. a) Slow case, phase matching occurs for two points above or below the band gap.
b) Fast case, phase matching occurs at one point above and one point below the band gap.

7.5 Influence of trigger pulse parameters on COPE

We use some of the tools developed in previous sections to analyze how key trigger pulse

parameters influence the generation of the frequency combs and the total COPE output

power. To begin we plot in Fig. 7 a set of 6 simulations varying trigger power and pulse

length in the exact same format as Fig. 6. Several features immediately become obvious.

The first is an increasing asymmetry between the 1st and 3rd quadrants and the 2nd and

4th quadrants with increasing output power (between the 1st and 2nd lines of results). The

second is a general broadening of the phased matched frequencies as the duration of the

trigger pulse is increased (from left to right).

We can understand the behavior from left to right quite easily in terms of the trigger

pulse serving as a "coupling" term between different k states. In the comoving reference

frame, a pulse narrower in space, is broader in k-space, and so increases the rate at which
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Figure 7-5: Engineering Bragg grating parameter to create periodic cavity modes and short
frequency combs. a) Periodic variation of Bragg grating parameter along length of the
fiber b) Periodic cavity modes supported by nonuniform, periodic Bragg grating parameter.
c) Spatial Fourier transform of cavity modes, yielding a small comb. The COPE process
translates this spatial periodicity into frequency.

power is able to be transferred between k states far apart in k-space. On the other hand,

a broad pulse will be ineffective at providing the momentum necessary to connect widely

separated states.

The asymmetry between the different quadrants is less clear, since the momentum con-

servation arguments above should apply equally well to positive and negative frequency. We

can start to understand the origin of this asymmetry by studying the Bragg grating equations

in the presence of a strong DC trigger field.

d d
[i-- + 6(wo) + i d1- + i2-yApPI2 ]AF + N(z)AB = 0 (7.15)

dz dt
d d

-i d+ wo) + i01 - + i2yAp|PI 2] AB + I,(z)AF = 0 (7-16)
dz dt

When IP is a constant wrt time and space, it effectively contributes to the detuning

parameter 6(wo) = w - wo. We find that the Bragg grating dispersion is modified in the

following way:

1 ____ (717
(A) - Wo = /s2+ k2 + 2 APp2

/3 1P /3 1P

This qualitatively illustrates how increasing probe power can cause asymmetry between the

different scattering channels.
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Figure 7-6: Generation of short frequency combs from COPE. Fourier transform of the
output of the COPE process for different pump pulse group velocities. The red lines indicate
cross sections which we plot as insets. The different colored streaks in the image indicate
phase matching to separate orders of the defect mode spatial Fourier transform as a function
of trigger group velocity and frequency. The location of these peaks corresponds exactly to
the locations we predict from phase matching. The short frequency combs we generate here
contain four to six peaks.

We next studied the peak trigger output power as a function of the system parameters

and discovered an interesting relationship between the trigger power and defect cavity period

at the peak COPE power. We have plotted this result in Fig 8.

To understand the origin of this relationship, we reanalyze the detuning discussion from

earlier. An important feature of the result we found above in the simulations, was that it

only converged to a fixed form for long trigger pulses. This implies that we should view the

trigger pulse as a DC term in the coupled mode equations. Using the dispersion relation we

calculated earlier for this situation, we want to analyze the case where the defect mode at

k =' }and w = wo, is tuned to overlap the Bragg dispersion. This yields the following:

0 1 /+k2+2 p2 (7.18)
d trip 2

We find that solving for P gives: IPj2 = K~p 2 + (11-)2, which is exactly the form of the
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Figure 7-7: Effect of trigger pulse power and length on COPE spectrum. The plots are in
the same format as Fig. 6 with variable pulse trigger group velocity on the vertical axis,
and frequency on the horizontal axis. From left to right we see that increasing trigger pulse
length causes a narrowing in frequency of the COPE output spectrum. In addition from the
first line to the second, with increasing trigger power, significantly more power appears in
the 1st and 3rd quadrants vs the 2nd and 4th quadrants.

black curve we found in Fig. 8a. We can interpret this as the trigger pulse propagating and

distorting the dispersion relation so as to directly touch the cavity mode in frequency and

momentum, resulting in maximum power transfer to the COPE pulse.

