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Abstract

A key challenge for full-core transport methods is reactor agnostic multi-group cross
section (MGXS) generation. Monte Carlo (MC) presents the most accurate method for
MGXS generation since it does not require any approximations to the neutron flux. This
thesis develops novel methods that use MC to generate the fine-spatial mesh MGXS that
are needed by high-fidelity transport codes. These methods employ either engineering-
based or statistical clustering algorithms to accelerate the convergence of MGXS tallied
on fine, heterogeneous spatial meshes by Monte Carlo.

The traditional multi-level approach to MGXS generation is replaced by full-core MC
calculations that generate MGXS for multi-group deterministic transport codes. Two pin-
wise spatial homogenization schemes are introduced to model the clustering of pin-wise
MGXS due to spatial self-shielding spectral effects. The Local Neighbor Symmetry (LNS)
scheme uses a nearest neighbor-like analysis of a reactor geometry to determine which
fuel pins should be assigned the same MGXS. The inferential MGXS (iMGXS) scheme
applies unsupervised machine learning algorithms to "noisy" MC tally data to identify
clustering of pin-wise MGXS without any knowledge of the reactor geometry. Both
schemes simultaneously account for spatial self-shielding effects while also accelerating
the convergence of the MC tallies used to generate MGXS.

The LNS and iMGXS schemes were used to model MGXS clustering from radial
geometric heterogeneities in a suite of 2D PWR benchmarks. Both schemes reduced
U-238 capture rate errors by up to a factor of four with respect to schemes which
neglect to model MGXS clustering. In addition, the schemes required an order of
magnitude fewer MC particle histories to converge MGXS for multi-group deterministic
calculations than a reference MC calculation. These results demonstrate the potential
for single-step MC simulations of the complete heterogeneous geometry as a means to
generate reactor agnostic MGXS for deterministic transport codes. The LNS and iMGXS
schemes may be valuable for reactor physics analyses of advanced LWR core designs
and next generation reactors with spatial heterogeneities that are poorly modeled by
the engineering approximations in today's methods for MGXS generation.
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Chapter 1

Introduction

1.1 Motivation

Numerical simulation has long played an important role in nuclear reactor physics and

engineering. The nuclear industry relies on computational modeling of the neutron

physics in reactors to predict core reactivity, power distributions, fuel depletion, and

transient behavior to ensure the safety and reliability of the current fleet of Light Water

Reactors (LWRs). Predictive simulations are necessary to evaluate innovations which

seek to improve reactor safety and fuel cycle economics, such as reduced safety margins,

accident-tolerant fuels, and extended cycle lengths. In addition, simulation is used

to assess the technical competencies of advanced reactor technologies such as Small

Modular Reactors (SMRs), Sodium Fast Reactors (SFRs), Molten Salt Reactors (MSRs),

High Temperature Gas Reactors (HTGRs), among other proposed designs.

Many Generation III+ reactors, such as the Westinghouse AP1000 TMPressurized

Water Reactor (PWR), optimize performance with complicated core designs. A variety of

reactivity control mechanisms - including partially-inserted control rods, "grey" control

poisons, Integral Fuel Burnable Absorbers (IFBA), soluble boron, etc. - along with axial

enrichment zoning are used to improve performance metrics such as power peaking

factors. The reactor analysis methods in widespread use today assume a "smoothly"

varying flux distribution, and are not well-suited to model highly localized flux gradients

which result from these complex core configurations. New high-fidelity simulation tools
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are needed to accurately capture neutron physics in advanced reactor designs.

The development and deployment of neutron physics simulations is governed by

tradeoffs between accuracy and speed. High-fidelity simulations are accurate and

flexible since they make few approximations, but require significant computational

time and resources. On the other hand, the assumptions and approximations made

by low-fidelity methods reduce the number of variables which greatly improves the

time-to-solution. However, low-fidelity models are designed for specific applications and

lose their predictive power when employed in settings outside of the scope for which they

were intended. As a result, it is common to employ a mix of high- and low-fidelity tools

for reactor analysis - for example, high-fidelity tools are frequently used to inform and

benchmark low-fidelity models for use within a narrow envelope of design parameters.

This thesis develops a new approach within the same vein by employing continuous

energy Monte Carlo neutron transport simulations to generate accurate multi-group

cross sections for computationally efficient fine-mesh deterministic transport methods.

1.2 Background

A key trend in recent years has been the steady progress towards full-core neutron

transport-based reactor analysis tools. The standard methods used for reactor analysis

today continue to be based on diffusion theory, which enables orders of magnitude

computational performance improvements with respect to transport methods. Diffusion-

based methods coupled with accurately modeled cross section data have proven to be

sufficiently accurate for software tools used by reactor analysts, designers and regulators

in industry and academia. However, these techniques rely on a number of assumptions

and approximations which are not valid for all reactor types. For example, some Gen-

eration IV reactor design concepts are significantly more challenging to model than

Light Water Reactor (LWR) designs due to the high degree of spectral coupling between

geometrically disparate zones within the core. Although the computational requirements

for full-core transport-based simulations have precluded their widespread deployment,

the continuing growth of cheap parallel processing power has made the prospects for
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such tools increasingly feasible.

Monte Carlo (MC) particle transport methods are often looked to as the "gold

standard" for the future of nuclear reactor core depletion calculations. Monte Carlo

methods are by their very nature reactor agnostic in that they permit an accurate treatment

of the core geometry and spectral coupling. Another appealing characteristic of MC

methods is their ability to use continuous energy cross sections. An accurate treatment

of evaluated cross section data permits high-fidelity core spectral calculations. Although

new scalable parallel algorithms have enabled codes to achieve excellent scaling on

100,000s of cores, production tools for industrial workstations remain out of reach

for the foreseeable future. The primary reason for this is that the inverse square root

convergence rate inherent to MC makes it computationally intractable to realize an

acceptably low uncertainty for each tally of interest - except on large supercomputers.

Furthermore, full-core Monte Carlo calculations require a terabyte of memory or more to

store the tallied quantities, which is inaccessible except on the world's largest computing

machines. Finally, the accurate energy treatment largely renders MC methods inefficient

for modern computational hardware. The stochastic treatment of the nonlinear neutron

energy characterization is challenging to vectorize and results in highly disjoint memory

accesses to cross section data with minimal cache reuse.

An attractive alternative to MC are deterministic methods - such as Discrete Ordi-

nates (SN), SimplifiedPN (SPN), and the Method of Characteristics (MOC). Deterministic

methods typically do not make use of continuous energy cross section data and instead

discretize the energy domain through the multi-group energy approximation as shown

in Fig. 1-1. The multi-group approximation considerably reduces the necessary dataset

footprint for simulation. In addition, the multi-group approximation enables determinis-

tic methods to be more effectively formulated for vectorization and cache reuse than

MC methods. However, the approximation requires an a priori estimate of the neutron

flux to compute the multi-group cross sections (MGXS) in each energy group and spatial

zone in order to solve for the flux distribution throughout the core.
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Figure 1-1: U-235 continuous energy and 16-group fission cross section.

This thesis is motivated by the desire to obtain Monte Carlo-quality solutions

with computationally efficient deterministic neutron transport methods.

Many different engineering prescriptions have been developed to generate MGXS for

specific reactor configurations and spectra. In general, MGXS generation schemes use a

multi-level approach to decouple the energy, angular and spatial dimensions as depicted

in Fig. 1-2. The multi-level approach typically applies high-fidelity models of the energy

self-shielding physics to low-fidelity geometric models of unique core components. The

complexity of the energy treatment is then reduced at each level as larger and more

complex geometric models are considered.

For example, the first stage for LWR MGXS generation attempts to capture energy

self-shielding effects within simplified geometric models such as infinite fuel pin cells.

This step typically condenses continuous energy cross sections to 0(100) groups. These

MGXS are then used in a heterogeneous lattice physics calculation of an individual

fuel assembly within an infinite lattice. The lattice physics calculation models spatial

self-shielding effects between pins of various material compositions and condenses the
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Figure 1-2: Current multi-level framework for reactor analysis.

MGXS to a coarse energy structure of 0(10) groups. In addition, the MGXS may be

spatially-homogenized across the entire fuel assembly or across each fuel pin within

each assembly. Finally, the spatially-homogenized coarse MGXS for each fuel assembly

are used in a full-core calculation composed of many fuel assemblies.

The multi-level approach uses a combination of models of varying complexity to

optimize overall simulation speed with accuracy. However, this is typically done at

the expense of generality. For example, some prior knowledge of the neutron energy

spectra is required to design approximations to the flux for a particular reactor config-

uration. Furthermore, multi-level MGXS generation schemes do not generally model

inter-assembly physics or the effect of reflectors and other core heterogeneities on the

spatial distribution of the flux. Instead, geometric heuristics are often used to embed

spatial self-shielding effects in MGXS for similarly shielded spatial zones (e.g., fuel pins

with similar neighboring pins). The approximations to the energy and spatial variation

of the flux introduce approximation error in full-core calculations and limit the core

design parameter space for which multi-level schemes may be applied. New reactor

agnostic MGXS generation methods are needed to enable deterministic transport-based

methods to be as accurate and flexible as Monte Carlo in full-core calculations.

This thesis investigates the use of Monte Carlo methods to generate MGXS for full-

core deterministic reactor analysis. Monte Carlo presents a natural approach to replace

engineering prescriptions to approximate the flux with a stochastic approximation

of the exact flux. The advantage of a MC-based approach is that all of the relevant
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physics modeled in MC may be directly embedded into MGXS. This improvement in

accuracy comes at the computational expense of converging group constant tallies to

acceptably low uncertainties. MC methods have increasingly been used to generate few

group constants for coarse mesh diffusion, most notably by the Serpent MC code [1].

However, there exist few rigorous and comprehensive analyses of MGXS generation for

heterogeneous fine-mesh deterministic transport methods.

This thesis develops and evaluates MC-based methods to generate MGXS for

fine-mesh deterministic neutron transport codes.

In addition, MC-based MGXS generation methods to date have retained the multi-

level geometric framework to tabulate MGXS for individual reactor components - such

as infinite fuel pins and/or assemblies - for subsequent use in full-core multi-group

calculations. Although the use of MC within a multi-level scheme eliminates the need

to approximate the flux in energy, it does not account for spatial self-shielding effects

throughout a reactor core. This thesis abandons the multi-level framework in place of a

full-core MC calculation which simultaneously accounts for all energy and spatial effects

in a single step.

In theory, full-core MC calculations can be used to tally MGXS in each spatial zone

(e.g., 100 axial depletion zones within each of 50,000+ fuel pins in a PWR core) to

account for the spatial variation of the flux. However, such simulations have not been

employed for practical reasons - in particular, the large memory footprint and com-

putational expense of performing such calculations has been prohibitive for MC codes

until recent years. Furthermore, roughly the same number of particle histories would

be required to converge the MGXS tallies in each spatial zone as would be required for

a direct full-core calculation by MC. Hence, it would be more sensible to simply use

MC to compute the solution to the full-core eigenvalue problem directly rather than

use it to fully embed spatial self-shielding effects in MGXS for deterministic transport

codes. Therefore, in order for MC to be practical for reactor agnostic fine-mesh MGXS

generation, a new method is required to accelerate the convergence of the MGXS tallies

in each fine-mesh region to a degree that is not possible for conventional full-core Monte
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Carlo simulations.

This thesis proposes to use statistical clustering methods to accelerate the convergence

of full-core MC calculations for MGXS generation. This novel approach relies on the

fact that many distinct spatial zones across a reactor core experience similar spatial

self-shielding effects, and therefore have similar MGXS. The stochastic nature of MC

simulations will contribute statistical "noise" to the tally estimates for the MGXS. As a

result, the MGXS estimates for similarly self-shielded spatial zones will form clusters

which will converge as more particle histories are simulated. The goal of this thesis is to

develop and apply algorithms to identify MGXS clusters from "noisy" Monte Carlo tally

data and to predict the true mean of each cluster prior to convergence. This methodology

aims to generate MGXS for deterministic neutron transport codes in a reactor agnostic

and computationally efficient manner.

This thesis uses statistical clustering algorithms to accelerate full-core MC

calculations which simultaneously model all energy and spatial self-shieldingI

effects for fine-mesh MGXS generation in a single step.

1.3 Thesis Objectives

The subject matter of this thesis is organized along two main themes:

e Approximation Error - Quantify and diagnose approximation error in MGXS

generated from MC methods for simple heterogeneous benchmark problems.

- Statistical Clustering - Develop statistical clustering methods to accelerate the

convergence of MGXS on heterogeneous MC tally meshes.

The first theme of this thesis rigorously assesses the efficacy of MGXS generation

with MC for fine-mesh transport calculations. Some of the approximations made by

MC-based MGXS generation are quantified, including the energy and spatial dependence

of condensed MGXS. An in-depth analysis of systematic bias resulting from constant-in-
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angle total MGXS is presented, along with a scheme based on SuPerHomogeneisation

(SPH) factors to compensate for this loss in accuracy.

The second theme of this thesis develops a new methodology to simultaneously

capture local and global spatial self-shielding effects in MGXS for full-core calculations.

This scheme applies statistical clustering methods to accelerate the convergence of

MGXS tallied on fine, heterogeneous spatial meshes in Monte Carlo. The-latent variable

model which inspires the clustering paradigm is presented, along with a discussion

of the implementation of a data pipeline to evaluate clustering algorithms for MGXS

generation. A series of increasingly complex heterogeneous benchmarks are modeled to

empirically compare the accuracy and convergence of the approach with more traditional

multi-level schemes for MC-based MGXS generation.

1.4 Thesis Outline

This thesis is segmented into five Parts. Part I is comprised of this introductory chapter.

Part II discusses the relevant background information for this thesis. Chap. 2 reviews

multi-group neutron transport theory and considers some common approximations made

in MGXS generation and multi-group transport codes. Chap. 3 introduces Monte Carlo

as an approach to generate MGXS, and highlights relevant studies in the literature which

have used MC to generate MGXS. Chap. 4 presents the simulation workflow developed

for this thesis to evaluate MC for MGXS generation, including the OpenMC, OpenMOC

and OpenCG codes.

Part III diagnoses common sources of approximation error in MGXS generation

and multi-group transport methods. Chap. 5 quantifies the impact of multi-group

approximation error for simple, heterogeneous PWR geometries. Chap. 6 presents an

algorithmic approach to mitigate systematic biases resulting from constant-in-angle total

MGXS using SPH factors, and motivates the need for future work to address this issue.

Part IV develops a novel approach based on statistical clustering methods to accelerate

full-core MC calculations for MGXS generation. Chap. 7 presents a series of hetero-

geneous PWR benchmark models along with reference reaction rates and eigenvalues
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computed with OpenMC to validate this new methodology. Chap. 8 quantifies the impact

of using MGXS which reflect inter-pin and inter-assembly spatial self-shielding effects

on the solutions computed by multi-group deterministic transport methods. Chap. 9

illustrates the emergence of MGXS clusters due to spatial self-shielding with a variety of

visual aids. Chap. 10 outlines a new methodology which applies unsupervised clustering

methods to accelerate the convergence of MGXS tallied with MC. Chap. 11 evaluates the

impact of clustered MGXS on the accuracy and convergence of the eigenvalue solutions

computed by deterministic transport methods.

Part V summarizes the progress made in this thesis to chart a path forward for

MC-based MGXS generation for full-core deterministic transport methods in Chap. 12.
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Part II

Background
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Chapter 2

Approximations in Multi-Group

Transport Theory

This chapter presents an overview of some of the approximations made by methods

which solve the multi-group form of the neutron transport equation. This chapter begins

by reviewing the continuous energy steady-state neutron transport equation in Sec. 2.1.

The following sections present simplifications to the angular (Sec. 2.2), energy (Sec. 2.3)

and spatial dependence (Sec. 2.4) of the equation. The approximations are not specific

to a particular approach for solving the transport equation and may be employed by

either stochastic or deterministic methods. Sec. 2.5 concludes with a discussion of how

these approximations present challenges for accurate MGXS generation.

2.1 Background

The field of reactor physics is concerned with computing the distribution of nuclear

reaction rates throughout a nuclear reactor core. Nuclear reaction rates are dependent on

two fundamental quantities: the density of neutrons and the probability of interaction.

The angular neutron flux 4'(r, f, E) models the neutron density' as the path length

traveled by neutrons per unit volume and is dependent on a neutron's spatial position

'Unlike the common definition of flux used in other areas of science and engineering, the angular flux 14

is the product of the volume density and speed of neutrons in phase space.
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r, direction of motion 1 and energy E2 ,3 . The macroscopic cross section E, (r, E) is

defined as the probability of interaction x per unit of length traveled by a neutron at

some position and energy. A reaction rate 'R, can be simply computed as the product of

the angular flux and cross section:

'R,(r, f, E) = Ex (r, E)4'(r, n, E) (2.1)

The macroscopic cross section Ex is proportional to a quantity known as the microscopic

cross section o-.. The microscopic cross section is a property of a particular nuclide

and is measured experimentally for various reaction types x which include fission f,
radiative capture y and scattering s4 . The macroscopic cross section is the sum of the

microscopic cross sections of each nuclide i weighted by its number density Nj:

Ex (r, E) = ENi(r)o-i,(E) (2.2)

The microscopic cross section is highly dependent on the energy of the incoming

neutron. As illustrated in Fig. 2-1, a cross section varies several orders of magnitude

within an energy interval on the order of an eV near nuclear resonances. The probability

of some interactions also depends on other properties which characterize the output

channel of the reaction. For example, the scattering cross section o-, depends on the

energy and direction of motion of the outgoing neutron. The macroscopic cross section

varies in space when nuclide densities depend on the position within a heterogeneous

system.

2Vector-valued quantities are expressed in boldface font.
3This thesis focuses on steady-state calculations and time dependence is neglected for simplicity.
4 Scattering as defined here includes both inelastic and elastic scattering channels.
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Figure 2-1: The continuous energy capture cross section for U-238.

Although cross sections are experimentally measured, the neutron flux must be calcu-

lated analytically or with simulation. The steady-state Boltzmann transport equation [2]

is integro-differential in the neutron angular flux %'(r, f, E) and balances the rate of

change of the population of neutrons in phase space to the difference between the

production and loss rates of neutrons within a closed system:

fl- V4'(r, 1, E) + Et(r, E)(r, f, E)
00

= f ,(r, 11' --> , E' -* E)4'(r, W', E')dn'dE' + Q(r, fl, E) (2.3)

0 4n

The first term on the left hand side of the equation represents the streaming of

neutrons within space and the second term is the total neutron collision rate determined

by the total cross section E,. On the right hand side, the first term models the scattering

of neutrons at some energy E' and direction fl' into energy E and direction fl. The final

term represents a generic source Q of neutrons. In the case of critical systems, such as

nuclear reactors, Q is a source of fission neutrons:
00

Q(r, fl, E) = k f vEf (r, f' --+ l, E' -> E)%(r, ', E')dfl'dE' (2.4)

0 41r
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The fission production cross section vEf represents the probability of neutrons emitted

at energy E and angle f resulting from fission events precipitated by neutrons at E' and

W'. The eigenvalue keff of a critical system represents the multiplication of neutrons

from fission and forces balance between neutron sources and losses due to absorption

and leakage.

A solution for the neutron flux must computed from the transport equation in order

to compute reaction rate distributions. The accurate determination of the neutron flux

is primarily challenged by the complicated energy structure of the cross sections. In

addition, the distribution of neutrons in LWRs spans 11 orders of magnitude from a few

MeV at birth from fission emission to death by absorption at energies as low as 10-5 eV

As a result, analytical solutions to Eqn. 2.3 are intractable without significant simplifying

assumptions.

Instead, numerical simulation is used to solve the transport equation for the flux.

Monte Carlo may be employed to exactly treat the energy dependence in Eqn. 2.3', but

it is computationally burdensome and impractical for routine nuclear reactor analysis.

Although space and angle may be discretized using standard techniques for the solution

of partial differential equations, special treatment must be given to the energy variable.

The following sections introduce approximations used to reduce the dimensionality of

the equation to permit tractable multi-group calculations.

Nuclear reactor simulations calculate the neutron multiplication factor kff

and reaction rate spatial distributions. Monte Carlo methods are the most

accurate approach, but are not yet practical for full-core analysis.

5 The treatment is only as exact as the uncertainties in measured nuclear cross section data will permit.
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2.2 Approximations in Angle

2.2.1 Isotropic Fission Source

The neutrons emitted from fission form a nearly isotropic distribution independent of

the energy or angle of the incoming neutron6 . As a result, the fission production cross

section can be approximated as vEf (r, f' -> f, E' -> E) - vEf (r, E' -+ E). This permits

the fission source in Eqn. 2.4 to be written as:

00

1
Q(r, fl, E) = vZ 1 (r, E' -+ E)4(r, f, E')dndE' (2.5)

47tkeff J f
0 47r

This expression may be further simplified in terms of the scalar neutron flux (P (r, E):

00

Q(r, f, E) = 4ke f v (r, E' -* E)4)(r, E')dE' (2.6)

0

4Og(r, E) = f (r, f, E)df (2.7)

47r

The isotropic approximation reduces the dimensionality of the fission production term

in the transport equation and simplifies the derivation of the approximations in the

following sections.

2.2.2 Angular Expansion of the Scattering Kernel

Unlike the fission source, the source of neutrons from scattering cannot be treated as

isotropic since it is strongly dependent on the relationship between the incoming and

outgoing directions of motion. The dimensionality of the scattering source term in the

transport equation - known as the double differential scattering kernel - is commonly

reduced with basis function expansions in angle [3,4]. The angular flux is first expanded

as an infinite sum of spherical harmonic functions Y["(f) and angular flux moments

sr E):

6 This approximation is only valid for a large number of fission events a~s is the case in a nuclear reactor.
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00

-- 2f +1I
%l(r, n, E) = Z + 4bm(r,E)Ym (n) (2.8)

t=O M=-t

%b '(r, E) =f (r, ,E)Ym"(n)df (2.9)

47r

Similarly, the angular dependence of the scattering cross section Ejr, f' -* fl, E' -+ E)

can be treated with a basis function expansion. The scattering cross section can be simpli-

fied without approximation by noting that the distribution over the change in direction

ft is independent of the incoming angle ' in isotropic media. The re-parametrized

scattering cross section E(r, [t, E' -+ E) can then be expanded as an infinite sum of

Legendre polynomials P/(p) and scattering moments Es,(r, E' -+ E):

ES(r, p, E' -+ E) = 2 E',Zs(r, E' -+ E)Pt(p) (2.10)
f=0

Es,(r, E' -+ E) = Es (r, [, E' -+ E)P(Ii)dy (2.11)

-1

The expansions of the angular flux in spherical harmonics and the scattering cross

section in Legendre polynomials may be substituted into the scattering kernel. The

spherical harmonic addition theorem can be applied to simplify the kernel in terms of

only the real components R7(f) of the spherical harmonics:

00

T(r ' - 1, E' -+ E)(r, ', E')dn'dE'

0 4Tc 00(2.12)

=fo 0 2f+41 E i' (r, E' -> E)b m(r, E')Rm (n)dE'
f =0470

No approximation has been made to the scattering kernel's angular dependence

in Eqn. 2.12. In practice, however, the expansion is truncated to a finite number of

spherical harmonics L to make the transport equation computationally tractable. The

transport equation with the scattering source expansion and isotropic fission source is

then:
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l -V %(r, f, E) + E (r, E)%'(r, fl, E)
00

L
=f L f+1 ,' (r, E' -> E)@ (r, E')R' (11)dE'

0 4n M=-e (2.13)
00

+ 4 fvEf (r, E' -> E) (r, E')dE'
41rkeff

0

2.2.3 Transport Correction

The scattering matrix and flux moments substantially increase the memory and storage

requirements for calculation schemes which model anisotropic scattering with a finite

moment expansion as introduced in Sec. 2.2.2. In practice, many methods attempt to

implicitly model anisotropic scattering effects with transport-corrected cross sections.

These approaches seek to define a correction which makes the transport equation with

isotropic scattering in the laboratory system (L = 0) equivalent to the general equation

with anisotropic scattering. Various transport corrections are thoroughly detailed in the

TRANSX [5] and NJOY [6] manuals, each of which follows the approach taken by Bell,

Hansen and Sandmeier in [7]. This section summarizes the derivation in [3].

First, consider a truncated form of the Legendre polynomial expansion of the scatter-

ing cross section E,(r, [, E' -+ E) in Eqn. 2.10:

2f + 1
ES(r, ,E' -> E) = 2 '( E' -+ E)Pe(p)

(2.14)
L

Z 2 E',(r, E' -+ E)Pf(ju) + A Et,.(r, E' -+ E)5([t - 1)
f=0 2

where Es,f is a modified form of the scattering moment Es,f and AE,,. is a transport

correction term. The Kronecker delta function 5(A - 1) is used to make the correction

term forward peaked in order to best capture the first order anisotropies in thermal

reactors. The coefficients t, and AE,,. are defined such that the Legendre moments of

the scattering cross section in Eqn. 2.11 are preserved for 0 f L + 1:
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1

Es,f (r, E' - E) = (r, p, E -+ E)P*(p)dy

-1

+ fAEt,(, E' -+ E)6(y - 1)Pj(p)dyi

The following simultaneous system of equalities for 0 f L follows from the

identity P(1) 1 and the orthogonality relation of the Legendre polynomial basis set:

Ese(r,E' -+ E) + A E tr(r, E' -+ E) = Est(r, E' -+ E) (2.16)

A Etr(r, E' -> E) Es,L+I(r, E' -+ E) (2.17)

For isotropic in lab scattering with L = 0 the Eqns. 2.14 and 2.17 simplify in terms of

only the zeroth and first order scattering moments:

1
ES(r, y, E' -+ E) - - [Es,(r,E' -+ E)- ,1 (r,E' -+ E)]+XEs 1(r,E' -> E)6(p -1) (2.18)

2

The transport-corrected scattering cross section in Eqn. 2.18 is then substituted into the

transport equation in Eqn. 2.13 with an isotropic scattering kernel and rearranged to

produce:

0o

fl V%'(r, f, E) + Et(r, E)4(r, fl, E) - ES, 1(r, E' -+ E)q(r, E')dE'

0
00

~1
S, (r, E' -+ E) - ES(r, E' - E) ( )dE' (2.19)

4Trf
0

00

+ VEf (r, E' -> E)#(r, E') dE'
47rkef f

0

where the relation # = for the scalar flux has been used to completely remove the

angular dependence from the isotropic scattering kernel. The transport correction term
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AEtr(r, E) can be defined such that it can be lumped into new transport-corrected total

and scattering cross sections i, and i, as follows:

( EsE1(r, E' -> E)#(r, E')dE'
A Etr(r, E) = ' E (2.20)

4(r,E)

Et(r, E) = Et(r, E) - AEtr(r, E) (2.21)

Z(r, E' -> E) = EsO(r, E' -* E) - A Etr(r, E) 5(E' - E) (2.22)

This definition of the transport correction is termed the in-scatter approximation in

the literature [8]. Finally, the transport equation in Eqn. 2.19 can be simplified with the

substitution of the corrected total and scattering cross sections:

00

f -V@(r, Q, E) + t(r, E)(r, n,E) = 1 f 2(r,E' -> E)O(r,E')dE'
47r

0 0(2.23)

1
+ 1 vE(r, E' --+ E)(r, E')dE'

47EkeE
0

The neutron fission source is isotropic in reactors. The scattering source is

simplified with a basis function expansion in angle. A transport correction

is commonly used to account for anisotropic scattering in simulations that

simplify the scattering source as isotropic.

2.3 Approximations in Energy

2.3.1 Energy Discretization

The multi-group approach used to solve the transport equation subdivides the neutron's

energy into discrete bins known as energy groups. The energy groups are indexed

starting at 1 for high energies and ending with G for the lowest energies of interest. An

energy group g E {1,2,..., GI spans a range of energies from [Eg, Eg] where EO is
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the highest energy under consideration and E9 is the upper bound of group g7 . First, a

group-wise angular flux %tg and scalar flux kg is defined for each energy group:

Egi

tbg(r, ) = f (r, , E)dE (2.24)

E9

Egi

Og(r)= f 4(r, E)dE (2.25)

E9

The continuous energy transport equation with isotropic fission and scattering sources

and transport-corrected cross sections in Eqn. 2.23 can be transformed into its multi-

group form by integrating over each energy group 8:

n -V'/g(r, fl) + f [It(r E)'(rj, E) dE

Egi E 1-

Z { i(rE' -> E)#(rE')dE' dE (2.26)
47r
gg E9 ,_ E 1 ..

Eg 1 - G E9/1-

+ r vEif(rE -> E)k(rE')dE'1 dE
f i keff g'=l

Eg . Eg .

The integrals over incoming neutron energy in the scattering kernel and fission source

in Eqn. 2.26 are treated as summations of discrete integrals over each incoming energy

group. Although the streaming term is easily expressed in terms of the multi-group flux

, the total collision, scattering and fission terms are defined as integral quantities in

energy. These three terms can be simplified by multiplying each by unity in the form of

4g/g and 4'g/4pg:

7 This convention derives from the fact that neutrons are emitted at high energies from fission and are
absorbed at lesser energies in LWRs.

8 The multi-group approximation with energy discretization may be similarly applied to the transport
equation in Eqn. 2.13 if anisotropic scattering is explicitly treated with scattering moments.
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G f~ fEg'I ( E) '(r, f, E) dE

G [ _ fEg sE , E'-> (r , EE ')dE'dE
1 1 fE 9(r) (2.27)

1 G E " E,'g- _1vEf (r, E'l- E) 0(r, E')dE'dE
+ / [(r)

47rkef g,=l 0

The bracketed terms in Eqn. 2.27 are defined as the MGXS for total, scattering and

fission production reactions. The MGXS are the averages of the corresponding continuous

energy cross sections weighted by the angular neutron flux 4' in each energy group. The

MGXS it,,, tSg,_, and vE,glg are defined below for completeness:
E9_ 1-(r, E)4,(r, n, E)dE

E f) Eg(r, ) (2.28)
t~g (, %b(r, n)

f-E Efg' Ei(r,E -+ E)(r, E')dE'dE

Vs,g, -g(r) = 0 (2.29)

-1- vEf (r, E' --+, E) 0(r, E')dE'dE

VE fg,, _, (r) g 09 .g(r) (2.30)

With these definitions of the MGXS, the multi-group form of the transport equation

in Eqn. 2.26 can be expressed succinctly in terms of the group-wise fluxes:

Vg(r, f2) + tt,g(r, 1)pg (r, f) = 7 tsg--g g)

7 9(2.31)

+ 7 vE g,g,(r)0g, (r)

4keff g'=1

Thus far, no approximations have been made in the energy discretization of multi-

group transport equation given in Eqn. 2.31. However, the expression for the total

multi-group cross section tt,g in Eqn. 2.28 presents a complication since it is dependent

on the unknown angular flux. One common approximation used to eliminate the angular

dependence is presented in the following section.
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2.3.2 Flux Separability Approximation

The angular dependence of the total cross section is often treated with the flux separability

approximation. Flux separability makes the simplifying assumption that the energy and

angular dependence of the flux varies independently such that the angular flux can be

written as the product of the scalar neutron flux #(r, E) and some function W(r, l):

4p(r, f, E) = 4(r, E)W(r, f) (2.32)

The angular dependence of the 2,,g may then be eliminated by inserting Eqn. 2.32 into

Eqn. 2.28, factoring out W(r, fl) and writing E, in terms of the scalar flux:

f Eg1 (r, E)O(r, E)W(r, f)dE

Et~j r) g Og(r)W (r, fl)( .3

f Eg1 2t(r, E)f(r, E)dE

g(r)

Although flux separability is a simple and commonly used approach to reduce the

complexity of the "true" multi-group total cross section, it is not always valid and

may not preserve neutron balance. The impact of the flux separability approximation

is systematically investigated and quantified in Secs. 5 and 6 for some simple PWR

benchmark models.

2.3.3 Scattering Production

Although neutron production is dominated by fission in nuclear reactors, there may also

be non-negligible production of neutrons due to scattering multiplicity (n, xn) reactions.

Production from scattering is typically accounted for with a factor vscatt,g,-g which

represents the average number of neutrons produced in a scattering reaction. The factor

Vscatt,g--.g may be lumped into the scattering matrix Vscatt,g-_gE s,g,-g and substituted

directly into the scattering source term in the multi-group transport equation9 .

9It should be noted that (n, xn) reactions typically have different angular and energy distributions than
those used to treat (n, n) scattering reactions. Although the energy dependence may be lumped into the
multi-group scattering matrix, the angular dependence must be embedded in the angular expansion of
the scattering kernel.
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The keff eigenvalue is only defined for the fission operator in the transport equation.

As a result, deterministic methods which compute the eigenvalue using the fission

production, absorption and leakage rates will fail to capture scattering production

in the multiplication factor. In order to account for (n, xn) reactions, a "corrected"

absorption cross section Ea,g = Ea,g - (Vscatt,g'-g -1)Es,gt-g must be used to preserve

neutron balance. Alternatively, (n, xn) reactions will be accounted for if the eigenvalue

is computed as the ratio of successive fission sources in iterative deterministic methods.

2.3.4 Fission Matrix Condensation

The scattering and fission production matrices dominate the memory storage require-

ments for MGXS since they depend on both incoming and outgoing energy groups.

In thermal reactors, the energy distribution of neutrons produced in fission is nearly

independent of the incoming neutron energy, and the fission production matrix can

be condensed into two single dimensional vectors for each energy group. The fission

spectrum Xg is introduced as a probability distribution over outgoing fission energies:

G

1 Vpfg'g 'kg'

Xg = G G (2.34)

Z, Z1 VEf,g'sg g
g=1 g'=

The group-wise fission production cross section vEfg is defined as the sum of

VEfg_g over all outgoing groups and signifies the probability of fission occurring in

group g:

G

Vf,g Vf,gl-*g (2.35)
g'=1

Upon substituting Xg and vEfg into Eqn. 2.31 one obtains:

I G Xg G

l - V4yg (r, n) + tt,g (r)%ig(r, n) > iSgg(r)kg (r) + A k>Z VEf1g,(r)'kg.(r)
g'=1 n ef f g'=1

(2.36)
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2.4 Approximations in Space

2.4.1 Spatial Homogenization

Up to this point, the MGXS have been defined as continuously varying in space. In

practice, most deterministic methods used to solve the multi-group transport equation

make the simplifying assumption that material properties are constant across each spatial

mesh cell. Spatial homogenization is used to compute flux-weighted volume-averaged

cross sections within each mesh cell k with volume Vk as follows:

Sre ~ , [ (r, E)P(r, E)dE dr

rEV g(r)dr

= fEVk [jL_1 El -_ sr E' -+ E)4(r, E')dE'dE ] dr ( . 8

Fslkg-k-g Ogrd (2.37)

frEVk '(r)dr

Sg reV [g fE_1 vXf(r,E' -+ E)4(r,E')dE'dE dr

vfgEk _, fE 9 (2.39)

freVk 'g/(r)dr

Spatial homogenization may be applied to compute the fission spectrum Xkg from the

fission production cross section in Eqn. 2.39. The spatially-homogenized MGXS must be

appropriately defined to preserve reaction rates such that the following equation holds

true for each spatial zone k and energy group g:
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The multi-group transport equation is defined in terms of the group-wise

fluxes and cross sections. MGXS are the flux-weighted averages of the contin-

uous energy cross sections that preserve reaction rates in each group. Flux

separability uses the scalar instead of the angular flux to weight the total

cross section. The fission matrix is condensed into the fission production

cross section and the energy spectrum vectors.



n-V~ig (r, ) + ttg4 )g (r, n) = 1 Z s,k,g/4gckgI(r) + XkA g Z VEf,k,gI5 ~Pg(r)
4rg/=1 4keff g,=l

(2.40)

This is the form of the multi-group transport equation solved by the deterministic

OpenMOC code in this thesis.

Spatially-homogenized MGXS preserve reaction rates in discrete spatial zones.

2.5 MGXS Generation

The preceding sections described approximations reducing the dimensionality of the

transport equation to permit efficient computational simulation. The solution of the

transport equation in Eqn. 2.40 requires knowledge of the energy condensed and spatially-

homogenized MGXS in Eqns. (2.37) to (2.39). This section describes the challenges to

computing MGXS and outlines the standard multi-level approach for MGXS generation.

The chapter concludes with a brief introduction to the potential for Monte Carlo methods

as an alternative pathway for accurate MGXS generation.

2.5.1 Challenges

Given a solution to the transport equation for the multi-group flux, general reaction

rate distributions may be computed (e.g., radiative capture, recoverable fission energy)

with multi-group cross sections for each nuclide and reaction type of interest. Energy

condensation and spatial homogenization may be applied to compute multi-group

microscopic cross sections or,, for each reaction type x and nuclide i:

fre Vk fEg1 -,,(rE)(rE)dEdr
xikg 

ErEv E" (r, E)dEdr

The accurate determination of MGXS depends on an accurate understanding of the

spatial and energy dependence of the microscopic cross sections and the flux, each of

which is depicted in Fig. 2-2. The spatial variation of -,,i is known from the reactor's
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geometric configuration 0 , and the energy dependence is known from experimental data.

However, the spatial and energy dependence of the flux are unknown which presents a

"chicken-or-the-egg" type of quandary for multi-group calculations. This predicament is

aptly described in the NJOY manual [6]:

"Wait a minute," you ask, "the purpose of solving the transport equation is to

get the flux, but I have to know the flux to compute the multi-group constants!"

This conundrum is the source of much of the "art" in using multi-group methods.

The MGXS are needed to compute the flux, but the flux is needed to compute MGXS.

As a result, an informed guess is generally made about the flux distribution in order

to compute MGXS. Such estimates of the flux introduce further approximations in

addition to those presented in Secs. 2.2 to 2.4. The following section discusses a high-

level overview of the standard multi-level approach to estimating the flux for MGXS

generation.

2.5.2 Standard Multi-Level Approach

The standard techniques for multi-group cross section generation use a multi-level frame-

work to draw a compromise between accuracy and computational efficiency. The goal

in this process is to define a library of MGXS which enforces an equivalence between an

accurate fine-mesh transport calculation and a corresponding computationally efficient

coarse mesh transport or diffusion calculation. The angular, energy and spatial variation

of the flux is treated with varying degrees of complexity at each level as illustrated in

Fig. 2-3. The process begins with a resonance self-shielding calculation that solves the

slowing down problem with point-wise nuclear cross section data in a simple infinite

medium, slab or pin cell geometry. The self-shielding calculation produces an MGXS

library with 0(100) energy groups that is next used by a lattice physics calculation to

capture spectral interactions within and between fuel pins in each unique fuel assembly

10The microscopic cross section -,,i is a property unique to each nuclide and reaction and does not vary
in space. However, the volume Vk may span different regions which may or may not contain nuclide n.
The discrete spatial variation in the number density N7 may be modeled as O-,,;(r, E) = O-,, (E)vk (r)
with the indicator function qvk(mathbf r) equal to 1 if r e Vk and 0 otherwise.
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Figure 2-2: The calculation of multi-group cross sections requires knowledge of the
spatial and energy variation of the continuous energy cross section and flux. The color-
coded position r and energy E variables correspond to the figures with the matching
colored outlines. The microscopic cross section oa, depends on reactor configuration
(a) and neutron energy (b). The flux <) varies with position (c) and energy (d).

The lattice physics calculation performs spatial homogenization across each assembly

and produces a condensed library with 0(2 - 10) groups. This assembly-homogenized

few group MGXS library is finally used by a full-core nodal diffusion calculation.

The primary challenge throughout this multi-level scheme is to incorporate spectral

interactions known as self-shielding effects in energy and space. Energy self-shielding

refers to the impact that resonance interactions may have on the shape of the flux in

energy. For example, the sharp depressions in PWR flux spectra at energies near the

large U-238 thermal capture resonances is an example of energy self-shielding (see

Fig. 2-2d). These depressions must be accurately captured in the flux used to generate

MGXS. Spatial self-shielding refers to the impact of the material properties in different
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Figure 2-3: The standard multi-level framework for MGXS generation taken from the

Handbook of Nuclear Engineering [4]. The energy dependence of the nuclear cross

sections is successively coarsened with resonance self-shielding and lattice physics

calculations to generate multi-group libraries for full-core simulations.

spatial zones on the flux in other nearby zones. For example, the outer rim of an LWR

fuel pin shields the center of the pin from neutrons in certain energy groups due to

reactions such as U-238 resonance absorption.

There is a long history of approximations for the flux for MGXS generation [4]. These

include the narrow, wide and intermediate resonance (NR, WR, and IR) approxima-

tions used to model the flux in a resonance self-shielding calculation. Lattice physics

calculations typically use equivalence in dilution or subgroup methods to model physics

in heterogeneous geometries. These approximations are based on simplifying assump-

tions regarding the geometric configuration, resonance interference effects (mutually

overlapping resonances) and temperature distributions. Although ultra-fine methods

may be used to compute reference solutions for comparison, they are typically too

"Although the temperature dependence of cross sections has been neglected thus far for brevity, it must be

captured in MGXS libraries in order to model Doppler broadening for reactivity coefficient calculations.
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computationally expensive for routine use.

As a result of the various approximations employed to model the flux spectrum,

the conventional approach for MGXS generation is subject to significant engineering

prescriptions for different reactor designs. For example, modifications must be made to

lattice physics calculations which account for the impact of local spatial heterogeneities,

such as fuel rods adjacent to burnable absorbers. Similarly, it is typical to use infinite

boundary conditions (reflective, periodic, white) in resonance self-shielding and lattice

physics calculations. This may lead to approximation error in full-core calculations which

must model the neutron leakage spectra with vacuum boundary conditions, as well as

the flux at the interface between different adjacent assemblies and/or a reflector. As a

result, adjustments must be made to the standard multi-level approach in order for the

final full-core calculation to accurately account for the effects of spatial heterogeneity.

2.5.3 An Alternative Pathway with Monte Carlo

The multi-level approach of approximations used to generate MGXS is the 'Achilles

heel" of multi-group methods. The approximate flux used to compute MGXS, along

with other approximations inherent in multi-group calculations, require careful use of

multi-group methods for reactor analysis. As a result, Monte Carlo must be used to

generate reference solutions for benchmarking and verification analysis of multi-group

methods. In recent years, there has been growing interest in the use of MC in the

MGXS generation process [9-37]. since it offers a potential pathway to use a stochastic

approximation to the exact flux in MGXS generation.

Continuous energy Monte Carlo is considered the "gold standard" for neutron trans-

port calculations since it is reactor agnostic and samples over the entire phase space of

angle, energy and position. MC is not widely used in routine reactor analysis, however,

since its computational expense renders it many orders of magnitude slower than de-

terministic multi-group methods. Some recent work in the community adopts a hybrid

approach which combines the resonance self-shielding and lattice physics stages in a

single MC simulation. These schemes minimize the computational expense by modeling
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sub-components (e.g., fuel pins and assemblies) rather than a full reactor. Although

the hybrid approach has the advantage of using the "true" flux sampled in MC to gen-

erate MGXS, special treatment must still be given to accommodate infinite boundary

conditions and neutron leakage spectra.

The following chapter introduces stochastic integration with MC and its specific

application to compute MGXS. In addition, the chapter reviews past and present efforts

to generate MGXS with MC for neutron diffusion and transport codes.

e Numerical methods approximate the angular, energy and spatial variables in

the neutron transport equation to make it computationally tractable.