We further investigated this concept by visualizing the propagation of the COPE pulse

in the time domain in Fig. 9. Here we illustrate two examples with w = 2.2 and 4 with

varying trigger pulse powers. Above each green trigger curve at a particular snapshot, we

plot a horizontal line Pcrit, indicating the power at which the cavity mode is exactly detuned

to lie on the Bragg dispersion relation. Carrying this out for several power levels reveals a

critical result, namely a splitting of the COPE pulse into two separate peaks, when the peak

trigger pulse power exceeds Pceit. Intuitively the location of each separate peak corresponds

to the value where the trigger pulse power equals Pcnt. Each of these locations corresponds

to the location where power transfer is maximized between the cavity modes and the Bragg

dispersion relation. This is an alternate explanation for the same peak splitting phenomena
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Figure 7-8: a) Peak COPE power vs cavity defect period and trigger power. The peak
power follows a curve relating the cavity defect period w to the trigger power resulting in
the peak COPE output power Peak in the upper right hand corner. b) This relationship is
exactly equivalent to the detuning required to couple a defect mode at k = to the Braggw
dispersion relation.

observed in the original work on COPE [165].

7.6 Analogy to "White Hole" Physics

Since event horizons are impossible to observe directly, there have been an entire class of

analog physical systems explored which exhibit similar physics which, in certain regimes,

might allow observations of exotic effects like Hawking radiation [167].

Most analogs of Hawking radiation exhibit a metric of the following form:

ds 2 = (c 2 - v(r, t) 2 )dt2 + 2v(r, t)drdt + dr2  (7.19)

Where v(r, t) is the flow of some medium (say water), and c is the speed of excitations

of that medium. If v(r, t) > c at any point, we have an event horizon. The classical example

is a fish falling down a waterfall. If the speed of the falling water at some point is greater

than the speed of sound in the water, past a certain critical location, it will be impossible

to hear the fish anymore because it's passed a "sonic event horizon".

This metric is equivalent to the following dispersion relation describing a frame at rest
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Figure 7-9: Snapshot of COPE process in fiber Bragg grating for w = 2.2 and w = 4 at
several different trigger power levels. The trigger pulse is the green Gaussian curve in the
left side of each image, while the forward and backward propagating pump modes are red
and blue respectively. Prit, the power calculated to exactly detune the dispersion relation
to intercept the peak of the cavity defect mode at w = wo and k = ! is indicated as a
horizontal blue line. When the peak energy of the trigger pulse exceeds Pit, we observe
that the output pulse splits in two, with the location of each peak corresponding to where
the trigger pulse power is equal to Pit.

relative to the flowing fluid:

k = (7.20)
c+ v(r, t)

At the event horizon the group velocity goes to zero for "White holes". We want to see if we

can find the analogous situation for our COPE system. Starting with the dispersion relation

from earlier:

(W - -YIPI 2 + k) 2 = (k 2 + r,2) (7.21)

We want to put this in a form equivalent to the above description, where the event horizon

is stationary. Since we believe our horizon will be formed by the trigger pulse, we should

transform to the comoving reference frame with the trigger pulse, taking w to w - vk. We

can find a situation with this where k goes to infinity, if P goes to infinity. This corresponds
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to the case where an arbitrarily strong trigger pulse, causes light originally propagating on

one part of the dispersion relation to travel with a faster and faster group velocity as the

local band structure is detuned by the strong nonlinearity. This type of effect could be at

work in stabilizing some of the peaks in Fig. 7. To explore this analogy further, it would

be best to work with light that is already on the Bragg grating dispersion, instead of in a

defect cavity mode. This makes analysis of the results clearer. Here the trigger pulse serves

two functions: not only is it kicking the pump out of the defect cavity, it is also forming a

horizon. All of the horizon and extraction effects are happening at once, making the horizon

interpretation of COPE murky at best.