" Multi-group theory treats a neutron's energy with a finite set of discrete

energy groups. Multi-group theory is valid if MGXS are defined to preserve

reaction rates in each energy group.

e Energy condensation and spatial homogenization are used to compute MGXS

in each energy group and spatial zone. MGXS generation requires the neutron

flux in energy and space to average the continuous energy cross sections.

e Standard MGXS generation methods use a multi-level approach to approxi-

mate the neutron flux, accounting for self-shielding effects. Flux approxima-

tions are based on engineering prescriptions for specific reactor configurations

and spectra and are not generalizable to new core designs.

" Monte Carlo is a promising approach for MGXS generation since it accurately

produces an unbiased estimate of the flux without approximation.
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Chapter 3

MGXS Generation with Monte Carlo

In the preceding chapter it was observed that many approximations are made in multi-

group theory and the generation of multi-group cross sections. Monte Carlo is an

approach to replace some of the steps in the standard multi-level framework for MGXS

generation with a natural and reactor agnostic treatment of energy and spatial self-

shielding. This chapter presents a brief overview of MC tallies and statistics in Sec. 3.1,

outlines the necessary computation needed to generate MGXS with MC in Sec. 3.2, and

discusses past studies which applied MC for MGXS generation in Sec. 3.3.

3.1 Overview of Monte Carlo Methods

Monte Carlo methods have been successfully applied to neutron transport calculations

for many decades. A detailed accounting of the physics models and algorithms used

in MC methods can be found in the manuals for the Serpent [1], MCNP [38], and

OpenMC [39] Monte Carlo particle transport codes. This section presents a few key

aspects related to tallies and statistics, and follows directly from the manual for the

OpenMC [39] code which is used throughout this work.
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3.1.1 Monte Carlo Tallies

MC simulations sample the particle distribution in order to compute integral quantities

of interest called tallies. A tally is an integral of a scoringfunction f weighted by the

neutron distribution, or flux, across some region of phase space. A general form for tally

T is given by the following integral expression:

'T = { f (r, 1, E)4'i(r, f, E)dEdfdr (3.1)

In OpenMC parlance, the integration bounds over space, angle and energy are termed

filters, while the scoring function f is simply known as a score. Various scores may be

used to compute volume-integrated fluxes, reaction rates and functional expansions. MC

does not perform the integration in Eqn. 3.1 with the exact flux specified at all points

in phase space. Instead, MC performs stochastic integration by sampling the particle

population across the entirety of phase space to compute a statistical estimate Y of the

true integral T.

There are a number of different techniques to estimate a tally. The first and most

general method is known as an analog estimator. An analog estimator Y increments a

tally by the particle weight wi each time an event i occurs from the set of all events of

interest A (e.g., fission events). The sum of particle weights is then normalized by the

total weight of all particles W to compute the interaction frequency on a per-particle

basis within the phase space volume of interest:

A=1L7wi (3.2)
WiEA

Although analog estimators permit general filters and scoring functions, they may

suffer from poor tallying efficiency if the size of set A is very small compared to the total

number of events in a simulation. A collision estimator improves the tallying efficiency

by incrementing a tally more frequently than is possible with analog estimators. In

particular, a collision estimator increments a tally at each collision i from the set of all

collisions C irregardless of the types of collisions that took place. By noting that the total

collision rate is given by Rt = Eto, a collision estimator for the flux q5 may be simply

defined by dividing the particle weights by the total macroscopic cross section:
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1 - w; (.)
W Zn E(E)

The collision estimator depends on the energy of the incoming particle Ei in order to

scale the particle weight by the energy-dependent total cross section. It follows that the

collision estimator for a reaction rate IR is the product of the flux in Eqn. 3.3 and the

cross section for the reaction type x of interest:

'A = -Z _MJ ) (3.4)
_T X W iEC Et(E i)

The collision estimator increases the number of events in C to improve the tallying

efficiency with respect to analog tallies. A third method known as track-length estimators

goes one step further and increments a tally each time a particle trajectory crosses the

phase space of interest (e.g., a spatial tally mesh zone) even if a collision did not take

place. The track-length estimator makes use of a particle's distance traveled Ar to

estimate the flux. A track-length estimator of the flux is therefore:

1 -
W 

= -̂ Ari (3.5)

where the set T represents each particle trajectory through the phase space volume of

interest. Similarly, a track-length estimate of a reaction rate x can be found by simply

multiplying the flux in Eqn. 3.5 by the cross section:

1, = 'YwiAri E(E1 ) (3.6)
iET

The tallying efficiency for track-length estimators is greatly improved by incrementing

a tally for each particle trajectory. As a result, the confidence intervals are generally

much tighter for track-length estimators than those for analog and collision estimators.

Each of the three estimators - analog, collision and track-length - may be useful for

different scenarios. Although track-length and collision estimators improve statistics

over analog estimators, they cannot be employed for all types of filters. For example,

track-length tallies may not be used if the scoring function requires information about

the outgoing particle since this is not available unless a collision has taken place. As

discussed in Sec. 3.2, a mixture of estimators which tradeoff generality with efficiency

must be used to generate MGXS from MC tallies.
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3.1.2 Sample Statistics

MC performs stochastic integration with one of a number of different estimators. In

each case, the tally estimator T is computed as a sample mean of of all of the events or

particle trajectories simulated. An unbiased estimate of the sample mean is given by:

Ni= x (3.7)

where each of the N samples is given by a random variable xi. For MC codes that use

batch-based statistics, such as OpenMC, N is the number of batches of particles simulated

and xi is the tally estimator for the ith batch of particles.

Each of the random variables xi is sampled from some probability distribution

representative of the physics in the simulation. The sampling distribution is normal

such that xi ~ N(p, oa) where N(p, a') signifies a normal distribution with mean A

and variance o 2 if each batch of particles is independent. An unbiased estimate of the

variance a 2 of the normal distribution from which the population xi is drawn may be

estimated using Bessel's correction for the sample variance s 2

2 
N

N- (Xi 2  (3.8)

As N -+ co the population variance estimator will approach the true variance o 2 of the

underlying distribution. In the case of batch-based statistics, the variance o 2 will be

determined by the number of particles simulated per batch - the more particle histories

simulated per batch, the smaller a 2 will be, and vice versa.

In general, it is more useful to quantify the uncertainty of a tally estimator than it is

to compute the sample variance. The variance of the sample mean is representative of

the distribution from which the random variable - is drawn and indicates the degree

of confidence one may have in a tally estimator. By the Central Limit Theorem, the

sample mean 5 will converge to the mean of a normal distribution if the samples xi are

uncorrelated. An unbiased estimate of the variance of the sample mean can be derived

from the Bienayme formula to give:
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A key observation is that the standard deviation of the sample mean is directly

proportional to '/Vi if the samples xi are uncorrelated. This necessarily implies that the

uncertainties on a tally estimator can be made arbitrarily small given enough simulated

particle histories. However, recent studies have shown that tally estimators in eigenvalue

calculations are not generally independent and identically distributed realizations due

to correlated fission sources between batches [40,41].

Monte Carlo provides statistical estimators for quantities such as energy- and

volume-integrated reaction rates and fluxes. Track-length estimators are more

statistically efficient than analog and collision estimators, but are not gener-

ally applicable for scoring functions dependent on outgoing neutron energy.

3.2 MGXS Generation with Monte Carlo

This section describes how multi-group cross sections may be computed using stochastic

integration. Sec. 3.2.1 outlines the types of OpenMC tallies needed to generate MGXS -

including the scores, filters and estimators for each tally - and the arithmetic combina-

tions used to combine different tallies. Sec. 3.2.2 illustrates how the uncertainties of the

MGXS may be estimated using error propagation theory.

3.2.1 Tally Types Needed for MGXS Generation

The types of MGXS needed to solve the neutron transport equation were outlined

in Chap. 2, including expressions for the transport-corrected total cross section and

scattering matrix, and the fission production cross section and emission spectrum. This

section outlines the types of tallies needed to compute these MGXS. It is important

to note that the flux separability approximation (Sec. 2.3.2) is applied in the tally

formulations for each of the group constants.
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3.2.1.1 Inner Product Notation

The following sections use angle bracket notation (., -) to represent inner products in

phase space. This may correspond to integrals over incoming and/or outgoing energy,

space, and angle. Using this notation, a tally estimator for reaction rate x is represented

as follows:

(EX, 4) = f ff (r, E)4'(r, E, r)dEdfldr (3.10)

This notation is specialized throughout this section with subscripts to indicate the subsets

of phase space that are integrated over in the inner product. In particular, subscript k

refers to a volume integral over Vk for some region of space k for spatial homogenization

(Sec. 2.4.1), while subscript g corresponds to an integral over energies with E E [Eg, Egi I

for energy condensation (Sec. 2.3.1). For example, the microscopic reaction rate for

reaction x by nuclide i is denoted as:

(x,i, )k,g - { fJ' 9xj(r, E)4'(r, E, n)dEdfldr (3.11)

The inner product of a function with unity, such as the spatially-homogenized and

energy-integrated flux is denoted by:

Eg_1

(')kg E(4, ),g = J JJ (r, E, f)dEdfldr (3.12)
(%bk~g (%b I~~g fEVk f4r fEg

Finally, the superscripts a and t! are given to those inner products computed with

analog and track-length estimators, respectively - i.e., (-, -)' is an analog tally estimator

and (-, -) t is a track-length tally estimator of the corresponding inner products.

3.2.1.2 General Reaction Cross Section

A general spatially-homogenized and energy condensed macroscopic multi-group cross

section for reaction x, spatial zone k and energy group g can be computed with track-

length tally estimators in OpenMC. The MGXS is simply the ratio of the group-wise

reaction rates (EX, ) " and fluxes (%) :
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Ex~k,g = %)t (3.13)

Likewise, a microscopic MGXS for nuclide i can be computed as follows:

A ,g (3.14)
Grx,i,k,g = b

k,g

These estimators are used for reaction types which are only dependent on the

incoming energy of a neutron, such as total and radiative capture reactions.

3.2.1.3 Total Cross Section

The total macroscopic cross section Et is a special case of Eqn. 3.14, with track-length

estimators for the total collision rate and flux:

A =E'V ~ (3.15)
(%b) t'g

As discussed in Sec. 2.2.3, a transport correction is often used to incorporate

anisotropic scattering effects into the transport equation with an isotropic scattering

kernel. An expression for the in-scatter approximation [8] to the transport correction

can be computed with an OpenMC tally for the first Legendre scattering moment.1 2 The

inner product for this tally is given by:

(~s1, 4)k,g'-+g J rI4 J' f XEg E 1 (r, E' --+ E)4,(r, F', E )dE'dEdfZdr (3.16)

An analog estimator must be used in OpenMC since the tally includes an integral over the

outgoing neutron energy. The spatially-homogenized and energy condensed transport-

corrected total cross section given in Eqn. 2.20 is computed by summing over all incoming

energy groups:

12 1t is assumed that scattering multiplicity is included in the scattering moments as discussed in Sec. 2.3.3.
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G

Aitr,k,g - , (3.17)
g /=1

The transport correction is then subtracted from the group-wise total collision rate and

normalized by the flux to compute the transport-corrected total cross section:

t g ~~ t rk,g

t,k,gg

Note that since the transport correction must be computed using an analog estimator,

the total collision and flux in Eqn. 3.18 must also be computed with analog estimators.

3.2.1.4 Scattering Matrix

The isotropic scattering matrix is computed with an inner product of scattering reactions

over both incoming and outgoing energies. An analog estimator must be used since

the integral is dependent on the neutron's outgoing energy. Similar to the first Legen-

dre moment in Eqn. 3.16, the isotropic scattering moment is given by the following

expression:

Eg_1 E9'11

(sO., 4')k,g--g f fE/ Eso(r, E' -- E)4(r, E, f)dE'dEdfdr (3.19)
rEVk f47Eg Eg9

The isotropic scattering matrix is then:

(Eso, %b a->
Askg k* Zo4),gi-g (3.20)Fs,k,g'-g a%') a

The transport correction in Eqn. 3.17 can be applied by subtracting it from the diagonal

elements in the matrix to compute the transport-corrected scattering matrix:

Zk91+g so> ),g-g6 g,g' A Etr,k,g (3.21)
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3.2.1.5 Fission Production Cross Section

The fission production cross section was condensed in Eqn. 2.35 to make it independent

of the energies of the neutrons emitted from fission. It is therefore straightforward to

treat the fission product macroscopic cross section vEf as a special case of Eqn. 3.14,

with track-length estimators for the total collision rate and flux:

VEfkg - (%bil) (3.22)

3.2.1.6 Fission Energy Spectrum

Unlike the fission production cross section, the fission spectrum is dependent on the

outgoing neutron energy and must be computed with analog estimators. The fission

production matrix from group g' into group g is given by the following inner product:

(VEf, 4)kg',_g = f f ( f v~fr, E' -+ E)(r, E, r)dE'dEddr (3.23)
frCVk f4r fEg E91

The fission spectrum in Eqn. 2.35 can then be computed from this tally by summing

over incoming and outgoing energy groups:

G

g'=1
Xk,g = G G

g=1 g'=1

This expression for the fission spectrum will result in a normalized discrete probability

distribution for the energy of neutrons emitted from fission.

3.2.1.7 Summary

The tallies needed to generate MGXS libraries were outlined in detail in the preceding

sections, and are summarized in Table 3.1. The scores and filters correspond to the

notation used by the OpenMC code to describe the scoring function and integration
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bounds used in Eqn. 3.1. The energy group structure for energy condensation is specified

by energy and/or energyout filters in the table. The regions for spatial homogeniza-

tion are specified by material or cell filters, although this could potentially include

universe, distribcell and mesh filters as well.

Table 3.1: The types of tallies used in MGXS generation with OpenMC.

Name Symbol Tally Score Filters Estimator

material/ cell
(x x,#t%)k,g reaction x energy track-length

General Ex,k,g material/cell
(%b)k,g flux energy track-length

material/cell
(-t,%P)k,g total energy track-length

Total Et,k,g material/cell
~t~k~g (~~k,g f lux energy track-length

material/cell
(Et,%')k,g total energy analog

Transport- material/cell
Corrected Ptkg (1sI,')k,g'-g nu-scatter-1 energyout analog

Total ' ' material/cell
4')k,g flux energy analog

material/cell

(EsO, )k,g'-,g nu-scatter-O energy analogScattering s: , energyout
Matrix material/cell

kg flux energy analog

material/cell

(Fso,1P)k,g'-g nu-scatter-O energy analog
Transport- energyout
Corrected material/cell
Scattering Es,k,g'--g (Es ,P)k,g'-g nu-scatter-1 energyout analog

Matrix material/cell
(#~P)k,g flux energy analog

material/cell

Fission (VEf, %b)kg nu-fission energy track-length
VEfkg material/cellProduction '' (%)k,g flux energy track-length

Fission material/cell

Spectrum Xk,g (V/,1)?kg/-g nu-fission energy analogenergyout

3.2.2 Uncertainty Propagation

As discussed in the preceding sections, MGXS may be computed using arithmetic combi-

nations of tally estimators for reaction rates and fluxes. Each tally estimator is a random

variable with an associated uncertainty estimated by the variance of the sample mean

in Eqn. 3.9. As a result, each multi-group cross section computed for a spatial zone

and energy group is itself a random variable from a distribution with some unknown

variance. It is therefore useful to estimate the uncertainty of MGXS computed from
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MC tallies in order to quantify whether the MGXS are known with enough precision for

accurate multi-group calculations.

Estimates of the variance may be deduced from standard error propagation theory.

Such analysis is widely discussed in the literature [42]. A few key equations necessary

to estimate the variance for MGXS are reproduced here. The arithmetic combinations of

interest for MGXS generation include addition, subtraction, multiplication and division.

Consider two random variables X and Y, generated from distributions with variances

(2 and U2 which are arithmetically combined into a new random variable Z with

variance O2. The random variables X and Y may correspond to tallies for reaction ratesz.
and the flux, while Z could correspond to a MGXS. The following expressions can be

derived for the variance a for binary combinations of X and Y:

Z=X+Y o 2= o-2 + ( 2 + 2 o-x7 (3.25)

Z=X-Y T = o=2 + u -2u- (3.26)

=XY Or [ Z 2 + +2 (3.27)

X 2x z X)2 + y ( T2 -'

These expressions are given in terms of the covariance o-xy of X and Y:

oXY = E[(X - E[X])(Y - E[Y])] (3.29)

where E[-] is the expectation operator. The covariance is not generally computable using

the standard formulation for a tally estimator in a Monte Carlo simulation. Although

it would be possible to estimate the covariance using ensemble statistics1 3 , this is not

often feasible. Instead, the covariance terms in Eqns. (3.25) to (3.28) are typically

neglected. In general, the random variables for reaction rates and fluxes in the same

volume of phase space are highly correlated, and neglecting the covariance leads to a

poor approximation for the variance of MGXS. However, it should be noted that division

is the primary operation needed to combine tallies to compute MGXS. Since the reaction

rates and flux tallies must be positively correlated, the covariance term in Eqn. 3.28

13The covariance could be estimated from the results of an ensemble of independent MC simulations.
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reduces the estimate of the covariance. It therefore follows that a conservative estimate

of the variance for MGXS is obtained by neglecting the covariance.

A mixture of analog and track-length MC tallies for reaction rates and fluxes

are used to generate spatially-homogenized and energy condensed MGXS. Er-

ror propagation theory is used to estimate the MGXS uncertainties.

3.3 A Literature Review of MGXS Generation with MC

The last two decades have seen growing interest in Monte Carlo as a means to generate

MGXS libraries. This section presents a brief overview of the literature which documents

these efforts. As discussed in Sec. 3.3.1, most of the work to date has been directed at

generating homogenized few-group constants for coarse mesh diffusion-based codes.

Sec. 3.3.2 reviews a few recent theses which develop MC-based methods to generate

MGXS for fine-mesh transport-based simulations, which is the motivation for this thesis.

3.3.1 MGXS for Coarse Mesh Diffusion Calculations

Most MC-based MGXS generation schemes to date focus on generating few-group con-

stants for coarse mesh diffusion codes1 4 . These schemes aim to improve the accuracy

of standard diffusion codes for analysis of atypical core configurations for which the

simplifications made by multi-level deterministic MGXS generation methods are not

necessarily applicable. These efforts replace the separate resonance self-shielding and

deterministic lattice physics calculation steps in multi-level approaches (see Sec. 2.5.2)

with fully-detailed MC calculations of each assembly to compute the few-group con-

stants needed by whole core diffusion codes. The widely used Serpent code discussed in

Sec. 3.3.1.1 has led this trend over the last decade, and a few authors have applied the

MCNP and McCARD codes in a similar fashion as will be highlighted in Secs. 3.3.1.2 and

3.3.1.3. The latter subsections summarize studies which used the MC21, MVP-BURN,

14 1n this context, coarse mesh refers to the use of one or a few homogenized mesh cells per assembly.
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RCP01 and VIM codes to generate MGXS for coarse mesh diffusion calculations.

3.3.1.1 Serpent

Serpent is a continuous energy Monte Carlo code developed by the VTT Technical

Research Centre of Finland, and is one of the most widely used MC particle transport

codes in the world [1]. Serpent was initially created as part of Leppanen's thesis [9]

to generate few-group constants for nodal diffusion codes. More recently, Serpent has

developed into a general purpose reactor physics burnup code with features including

isotopic depletion, on-the-fly Doppler broadening and support for CAD geometries.

Serpent is designed to be a drop-in replacement for deterministic resonance self-

shielding and lattice physics calculation codes and can generate homogenized few-group

constants for coarse mesh sub-assembly geometries. Serpent is uniquely designed for

coarse mesh MGXS generation since it uses the Woodcock-Delta method [43] to greatly

reduce the computational expense of tracking particles in geometries with complicated

surface crossings. Unlike deterministic multi-level approaches, Serpent uses MC to

precisely model self-shielding effects in complicated geometries. In addition, Serpent

simplifies the validation of downstream diffusion codes which use the MGXS it generates

since it is also capable of computing full-core reference solutions.

One of the challenges for lattice physics calculations is the appropriate treatment of

net current between assemblies. In order to address this, Serpent employs a two-step

energy condensation scheme including an infinite lattice calculation followed by a B1

leakage correction [10]. The scheme first performs an infinite lattice calculation for

each unique assembly and tallies MGXS in the WIMS 69-group structure. The MGXS

are used to form the B1 equations for the homogenized system which are solved for

the critical flux spectrum accounting for inter-assembly leakage. The critical flux is

finally used to collapse the 69-group MGXS into few-group constants. Although the B1

equations make assumptions that are not always true - such as an energy-independent

buckling - the approach has been demonstrated to largely resolve 20% errors in 2-

group diffusion coefficients compared to those collapsed with the infinite flux for simple

PWR benchmarks [10]. However, the B1 leakage correction does have some known
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deficiencies, including its inability to treat non-fissile regions such as homogenized

reflectors or transmutation cross sections in burnup calculations [11].

Much of the research focus for Serpent has revolved around the need to accurately

compute diffusion coefficients. Unlike the total, scattering, and fission production

MGXS discussed in Chap. 2, diffusion coefficients do not have a continuous energy

counterpart in transport theory. Serpent uses an approximate method to compute the

15Selengut-Goertzel diffusion coefficient from the inverse of the transport cross section

In particular, Serpent tallies a 69-group MGXS transport cross section, and condenses

its inverse with the B1 leakage corrected spectra to compute diffusion coefficients. In

addition, since it is not straightforward to compute current-weighted tallies in MC,

Serpent makes a heuristic approximation and uses a scalar flux-weighted scattering

moment to compute the transport cross section (see Sec. 2.2.3). More recently, the

Serpent team has investigated a novel current-weighted scheme for directional diffusion

coefficients [12], and introduced Liu's novel Cumulative Migration Method (CMM) [25]

to mitigate shortcomings in the current approach [11].

Although Serpent is the most popular tool for MGXS generation, its use thus far has

been specifically focused on coarse mesh diffusion applications. To the first author's

knowledge, there have not yet been any published works which use Serpent to generate

MGXS for fine-mesh transport calculations.

3.3.1.2 MCNP

The widely used MCNP code [38] developed by Los Alamos National Laboratory has also

been employed to generate few-group MGXS for coarse mesh diffusion methods. Perhaps

the most comprehensive study can be found in Pounders' thesis [14] which, like Serpent,

aimed to improve the accuracy of standard diffusion codes by generating improved

diffusion coefficients with Monte Carlo. In addition to the reactor problems considered in

Pounders' thesis, MCNP has also been used to generate diffusion coefficients for analysis

of spent fuel storage lattices [13].

15This is an approximate method since the energy collapse of the transport cross section is not equivalent
to the energy collapse of its inverse, which is what is needed to collapse the diffusion coefficient.
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Pounders considered several approaches to compute diffusion coefficients with Monte

Carlo and implemented each in MCNP The simplest method computed the diffusion

coefficient as the inverse of the transport cross section. This formulation is most similar to

that used in Serpent, but did not include a fine-to-few-group collapse with the B 1 leakage

corrected spectra. Pounders also considered the flux-limited diffusion coefficient [44]

widely used in radiation hydrodynamics codes. In addition, Pounders developed an

approach to use directional neutron currents to appropriately weight the first order

scattering moment needed to compute the transport cross section. Lastly, Pounders' most

novel contribution, termed the "stochastic diffusion coefficient," attempted to embed

higher order anisotropies in the diffusion coefficient by combining direction-dependent

diffusion coefficients with volume-integrated flux gradient tallies.

Pounders' results demonstrated that the stochastic diffusion coefficient produced

the best results since it mitigated the approximations imposed by P1 theory. However,

the analysis was limited to simple 1D slab and 2D pin cell problems since the imple-

mentation of stochastic diffusion coefficients for arbitrary 3D reactor geometries would

be challenging. Most interestingly, Pounders' thesis concluded that the error resulting

from diffusion theory's assumption of a linearly anisotropic flux dominated the error

induced by each of the diffusion coefficient formulations. Pounders' thesis has served as

the basis for the development of new methods to generate MGXS with MCNR, including

new diffusion coefficient formulations [15] and an approach to represent the Legendre

expansion of the scattering kernel with equiprobable cosine bins [16].

A few recent studies have evaluated new leakage models for multi-group diffusion

coefficient generation with MCNP Yun and Cho evaluated a hybrid approach to compute

diffusion coefficients with MCNP using an albedo-corrected leakage spectrum [17,18].

This approach iterated between a Monte Carlo lattice and deterministic full-core calcula-

tions to converge nodal diffusion parameters to preserve surface currents to match a

criterion defined by any arbitrary leakage model. Cho evaluated the method for a PWR

fuel assembly and demonstrated a slight improvement in the solution compared to a

diffusion calculation with MGXS weighted by an infinite spectrum.

Yamamoto [19] developed a method to model neutron leakage with a correction
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term in the transport equation which is equivalent to the B1 leakage correction method.

The correction term was introduced in MCNP as a complex-valued particle weight in

order to generate anisotropic diffusion coefficients [20]. Few-group diffusion coefficients

for pin cell and assembly benchmarks exhibited good agreement with those generated by

a reference deterministic code, but no criticality calculations were performed to validate

eigenvalues and power distributions computed by a diffusion code.

3.3.1.3 McCARD

The McCARD Monte Carlo transport code developed by Seoul National University has

been utilized in a number of studies to generate few-group constants for full-core

diffusion analysis [21-23]. The over-arching objective in these studies was to develop

and evaluate a method to model the leakage spectrum in MC lattice physics calculations.

An approach was independently developed which used the solution to the homogeneous

B1 equations which is equivalent to the methodology used in the Serpent code [10].

In summary, McCARD tallied fine group MGXS and used the critical spectrum solved

from the B1 equations to collapse the fine group MGXS into few-group constants. Like

Serpent, McCARD uses the flux rather than the current to weight the first order scattering

moment tallies to approximately compute fine group transport cross sections. The

studies published in the literature validated the MGXS generated with McCARD with

a reference deterministic lattice code. In addition, good agreement was demonstrated

between reference MC and deterministic diffusion solutions for the eigenvalues and

power distributions for 3D PWR and gas-cooled, TRistructural-ISOtopic (TRISO) fueled

Very High Temperature Reactor (VHTR) benchmark configurations. Finally, the B1

leakage corrected spectra was shown to significantly improve the eigenvalue estimates

and assembly-wise power distributions with respect to MGXS computed from an infinite

lattice spectrum.

3.3.1.4 MC21

Herman utilized the MC21 code developed by Knolls Atomic Power Laboratory to evalu-

ate two approximations used in Monte Carlo calculations of diffusion coefficients [24].
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His work was motivated by approximations made by the multi-step energy condensa-

tion methodology used to compute diffusion coefficients in Serpent with a B1 leakage

corrected spectra. First, Herman considered whether to energy condense the fine group

transport cross sections or diffusion coefficients when computing few-group diffusion

coefficients. Second, he presented an approach to use a pre-tabulated form of the energy-

dependent scattering cosine to correct the traditional form of the diffusion coefficient.

His results demonstrated a significant reduction from more than 3% to nearly 0.25%

in the reconstructed pin powers for a PWR assembly. Herman's corrected diffusion

coefficient was implemented in the OpenMC code [45] for use in Coarse Mesh Finite Dif-

ference (CMFD) acceleration [46], and has inspired the development of the Cumulative

Migration Method (CMM) to calculate diffusion coefficients with Monte Carlo [25].

3.3.1.5 MVP-BURN

Tohjoh used the MVP-BURN Monte Carlo code [26] to generate few-group constants

for full core Boiling Water Reactor (BWR) analysis [27]. The objective of the study

was to evaluate MC as an approach to generate 3-group constants for advanced BWR

assemblies with novel geometries and reactivity controls. Although MVP-BURN could be

used to tally reaction rates and fluxes to compute standard MGXS (e.g., total, fission),

it was not modified to directly generate diffusion coefficients. Unlike past work with

Serpent and MCNIP the diffusion coefficient was computed with MVP-BURN by collapsing

the total and scattering cross sections in energy, rather than the transport cross section

or the diffusion coefficient itself. In particular, the diffusion coefficient was computed

from tallied total and scattering cross sections and a simple heuristic for the average

scattering cosine. Furthermore, the code system was unable to produce scattering

matrices. Instead, up-scattering was assumed to be negligible and the downscattering

cross sections were computed directly from the removal and capture MGXS. The group

constants were validated with those produced from a deterministic lattice code, and a

full-core nodal diffusion burnup calculation was performed to validate the eigenvalues

and power distributions with reference solutions.
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3.3.1.6 RCPO1

Gast authored an early study which analyzed a variety of deterministic formulations of

the diffusion coefficient to determine the most relevant candidate(s) for Monte Carlo [28].

Gast concluded that most formulations were not practically realizable with MC due to

their reliance on spatially integrated flux gradients and current densities. Instead, he

deduced that the Selengut-Goertzel diffusion coefficient based on the transport cross

section was best suited for computation with MC, and implemented it in the RCP01 MC

code [29] developed by Bettis Atomic Power Laboratory. The implementation applied

an empirical correction factor to the final computed diffusion coefficient to address the

approximation made by using flux-weighted rather than current-weighted tallies. The

first author could not find any subsequent analyses in the publicly available literature

which validate the implementation for coarse mesh diffusion calculations.

3.3.1.7 VIM

The VIM continuous energy Monte Carlo code is developed by Argonne National Labora-

tory [30] for neutron and photon transport calculations. VIM is capable of generating

isotopic macroscopic or microscopic MGXS, including group-to-group scattering matrices,

for deterministic applications. The code is capable of producing diffusion coefficients

derived from tallied multi-group total and scattering cross sections. A data processing

tool may be used to convert the computed MGXS into the ISOTXS file format accepted

by ANL's deterministic diffusion and transport codes. The first author could not find any

analyses in the publicly available literature which validate the MGXS generated by VIM

for coarse mesh diffusion calculations.

3.3.2 MGXS for Fine-Mesh Transport Calculations

3.3.2.1 MCNP

Redmond [31] performed one of the earliest known in-depth analyses of MGXS gener-

ation with MC methods. Redmond studied two methods to compute group-to-group

scattering moment matrices with the MCNP code [38]. The first approach - known
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as the direct method - is equivalent to the analog estimator for computing scattering

matrices presented in Sec. 3.2.1.4. The second approach - termed the explicit method -

imposes a finite sampling of possible outgoing energies and angles for each scattering

and fission event. The explicit method may thereby improve the sampling statistics for

the scattering cross section and the fission spectrum. To the first author's knowledge,

the explicit method is not implemented in any presently available production code nor

are there results beyond Redmond's work which evaluate the sampling efficiency of the

method.

More recently, Van der Marck [32] applied Redmond's methods in MCNP to generate

MGXS to model the Petten High Flux Reactor (HFR) in the Netherlands. Van der Marck

was concerned with the slow computational performance of computing MGXS with

MCNP as a result of using track-length tallies. Although track-length tallies are an

efficient statistical estimator, they require scoring to each tally every time a neutron

travels between material zones, which can be exceedingly slow in MCNP Instead, Van

der Marck created a downstream data processing tool called ELNINJO to analyze MCNP

binary files with collision data to compute collision estimators for MGXS generation.

The ELNINJO code was developed to generate either MGXS for diffusion or transport

theory codes, and was validated for a few simple ID and 2D test cases.

Hoogenboom employed a similar downstream data processing approach in a tool

to parse MCNP's PTRAC event file to compute multi-group scattering matrices [33].

The tool permitted the computation of multi-group scattering matrices within arbitrary

geometric regions with no changes necessary to the MCNP source code or input files.

The tool was used to generate 2-group constants in a simple 1D slab geometry which

were then validated with respect to those generated with the deterministic SCALE code

system [47]. There are no known published results to validate the efficacy of the MGXS

generated from the tool in a downstream fixed source or eigenvalue calculation code.

Most recently, Yoshioka evaluated a methodology for MGXS generation with MCNP

for deterministic diffusion or transport methods [34,35]. Yoshioka developed a weight-

to-flux ratio method to compute scattering matrices as an extension to an earlier study by

Tohjoh with the MVP-BURN code [27]. The weight-to-flux ratio scheme was derived as a
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simple tally scheme for 3-group down-scatter cross sections and neglected up-scattering

and self-scattering. The MGXS generated with MCNP were validated with respect to

those computed using a reference deterministic lattice code. In addition, steady-state,

burnup and transient calculations were performed to validate eigenvalues, reactivity

margins, Minimum Critical Power Ratio (MCPR), and power responses for a variety of

BWR benchmark configurations. Interestingly, the MGXS generated by MCNP led to a

negative bias of 300-600 per cent mille (pcm) in deterministic transport calculations for

a BWR fuel pin cell model. Although the source of this bias was not identified, the results

presented in Chap. 5 indicate that it may have been due in part to the flux separability

approximation (see Sec. 2.3.2).

3.3.2.2 TRIPOLI-4

Cai [36] investigated the use of the TRIPOLI-4 code to generate MGXS with continuous

energy Monte Carlo simulations. Unlike other published works, Cai validated the MGXS

using the multi-group Monte Carlo solver in TRIPOLI-4 rather than a deterministic

multi-group solver. Her thesis primarily focused on methods to enforce neutron balance

between reference continuous energy and multi-group Monte Carlo calculations. Cai

developed a method termed the "In-Group Scattering Correction" (IGSC) as a means to

mitigate the flux separability approximation discussed in Sec. 2.3.2. The IGSC technique

employed volumetric neutron current-weighted moments of the total cross section as

correction terms to the diagonal entries in the scattering moment matrices.

Cai explored IGSC with a MC estimator of Todorova's current approximation for a

variety of homogenized 2D and 3D fast reactor benchmarks. Although the IGSC method

improved the consistency between continuous energy and multi-group MC results for

some cases, it led to a several thousand pcm eigenvalue bias for a few of the benchmarks.

Furthermore, Cai's results demonstrated the deficiency of using Todorova's current

approximation in a heterogeneous geometry with strongly varying material properties.

Cai developed and evaluated an alternative approximation to the current, termed the

"Direction-X" current, to eliminate the approximations made in Todorova's current -

namely, that the gradient of the flux is similar to the flux spectrum itself. Although the
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"Direction-X" current greatly improved the results with respect to Todorova's current, its

implementation and analysis was limited to ID slab geometries.

3.3.2.3 OpenMC

Nelson [37] identified the convergence rate of scattering moments to be a key bottle-

neck to computing MGXS libraries, and developed an approach to mitigate this with

deterministic tallies of the energy and angle for outgoing neutrons in collisions. Nelson's

methodology permits track-length estimators for tallies which depend on the outgoing

neutron energy, and scores to all outgoing energy groups for each particle trajectory.

This is advantageous since it greatly improves the tallying efficiency and convergence

rate of scattering moment matrices and the fission energy spectrum. However, Nelson's

methodology requires a computationally expensive pre-processing step to transform each

nuclide's nuclear data for use in an MC simulation. Furthermore, the pre-processing step

is specific to the energy group structure used in an MGXS library, and the computational

expense and memory footprint grow as ((NG 2 ) with the number of groups G and nu-

clides N in a simulation. Although Nelson implemented the scheme in a developmental

version of OpenMC, it was not utilized by the first author in this thesis work.

3.3.3 Concluding Remarks

A large body of recent work has aimed to replace resonance scattering and lattice physics

codes to instead compute MGXS with Monte Carlo for coarse mesh diffusion codes. These

studies have primarily explored various formulations to tally diffusion coefficients, and

various models to account for leakage in assembly homogenized few-group constants.

In comparison, relatively less consideration has been given to MGXS generation for

fine-mesh transport calculations. These efforts have focused on improving the statistical

efficiency of MC tallies for scattering moment matrices and the fission spectrum, and

alternatives to the flux separability approximation for more accurate total cross sections.

The work to date has demonstrated the promise for MC to replace many of the

complicated steps and approximations made in the traditional multi-level framework
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for MGXS generation. However, past studies have typically generated MGXS for subsets

of a reactor geometry - such as individuals fuel assemblies - for subsequent use in

multi-group full-core analysis. This thesis aims to build upon the progress made in

this area by investigating the opportunity to directly use full-core continuous energy

MC simulations to compute MGXS for full-core deterministic multi-group calculations.

The subsequent chapters of this thesis develop and evaluate a novel methodology for

statistically efficient spatial homogenization which accounts for self-shielding effects in

MGXS tallied on a fine spatial mesh.

" MGXS are computed from a mixture of analog and track-length Monte Carlo

reaction rate and flux tally estimators. Error propagation theory is used to

estimate the variance of MGXS computed from MC tallies.

- MC is increasingly used to generate few-group constants for coarse mesh

diffusion calculations with tools such as the Serpent MC code.

* MC-based MGXS generation methods to date rely on a multi-level framework

similar to that employed in conventional deterministic methods. These ap-

proaches generate MGXS for sub-assembly geometries with infinite boundary

conditions to generate few-group constants for full-core analysis.

* Multi-level methods suffer from approximations used to treat neutron leakage

and spatial heterogeneities such as neutron reflectors.

* Less attention has been directed to MC-based MGXS generation for fine-mesh

transport calculations - the focus of this thesis.
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Chapter 4

Simulation Workflow

4.1 A Simulation Triad

This thesis investigates Monte Carlo as a means to generate multi-group cross sections

for fine-mesh transport codes. This work required the development of a "simulation

triad" encompassing three primary codes as illustrated in Fig. 4-1. First, the OpenMC

Monte Carlo code [45] was utilized to generate multi-group cross sections. Second,

the MGXS were used by the OpenMOC Method of Characteristics (MOC) code [48]

for deterministic multi-group transport calculations. Finally, the OpenCG library [49]

enabled the processing and transfer of tally data on combinatorial geometry (CG) meshes

between OpenMC and OpenMOC. In addition, a significant amount of infrastructural

code was developed to process the results produced by OpenMC and OpenMOC. The

results in this thesis may be most easily reproduced with the versions of OpenMC,

OpenMOC and OpenCG itemized in Tab. 4.1.

Table 4.1: The Git SHA-1 commit hashes for each code used in this thesis.

Code Date [MM-DD-YYYY] Git Commit SHA-1

OpenMC 05-30-2016 698c223482a7d5f5df4dc83eeed65d99a2e52fbf

OpenMOC1 6  05-29-2016 b09e66be269703caOaO8d7a6afcedlbc5984112a

OpenCG 05-14-2016 2c5e8f92f501d076f4ed06b70b09684a41 1b06b9

16 OpenMOC was compiled with double precision floating point arithmetic.
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OpenCG

- Model reactor geometry
- Transfer data across meshes

AOpenMC 
pythonA (kMoc

" Generate MGXS libra n Deterministic multi-group" Compute reference solution transport simulation

Figure 4-1: A simulation triad consisting of the OpenMC, OpenMOC and OpenCG codes
"glued" together with Python formed the foundation for this thesis research.

This chapter describes the author's contributions to each component code in the

simulation triad to support the objectives of this thesis - namely, the evaluation of

intrinsic bias in MGXS for fine-mesh transport (Chaps. 5 to 6), and the development

of a novel methodology for spatial homogenization based on unsupervised clustering

(Chaps. 7 to 10). An overview of the OpenMC, OpenMOC, and OpenCG codes, along

with the features added to each code to support this thesis, are presented in Secs. 4.2, 4.3,

and 4.4, respectively.
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A simulation triad consisting of OpenMC, OpenMOC and OpenCG was created

to evaluate MGXS generated from MC within a Python-based framework.

4.2 OpenMC

The OpenMC code is a continuous energy Monte Carlo neutron transport code [45]

with support for general constructive solid geometry models. OpenMC was initially

created by Romano [50] to explore novel parallel algorithms for High-Performance

Computing (HPC) architectures. The code was released for public use with the MIT open

source license, and has attracted growing interest as a platform for the development of

new physics methods and computational algorithms. Although this thesis could have

plausibly used any continuous energy MC neutron transport code to generate MGXS, this

author chose OpenMC for its general and extensible implementation, excellent parallel

scalability, and open source license agreement which permits the modification of its

codebase. The general physics and computational methods implemented in OpenMC

will not be detailed here since they are well documented in the literature. The interested

reader is referred to the online code manual [39] for further information.

This thesis developed new features for OpenMC to enable the processing of large tally

datasets to generate MGXS. These contributions were motivated by the novel spatial

homogenization technique presented in Chaps. 7 to 10 which required the calculation of

microscopic MGXS for each nuclide in each spatial zone across a reactor core geometry.

The tally datasets for this scheme are orders of magnitude larger than those generated by

the multi-level approaches previously considered in the literature. In particular, the tally

datasets are computed on a fine (e.g., pin-wise) spatial tally mesh for a fully-detailed

heterogeneous full-core geometry. This stands in contrast to multi-level approaches

which compute MGXS for each unique fuel pin or assembly with infinite lattice boundary

conditions for use in a multi-group full-core calculation. For example, the scheme

introduced here would tally MGXS for each of the 0(50,000) fuel pins in a full-core MC

simulation of a PWR. In contrast, a multi-level approach would compute MGXS for the
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0(10) of unique fuel pins or assemblies in the model with pin-wise or assembly-wise

MC simulations.

This thesis' requirements for "big data" Monte Carlo calculations can be defined

along two primary dimensions: scalable parallel algorithms for efficient MC tracking,

sampling and tallying, along with flexible and robust tools for downstream data pro-

cessing. The first of these dimensions has been a focal point for OpenMC development

since its inception. OpenMC includes distributed memory parallelism via the Message

Passing Interface (MPI) [51] and has been shown to scale with near perfect efficiency

to 100,000s of processor cores [50]. In addition, shared memory parallelism is imple-

mented with the OpenMP library [52] which reduces the simulation memory footprint

by minimizing domain replication on multi-core processors. Furthermore, recent work

has developed innovative schemes to manage tally datasets with memory footprints

beyond that available on a single node in a typical HPC machine (a few tens of gigabytes)

with tally servers [53] and spatial domain decomposition [54]. The efficient parallel

algorithms already implemented in OpenMC were a key reason to use the code for this

thesis work.

However, this thesis did involve the development of software tools to address the

data processing needs for "big data" MC calculations. It is the author's opinion that

these data processing tools uniquely position OpenMC as the only MC code presently

capable of supporting the MGXS generation scheme introduced in Chaps. 7 to 10. For

example, many commonly used MC codes store and retrieve tally data from American

Standard Code for Information Interchange (ASCII) formatted files or flat binary files.

Although these file formats may work well for small tally datasets, they do not scale well

for the tally datasets used in this thesis. The data processing paradigm reinforced by

many MC codes places a large burden on the user to write convoluted parsers to extract

tally data without a generic set of tools to guide the process. In addition, many tally

data stores are organized in a way that necessarily serializes tally data access without

the metadata needed to index data in an efficient and parallel manner. Furthermore,

many data stores are highly tailored to tallies on Cartesian or hexagonal meshes rather

than the more complex unstructured meshes needed to generate MGXS for fine-mesh
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transport codes. The software tools developed for this thesis attempt to mitigate these

issues and formalize a flexible and scalable tally data model for OpenMC.