7.7 Appendix:Derivation of nonlinear coupled mode

equations in fiber-Bragg grating

We begin our derivation of the Soliton Equation in fibers with an equation giving the relation

of a polarization to the evolution of the E field in space [168]. In the derivation of this

expression from Maxwell's equations, V -E = 0 was assumed which is not true for arbitrary

c. The expression is written such that the polarization term can be interpreted as a source

for the E field. A time derivative of polarization is a 'bound' current, since charges are being

transfered in space to change the polarization. This is consistent with the fact that if we

included J, jf would appear on the right side.

V c2 dt2 E = -Eo P (7.22)

Here the nonlinear polarization is broken into a linear part and a nonlinear part.

P=PL + PNL (7.23)

Assuming that we have very broad pulses, which have a carrier frequency at some frequency

wo, we can write the time differentiation in the frequency domain as multiplication by iwo,

since in the frequency domain we know the fourier components are tighly concentrated
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around wo:

2

-V 2 E(r,w) = (I + X1 (w))E(r, w) + PNL (r, w) (7.24)
C2

2

+ x 1(w) + x3 IE(r, wo)1 2 )E(r, w) (7.25)
C2

=2 0(r, w)E(r, w) (7.26)

To get the second term we assumed PNL was of the form x 3(Wo, -wo, w)E(r, wo)E(r, -wo)E(r, w)

for simplicity, although in general, we can get phase modulation at w from other fourier

component combinations. It is important to note that we have not yet made the envelope

approximation in time, otherwise we would have to have seperate time derivatives of the

envelope, from the time derivatives of the carrier. In order to proceed, we break E(r, w) into

two parts dependent on x,y and z seperately to represent progation of different modes along

a fiber optic cable.

E(r, w) =F(x, y)A(z, w) (7.27)

=F(x, y)A(z, w) exp(i#(wo)z) (7.28)

For the second step, we made the slowing varying envelope approximation in the z direction,

assuming the primary wavevector component is the 3(wo) wavenumber. Using seperation of

variables, we can find seperate eigenvalue equations for A(z) and F(x, y):

-V 2 F(x, y) A(z, w) exp(io3(wo)z) =

W2

-2 X(w, r) F(x, y) A(z, w) exp (io (wo) z)

d2  d2  W 2

+ 2 x(w, r))F(x, y)A(z, w) exp(i#(wo)z) =+x dy 2 +c 2

d2

dZ2 F(x, y) A(z, u)) exp (io (uo) z) (7.29)
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To proceed, we expand out the right side, keeping the first derivative of the envelope:

dz= exp(i3(wo)z)(3(wo) 2 - i/3(wo)+)A(z, w)F(x, y) (7.30)

(7.31)

Now we divide each side by F(x, y)A(z, w):

($ + dy2 + 1X(w, r))F(x, y) (3(wo)2 - i3(wo)))(z,w )

F (x, y) A (z, w)

= #t(w)2 (7.32)

The last step follows from the fact that each side is a function of independent variables,

and so must be equal to a constant. With this result we can finally write two eigenvalue

equations:

d2  d2  W2

(dx2 + dy2 + - x(w, r) - /3U(w)2)F(x, y) = 0 (7.33)

(I(wo)2 _ 3t(w)2 - 2i/(wo)-)d(z, w) = 0 (7.34)
dz

In general these equations are very difficult to solve, but we can first write down a solution of

the problem without nonlinear effects, and then perturbatively add them back in. Without

nonlinearity the equations reduce to the following:

d2  d 2  2
+ + 1+ x(w)) - f(w)2)F(x, y) = 0 (7.35)

(/(wo)2 _ 3(W)2 - 2i!(wo) )A(z, w) = 0 (7.36)

The first equation can be solved in terms of Bessel and Neumann functions in cylindrical

coordinates. The solution will give a dispersion relation #(w).
It is important to clarify the definitions of the / symbols used here. #t(w) denotes the

dispersion relation for the equation with nonlinearity, including corrections to all orders.

#t (w) can be expanded as 83(w) + 01 (w) + 32 (w) + .... We will find the first order correction
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shortly.

With our zeroth order solution, /(w), we now want to proceed to add back in nonlinear

effects. It is first convienent to define X(r, w) in terms of indices of refraction and losses:

X(r, w) = (n +An+ ia C)2 (7.37)W

~ n2 + 2nzn + (7.38)

Where we have contrived the expression on the loss part to magically cancel a term later.

We find that following correspondances, neglecting the imaginary part of x3 .

n2 = Re{1 + x1(w)} (7.39)

a = Im{X 1(G)} (7.40)
2cn

1
An = Re{X 3 (wo, -wo, w)IE(r, wo) 2  (7.41)

2n

From here we can preform 1st order perturbation theory given some unperturbed eigenstate

F(x, y), and eigenvalue #(wo). In direct analogy to quantum mechanics we can write:

$ d_ + + -n 2  (7.42)
dx 2  dy 2  c 2

Hi = (2nAn) + i-na (7.43)
C C

Where:

< b1IOkb> =EO = O(w)2 (7.44)

< 01H110 > =E 1 = 2#1#(w) (7.45)

Where #1, is the first order perturbation to the eigenvalue. Using the definition of the inner

product, we can write:

w2 n(w) f_ fl(An + i-La)IF(x, y) 2dxdy
c2/() f_1 f IF(x,y)2dxdy
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We can make a significant simplication to this expression if we assume 3(w) satisfies the free

space dispersion relation: 3(w) = T. This follows if we assume F(x, y) is a slowly varying

function in x and y, because the x and y derivatives in the eigenvalue equation for F(x, y)

are negigible.

w fl, fl(An + ina)IF(x, y)j2 dxdy
C f= f F(x, y)I 2dxdy

_ f_00 f0c o X 3 E(r, wo) 12 1F(x, y) 2dxdy=0 2n ko ia (7.48)
c f_ f_ F(x,y)1 2dxdy

2 WX3 f f F(x, y)1 4 dxdy
=IA(z, w)1 2 c' foo IF(x, dxdy + ia (7.49)2cn f_ O_ F(X, y)2dxdy

=7A(z, w)1 2 + ia (7.50)

Using these results we can rewrite the eigenvalue equation for A(z, w), using f3t(w) ~ /3(w) +

0 ((/3(w) + /1(w))2 _ (WO)2 - 2i(wo)-)A (7.51)

=((/(w) + ,(w) + 03(wo))(P(w) + 01(W) - 0 (WO)) (7.52)

dz- 2i1#(wo)+)A (7.53)

To proceed, we assume that for the w we are concerned with, we are close to wo and that /1

is small. This allows us to write:

~(2# (wo)(03(w) + 01(w) - # (wo)) - 2i# (wo)-)A (7.54)
- dz

dz

Now that we have this useful expression we would like to transform it back to the time

domain. Since we are only interested in frequencies around wo, we can expand the dispersion
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relation for /(w) to second order:

#3(w) ~ /3(Wo) +
d 1 d2

d ()w (W - wO) + 1d 2 3(C)IWo(p - WO) 2

dw 2 dW
(7.56)

(7.57)=(wO) + _(W - wo) + (W - wo) 2

Vg 2gd

Where vg is the wave group velocity and 9d is the group velocity dispersion at wO. We can

insert this into our expression for A(z, w) above:

0 =(-(-wo)
Vg

(7.58)+ !(W - wo)2 + /31(W)) - i+)A(z, w)
2 gd dz

To proceed we make the envelope approximation for A(z, w):

A(z, w) = J A(z, t) exp(-iwt)

= J Ae(z, t) exp(iwot) exp(-iwt)

=Ae(z, w - wo)

(7.59)

(7.60)

(7.61)

Where Ae(z, w) is the time envelope. For simplicity we immediately drop the e subscript.

We were able to neglect higher order terms in /(w) because A(z, w - wo) is assumed to be a

narrow function in frequency space.

1 1
0 =( I(W - O) + ( P

V 2g9d
(w)) - i+)A(z, w - wo)

dz

We can know immediately preform a fourier transform on this function, and exhange multi-

plication by w - wo for i :

i d
0 =( i

V9 dt
I d

Vg dt

1 d2  d
t2 +,311(t)) - i-)A(z, t)

2gadd dz

2 d2d
+ i Id - iyjA(z, t)12 + a + -)A(z, t)

2gd dt2 dz

(7.63)

(7.64)

For the last step we inserted the expression we found for /3 earlier using perturbation theory.