This section describes the features introduced to develop a next-generation tally

data model in OpenMC and follows a recent paper by this author [55]. Sec. 4.2.1

presents a fully-featured Python Application Programming Interface (API) for OpenMC

which formed the foundation for much of this work. An algorithm to simplify tally

management on unstructured but repeated tally volumes is highlighted in Sec. 4.2.2,

and a feature to use isotropic in lab scattering is examined in Sec. 4.2.3. Finally, a new

module to generate MGXS was implemented atop many of the newly introduced features

in OpenMC as discussed in Sec. 4.2.4. All of the feature implementations were peer

reviewed and incorporated into the vO.7.1 release of OpenMC.

4.2.1 Python API

A fully-featured Python API was designed and implemented to enable programmatic pre-

and post-processing for OpenMC. The API enables tight coupling of input generation,

simulation execution, and tally data analysis within dynamic Python script "input files."

In addition, the API makes it possible to leverage the extensive ecosystem of Python

packages for scientific computing alongside OpenMC in a simulation workflow. The

following sections describe the API and some of the core features which comprise the

software stack developed to support the MGXS generation module created for OpenMC.

4.2.1.1 Overview

The Python API is a user-friendly, complementary (and optional) addition to the OpenMC

codebase. OpenMC is written in Fortran 2008 and uses eXtensible Markup Language

(XML) input files to describe the simulation materials, geometry, tallies, and settings.

Although XML is often hailed as both human-readable and machine-readable, it is

cumbersome to write by hand for large and complicated reactor models such as those

modeled in this thesis. The Python API circumvents this process by leveraging Python's

internal ElementTree API to generate the XML files used by the OpenMC executable.
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Instead of writing XML files by hand, dynamic Python scripts are used to describe one

or more OpenMC simulations, including those used to generate MGXS with OpenMC.

The OpenMC Python API adheres to object-oriented software design principles with

extensible class definitions. A user instantiates, manipulates, and connects objects

representing items such as the materials, geometry and tallies to construct an OpenMC

simulation. This is a scalable alternative workflow to traditional "decks" of "cards" in

which data characterizing a simulation is specified in opaque ASCII files (e.g., integer

identifiers for geometric primitives such as surfaces, cells, universes, etc.). The Python

API provides classes and routines to represent all features provided by OpenMC's XML

input specifications.

In addition to its functionality for input generation, the Python API also includes a

rich framework of tally data processing utilities. The API eliminates the time intensive

and error prone process of writing code to parse results from OpenMC's output files.

The API is able to reconstruct the hierarchy of interconnected Python objects used to

represent the materials, geometry and tallies from OpenMC's "statepoint" and "summary"

Hierarchical Data Format 5 (HDF5) output files [56]. OpenMC's dynamic object-oriented

data processing model - fusing the geometry and materials configuration with tallied

data - enabled the rapid calculation, indexing and storage of MGXS from tallies on

unstructured meshes for this thesis.

4.2.1.2 Pandas DataFrames

The Python API encapsulates numerical tally data using N-dimensional array objects

from the NumPy package [57]. Although OpenMC's NumPy interface to tally data is

more flexible than simply reporting the data in ASCII files, NumPy arrays are relatively

opaque containers for managing large tally datasets. A single OpenMC Tally object

used for MGXS generation may encompass many different energy groups, nuclides and

reaction types, yet all of this data is tabulated in a single contiguous NumPy array.

As a result, it is challenging to implement general algorithms to inspect, index, and

manipulate tally data in NumPy arrays for specific groups, nuclides or reactions.

The Pandas Python package [58] was implemented in the Python API to enable
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transparent tally data processing for MGXS generation. In particular, the Tally class

includes a feature to construct a Pandas DataFrame object from tally data. Pandas

DataFrames are modeled after data structures in the R programming language used to

store data tables in a more accessible format than contiguous arrays. Pandas DataFrames

support mixed-type data (i.e., strings and numbers), and allow the use of string keys

or labels to index each column or row. The Python API builds Pandas DataFrames by

annotating tally data with the filters, nuclides, and scores associated with each tally bin.

Pandas' most advanced features are intended for scalable data manipulation oper-

ations such as sorting, merging, and joining datasets, and generating pivot tables. In

addition, Python's powerful statistics and machine learning packages - such as SciPy [59],

statsmodels [60] and scikit-learn [61] - are well integrated with Pandas and may be

easily applied to DataFrames of tally data. Pandas DataFrames were extensively used

to encapsulate tally data throughout the statistical data processing framework for the

MGXS spatial homogenization methodology introduced in Chaps. 7 to 10.

4.2.1.3 Tally Slicing and Merging

Two useful and related features in the OpenMC Python API for MGXS generation are tally

merging and tally slicing as depicted in Fig. 4-2. It is intuitively useful to systematically

create individual Tally objects for each spatial zone and reaction type when generating

the OpenMC inputs necessary to compute MGXS. However, this necessarily leads to a

large number (102 - 103) of distinct tally objects for large, complex geometries, which

poses a computational bottleneck since the overhead to tally in OpenMC scales as 0(N)

for N tallies.

To compensate for this, the Python API's Tally class automatically merges user-

specified tallies for input generation. Similarly, the API supports the slicing of tallies to

simplify downstream data processing which may comprise energy-, nuclide-, and/or

reaction-dependent transformations of the tally data. Tally merging and slicing are

extensively used throughout the statistical data processing framework for the MGXS

spatial homogenization methodology introduced in Chaps. 7 to 10.
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Figure 4-2: Two Tally objects for different spatial volumes are merged into a single
Tally (a). A single Tally is sliced by spatial volume into two distinct Tally objects (b).
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4.2.1.4 Tally Arithmetic

As discussed in Sec. 3.2.1, a variety of reaction rate and flux tallies must be arithmetically

combined in order to compute MGXS with Monte Carlo (see Sec. 3.2.1). At the most

general level, a reaction rate tally must be divided by a flux tally for each energy group,

nuclide and tally volume (see Eqn. 3.14). In addition, the transport correction must be

subtracted from the total cross section and scattering matrix (Eqns. 3.18 and 3.21), and

a summation must be performed over energy groups to compute the fission emission

spectrum (Eqn. 3.24). Furthermore, it is desirable to compute a variance estimator for

each MGXS by propagating uncertainties as described in Sec. 3.2.2. The Python API

provides a novel feature known as tally arithmetic to enable arithmetic combinations of

tallies with efficient vectorized numerical operations across energy groups, nuclides and

spatial tally zones.

Tally arithmetic is an object-oriented data processing feature which arithmetically

combines two or more tallies and/or scalar values into new derived tallies. The objective of

tally arithmetic is to rapidly transform tally data with automated uncertainty propagation.

The tally arithmetic implementation in OpenMC overloads the operators for addition,

subtraction, multiplication, division, and exponentiation in the Python API's Tally

class. In addition, the Tally class supports summation or averaging operations across

some or all of its filter, nuclide or score bins. The derived tallies produced from tally

arithmetic provide the same rich functionality available for the Tally operands used in

the arithmetic operation (e.g., Pandas DataFrames, tally arithmetic).

Multi-group cross sections may be simply and efficiently computed with tally arith-

metic. For example, the following code snippet illustrates how tally slicing and arithmetic

are used to compute a total MGXS:

Listing 4.1: MGXS calculation with tally arithmetic.

import openmc

# Open OpenMC's HDF5 statepoint file for the 100th batch

sp = openmc.StatePoint("statepoint.100.h5")

# Extract reaction rate and flux Tally objects
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rxn-rates = sp.get-tally(name="reaction rates")

fluxes = sp.get-tally(name="fluxes")

# Slice a Tally with only the "total" reaction rates

total = rxn.rates.get-slice(scores=["total"])

# Compute the total MGXS with tally arithmetic

total-mgxs = total / flux

The total MGXS that is returned from the tally division operation is encapsulated within

a Tally class. This is the approach used by the MGXS generation module created for

OpenMC in Sec. 4.2.4.

It should be noted that the uncertainty propagation in tally arithmetic makes the

assumption that tallies represent independent random variables (see Sec. 3.2.2). How-

ever, in many cases this assumption is untrue as tallies may be highly correlated. For

example, there is a strong correlation between the flux and reaction rate tallies across

the same material or cell, but this is not accounted for when these tallies are combined

to compute MGXS with tally arithmetic. In the future it may be possible to improve this

approximation with the inclusion of tally covariance matrices in tally arithmetic.

4.2.2 Distributed Cell Tallies

Many Monte Carlo codes, including OpenMC, use some variant of combinatorial geometry

because it can represent arbitrary, repeating geometries such as fuel pins and assemblies.

However, the Combinatorial Geometry (CG) approach is challenged by applications

which require tallies in each instance of a repeated cell throughout a reactor geometry,

such as the Benchmark for Evaluation and Validation of Reactor Simulations (BEAVRS)

benchmark model [62] depicted in Fig. 4-3. The "brute force" solution is to instantiate

a unique cell for each distinct tally zone. However, this defeats the purpose of using

CG for its compact representation, and it is not scalable to problems with large tally

datasets such as those considered in this thesis.

The distributed cell tally algorithm was implemented in OpenMC for D. Lax's M.S.

thesis [63] to permit simply defined spatial tally zones across repeated cell instances. The

86



4 i. IL 1 1|

11 I*II 1 H 1. I

(a) (b)
Figure 4-3: The radial (a) and axial (b) views of the BEAVRS PWR core geometry [62].
The distributed cell tally algorithm provides a simple and efficient interface to tally
within each of the 50,000+ fuel, guide tube, and burnable poison pin cells in complex
heterogeneous models like the BEAVRS core.

distributed cell algorithm, commonly abbreviated as the distribcell algorithm, classifies

each unique cell instance using maps and offsets which consume orders of magnitude

less memory than would be required by the "brute force" approach. Only a single

transparent line of XML input is necessary to define a distribcell tally which may span

across an arbitrary number of instances for a particular cell. Furthermore, the Python

API may be used to perform efficient vectorized transformations of distribcell tally data

stored as contiguous NumPy arrays. The distribcell tally algorithm was used to compute

spatially-varying MGXS across fuel pin cell instances for the spatial homogenization

methodology introduced in Chaps. 7 to 10.

The distribcell tally algorithm consists of pre-processing and indexing stages. The

pre-processing phase builds a mapping to index unique regions based on the unique

combination of cells, universes and lattices used to construct each region. This is done

by storing offset numbers in the data structures for each fill cell17. The offset maps are

recursively constructed starting from the top-level universe and proceeding through

each lower nested universe level in the combinatorial geometry. The pre-processing

' 7Any cell that is filled with a nested universe or lattice of cells.
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algorithm tabulates the total number of instances of each cell in the geometry in order

to dynamically allocate memory for distribcell tally arrays. At runtime, the on-the-fly

indexing scheme efficiently computes cell instance IDs in order to index and score to

the appropriate bin(s) in distribcell tallies. The cell instance IDs are simply found by

summing the offsets at each nested universe level along the path to the cell instance in

the CG as shown in Fig. 4-4. The interested reader is referred to [63] for details about

the distribcell tally algorithm, including pseudocode for pre-processing and indexing

and a performance model for the memory footprint consumed by offsets and maps.

4.2.3 Isotropic in Lab Scattering

As part of this thesis, a unique option for isotropic in lab scattering was implemented in

the OpenMC code. The isotropic in lab (abbreviated as iso-in-lab) feature may be useful

to quantify the ability of multi-group codes to capture anisotropic scattering effects

with higher order scattering matrices or transport correction schemes (see Sec. 2.2.3).

The iso-in-lab scattering feature was implemented as a "scattering" attribute for each

nuclide/element in a simulation. When iso-in-lab scattering is specified for a nuclide/ele-

ment, the outgoing neutron energy is sampled from the scattering laws prescribed by the

continuous energy cross section library, but the outgoing neutron direction of motion is

sampled from an isotropic in lab distribution.

Unless otherwise noted, isotropic in lab scattering was employed in OpenMC to

generate the MGXS used in this thesis. Isotropic scattering is generally not a valid

approximation for nuclear reactors and may induce large errors for thermal systems

such as the PWR benchmarks modeled in this thesis. However, the iso-in-lab scattering

feature enabled "apples-to-apples" comparisons between the reference eigenvalues and

reaction rates produced by OpenMC and those computed from isotropic multi-group

calculations with OpenMOC.
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Figure 4-4: An example of the distribcell tally algorithm's on-the-fly indexing
scheme [63]. Material-filled cells are defined in pin cell universes a and b, which
are filled into the cells of lattices B and C, which are filled into the cells of lattice A. The
colored numbers in each fill cell are the offsets for each base universe, which can be
used to quickly compute a unique ID for each instance of a material cell.
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4.2.4 MGXS Generation

The OpenMC Python API's openmc . mgxs module was implemented to generate multi-

group cross sections. The openmc .mgxs module is built atop the underlying core features

in the rest of the API to support a seamless interface for both input generation and

downstream data processing of MGXS from Python. In particular, one may specify the

MGXS to compute and the openmc.mgxs module will construct the necessary Tally

objects. The Tally objects may be easily exported to XML input files for OpenMC, and

used to containerize and process the tally data produced by an OpenMC simulation. The

openmc . mgxs module thereby leverages the software stack of Pandas DataFrames, tally

arithmetic, etc. provided by the OpenMC Python API.

The openmc . mgxs module can compute macroscopic or microscopic MGXS for indi-

vidual nuclides or elements as well as collections of nuclides and elements18 . MGXS

can be computed in one or more arbitrary energy group structures. The module sup-

ports energy condensation in downstream data processing which is useful for exploring

approximation bias in various energy group structures. For example, MGXS may be

computed in a 16-group structure and the tally data subsequently condensed to 2-group,

8-group, 12-group, etc. structures for multi-group calculations 19 . The analysis in this

thesis computed MGXS in the 70-group structure provided in Tab. A.8, and condensed

the MGXS to the coarser group structures given in Appendix A as needed.

The openmc . mgxs module is designed to perform spatial homogenization on hetero-

geneous tally meshes for fine-mesh transport codes. In OpenMC parlance, MGXS may

be computed for material, cell or universe spatial domains. In addition, the module sup-

ports MGXS calculations for repeated cell instances using distribcell spatial tally domains

(see Sec. 4.2.2). The openmc . mgxs module may also perform spatial homogenization

on structured Cartesian tally meshes for coarse mesh multi-group calculations. This

thesis computed MGXS using distribcell tallies (e.g., MGXS for each fuel pin instance in

a geometry) to support the MGXS spatial homogenization introduced in Chaps. 7 to 10.

18A MGXS computed for a collection of nuclides/elements is the sum of the individual contributions from
each nuclide/element.

19Energy condensation may be performed to arbitrarily defined coarse group structures with openmc .mgxs
provided the coarse group boundaries coincide with boundaries in the fine group structure.
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The openmc . mgxs module uses an object-oriented design based on an abstract MGXS

class with subclasses for different reaction types. The MGXS subclasses are itemized in

Tab. 4.2 and compute multi-group constants from MC tallies using the methods detailed

in Sec. 3.2.1. It should be noted that some reaction types include variants which do or

do not account for scattering multiplicity reactions (see Sec. 2.3.3). For example, the

transport correction used by the TransportXS class does not include (n, xn) reactions

while that employed by the NuTransportXS does account for scattering multiplicity. The

openmc .mgxs module also includes a Library class which automates the construction

of MGXS objects for different group structures, spatial domains, and reaction types.

Table 4.2: The MGXS types implemented by the openmc .mgxs module in OpenMC.

Class

TotalXS

TransportXS

NuTransportXS

Absorpt ionXS

CaptureXS

FissionXS

NuFissionXS

KappaFissionXS

ScatterXS

NuScatterXS

ScatterMatrixXS

NuScatterMatrixXS

Chi

ChiPrompt

Description

Total collision

Transport-corrected total collision

Transport-corrected total collision w/ scattering multiplicity

Absorption

Radiative capture

Fission

Fission neutron production

Fission energy release

Scattering

Scattering w/ scattering multiplicity

Scattering matrix

Scattering matrix w/ scattering multiplicity

Fission emission spectrum

Prompt fission emission spectrum

The openmc . mgxs module was developed with general design principles to generate

MGXS for any multi-group neutron transport code. Although the module does not

explicitly support any multi-group codes, it can export MGXS data to a variety of data

storage formats, including Comma-Separated Values (CSV) and HDF5. The exported

MGXS files may be easily transformed into the database or input files required by a

particular multi-group code. As discussed in the following section, this thesis developed

a tightly integrated framework to pipeline MGXS generated by openmc . mgxs into the
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multi-group OpenMOC code.

4.3 OpenMOC

The OpenMOC code is a multi-group neutron transport code implementing the determin-

istic Method of Characteristics (MOC) [48]. OpenMOC was initially developed to support

a series of M.S. theses at MIT [64-66] and was later released for public use with the

MIT open source license. Although this thesis could have plausibly used any multi-group

code, OpenMOC was chosen for its flexible Python interface, computationally efficient

algorithms, and the author's familiarity with the open source codebase.

This thesis inspired the development of new features and extensions which have

been incorporated into the official OpenMOC codebase. This section begins with a brief

overview of the MOC implementation in OpenMOC in Sec. 4.3.1. Various improvements

were made to the OpenMOC Python interface as discussed in Sec. 4.3.2, while Sec. 4.3.3

details a module created to interface with MGXS generated by OpenMC. The parallel

algorithms and numerical acceleration schemes in OpenMOC which were used by this

thesis are mentioned in Secs. 4.3.4 and 4.3.5, respectively

4.3.1 Methods Overview

The method of characteristics is a widely used technique for solving partial differential

equations, including the Boltzmann form of the neutron transport equation [67]. Al-

though not a stochastic formulation, MOC is a ray-based algorithm akin to Monte Carlo

particle tracking-based methods. In contrast to Monte Carlo, MOC uses a fixed angular

quadrature that is determined a priori. This quadrature is used to specify 1D character-
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mented for input generation and data processing, along with features includ-

ing distributed cell tallies and isotropic in lab scattering. The openmc .mgxs

Python module was created to generate MGXS from OpenMC tallies.



istics that cross the spatial domain. Prior to the physics computation, ray tracing must

be performed to subdivide each characteristic into segments within different regions in

the spatial mesh. Fig. 4-5 illustrates the spatial mesh and cyclic characteristic laydown

used by the OpenMOC code.

MOC propagates the angular neutron flux along each characteristic through each

spatial zone. For each segment, the angular flux is attenuated due to neutron absorption

and enhanced due to neutron fission or scattering in the corresponding spatial zone. MOC

uses the multi-group energy approximation such that this computation is performed

for neutrons within discretized energy groups (see Sec. 2.3.1). Finally, an angular

quadrature is applied to combine the average angular flux contribution from each

characteristic to compute the average scalar flux in each zone and energy group.

(a) (b) (c)
Figure 4-5: The coolant and fuel materials (a), flat source region spatial mesh (b), and
cyclic characteristic laydown (c) for a 4 x 4 fuel pin lattice taken from [68].

The OpenMOC code is capable of performing 2D MOC calculations for light water

reactor core configurations. OpenMOC discretizes the 2D geometry into flat source

regions (FSRs) which approximate the neutron source as constant across each spatial

zone 20 . Furthermore, OpenMOC approximates the scattering source as isotropic in the

lab coordinate system and is not yet able to use higher order scattering moment matrices.

OpenMOC uses a power iteration scheme to solve for the dominant eigenvalue and

eigenvector in criticality calculations. As part of this thesis, a general purpose fixed

source solver was implemented to enable the detailed investigation of approximation

20The neutron source may include any combination of fission, scattering and fixed sources.
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bias in MGXS as discussed in Chap. 6. The interested reader is referred to the online code

manual [69] for more information detailing the MOC implementation in OpenMOC.

4.3.2 Python Interface

One of the key reasons that OpenMOC was used by this thesis was to leverage its flexible

Python interface. The majority of the source code is written in C++ using object-oriented

software design principles. The Simplified Wrapper Interface Generator (SWIG) [70] is

deployed to expose the C++ classes and routines to the Python scripting language. The

Python interface made it possible to tightly couple OpenMOC with the rich ecosystem

of Python-based data processing and visualization tools for the spatial homogenization

methodology developed in Chaps. 7 to 10.

As part of this work, a new scheme was implemented to efficiently link OpenMOC's

Python and C++ CG data structures into a hierarchical tree-like data structure. This made

it possible to use the OpenCG region differentiation algorithm discussed in Sec. 4.4.3

to derive geometries for OpenMOC. In addition, a thread-safe memory management

model was realized which unifies the dynamic deallocation of objects shared between

Python and C++ code. The memory model enabled 100s of OpenMOC simulations to

be orchestrated by Python for the parametric studies considered in this thesis.

4.3.3 Multi-Group Cross Sections

OpenMOC uses multi-group macroscopic nuclear cross sections specified in any arbitrary

energy group structure. Isotopic concentrations are not used since OpenMOC does

not perform self-shielding or depletion calculations. Multi-group cross sections may be

specified for each material or cell in the CG used in a simulation. OpenMOC requires

total, fission production and scattering matrix cross sections along with a fission emission

spectrum l. In addition, a fission cross section may be optionally supplied in order to

compute spatially-varying fission reaction rates.

Cross section data is encapsulated by the Material class. A Material object may be

2 1Transport-corrected total cross sections and scattering matrices may be used in OpenMOC.
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instantiated in Python and cross section data loaded into it from NumPy arrays [57]. For

simulations with many different materials (such as those in this thesis), defining nuclear

cross section data by hand in a Python script is cumbersome and error prone. In order to

minimize this painstaking process, the openmoc .materialize module was implemented

to automate the loading MGXS data into OpenMOC Material objects. This module

can either import MGXS data from HDF5 binary files [56] or extract MGXS data from

OpenMC Library Python objects (see Sec. 4.2.4). The openmoc .materialize module

is designed to support large MGXS libraries such as those produced from the spatial

homogenization methodology introduced in Chaps. 7 to 10. In addition, a scheme to

compute SPH factors to ensure reaction rate consistency with OpenMC was implemented

in openmoc . materialize and is discussed in detail in Chap. 6.

4.3.4 Parallelism

OpenMOC's high performance parallel solvers for both multi-core Central Processing

Units (CPUs) and Graphic Processing Units (GPUs) were extensively used for the anal-

yses presented in this thesis. A shared memory parallel solver implemented in C++

using OpenMP [71] has demonstrated excellent scalability on a range of multi-core

architectures [68]. In addition, OpenMOC includes a highly parallel implementation

which uses the CUDA programming language [72] to run on NVIDIA GPUs with 100s

to 1000s of lightweight cores [73]. OpenMOC's parallel solvers made it possible to

perform large parametric studies of 100s of MOC simulations to evaluate the spatial

homogenization methodology introduced in Chaps. 7 to 10.

4.3.5 CMFD Acceleration

OpenMOC uses the Coarse Mesh Finite Difference (CMFD) acceleration scheme to greatly

reduce the number of iterations required to converge criticality calculations [48]. CMFD

acceleration functions by using the solution of a coarse mesh diffusion problem to

accelerate the convergence of the fine-mesh MOC transport problem. The details of

the CMFD implementation in OpenMOC are beyond the scope of this thesis, and the
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interested reader is referred to the online code manual [69] for more information.

CMFD acceleration was extensively used to accelerate the eigenvalue calculations

in this thesis. All simulations which employed CMFD used the novel k-Nearest Neigh-

bors prolongation scheme created by Shaner [74] and implemented in OpenMOC to

improve the convergence rate and stability of CMFD. In particular, all simulations used

three neighbors along with a successive over-relaxation (SOR) factor of unity. Along

with OpenMOC's parallel solvers, CMFD acceleration made it feasible to perform large

parametric studies to generate the results presented in this thesis.

The OpenMOC code was used to perform 2D deterministic multi-group MOC

calculations. The openmoc. materialize module was improved to support

MGXS generated from OpenMC. OpenMOC's parallel algorithms and CMFD

acceleration enabled parametric studies of 100s of OpenMOC simulations.

4.4 OpenCG

The OpenCG code [49] was created to simplify the process of creating and transferring

data mapped to combinatorial geometries for OpenMC and OpenMOC. Combinatorial

geometry 2 is commonly used by neutron transport simulation codes since it:

" Permits description of an arbitrarily accurate unstructured geometric mesh

e Provides a compact representation with minimal input description

* Represents O(n) components with O(log n) memory requirements

e Utilizes a hierarchical tree data structure with scalable ((log n) traversals

Although many codes utilize CG, it is overly burdensome to manually write geometric

input files for multiple simulation tools for code verification of a single reactor model.

In addition, the compact geometric representation is not well-suited for large scale

analysis of spatially-varying data in nuclear reactor cores - such as distributed cell tally

data in OpenMC - without new algorithms to guide and automate the process. This
2 2 CG is often referred to as constructive solid geometry in the neutron transport literature.
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thesis developed a new CG modeling tool called OpenCG to accelerate the building of

complicated reactor geometries, enable rapid cross-code verification and facilitate large

scale data processing.

OpenCG is a simple-to-use Python library which may be used to construct a single

geometry for use in both OpenMC and OpenMOC. In addition, OpenCG enables data

transfer between OpenMC and OpenMOC as illustrated in Fig. 4-1. In particular, OpenCG

accommodates the generation of MGXS from distributed cell tallies on OpenMC's CG

mesh and maps them to the flat source region spatial mesh used by OpenMOC. A

variant of OpenMC's distributed cell tally algorithm (see Sec. 4.2.2) was implemented

in OpenCG to make this possible. In addition to transferring MGXS data, OpenCG

enabled the comparison of pin-wise reaction rate distributions computed from OpenMC

distribcell tallies with those computed on OpenMOC's Flat Source Region (FSR) mesh.

The following sections outline the key features implemented in OpenCG for this thesis

and follows a recent paper by this author [49]. Sec. 4.4.1 discusses the compatibility

modules which tie OpenCG, OpenMC and OpenMOC into a simulation triad. In addition,

two novel algorithms known as Local Neighbor Symmetry (LNS) and region differenti-

ation were developed in OpenCG to enable the spatial homogenization methodology

introduced in this thesis, and are presented in Secs. 4.4.2 and 4.4.3, respectively.

4.4.1 Compatibility Modules

The simulation triad of OpenCG, OpenMC and OpenMOC shown in Fig. 4-1 is made

possible with compatibility modules. The compatibility modules allow the construction

of a single geometry using OpenCG's Python CG primitives for surfaces, cells, universes

and lattices. The OpenCG geometry may then be exported to OpenMC or OpenMOC

using compatibility modules developed for each code.

For example, OpenMC includes a Python API with object-oriented CG primitives.

This API's primitives include routines to directly export themselves to the XML input file

format used by OpenMC. The OpenCG-OpenMC compatibility module allows OpenCG's

primitives to be transformed into the corollaries within the OpenMC Python API, and
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vice versa. Likewise, the OpenCG-OpenMOC compatibility module allows OpenCG's

primitives to be transformed into the corollaries within the OpenMOC Python/C++

code. In summary, the compatibility modules enable the rapid, automated exportation

of various OpenCG geometries directly to OpenMC and OpenMOC.

OpenCG's object-oriented Python software model permits greater freedom for ge-

ometric parameter optimization than can be easily achieved with traditional ASCII or

XML input files. In particular, the compatibility module framework enabled a dynamic

workflow between OpenMC and OpenMOC for MGXS generation and code verification

in this thesis. For example, OpenCG's region differentiation algorithm (see Sec. 4.4.3)

was used to produce 100s of geometries composed with different MGXS libraries to

evaluate the spatial homogenization methodology introduced in Chaps. 7 to 10.

4.4.2 Local Neighbor Symmetry

One of the unique algorithms implemented in OpenCG explicitly for this thesis is known

as Local Neighbor Symmetry (LNS) identification [49]. The LNS algorithm is motivated

by this thesis' objective to accurately predict spatial zones that experience similar spectral

self-shielding effects. The LNS algorithm performs a systematic analysis of a CG tree

data structure to identify neighbor cells, or pairs of cells which are adjacent to one

another. The neighbor cells are assembled into a heuristic which groups like spatial

zones with common LNS identifiers. The LNS algorithm is analogous to the geometric

templates used in lattice physics codes such as CASMO [75] to identify fuel pins which

have similar MGXS in a fuel assembly.

The LNS algorithm identifies the unique symmetry for the path to a region in a

combinatorial geometry as described in Alg. 4-1. LNS performs a Breadth-First Search

(BFS) to find neighbors on each level of the CG tree. For example, BFS is used to

find neighbor cells for a particular cell within a universe. Similarly, BFS is used to

find neighbor universes adjacent to a particular lattice cell. The neighbor cells and

universes on each of the k levels of a CG tree are connected to form a k-partite graph2 3

23A k-partite graph is a graph whose graph vertices can be partitioned into k disjoint sets so that no two
vertices within the same set are adjacent [76].
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as depicted in Fig. 4-6. Finally, the k-partite graph is used as an argument to a hash

function to compute the LNS identifier (e.g, a non-negative integer) for the particular

region represented by the path. This algorithmic formulation is general to any arbitrary

combinatorial geometry, including those commonly used to model LWRs with nested

rectilinear lattices.

Algorithm 4-1: Local Neighbor Symmetry Identification

1: procedure COMPUTENEIGHBORSYMMETRY(path)

2: G +- 0 t Initialize empty set for graph
3: k <- length(path) > Find number of independent sets
4: for i := 1,k do
5: if type(path[i]) is UNIVERSE then
6: G <- G U {path[i]} i> Append universe to graph
7: else if type(path[i]) is LATTICE then
8: N <- BREADTHFIRSTSEARCH(path[i]) b Find lattice cell neighbors
9: G- G U I{N} > Append neighbors to graph

10: else if type(path[i]) is CELL then
11: N <- BREADTHFIRSTSEARCH(path[i]) > Find cell neighbors
12: G +- G U {N} > Append neighbors to graph
13: end if
14: end for
15: return HASH(G) > Return k-partite graph hash
16: end procedure

Universes Cells Universes Lattice Universes Cells Cells

1 2 3 4 5 6 k
Figure 4-6: An example k-partite graph structure used to identify local neighbor sym-
metries. Red nodes correspond to the universes/cells encapsulating a region of interest,
green nodes correspond to the neighbors of that region, and gray nodes correspond to
universes/cells which are not neighbors. Red and green nodes at each level are combined
into an argument for a hash function to generate a LNS ID for the region of interest.

Several parameters are incorporated into OpenCG's LNS API to provide the user with

various methods to adjust the number of symmetries discovered by the algorithm. For
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example, OpenCG includes general and unique neighbor identifiers. General neighbors

includes all neighbor cells/universes found by BFS - including duplicates - as separate

nodes in the k-partite graph. For example, a single universe may be placed multiple

times around a lattice cell, each instance of which will be independently discovered

by BFS and replicated as a distinct node within the graph. On the contrary, unique

neighbors does not include duplicate cells/universes - only unique cells/universes are

represented by distinct nodes in each independent set in the k-partite graph. A few

diagrams of general and unique LNS applied to two geometries are depicted in Fig. 4-7.

To this author's knowledge there is no other implementation of LNS aside from

that in the OpenCG code. The LNS algorithm was used extensively in this thesis as

a deterministic "clustering" technique for the spatial homogenization methodology

introduced in Chaps. 7 to 10. In particular, LNS was used to predict which fuel pins

have similar MGXS in LWRs due to spatial self-shielding effects induced by neighboring

fuel, guide tube and absorber pins. The LNS scheme served as a proxy to the traditional

geometric template approach used in lattice physics codes to group pins with like MGXS.

The spatial homogenization methodology developed in Chaps. 7 to 10 incorporates MC

tally data in unsupervised clustering in an attempt to outperform LNS' analysis based

solely on the geometry.

4.4.3 Region Differentiation

As previously noted, one of the advantages of combinatorial geometry is that it can take

advantage of patterned structures with repeating primitives. In certain use cases, how-

ever, it may be necessary to replicate certain primitives which have the same geometric

properties but experience very different radiation and/or thermal hydraulic conditions,

and hence have different material properties in a transport simulation. For example, the

LNS algorithm is useful for identifying groups of fuel pin cell instances which may have

similar MGXS. However, in order for a transport code to make use of LNS, a replica of

each cell must be made to represent each of its different LNS identifiers.

The process of manually constructing a CG with many replicated but geometrically
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Figure 4-7: Two rectilinear lattice geometries are depicted to illustrate the use of local
neighbor symmetry identification [49]. The cells are depicted for (a) a 17x 17 PWR
lattice and (b) a 3x3 colorset of two different 17 x 17 PWR assemblies each with
burnable absorbers, guide tubes and instrument tubes. The unique neighbor symmetry
identifiers are color-coded in (b) and (c) for the assembly and colorset, respectively.
Likewise, the general neighbor symmetry identifiers are color-coded in (d) and (f).
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identical cells is very time consuming and prone to errors. To address this issue, a novel

algorithm termed region differentiation was implemented in OpenCG to efficiently and

systematically reconstruct a CG with replicated cells [491. A characterization of the

region differentiation algorithm applied to a CG tree data structure is shown in Fig. 4-8.

The region differentiation algorithm is implemented in OpenCG and presents an

interface which takes in a set of arbitrarily formed region groupings. A region grouping

is the set of all regions, that reference a particular cell in the geometry. Alternatively, a

region grouping can be thought of as a set of repeated instances of a cell throughout a

combinatorial geometry. Two or more region groupings corresponding to the same cell

designate specific cell instances that should be replicated. The region differentiation

algorithm replicates cells, universes, and lattices for each region grouping.

A naive or brute-force implementation of the region differentiation algorithm would

scale as ((kn!) in both memory and time for k nested universe/cell levels and n region

groupings. The reason is that a priori, the algorithm does not know from which region

groupings various cell instances will combine with one another to form universes, lattices

and/or cells, which must themselves be differentiated for each possible combination of

region groupings. To avoid factorial scaling, OpenCG makes use of dynamic programming

to efficiently differentiate primitives one level at a time within the geometry.

The region differentiation algorithm iterates over each level of nested universes and

cells. At each step, the paths for each region starting from the current level in the CG

tree and ending with the root universe node are hashed and stored in a hash table linked

to the region grouping. Next, the algorithm manages primitive collisions when two or

more region groupings with the same path in the hash table point to the same primitive

(cell, universe or lattice). To resolve primitive collisions, the algorithm differentiates

the primitive for each region grouping involved in the collision. As primitive collisions

are resolved, the algorithm merges any region groupings with paths that hash to same

value in the hash table. The algorithm's termination condition is reached when the hash

table only has one entry - i.e., paths for all regions hash to the same value.

The region differentiation algorithm was an indispensable component of the simula-

tion triad used to explore novel MGXS generation techniques in this thesis. In particular,

102



Regions Cells Universes Lattices Cells Universes Lattices Cells Universes

(a)

(b)

(c)

(d)

(e)
Figure 4-8: A few of the stages of the region differentiation algorithm [49]. The
regions (cell instances) to be differentiated are grouped and colored blue, orange, green
and purple in (a). The first levels of cells and universes for each region group are
differentiated in (b). The same is done for the lattices in (c). The algorithm continues
to recursively differentiate cells, universes and lattices until no region groups collide at
any level of the CG tree in (e).
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region differentiation made it possible to rapidly construct geometries to reflect the

assignment of MGXS to arbitrary collections of fuel pins for the spatial homogenization

methodology introduced in Chaps. 7 to 10. Fig. 4-9 illustrates a flow diagram where

the LNS algorithm identifies the region groupings input to the region differentiation

algorithm. The geometry produced from region differentiation may then be exported for

use in OpenMC or OpenMOC using the compatibility modules discussed in Sec. 4.4.1.

QpenMC

OpenCG
Geometry Region

+
Differentiation . U-' .

New OpenCG
Geometry

Neighbor
Symmetry

Figure 4-9: The OpenCG LNS algorithm may be used to generate region groupings for
the region differentiation algorithm to create a geometry for OpenMC or OpenMOC.

The OpenCG code was implemented to facilitate data transfer between OpenMC

and OpenMOC. The LNS and region differentiation algorithms supported the

novel spatial homogenization methodology developed in Chaps. 7 to 10.

eA framework consisting of the OpenMC, OpenMOC and OpenCG were used

to explore MC-based MGXS generation methods for fine-mesh transport

calculations.
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" A fully-featured Python API was developed to support input generation and

downstream processing of large tally datasets for OpenMC.

" The openmc . mgxs Python module was created to generate MGXS from OpenMC

tallies. The distributed cell tally algorithm was implemented to generate

pin-wise MGXS in large, heterogeneous geometries.

* New features were added to the deterministic multi-group OpenMOC code to

enable it to use MGXS generated by openmc . mgxs in 2D MOC calculations.

" The OpenCG code was created to facilitate data processing and transfer on

the combinatorial geometry meshes used by OpenMC and OpenMOC.

" OpenCG's LNS and region differentiation algorithms were crucial components

for the spatial homogenization methodology developed in Chaps. 7 to 10.
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Part III

Approximation Error
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Chapter 5

Quantifying MGXS Approximations

As discussed in Chapter 2, a number of approximations are made in the multi-group

formulation of the neutron transport equation and the MGXS generation process. These

approximations remain even if one uses the "true" scalar flux for energy condensation

and spatial homogenization, as is the case with energy condensation and spatial homog-

enization in Monte Carlo24 . The observed bias between a continuous energy MC and a

multi-group deterministic calculation reflects the convolution of these approximations,

which may (or may not) lead to some degree of fortuitous cancellation of error. Although

this thesis is motivated by the need for MGXS for full-core calculations, it is instructive to

investigate the approximations inherent in multi-group theory and quantify their impact

for simple benchmark models.

In this chapter, a series of case studies is devised to systematically quantify biases in-

herent to the energy condensation and spatial homogenization process (es) in multi-group

transport theory. The results underline the complex interactions between discretizations

in energy, space and angle. Various convergence studies with respect to each of these

variables are presented to quantify the resulting magnitude of the bias induced between

continuous energy Monte Carlo and multi-group deterministic calculations. The results

in this chapter illustrate the loss in accuracy resulting from scalar flux-weighted total

MGXS due to the flux separability approximation (see Sec. 2.3.2), and highlight the need

2 4 By the Law of Large Numbers, the MC flux will be exactly correct in the limit of an infinite number of

particle histories, though it is only a "noisy" proxy for a finite number of particles.
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for models of the angular dependency in MGXS for fine-mesh deterministic neutron

transport. Finally, this chapter verifies the data pipeline used to compute multi-group

cross sections with OpenMC for use in OpenMOC (see Chap. 4).

5.1 Case Studies

This chapter investigates the loss in accuracy resulting from approximations made in

both the MOC equations as well as the MGXS generation scheme with OpenMC. The

benchmarks are designed to illustrate the emergence of the approximation errors as

spatial heterogeneity is introduced in the geometric models. The approximation errors

are quantified for a variety of geometric and material configurations based on a standard

PWR. In each case, the bias Ap compares the eigenvalue k OVnMoc computed with MGXS

in OpenMOC to that of the reference eigenvalue kopenmc computed with continuouseff

energy cross sections in OpenMC in units of pcm:

Ap = (k fOnMOC - k OpnMc) x 105  (5.1)

In each case study, the role of angular discretization in MOC is quantified through

convergence studies of the number of azimuthal angles and the track spacing used in

the deterministic MOC calculations. The effects of energy discretization are analyzed

for MGXS tallied in the CASMO [77] energy group structures ranging from 1 - 70

groups (see App. A). For each of the case studies with heterogeneous geometries, the

spatial domain is discretized in OpenMOC's FSR mesh with constant-by-material MGXS

to quantify the interaction between the energy and spatial approximations. Spatial

discretization studies show the impact of tallying MGXS in each of the FSRs used in the

discretized OpenMOC geometry. Finally, MGXS libraries were tallied using OpenMC's

iso-in-lab feature (see Sec. 4.2.3) to quantify the impact of the isotropic in lab scattering

approximation used in OpenMOC. Inter-pin spatial self-shielding effects are not treated

here as they are studied in detail in Chaps. 7 to 10. In each case study, OpenMOC was

converged to a criterion of 10-7 on the root mean square of the energy-integrated fission
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source in each FSR.

5.1.1 Homogeneous Infinite Medium

An initial series of case studies were performed for a homogeneous infinite medium

problem. The isotopic composition of the infinite medium was a homogenized mixture

derived from the 1.6% enriched U0 2 PWR fuel pin in the BEAVRS PWR model [62]

and is described in Tab. 5.1. No approximation is made in the multi-group formulation

of the transport equation in the case of homogeneous infinite media. As a result,

neutron balance should be exactly preserved within numerical precision in deterministic

calculations with MGXS computed in any energy group structure, assuming the MC

tallies used to compute MGXS are sufficiently converged.

Table 5.1: Homogeneous infinite medium isotopic composition.

Nuclide Density [atoms / b-cm]

H-1 4.12377E-2

0-16 2.06218E-2

Zr-90 3.00904E-3

U-235 1.62310E-4

U-238 9.79198E-3

The reference eigenvalues computed with continuous energy cross sections in OpenMC

are shown in Tab. 5.2 for both normal anisotropic as well as iso-in-lab scattering. As one

would expect for a homogeneous infinite medium, the eigenvalues for anisotropic and

iso-in-lab scattering agree to within one standard deviation of the mean. The reference

calculations were computed for 100 batches of 108 particles per batch. The openmc .mgxs

module was used to compute 70-group libraries of E t,,g, s,k,g'g,, Vf,g, and ^g from

OpenMC tallies (see Tab. 3.1).

Table 5.2: Reference kPenc for a homogeneous infinite medium.

Anisotropic Isotropic in Lab

1.15908 0.00001 1.15907 0.00001
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5.1.1.1 Angular Discretization

The first case study investigated the sensitivity of the OpenMOC eigenvalue to the

angular discretization used in the MOC calculation. Tab. 5.3 presents the bias Ap

between OpenMC and OpenMOC for a matrix of azimuthal angles and track spacings.

The results for both normal and iso-in-lab scattering indicate consistent agreement of

the eigenvalues irregardless of track discretization. This result is expected since the

neutron source is isotropic in homogeneous infinite media and does not depend on the

angular discretization used to solve the eigenvalue problem.

Table 5.3: Convergence study of the eigenvalue bias Ap with varying azimuthal angle
quadratures and track spacings for a homogeneous infinite medium.

Track Spacing [cm]

0.1 0.01 0.001 0.1 0.01 0.001

# Angles Anisotropic Isotropic in Lab

4 1.3 1.3 1.3 -0.1 -0.1 -0.1

8 1.3 1.3 1.3 -0.1 -0.1 -0.1

16 1.3 1.3 1.3 -0.1 -0.1 -0.1

32 1.3 1.3 1.3 -0.1 -0.1 -0.1

64 1.3 1.3 1.3 -0.1 -0.1 -0.1

128 1.3 1.3 1.3 -0.1 -0.1 -0.1

5.1.1.2 Energy Condensation

A second case study investigated the variation of the OpenMOC eigenvalue with the

energy group structure used in the MOC calculation. Tab. 5.4 presents the bias /p

between OpenMC and OpenMOC for a matrix of energy group structures and FSR spatial

discretizations. The OpenMOC calculations each used 128 azimuthal angles and 0.01

cm track spacing. Although the eigenvalues differ by approximately 10 pcm for 1 and 2

groups, the OpenMOC eigenvalues match the eigenvalues computed analytically from

the 1- and 2-group MGXS to within 1 pcm. The 10 pcm bias may be due to numerical

roundoff error since the MGXS library was tallied in 70 groups in OpenMC and condensed

to the coarser group structures with data processing by the openmc .mgxs module.
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Table 5.4: Convergence study of the eigenvalue bias Ap with varying energy group
structures for a homogeneous infinite medium.