Through a similar procedure we can include XPM effects making the approximation that
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yj = -y if we assume the fiber modes have similiar shapes:

1 d 1 d2  ( t)12  2) 1  d
0 ={ +i dt2 - ?Y(jA1(z, + 21A 2 (z,t)) +a + - A(z, t) (7.65)Vg,1 dt 2941dl d z

1 d 1 d2  7.6)d
0 ={~d + i 2dt2 - i-Y(JA2(z, ) + 21A1(z, )2)+ a2 + -}A2(Z, t) (7.66)

Now that we understand the effect of the Bragg grating on the dispersion relation, we can

proceed to derive a set of coupled mode equations. For this derivation we follow the work of

several authors [169] [160] [159] [170] [171]. Our starting point is the following equation for

the total field E(r, t) fourier transformed in time:

2

-V 2 E(r,w) = 2X(r, w)E(r, w) (7.67)

Here X(r, w) is now given by:

X(r, w) = (n + nNL + 6n cos (20gz)) 2  (7.68)

~ n2 + 2 nnNL + 2non cos (2 3gz) (7.69)

Where we have now included the contribution to the polarization from the Bragg grating,

and where:

'nNL = Re{X3 (w, -w, w)IE(r, w)1 2} (7.70)
2n

Instead of considering two different frequency modes, as in our derivation of the general

coupled mode equations, we are interested in the coupling of the forward propagating and

backward propagating components at the same frequency around the zone edge:

E(r, w) = F(x, y)Af(z) exp(igz) + F(x, y)Ab(z) exp(-igz) (7.71)

Here we have expanded in envelopes of the foward and backward propagating modes. The

mode profiles F(x, y) for each mode will be identical, and we take the carrier wavevector to be

#g, the Bragg grating wavevector, because the coupling between the forward and backward
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propagating modes will be strongest here.

The next step is to insert our expression for the total field into the main equation above

and seperate out the components which have the same wavevector dependence:

F(x, y) 1 exp(i3g z)(v + ifgk )2 Af(z, w)F(x, y) =

c2 exp(i39z){(n2 + 2nnNL)Af(zw) -- Ab(z, W) (7.72)

F(x, y)- 1 exp(-iBg z)(V - i/g3k) 2 Ab(z, w)F(x, y) =

2 exp(-iBz){f(r 2 + 2nnNL)Ab(z, w) + f(z, w)} (7.73)

It is important to note here that the Bragg grating serves as a coupling between the forward

and backward propagating modes because it connects a mode with exp(iogz) dependence to

a mode with exp(-igz) dependence and vice versa. Taking the first of these equations and

applying the envelope approximation we find:

22d d 2 d 2
(/ + 2i#o + + )A7(z, w)F(x, y) ~

W 22 2non
2 (n + 2 nnNL)Af (z, W) + Ab(z, w)}F(x, y) (7.74)

c 2

We can split this into two seperate equations using the techniques from the first section. We

skip some of these steps to write:

2 2 d W2
(- +t(W) 2 + 2 i ) Af (zw)+ cn2n* b(Z,w) = 0 (7.75)Og dzC 2

Here we remind ourselves that @t is the unperturbed eigenvalue for the mode profile F(x, y).

We know make the approximation that -_ + # 1()2 ~ 23g(/t(w) - /g) so we can write:

d nonu)2_
0 =(#t(W) - /g + i-)Af (z,wW)+ 2 A(z, (7.76)

d z 20gc
d nonW2

=((w) + 01(w) -g + i +)f(z, W) + 20gC2 Ab(z, w) (7.77)

In the second step we expanded ft to the zeroth order dispersion relation for the fiber mode
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,3(w) and the first nonlinear correction term 01(w).

equation in the following way:

We now want to rewrite the above

)A (z, w)

)ZA(Z, w)

0 = (i(w) + i 1 (w) -

0 = (ij (W) + i#1 (W) +

+ iI'Ab(Z, w)

+ inAf (z, w)

Where we have:

6(w) = (w) - g
n6nw2

20c 2

(7.80)