# Groups Anisotropic Isotropic in Lab

1 -11.1 -10.5

2 -9.5 -7.1

4 -0.1 -0.5

8 0.3 0.0

16 -0.2 0.5

25 1.8 0.1

40 1.6 0.1

70 1.3 -0.1

The eigenvalues for a homogeneous infinite medium agree to within nearly

10 pcm for all MOC angular discretizations and energy group structures.

5.1.2 1D Slab

A simple slab model was constructed to quantify approximation errors in a 1D hetero-

geneous geometry with spatial self-shielding. The slab model was constructed as an

"equivalent" 1D model to the 2.4% enriched U0 2 PWR fuel pin in the BEAVRS PWR

model [62]. The geometric configuration of U0 2 fuel, helium gap, zirconium clad and

water moderator is illustrated in Fig. 5-1 and the dimensions for each material zone

are shown in Tab. 5.5. The width of each spatial region was chosen to preserve the

volumetric fraction of each material in the slab with those in the corresponding 2D

fuel pin 2s. Reflective boundary conditions were applied to all x, y and z boundaries in

the geometry. The isotopic composition of each material in the slab is identical to the

BEAVRS fuel pin and is itemized in Tab. 5.6.

The reference eigenvalues computed with continuous energy cross sections in OpenMC

are shown in Tab. 5.7 for both normal anisotropic as well as iso-in-lab scattering. The

reference calculations were computed for 100 batches of 107 particles per batch. The

reference eigenvalues for the two cases vary by nearly 75 pcm due to anisotropies re-

25A truly "equivalent" slab would preserve the mean chord lengths of each material in the 2D fuel pin.
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* Clad 0 Moderator

(a)

(b)
Figure 5-1: A ID slab with fuel, clad and moderator (a). Linearly-spaced tally zones
were defined in the fuel and moderator in OpenMC and as FSRs in OpenMOC (b).

Table 5.5: 1D slab dimensions.

Material Width [cm]

Fuel 0.19177

Gap 0.00777

Clad 0.06109

Water 0.36929

Table 5.6: 1D slab isotopic composition.

Material Nuclide Density [atoms / b-cm]

0-16 4.58508E-2

U0 2  U-235 5.58415E-4

U-238 2.24186E-2

Helium He-4 2.40428E-4

0-16 6.14041E-4

Zircaloy Fe-56 2.71837E-4

Zr-90 4.35958E-2

H-I 4.95774E-2

Water B-10 8.02369E-6
B-11 3.22964E-5

0-16 2.47320E-2
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sulting from thermal scattering in the moderator. The openmc . mgxs module was used

to compute 70-group libraries of Et,k,,, Et,k,g Es,k,g'_g, Es,k,g_g, VEf,g, and Xg from

OpenMC tallies (see Tab. 3.1).

Table 5.7: Reference ko"PenMc for a 1D slab.ef f

Anisotropic Isotropic in Lab

1.16275 0.00003 1.16202 0.00003

5.1.2.1 Angular Discretization

The first case study investigated the convergence of the OpenMOC eigenvalue with the

angular discretization used in the MOC calculation. Tab. 5.8 presents the bias Ap be-

tween OpenMC and OpenMOC for a matrix of azimuthal angles and track spacings. Two

different 70-group MGXS libraries were computed from OpenMC tallies with anisotropic

and iso-in-lab scattering. No transport correction was applied to the total cross section

E,, or the scattering matrix s,,_,g. No spatial discretization was applied to the

materials for the FSR mesh in OpenMOC. The results for anisotropic and iso-in-lab

scattering exhibit a bias resulting from the multi-group approximation which converges

to 170 and 280 pcm, respectively The magnitude of the bias appears to converge with

128 azimuthal angles and was largely insensitive to the track spacing. The MGXS tallied

with iso-in-lab scattering in OpenMC eliminates the isotropic scattering approximation in

OpenMOC but increases the overall bias by over 100 pcm with respect to the anisotropic

case due to the cancellation of other approximation errors.
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Table 5.8: Convergence study of the 70-group eigenvalue bias Ap with varying az-
imuthal angle quadratures and track spacings for a 1D slab.

Track Spacing [cm]

0.1 0.01 0.001 0.1 0.01 0.001

# Angles Anisotropic Isotropic in Lab

4 731 731 731 840 840 840

8 472 339 323 581 448 432

16 282 166 149 390 275 257

32 154 135 131 262 243 239

64 158 146 156 266 254 265

128 165 164 169 274 272 278

256 161 171 172 270 280 280

512 165 170 172 274 278 281

5.1.2.2 Energy Condensation and FSR Discretization

The second case study investigated the variation of the OpenMOC eigenvalue with the

energy group structure used in the MOC calculation. This case study simultaneously

varied the FSR discretization used in the OpenMOC simulation. The fuel and moderator

were modeled with 1 - 16 equal volume FSRs in each material. The gap and clad

were each modeled with a single FSR. Tab. 5.9 presents the bias Ap between OpenMC

and OpenMOC for a matrix of energy group structures and FSR spatial discretizations.

In each case, the MGXS used in OpenMOC were tallied by material rather than FSR

in OpenMC (i.e., the spatial tally mesh corresponded to Fig. 5-la). The OpenMOC

calculations each used 128 azimuthal angles and 0.01 cm track spacing. The slab was

discretized into 1 - 16 equal volume FSRs in the fuel and moderator.

The results illustrate a strong interaction between the energy and spatial meshes used

to solve the multi-group transport equation. The eigenvalue bias varies by up to 150

pcm between energy group structures and nearly 400 pcm between FSR discretizations.

The application of the transport correction reduces the bias by 55 pcm for the 70-group

structure and 16x FSR discretization. The use of the iso-in-lab scattering feature reduces

the bias by an additional 50 pcm with respect to anisotropic scattering.
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Table 5.9: Convergence study of the eigenvalue bias Ap with varying energy group
structures and FSR spatial discretizations for a 1D slab with MGXS tallied by material.

# Groups

1

2

4

8

16

25

40

70

1x 2x

FSR Discretization

4x 8x 16x

Anisotropic without Transport Correction

70

106

112

158

182

146

155

164

71

-16

-2

-13

-9

-37

-40

-38

72

-80

-63

-109

-117

-143

-155

-156

72

-101

-90

-149

-162

-190

-205

-208

71

-85

-87

-160

-173

-201

-217

-221

Anisotropic with Transport Correction

1 87 88 88 88 87

2 285 211 175 167 189

4 188 113 75 51 63

8 211 81 13 -23 -24

16 232 82 1 -39 -40

25 148 -1 -89 -123 -128

40 148 -14 -111 -149 -156

70 153 -16 -118 -158 -166

Isotropic in Lab

1 132 134 135 135 133

2 289 167 102 81 97

4 226 112 50 24 26

8 296 126 30 -10 -21

16 321 131 22 -22 -33

25 258 75 -31 -78 -88

40 262 67 -47 -98 -110

70 272 71 -48 -100 -113
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5.1.2.3 Spatial Homogenization and FSR Discretization

Finally, a case study was performed to investigate the sensitivity of the OpenMOC

eigenvalue to the spatial tally mesh used to compute MGXS. This study was identical

to that presented in Sec. 5.1.2.2, but the MGXS were computed using a tally mesh in

OpenMC identical to the FSR mesh used by OpenMOC. Tab. 5.10 presents the bias

Ap for a matrix of energy group structures and MGXS spatial tally zone meshes. In each

case, the MGXS were tallied on the FSR mesh with 1 - 16 equal volume subdivisions

in the fuel and moderator, with a single subdivision each in the gap and clad (i.e., the

spatial tally mesh corresponded to Fig. 5-1b). The OpenMOC calculations each used

128 azimuthal angles and 0.01 cm track spacing.

The trends analyzed in Tab. 5.9 emerge in a nearly identical manner with spatially-

dependent 26 MGXS in Tab. 5.10. In particular, the eigenvalue bias grows in magnitude

with more energy groups, and is largely invariant to FSR spatial discretization or the

elimination of the isotropic scattering approximation with iso-in-lab scattering. Most

importantly, the results in Tab. 5.10 indicate that spatial self-shielding effects (e.g., varia-

tions in the flux energy spectrum across the fuel) captured with spatially-dependent scalar

flux-weighted MGXS for each FSR do not have a substantial impact on the systematic

errors in the eigenvalue for this 1D slab problem.

A systematic bias of -100 to -200 pcm exists between OpenMC and OpenMOC

for a 1D slab. The bias varies with the FSR discretization and grows with more

energy groups. The bias is partially eliminated with iso-in-lab scattering, and

is largely invariant to the spatial mesh used to generate MGXS.

26 in this context, spatially-dependent refers to MGXS defined on the FSR rather than the material mesh.
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Table 5.10: Convergence study of the eigenvalue bias Ap with varying energy group
structures and FSR spatial discretizations for a ID slab with MGXS tallied by FSR.

# Groups

1

2

4

8

16

25

40

70

1x 2x

FSR Discretization

4x 8x 16x

Anisotropic without Transport Correction

68

104

110

156

180

144

153

162

107

9

10

-11

-10

-39

-42

-39

111

-63

-36

-86

-97

-127

-138

-142

78

-107

-80

-144

-158

-180

-196

-202

113

-82

-71

-141

-153

-173

-190

-198

Anisotropic without Transport Correction

1 85 90 103 92 98

2 283 213 189 167 201

4 186 120 96 62 86

8 209 84 26 -19 -11

16 230 84 11 -40 -31

25 146 -3 -82 -125 -118

40 147 -16 -107 -152 -147

70 152 -19 -114 -161 -156

Isotropic in Lab

1 139 97 127 162 140

2 296 145 100 90 88

4 233 125 77 61 51

8 304 136 45 7 -9

16 329 139 38 -6 -23

25 266 83 -11 -54 -70

40 270 75 -29 -73 -89

70 280 76 -33 -81 -93
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5.1.3 2D Fuel Pin Cell

A PWR fuel pin cell model was constructed to quantify approximation errors in a 2D

heterogeneous geometry with spatial self-shielding. The pin cell is identical to the 2.4%

enriched U0 2 PWR fuel pin in the BEAVRS PWR model [62]. The geometric configuration

of U0 2 fuel, helium gap, zirconium clad and water moderator is illustrated in Fig. 5-2

and the dimensions for each material zone are shown in Tab. 5.11. Reflective boundary

conditions were applied to all boundaries in the geometry. The isotopic compositions of

each material in the fuel pin were identical to those used in the 1D slab (see Tab. 5.6).

Table 5.11: 2D fuel pin dimensions.

Material Dimension [cm]

Fuel Outer Radius 0.39218

Gap Outer Radius 0.40005

Clad Outer Radius 0.45720

Pin Pitch 1.25984

(a) (b) (c)
Figure 5-2: A PWR fuel pin cell with fuel, gap, clad and moderator (a). Radial tally
zones were defined in each material in OpenMC (b). The tally zones were further
subdivided into angular sectors for the FSR mesh in OpenMOC (c).

The reference eigenvalues computed with continuous energy cross sections in OpenMC

are shown in Tab. 5.12 for both normal anisotropic and iso-in-lab scattering. The ref-

erence calculations were computed for 100 batches of 107 particles per batch. The
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reference eigenvalues for the two cases vary by 65 pcm due to anisotropic thermal

scattering in the moderator, roughly the same as that for the ID slab geometry. The

opennc . mgxs module was used to compute 70-group libraries of Et,k,g Et,k,g, Es,k,g'--g,

Ls,k,g'--+g, VYf,g, and X g from OpenMC tallies (see Tab. 3.1).

Table 5.12: Reference ko"Penmc for a 2D fuel pin.eff

Anisotropic Isotropic in Lab

1.17486 0.00003 1.17421 0.00002

5.1.3.1 Angular Discretization

The first case study investigated the convergence of the OpenMOC eigenvalue with the

angular discretization used in the MOC calculation. Tab. 5.13 presents the bias Ap

for a matrix of azimuthal angles and track spacings. Two different 70-group MGXS

libraries were computed from OpenMC tallies with anisotropic and iso-in-lab scattering.

No transport correction was applied to the total cross section Et,k,g or the scattering

matrix Fskg--g A single radial tally zone was applied to each material for the MGXS

calculation with OpenMC. The fuel and moderator were each discretized into 5 equal

volume radial rings, and each material zone was discretized into 8 angular sectors for

the FSR mesh in OpenMOC. The results for both normal anisotropic scattering and

iso-in-lab scattering exhibit a few hundred pcm bias which appears to converge with

128 azimuthal angles and is largely invariant with the track spacing. The MGXS tallied

with iso-in-lab scattering in OpenMC converge to an eigenvalue that is roughly 95 pcm

less than that computed for the anisotropic case, with a bias of approximately -170 pcm.

Although the bias is of the same order of magnitude as that observed for the ID slab in

Tab. 5.8, the trend is reversed for anisotropic and isotropic in lab scattering.
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Table 5.13: Convergence study of the 70-group eigenvalue bias Ap with varying
azimuthal angle quadratures and track spacings for a 2D fuel pin.

Track Spacing [cm]

0.1 0.01 0.001 0.1 0.01 0.001

# Angles Anisotropic Isotropic in Lab

4 372 425 427 467 519 521

8 -377 -419 -418 -282 -325 -323

16 -436 -408 -412 -341 -314 -318

32 -324 -338 -331 -230 -244 -236

64 -256 -296 -285 -162 -202 -191

128 -285 -276 -267 -190 -182 -173

256 -277 -267 -265 -182 -173 -171

512 -273 -263 -264 -179 -169 -170

5.1.3.2 Energy Condensation and FSR Discretization

The second case study investigated the variation of the OpenMOC eigenvalue with the

energy group structure used in the MOC calculation. This case study simultaneously

varied the FSR discretization used in the OpenMOC simulation. The FSR mesh in the

fuel and moderator consisted of 1 - 16 equal volume radial rings in each material with

8 angular sectors. The gap and clad were modeled with a single radial zone subdivided

into 8 angular sectors. Tab. 5.14 presents the bias Ap between OpenMC and OpenMOC

for a matrix of energy group structures and FSR spatial discretizations. In each case,

the MGXS used in OpenMOC were tallied by material rather than FSR in OpenMC (i.e.,

the spatial tally mesh corresponded to Fig. 5-2a). The OpenMOC calculations used 128

azimuthal angles and 0.01 cm track spacing. Each of the materials in the fuel pin was

discretized into 8 angular sectors. The fuel and moderator were each discretized into 1 -

16 equal volume radial rings.

As was demonstrated for the ID slab, the results for the fuel pin indicate a strong

interaction between the energy and spatial discretization. The eigenvalue bias exhibits a

swing of -350 pcm between energy and spatial meshes. The bias exceeds 200 pcm for

all scattering approximations. The application of the transport correction only reduces
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Table 5.14: Convergence study of the eigenvalue bias Ap with varying energy group
structures and FSR spatial discretizations for a 2D fuel pin with MGXS tallied by material.

# Groups

1

2

4

8

16

25

40

70

1x 2x

FSR Discretization

4x 8x 16x

Anisotropic without Transport Correction

65

21

-60

-77

-74

-130

-133

-134

66

-23

-100

-137

-141

-194

-201

-204

66

-54

-129

-183

-194

-245

-257

-263

66

-65

-143

-204

-219

-272

-286

-294

66

-64

-151

-215

-230

-281

-296

-304

Anisotropic with Transport Correction

1 51 52 52 52 51

2 35 6 -13 -19 -11

4 -60 -89 -109 -125 -126

8 -76 -123 -158 -181 -184

16 -69 -124 -165 -192 -196

25 -126 -180 -223 -249 -252

40 -131 -190 -239 -267 -271

70 -133 -194 -246 -276 -280

Isotropic in Lab

1 79 80 80 80 80

2 140 96 65 53 55

4 26 -14 -43 -57 -65

8 25 -35 -81 -102 -113

16 34 -33 -86 -110 -122

25 -32 -95 -147 -173 -182

40 -39 -107 -163 -192 -202

70 -40 -110 -169 -199 -210

the bias by up to 25 pcm depending on the energy group structure. The use of the

iso-in-lab scattering feature reduces the bias by roughly 1/3 or 100 pcm. As was observed
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for the ID slab, the converged bias is negative for all scattering approximations.
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5.1.3.3 Spatial Homogenization and FSR Discretization

A final case study was performed to investigate the sensitivity of the OpenMOC eigenvalue

to the spatial tally mesh used to compute MGXS. This case study was identical to that

presented in Sec. 5.1.3.2, but in this case the MGXS were computed using a tally

mesh in OpenMC identical to the FSR mesh used by OpenMOC. Tab. 5.15 presents

the bias for a matrix of energy group structures and MGXS spatial tally zone meshes.

In each case, the MGXS were tallied on the FSR mesh used in OpenMOC with 1 - 16

equal volume rings in the fuel and moderator, with a single ring each for the gap and

clad (i.e., the spatial tally mesh corresponded to Fig. 5-2b). The OpenMOC calculations

used 128 azimuthal angles and 0.01 cm track spacing.

The trends analyzed in Tab. 5.14 emerge in a similar manner with spatially-dependent

MGXS. In particular, the eigenvalue bias grows in magnitude with more energy groups

and FSRs but is largely insensitive to the the elimination of the isotropic scattering

approximation. As was observed for the 1D slab, the overall systematic error between

OpenMC and OpenMOC is not resolved and in fact increases with greater spatial reso-

lution of the MGXS. The results in Tab. 5.15 indicate that spatial self-shielding effects

captured with spatially-varying scalar flux-weighted MGXS for each FSR do not have a

substantial impact on the systematic errors in the eigenvalue.

A systematic bias of -200 to -300 pcm exists between OpenMC and OpenMOC

for a 2D fuel pin. The bias varies with the FSR discretization and grows with

more energy groups. The bias is partially eliminated with iso-in-lab scattering,

and is invariant to the spatial mesh used to generate MGXS.
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Table 5.15: Convergence study of the eigenvalue bias Ap with varying energy group
structures and FSR spatial discretizations for a 2D fuel pin with MGXS tallied by FSR.

# Groups

1

2

4

8

16

25

40

70

1x 2x

FSR Discretization

4x 8x 16x

Anisotropic without Transport Correction

67

22

-58

-75

-73

-128

-131

-132

60

-27

-101

-139

-142

-198

-209

-214

63

-56

-128

-182

-190

-246

-261

-267

98

-55

-128

-194

-209

-271

-288

-296

92

-51

-135

-197

-207

-268

-288

-297

Anisotropic with Transport Correction

1 53 61 75 66 72

2 37 11 1 -10 4

4 -58 -83 -92 -114 -109

8 -74 -117 -145 -175 -170

16 -67 -118 -154 -186 -183

25 -124 -181 -221 -253 -245

40 -130 -191 -238 -272 -265

70 -131 -196 -245 -281 -274

Isotropic in Lab

1 80 92 55 83 66

2 141 87 29 50 34

4 27 -15 -43 -45 -57

8 26 -34 -85 -90 -102

16 35 -35 -91 -101 -111

25 -31 -105 -158 -170 -182

40 -38 -114 -174 -189 -202

70 -39 -117 -182 -196 -211
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5.2 Diagnosing the Error

The emergence of a negative systematic bias in the eigenvalue with fine energy and

spatial discretization for the heterogeneous ID slab and 2D fuel pin models led to an

analysis of the flux spectra computed by OpenMC and OpenMOC. The 70-group volume-

averaged energy-dependent flux in the fuel for both benchmarks is illustrated in Fig. 5-3.

All of the characteristic trends that one would expect to see in an LWR spectra are easily

identifiable. In particular, the fission peak at fast energies, the l/E slowing down flux for

epithermal energies, and the Maxwellian peak at thermal energies are visible for the slab

and fuel pin. The OpenMC flux is barely visible since there is little difference between

the two flux spectra when jointly plotted for all groups. The two spectra do appear to

differ slightly in the epithermal regime where there is a noticeable degradation in the

flux due to resonance capture and scattering. The following sections investigate the

deviations in the flux in resonance groups and estimate how they impact the bias in the

eigenvalues predicted by OpenMC and OpenMOC.

5.2.1 Energy-Dependent Flux Error

Upon further inspection, it was noted that OpenMOC's flux exhibited large errors with

respect to the reference OpenMC flux in those energy groups which isolate large U-238

capture resonances. The error in the 70-group flux is illustrated in Fig. 5-4 for the FSRs

nearest and furthest from the moderator, along with the average error across all FSRs

in the fuel. These plots were generated for the benchmark models with a 16x FSR

discretization with MGXS tallied on the FSR mesh. The plots correspond to the case

studies in Tables 5.10 and 5.15 with iso-in-lab scattering.

As illustrated in the figures, there is a striking error of up to 1.5% for the fluxes in

the slab and up to 2.5% for the fuel pin in the innermost FSR in groups 24, 25 and

27. These energy groups contain the three largest U-238 capture resonances between 4

and 48.052 eV In addition, the flux errors appear to "build up" as the energy decreases

through the resonance region, and the magnitude of the capture resonances increase.

The one notable exception to this is group 26 (4 - 9.877 eV) which does not include
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Figure 5-3: The flux spectrum in energy in a 1D slab (a) and 2D fuel pin (b).
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Figure 5-4: The energy-dependent relative error of the OpenMOC scalar flux with
respect to the reference OpenMC flux in a ID slab (a) and 2D fuel pin (b) for the
innermost, outermost and all FSRs. The results correspond to the case studies presented
in Tables 5.10 and 5.15.
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a U-238 capture resonance. These observations stand in contrast to the flux errors in

the outermost FSR for which no remarkable trend can be discerned. The average error

across all FSRs is roughly 2/3 that of the innermost FSR and exhibits the same features

in the resonance region. The positive error in the flux in groups with large capture

resonances indicates that capture reaction rates are over-predicted in those groups by

OpenMOC, contributing to the negative bias in the eigenvalue. Furthermore, these

results indicate a strong relationship between the energy and spatial distribution of the

flux errors, as is explored in the following section.

5.2.2 Spatially-Dependent Flux Error

The results presented in Fig. 5-4 indicate significant errors in resonance groups, and

in particular, group 27 in the 70-group calculation. Furthermore, the results indicated

a large difference in the error profile for those FSRs nearest and furthest from the

moderator. These trends were studied further to better understand the spatial variation

of the flux error across the 16 FSRs in the fuel for the slab and pin geometries. In this

analysis, the error of the flux was considered in the three different ranges of energy

group structures itemized below:

* Range A - group 27 encompassing the U-238 capture resonance at 6.67 eV

* Range B - groups 11 - 27 spanning the resonance region from 4 eV - 408.5 keV

* Range C - groups 1 - 70 spanning the entire energy regime from 0 - 20 MeV

Fig. 5-5 highlights the spatial dependence of the error across the fuel for each

energy range. These plots were generated for the benchmark models with a 16x FSR

discretization with MGXS tallied on the FSR mesh. The plots correspond to the case

studies in Tables 5.10 and 5.15 with iso-in-lab scattering.

The range A error in the slab monotonically decreases from a maximum of nearly

1.5% to a minimum of ~--0.5% in those FSRs furthest and nearest the moderator, with a

similar trend observed for the fuel pin. Furthermore, the trend accelerates in outermost

3 - 4 FSRs nearest the moderator, where the error drops by nearly half of its value at

the center of the slab and pin. The error profiles for energy ranges B and C exhibit the

128



same decreasing trend from the inside to the outside of the slab and pin, but the error

magnitude never exceeds 0.5% in magnitude. The systematic error trends in energy

and space imply that the negative eigenvalue bias is driven by a poor prediction of the

reaction rates in resonance groups, as investigated in the following section.
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Figure 5-5: The spatially-varying relative error of the OpenMOC scalar flux with respect
to the reference OpenMC flux for a 1D slab (a) and 2D fuel pin (b) in energy Ranges A,
B, and C. The results correspond to Tables 5.10 and 5.15.

Fig. 5-7 illustrates the spatial dependence of the normalized U-238 capture reaction

rates in Range A across the fuel for the slab and pin cell. The "rim effect" of U-238 capture
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(and subsequent production of Pu-239) in the outermost ring nearest the moderator

is easily seen for both geometries. The capture rates are 5x greater in the outermost

slab/ring than in the innermost slabs/rings. The interior zones experience a highly

self-shielded flux since neutrons at energies coinciding with the U-238 capture resonance

at 6.67 eV are absorbed in the outermost ring before they can further penetrate the

fuel. Although the Range A capture rates in the interior regions are relatively small, the

largest errors appear in those zones as shown in Fig. 5-5. Taken together, the reaction

rates and flux errors convolve to produce a non-negligible error in the volume-integrated

U-238 capture rate across the slab/pin as shown in next section.
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Figure 5-6
Figure 5-7: The normalized spatially-varying U-238 capture rates tallied by OpenMC
for a ID slab 2D fuel pin in Range A. The results correspond to Tables 5.10 and 5.15.

5.2.3 Reaction Rate Errors in the Resonance Region

The errors in the multi-group flux directly correspond to equal errors in the reaction

rates since the MGXS are computed from the reference reaction rate and flux tallies. The

results presented in Figs. 5-4 and 5-5 revealed significant errors in resonance groups,

and in particular, group 27 in the 70-group calculation. In this section, the capture and
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absorption rate errors are evaluated to quantify how much of the negative eigenvalue

bias in the two geometries can be attributed to the mis-predicted reaction rates in the

resonance groups. This analysis was performed for different energy group structures to

determine if errors in the reaction rates emerge with more energy groups, similar to the

eigenvalue bias observed in the case studies in Sec. 5.1.

The relative error for both U-238 capture and total absorption for all nuclides is

quantified in Tab. 5.16 for energy ranges A, B and C (see Sec. 5.2.2). As in Secs. 5.2.1

and 5.2.2, the analysis considered the slab and fuel pin benchmark models with a

16x FSR discretization with MGXS tallied on the FSR mesh. The OpenMC iso-in-lab

scattering feature was used to generate MGXS for OpenMOC.

As illustrated in the table, the U-238 capture and total absorption rate errors each

grow with the number of energy groups. This trend is particularly pronounced for U-238

capture in the 6.67 eV resonance group which approaches 0.6% and 1.35% for the slab

and pin, respectively, when 25 or more groups are used in the multi-group calculation.

The 0.08% and 0.17% error in the total absorption in range C directly corresponds

to an under-prediction in the eigenvalue of 115 and 197 pcm for the slab and fuel

pin, respectively, which closely matches the observed eigenvalue bias for each model27 .

Approximately 5 - 6% and 16 - 18% of the total absorption occurs in energy ranges A

and B, with U-238 capture accounting for 80% and 70% of the total absorption in each

energy range, respectively Hence, the error in U-238 resonance capture alone under-

predicts the eigenvalue by 105 and 145 pcm for the slab and pin, with approximately

half of the error deriving from group 27 of 70 due to the resonance at 6.67 eV

27This analysis neglects the contribution of scattering multiplicity (e.g., (n,xn)) to the eigenvalue.
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Table 5.16: The volume-integrated U-238 capture and total absorption rate percent
relative errors. The errors correspond to the results in Tables 5.10 and 5.15.

U-238 Capture
Range A Range B Range C

Total Absorption

Range A Range B Range C

# Groups 1D Slab

1 -0.02 -0.02 -0.02 -0.11 -0.11 -0.11

2 0.05 0.05 0.03 0.05 0.05 -0.07
4 0.11 -0.08 0.06 0.12 -0.08 -0.05

8 0.19 -0.03 0.11 0.22 -0.03 0.00

16 0.21 -0.02 0.12 0.23 -0.02 0.02

25 0.58 0.36 0.26 0.61 0.37 0.06

40 0.58 0.43 0.30 0.61 0.44 0.07
70 0.59 0.46 0.30 0.61 0.47 0.08

1 -0.02 -0.02 -0.02 -0.07 -0.07 -0.07

2 0.11 0.11 0.07 0.11 0.11 -0.03

4 0.55 0.07 0.32 0.54 0.07 0.04

8 0.71 0.11 0.40 0.72 0.11 0.08

16 0.72 0.12 0.41 0.73 0.12 0.09

25 1.32 0.85 0.61 1.34 0.85 0.15

40 1.33 0.93 0.64 1.34 0.92 0.16
70 1.33 0.99 0.65 1.35 0.97 0.17

These results indicate that spatial self-shielding effects in resonance groups is not

adequately captured by the MGXS and/or the multi-group calculation. Furthermore, this

analysis illustrates the counter-intuitive result that the bias between continuous energy

Monte Carlo and multi-group deterministic transport may in fact increase in magnitude

with more energy groups. Although it is challenging to isolate the factors which convolve

to bias the eigenvalue, the data presented here indicates that an over-prediction of U-238

capture in the resonance groups largely drives the error. These results will be discussed

in greater depth in the context of angular-dependent MGXS in Chapter 6.

The negative eigenvalue bias is caused by an over-prediction of absorption,

dominated by U-238 capture in the 6.67 eV resonance. The reaction rate error

increases with more energy groups as observed for the eigenvalue bias.
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" OpenMOC calculations were performed using MGXS generated by OpenMC

to compare eigenvalues for simple benchmarks.

" The eigenvalues closely agreed for homogeneous infinite media. The eigen-

values exhibited a bias of -200 to -300 pcm for heterogeneous geometries,

including a 1D slab and 2D fuel pin.

e A series of case studies demonstrated the dependence of the bias with:

- Energy condensation - The bias increased with more energy groups due

to systematic errors in groups with large U-238 capture resonances.

- Spatial homogenization - The spatial tally mesh used to generate MGXS

in the fuel and moderator had no effect on the bias.

- Angular treatment - MGXS generated with iso-in-lab scattering in OpenMC

reduced the bias by <100 pcm or

" The eigenvalue bias is largely attributable to an over-prediction of U-238

capture rates in resonance groups.

- The flux errors indicate that spatial self-shielding is not adequately modeled

in spatially heterogeneous multi-group calculations even when the "true"

scalar flux is used to compute MGXS.
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Chapter 6

SuPerHomogeneisation Factors

The results in Chapter 5 demonstrated that using the "true" flux spectrum from Monte

Carlo to perform energy condensation and spatial homogenization will not necessarily

result in accurate deterministic multi-group calculations. Large systematic biases in the

eigenvalue were observed for simple heterogeneous benchmark models. In Section 5.2

it was shown that the bias largely derives from errors in the multi-group reaction rates

in the large thermal U-238 capture resonances. These results indicate that one or

more of the approximations made in multi-group transport theory are invalidated in

heterogeneous geometries and prevent an appropriate treatment of spatial self-shielding

at the fuel/moderator interface in PWR geometries.

Chap. 2 discussed approximations made in multi-group theory to simplify the neutron

transport equation in angle, energy and space. Many of these approximations were

quantitatively studied in Chap. 5 - including energy group structure, spatial discretization

mesh, and isotropic scattering - yet it was demonstrated that none of these led to the

eigenvalue bias. This chapter investigates the flux separability approximation as the

dominant factor contributing to the eigenvalue bias.

Sec 6.1 reviews some recent work by Gibson [78] to quantify the approximation

error resolved with angular-dependent MGXS, which closely mirrors the trends observed

in Chap. 5. The historical SPH factor concept is introduced in the context of angular-

dependent MGXS in Sec. 6.2, and SPH factors are applied to simple heterogeneous

benchmarks and the results analyzed in Sec. 6.3. This chapter concludes with a summary
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of the shortcomings of the SPH approach in Sec. 6.4 and the need for new methods to

account for the angular dependence in MGXS in Sec. 6.5.

6.1 Angular-Dependent MGXS

The flux separability approximation introduced in Sec. 2.3.2 led to the use of the

scalar rather than the angular flux to condense the total cross section in energy. The

mathematically proper treatment would instead use the angular flux to condense the

total MGXS in angle, energy and space, resulting in angular-dependent total MGXS.

Flux separability is commonly used since conventional MGXS generation schemes are

generally incapable of approximating the angular dependence of the flux in the arbitrary

geometries and spatial discretizations modeled by multi-group transport codes. As

a result, multi-group codes are unable to reproduce the correct angular dependence

of the neutron flux with scalar flux-weighted MGXS. Furthermore, flux separability

is an approximation which may lead to non-trivial errors in downstream multi-group

calculations, such as the eigenvalue bias observed in Chap. 5.

The flux separability approximation will necessarily hold in infinite homogeneous

media - such as that considered in Sec. 5.1.1 - since the flux does not vary in angle

or space. However, the flux may vary greatly by angle in a heterogeneous geometry

with significant spatial self-shielding. For example, consider the flux from two different

directions impinged upon the FSR for one radial ring and angular sector in a fuel pin

in Fig. 6-1. The epithermal flux entering from the moderator will be unshielded and

will likely be quite similar to the l/E asymptotic spectrum. In contrast, the flux which

traverses the fuel pin will be significantly depressed in the resonant groups. As a result,

the reaction rates for the incoming flux will be greater than those for the outgoing flux

in resonant groups, which would be reflected in angular-dependent total MGXS.

A recent PhD thesis by Gibson [78] studied the impact of using angular-dependent

total MGXS on multi-group calculations to avoid the flux separability approximation.

Gibson was motivated by his observation of reaction rate errors similar to those discovered

in Sec. 5.2. In particular, he solved for the reference ultra-fine flux for a 2D PWR fuel
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Figure 6-1: Angular flux impinged on an FSR from the moderator (top) and after
traversing the fuel (bottom). Image courtesy of N. Gibson [78].

pin given a fixed source. The reference scalar flux was used to condense the continuous

energy total cross sections to 69-group MGXS, which were employed in a fixed source

transport calculation. The reaction rates computed from the ultra-fine and 69-group

scalar fluxes differed by up to 1% for low-lying energy groups with large U-238 capture

resonances, with an error profile in energy similar to that shown in Fig. 5-4. Gibson's

results indicated that an improper treatment of self-shielding effects in heterogeneous

geometries may lead to errors in resonant groups even when the exact scalar flux is used

to collapse cross sections in energy and space.

Gibson further investigated this issue by using the reference ultra-fine angular flux to

compute angular-dependent MGXS. Some examples of the angular-dependent capture

MGXS generated for two different FSRs shaded in dark gray are shown in Fig. 6-2. The

MGXS in the FSR at the fuel/moderator interface in Fig. 6-2a ranges from less than 5 to

more than 50 barns for angles entering and leaving the fuel pin. The peaks near 60'

and 1200 are due to extra moderation experienced by neutrons streaming through the

infinite rectilinear fuel pin lattice at those angles. The MGXS in FSRs in the interior

of the fuel pin, such as the one shown in Fig. 6-2b, exhibit similar but less prominent

properties since the flux is shielded in all directions.
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Figure 6-2: Angular-dependent capture MGXS for the 6.67 eV resonance group as a
function of azimuthal angle for two different FSRs. The radial axis is given in units of
barns and the azimuthal axis in units of degrees. Image courtesy of N. Gibson [78].

Gibson proceeded to show that the angular-dependent total MGXS eliminated the

reaction rate errors observed with scalar flux-weighted MGXS. His analysis highlighted

the tight coupling between angular dependence and spatial discretization. Notably, the

reaction rate errors were reduced by an order of magnitude only when angular-dependent

MGXS were paired with a fine FSR spatial discretization. This can be explained by the

fact that the angular variation of the volume-integrated flux is diminished as the FSR

mesh is coarsened. Thus, the spatial self-shielding effects at the fuel/moderator interface

cannot be captured by angular-dependent total MGXS if the FSR discretization is unable

to distinguish between neutrons entering and leaving the fuel pin.

Although angular-dependent total MGXS the most direct solution to eliminate the

flux separability approximation, it is not a desirable approach for a number of reasons.

Angular-dependent MGXS would significantly increase the memory footprint for MGXS

libraries, and be complicated to accommodate in multi-group methods. Furthermore,

angular-dependent MGXS is not attractive for MC-based MGXS generation since many

more particle histories would be required to converge the MGXS in each discrete angular

tally bin. The Consistent-P approximation [7] is an alternative method that embeds the
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angular dependence of the total MGXS within the angular expansion of the scattering

kernel (Eqn. 2.13) while retaining an angular independent total MGXS. Although the

Consistent-P approximation is one viable approach used in many transport codes, it

was not evaluated here since anisotropic scattering was not implemented in OpenMOC

at the time of this writing. A third method known as SuPerHomogeneisation factors

was discussed in this context by Gibson, who employed them to reduce heterogeneous

resonant reaction rate errors (albeit to a lesser extent than he achieved with angular-

dependent total MGXS). SPH is a relatively simple-to-implement method which does

not require an anisotropic scattering kernel implementation. For this reason, the SPH

factor scheme was evaluated in OpenMOC as discussed in the following sections.

Multi-group reaction rates are not preserved in heterogeneous geometries

due to the flux separability approximation. Angular-dependent total MGXS

or an equivalence scheme such as SPH factors are needed to resolve the bias

between OpenMC and OpenMOC.

6.2 SuPerHomogeneisation Factors

As discussed in Chap. 2, multi-group theory is valid and consistent if and only if MGXS

are defined to preserve reaction rates. In Chap. 5 it was determined that reaction rate

preservation is not possible in heterogeneous geometries, even if the exact flux from

MC is used to collapse the cross sections in energy and space. SPH factors were first

proposed by Hebert [791 to preserve reaction rates during energy condensation and

spatial homogenization. The SPH factor algorithm requires knowledge of a reference

source that is used in a multi-group fixed source solver to derive multiplicative factors

that adjust the total MGXS to force neutron balance.

The literature provides little explanation of the type of approximation errors that

SPH factors are designed to mitigate. In theory, the SPH scheme adjusts MGXS to

preserve reaction rates irregardless of the source of approximation error - including

errors which derive from a poor treatment of energy and spatial self-shielding, a coarse
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spatial and angular discretization of the multi-group calculation method, and/or a

truncated approximation to the anisotropic scattering kernel. In this section, SPH

factors are investigated as one approach to resolve the reaction rate errors observed in

Chap. 5. The mathematical formulation behind SPH factors is described in Sec. 6.2.1,

the iterative algorithm used to compute the factors is summarized in Sec. 6.2.2, and the

implementation of SPH factors in OpenMOC is highlighted in Sec. 6.2.3.

6.2.1 Overview

The SPH algorithm enforces reaction rate preservation between a reference fine-mesh

transport problem and a corresponding coarse mesh transport or diffusion problem in

energy and space. SPH factors have traditionally been applied to spatially-homogenized

few-group MGXS for coarse mesh diffusion applications. However, this section will

introduce SPH factors to enforce equivalence between continuous energy Monte Carlo

and deterministic multi-group transport methods.

The SPH scheme postulates the existence of a set of factors ykg for each spatial zone

k and energy group g which force the streaming and collision terms in the transport

equation to balance with a fixed source Qk,g:

f V~ g (l) + .k,g t,k,g %bg(r, fl) = Qk,g(W (6.1)

In this equation, the SPH factors are applied to correct the total MGXS in each region

and group. The fixed source Qkg is computed from the reference fine-mesh solution.

In this case, the fixed source is treated as the sum of scattering and fission production

sources in each energy group and spatial zone. For example, continuous energy Monte

Carlo can be used to compute reference multi-group fluxes and MGXS, which are then

combined to compute an isotropic source as follows:

1(~ I G Xk,g G
k,g =s,k,g'-g' Ok,g' + Z6.2)f,k,g'kg' (

g'=1 eff g'=1

Given the fixed source and total MGXS from MC, Eqn. 6.1 may be solved using any

multi-group transport method, such as MOC. The challenge is to devise estimates to the

true SPH factors yk,g which adequately preserve reaction rates. The following section

describes the iterative scheme used to estimate SPH factors.
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6.2.2 Algorithm

An iterative algorithm is used to estimate SPH factors from a series of multi-group fixed

source calculations. First, the estimates p " at iteration n to the true SPH factors Pkg

are introduced as a correction factor for the total cross section in Eqn. 6.1:

n. VP"7(r, n) + yt )tkgp((r, ) = Qk,g(0) (6.3)

A multi-group transport code (such as OpenMOC) may be used to solve Eqn. 6.3 with

angular and volume integration to compute the scalar flux distribution. The SPH factor

estimates I ( are found from the ratio of the reference Monte Carlo scalar flux 4mc to

the flux P") computed from the fixed source calculation at iteration n,

M C

k , = g ( 6 .4 )
k,g

where the factors are initialized to unity on the first iteration:

(g = 1 (6.5)

The SPH factors are used to find a total MGXS which forces neutron balance in

Eqn. 6.3. The initial total MGXS E(O) is computed from the reference MC flux and totalt,k ,g

reaction rate tallies. The SPH factors are then used to obtain a corrected total MGXS

EWn on each iteration:t,k,g

E - p-1) E) (6.6)t,k 'g k,g t,k,g

The series of fixed source problems defined by Eqn. 6.3 are solved until the SPH

factors converge. A common convergence criterion is the maximum relative absolute

deviation across energy groups and spatial zones:

(n) (n-1)

res = max 'kg (6.7)
k19 (n-1)

A residual of 10-7 can typically be achieved with twenty or fewer iterations.

The scattering matrix Es,k,,,g and fission production cross section vEf,,,g are used

to compute the reference fixed source in Eqn. 6.2, but are not needed in the iterative
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scheme defined in Eqn. 6.3. However, in the context of this thesis, SPH factors are

computed to preserve reaction rates in subsequent eigenvalue calculations. Therefore,

the SPH factors must be applied to the scattering matrix and fission production cross

sections to produce a fully-corrected MGXS library:

(n) (n-1) E(O)
s,k,g' -g k19 s,k,g'-g

VEi (n = it4(n1) vE4M~ (6.9)

It should be noted that although the SPH-corrected MGXS are defined to preserve

reaction rates, they will not preserve the group-wise scalar flux. However, the angular

or scalar flux may be easily recovered from the fluxes 4fk,g and k,g computed with the

SPH-corrected MGXS in an eigenvalue or fixed source calculation:

4'k,g =k,g
4

'k,g (6.10)

kM k,g Ok,g (.1

The SPH iteration algorithm described here is summarized in Alg. 6-1. It should be

noted that as presently posed, there is no unique solution to the set of SPH factors which

preserve reaction rates. A unique solution may be found by forcing the factors to be unity

in non-fissile zones (e.g., moderator, clad and gap)28 . This approach is motivated by

the fact that resonances which lead to self-shielding errors - such as the U-238 capture

resonances studied in Sec. 2.3.2 - are generally from isotopes in the fuel. However, the

reaction rates in non-fissile zones will not be preserved since the MGXS in these zones

remain uncorrected, but these errors are likely dominated by those in the fuel as was

shown for the PWR benchmarks in Sec. 5.2.3.
28A formulation of the SPH algorithm which corrected MGXS in both fissile and non-fissile zones was also

implemented. This formulation introduced an outer loop over each spatial zone in Alg. 6-1. The scheme
is not presented here since it was unstable and the SPH factors diverged after a few outer iterations.
Future work may develop a more rigorous approach to preserve reaction rates in each spatial zone.

29A series of G independent fixed source problems may be solved for each of the G groups. Alternatively,
a single fixed source problem may simultaneously solve for all G groups, as is done in OpenMOC.
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Algorithm 6-1: SPH Factor Algorithm

1: Initialize E 2, E g(0) , V1+gEg, and X) from MC tallies t Tab. 3.1
2: Compute Qkg, from MC flux and MGXS > Eqn. 6.2

3: Initialize p) to unity
4: while SPH factor residuals are not converged do
5: Update Et) with SPH factors > Eqn. 6.6

6: Solve fixed source transport roblem 29  > Eqn. 6.3
7: Compute new SPH factors kg Eqn. 6.4
8: Compute SPH factor residuals t Eqn. 6.7
9: end while

10: Compute final MGXS with SPH factors > Eqns. 6.6, 6.8, 6.9

6.2.3 Implementation in OpenMOC

The SPH scheme was implemented in the openmoc . materialize Python module of the

OpenMOC code (see Sec. 4.3.3). The SPH algorithm was specifically implemented to

work with the Library class included in the openmc. mgxs Python module for MGXS

generation with OpenMC (see Sec. 4.2.4). In particular, the fixed source in Eqn. 6.2 is

computed from the MC tallies in the Library object and used to construct a fixed source

simulation in OpenMOC. The MGXS tabulated in the Library are loaded into OpenMOC,

and the series of fixed source calculations in Alg. 6-1 is managed from Python. The

MGXS data in the Library is updated with the SPH factors computed at each iteration.

The final corrected MGXS Library, along with the SPH factors, are returned to the user

for use in subsequent OpenMOC eigenvalue calculations.

Although the SPH algorithm is relatively simple, a few subtle issues made the im-

plementation in OpenMOC less than straightforward. First, it should be noted that

OpenMC tallies are volume-integrated, while reaction rates and fluxes in OpenMOC

are volume-averaged. As a result, the MC tallies must be normalized to the volume

used by OpenMOC for each FSR as opposed to the true volumes' to calculate the

volume-averaged fixed source in each FSR. In addition, it was relatively complicated

to map the MGXS data and SPH factors between the combinatorial geometry meshes

used by OpenMC and OpenMOC. These challenges notwithstanding, SPH factors were

implemented in OpenMOC vO.2.1, and used to reduce reaction rate errors as discussed

30 OpenMOC estimates spatial volumes by integrating the characteristic track lengths across each FSR.
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in the following section.

The SPH factor approach uses a reference fixed source to correct the total

MGXS to preserve reaction rates between fine and coarse mesh methods.

6.3 Case Studies

A number of case studies were performed to evaluate the effectiveness of SPH factors

in eliminating the bias observed between OpenMC and OpenMOC in Chap. 5. The 1D

slab and 2D fuel pin benchmarks described in Secs. 5.1.2 and 5.1.3, respectively, were

modeled with SPH-corrected MGXS for the FSRs in the fuel and compared to the original

results. The MGXS were computed using isotropic in lab scattering and a spatial tally

mesh corresponding to the FSR mesh (see Tabs. 5.10 and 5.15). The OpenMOC fixed

source and eigenvalue calculations were performed with 128 azimuthal angles and 0.01

cm track spacing. The OpenMOC fixed source calculations were converged to 10-5 on

the average FSR scalar flux. A convergence criterion of 10-7 was used to converge the

SPH factors in Eqn. 6.7. Finally, the energy-integrated FSR fission source was converged

to 10- in the eigenvalue calculations with SPH-corrected MGXS.

The eigenvalue bias for the ID slab and 2D fuel pin with SPH-corrected MGXS

are presented in Sec. 6.3.1. The error profiles of the energy-dependent and spatially-

dependent fluxes within the fuel FSRs, as well as the SPH factors in energy and space,

are analyzed in Secs. 6.3.2 and 6.3.3, respectively.

6.3.1 Impact of SPH on Eigenvalues

The first case study compared the eigenvalues computed with and without SPH factors.

The eigenvalue bias Ap between OpenMC and OpenMOC is presented for a matrix of

energy group structures and FSR discretization in Tabs. 6.1 and 6.2 for a ID slab and

2D fuel pin, respectively. The bias without SPH factors is reproduced from Tabs. 5.10

and 5.15 for comparison purposes.
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The data in the tables illustrate a large reduction in the eigenvalue bias with SPH-

corrected MGXS. With only a few exceptions, the bias is consistently positive and ranges

between 10 - 40 pcm for both geometries. In the case of the slab, the bias of -93 pcm

with the finest energy group structure and FSR discretization was reduced by a factor

of 7x to only 13 pcm with SPH-corrected MGXS. The use of SPH factors had an even

greater impact on the bias for the fuel pin, where the bias of over -211 pcm was reduced

by 70 x to just -3 pcm for the finest energy and spatial discretization.

Although these results illustrate much better agreement between OpenMC and Open-

MOC, it is interesting to note that a non-negligible bias remains in most cases. As was

noted in Sec. 6.2.2, the reaction rates in non-fissile zones such as the moderator are not

preserved with SPH which may contribute to the lingering eigenvalue bias. In addition,

the remaining bias may be due to the fact that the reaction rate balance enforced with

SPH factors assumes that the eigenvalue calculation with a multi-group method will

produce the same neutron source distribution as MC. However, the eigenvalue source

is not necessarily conserved since approximation errors from spatial and angular dis-

cretization will impact the multi-group method's solution. In conclusion, the eigenvalues

between OpenMC and OpenMOC will identically match if the reaction rate errors in

non-fissile zones are negligible, and OpenMOC computes the same eigenvalue source

with SPH-corrected MGXS as that found by OpenMC.

6.3.2 Impact of SPH on the Energy-Dependent Flux

A second case study investigated the impact of SPH factors on the energy-dependent

flux errors identified in Sec. 5.2.1. The error of OpenMOC's 70-group flux with respect

to the reference OpenMC flux is displayed in Fig. 6-3 for the slab and pin. The errors are

shown for the innermost and outermost FSRs in the fuel, along with the average error

across all FSRs in the fuel. The flux errors without SPH-corrected MGXS are reproduced

from Fig. 5-4 and are illustrated with dashed lines for comparison purposes.

As expected, the flux error is greatly reduced with SPH-corrected MGXS. The flux

error profile is nearly flat in energy for innermost, outermost and all FSRs, unlike the
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Table 6.1: The impact of SPH factors on the eigenvalue bias Ap
group structures and FSR spatial discretizations for a ID slab.

with varying energy

# Groups

1

2

4

8

16

25

40

70

1x 2x

FSR Discretization

4x 8 x 16x

Without SPH

139

296

233

304

329

266

270

280

97

145

125

136

139

83

75

76

127

100

77

45

38

-11

-29

-33

162

90

61

7

-6

-54

-73

-81

140

88

51

-9

-23

-70

-89

-93

With SPH

1

2

4

8

16

25

40

70

33

36

18

27

27

28

28

31

-10

13

26

37

38

39

39

41

18

27

28

29

30

34

31

31

51

34

33

22

20

25

23

20

30

16

18

12

9

12

12

13

highly energy-dependent profiles observed without SPH. Furthermore, no systematic

difference between the error profiles for the innermost and outermost FSRs can be

discerned from the plots. The improvement in OpenMOC's flux - especially in those

energy groups with large U-238 capture resonances - is responsible for the reduction in

the eigenvalue bias with SPH-corrected MGXS presented in Sec. 6.3.1.

The SPH factors in each energy group are illustrated for the innermost and outermost

FSRs in the slab and pin in Fig. 6-4. The SPH factors show nearly the opposite energy-

dependent behavior of the flux errors without SPH factors. In general, the factors are

less than unity in those groups with positive flux errors (e.g., the fast groups), while the

factors are greater than unity in groups with negative errors (e.g., resonance groups in
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Table 6.2: The impact of SPH factors on the eigenvalue bias Ap
group structures and FSR spatial discretizations for a 2D fuel pin.

with varying energy

Ix 2x

FSR Discretization

4x 8x 16x

Without SPH

80

141

27

26

35

-31

-38

-39

92

87

-15

-34

-35

-105

-114

-117

55

29

-43

-85

-91

-158

-174

-182

83

50

-45

-90

-101

-170

-189

-196

66

34

-57

-102

-111

-182

-202

-211

With SPH

1 19 25 -18 10 -14

2 25 20 -14 18 -6

4 7 10 2 12 1

8 4 13 0 12 2

16 5 13 0 10 4

25 5 13 2 12 -1

40 4 16 3 11 -2

70 4 17 2 12 -3

the innermost FSR). This behavior is expected since an SPH factor greater than unity

will magnify the total cross section (see Eqn. 6.6) which will reduce the scalar flux, and

vice versa. Furthermore, the deviation of the SPH factors from unity is roughly the same

as the error in each respective group. For example, the flux in group 27 with the U-238

capture resonance at 6.67 eV exhibits an error of nearly 1.5% and 2.5% for the slab and

pin, respectively. Similarly, the SPH factors in group 27 are approximately 0.984 and

0.970, or 1.6% and 3% reduced from unity, for the slab and pin.
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Figure 6-3: The energy-dependent relative error of the 70-group OpenMOC scalar flux
with respect to the reference OpenMC flux in a 1D slab (a) and 2D fuel pin (b) for the
innermost, outermost and all FSRs. The results correspond to Tables 6.1 and 6.2.
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Figure 6-4: The energy-dependent SPH factors for a 70-group calculation in a 1D slab
(a) and 2D fuel pin (b). The results correspond to Tables 6.1 and 6.2.
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6.3.3 Impact of SPH on the Spatially-Dependent Flux

A final case study investigated the impact of SPH factors on the spatially-dependent

70-group flux errors identified in Sec. 5.2.2. The error of OpenMOC's flux with respect

to the reference OpenMC flux is displayed in Fig. 6-5 for the slab and pin. The errors

are shown for group 27 for each of the FSRs in the fuel. This plot can be compared to

the spatially-dependent errors in Fig. 5-5 observed without SPH-corrected MGXS.

As expected, the flux error in all of the fuel FSRs is greatly reduced with the applica-

tion of SPH factors. The maximum errors of approximately -0.082% and -0.019% with

SPH compare to 1.3% and 2.5% without SPH for the slab and pin, respectively. The

overall error profile as plotted appears similar in shape to the case without SPH factors

in Fig. 5-5, though the fractional variation of the errors is far smaller with SPH. Interest-

ingly, the errors with SPH are greatest in magnitude in the outermost FSRs nearest to

the moderator. In contrast, the errors are greatest in magnitude in the innermost FSRs

furthest removed from the moderator for the case without SPH factors. The reduction

in the error across the fuel in group 27 is largely responsible for the reduction in the

eigenvalue bias with SPH-corrected MGXS presented in Sec. 6.3.1.

The group 27 SPH factors in each of the FSRs in the fuel is illustrated in Fig. 6-6.

The SPH factors show nearly the opposite spatially-dependent behavior of the flux errors

without SPH factors. As discussed in Sec. 6.3.2, the factors are less than unity in those

FSRs with positive flux errors, while the factors are greater than unity in groups with

negative errors (e.g., the outermost ring in the fuel pin). This behavior is expected since

an SPH factor greater than unity will magnify the total cross section (see Eqn. 6.6) which

will reduce the scalar flux, and vice versa. Furthermore, the deviation of the SPH factors

from unity is roughly the same as the error in each respective group. For example, the

flux in the innermost FSR exhibits an error of nearly 1.5% and 2.5% for the slab and

pin, respectively. Similarly, the SPH factors in the innermost FSRs are approximately

0.984 and 0.970, or 1.6% and 3% reduced from unity, for the slab and pin.
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Figure 6-5: The spatially-varying relative error of the OpenMOC scalar flux with respect
to the reference OpenMC flux for a 1D slab (a) and 2D fuel pin (b) in group 27. The
results correspond to Tables 6.1 and 6.2.
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The flux errors in the resonance groups, and the resulting eigenvalue bias

between OpenMC and OpenMOC, is largely resolved with SPH factors.

6.4 Shortcomings of SPH Factors

This chapter identified the flux separability approximation as the culprit in the bias

observed between OpenMC and OpenMOC for simple heterogeneous benchmarks in

Chap. 5. The SPH factor approach was introduced as one method to force reaction

rate preservation in multi-group methods with MGXS generated from Monte Carlo.

Although the use of SPH factors was demonstrated to greatly improve the agreement

between OpenMC and OpenMOC in Sec. 6.3, the SPH approach suffers from a number

of shortcomings which may preclude it from further use in this setting in the future. In

particular, the SPH scheme requires knowledge of the reference source distribution, is

dependent on the spatial discretization mesh, and is indiscriminate between various

sources of approximation error.

Perhaps the most significant weakness of the SPH approach in the context of MC-

generated MGXS is that it requires knowledge of the true eigenvalue source distribution.

The goal of generating MGXS with MC is to enable multi-group methods to accurately

solve eigenvalue problems for the source and flux distributions. If a reference source

must first be computed with MC in order to compute SPH-corrected MGXS, then there is

no reason to perform a subsequent multi-group calculation since the solution is already

known from MC.

Furthermore, the SPH scheme is wholly dependent on the spatial discretization used

by downstream deterministic multi-group methods. In particular, the reference source in

Eqn. 6.2 must be calculated from MC tallies in each of the spatial mesh cells used by the

SPH iteration scheme. In the implementation presented here, the reference source must

be computed from OpenMC tallies for each of the FSRs in the OpenMOC eigenvalue

calculation. This is problematic since a finer FSR discretization will potentially require

more particle histories to converge the tallies needed to compute the reference source
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on the finer spatial tally mesh.

Finally, the SPH scheme attempts to preserve reaction rates between OpenMC and

OpenMOC irregardless of the types of approximation errors which may lead to bias

between the two codes. This chapter used SPH factors to mitigate the errors due to the

flux separability approximation. However, the SPH scheme simultaneously attempts

to also "correct" the MGXS to account for spatial, angular and energy discretization

errors, approximation error due to the treatment of the scattering kernel, and/or any

other approximation error inherent in multi-group methods. For example, the results

presented in Sec. 6.3.1 illustrated a broadly consistent agreement between OpenMC

and OpenMOC eigenvalues for all energy group structures and FSR discretizations, even

though systematic trends in the bias were observed in both energy and space without

SPH factors. This highlights the fact that SPH "corrected" for not only the lack of angular

dependence in the total MGXS, but also errors inherent to the energy group structures

and FSR discretizations. As a result, the same discretization parameters must be used in

both the fixed source calculations in the SPH iteration scheme, as well as subsequent

eigenvalue calculations with SPH-corrected MGXS31.

31For OpenMOC, the same number of azimuthal angles, track spacing and FSR discretization must be
used in both the SPH factor and eigenvalue calculations.
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6.5 Future Work

As a result of the shortcomings to the SPH approach, it is unclear whether the SPH

factors may be broadly applied to correct for the flux separability approximation in

MGXS generated from MC. Future work should investigate whether a universal set of

SPH factors may be tabulated for known geometries (e.g., PWR fuel pins). For example,

if the SPH factors in the resonance groups are relatively invariant to the fuel enrichment,

moderator density, burnup, neighboring pin types, etc. then a single set of SPH factors

may be computed for an infinite pin cell and applied to each fuel pin in heterogeneous

PWR lattice and full-core calculations.

Although it may be possible to universally apply pre-tabulated SPH factors to fixed

geometric configurations, it will likely be necessary to develop alternative methods

to account for the angular dependence of the total MGXS. For example, the angular

dependence of the total MGXS may be adequately embedded into the scattering kernel

using the Consistent-P approximation [7] (also known as the BHS approximation).

Alternatively, a coarse set of angular-dependent MGXS may mitigate most of the bias

observed between OpenMC and OpenMOC. For example, a simple approximation might

model two different total MGXS for neutrons entering or leaving a fuel pin. Although a

coarse angular scheme would not capture the high degree of angular variation illustrated

in Fig. 6-2, it might capture enough to adequately resolve the bias. One challenge to this

approach would be to define a general way to accommodate different FSR discretizations

within each fuel pin cell.
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The SPH factor approach is complicated by the need to compute a reference

fixed source with MC for the spatial discretization mesh used in multi-group

methods. In addition, SPH factors do not simply correct for the error due to

the flux separability approximation, but instead indiscriminately correct for

all sources of approximation error between MC and multi-group methods.



" The bias between OpenMC and OpenMOC is the result of the flux separability

approximation which uses the scalar rather than the angular flux to collapse

the total MGXS in energy and space.

* The most rigorous solution would require the use of angular-dependent

total MGXS. However, most deterministic multi-group methods, including

OpenMOC, are not equipped to use angular-dependent MGXS.

- SPH factors are introduced here as one approach to force reaction rate

preservation in multi-group methods which use MC-generated MGXS.

" The SPH factor scheme corrects the total MGXS to enforce neutron balance

with a reference fixed source computed from MC tallies.

" The flux errors and eigenvalue bias between OpenMC and OpenMOC was

largely resolved with SPH factors for a 1D slab and 2D fuel pin.

" It is unclear if a generalizable scheme based upon SPH factors may be used

to correct for the flux separability approximation.

- Future work should investigate methods to account for the angular depen-

dence of total MGXS in order to adequately preserve reaction rates in fine-

mesh transport methods with MC-generated MGXS.
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Statistical Clustering
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Chapter 7

Benchmark Models and Reference

Results

7.1 Motivation

This thesis is motivated by the desire to obtain Monte Carlo-quality solutions with

computationally efficient deterministic neutron transport methods. In particular, this

work evaluates the use of MC for reactor agnostic MGXS generation for high-fidelity

neutron transport simulations. The analysis in Part III was dedicated to the evaluation

of approximation errors in MGXS and multi-group transport methods which appear

in the modeling of even simple heterogeneous benchmarks such as a 2D fuel pin cell.

The chapters in Part IV develop a new approach based upon statistical clustering to

capture spatial self-shielding effects which occur only in large, complex heterogeneous

geometries. This chapter presents several heterogeneous PWR benchmark models

which are used to evaluate the efficacy of the new methodology for MGXS generation

throughout the subsequent chapters in Part IV

Each of the heterogeneous benchmarks presented here is derived from the Benchmark

for Evaluation And Validation of Reactor Simulations (BEAVRS) PWR model [62]. A

series of six benchmarks were designed to introduce increasingly complex heterogeneous

features - and corresponding spatial self-shielding effects - to the models in order to
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understand their implications for accurate pin-wise MGXS generation. The impact of fuel

enrichment, Control Rod Guide Tubes (CRGTs), Burnable Poisons (BPs), inter-assembly

currents, water reflectors, steel baffles and the core barrel and vessel is considered.

This chapter details the geometric and material specifications for the individual fuel

assemblies, multiple assembly colorsets, and full BEAVRS core modeled with different

MGXS generation schemes throughout Part IV

In addition, this chapter presents the reference results for each of the six geometries

used to evaluate the accuracy of MGXS generation with statistical clustering. Since this

thesis aims to enable MC accuracy in deterministic transport simulations, OpenMC was

used to generate the reference results for each of the six benchmarks. This chapter

quantifies the source convergence rate for each of the benchmark models using Shannon

entropy. In addition, a series of OpenMC simulations were used to calculate reference

eigenvalues, pin-wise fission rates, and pin-wise U-238 capture rates for each benchmark.

The eigenvalue is a key integral quantity used to assess the reactivity of a reactor.

The fission rates are directly related to the relative power density of each fuel pin which

is important for fuel depletion as well as thermal hydraulic feedback. The U-238 capture

rates result in the production of Pu-239 which contributes up to 40% of the power

produced from fission in PWRs at the end-of-life (EOL). Hence, the spatial distributions

of the fission rates and U-238 capture rates must be correctly modeled for accurate

high-fidelity depletion calculations. The reference results for each of these three metrics

were computed with highly converged OpenMC simulations. It is important to recall

from Sec. 1.3 that this thesis aimed to generate MGXS with MC in significantly less time32

than would be required to generate reference solutions with MC. The methodology

developed in Part IV aims to make this possible with statistical clustering of "noisy" MC

tallies for MGXS generation.

This chapter outlines the geometric and isotopic specifications for each of the six

benchmark models in Sec. 7.2. The reference results computed with OpenMC for each

of the benchmark models are presented in Sec. 7.3.

32In this case, "time" is synonymous with the number of particle histories simulated with MC.
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7.2 Benchmark Configurations

The heterogeneous benchmarks modeled throughout Part IV were based on the BEAVRS

PWR model [62]. The BEAVRS model is a highly-detailed PWR specification which was

created to validate high-fidelity core analysis methods. Five of the six benchmark models

are based upon sub-components (e.g., fuel assemblies) of the full core BEAVRS model,

while the sixth benchmark is of the full BEAVRS core model. Although BEAVRS is an

axially heterogeneous 3D core model, each of the benchmarks were fabricated in 2D due

to the geometric constraints in OpenMOC. In particular, the 2D radial heterogeneity in

each benchmark is taken from the axial mid-plane of the BEAVRS model. The geometries

used two planar surfaces perpendicular to the z-axis with reflective Boundary Conditions

(BCs) to model the benchmarks as infinitely long in the axial direction (e.g., each

benchmark is infinitely homogeneous along the z-axis).

The materials and isotopic compositions in each of the benchmarks are detailed in

Sec. 7.2.1, while the geometric specifications for each pin cell type - fuel pin, instrument

tube, CRGT and BP - are tabulated in Sec. 7.2.2. The first three benchmarks were based

upon individual BEAVRS fuel assemblies with different fuel enrichments and CRGT and

BP locations as discussed in Sec. 7.2.3. The geometric configuration of 2x2 fuel assembly

colorsets with and without a water reflector are highlighted in Sec. 7.2.4. Finally, the

key parameters for the full BEAVRS core model are presented in Sec. 7.2.5.

7.2.1 Materials

The models described in this section were comprised of materials from the BEAVRS

model. The six benchmarks include 1.6%, 2.4% and 3.1% enriched U0 2 fuel, borated

water33 zircaloy, helium, air, borosilicate glass and stainless steel. The densities and

isotopic compositions for each material are detailed in the BEAVRS specifications [62]

and are reproduced in App. B.1. Each of the materials was modeled with cross sections

at 600K for hot zero power (HZP) conditions.

33 The water consisted of 975 parts per million (ppm) boron, the critical concentration for the all rods out
configuration [62]
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7.2.2 Pin Cells

The six benchmarks were composed of four different types of pin cells - fuel pins,

instrument tubes, control rod guide tubes and burnable poisons. Each of the four pin cell

types is displayed in Fig. 7-1. The different material types are indicated with different

colors. The fuel pin in Fig. 7-la contains U0 2 fuel, a helium gap and zircaloy cladding.

The CRGT in Fig. 7-1b is modeled in the control rod out configuration from above the

dashpot and includes borated water surrounded by zircaloy cladding. The instrument

tube in Fig. 7-1c is filled with air surrounded by two tubes of zircaloy cladding separated

by borated water. The BP in Fig. 7-1d is the geometry from above the dashpot and

consists of eight layers of air, steel, borosilicate glass and zircaloy. Each pin cell is

surrounded by borated water which serves as the neutron moderator and coolant. The

radii for each material zone is detailed in Tab. B.9. The pin cell pitch is 1.25984 cm.

7.2.3 Fuel Assemblies

The first three benchmark models are based upon 2D models of individual fuel assemblies

extracted from the full core BEAVRS model. Each assembly consists of a 17 x 17 rectilinear

array of pin cells with a total height and width of 21.41728 cm. The intra-pin egg-crate

grid spacer and grid sleeve separating each fuel assembly in the full core BEAVRS model

are not included in the individual models of each fuel assembly. The assemblies are

modeled with reflective BCs to simulate an infinite repeating lattice of each fuel assembly

The sequence of fuel assembly benchmarks are designed to investigate the impact of

fuel enrichment, CRGTs and BPs on spatially self-shielded MGXS. The first fuel assembly

benchmark depicted in Fig. 7-2 consists of 264 fuel pins with 1.6% enriched U0 2 fuel, 24

CRGTs, and a single central instrument tube. The second benchmark shown in Fig. 7-3

is of the same geometric configuration, but is composed of 3.1% enriched U0 2 fuel. The

third benchmark illustrated in Fig. 7-4 includes 3.1% enriched U0 2 fuel with a mixture

of 20 BPs, 4 CRGTs and a single central instrument tube. Although the BEAVRS model is

composed of assemblies with many different BP configurations, only a single assembly

with BPs was studied for practical reasons.
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(a)

(c) (d)
Figure 7-1: 1.6% enriched fuel pin (a), control rod guide tube (b), instrument tube (c)
and burnable poison (d). Light blue is borated water, red is U0 2 fuel, gray is zircaloy,
brown is helium, white is air and green is borosolicate glass.

7.2.4 2 x 2 Assembly Colorsets

Two benchmarks were constructed from 2x2 colorsets of fuel assemblies from the

BEAVRS model presented in Sec. 7.2.3. The pitch between fuel assemblies in the

colorsets is 21.41728 cm (the height/width of each assembly). The intra-pin egg-crate

grid spacer and grid sleeve separating each fuel assembly in the full core BEAVRS model

are not included in the 2x2 colorsets. The first colorset is modeled with periodic BCs

on all sides to simulate an infinitely repeating lattice of fuel assemblies. The second
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Figure 7-2: A 1.6% enriched U0 2 fuel assembly without BPs.
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Figure 7-3: A 3.1% enriched U0 2 fuel assembly without BPs.
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Figure 7-4: A 3.1% enriched U0 2 fuel assembly with 20 BPs.

colorset is surrounded by a water reflector on the bottom and right that is of the same

width as a fuel assembly The reflected colorset does not include the stainless steel baffle

surrounding the fuel assemblies adjacent to the water reflector in the full core BEAVRS

model. The reflected colorset includes reflective BCs on the top and left (adjacent to the

fuel assemblies) with vacuum BCs on the bottom and right (adjacent to the reflector).

The first 2 x 2 colorset model shown in Fig. 7-5 is composed of a checkerboard pattern

of the fuel assemblies of 1.6% enriched U02 without BPs (Fig. 7-2) and 3.1% enriched

U02 with 20 BPs (Fig. 7-4). The first colorset benchmark is designed to investigate the

effects of inter-assembly spatial heterogeneities on the spatially self-shielded MGXS of

fuel pins of different enrichments (i.e., from different fuel assemblies) placed adjacent

to one another. The second benchmark illustrated in Fig. 7-6 is the same 2 x 2 colorset of

fuel assemblies, but is surrounded by a water reflector. This benchmark is designed to

quantify the impact of the moderation provided by the reflector, as well as the leakage

of neutrons through the reflector, on spatially self-shielded MGXS.
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7.2.5 BEAVRS Quarter Core

The sixth and final benchmark is a 2D planar slice of the top right quadrant of the

quadrant symmetric BEAVRS core model" at the axial mid-plane as shown in Fig. 7-7.

The fuel assemblies in the model are configured according to the cycle 1 loading pattern

detailed in the BEAVRS specifications [62]. The quarter core model includes assemblies

with 1.6%, 2.4% and 3.1% enriched U0 2 fuel depicted as red, blue and yellow in Fig. 7-7,

respectively The benchmark model is the all rods out configuration with a critical boron

concentration of 975 ppm [62].

The intra-pin egg-crate grid spacer and grid sleeve separating each fuel assembly in

the 3D core BEAVRS model are not included in 2D model at the axial mid-plane. All

other radial heterogeneities in the BEAVRS specifications are included in this model,

including the inter-assembly water gaps, stainless steel baffle surrounding the fuel

assemblies, core barrel, neutron shield panels and pressure vessel. The space outside

of the pressure vessel is filled with air with vacuum BCs applied to planar surfaces on

the top, bottom, left and right. The 2D quarter core BEAVRS model builds upon the

preceding five simpler benchmarks to explore the impact of radial heterogeneities in a

realistic core configuration on spatially self-shielded MGXS.

7.3 Reference Results

This section presents the reference results computed using OpenMC for each of the six

benchmarks presented in the preceding section. As discussed in Sec. 7.3.1, OpenMC

was employed to compute the Shannon entropy to determine the number of batches of

particle histories needed to reach source stationarity. Sec. 7.3.2 presents the converged

kef eigenvalue computed by OpenMC for each of the six benchmarks. Finally, Sec. 7.3.3

and Sec. 7.3.4 present the reference pin-wise spatial distributions of fission rates and

U-238 capture rates in each benchmark as tallied in OpenMC along with their associated

statistical uncertainties.

34The BEAVRS model was made quadrant symmetric by replacing all instrument tubes with empty CRGTs.
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Figure 7-7: The 2D quarter core BEAVRS
CP __

The ENDF/B-VII.1 continuous energy cross section libraries evaluated at 600K pro-

vided by the MCNP code [38] were used by OpenMC for all simulations. It should be

noted that isotropic in lab scattering was employed for all reference calculations with

OpenMC's iso-in-lab feature (see Sec. 4.2.3). Although isotropic in lab scattering is a

poor approximation for LWRs, it eliminated scattering source anisotropy as one possible

cause of approximation error between OpenMC and OpenMOC3 s in order to isolate

approximation errors resulting from spatially self-shielded MGXS.

The reference solutions for each assembly and colorset benchmark model was com-

puted with 100 inactive and 900 active batches of 10' particle histories per batch. The

35At the time of this writing, OpenMOC employed an isotropic in lab neutron scattering kernel.
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reference solution for the quarter core BEAVRS model was computed with 200 inactive

and 800 active batches of 108 histories per batch. Each OpenMC simulation was per-

formed in parallel on ten compute nodes on the Falcon supercomputer at Idaho National

Laboratory. Each compute node contained two dual socket Intel Xeon E5-2680 CPUs

with 12 cores and 132 gigabytes of DRAM 36. Four MPI processes were launched on each

node (two MPI processes per CPU) with 6 OpenMP parallel threads per MPI process.

7.3.1 Source Stationarity

The first metric that was evaluated for each of the six benchmarks was the stationarity of

the fission source distribution. The initial distribution of fission source sites is uniformly

distributed in space across fissile material zones by OpenMC for the first batch of

particle histories. Each subsequent batch of fission source sites is drawn from a bank of

fission sites populated during the preceding batch of particle histories. In eigenvalue

calculations, the distribution of fission source sites must reach stationarity before tallying

integral quantities such as the eigenvalue or reaction rates.

The Shannon entropy is a commonly used diagnostic to measure source stationarity

in MC eigenvalue calculations [80]. To compute the Shannon entropy, a mesh of M

mesh cells is superimposed across the geometry and the number of fission source cites

in each mesh cell is tabulated. The empirical multinomial probabilities pi for fission

source sites is computed for each mesh cell i as the ratio of sites in that cell to the total

number of source sites in the geometry. The Shannon entropy H is then computed from

the multinomial probability distribution from the following equation:

M

H = p log2 p (7.1)
i=1

The Shannon entropy provides a single scalar value which characterizes the spatial

distribution of fission source sites. By monitoring the value of H for each batch, one

may determine the number of inactive batches needed to reach source stationarity

The Shannon entropy was computed using a rectilinear pin-wise mesh for each of the

36Dynamic Random Access Memory.
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six benchmark models and plotted in Fig. 7-8. The entropies in the plot are normalized to

the entropy at the final 1 0 0 0 th batch in order to standardize the entropies for comparison

in the same plot. The entropies for each of the three fuel assembly benchmarks, as well

as the 2 x 2 colorset without a reflector, all lie very near unity and do not exhibit any

convergence behavior in the plot. The entropy for the 2x2 colorset with a reflector

appears to converge to near unity within 30 batches. Finally, the entropy for the high

dominance ratio BFAVRS quarter core appears to converge within 200 batches.

1.020

- 1.6% Enr. (no BPs)

- 3.1% Enr. (no BPs)

1.015 - 3.1% Enr. (20 BPs)
- 2x2 Colorset

- 2x2 w/ Reflector

- Full Core
c 1.010
0

1.005

E

1.000

0.995
0 200 400 600 800 1000

Batch

Figure 7-8: Shannon entropy source convergence for BEAVRS geometries.

As expected, the number of batches required to reach source stationarity increases

with the benchmark size and heterogeneity, and the corresponding increase in the

dominance ratio. This analysis of the Shannon entropy for each benchmark was used to

determine an appropriately conservative number of inactive batches to employ in all

subsequent OpenMC simulations of each benchmark model. In particular, all OpenMC

simulations of the single assembly and 2x2 colorsets use 100 inactive batches prior to

tallying the eigenvalue, reference reaction rate distributions and MGXS. Similarly, 200

inactive batches are used for the quarter core BEAVRS model.
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7.3.2 Eigenvalues

The reference eigenvalues were computed for each of the six benchmarks and are listed

in Tab. 7.1. The OpenMC "combined" eigenvalue estimator is reported along with the

associated one sigma uncertainty of 1 pcm or less for each of the benchmarks. The total

runtimes required for the OpenMC simulations to generate the reference eigenvalues

are also reported in the table.

Benchma

1.6% Enr

3.1% Enr

3.1% Enr

2x2 Colo

2x2 Colo

BEAVRS

Table 7.1: Reference kPenc for heterogeneousef f

ark k OpenMC
eff

iched Assembly (no BPs) 0.99326 0.00001

iched Assembly (no BPs) 1.21657 + 0.00001

iched Assembly (20 BPs) 1.03315 0.00001

rset 1.01814 0.00001

rset w/ Reflector 0.94574 0.00001

Quarter Core 1.02446 + 0.00001

benchmarks.

Runtime [core-hours]

1,005

891

879

903

895

10,892

As expected, the eigenvalues increase with enrichment and decrease with the pres-

ence of BPs for the single fuel assembly benchmarks. The eigenvalue for the 2 x 2 colorset

is reduced with the addition of a reflector due to leakage, and to a lesser extent, absorp-

tion in the reflector. Although the quarter core BEAVRS model is a critical configuration,

the eigenvalue is nearly 2500 pcm supercritical due to the 2D and iso-in-lab scatter-

ing approximations 37. The eigenvalues reported in Tab. 7.1 are used to validate the

OpenMOC simulations with MGXS generated by OpenMC throughout the following

chapters.

7.3.3 Fission Rate Spatial Distributions

The reference energy-integrated fission rate spatial distributions for each of the six

benchmarks were computed using rectilinear, pin-wise tally meshes in OpenMC. The

fission rates were volume-integrated across each fuel pin and include fission from all

37An identical OpenMC simulation of the 3D full core BEAVRS model using normal anisotropic scattering
produced an eigenvalue of 0.99922 0.00000.
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nuclides (only U-235 and U-238 for the fresh PWR U0 2 fuel in the benchmarks). The

fission rates were normalized to the mean of all non-zero fission rates in each benchmark.

The percent relative errors for the tallied fission rates was computed from the ratio of

the sample standard deviation to the mean fission rate in each fuel pin. The fission rates

for the quarter core BEAVRS model were appropriately tiled to display the equivalent

distribution across the quadrant symmetric full core.

The fission rate spatial distributions and percent relative errors for each of the six

benchmarks are presented as heatmaps in Figs. 7-9 to 7-14. The fission rates in the

instrument tubes, CRGTs and BPs are all zero and are illustrated in white. The color

bars for each of the heatmaps range from the minimum non-zero fission rate to the

maximum fission rate for all fuel pins in each benchmark geometry. The statistical error

at the final 1 0 0 0 th batch is less than or equal to 0.5% for all of the benchmarks. These

reference fission rate spatial distributions are used to validate the OpenMOC simulations

with MGXS generated by OpenMC throughout the following chapters.

As illustrated in the figures, the fission rate distributions are strongly dependent

on the spatially heterogeneous features in each benchmark geometry. For example,

the CRGTs provide additional moderation and increase the fission rates in nearby fuel

pins. The presence of BPs reduces the neutron population and therefore the fission

rates for the surrounding fuel pins, while increasing the variation between the minimum

and maximum fission rates. The presence of a reflector with a mixture of vacuum and

reflective BCs induces a tilt in the fission rates across the assemblies in the 2 x 2 colorset,

with the maximum fission rates located in the interior fuel pins and the minimum fission

rates occurring near the reflector due to neutron leakage. The fission rates for the quarter

core BEAVRS model in Fig. 7-14 form a highly complex spatial distribution due to the

convolution of many different interacting spatial self-shielding effects.

It should be noted that the fission rate distribution for the quarter core BEAVRS

model is highly skewed due to the isotropic in lab scattering approximation. This can be

seen from comparison of Fig. 7-14a with the true fission rate distribution calculated with

normal anisotropic scattering in Fig. B-la. The power distribution is highly sensitive to

anisotropic scattering due to radial leakage out of the core, and is more peaked near the
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corner reflectors when the isotropic approximation is made. Although isotropic scattering

is unphysical, it allows direct comparisons of OpenMC and OpenMOC results in latter

chapters to quantify the impact of various approaches to spatially homogenize MGXS

without conflicting effects due to the isotropic scattering model used in OpenMOC.
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Figure 7-9: Fission rates for a 1.6% enriched assembly
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Figure 7-10: Fission rates for a 3.1% enriched assembly.
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Figure 7-11: Fission rates for a 3.1% enriched assembly with 20 BPs.
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Figure 7-12: Fission rates for a 2x2 colorset.
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Figure 7-13: Fission rates for a 2x2 colorset with a reflector.
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Figure 7-14: Fission rates
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for the 2D quarter core BEAVRS model.
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7.3.4 U-238 Capture Rate Spatial Distributions

The reference energy-integrated U-238 capture rate spatial distributions for each of the

six benchmarks were computed using rectilinear, pin-wise tally meshes in OpenMC. The

U-238 capture rates were volume-integrated across each fuel pin. The capture rates

were normalized to the mean of all non-zero capture rates in each benchmark. The

percent relative errors for the tallied capture rates was computed from the ratio of the

sample standard deviation to the mean capture rate in each fuel pin. The capture rates

for the quarter core BEAVRS model were appropriately tiled to display the equivalent

distribution across the quadrant symmetric full core.

The U-238 capture rate spatial distributions and percent relative errors for each of

the six benchmarks are presented as heatmaps in Figs. 7-15 to 7-20. The capture rates

in the instrument tubes, CRGTs and BPs are all zero and are illustrated in white. The

color bars for each of the heatmaps range from the minimum non-zero capture rate to

the maximum capture rate for all fuel pins in each benchmark geometry. The maximum

relative error at the final 1 0 0 0 th batch is less than 0.5% for all of the benchmarks. These

reference U-238 capture rate spatial distributions are used to validate the OpenMOC

simulations with MGXS generated by from OpenMC throughout the following chapters.

The impacts of CRGTs, BPs, reflectors and vacuum BCs on the U-238 capture rates

are similar to those observed for the fission rates, though there are some noticeable

differences. For example, the U-238 capture rates in the individual fuel assemblies

appear to be more sensitive than the fission rates to the spatial self-shielding induced by

moderation in CRGTs. In addition, the U-238 capture rates peak in the 1.6% enriched

fuel assemblies in the 2x2 colorset without a reflector (Fig. 7-18b), while the fission

rates peak in the 3.1% enriched fuel assemblies (Fig. 7-12b). The key reason for this is

that there is a higher concentration of U-238 in the 1.6% enriched fuel than the 3.1%

enriched fuel, which leads to a lower ratio of fission to U-238 capture rates. In addition,

the U-238 capture rates in the reflected 2 x2 benchmark (Fig. 7-19) are more smoothly

varying at the inter-assembly interface than the fission rates (Fig. 7-13).

Similar to the fission rates, the U-238 capture rate distribution for the quarter core
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Figure 7-15: U-238 capture rates for a 1.6% enriched assembly.
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Figure 7-16: U-238 capture rates for a 3.1% enriched assembly
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Figure 7-17: U-238 capture rates for a 3.1% enriched assembly with 20 BPs.
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Figure 7-18: U-238 capture rates for a 2x2 colorset.
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Figure 7-19: U-238 capture rates for a 2x2 colorset with a reflector.
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Figure 7-20: U-238 capture rates for the 2D quarter core BEAVRS model.
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BEAVRS model is highly skewed due to the isotropic in lab scattering approximation.

This can be seen from comparison of Fig. 7-20a with the true capture rate distribution

calculated with normal anisotropic scattering in Fig. B-lb. Like fission, the U-238

capture distribution is highly sensitive to anisotropic scattering due to radial leakage

out of the core, and is more peaked near the corner reflectors when the isotropic

approximation is made. Although isotropic scattering is unphysical, it allows direct

comparisons of OpenMC and OpenMOC results in latter chapters to quantify the impact

of various approaches to spatially homogenize MGXS without conflicting effects due to

the isotropic scattering model used in OpenMOC.

- A series of six 2D heterogeneous benchmark models were derived from the

full core BEAVRS model to explore spatial self-shielding effects on MGXS.

* The benchmarks include individual fuel assemblies with different CRGT and

BP configurations, 2x2 fuel assembly colorsets with and without a water

reflector, and the quarter core BEAVRS model.

" The Shannon entropy was computed to determine the number of inactive

batches needed when modeling each benchmark with OpenMC.

Reference results for the eigenvalues, pin-wise fission rates and pin-wise

U-238 capture rates were computed using OpenMC.

e The benchmarks and reference results are used in the following chapters

to validate the use of statistical clustering methods to capture spatial self-

shielding effects in MGXS generated by OpenMC for OpenMOC.
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Chapter 8

Quantification of Spatial Self-Shielding

Effects

8.1 Overview

The preceding chapter introduced six heterogeneous 2D PWR benchmarks derived from

the BEAVRS model, along with reference metrics tallied by OpenMC. This chapter applies

multi-group transport calculations to model the same benchmarks in OpenMOC with

MGXS generated by OpenMC. The objective is to identify the bias between OpenMC and

OpenMOC for MGXS libraries which account for spatial self-shielding effects 3 8 to varying

degrees. In particular, this chapter quantifies the difference in the approximation error

between simulations in which the same MGXS are used in each unique fuel pin (e.g.,

each fuel enrichment) and those in which unique MGXS are used in each and every pin.

The former case does little if anything to model spatial self-shielding effects, whereas

the latter case "fully" resolves these effects, albeit at the expense of very large MGXS

libraries. This difference in approximation error motivates the development of a novel

methodology in the following chapters which uses statistical clustering to capture spatial

self-shielding effects in MGXS.

Three different schemes for spatial homogenization of pin-wise MGXS are introduced

3 8The effects of neighboring pins, burnable poisons, reflectors and the core baffle, barrel and vessel are
all of interest in the context of spatial self-shielding in this and subsequent chapters.
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in Sec. 8.2 and are referred to as infinite, null and degenerate spatial homogenization,

respectively. The discretized models and runtime parameters used in the OpenMOC

simulations are detailed in Sec. 8.3. The bias between the OpenMOC simulations and the

reference OpenMC results - including eigenvalues, pin-wise fission rates and pin-wise

U-238 capture rates - are presented in Sec. 8.4. The need for a new, more flexible and

specialized approach to spatial homogenization which appropriately captures spatial

self-shielding effects with minimal computational expense is discussed in Sec. 8.5.

8.2 Pin-wise Spatial Homogenization Schemes

This chapter employs three different spatial homogenization schemes to model spatial

self-shielding effects in MGXS. Although all spatial zones may experience spatial self-

shielding, this chapter only models the impact of spatial self-shielding on MGXS in

fissile regions. The infinite, null and degenerate spatial homogenization schemes are

introduced in Secs. 8.2.1 to 8.2.3. These schemes model spatial self-shielding for each

fuel pin with increasing granularity and complexity. The total number of materials (i.e.,

MGXS) used to model each benchmark with each homogenization scheme is given in

Tab. 8.1. A fuel assembly, 2x2 colorset and part of the quarter core BEAVRS model are

color-coded by material and illustrated in Fig. 8-1 for each homogenization scheme.