(7.81)2n

Now we take the opportunity to do a sanity check of the above equations when the nonlin-

earity goes to zero. We find:

0 = (i6(w) -

0 = (i6(w) +

d )
)Z (z, w)

d)ZAb(Z, W)

+ irAb(Z, W)

+ iiAf (z, W)

We can solve these equations using trial functions of the form Af(z, w) = A 1 exp(iqz) +

A2 exp(-iqz) and Ab(z, w) = B1 exp(iqz) + B2 exp(-iqz). Upon substitution we identify the

following constraints:

(q - J(w))A1 =KB1

-(q + J(w))B1 =nA1

(7.84)

(7.85)

Along with two other relations of the same form. This can easily be solved for nonzero field

amplitudes to yield the constraint:

(w )= kq 2 + K 2

W - Wg - ) +
n2

(7.86)

(7.87)
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Where in the second step, we assumed a free space dispersion, and expressed q in terms

of the wavenumber 3 of the envelope. We can briefly analyze the limits of this dispersion

relation. For w > w, we recover the free-space dispersion:

C
w ~ -# (7.88)

n

We can also find an expression for the bandgap when 3 = 3g

A -c - g -cOn (7.89)
n 2n n2

Which is exactly the same result we derived earlier using perturbation theory. Now that we

are confident that these equations are correct, we can transform them to the time domain.

To do this we first expand /(w) about some center frequency wo near the zone boundary:

#(w) ~3 (wo) + y!(w - wo). We can substitute this into our fourier transformed expressions

for the envelope evolution:

1 d
0 = (i6(wo) + i-(w - wo) + i/i(w) - )Af(z, w) + iiAb(Z, W) (7.90)

Vg dz

1 d
0 = (i6(wo) + i-(W - wo) + i#1 (w) + +-)b (Z, w) + iIif(z, w) (7.91)

Vg dz

Using the envelope approximation, we can write this as:

1 d
0 = (i6(wo) + i-(W - wo) + i/31(w) - z)Aef(z, w - wo) + ir.Aeb(Z, W - wo)

1 'd - #
0 = (i6(wo) +i (w-wo) +i 1 (w) + +)eb(Z,W - wo) + irAle (z, w - wo)

Vg dz

Where the e subscript denotes an envelope in the time domain. We can easily fourier

transform these equations to find, again dropping the e designation on the envelope:

t)12 +t)1 2) - d - I d
0 = (iJ(wo) + kf(lAf (z, t)2+ 2JAb (Z, t)z2 v9- )Af (z, t) + ir~b(z, t)0 (i6(wz) g dt

0 = (i6(wo) + i-y(JAb(z, t)12 + 2jAf(z, t)1 2 ) + d- - -- )Ab(z, t) + irAf (z, t)
dz vg dt
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Chapter 8

Future Work

Future work on 2D ferrimagnetic topological photonic crystals should focus on removing the

external magnetic field. We investigated employing other varieties of gyromagnetic material

to accomplish this, but unfortunately, their low coercivity prevented the rods from sustaining

suitable magnetization. Thankfully, there is an ever growing variety of magnetic materials

which potentially can be utilized to help realize the amazing properties of these crystals in

more portable settings.

Additional studies on lens-enabled LIDAR should further examine phase error propa-

gation through the grating. The high sensitivity to manufacturing errors and wavelength

dispersion of the system needs to be addressed. The historical literature on advanced optics

design may potentially help here. A part of the solution will also likely involve developing

robust methods for tuning the focal plane position. Work by our collaborators at MIT Lin-

coln Labs in future years will focus on creating a full working system including integrated

tunable sources and heterodyne detection. Packaging and integration of all of these different

components will be highly nontrivial, but accomplishing this will be a critical step towards

commercialization.

The most development remains for our proposal for optical CNNs. Although inference

using networks of MZIs has been demonstrated experimentally, it was only for very small

systems of a few inputs and outputs. Future work needs to address how this can be scaled

to hundreds or thousands of inputs while keeping losses manageable and maintaining the

required device tolerances. In addition robust methods for integrating optical amplifiers,

161



optical nonlinearity, and extremely long delay lines need to be created.
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