The openmc .mgxs module (see Sec. 4.2.4) was used to compute 70-group MGXS with

OpenMC for each of the six heterogeneous benchmarks introduced in Chap. 7. The tallied

MGXS data was condensed to coarse 2-group and 8-group structures with downstream

data processing as necessary. The OpenMC simulations were performed with 1000

batches with 106 particle histories per batch for each benchmark. This was only one

tenth of the 10 7 histories per batch used to tally the reference results in Chap. 7 for

practical computational reasons39 . Stationarity of the fission source was obtained with

200 inactive batches for the quarter core BEAVRS model, while 100 inactive batches were

39The total runtime consumed by OpenMC scales with the number of tallied quantities. The number of
tallies used to compute MGXS was much larger than the three used to compute the reference solutions
in Chap. 7. As a result, the simulation time per history was prohibitively slow to generate MGXS with
the same number of histories as was used to compute the reference solution.
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employed for the other five benchmarks (see Sec. 7.3.1). OpenMC's "iso-in-lab" feature

(see Sec. 4.2.3) was employed to enable consistent comparisons between OpenMC's

reference results and OpenMOC's calculations with an isotropic in lab scattering source.

Table 8.1: Number of materials modeled with unique MGXS in each heterogeneous
benchmark for each spatial homogenization scheme.

Benchmark # Fuel Materials

Infinite Null Degenerate

1.6% Assm 1 1 264

3.1% Assm 1 1 264

3.1% Assm w/ 20 BPs 1 1 264

2x2 Colorset 2 2 1,056

2x2 Colorset w/ Reflector 2 2 1,056

BEAVRS Quarter Core 3 3 12,993

8.2.1 Infinite Lattice Homogenization

The infinite spatial homogenization scheme is most reminiscent of the traditional multi-

level schemes used to generate MGXS (see Sec. 2.5.2), and is the simplest approach to

model spatial self-shielding effects considered by this thesis. The infinite scheme employs

multiple OpenMC simulations to compute MGXS for each heterogeneous benchmark.

The MGXS for each type of fuel (e.g., enrichment) are generated by OpenMC simulations

of each fuel pin type in an infinite, repeating array40 . The MGXS for all other materials -

including borated water, zircaloy, helium, etc. - are generated from OpenMC simulations

of each heterogeneous benchmark where the reaction rates and fluxes are averaged

across each geometry.

The infinite scheme is designed to quantify the impact of using the "true" Monte

Carlo flux from an infinite lattice calculation, rather than the "true" MC flux from the

true heterogeneous geometry, to collapse MGXS in fissile zones. The scheme employs

a single MGXS in each instance of a material zone, such as a fuel pin replicated many

40An infinite, repeating array of fuel pins is modeled by a single fuel pin with reflective boundary conditions.
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Figure 8-1: OpenMOC materials for a single fuel assembly, a 2x2 colorset and part of
the 2D quarter core BEAVRS model. The materials for the infinite and null schemes
are depicted in (a), (c) and (e), and for the degenerate scheme in (b), (d) and (f),
respectively Each uniquely colored material represents a unique set of MGXS.
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times throughout a benchmark geometry. The MGXS for each fissile zone is generated

from an infinite lattice calculation with OpenMC. The MGXS for all non-fissile zones

are generated using the "true" flux distribution in space and energy for each of the

heterogeneous benchmarks. The scheme does not account for spatial self-shielding

effects experienced by different non-fissile spatial zones filled by the same material, and

instead averages these effects across the entire geometry for each material.

8.2.2 Null Homogenization

The null spatial homogenization scheme builds upon the infinite scheme, but uses the

"true" heterogeneous flux to collapse MGXS for fissile as well as non-fissile materials.

The null scheme eliminates the infinite lattice calculation to generate MGXS for fissile

zones, and instead uses a single Monte Carlo calculation of the complete heterogeneous

geometry to generate MGXS for all materials. In this way, the null scheme fully abandons

the multi-level approach used by the infinite scheme and most traditional approaches to

generate MGXS. Unlike the infinite scheme, the spatially self-shielded flux is used to

collapse the cross sections in the fuel. However, the null scheme does not account for

spatial self-shielding effects experienced by different fuel pins filled by the same type of

fuel, and instead averages these effects across the entire geometry. As with the infinite

scheme, a single MGXS is employed in each instance of a material zone, such as a fuel

pin replicated many times throughout a benchmark geometry.

8.2.3 Degenerate Homogenization

Unlike the infinite and null spatial homogenization schemes, the degenerate scheme

accounts for the different spatial self-shielding effects experienced by each instance of

each fuel pin throughout a heterogeneous geometry. Like the null scheme, a single MC

calculation of the complete heterogeneous geometry is used to generate MGXS for all

materials. Unlike the null scheme, the MGXS are tallied separately for each instance of

fissile material zones. For example, if a heterogeneous benchmark includes N fuel pins,

then N collections of MGXS are separately tabulated for each fuel pin instance. The
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degenerate scheme tallies different MGXS even if the isotopic compositions in the fuel

pin instances are identical (e.g., fresh fuel at the beginning of life) since each instance

may experience different spatial self-shielding effects and hence have different MGXS.

Multi-group transport calculations with MGXS generated using infinite/null and

degenerate schemes may be compared to quantify the impact of modeling spatial self-

shielding effects in MGXS for fissile zones in heterogeneous geometries. The degenerate

scheme applies the finest granularity to pin-wise spatial homogenization of any of the

schemes considered in this thesis since it best captures different spatial self-shielding

effects in each fuel pin. As a result, the degenerate scheme is used to benchmark

the efficacy of the new methodology for spatial homogenization based on statistical

clustering developed in the following chapters. Like both the infinite and null schemes,

the spatial self-shielding effects experienced by different non-fissile spatial zones are

averaged across the entire geometry for each non-fissile material.

The degenerate scheme generates MGXS for each fuel pin instance using OpenMC's

distributed cell tallies (see Sec. 4.2.2). The OpenCG region differentiation algorithm (see

Sec. 4.4.3) is used to build a new OpenMOC geometry with unique cells and materials

for each fuel pin. The MGXS are appropriately selected from OpenMC's distributed cell

tallies to populate the MGXS in the OpenMOC materials.

The infinite, null and degenerate spatial homogenization schemes are used

to quantify approximation errors made when neglecting spatial self-shielding

due to neighboring pins, reflectors, etc. in heterogeneous PWR benchmarks.

8.3 OpenMOC Runtime Parameters

The infinite, null and spatial homogenization schemes were used to prepare MGXS

libraries for OpenMOC simulations of each of the six heterogeneous PWR benchmarks

introduced in Chap. 7. This section briefly outlines the energy group structures and

angular, spatial and CMFD meshes used in the OpenMOC simulations. The total number

of flat source regions, and MOC tracks and segments are summarized for each benchmark
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in Tab. 8.2. It was crucial to use an adequate discretization to accurately compare

simulation results between the three spatial homogenization schemes, as well as to the

reference OpenMC results.

Table 8.2: The number of MOC FSRs, tracks and segments modeled in each benchmark.

Benchmark # FSRs # Tracks # Segments

1.6% Assm 28,376 34,976 7,945,952

3.1% Assm 28,376 34,976 7,945,952

3.1% Assm w/ 20 BPs 29,496 34,976 8,110,192

2x2 Colorset 115,744 69,892 32,097,936

2x2 Colorset w/ Reflector 203,220 104,788 51,122,228

BEAVRS Quarter Core 1,718,368 201,620 38,3785,515

Each simulation was converged to 10-5 on the root mean square of the energy-

integrated fission source in each flat source region (FSR). It should be noted that a

convergence criterion of 10-7 was employed for the OpenMOC simulations of sim-

ple benchmarks without CMFD acceleration (see Sec. 4.3.5) in Chap. 5, but a looser

convergence criterion of 10- 5 may be used for calculations with CMFD41.

8.3.1 Energy Group Structures

Each assembly, colorset and quarter core benchmark was modeled with MGXS in 2, 8 and

70 energy groups. The energy group structures were the same as those used in Chaps. 5

and 6 and are tabulated in App. A. The MOC energy group structures were collapsed

onto coarser group structures for CMFD acceleration. The mapping from MOC to CMFD

group structures is listed in Tab. 8.3. The coarse CMFD structures were derived to best

approximate equal lethargy spacing between coarse CMFD groups. The coarse CMFD

structures significantly improved the speed of the 70-group OpenMOC calculations.

4 1The convergence criterion measures the residual between successive iterations, but should actually

measure convergence to the asymptotic solution, which depends on both the residual between successive

iterations and the dominance ratio. CMFD significantly reduces the residual between successive iterations

such that sufficient convergence to the asymptotic solution is achieved at a much lower successive
iteration residual.
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Table 8.3: The coarse CMFD group structures for each of the fine MOC group structures.

# MOC Groups # CMFD Groups CMFD Fine-to-Coarse Group Mapping

2 2 [1], [2]

8 4 [1-2], [3], [4-5], [6-8]

70 14 [1-2], [3-6], [7-9], [10-12], [13-16],
[17-19], [20-21], [22-24], [25-27], [28-33],
[34-53], [54-61], [62-68], [69-70]

8.3.2 Angular Discretization

The OpenMOC simulations of each of the six heterogeneous benchmarks used the same

MOC angular discretization with 128 azimuthal angles and 0.05 cm track spacing.

These parameters were selected since they were previously demonstrated to converge

the solution for simple heterogeneous PWR benchmark models [65]. Although the

eigenvalues in Chap. 5 were only shown to converge for a 1D slab and 2D fuel pin with

0.01 cm track spacing, a coarser spacing of 0.05 cm was employed for the heterogeneous

benchmarks for practical reasons 42. The total number of tracks and segments resulting

from the selected angular discretization are itemized in Tab. 8.2.

8.3.3 FSR Discretization

Flat source region spatial discretization meshes were applied to each of the six heteroge-

neous benchmarks in the OpenMOC simulations. The total number of FSRs is itemized

in Tab. 8.2 for each benchmark analyzed in this thesis. The FSR meshes applied to

the fuel pin, control rod guide tube, instrument tube and burnable poison pin cells are

shown in Fig. 8-2. As shown in the figures, eight equal angle subdivisions were used in

all material zones. The U0 2 fuel was further subdivided into five equal volume radial

rings, while ten radial rings were employed in the water-filled CRGTs and instrument

tubes. The borosilicate glass and borated water material zones filling the BPs were each

discretized into five equal volume radial rings. Finally, five equally spaced rings were

42The computational expense of solving the MOC equations scales linearly with the number of track
segments. In addition, OpenMOC's memory footprint is dominated by track segments which can make
some problems intractable except on high memory nodes. Finally, the time spent ray tracing across a
combinatorial geometry is non-negligible if not prohibitive for fine track spacings in large geometries.
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used in the moderator zones surrounding each pin.

(a) (b)

(c) (d)
Figure 8-2: The FSR spatial mesh used for fuel pins (a), control rod guide tubes (b),
instrument tubes (c) and burnable poisons (d). Diagrams of each pin type color-coded
by material are shown in Fig. 7-1.

The spatially discretized pin cells were used in each of the six heterogeneous bench-

marks. The FSR discretizations for an individual fuel assembly, 2x2 colorset with a

water reflector, and the upper right quadrant of the BEAVRS core are depicted in Fig. 8-3.

The water reflector in the 2 x 2 colorset was discretized using a mesh shown to converge

the solution for the similarly designed C5G7 benchmark [81] in [65]. In particular, the

13.85824 cm (equivalent to 11 pin cells) of water reflector nearest the fuel assemblies

was discretized in a 0.125984 cm x 0.125984 cm rectilinear mesh, equivalent to a 10x 10

mesh in each pin. The 7.55904 cm (equivalent to 6 pin cells) of water reflector furthest
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Figure 8-3: FSR (left) and CMFD (right) meshes for a fuel assembly (a) and (b), a 2x2
colorset with reflector (c) and (d), and quarter core BEAVRS benchmark (e) and (f).
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from the fuel assemblies was discretized in a 1.25984 cm x 1.25984 cm pin-wise mesh.

Each type of pin cell was discretized in the same way for the quarter core BEAVRS

model. A 0.31496 cm x 0.31496 cm mesh (equivalent to a 4x4 mesh in each pin) was

applied in the water reflector. The mesh in the reflector was coarser than the mesh used

in the reflector for the 2 x 2 colorset since a finer mesh was not computationally practical

for the quarter core BEAVRS model, nor needed due to th presence of the steel baffle. A

quarter pin-wise CMFD mesh (i.e., 0.62992 cm x 0.62992 cm) was employed for the

BEAVRS model, which discretized the core barrel and vessel into a corresponding FSR

mesh.

8.4 Analysis of Multi-Group Results

Each of the six benchmarks was modeled with OpenMOC using MGXS generated by

the infinite, null and degenerate spatial homogenization schemes. The eigenvalues and

pin-wise fission and U-238 capture rates computed by OpenMOC are compared to the

reference OpenMC solutions in Secs. 8.4.1, 8.4.2 and 8.4.3, respectively.

8.4.1 Eigenvalues

The OpenMOC eigenvalues were compared to the reference OpenMC eigenvalues from

Tab. 7.1. The eigenvalue bias Ap was computed from Eqn. 5.1 in units of pcm. The

bias is listed for each benchmark, energy group structure and spatial homogenization

scheme in Tab. 8.4. It should be recalled that isotropic in lab scattering is used by

OpenMC to compute both the reference solution and the MGXS. If anisotropic scattering

were employed in OpenMC, one would expect quite different biases without a robust

implementation of a higher order scattering kernel in OpenMOC.

As expected, the eigenvalue bias is highly dependent on energy group structure. In

general, a positive bias is exhibited for 2 groups with an increasingly negative trend

with more groups. The bias is remarkably consistent between -100 and -250 pcm for

70 groups for all of the benchmarks. This slightly negative bias is reminiscent of the

-200 pcm bias observed for the 1D slab and 2D pin cell PWR benchmarks when modeled
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with 70 groups in Chap. 5. The introduction of a reflector region in the 2x2 colorset

increases the bias to over 1700 pcm for all homogenization schemes for 2 groups, but

the bias is greatly reduced when modeled with more groups.

Table 8.4: OpenMOC eigenvalue bias Ap for heterogeneous benchmarks with varying
spatial homogenization schemes and energy group structures.

Benchmark MGXS Scheme AP [Pc1]
2-Group 8-Group 70-Group

Infinite -132 -68 31
1.6% Assm Null 60 -72 -161

Degenerate 62 -72 -161
Infinite -188 -98 29

3.1% Assm Null 95 -79 -202
Degenerate 98 -80 -202
Infinite 392 20 -76

3.1% Assm w/
20 BPs Null -136 -163 -252

Degenerate -160 -161 -248
Infinite 267 -149 -16

2x2 Colorset Null 27 -93 -196
Degenerate 11 -93 -193

2x2 Colorset Infinite 2103 267 46

w/ Reflector Null 1818 478 -142
Degenerate 1765 487 -132

BEAVRS Full Infinite 2000 296 103

Core Null 2181 406 -128
Degenerate 2179 408 -125

The eigenvalue bias is also dependent on the spatial homogenization scheme used to

compute MGXS in the fuel. It should first be noted that the eigenvalues are consistent

for the null and degenerate schemes to within 10 pcm with 8 or more groups for all

benchmarks. This is expected since the MGXS for each scheme is homogenized from

the same flux and should preserve globally-integrated reaction rates. In contrast, the

infinite scheme's eigenvalues differ by up to 300 pcm from the null/degenerate schemes,

with no marked trend across benchmarks and energy group structures.
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8.4.2 Fission Rate Distributions

The OpenMOC energy-integrated pin-wise fission rates were compared to the reference

OpenMC fission rates from Figs. 7-9 to 7-14. The percent relative errors for each pin's

fission rates were computed and the maximum and mean errors are listed for each

benchmark, energy group structure and spatial homogenization scheme in Tabs. 8.5

and 8.6, respectively. In particular, the maximum errors are the maximum of the

absolute values of the errors along with the appropriate sign, while the mean errors are

the averages of the absolute error magnitudes.

As was the case for the eigenvalues, the fission rate errors are highly dependent on

energy group structure. As expected, the maximum and mean errors are substantially

reduced with finer energy group structures for all benchmarks and spatial homogeniza-

tion schemes. The maximum fission rates are 2 - 11% in 2 groups for the individual

fuel assembly and 2x2 colorset benchmarks, respectively, but decrease to less than 1%

when modeled with 70 groups. The mean fission rate errors likewise decrease with finer

energy group structures, and are less than 0.2% in magnitude for the assembly and

colorset benchmarks for all homogenization schemes with 70 groups.

The fission rate errors are somewhat dependent on the spatial homogenization

scheme used to compute MGXS in the fuel. In particular, the degenerate scheme produces

slightly smaller maximum and mean errors than the null and infinite schemes. The error

reduction is largest in 2 groups, and is less significant for more groups. The null and

infinite schemes do not exhibit a systematic difference in their fission rate errors.

The spatial distributions of fission rate errors are plotted as heatmaps for each

benchmark in Figs. 8-4 to 8-9. These figures illustrate the fission rate errors for 8 and
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Table 8.5: OpenMOC maximum fission rate percent relative errors for heterogeneous
benchmarks with varying spatial homogenization schemes and energy group structures.

Benchmark MGXS Scheme Max Error [%]
2-Group 8-Group 70-Group

Infinite 2.387 0.643 0.375
1.6% Assm Null 2.379 0.638 0.380

Degenerate 1.903 0.726 0.315
Infinite 2.779 0.729 0.433

3.1% Assm Null 2.748 0.719 0.437
Degenerate 2.151 0.832 0.372
Infinite -3.090 -0.707 0.372

3.1% Assm w/
20 BPs Null -3.139 -0.701 0.380

Degenerate 1.915 -0.689 0.331
Infinite -5.964 -1.425 0.418

2x 2 Colorset Null -6.059 -1.428 0.463
Degenerate -5.339 -1.442 0.427

2x2 Colorset Infinite 11.024 2.773 0.670

w/ Reflector Null -16.330 -2.855 0.764
Degenerate -11.158 -2.821 0.602
Infinite -79.994 -31.934 2.103

BEAVRS Quar-
ter Core Null -85.893 -32.357 1.829

Degenerate -85.596 -32.382 1.728

70 energy group structures for the null and degenerate schemes; the reaction rate errors

for 2, 8, and 70 groups for all three homogenization schemes are compared in Figs. C-1

to C-6 in App. C.1. The heatmaps illustrate systematic trends in the pin-wise fission

errors which correlate with spatial heterogeneities in each benchmark. In particular, the

fission rates are generally underpredicted for pins near CRGTs, but overpredicted for

pins near BPs and in pins removed from CRGTs, such as those in the corners of each fuel

assembly. The effects due to heterogeneities are further enhanced when differentiating

pins which are facially adjacent to CRGTs, facially and corner adjacent to two CRGTs,

etc. In addition, the error magnitudes are large for pins along the inter-assembly and

assembly-reflector interfaces for the 2 x 2 colorset benchmarks. For the PWR benchmarks

modeled here, the moderation provided by neighboring CRGTs and reflectors softens
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Table 8.6: OpenMOC mean absolute fission rate percent relative errors for heterogeneous
benchmarks with varying spatial homogenization schemes and energy group structures.

Benchmark MGXS Scheme Mean Error [%]
2-Group 8-Group 70-Group

Infinite 0.951 0.231 0.073
1.6% Assm Null 0.943 0.229 0.074

Degenerate 0.687 0.240 0.079
Infinite 1.177 0.285 0.080

3.1% Assm Null 1.155 0.279 0.081
Degenerate 0.808 0.290 0.087
Infinite 0.927 0.194 0.095

3.1% Assm w/
20 BPs Null 0.937 0.193 0.098

Degenerate 0.692 0.213 0.086
Infinite 3.152 0.690 0.108

2x2 Colorset Null 3.132 0.690 0.120
Degenerate 2.918 0.702 0.120

2x2 Colorset Infinite 4.964 1.029 0.147

w/ Reflector Null 5.471 1.080 0.178
Degenerate 4.731 1.065 0.138
Infinite 34.831 10.391 0.492

BEAVRS Quar-
ter Core Null 39.355 10.541 0.323

Degenerate 39.520 10.474 0.336

the flux for nearby fuel pins and should be modeled when collapsing pin-wise MGXS for

high-fidelity multi-group transport calculations.

The use of degenerate spatial homogenization "smooths" the spatial distribu-

tion of pin-wise fission rate errors for 2-group MGXS. However, the fission

rates computed with MGXS generated from the infinite, null and degenerate

homogenization schemes are very similar with fine 70 group structures.
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Figure 8-4: Fission rate percent relative errors for a 1.6% enriched assembly corre-
sponding to the reference in Fig. 7-9.

196



70 Groups

-

El UU

U-EYE I

U U

U

U

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Figure 8-5: Fission rate percent relative errors for a 3.1% enriched assembly corre-
sponding to the reference in Fig. 7-10.
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Figure 8-6: Fission rate percent relative errors for a 3. 1% enriched assembly with 20
BPs corresponding to the reference in Fig. 7-11.
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Figure 8-7: Fission rate percent relative errors for a 2x2 colorset corresponding to the
reference in Fig. 7-12.

199

z

a)

C
a)

)

I 
0.9 1.2

m M,77

8 Groups

lm



8 Groups 70 Groups

-2.4 -1.8 -1.2 -0.6 0.0 0.6 1.2 1.8 2.4

Figure 8-8: Fission rate percent relative errors for a 2 x 2 colorset with a reflector
corresponding to the reference in Fig. 7-13.
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8.4.3 U-238 Capture Rate Distributions

The OpenMOC energy-integrated U-238 capture rates were compared to the reference

OpenMC fission rates from Figs. 7-15 to 7-20. The percent relative errors for each pin's

capture rates were computed and the maximum and mean errors are listed for each

benchmark, energy group structure and spatial homogenization scheme in Tabs. 8.7

and 8.8, respectively. In particular, the maximum errors are the maximum of the

absolute values of the errors along with the appropriate sign, while the mean errors are

the averages of the absolute error magnitudes.

Table 8.7: Maximum absolute U-238 capture rate percent relative errors for varying
spatial homogenization schemes and energy group structures.

Benchmark MGXS Scheme Max Error [%]
2-Group 8-Group 70-Group

Infinite -2.644 -1.480 -1.102
1.6% Assm Null -2.629 -1.475 -1.101

Degenerate 1.075 0.484 0.386
Infinite -2.959 -1.678 -1.262

3.1% Assm Null -2.934 -1.670 -1.262
Degenerate 0.941 0.437 0.326
Infinite 3.245 -1.278 -0.978

3.1% Assm w/
20 BPs Null 3.193 -1.253 -0.946

Degenerate 1.635 0.571 0.311
Infinite -5.001 -1.743 -1.307

2x2 Colorset Null -4.591 -1.598 -1.305
Degenerate -2.983 -0.954 0.615

2x2 Colorset Infinite 12.010 3.618 -1.889

w/ Reflector Null 11.100 3.372 -1.969
Degenerate 8.260 2.787 -0.783
Infinite -79.033 -31.419 -3.655

ter Core Null -84.954 -31.773 -3.645
Degenerate -84.624 -31.392 -2.067

As was the case for the other metrics, the U-238 capture rate errors are highly de-

pendent on energy group structure. The maximum and mean errors are substantially

reduced with finer energy group structures for all benchmarks and spatial homoge-
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Table 8.8: Mean absolute U-238 capture rate percent relative errors for varying spatial
homogenization schemes and energy group structures.

Benchmark MGXS Scheme Mean Error [%]
2-Group 8-Group 70-Group

Infinite 1.252 0.643 0.480
1.6% Assm Null 1.247 0.641 0.479

Degenerate 0.367 0.091 0.086
Infinite 1.371 0.718 0.543

3.1% Assm Null 1.361 0.715 0.543
Degenerate 0.326 0.106 0.087
Infinite 1.278 0.551 0.424

3.1% Assm w/
20 BPs Null 1.261 0.543 0.414

Degenerate 0.443 0.150 0.089
Infinite 2.300 0.611 0.451

2x2 Colorset Null 2.007 0.616 0.446
Degenerate 1.482 0.170 0.154

2x2 Colorset Infinite 3.878 0.847 0.480

w/ Reflector Null 3.708 0.780 0.478
Degenerate 3.302 0.655 0.165
Infinite 34.706 10.005 0.556

BEAVRS Quar-
ter Core Null 39.137 10.164 0.474

Degenerate 39.370 10.137 0.345

nization schemes. The maximum capture rate errors are 2 - 12% in 2 groups for the

individual fuel assembly and 2x2 colorset benchmarks, respectively, but decrease to 0.4

- 1.7% when modeled with 70 groups. The mean capture rate errors likewise decrease

with finer energy group structures, and are less than 0.6% in magnitude for the assembly

and colorset benchmarks for all homogenization schemes with 70 groups.

The capture rate errors are more dependent on the spatial homogenization scheme

used to compute MGXS in the fuel than are the fission rate errors. In particular, the

degenerate scheme produces much smaller maximum and mean errors than the null and

infinite schemes. The maximum error is greater than 1% for all benchmarks with the

infinite and null schemes even with 70 energy groups. The maximum error is reduced by

2 - 5 x for all benchmarks with the use of degenerate homogenization. In addition, the
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degenerate scheme consistently reduces the error for all energy group structures, with

the most substantial improvement over the infinite and null schemes observed for 70

groups. This stands in contrast to the fission rate errors where the degenerate scheme

was only significantly better for 2-group MGXS. As was the case for the fission rate

errors, the null and infinite schemes exhibit a negligible difference in their maximum

and mean capture rate errors, with no systematic trend in the data.

The spatial distributions of capture rate errors are plotted as heatmaps for each

benchmark in Figs. 8-10 to 8-15. These figures illustrate the capture rate errors for 8

and 70 energy group structures for the null and degenerate schemes; the capture rate

errors for 2, 8, and 70 groups for all three homogenization schemes are compared in

Figs. C-7 to C-12 in App. C.2. In addition, the U-238 capture absolute errors for the

benchmarks with vacuum BCs are illustrated in App. C.3.

The heatmaps illustrate systematic error trends in the pin-wise capture errors which

correlate with spatial heterogeneities in each benchmark. As is observed for the fission

rates, the capture rates are generally underpredicted for pins near CRGTs, but overpre-

dicted for pins removed from CRGTs, such as those in the corners of the fuel assembly.

Unlike the fission rates, the capture rates are also underpredicted for pins near BPs. The

effects due to heterogeneities are further enhanced when differentiating pins which are

facially adjacent to CRGTs, facially and corner adjacent to two CRGTs, etc. In addition,

the error magnitudes are large for pins along the inter-assembly and assembly-reflector

interfaces for the 2 x 2 colorset benchmarks. For the PWR benchmarks modeled here, the

moderation provided by neighboring CRGTs and/or reflectors softens the local flux for

nearby fuel pins and should be modeled when collapsing pin-wise MGXS for high-fidelity

multi-group transport calculations.
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Figure 8-10: U-238 capture rate percent relative errors errors for a 1.6% enriched
assembly corresponding to the reference in Fig. 7-15.
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Figure 8-11: U-238 capture rate percent relative errors errors for a 3.1% enriched
assembly corresponding to the reference in Fig. 7-16.
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As noted previously, the energy group structure has a large impact on the error

distributions as can be seen from the figures. In addition, the heatmaps illustrate

how the degenerate spatial homogenization scheme effectively "smooths" the pin-wise

errors as compared to the infinite and null schemes. Although this effect appears most

pronounced for the 2-group plots in App. C.2, the "smoothing" trend persists for 8 and 70

groups as well (unlike the fission rate errors). In particular, the differential of the errors

for pins near CRGTs, BPs, and assembly and reflector interfaces is substantially reduced

when degenerate homogenization is applied. The difference in the spatial distributions

of errors for the infinite and null schemes is hardly noticeable except for pins near the

assembly and reflector interfaces for the 2x2 colorset benchmarks.

The use of degenerate spatial homogenization "smooths" the spatial distri-

bution of pin-wise U-238 capture rate errors. The improvement in accuracy

with degenerate homogenization increases with more energy groups. This

underscores the importance of accounting for spatial heterogeneities - such

as the added moderation from CRGTs and reflectors - when generating MGXS

to predict U-238 capture and Pu-239 production in LWRs.

8.5 Motivation for a New Spatial Homogenization Scheme

The results presented in the preceding section quantify and illustrate the impact of

capturing heterogeneous spatial self-shielding effects in MGXS for fuel pins in PWR

geometries. The pin-wise U-238 capture rates, and to a lesser extent, the pin-wise

fission rates, are better predicted when these effects are incorporated into MGXS used in

high-fidelity multi-group transport calculations. Alternatively, non-negligible systematic

approximation errors in the reaction rates arise when using MGXS collapsed with the flux

from an infinite lattice calculation which does not differentiate pins based on neighboring

spatial heterogeneities 4 3. It should be noted that other approximation errors due to

spatial, angular and energy discretization in MOC are still present in these calculations,

43This is the case for many traditional approaches to self-shielding for MGXS generation.
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and may complicate the generality of the conclusions drawn in this section.

The use of degenerate spatial homogenization reduces reaction rate errors by directly

modeling perturbations in the flux within each fuel pin due to local heterogeneities

such as neighboring CRGTs and BPs. Some reactions may be more or less sensitive to

local spatial self-shielding effects. In the PWR benchmarks presented here, degenerate

homogenization was most beneficial for predicting U-238 capture rates since it explicitly

accounts for moderation from neighboring CRGTs and reflectors. Although degenerate

spatial homogenization is advantageous for accuracy, it is not practical for routine reactor

analysis due to computational resource limitations.

As shown in Tab. 8.1, the number of unique materials in the BEAVRS model is 0(104)

for degenerate homogenization 44 , but only 0(10) for the infinite and null homogeniza-

tion schemes. As a result of the fine-grained spatial tally mesh employed by degenerate

homogenization, far more particle histories are needed to converge the MGXS tallies to

obtain the same statistical uncertainties as with the simpler schemes. In particular, the

particle track density across each of the degenerate tally zones (e.g, fuel pins) is roughly

one ten thousandth of that in the infinite/null schemes. Therefore, a factor of roughly

10,000 more particle histories are required to obtain the same particle track density

within each of the degenerate tally zones 45 and converge the statistical uncertainties to

the same level as would be obtained with infinite/null homogenization.

However, the spatial distribution of errors motivate the potential for a new homoge-

nization scheme. In particular, the errors in the infinite/null homogenization schemes

exhibit marked patterns which correlate with the local heterogeneities in the geometry.

For example, the error of the predicted reaction rates for all pins facially adjacent to

a CRGT is quite similar. More generally, the observed reaction rate errors are similar

for groups of pins with similar neighboring local heterogeneities. This key observation

implies that the reaction rate errors may be minimized if an appropriate set of spatially

self-shielded MGXS are defined for each grouping of pins with similar flux profiles due

"The number of materials may be 0(106) for 3D PWR models with axial enrichment zoning.
45For eigenvalue calculations in high dominance ratio reactor cores, the additional number of particle

histories needed to converge MGXS tallies for degenerate homogenization may be even greater due to
the highly uneven fission neutron source distribution.
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to neighboring heterogeneities. In particular, can a library of MGXS be homogenized

across a greatly reduced set of pins from the degenerate case which approaches both:

- the accuracy of the degenerate scheme

- the convergence of the infinite/null schemes

with far fewer particle histories than the degenerate scheme? This question is investigated

with an in-depth analysis of clustering of pin-wise MGXS in the following chapter.
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" Each of the six heterogeneous benchmarks introduced in Chap. 7 is modeled

in OpenMOC with MGXS generated by OpenMC.

" Three spatial homogenization schemes enable a direct quantification of spatial

self-shielding effects from local heterogeneities in MGXS:

- Infinite homogenization tallies MGXS for each unique fuel pin type

using the MC flux in an infinite lattice calculation.

- Null homogenization tallies MGXS for each unique fuel pin type using

the MC flux from the complete heterogeneous geometry.

- Degenerate homogenization tallies MGXS for each unique fuel pin

instance using the MC flux from the complete heterogeneous geometry.

" The OpenMOC eigenvalues match OpenMC to within nearly 250 pcm for all

benchmarks and homogenization schemes with 70-group MGXS.

" Degenerate homogenization best predicts reaction rates most sensitive to

spatial self-shielding since it incorporates perturbations to the flux due to

heterogeneities such as CRGTs and BPs.

- Fission rate errors do not improve significantly

- U-238 capture rate errors are reduced by 2 - 4x

* Degenerate homogenization requires far more particle histories to converge

MC MGXS tallies than the simpler infinite and null schemes.

e The pin-wise reaction rate error distributions motivate the development of

a new spatial homogenization scheme to identify groups of fuel pins which

experience similar spatial self-shielding effects and have similar MGXS.
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Chapter 9

Clustering of Pin-Wise MGXS

The preceding chapter quantified the benefit of using degenerate spatial homogenization

to predict pin-wise U-238 capture rates as accurately as fission rates in high-fidelity multi-

group transport methods. However, it was also noted that the degenerate scheme requires

far more Monte Carlo particle histories to converge MGXS tallies than are necessary for

the simpler null or infinite schemes. In addition, orders of magnitude more memory

is needed to store MGXS libraries produced from degenerate homogenization. These

observations motivate the need for a more sophisticated approach to pin-wise spatial

homogenization which can simultaneously achieve nearly the accuracy of degenerate

homogenization and the convergence of null homogenization.

This chapter seeks to accomplish this by leveraging the finding from Chap. 8 that

pins with similar neighboring heterogeneities generally have similar reaction rate errors.

For example, null homogenization led to a structured spatial distribution of errors

with systematically similar errors in pins facially adjacent to one or two CRGTs, BPs,

along inter-assembly and assembly-reflector interfaces, and so on. Since degenerate

homogenization largely erased this structural error distribution, it follows that pins with

similar errors likely experience similar spatial self-shielding effects due to neighboring

heterogeneities. As a result, this and the following chapters develop the hypothesis that

pins with similar neighboring heterogeneities have similar microscopic MGXS. If

pins with similar microscopic MGXS can be identified, the MGXS tallied in these pin

instances may be homogenized to compute an estimate which is nearly as accurate as the
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MGXS from degenerate homogenization, and nearly as converged as the MGXS from

null homogenization.

This chapter investigates this hypothesis by analyzing the pin-wise MGXS tallied

with OpenMC to identify patterns - namely, clustering - for pins with similar neighbors.

Furthermore, this chapter develops and quantifies a new spatial homogenization tech-

nique which analyzes a core geometry to predict which fuel pin instances have similar

microscopic MGXS due to neighboring heterogeneities. This technique applies OpenCG's

Local Neighbor Symmetry algorithm to generate a "geometric template" of fuel pins and

averages the MGXS for pins across a core geometry with the same LNS identifiers. The

impact of using LNS homogenization is compared to the null and degenerate schemes

with respect to both general predictive accuracy as well as convergence. The results pre-

sented for LNS homogenization underscore the promise for an approach which combines

the benefits of the null and degenerate schemes. However, the results also highlight some

notable shortcomings to LNS which motivates the need for an unsupervised approach to

MGXS clustering, as developed in the following chapter.

This chapter begins by analyzing patterns in visualizations of pin-wise MGXS in

Sec. 9.1. This includes a case study of the statistical uncertainties and population

variance of pin-wise MGXS in Secs. 9.1.1 and 9.1.2, and an analysis of the distributions

of U-235 fission and U-238 capture MGXS for each of the six heterogeneous benchmarks

with histograms and quantile-quantile plots in Secs. 9.1.3 and 9.1.4, respectively. A new

spatial homogenization scheme based upon OpenCG's LNS algorithm is introduced in

Sec. 9.2. The OpenMOC eigenvalues and pin-wise fission and U-238 capture rates with

LNS spatial homogenization are presented in Sec. 9.3. Finally, the statistical uncertainties

and convergence rate for MGXS generated with the null, degenerate and LNS schemes

are compared in Sec. 9.4.

9.1 Clustering of Pin-Wise MGXS

This section investigates the clustering of pin-wise MGXS due to spatial self-shielding

effects induced by neighboring heterogeneities. As a thought experiment, consider the
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pin-wise MGXS in an infinite lattice4 6. Although the pin-wise MGXS in such a uniform

geometry are necessarily identical, due to the stochastic nature of MC, the population of

pin-wise MGXS estimates from MC will have a non-zero variance and represent random

variates drawn from a normal distribution. When heterogeneities such as CRGTs and BPs

are introduced into the geometry, they will induce local spatial self-shielding effects on

nearby pins. As a result, the population of pin-wise MGXS will no longer be drawn from

a simple normal distribution, but rather some mixture of potentially more complicated

distributions. As shown in this section, such deviations may be observed from the

population of pin-wise microscopic MGXS tallied with MC.

It is important to note that self-shielding effects induce clustering of microscopic

rather than macroscopic MGXS. The pin-wise macroscopic MGXS cluster (or disperse)

due to the different densities of nuclides in each fuel pin and give no indication of the

similarity of the spectra experienced by each fuel pin. Since all of the benchmarks in

this thesis use an isotopic vector for fresh PWR fuel, the clustering effects investigated

here are necessarily the same for both micro and macro MGXS. However, the spatial

homogenization methods developed in this thesis are intended to be used for more

general applications with fuels of various burnups. Hence this section analyzes the

microscopic MGXS since this is most appropriate for general purpose MGXS generation.

This section quantifies and visualizes the impact of heterogeneities on pin-wise MGXS.

The MGXS data analyzed in this section was produced from the OpenMC simulations

used to compute MGXS for Chap. 8 for degenerate homogenization. Sec. 9.1.1 begins by

briefly quantifying the statistical uncertainties for the tallied MGXS datasets. Sec. 9.1.2

investigates the population variance of MGXS for each of the heterogeneous benchmarks

and compares it to data for an infinite lattice47 . Secs. 9.1.3 and 9.1.4 analyze histograms

and quantile-quantile plots of the distribution of pin-wise MGXS for each of the bench-

marks, respectively. Although the preceding chapter identified U-238 capture rates as

being more sensitive to the pin-wise spatial homogenization model than the fission rates,

this section explores both U-238 capture and U-235 fission MGXS data. As observed in

46 An infinitely repeating lattice of identical fuel pins.
4 7A 17x17 assembly of identical fuel pins with reflective boundary conditions. The MGXS are tallied

separately in each of the 289 identical fuel pins.
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the following chapters, the clustering of one nuclide or reaction type's MGXS may not

have a sizable impact on the corresponding reaction rate distribution (e.g., fission), but

may still reflect spatial self-shielding effects which can be leveraged to better predict

other reaction rate distributions.

9.1.1 Pin-Wise MGXS Statistical Uncertainty

Before investigating MGXS clustering, it is important to first quantify the statistical

uncertainties of the tallied pin-wise MGXS for each benchmark. The max and mean

relative uncertainties 4 8 of the pin-wise U-238 capture and U-235 fission MGXS for an

infinite lattice and each of the heterogeneous benchmarks are presented in Tab. 9.1.

The standard deviations were computed by propagating the standard deviations of

the reaction rate and flux tallies (Eqn. 3.9) as discussed in Sec. 3.2.2. The standard

deviations were computed for all of the pins in each benchmark, and the max and mean

values were selected for the table. The table highlights the standard deviations for

both 1.6% and 3.1% enriched fuel pins4 9. The MGXS data was computed in two energy

groups. The U-238 capture MGXS is analyzed for the first (fast) energy group since

it encompasses the resonance region which is most sensitive to spatial self-shielding

effects. The U-235 fission MGXS is analyzed for the second (thermal) energy group

since it encompasses thermal energies which drives the majority of fission in LWRs.

There are a few key observations which can be made from the statistical uncertainties.

First, the statistical uncertainties for both MGXS are relatively small with respect to the

means. In particular, the relative uncertainties are 0.1 - 0.75% and 0.05 - 0.25% for

the U-238 capture and U-235 fission MGXS, respectively. Furthermore, the reported

standard deviations are likely overestimates since the reaction rate and flux tallies used

to compute each MGXS are positively correlated (see Sec. 9.1). Therefore, the clustering

of MGXS demonstrated in the following sections results from variation in MC sampling

distributions with spatial heterogeneities rather than poor MC sample statistics.

"8The relative uncertainty as used here is defined as the standard deviation of the sample mean divided by
the sample mean.

49Although the BEAVRS model includes 2.4% enriched fuel pins, they were not included in this analysis.
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Table 9.1: The percent relative uncertainties (1-sigma) for pin-wise U-235 fission and
U-238 capture MGXS50 .

Fuel1/
Benchmark Metric Var [o.238] [%] Var[[.23

Enrichment C,1 f,2

Max 0.10 0.05
Infinite Lattice

Mean 0.10 0.05
Max 0.10 0.05

Assm. (no BPs) Mean 0.10 0.04

Max 0.20 0.10
1.6% 2x2 Colorset

Mean 0.19 0.09

Max 0.71 0.23
2x2 Colorset w/ Reflector

Mean 0.24 0.11

Max 0.73 0.33
BEAVRS Quarter Core

Mean 0.28 0.13

Max 0.10 0.06
Infinite Lattice

Mean 0.10 0.06
Max 0.10 0.06

Assm. (no BPs) Mean 0.10 0.05

Max 0.10 0.06
Assm. (20 BPs) Mean 0.10 0.06

3.1%
Max 0.20 0.12

2x2 Colorset
Mean 0.19 0.11
Max 0.34 0.16

2 x 2 Colorset w/ Reflector
Mean 0.22 0.12
Max 0.50 0.24

BEAVRS Quarter Core
Mean 0.19 0.11

In addition, the relative uncertainty increases with both the number of pins (and

the corresponding decrease in particle track density in each tally volume) as well as

the complexity of the heterogeneities in each benchmark. For example, there are 264

and 528 pins of a particular enrichment in the individual assembly benchmarks with

CRGT and BPs, respectively. The uncertainties for the pins in the 2 x 2 colorset without a

reflector are nearly 2 x greater than those for the individual assemblies. The 1.6% and

50The reported uncertainties for the quarter core model may be underestimated due to correlations
between fission source sites [40,41].
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3.1% enriched pins in the reflected colorset have uncertainties which are approximately

3 x and 1.7 x greater than those in the periodic colorset, respectively This demonstrates

the uneven distribution of particle track densities across the tally volumes in the reflected

colorset, as evidenced by the power distributions in Figs. 7-12 and 7-13.

9.1.2 Pin-Wise MGXS Population Variance

The population variance is a useful metric to quantify the degree of dispersion of a

probability distribution. The metric is used in this section to compare the dispersive

effects of heterogeneities on pin-wise MGXS. The population variance o 2 for a population

of N random variates x[ drawn from a distribution with mean i51 is computed as follows:

N

Z(xi - p)2

I2 =1 N (9.1)

The population variance of U-238 capture and U-235 fission pin-wise MGXS, normal-

ized to the mean of the population, are presented in Tab. 9.2 for an infinite lattice and

each of the heterogeneous benchmarks. Each of the random samples in the variance

calculation is the MGXS in one fuel pin instance in the respective benchmark. The table

highlights the population variance for both 1.6% and 3.1% enriched fuel pins. The

MGXS data was computed in two energy groups. The U-238 capture MGXS is analyzed

for the first group since it encompasses the resonance region which is most sensitive to

spatial self-shielding effects. The U-235 fission MGXS is analyzed for the second group

since it encompasses thermal energies which drives the majority of fissions in LWRs.

A number of key trends emerge from the population variance data which support

the overarching premise of this chapter - that spatial self-shielding effects from core

heterogeneities induce clustering of pin-wise MGXS. First, the variance is over two

orders of magnitude larger for each of the six benchmarks as compared to an infinite

lattice, clearly indicating that spatial self-shielding from local heterogeneities disperses

pin-wise MGXS. This dispersion is observed even for the individual fuel assemblies with

s 1If the mean M is unknown, it may be empirically estimated from the sample mean 5c.
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Table 9.2: The population variance normalized to the population mean for pin-wise
U-235 fission and U-238 capture MGXS.

Fuel Benchmark Var[238] Var [235]
Enrichment [%] [%]

Infinite Lattice 0.10 0.02
Assm. (no BPs) 1.55 0.37

1.6% 2x2 Colorset 1.66 0.94
2x2 Colorset w/ Reflector 1.75 1.20
BEAVRS Quarter Core 1.31 0.68
Infinite Lattice 0.10 0.02
Assm. (no BPs) 1.54 0.59

3.1% Assm. (20 BPs) 1.44 0.99
2x2 Colorset 1.53 1.36
2 x 2 Colorset w/ Reflector 1.69 2.01
BEAVRS Quarter Core 1.80 1.18

only a mixture of fuel pins and CRGTs. The introduction of BPs slightly reduces the

variance for U-238 capture, but increases the variance by nearly 2x for U-235 fission

MGXS. Inter-assembly effects in the 2x2 colorset increase the dispersion of U-238

capture MGXS by 10 - 20%, but dramatically increases the variance for the fission MGXS

by up to 2.5 x. The introduction of a water reflector to the colorset further increases the

dispersion by 5 - 15% and 65 - 120% for U-238 capture and U-235 fission in the 1.6%

and 3.1% enriched pins, respectively. Interestingly, the most of the population variances

decrease by 1/3 - 1/2 for the BEAVRS quarter core with respect to the 2 x 2 colorset with a

reflector. This is likely due to the smaller ratio of fuel pins along the assembly-reflector

interface - which experience a dramatically softer flux spectrum than pins in the interior

of the core - to total number of pins for the BEAVRS model.

Lastly, the variance of the U-235 fission MGXS is notably dependent on the enrichment.

For example, the variance is nearly 2x larger for the assembly with 3.1% enriched fuel

pins and CRGTs than the same assembly with 1.6% enriched fuel. This trend remains

true for the larger, more complicated benchmarks. This observation is interesting in light

of the results in Chap. 8 which demonstrated little improvement in the fission rate spatial

distributions with degenerate homogenization. Notwithstanding, these results indicate
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that the sensitivity of U-235 fission MGXS to spatial self-shielding may be leveraged to

improve U-238 capture rate predictions.

Core heterogeneities such as CRGTs, BPs and reflectors increase the popula-

tion variance of pin-wise MGXS due to spatial self-shielding effects. The mag-

nitude of the dispersion varies by nuclide and reaction type, and is generally

larger for thermal U-235 fission than fast/epithermal U-238 capture MGXS.

9.1.3 Histograms of Pin-Wise MGXS

This section expounds upon the preceding quantitative analysis of the dispersive effect

of heterogeneities with a visual examination of the distributions of pin-wise MGXS. In

particular, the following two sections present histograms of the pin-wise U-238 capture

and U-235 fission MGXS to illustrate clustering due to spatial self-shielding effects. In

addition, rug plots - which draw vertical ticks along the x-axis of each histogram -

are used to further discern clustering within the distributions. The visualizations are

presented for an infinite lattice as well as the six heterogeneous benchmarks for both

1.6% and 3.1% enriched fuel. The trends observed in the plots can be attributed to the

presence of CRGTs, BPs, assembly-assembly and/or assembly-reflector interfaces or fuel

enrichment.

As in Sec. 9.1.2, the random samples in each visualization (e.g., each green tick in

the rug plots) correspond to a single fuel pin instance in the corresponding benchmark

model. Although this analysis could plausibly be performed for a variety of nuclides,

reaction rates and/or energy groups, only U-238 capture and U-235 fission MGXS were

selected due to their importance for reactor performance. It is also worth noting that

the two group constants were selected since their tallied MC uncertainties are smaller

than those for the 8- and 70-group MGXS. As a result, it is simpler to identify clustering

trends in the 2-group MGXS data.
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9.1.3.1 U-238 Capture MGXS

The pin-wise microscopic U-238 capture MGXS for 1.6% and 3.1% enriched fuel pins are

illustrated with histograms and rug plots in Figs. 9-1 and 9-2, respectively As expected

based on the population variances, the distributions of pin-wise MGXS for the infinite

lattices in Figs. 9-la and 9-2a are narrow and symmetric - unlike the distributions for

each of the heterogeneous benchmarks. The introduction of CRGTs to the individual

fuel assemblies induces four clearly discernible clusters of MGXS in Figs. 9-1b and 9-2b

which are separated by approximately 0.01 - 0.015 barns (or 1 - 2%) for both fuel

enrichments. There may be further sub-clusters as evidenced by the dispersion of the

rug plot ticks between the two lowest-lying clusters. These clusters are attributed to the

softening of the flux due to moderation from neighboring CRGTs in increasing order

for the following four groupings of fuel pins: (a) pins not adjacent to a CRGT, (b) pins

corner adjacent to a CRGT, (c) pins facially adjacent to a CRGT and (d) pins facially

and corner adjacent to separate CRGTs. The addition of BPs to the 3.1% enriched fuel

assembly "smears" the four clusters of U-238 capture MGXS in Fig. 9-2c. In addition, the

MGXS are shifted downwards by -0.005 barns (or -0.5%) with respect to the assembly

without BPs.

The inter-assembly interfaces in the 2x2 colorset benchmark results in a further

"smearing" of the clusters for both enrichments in Figs. 9-1c and 9-2d. It should be

noted that there are twice as many samples (e.g., 528 fuel pin instances for each

enrichment) in the colorsets than the individual fuel assemblies. Hence, it is more

challenging to distinguish clusters from the rug plots for the larger colorset benchmarks.

Nonetheless, the histograms indicate the continuing presence of four distinct clusters

for both enrichments, though they are easier to identify for the 1.6% enriched fuel pins

(in assemblies without BPs). The MGXS are generally shifted up by -0.01 barns for

the 1.6% enriched pins, and down by -0.0075 barns for the 3.1% enriched pins, with

respect to the individual fuel assemblies.

The introduction of a reflector to the 2 x 2 colorset leads to very different distributions

for the two fuel enrichments in Figs. 9-1d and 9-2e. The reason for this is that periodicity
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Figure 9-1: Histograms of
(e)

U-238 capture MGXS (group 1 of 2) for 1.6% enriched fuel.

along the x and y axes is broken with the inclusion of the reflector. In particular, both of

the 3.1% enriched assemblies are symmetrically adjacent to the reflector, and therefore

have identical pin-wise MGXS. However, one of the 1.6% enriched assemblies is corner
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Figure 9-2: Histograms of U-238 capture MGXS (group 1 of 2) for 3.1% enriched fuel.

adjacent to the reflector while the other is located within the interior of the colorset.

Nevertheless, some general observations can be made from the data. First, the MGXS
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are generally even more "smeared" for both enrichments than is the case for the colorset

without a reflector. The histogram indicates the existence of at least three clusters for

the 1.6% enriched pins, with a similar but less concentrated three-way clustering for the

3.1% enriched pins. Finally, the lowest pin-wise MGXS for both enrichments are ~0.025

barns (or ~,3%) less than those in the colorset without a reflector. This may be due to

a harder spectrum in fuel pins along the left and top boundaries which have periodic

BCs in the colorset without a reflector, but reflective BCs for the colorset with a water

reflector.

The quarter core BEAVRS model has the smoothest varying distributions of any of

the benchmarks in Figs. 9-le and 9-2f. This is due in part to the fact that there are over

8 x more samples for each fuel enrichment than are present for the colorsets5 2. The most

notable observation is that the distributions appear to first order to be bimodal with large

peaks centered at approximately 0.815 and 0.83 barns, and 0.785 and 0.805 barns, for

the 1.6% and 3.1% enriched pins, respectively The distribution for the 3.1% enriched

fuel pins has an additional smaller shoulder centered at 0.83 barns. Additionally, a few

3.1% enriched pins have significantly greater MGXS between 0.86 and 0.9 barns. This

is likely due to the fact that the 3.1% enriched assemblies surround the exterior of the

core configuration. As a result, the flux is more strongly shielded in the U-238 resonance

energies for 3.1% enriched pins adjacent to the baffle/reflector than the 1.6% enriched

pins in the interior, resulting in some larger "outlier" pin-wise MGXS.

Finally, it should be noted that the microscopic U-238 capture MGXS are generally

0.01 - 0.02 barns (or 1.25 - 2.5%) larger for the 1.6% than the 3.1% enriched fuel

pins for each respective benchmark, including the infinite lattice. These results indicate

that the flux is less shielded at resonance energies for the lesser enriched fuel, perhaps

due to a slightly larger fraction of neutrons up-scattering from group two to one due

to the smaller probability of fission. This variation of U-238 capture MGXS with fuel

enrichment remains true even for the quarter core BEAVRS model. However, the single

largest U-238 capture MGXS is in a 3.1% enriched fuel pin corner adjacent to the baffle,

which likely has the softest spectrum of any pin due to the nearby reflector.

52There are 4,332 1.6%, 4,260 2.4% and 4,236 3.1% enriched fuel pins in the quarter core model.
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The dispersion of pin-wise U-238 capture MGXS is highly uneven and struc-

tured. Core heterogeneities such as CRGTs, BPs and reflectors induce cluster-

ing due to spatial self-shielding effects which are observed from distributions

of the pin-wise MGXS.

9.1.3.2 U-235 Fission MGXS

The pin-wise microscopic U-235 fission MGXS for 1.6% and 3.1% enriched fuel pins are

illustrated with histograms and rug plots in Figs. 9-3 and 9-4, respectively. It should

first be noted that the U-235 fission MGXS are over 300 x larger than the U-238 capture

MGXS illustrated in the preceding section. However, it should be recalled that the U-238

nuclide density is over 30 - 60 x larger than U-235 in the 1.6% and 3.1% enriched fuel,

respectively. As a consequence, the clustering of either microscopic U-238 capture or

the U-235 fission MGXS is important since it will have a similarly sized impact on the

corresponding macroscopic MGXS and reaction rates.

As was observed for U-238 capture, the distributions of pin-wise MGXS for the infinite

lattices in Figs. 9-3a and 9-4a are narrow and symmetric unlike the distributions for

each of the heterogeneous benchmarks. Unlike the situation for U-238 capture, the

introduction of CRGTs induces a more intricate clustering of the U-235 fission MGXS

in Figs. 9-3b and 9-4b. However, the total range of U-235 fission MGXS in the fuel

assemblies with CRGTs varies by only 1 - 2% as compared to more than 5% for U-238

capture. The histograms indicate the presence of roughly three clusters of MGXS which

are separated by 1 - 2 barns for both fuel enrichments. The rug plots illustrate a more

complicated dispersion, however, with a significantly more distinct concentration into

approximately eight clusters for the 3.1% enriched fuel pins. These observations indicate

that U-235 fission may be more sensitive than U-238 capture to spatial self-shielding

effects from the added moderation of CRGTs, even though the impact on the resultant

MGXS is of a smaller relative magnitude. This is the result of the 1/v profile of the U-235

fission cross section at thermal energies which is particularly sensitive to thermalization

when weighted by the flux to compute MGXS.
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Figure 9-3: Histograms of U-235 fission MGXS (group 2 of 2) for 1.6% enriched fuel.

The further addition of BPs to the 3.1% enriched fuel assembly results in a more

distinct set of isolated clusters of U-235 fission MGXS in Fig. 9-4c. In particular, there
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Figure 9-4: Histograms of U-235 fission MGXS (group 2 of 2) for 3.1% enriched fuel.

appear to be three overall clusters centered at approximately 272, 276 and 300 barns

each with a number of sub-clusters. This stands in contrast to the case for U-238 capture
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where the presence of BPs resulted in a "smearing" of the clusters. In addition, the

MGXS are generally shifted downwards by 5 - 10 barns (or 1.5 - 3%) with respect to

the assembly without BPs. The inter-assembly interfaces in the 2 x 2 colorset benchmark

have a similarly concentrating effect for both enrichments in Figs. 9-3c and 9-4d. The

histograms reveal three clusters centered at approximately 294, 298 and 301 barns for

the 1.6% enriched pins, and four clusters centered at 271, 275, 278 and 283 barns

for the 3.1% enriched pins. Furthermore, the rug plots indicate the presence of more

clusters which are easier to distinguish than they are for the individual fuel assemblies,

or for the U-238 capture MGXS in the 2x2 colorset benchmark. Finally, the MGXS in

the colorset are generally shifted downwards by 3 - 6 barns (or 1 - 2%) with respect to

the individual fuel assemblies.

The introduction of a reflector to the 2 x 2 colorset leads to very different distributions

for the two fuel enrichments in Figs. 9-3d and 9-4e. As was noted in Sec. 9.1.3.1, the

reason for this is that symmetry is broken with the inclusion of the reflector. A first

observation is that the distributions of U-235 fission MGXS for the two enrichments

differ much more profoundly than they do for U-238 capture. The histogram for the

1.6% enriched pins indicate perhaps six primary clusters centered at 294, 298, 301, 304,

306 and 310 barns, though the rug plot certainly indicates the presence of even more

sub-clusters. The histogram for the 3.1% enriched pins indicate perhaps four clusters

roughly centered at 276, 284, 290 and 296 barns, though the intervals between these

apparent clusters contain many additional samples, complicating the analysis. Finally,

the largest U-235 fission MGXS are approximately 315 and 300 barns for the 1.6% and

3.1% enriched pins in the colorset, respectively, about 15 barns (or 5%) greater than the

largest MGXS for the colorset without a reflector. This is due to the softer flux spectrum

experienced by those pins adjacent to the reflector.

As was noted for the U-238 capture MGXS, the quarter core BEAVRS model has the

smoothest varying distributions of any of the benchmarks in Figs. 9-3e and 9-4f. The

most notable observation is that the distributions appear to first order to be bimodal

and trimodal with large peaks centered at approximately 297 and 302 barns, and 278,

283 and 284 barns, for the 1.6% and 3.1% enriched pins, respectively The two peaks
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are more clearly discernible for the 1.6% enriched fuel pins. This effect may be due

to an increase in moderation for those 1.6% enriched assemblies that are only one

assembly removed from the reflector as compared to those in the interior of the core.

Furthermore, the range of MGXS in the quarter core model only spans 10 - 15 barns (or

5%) as compared to the 20 - 25 barns for the 2 x colorset benchmark. This is likely due

to the presence of a stainless steel baffle separating the assemblies on the exterior of the

BEAVRS model from the water reflector. The baffle dampens the additional moderation

experienced by those pins nearest the reflector in the BEAVRS model with respect to

those in the 2x2 colorset with a reflector but no baffle.

Finally, it should be noted that the microscopic U-235 fission MGXS are generally

18 - 22 barns (or 6+%) larger for the 1.6% than the 3.1% enriched fuel pins for each

respective benchmark, including the infinite lattice. These results indicate that the flux

is more strongly moderated for the lesser enriched fuel, perhaps due to the smaller

probability of fission. This variation of U-235 fission MGXS with fuel enrichment remains

true even for the quarter core BEAVRS model.

The presence of core heterogeneities induce more clearly defined clustering

of pin-wise U-235 fission MGXS than is observed for U-238 capture (in 2-group

data). However, the population of pin-wise U-235 fission MGXS only vary by

up to 1% about the mean, while the U-238 capture MGXS variation is ~2.5%.

9.1.4 Quantile-Quantile Plots of Pin-Wise MGXS

This section illustrates the deviation from normality of pin-wise MGXS with Quantile-

Quantile (Q-Q) plots. A Q-Q plot is used to compare two datasets drawn from different

probability distributions. In particular, the quantiles from one dataset are plotted against

the quantiles of a second dataset in an (x, y) scatter plot 3 . If the two distributions are

similar, the data points will lie along the y = x reference line. Departures from y = x

indicate dis-similarities between the distributions, such as shifts in location or scale,

s 3A quantile is the point at which some fraction of the data falls below a given value. For example, the
10% quantile is the point at which 10% of the data is below the point and 90% is above it.
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changes in symmetry, and outliers.

In this section, the theoretical quantiles for a normal distribution are plotted against

empirical quantiles found from the empirical distribution of pin-wise U-238 capture and

U-235 fission MGXS. These Q-Q plots illustrate the deviation from normality for the data

as heterogeneities are introduced to the benchmark models. It should be noted that the

MGXS data is first standardized so that it can be compared to theoretical quantiles from

a standard normal distribution N(0, 1) in the Q-Q plots. The visualizations are presented

for an infinite lattice as well as the six heterogeneous benchmarks for both 1.6% and

3.1% enriched fuel. The random samples in each visualization (e.g., each blue data

point) correspond to a single fuel pin instance in the corresponding benchmark model.

In addition, each plot highlights the p-value54 for the Shapiro-Wilk test of normality [82]

computed using the Python scipy. stats package [59]55.

9.1.4.1 U-238 Capture MGXS

The pin-wise microscopic U-238 capture MGXS for 1.6% and 3.1% enriched fuel pins

are illustrated with histograms and rug plots in Fig. 9-5 and 9-6, respectively. As was

hypothesized earlier, the datasets for the infinite lattices in Figs. 9-5a and 9-6a appear

to be from a normal distribution since they lie very close to the y = x reference line. In

addition, the p-values are greater than 0.7, well above commonly used significance levels;

thus one would not reject the null hypothesis that the data is from a normal distribution.

The addition of CRGTs leads to a clear deviation from normality in Figs. 9-5b and 9-6b,

with four "shoulders" representing the four clusters highlighted in Sec. 9.1.3 for the

single assembly benchmarks. The presence of BPs seems to result in more shoulders in

Fig. 9-6c corresponding to the various clusters identified in Fig. 9-2c.

At first glance, the larger number of data points (e.g., fuel pin instances) in the Q-Q

s 4The p-value is used in null hypothesis significance testing and measures the likelihood of an observation
as or more extreme than the given one. In this section, the null hypothesis is that pin-wise MGXS data
is drawn from a normal distribution. To test this hypothesis, a significance level a is chosen (e.g., 1%)
and compared with the p-value of the Shapiro-Wilk normality test. If p < a then the null hypothesis is
rejected (i.e., the dataset was not drawn from a normal distribution); otherwise, it cannot be rejected.

ssThe implementation of the Shapiro-Wilk test in scipy. stats is stated to be accurate up to at least
5,000 data points. This is suitable for the datasets considered here which are largest for the quarter
core BEAVRS model with ~4,500 points for the each fuel enrichment.
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Figure 9-5: Q-Q plots of U-238 capture MGXS (group 1 of 2) for 1.6% enriched fuel.

plots for the larger colorset and quarter core benchmarks appear to hide any underlying

structure. Although the data points may appear to lie closer to the y = x line for the
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Figure 9-6: Q-Q plots of U-238 capture MGXS (group 1 of 2) for 3.1% enriched fuel.

larger benchmarks, this does not necessarily indicate that the data is more likely to

have been drawn from a normal distribution. Indeed, smoothly varying deviations from
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y = x exhibited in the larger datasets results in smaller p-values for the colorset and

quarter core models. Of particular note, p-values on the order of 10-18 and 10- 3 9 arise

from the data for the 1.6% and 3.1% enriched fuel pins, respectively, for the BEAVRS

quarter core model. These results suggest that it is highly unlikely that the data arose

from a normally distributed stochastic process.

The clustering of U-238 capture MGXS manifests itself as "shoulders" in Q-Q

plots. The Shapiro-Wilks test rejects the null hypothesis that the MGXS data

is drawn from a normal distribution for all six heterogeneous benchmarks.

9.1.4.2 U-235 Fission MGXS

The pin-wise microscopic U-235 fission MGXS for 1.6% and 3.1% enriched fuel pins

are illustrated with histograms and rug plots in Fig. 9-7 and 9-8, respectively. As was

observed in the preceding section for U-238 capture, the datasets for the infinite lattices

in Figs. 9-7a and 9-8a appear to be from a normal distribution since they lie very close

to the y = x reference line. In addition, the p-values are greater than 0.3, well above

commonly used significance levels; thus one would not reject the null hypothesis that

the data is from a normal distribution.

The addition of CRGTs leads to a clear deviation from normality in Figs. 9-7b and 9-8b.

However, the structure is substantially more complex than the four shoulders exhibited

in the U-238 capture MGXS data. As was noted in Sec. 9.1.3.2, the presence of BPs

results in many distinct clusters which appear as a highly fragmented, step-like profile

in the Q-Q plot in Fig. 9-6c. The high degree of clustering exhibited in the histograms

and rug plots for the larger colorset and quarter core benchmarks similarly appears in

the corresponding Q-Q plots.

As noted for the U-238 capture MGXS, the p-values for the Shapiro-Wilks tests of

the pin-wise U-235 fission MGXS data affirm the deviation from normality seen in the

Q-Q plots. Of particular note, p-values on the order of 10-38 and 10--3 arise from the

data for the 1.6% and 3.1% enriched fuel pins, respectively, for the BEAVRS quarter

core model. These results suggest that it is highly unlikely that the data arose from a
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Figure 9-7: Q-Q plots of U-235 fission MGXS (group 2 of 2) for 1.6% enriched fuel.

normally distributed stochastic process.
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Figure 9-8: Q-Q plots of U-235 fission MGXS (group 2 of 2) for 3.1% enriched fuel.
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9.2 LNS Spatial Homogenization

The preceding sections quantified and visualized the dispersion and structural clus-

tering of pin-wise MGXS due to spatial self-shielding effects. The degenerate spatial

homogenization scheme evaluated in Chap. 8 is able to model the clustering of MGXS by

assigning a unique set of MGXS to each fuel pin instance in a core geometry. However,

the infinite and null schemes fail to account for MGXS clustering since they each assign

a single MGXS to all instances of the same fuel pin type. As evidenced by the results

in Chap. 8, it is important to adequately model clusters of pin-wise MGXS in order to

accurately predict U-238 capture rate spatial distributions.

This section introduces a new spatial homogenization scheme which uses a determin-

istic approach to cluster pin-wise MGXS based on an analysis of the core geometry The

approach developed here is akin to geometric templates employed by some commonly

used lattice physics codes, such as CASMO [77], to predict which groupings of pins

are likely to experience similar spatial self-shielding effects and hence have similar

microscopic MGXS. The new scheme is termed LNS homogenization since it is predicated

upon OpenCG's Local Neighbor Symmetry (LNS) algorithm (see Sec. 4.4.2). The LNS

algorithm analyzes the combinatorial geometry (CG) used to represent each benchmark

model and groups pins together based on their neighboring spatial zones. The goal of

LNS homogenization is to achieve degenerate homogenization's predictive accuracy by

representing MGXS clustering, and approach null homogenization's tally convergence

by homogenizing MGXS across many pin instances.
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The higher degree of clustering of pin-wise U-235 fission MGXS than U-238

capture MGXS results in highly fragmented step-like Q-Q plots. The Shapiro-

Wilks test once again rejects the null hypothesis that the MGXS data is drawn

from a normal distribution for all six heterogeneous benchmarks.



9.2.1 Overview

Like the degenerate spatial homogenization scheme (Sec. 8.2.3), a single MC calculation

of the complete heterogeneous geometry is used to generate MGXS for all materials. The

MGXS are tallied separately for each instance of fissile material zones using OpenMC's

distributed cell tallies (see Sec. 4.2.2). The OpenCG LNS algorithm assigns an integral

LNS identifier to each unique pin instance in the CG based on an analysis of each pin's

neighbors at each level of the CG hierarchy. Pins with like neighboring pins, within

assemblies with like neighboring assemblies, will receive the same LNS identifiers6 . The

MGXS are averaged across all pin instances with the same unique LNS identifier. For

example, all pins adjacent to a single CRGT on one face and fuel pins on all other faces

are assigned the same MGXS averaged across the OpenMC distributed cell tallies for all

of those pin instances. The OpenCG region differentiation algorithm (see Sec. 4.4.3)

is used to build an OpenMOC geometry with unique cells and materials for each fuel

pin which mirrors the LNS representation of the CG model. Like the infinite, null and

degenerate schemes, spatial self-shielding effects experienced by different non-fissile

spatial zones are averaged across the entire geometry for each non-fissile material.

The total number of materials (i.e., MGXS) used to model each benchmark with the

LNS homogenization scheme is given in Tab. 9-9. The fuel assemblies with CRGTs and

BPs and 2 x 2 colorset benchmark models are color-coded by material and illustrated in

Fig. 9-9 for the LNS homogenization scheme. Likewise, the materials for the quarter

core BEAVRS model with LNS homogenization is highlighted in Fig. 9-10.

As quantified in the Tab. 9.3, 9 - 10 unique fissile materials are used for each fuel

assembly with LNS, far fewer than the 264 in degenerate homogenization. Consequently,

the MC tallies for LNS homogenization will converge more quickly than those for de-

generate homogenization. In addition, as indicated by the figures, fuel pin types with

neighboring heterogeneities are assigned unique MGXS which generally reflects the

clustering of MGXS due to spatial self-shielding effects. As a result, LNS homogenization

would be expected to enable more accurate predictions of reaction rate distributions

than is possible with the null scheme.

s 6LNS hashes a data structure representing a rotationally invariant form of each pin's neighbors.
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Table 9.3: Number of materials modeled with unique MGXS in each heterogeneous
benchmark for LNS spatial homogenization.

Benchmark # Fuel Materials
Null/Infinite LNS Degenerate

1.6% Assm 1 9 264
3.1% Assm 1 9 264
3.1% Assm w/ 20 BPs 1 10 264
2x2 Colorset 2 19 1,056
2x2 Colorset w/ Reflector 2 29 1,056
BEAVRS Quarter Core 3 495 12,993
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Figure 9-9: OpenMOC materials with LNS spatial homogenization for an assembly with
CRGTs (a), an assembly with 20 BPs (b), a 2x2 colorset without (c) and with (d) a
reflector. Each uniquely colored material represents a unique set of MGXS.
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Figure 9-10: OpenMOC materials with LNS spatial homogenization for the 2D quarterC7-
core BEAVRS model. Each uniquely colored material represents a unique set of MGXS.

9.2.2 Track Density-Weighted MGXS

The LNS spatially-homogenized MGXS for each group of pin instances are not simply

computed as the geometric average of the MGXS in each pin instance. Instead, the total

reaction rates and fluxes in each pin instance are first summed together and then divided

to compute an average MGXS which is effe-ctively weighted by the relative particle track

density in each fuel pin instance. The track density-weighted average MGXS preserve

241



global reaction rates5 7 and are equivalent to defining specialized OpenMC "cell" reaction

rate and flux tallies for each group of pin instances with like LNS identifiers. In order to

formally express the track density weighted-average approach, it is useful to first recall

Eqn. 3.14 for a microscopic MGXS estimated from MC tallies for reaction x, nuclide i,

spatial zone k and energy group g:

A = i 'kg (9.2)Crx, i,k, g t

In this context, the index k of K total spatial zones refers to a particular instance of a

fuel pin within a core geometry. The LNS algorithm represents a function S(k) which

assigns an identifier m to each fuel pin instance based on its neighbors (i.e., pin instances

with the same neighbors are assigned the same identifier). The set Sm encapsulates all

instances k with the same LNS identifier:

Sm = {1 ; k K : S(k)m} (9.3)

LNS homogenization computes a single set of MGXS for the fuel pin instances in

each set k E Sm classified by the LNS algorithm. This is equivalent to a specialization of

Eqn. 9.2 with track density-weighted averages of the reaction rates and flux tallies in

each pin instance:

K

A _k=1

(Tx,i,m,g - K (9.4)

where the indicator function fls (k) is equal to 1 if k E Sm and 0 otherwise. The track

density-weighted average is similarly applied to the MC tallies for each type of MGXS,

including scattering matrices and the fission spectrum.

5 7 A simple geometric average of MGXS across fuel pins will not preserve global reaction rates.

242



9.2.3 Potential Shortcomings

Upon further inspection, it is clear from Figs. 9-9 and 9-10 that there are some notable

shortcomings to the LNS scheme. For example, the pins along the inter-assembly and

assembly-reflector interfaces in the 2x2 colorset and quarter core BEAVRS models in

Fig. 9-9c to 9-9d and 9-10 are treated the same (i.e., with the same MGXS). As a result,

LNS may result in poor reaction rate predictions for these pins, as will be quantified in

Sec. 9.3. It is possible that the LNS algorithm could be specialized in various ways to

differentiate between the pin types on the outer edge of each assembly. However, such

customizations would not be reactor agnostic and would be challenging to implement

and generalize.

Furthermore, the relative number of LNS materials does not scale with the total num-

ber of fuel pins. In particular, there are 26 - 29 x fewer materials with the LNS scheme

as compared to the degenerate scheme for the individual fuel assembly benchmarks

as well as the quarter core BEAVRS model"8 . It is likely that LNS uses more materials

than necessary to capture MGXS clustering for large geometries, which will diminish its

relative accelerated convergence with respect to degenerate homogenization.

LNS spatial homogenization applies a "geometric template" to homogenize

MGXS for pins with similar neighboring spatial zones. The scheme aims to

accelerate the MC tally convergence while capturing spatial self-shielding ef-

fects in clustered MGXS. However, the number of materials scales poorly

with the size and complexity of the core geometry. Furthermore, the algo-

rithm fails to distinguish pins with very different spatial self-shielding effects

at inter-assembly and assembly-reflector interfaces.

58This reflects the fact that neighboring assemblies are accounted for in the LNS algorithm. The fuel
assemblies in the quarter core BEAVRS model do not exhibit any neighboring symmetries, and as a
result, no two assemblies are assigned the same set of pin-wise MGXS.
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9.3 Multi-Group Results with LNS

Each of the six benchmarks was modeled with OpenMOC using MGXS generated by the

LNS spatial homogenization scheme. Each of the six heterogeneous benchmarks was

modeled with 2-, 8- and 70-group MGXS using the same OpenMOC runtime parameters

as those used in Chap. 8 for infinite, null and degenerate homogenization. The eigenval-

ues and pin-wise fission and U-238 capture rates computed by OpenMOC are compared

to the reference OpenMC solutions in Secs. 9.3.1, 9.3.2 and 9.3.3, respectively

9.3.1 Eigenvalues

The OpenMOC eigenvalues were compared to the reference OpenMC eigenvalues from

Tab. 7.1. The eigenvalue bias Ap was computed from Eqn. 5.1 in units of pcm. The

bias is listed for each benchmark and energy group structure in Tab. 9.4. The same

trends highlighted in Sec. 8.4.1 observed from the null and degenerate biases in Tab. 8.4

remain true for LNS spatial homogenization. In fact, the LNS eigenvalues are within 10

pcm of those computed with both null and degenerate homogenization with 8 or more

groups for all benchmarks. As previously noted in Sec. 8.4.1, this is expected since the

MGXS for the null, degenerate and LNS schemes are homogenized from the same flux

and should preserve globally-integrated reaction rates. Hence, LNS homogenization is

not expected to improve OpenMOC's eigenvalue predictions.

Table 9.4: OpenMOC eigenvalue bias Ap for heterogeneous benchmarks with LNS
homogenization and varying energy group structures.

Benchmark Ap [pcmJ
2-Group 8-Group 70-Group

1.6% Assm 62 -72 -161

3.1% Assm 98 -80 -202
3.1% Assm w/ 20 BPs -158 -161 -248
2x2 Colorset 12 -93 -194
2x2 Colorset w/ Reflector 1797 481 -138

BEAVRS Full Core 2168 401 -129
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The OpenMOC eigenvalues for LNS homogenization are consistent with the

null and degenerate schemes to within 10 pcm for eight or more groups due

to global reaction rate preservation.

9.3.2 Fission Rates

The OpenMOC energy-integrated pin-wise fission rates were compared to the reference

OpenMC fission rates for LNS homogenization. The percent relative errors for each

pin's fission rates were computed and the maximum and mean errors are listed for

each benchmark and energy group structure in Tab. 9.5, respectively In particular, the

maximum errors are the maximum of the absolute values of the errors along with the

appropriate sign, while the mean errors are the averages of the absolute error magnitudes.

The results in Tab. 9.5 can be compared to the corresponding data for infinite, null

and degenerate homogenization in Tabs. 8.5 and 8.6. The 70-group degenerate results

are reproduced in the Tab. 9.5 to simplify comparison with LNS. No heatmaps for the

fission rate errors are presented since the spatial homogenization scheme has little visible

impact on the spatial distribution of errors.

One of the key findings in Chap. 8 was that degenerate homogenization did not result

in a substantial reduction in the spatial distribution of fission rate errors with respect to

OpenMC. This result indicates that an accurate model of MGXS clustering is not needed to

accurately predict fission rate spatial distributions. Hence, LNS spatial homogenization

would be expected to produce similar results to degenerate homogenization. Indeed,

the fission rate errors for 8 and 70 groups with LNS homogenization are very nearly the

same as those for degenerate homogenization for the three individual fuel assemblies

and the 2x2 colorset. Although the errors are 0.1 - 0.2% worse for the 2x2 colorset

with a reflector and the quarter core BEAVRS model, they remain slightly below those

for null homogenization. This is due to the fact that the MGXS for the fuel pins near

the assembly-reflector interface are homogenized along with those at the inter-assembly

interfaces for LNS spatial homogenization, rather than separately homogenized due to

245



the additional moderation provided by the reflector.

Table 9.5: OpenMOC fission rate percent relative errors for heterogeneous benchmarks
with LNS spatial homogenization and varying energy group structures.

Error [%]
Benchmark Metric LNS Degenerate

2-Group 8-Group 70-Group 70-Group

1.6% Assm Max 2.095 0.728 0.314 0.315
Mean 0.713 0.240 0.078 0.079

3.1% Assm Max 2.382 0.827 0.371 0.372
Mean 0.834 0.288 0.086 0.087

3.1% Assm w/ Max -2.030 -0.685 0.320 0.331
20 BPs Mean 0.724 0.215 0.085 0.086

2x 2 Colorset Max -5.499 -1.412 0.405 0.427
Mean 2.941 0.701 0.118 0.120

2x2 Colorset Max -15.785 -2.976 0.709 0.602
w/ Reflector Mean 5.169 1.076 0.155 0.138

BEAVRS Full Max -85.579 -32.106 1.805 1.728
Core Mean 39.542 10.382 0.296 0.336

LNS spatial homogenization performs as well as or slightly better than degen-

erate homogenization for simple benchmarks, but fails to model the impact

of spatial self-shielding effects on pin-wise fission rates in more complicated

geometries with inter-assembly and assembly-reflector interfaces.

9.3.3 U-238 Capture Rate Distributions

The OpenMOC energy-integrated pin-wise U-238 capture rates were compared to the

reference OpenMC capture rates for LNS homogenization. The percent relative errors

for each pin's capture rates were computed and the maximum and mean errors are

listed for each benchmark and energy group structure in Tab. 9.6, respectively. In

particular, the maximum errors are the maximum of the absolute values of the errors

along with the appropriate sign, while the mean errors are the averages of the absolute

error magnitudes. The results in Tab. 9.6 can be compared to the corresponding data
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for infinite, null and degenerate homogenization in Tabs. 8.7 and 8.8. The 70-group

degenerate results are reproduced in Tab. 9.6 to simplify comparison with LNS.

Table 9.6: OpenMOC U-238 capture rate percent relative errors for heterogeneous
benchmarks with LNS spatial homogenization and varying energy group structures.

Error [%]
Benchmark Metric LNS Degenerate

2-Group 8-Group 70-Group 70-Group

1.6% Assm Max 1.091 0.372 0.290 0.386
Mean 0.390 0.084 0.076 0.086

3.1% Assm Max 0.969 0.375 0.228 0.326
Mean 0.351 0.090 0.076 0.087

3.1% Assm w/ Max 2.005 0.548 0.249 0.311
20 BPs Mean 0.509 0.148 0.073 0.089

2x 2 Colorset Max -2.753 -0.832 0.439 0.615
, Mean 1.516 0.136 0.115 0.154

2x2 Colorset Max 10.201 3.031 -1.964 -0.783
w/ Reflector Mean 3.482 0.604 0.236 0.165

BEAVRS Max -84.556 -30.671 -2.854 -2.067
Quarter Core Mean 39.308 10.017 0.304 0.345

One of the key findings in Chap. 8 was that degenerate homogenization enabled

substantial reductions of the spatial distribution of U-238 capture rate errors with

respect to OpenMC. In contrast to the fission rates, this result indicates that accurate

model of MGXS clustering is needed to accurately predict U-238 capture rate spatial

distributions. Hence, LNS spatial homogenization would be expected to enable more

accurate predictions than null homogenization, and to potentially approach the accuracy

of degenerate homogenization. Upon investigation, the max and mean U-238 capture

rate errors for 70 groups with LNS homogenization are 0.1 - 0.2% and 0.01% less,

respectively, than degenerate homogenization for the three individual fuel assemblies

and the 2x2 colorset (relative reductions of 10 - 30%).

However, the errors for the 2 x 2 colorset with a reflector are very nearly the same

as those for null homogenization (about 2.5x larger errors than degenerate homoge-

nization). As was previously noted for the fission rate errors, the MGXS for the fuel pins

247



near the assembly-reflector interface are not separately homogenized and thus fail to

account for the additional moderation from the reflector. Perhaps the most surprising

observation is that the max and mean errors for the quarter core BEAVRS model are

actually 1.5% and 0.1% less, respectively than those for both null and degenerate ho-

mogenization. This is notable since degenerate homogenization actually has a slightly

larger maximum error (8.296%) than null homogenization (8.076%), most likely due to

the relatively larger tally uncertainties of the pin-wise MGXS for the quarter core model

as compared to the five smaller benchmarks. Based on these results, it appears that LNS

homogenization performs as intended and "de-noises" the statistical uncertainties by

averaging the MGXS across clusters with similar spatial self-shielding effects.

The spatial distributions of capture rate errors are plotted as heatmaps for each

benchmark in Figs. 9-11 to 9-18. These figures illustrate the capture rate errors for 8

and 70 energy group structures for the assembly and colorset benchmarks, and errors

for 70 groups for the quarter core BEAVRS model. The figures are corollaries to those

comparing the infinite, null and degenerate schemes in Figs. 8-10 to 8-15. In addition,

the U-238 capture absolute errors for the 2x2 colorsets are illustrated in Figs. C-13

and C-14, and for the full core in Fig. C-15 to C-17 in App. C.3.

The heatmaps illustrate very nearly the same error distributions for degenerate and

LNS spatial homogenization for the individual fuel assemblies and 2 x 2 colorset without

a reflector, but systematic deviations for the reflected colorset and quarter core BEAVRS

model. As previously noted in Sec. 8.4.3, the null scheme exhibited the largest errors for

pins near CRGTs and along the inter-assembly and assembly-reflector interfaces, while

the degenerate scheme produced a very nearly even error distribution across the pins

in the reflected colorset (in 70 groups). The LNS scheme largely "smooths" the error

distribution for pins, but exhibits large errors for the single outermost row of pins adjacent

to the reflector, and to a lesser extent, the pins along the inter-assembly interfaces. More

specifically, the U-238 capture rates are under-predicted near the reflector and over-

predicted for interior pins. This result is indicative of the collective homogenization

of all pins along the exterior of each assembly irregardless of the neighboring spatial

zones. The flux at U-238 capture resonance energies is more shielded for pins adjacent
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to the reflector than for interior pins, resulting in larger U-238 capture MGXS. LNS

homogenizes the larger MGXS for pins along the reflector with the smaller capture

MGXS for interior pins, which leads to the respective under- and over-prediction for the

outermost and interior pins.

A couple of key conclusions can be drawn from these results. First, LNS effectively

models MGXS clustering for pins in the interior of each fuel assembly (e.g., pins adjacent

to CRGTs and/or BPs). However, the pins along the outer edges of each assembly are

homogenized in a way that does not appropriately account for the spatial self-shielding

effects of the neighboring materials zones. Nevertheless, track density-weighted spatial

homogenization does ensure that the errors improve the most for those pins with the

largest reaction rates, as illustrated by the absolute errors in App. C.3.

LNS spatial homogenization reduces the U-238 capture rate errors by 10 -

30% with respect to degenerate homogenization for the single assembly and

periodic colorset benchmarks. However, the scheme does not improve the

errors for the reflected colorset with respect to null homogenization since it

fails to model the impact of inter-assembly and assembly-reflector interfaces.
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Figure 9-11: U-238 capture rate percent relative errors errors for a 1.6% enriched
assembly with null, LNS and degenerate spatial homogenization.
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Figure 9-12: U-238 capture rate percent relative errors errors for a 3.1% enriched

assembly with null, LNS and degenerate spatial homogenization.
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Figure 9-13: U-238 capture rate percent relative errors errors for a 3.1% enriched
assembly with 20 BPs with null, LNS and degenerate spatial homogenization.
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Figure 9-14: U-238 capture rate percent relative errors errors for a 2x2 colorset with
null, LNS and degenerate spatial homogenization.
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Figure 9-15: U-238 capture percent relative errors rate errors for a 2x2 colorset with
null, LNS and degenerate spatial homogenization.
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Figure 9-16: U-238 capture rate percent relative errors for the 2D quarter core BEAVRS
model with null spatial homogenization.
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Figure 9-17: U-238 capture rate percent relative errors for the 2D quarter core BEAVRS
model with LNS spatial homogenization.
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Figure 9-18: U-238 capture rate percent relative errors for the 2D quarter core BEAVRS

model with degenerate spatial homogenization.
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9.4 MGXS Uncertainties and Convergence Rates

As discussed at the beginning of this chapter, there are two key objectives to MGXS

clustering - to simultaneously approach the accuracy of degenerate homogenization and

the convergence of null homogenization. The former objective was previously quantified

in the context of LNS spatial homogenization; the latter objective is the subject of this

section. In particular, the particle track density within each spatially-homogenized tally

volume must be increased in order to converge the statistical uncertainties faster than is

possible with degenerate homogenization.

LNS homogenization attempts to accomplish this by predicting which fuel pins have

similar MGXS and homogenizing their tally volumes into a single set of MGXS for

each set of pins with unique LNS identifiers. This section quantifies the accelerated

convergence for the LNS scheme and contrasts it with the null and degenerate schemes. A

series of OpenMC simulations were performed for each benchmark with 10,000 batches

of 100,000 particles per batch for a total of 109 particle histories, with cumulative

tally results stored every 20 batches. Stationarity of the fission source was obtained

with 100 inactive batches for the assembly and colorset benchmarks; 200 inactive

batches were used for the quarter core BEAVRS model. Sec. 9.4.1 discusses the expected

difference in statistical uncertainties and convergence rates for MGXS generated with null,

degenerate and LNS spatial homogenization. Secs. 9.4.2 and 9.4.3 present the empirical

batchwise evolution of the statistical uncertainties and percent deviation for pin-wise

MGXS computed using null, degenerate and LNS homogenization, respectively 59.

9.4.1 Theoretical Considerations

This section highlights a few theoretical considerations which should be understood

when analyzing the empirical data presented in the following sections. Sec. 9.4.1.1

introduces a model to predict the reduction of statistical uncertainty that can be expected

with the use of LNS spatial homogenization. Sec. 9.4.1.2 makes a few comments about

59The interested reader is referred to the work by Nelson [371 which performs a more detailed and
systematic evaluation of the convergence of MGXS - most notably, scattering and fission production
matrices - which is the beyond the scope of this thesis.
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the ideal and expected convergence rate of MGXS generated from MC tallies.

9.4.1.1 Relative Statistical Uncertainties

This section introduces a simple mathematical relation to predict the relative uncertain-

ties for degenerate and LNS spatial homogenization for a given number of MC particle

histories60 . It should be recalled from Tab. 9.3 that the LNS scheme reduced the number

of materials by >25x with respect to degenerate homogenization. As a result, the

particle track density within each LNS tally volume increased according to the number

of fuel pins homogenized for each unique LNS identifier m, respectively The expected

(or ideal) reduction of the statistical uncertainties with LNS homogenization may be

derived from this with a few key assumptions.

First, assume the microscopic MGXS of the fuel pins k e S,, with LNS identifier

m are independent and identically distributed (i.i.d.) samples, each drawn from a

corresponding normal distribution N(pk, 2 )61 . The sampling distributions for the

MGXS in each fuel pin instance k may have different means pk, but are assumed to

have the same standard deviation um for each LNS identifier6 2 . The standard deviations

(7- rng of the homogenized microscopic MGXS 0xi,mg (Eqn. 9.4) for each LNS set Sm

are then inversely proportional to the square root of the number of pins in each set:

& ~ M (9.5)

The factor aUis-R is the expected downward "shift" of the standard deviation for

LNS homogenized MGXS with respect to the degenerate MGXS. The magnitude of the

shift depends on the standard deviation o, of the tallied MGXS for each pin comprising

the LNS set Sm, as well as the number of fuel pins ISmI assigned to the set. The former
60This analysis is relevant for any scheme which uses track density-weighting to homogenize MGXS tallied

over distinct spatial volumes (e.g., fuel pins). This approach will be used to evaluate the unsupervised
statistical clustering methodology for spatial homogenization introduced in Chaps. 10 and 11.

61The symbol o- for the standard deviation should not be misconstrued for the microscopic cross section.
62The standard deviations are only the same if the track density within each fuel pin instance i for each

volume of phase space (r, 1, E) is identical. In this case, the standard deviations of the tallied pin-wise
MGXS would be identical. While this approximation is never true in practice, Tab. 9.1 indicates that the
standard deviations for pin-wise MGXS are only within a few multiples of one another for each of the
six benchmarks (i.e., the standard deviations are within a narrowly dispersed "band").
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is roughly equivalent to the tally uncertainties for the pin-wise MGXS for degenerate

homogenization and is controlled by the number of particle histories simulated for a

given benchmark. The latter depends on the number of fuel pins assigned to each LNS

set, which may not be evenly distributed. For example, the individual fuel assembly

with CRGTs (see Fig. 9-9a) has 4 ISI 64; in other words, the number of fuel

pins assigned unique LNS identifiers varies widely. As a result, the downward shift for

the standard deviations of the MGXS for each LNS cluster will vary accordingly. For

example, the standard deviations of those pins facially adjacent to a single CRGTs in the

assembly benchmarks without BPs (S,,, I= 64) should be reduced by approximately 1/8

with respect to the standard deviations of the MGXS for each of the individual pins. The

standard deviations of the pins adjacent to the central instrument tube (iSmI= 4) will

only be reduced by approximately 1/2 since there are far fewer pins within this LNS set.

As a result of the uneven assignment of pins to LNS sets, the relation in Eqn. 9.5 is

only useful to compare the relative uncertainties for the MGXS in a single LNS set to

those of the individual pins which comprise the corresponding set. It should not be used

to predict the relative uncertainties for the population of MGXS generated from LNS

homogenization, as these cannot be generally characterized as an ensemble. Lastly, the

relation may be applied to predict the relative uncertainties between null and degenerate

homogenization, as is done in Sec. 9.4.2 and benchmarked to empirical data.

9.4.1.2 MGXS Convergence Rates

The MGXS "convergence rate" as defined here refers to the reduction in the statistical

uncertainties with the number of independent simulated realizations (i.e., MC batches).

By definition, the empirical MC tally standard deviations will converge as 1/VN for N

batches (see Sec. 3.1.2). However, this convergence rate only holds true for MC particle

transport simulations if the tally realizations for each batch are i.i.d. Although this is

the case for fixed source MC simulations, it is not the case for eigenvalue simulations

for reactor physics analysis. In particular, the correlation between the fission source

distributions for successive batches is correlated in criticality calculations which breaks

the independence assumption and dampens the convergence rate [40,41]. The auto-
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correlation coefficient between successive batches is required to account for correlations

of the fission source sites in the estimated standard deviation of the mean. In general, the

coefficient cannot be quantified without an ensemble of simulations, and therefore is not

used here to estimate the MGXS standard deviations. As a result, the reported standard

deviations and convergence rates are likely to be under-estimated and over-estimated,

respectively, especially for the high dominance ratio quarter core BEAVRS model.

9.4.2 Batchwise Statistical Uncertainties

The statistical uncertainties for the pin-wise MGXS were reported for the "fully con-

verged" MGXS in Sec. 9.1.1. The MGXS uncertainties were computed with uncertainty

propagation (see Sec. 3.2.2) of the standard deviations of the reaction rate and flux tally

means (see Eqn. 3.9). This section presents the evolution of those uncertainties with

the number of particles simulated by OpenMC. The standard deviation of the pin-wise

MGXS for null, degenerate and LNS homogenization were computed every 20 batches

for U-235 fission and U-238 capture MGXS. The standard deviations are plotted for

the 1.6% enriched assembly and the quarter core BEAVRS models in Figs. 9-19 to 9-21.

The evolution is shown for both the maximum and mean standard deviations of the

population of MGXS for LNS and degenerate homogenization.

The relation in Eqn. 9.5 may be used to understand the relative difference (i.e.,

vertical offset) in statistical uncertainties for the three homogenization schemes. First,

the relation predicts a ~16x reduction of the uncertainties for the null homogenized

MGXS of the 264 pins in the 1.6% enriched assembly with respect to the degenerate

MGXS. This compares well to the empirically observed reduction of 18 - 22x for the

the different MGXS types. Similarly, the relation predicts a -23x reduction in the

uncertainties for the null homogenized MGXS of the 549 1.6% enriched fuel pins in

the quarter core BEAVRS model with respect to the degenerate MGXS. The empirically

observed reduction of 18 - 20x is smaller, most likely due to the larger disparity in the

standard deviations of the MGXS for each fuel pin, which breaks the assumption made

in Sec. 9.4.1.1 that the standard deviations are identical for all samples.
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Figure 9-19: The standard deviation of pin-wise U-238 capture MGXS (group 27 of
70) for 1.6% enriched fuel pins in a single assembly (a) and the quarter core BEAVRS
model (b). The thin black dashed lines indicate the theoretical 1/-- convergence for the
maximum standard deviations of each homogenization scheme.
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Figure 9-20: The standard deviation of pin-wise U-238 capture MGXS (group 1 of 2) for
1.6% enriched fuel pins in a single assembly (a) and the quarter core BEAVRS model (b).
The thin black dashed lines indicate the theoretical 1/v1 convergence for the maximum
standard deviations of each homogenization scheme.
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Figure 9-21: The standard deviation of pin-wise U-235 fission MGXS (group 2 of 2) for
1.6% enriched fuel pins in a single assembly (a) and the quarter core BEAVRS model (b).
The thin black dashed lines indicate the theoretical l1f- convergence for the maximum
standard deviations of each homogenization scheme.
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In addition, the gap between max and mean uncertainties for the degenerate and

LNS schemes vary between the assembly and quarter core benchmarks. In particular,

the max and mean uncertainties for the degenerate scheme differ by less than 10% for

the assembly, but by -2.5x for the quarter core model (this can also be seen in Tab. 9.1).

This is caused by the highly uneven fission source distribution in the quarter core model,

which results in a more uneven distribution of particle track densities across the fuel pin

tally volumes than in the assembly. In contrast, the max and mean uncertainties for the

LNS scheme differ by 60 - 70% for the assembly but by 13 - 16x for the quarter core

model. The disparity between max and mean uncertainties for LNS homogenization

is more complicated since it reflects the number of fuel pins assigned to each spatial

homogenization set in addition to the uncertainties of the MGXS for each fuel pin.

The MGXS statistical uncertainties converge at the same rate for null, degen-

erate and LNS homogenization schemes. The uncertainties for null and LNS

homogenization are smaller than those for the degenerate scheme according

to the number of fuel pins assigned to each spatial homogenization set.

9.4.3 Batchwise Relative Percent Deviations

The statistical uncertainties presented in the preceding section estimate the amount by

which MGXS may vary from their tallied means. However, the uncertainties do little to

indicate the degree by which one may expect the solutions from a multi-group calculation

to change from batch-to-batch of the MC simulation. This section seeks to quantify the

impact of MGXS convergence on downstream codes by presenting the batchwise relative

percentage deviation for MGXS with null, degenerate and LNS spatial homogenization.

The batchwise relative percentage deviation quantifies the change in cumulative

MGXS estimates between two batches. The absolute batchwise relative deviation as

employed here is computed for the cumulatively estimated microscopic MGXS 07b

and &b+Ab for batches b and b + A b as follows:x~i~k~g
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b __A b+A b
AA O, x,i,k,g x~i,k,g.xj,,k,g[/O = A b x 100 (9.6)

ax,i,k,g

The batchwise relative deviation indicates the degree by which the MGXS estimates

change with the number of MC particle histories simulated. The MGXS estimates from

batch-to-batch follow a random walk with steps which are increasingly attenuated with

the number of batches. The degree of change between batches depends on the particle

track density within each tally volume, and therefore should be ordered from least to

greatest for null, LNS and degenerate homogenization.

Due to computational resource constraints, the batchwise deviations were computed

every A b = 20 batches for each MC simulation. The absolute relative batchwise per-

centage deviations are plotted for the 1.6% enriched assembly and quarter core BEAVRS

models in Figs. 9-22 to 9-24. The evolution is shown for both the maximum and mean

deviations of the population of MGXS for LNS and degenerate homogenization.

A couple of observations can be made from the figures. First, the convergence

rate (or log-log slope) of the batchwise deviations is very nearly the same for all three

homogenization schemes. More importantly, however, the deviations are smallest for

null homogenization and greatest for degenerate homogenization, as expected. This is

manifested as a downward shift in the deviations for a given number of particle histories,

and is due to the differential particle track density within each tally volume for the

different homogenization schemes. The magnitude of the shift depends on the number

of pins being averaged across, and is hence the greatest for the null and degenerate

schemes for the quarter core BEAVRS model, where nearly 4,500 pins of each enrichment

are averaged together for the null case (as compared to only 264 pins for the assembly).

In contrast, the degenerate and LNS schemes are shifted by nearly the same amount for

both benchmark models since the number of fuel pins averaged across for each LNS set

is the same. These observations confirm that the more fuel pins that are homogenized

together for MGXS clustering, the faster the resultant MGXS tally estimates will converge

for use in multi-group codes.

These results point to the need for a scheme that can effectively model MGXS
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clustering in a more scalable fashion than LNS homogenization. LNS homogenization

achieves little relative improvement in convergence of the batchwise deviations relative

to the null and degenerate schemes since the pins in each fuel assembly are homogenized

separately. The analysis of MGXS clustering in Sec. 9.1 indicated that fuel pins in many

different assemblies may be effectively homogenized together while still accounting

for clustering due to spatial self-shielding effects. This would increase the number of

pins within each homogenization set and improve the convergence rate beyond what

is achievable with LNS. The following chapter introduces a novel methodology based

on unsupervised statistical clustering algorithms which seeks to outperform both the

accuracy and the convergence of LNS homogenization.

As with the statistical uncertainties, the MGXS batchwise deviations converge

at the same rate for null, degenerate and LNS homogenization schemes. The

relative difference in deviations between schemes is reduced according to the

number of fuel pins assigned to each spatial homogenization set.
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Figure 9-22: The absolute relative batchwise percentage deviation of pin-wise U-238
capture MGXS (group 27 of 70) for 1.6% enriched fuel pins in a single assembly (a) and
the quarter core BEAVRS model (b).
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Figure 9-23: The absolute relative batchwise percentage deviation of pin-wise U-235
fission MGXS (group 1 of 2) for 1.6% enriched fuel pins in a single assembly (a) and
the quarter core BEAVRS model (b).
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Figure 9-24: The absolute relative batchwise percentage deviation of pin-wise U-235
fission MGXS (group 2 of 2) for 1.6% enriched fuel pins in a single assembly (a) and
the quarter core BEAVRS model (b).
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* MGXS data for each of the six heterogeneous benchmarks was analyzed to

show that spatial heterogeneities induce MGXS dispersion and clustering.

* Degenerate homogenization accounts for MGXS clustering, but requires a

large number of MC particle histories to converge MGXS.

- The LNS spatial homogenization scheme is introduced which assigns fuel

pins with similar neighbors to the same spatial homogenization set.

" The six benchmarks are modeled with MGXS generated by the LNS scheme:

- Eigenvalues - LNS has no systematic impact on the eigenvalues due to

the preservation of global reactivity.

- Fission Rates - LNS performs slightly better than degenerate homoge-

nization, which is only marginally better than the null scheme, since

the fission rate predictions are largely insensitive to MGXS clustering.

- U-238 Capture Rates - LNS reduces the error by 10 - 30% as com-

pared to degenerate homogenization for assembly and periodic col-

orset benchmarks. However, LNS fails to distinguish between pins

at inter-assembly and assembly-reflector interfaces which results in a

systematically large reaction rate error for these fuel pins.

* A series of case studies illustrate the need to homogenize across many fuel

pins to reduce the MGXS statistical uncertainties and batchwise deviations.

* An improved methodology is needed which can:

- Model arbitrary MGXS clustering from all spatial self-shielding effects.

- Minimize the # of materials to improve MGXS statistical uncertainties.
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Chapter 10

The iMGXS Spatial Homogenization

Scheme

The preceding chapter illustrated the clustering of pin-wise MGXS as a result of spatially

self-shielded spectral effects. It was shown that MGXS clustering must be appropri-

ately modeled to accurately resolve pin-wise U-238 capture rates. The LNS spatial

homogenization scheme was introduced to predict MGXS clustering with a geometric

template-like approach. The LNS scheme was shown to achieve the same level of ac-

curacy as degenerate homogenization while simultaneously accelerating the MC tally

convergence rate for simple benchmark problems. However, the LNS scheme suffered

from its inability to predict MGXS clustering in geometries with water reflectors and

steel baffles. In addition, the LNS scheme did not scale well with the complexity of the

core geometry, resulting in a large number of materials and thus an under-accelerated

convergence rate. This chapter introduces an adaptable and scalable alternative to LNS

which uses unsupervised statistical learning methods to predict MGXS clustering.

The novel methodology presented here - referred to as inferential MGXS (iMGXS)

spatial homogenization - uses algorithms developed by the machine learning community

to infer MGXS clusters directly from MC tally data rather than predict clustering from an

analysis of the core geometry. The IMGXS scheme can flexibly accommodate arbitrary

core heterogeneities better than LNS or other geometric-based approaches which must

be extensively customized for particular core geometries. In addition, the iMGXS scheme
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aims to greatly accelerate the convergence rate of MGXS tallied with MC with respect to

the degenerate and LNS schemes as shown in Fig. 10-1.

N OpenMC N OpenMOC MGXS 0 Machine Learning

Reference

Deaenerate

LNS

iMGXS

Time

Figure 10-1: The expected relative runtime for the degenerate, LNS and iMGXS spatial
homogenization schemes with respect to a reference MC calculation.

This chapter begins with an overview of the iMGXS scheme in Sec. 10.1, including

in-depth presentations of each stage of tally data pre-processing, including feature

extraction (Sec. 10.2) and selection (Sec. 10.3), and dimensionality reduction (Sec. 10.4).

Sec. 10.5 highlights a few statistical clustering algorithms which may be interchangeably

utilized within the code framework for iMGXS implemented for this thesis. A few

heuristics for clustering model selection are discussed in Sec. 10.6. Sec. 10.7 discusses

the track density-weighting used to spatially homogenize the pin-wise MGXS. Finally,

Sec. 10.8 illustrates the material configurations produced by the iMGXS scheme for the

heterogeneous PWR benchmarks studied in this thesis. The eigenvalues and pin-wise

fission and U-238 capture rates produced with the iMGXS scheme are evaluated in the

following chapter.
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10.1 Overview of the iMGXS Data Processing Pipeline

The iMGXS spatial homogenization scheme is a multi-stage data processing pipeline. The

objective of the scheme is to infer the optimal assignment of cluster labels to fuel pin

instances directly from MC tally data. The cluster labels output by iMGXS are then used

to generate track density-weighted MGXS (see Sec. 9.2.2) for each cluster of fuel pin

instances using the same process as that employed by LNS homogenization (Eqn. 9.4).

The iMGXS methodology differs from the LNS scheme in that it makes no consideration

of the geometry and materials configuration and only examines tallied MC tally data

when assigning cluster labels to fuel pin instances.

A high-level overview of the various stages of the iMGXS data processing pipeline

is illustrated in Fig. 10-2. The iMGXS pipeline may be configured in various ways and

this thesis makes no presumption that the incarnation presented in Fig. 10-2 is the best

or most reliable version. Future work may develop schemes which improve upon the

particular formulation of iMGXS presented in this chapter. Irregardless of the particular

configuration, the overarching concept is that the iMGXS pipeline provides a mapping

between MC tally data and cluster labels for each fuel pin63. Each of the six stages in

Fig. 10-2 is detailed in the following sections of this chapter.

10.2 Feature Extraction

The feature extraction stage of the data processing pipeline in Fig. 10-2 builds features

from MC tally data. In machine learning, features are measured quantities which serve

as inputs to a predictive model. Features may be engineered based upon prior domain

knowledge or inferred from automated feature learning algorithms such as neural

networks. In the context of iMGXS, features are restricted to tallies, or combinations of

tallies, from MC simulations which provide information about which fuel pin instances

experience similar spatial self-shielding effects. For example, the pin-wise microscopic

MGXS may be used as features since they exhibit the very clustering effects which

63Similarly, the LNS scheme defines a mapping between the combinatorial geometry and the cluster labels.
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Dimensionality Reduction:

Clustering
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Spatial Homogenization

MGXS

Figure 10-2: The multi-stage iMGXS data processing pipeline.

the iMGXS scheme attempts to predict 64 . Other tallied quantities may also be used as

features for predicting which fuel pin instances have similarly self-shielded MGXS. The

goal of extracting iMGXS features is to enable machine learning algorithms to identify

MGXS clusters as quickly as possible from "noisy" or unconverged tally data.

The iMGXS scheme splits the MC tally dataset up into samples for each particular

instance k of a fuel pin as illustrated in Fig. 10-3. A sample is a random realization of a

feature vector corresponding to a particular instance k of a fuel pin. A sample may be

comprised of features derived from MC tally data for one or multiple nuclides, energy

64Using the pin-wise MGXS as the only feature(s) for unsupervised clustering would render the clustering
problem equivalent to specifying boundaries between the samples illustrated in the rug plots in Sec. 9.1.3.
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groups and/or reaction types. Ideally, the features should maximize the separation

distance in feature space {f., f2,.,... I fl,. I between samples in different clusters. Since

features in iMGXS are tallied quantities from MC simulations, some samples may include

"outlier" feature realizations which take on values far removed from the "true" value

of the feature65 . Outliers may result in the incorrect assignment of cluster labels to

fuel pin instances. The predictive models used in iMGXS are trained with the complete

vector of features in order to mitigate the sensitivity of the models to outlier features

and minimize the frequency of mis-labeled cluster assignments.

...............I.............. I _P

MC Tally
Dataset

Feature Extraction

Figure 10-3: iMGXS extracts feature vectors for each sample (fuel pin instance).

In addition, the features do not necessarily have to be defined for the same energy

group structure as the MGXS one wishes to cluster. For example, some or all features

may be tallied on a relatively coarse energy group structure in order to minimize their

MC statistical uncertainties. It may in fact be beneficial to tally features in few groups

in order to identify clusters with fewer MC particle histories than would needed to

distinguish structure from "noisy" fine group features. These coarse group features may

be input to a clustering algorithm for spatial homogenization of pin-wise MGXS defined

on a fine(r) energy group structure. For example, the following sections and chapters

cluster features defined for a coarse 2-group structure for spatial homogenization of

the "fine" 70-group pin-wise MGXS that are later used in downstream MOC transport

calculations.

The following sections introduce the features employed by iMGXS in this and the

6 5
The "true" values are the expected values for each feature.
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following chapter. These include the pin-wise MGXS and their statistical uncertainties

(Sec. 10.2.1), as well as features referred to as fractional reactivities (Sec. 10.2.2),

spectral indices (Sec. 10.2.3) and reaction fractions (Sec. 10.2.4). Each fuel pin instance

carries an instance of each feature, some of which may be specific to one or more nuclides,

energy groups and/or reaction types. Each feature is presented with accompanying

illustrations generated using a custom-built tool to visualize iMGXS features [83], and

which correspond to the 1.6% enriched fuel assembly benchmark.

10.2.1 MGXS Statistical Uncertainty

The statistical uncertainty for each pin-wise MGXS may be a useful feature to indicate

clustering effects. In particular, the standard deviation of the sample mean is easily

obtained from OpenMC tallies and can be included in the feature vectors. The intuition

behind this is that the track densities - and therefore, the statistical uncertainties - in

different fuel pins may reflect the spatial self-shielding effects experienced by different

types of fuel pins. For example, the thermal flux track density will vary for fuel pins

with different levels of moderation from CRGTs, reflectors, etc., which may present

itself through a systematic clustering of the statistical uncertainties. Similarly, the track

density will vary for fuel pins which experience varying degrees of spatial self-shielding

in U-238 resonance groups - which greatly impacts the resultant MGXS in those groups

- and may be identifiable in the MGXS uncertainties.

The statistical uncertainty feature is illustrated with scatter plots in Figs. 10-4, 10-5

and 10-6 for 2-group U-235 fission and U-238 capture MGXS data. The scatter plots

include a single data point for each of the 264 fuel pins in the 1.6% enriched fuel

assembly benchmark. The x and y coordinates correspond to the tallied MGXS means

-x,i,k,g and standard deviations o- in units of barns, respectively. The complete

datasets are illustrated in Figs. 10-4b and 10-5b. The interactive iMGXS visualization

tool was used to select clusters of MGXS and plot the geometry to indicate the associated

fuel pins, as displayed in Figs. 10-4c to 10-4f and 10-5c to 10-5f for the fission and

capture MGXS, respectively The figures illustrate that the U-235 MGXS uncertainties are
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smallest for the fuel pins with the most moderation (i.e., pins facially adjacent to CRGTs)

and a relatively larger thermal flux track density. In contrast, the U-238 capture MGXS

uncertainties are largest for those pins with the most moderation due to the smaller

fast-to-thermal flux ratio in these pins.

Notwithstanding the motivation to use the statistical uncertainties, there are also

potential challenges associated with this approach. First, it would be possible for two

different fuel pin instances to experience the same flux shape - and therefore have the

same MGXS - but very different flux magnitudes. Although the MGXS uncertainties

for the two pins would be very different, this would not accurately reflect the fact that

the two pins should ideally be assigned to the same MGXS cluster. Furthermore, error

propagation theory only approximates the MGXS uncertainties since it neglects the

covariance between reaction rate and flux tallies. This approximation overestimates the

MGXS uncertainties since the reaction rate and flux tallies are highly correlated. As a

result, the uncertainties may not exhibit systematic trends with poorly converged MC

data since the estimated uncertainties will be larger than the "true" values. However, the

MGXS may be consistently overestimated for all fuel pins, since the correlation between

the reaction rate and flux is likely similar across fuel pins instances. Finally, it should

be noted that these are not reasons to eliminate the uncertainties as a possible feature;

rather, it incites the need for robust feature selection as discussed in Sec. 10.3.
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10.2.2 Fractional Reactivity

The fractional reactivity compares the fission reaction rates for the population of fuel

pins in a core geometry. This feature hypothesizes that fuel pins with similar spatial

self-shielding effects have similar fission rates. This may be a valid assumption for simple

geometries such as fuel assemblies and colorsets with all reflective/periodic BCs, but

may not be true for benchmarks such as BEAVRS with large globally-varying power tilts

due to leakage. The fission rate statistical uncertainties will necessarily be smaller than

those for the microscopic MGXS since they are energy-integrated and summed across

nuclides. As a result, clustering may emerge from "noisy" MC fission rate tallies more

quickly than is possible for tallies for single energy groups and/or nuclides.

Although the pin-wise fission rates may be used directly as a feature, the iMGXS im-

plementation in this thesis normalizes the pin-wise fission rates to the globally-integrated

absorption rate in the fuel as follows:

G

Z Vf,i,k,g 
4 k,g

g=1
ak = G x 105 (10.1)

Za,i,k,g k,g
k=1 g=1

The normalized fractional reactivity ak is multiplied by 10s so that it may be reported in

the familiar reactivity units of per cent mille (pcm) 66 . It is important to note that the

denominator in Eqn. 10.1 encompasses all fuel pins of all compositions (e.g., enrichments)

in the core geometry, but does not include absorption in the moderator, clad, BPs, etc.

As a result, the fractional reactivity as defined by this thesis is not indicative of the global

reactivity, but rather the reactivity restricted to the fuel.

The fractional reactivity feature is illustrated with scatter plots in Figs. 10-7 and 10-8

for 2-group U-235 fission and U-238 capture MGXS data, respectively The scatter plots

include a single data point for each of the 264 fuel pins in the 1.6% enriched fuel

assembly benchmark. The x and y coordinates correspond to the tallied MGXS means

661t might be preferable to equivalently normalize the fission rates to the mean. The normalization factor
is a matter of analyst preference and does not impact the predictions made by unsupervised clustering
algorithms if the features are standardized as discussed in Sec. 10.2.5.
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Ux,,k,g and normalized fractional reactivities ak in units of barns and pcm, respectively

The complete datasets are illustrated in Figs. 10-7b and 10-8b. The interactive iMGXS

visualization tool was used to select clusters of MGXS and plot the geometry to indicate

the associated fuel pins, as displayed in Figs. 10-7c to 10-7f and 10-8c to 10-8f for the

fission and capture MGXS, respectively

The scatter plots illustrate the highly linear relationship between the U-235 fission

MGXS and fractional reactivities: those pins facially and corner adjacent to distinct

CRGTs have both the largest fission MGXS and fission rates due to the moderation of

the neighboring CRGTs (at least for this benchmark). The clustering of U-238 capture

MGXS generally indicates a similar proportional relationship with fractional reactivity.

Perhaps more importantly, Fig. 10-8 distinguishes "sub-clusters" within each of the four

primary clusters of U-238 capture MGXS. Although the sub-clusters within a primary

cluster have similar MGXS 67, there is some variation due to subtle differences in the

spatial self-shielding experienced by the pins in each primary cluster.

The visualizations highlight the hierarchical nature of spatial self-shielding effects:

some factors are more important and induce primary clusters (i.e., whether a fuel pin is

adjacent to zero, one or two CRGTs), while other factors are less consequential yet still

induce sub-clusters (i.e., the type adjacency of neighboring CRGTs). The hierarchy of

spatial self-shielding effects will grow increasingly intricate with the size and complexity

of the reactor configuration, further motivating the importance for an unsupervised

methodology like iMGXS to identify MGXS clustering for arbitrary core geometries.

67The track density-weighted average MGXS for the sub-clusters would be relatively similar.
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10.2.3 Spectral Index

The spectral index compares the ratio of energy-integrated U-238 capture to U-235 fission

reaction rates in each fuel pin. The iMGXS implementation in this thesis computes

spectral indices as follows:

G
238 ^

y,k,g kk,g

Pk G (10.2)
Iy 2 3 GZ fjqg Ok,g

g=1

A 238 A 235where (28, and (fu g are the microscopic U-238 radiative capture and U-235 fission

production MGXS for fuel pin instance k and energy group g, respectively 68 . This

feature postulates that the capture-to-fission ratio will significantly vary for fuel pins and

energy groups with different spatial self-shielding effects. The spectral index is especially

relevant since it accounts for relative differences in the U-238 capture rates, which

previous chapters showed can only be accurately computed if an appropriate pin-wise

spatial homogenization scheme is used. Unlike the fractional reactivity, the spectral

index may identify pins with similar flux shapes but very different flux magnitudes since

it is the ratio of two pin-wise reaction rates.

The spectral index feature is illustrated with scatter plots in Figs. 10-9 and 10-10

for 2-group U-235 fission and U-238 capture MGXS data, respectively The scatter plots

include a single data point for each of the 264 fuel pins in the 1.6% enriched fuel assembly

benchmark. The x and y coordinates correspond to the tallied MGXS means a xi,k,g and

spectral indices /3 k, respectively The complete datasets are illustrated in Figs. 10-9b

and 10-10b. The interactive iMGXS visualization tool was used to select clusters of MGXS

and plot the geometry to indicate the associated fuel pins, as displayed in Figs. 10-9c

to 10-9f and 10-10c to 10-10f for the fission and capture MGXS, respectively

The figures illustrate a complex relationship between the U-235 fission MGXS and the

spectral indices. In contrast to the fractional reactivity, both the fission and capture MGXS

68The U-235 fission and fission production MGXS may be used interchangeably in Eqn. 10.2 with no

impact on the predictions made by unsupervised clustering algorithms.
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are negatively correlated with the spectral index. In particular, the more moderation

provided by neighboring CRGTs, the smaller the spectral index. Although the capture and

fission rates both increase with the amount of moderation, these scatter plots indicate

that U-235 fission increases faster than U-238 capture. In addition, the clusters are

more spread out than the linear trends observed for the fractional reactivities. The

scatter plots indicate that the spectral index is potentially more effective at separating

sub-clusters within each primary cluster than fractional reactivity.

10.2.4 Reaction Fraction

In contrast to the energy-integrated fractional reactivity and spectral index features, the

reaction fraction is specific to each energy group. The reaction fraction is defined as the

ratio of each pin-wise microscopic MGXS ^>i,k,g for reaction x, nuclide i and energy

group g to the total MGXS 6 t,i,kg for the corresponding nuclide and energy group:

Tx,i,k,g - ' (10.3)
Ut,i,k,g

The reaction fraction feature ' x,i,k,g is motivated by the hypothesis that spatial

self-shielding effects may disproportionately impact certain reaction types (e.g., U-238

capture) more than the total MGXS. Since the reaction fraction is computed for each

energy group, it may be more challenging to identify clusters with this feature with

"noisy" MC tally data than may be the case for the energy-integrated fractional reactivity

and spectral index features. Like the spectral index, the reaction fraction may identify

pins with similar flux shapes but very different flux magnitudes since it is the ratio of

two pin-wise reaction rates.

The reaction fraction feature is illustrated with scatter plots in Figs. 10-11 and 10-12

for 2-group U-235 fission and U-238 capture MGXS data, respectively The scatter plots

include a single data point for each of the 264 fuel pins in the 1.6% enriched fuel

assembly benchmark. The x and y coordinates correspond to the tallied MGXS means

Ux,i,k,g and reaction fractions Pk, respectively. The complete datasets are illustrated

in Figs. 10-11b and 10-12b. The interactive iMGXS visualization tool was used to
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select clusters of MGXS and plot the geometry to indicate the associated fuel pins, as

displayed in Figs. 10-11c to 10-11f and 10-12c to 10-12f for the fission and capture

MGXS, respectively

The figures illustrate a positive correlation between both the U-235 fission and U-238

capture MGXS and the reaction fractions (at least for this benchmark). In particular,

the more moderation provided by neighboring CRGTs, the larger the reaction fraction.

Although the fission, capture and total rates all increase with moderation, these scatter

plots indicate that U-235 fission and U-238 capture increasefaster than the corresponding

total reaction rates with U-235 and U-238. The clusters are more spread out than the

linear trends observed for the fractional reactivities, but this is likely due to the relatively

larger statistical uncertainty for the energy-specific reaction fractions than the energy-

integrated fractional reactivities.

10.2.5 Feature Standardization

Each of the features described in the preceding sections is assembled into feature vectors

for each sample as illustrated in Fig. 10-13. From a practical standpoint, the iMGXS

implementation in this thesis represents the sample feature vectors with a 2D DataFrame

object from the Pandas module [58] for data processing in Python. Each column in

the DataFrame corresponds to a feature, and each row corresponds to a sample. This

DataFrame is the input to the feature selection stage of the iMGXS pipeline. However,

each feature must first be standardized before used as an input to a predictive model.

Feature standardization - also known as mean removal and/or variance scaling - is

necessary since many machine learning estimators assume that all features are centered

about zero with near unit variance. In the context of iMGXS, the distance between

samples (or clusters) in feature space will be skewed if the features are not standardized.

In particular, the distance will be dominated by features with the largest magnitudes

(e.g., thermal U-235 fission MGXS), and conversely, insensitive to features with small

magnitudes (e.g., MGXS standard deviations). The canonical form of standardization

translates each sample by subtracting the mean fl., and scales each sample by dividing
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by the standard deviation o-f of feature J:

A fik - j
f* = ' (10.4)

where is the standardized feature j for fuel pin instance k. Several standardization

schemes are provided by the sklearn.preprocessing module of the scikit-learn

Python package for machine learning [61]. The iMGXS implementation in this thesis

uses the RobustScaler to subtract the median and divide by the interquartile range
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(IQR) 69 to diminish the influence of outliers on the standardization process:

A fJ,k - median {J,,f J, ... , J,K(
fj* = fk f,1 fK (10.5)

IQRf

Features are random variables derived from MC tally data which may provide

information about MGXS clustering. Feature vectors are constructed for each

fuel pin instance and used as inputs for predictive clustering models.

10.3 Feature Selection

The feature selection stage of the data processing pipeline in Fig. 10-2 determines which

features to use when training" a clustering model. The feature extraction stage provides

many different features, some of which may be poor predictors of MGXS clusters. In

addition, some features may be highly correlated and redundant as input variables to a

predictive model. Feature selection attempts to identify the smallest possible subset of

features necessary to achieve the desired predictive accuracy. Feature selection plays

an important role in balancing the canonical bias-variance tradeoff in statistics and

machine learning by reducing model variance, while potentially increasing model bias.

In particular, feature selection is used to form simple(r) machine learning models for

the following three reasons:

* Reduce Model Complexity - Simpler models are easier to intuit and explain

* Reduce Generalization Error - Simpler models reduce the risk of over-fitting

* Reduce Training Time - Simpler models are computationally efficient to train

Automated feature selection methods are often classified into three main categories:

filter, wrapper, and embedded methods. Filter methods are agnostic to the family of

69The interquartile range is the difference between the first and third quartiles: IQR = Q3 - Q1 -
701n machine learning, training a model refers to the process of assigning numerical values to the

parameters of the model to best fit an empirical dataset.
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predictive models one wishes to train and select features which provide the most in-

formation about a target variable. Correlation Feature Selection [84] is an example

of a filter method which searches for the smallest subset of features which are highly

correlated with the target variable, but uncorrelated with each other. In contrast to filter

methods, wrapper methods evaluate subsets of features to determine their collective

ability to minimize the generalization error of some specific family of predictive models.

Wrapper methods may be computationally expensive since it entails a search of the

space of possible feature subsets. In addition, wrapper methods may be at greater risk

of over-fitting than filter methods since the feature selection criteria is based on model

accuracy. Finally, embedded methods select features as an integral part of the model

training procedure. Some examples of embedded methods include fI-regularization

techniques and Recursive Feature Elimination [85]. The interested reader is referred

to [86] or the plethora of other sources in the literature for more detailed information

about automated feature selection methods.

This thesis makes a fairly limited use of feature selection techniques in its imple-

mentation of iMGXS. In particular, a number of relatively simple filter and wrapper

methods are presented in the following sections as options to select the best features.

This process is illustrated as part of the iMGXS data processing pipeline in Fig. 10-14.

Sec. 10.3.1 presents litmus tests to filter the features and choose those pairings of nuclides

and reaction types which are most likely to exhibit clustering. Sec. 10.3.2 introduces

variance thresholding, while Sec. 10.3.3 highlights a collection of filter methods which

select the highest scoring features. Sec. 10.3.4 discusses a wrapper method which selects

features based on their importances for decision tree or ensemble regressors. Finally,

while domain knowledge is not an automated approach to feature down-selection, it is

employed by the case studies in the following chapter and is discussed in Sec. 10.3.5.

It is important to note that the methods and metrics highlighted here should not be

considered an exhaustive list of options for feature selection for iMGXS. Furthermore,

while all of the options discussed are supported in the iMGXS implementation for this

thesis, out of practical necessity only a few of the methods are evaluated by the empirical

cases studies in this and the following chapter. Future work may aim to provide a more
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Figure 10-14: Feature selection chooses the features used to train a clustering model.

systematic appraisal of various feature selection methods for the iMGXS scheme.

10.3.1 Litmus Tests

Litmus tests are filter methods specifically designed to select data for particular nuclides

and reaction types for clustering. The litmus tests presented here are used to down-

select the MGXS mean and standard deviation features by predicting which nuclides

and reaction types are most likely to exhibit clustering effects. The litmus tests are

independently applied to each nuclide, energy group, and reaction type grouping.

Sec. 10.3.1.1 introduces total fraction thresholding to select a nuclide for a given energy

group, while Sec. 10.3.1.2 introduces reaction fraction thresholding to select a reaction

type for a given nuclide and energy group. Sec. 10.3.1.3 discusses how normality tests

can be used to reject features which may have been drawn from a common normal

distribution.
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10.3.1.1 Total Fraction Thresholding

Total fraction thresholding is a filter method used to select MGXS-based features 71 for

one or more nuclides for a particular energy group g and reaction type x. The total

fraction gives an indication of how much a particular nuclide contributes to the total

MGXS. The totalfraction 2 x,i,k,g is defined as the ratio of a macroscopic MGXS Ex,,,,

for nuclide i and fuel pin instance k to the total macroscopic MGXS for all nuclides:

A ,,,ikg (10.6)

Z t,i,k,g
i=1

The iMGXS implementation in this thesis simply chooses MGXS-based features for

nuclide i if the mean Cjg across fuel pins is greater than some user-defined threshold.

This litmus test assumes that nuclide(s) which contribute little to the total MGXS are not

important to cluster. This assumption may not always be valid if some small MGXS are

highly sensitive to spatial self-shielding effects. For example, if the flux is appreciably de-

pressed in narrow resonance groups for nuclides and reaction types which are especially

sensitive to spatial self-shielding (e.g., U-238 capture), then the MGXS may likewise be

depressed such that the total fraction drops below the threshold and the feature(s) are

neglected. A relatively conservative value of 0.1 may be used for the threshold such that

MGXS-based features for trace nuclides (e.g., 0-17, U-234) are neglected while those

for U-235 and U-238 are always selected.

10.3.1.2 Reaction Fraction Thresholding

Reaction fraction thresholding is a filter method used to select MGXS-based features

for one or more reaction types for a particular nuclide i and energy group g pairing.

The reaction fraction ik,g (Eqn. 10.3) gives an indication of how much a particular

reaction contributes to a nuclide's total MGXS. This litmus test is employed in a similar

fashion to total fraction thresholding. In particular, the iMGXS implementation in this

71MGXS-based features include the microscopic MGXS means &,,i,k,g and standard deviations akg , as
well as the reaction fraction T',ik,,
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thesis simply chooses MGXS-based features for nuclide i and reaction x if the mean

rxi'g across fuel pins is greater than some user-defined threshold.

The reaction fraction thresholding litmus test assumes that reaction(s) which con-

tribute little to a nuclide's total MGXS are not important to cluster. As was noted for

total fraction thresholding, this assumption may not always be valid if some small MGXS

are highly sensitive to spatial self-shielding effects. A relatively conservative value of

0.3 may be used for the threshold such that MGXS-based features for U-235 fission and

U-238 capture are always selected for thermal energy groups.

10.3.1.3 Normality Tests

Normality tests select features which fail to reject the null hypothesis that the data

is drawn from a normal distribution. Normality tests are a filter method for feature

selection motivated by the thought experiment posed in Chap. 9 and investigated in

Sec. 9.1.4 with Q-Q plots. This litmus test assumes that the realizations of a given

feature are normally distributed if they are insensitive to spatial self-shielding effects. If

this assumption is valid, then those features which pass a normality test do not provide

any useful information about MGXS clustering and can be neglected.

The iMGXS implementation in this thesis uses the Shapiro-Wilk test of normality [82]

computed using the Python scipy. stats package [59]. The Shapiro-Wilk test is applied

to all samples for a given feature to compute a p-value to quantify the null hypothesis

that the population came from a normal distribution. A user-defined significance level a

is chosen (e.g., 0.001) and compared with the Shapiro-Wilk p-value. If p > a then the

null hypothesis that the feature is normally distributed is accepted and the feature is

dropped from the dataset. Alternatively, if p < a, then the null hypothesis is rejected

and the feature is selected as a potentially good candidate to indicate MGXS clustering.

10.3.2 Variance Thresholding

Variance thresholding is a filter method which removes low variance features. The

iMGXS implementation in this thesis uses the VarianceThreshold class from the
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sklearn. f eatureselection module to administer variance thresholding. It is im-

portant to note that variance thresholding must be applied to the features prior to

standardization (see Sec. 10.2.5).

Variance thresholding presents an opportunity for a user to guide the iMGXS feature

selection process. A user may define specialized variance thresholds for one or more

features based on some prior understanding of the reactor physics relevant to the

problem at hand. For example, a user may know that it is only important to model MGXS

clustering if the variance of one, some or all features is greater than some collection of

corresponding thresholds. If the feature variances are below the threshold, the features

will be rejected and the data may be treated with a "coarse" clustering model with more

data points assigned to fewer clusters, with improved statistics for the resultant track

density-weighted MGXS (see Sec. 9.4.1.1).

10.3.3 Univariate Feature Selection

Univariate feature selection is a filter method which selects features based on univari-

ate statistical tests. This thesis uses the GenericUnivariateSelect class from the

sklearn. f eatureselection module to administer univariate feature selection. This

method individually ranks each feature according to some metric and selects some

user-specified number or percentage of the highest scoring features. Univariate feature

selection does not consider correlations between features, and as a result, may choose a

collection of highly redundant features.

The typical statistical tests used for univariate feature selection quantify a mapping

between the features and some target variable(s). The iMGXS implementation in this

thesis uses the MGXS means "-x,i,k,g as the target variables and builds a sequence of

linear regression models based on the non-MGXS features (e.g., fractional reactivities,

spectral indices, etc.). Each linear regressor is scored with a p-value from an F-test

which assesses the strength of the linear dependence between the non-MGXS feature

and MGXS target variable(s). An alternative but equally valid approach would use the

mutual information between the non-MGXS features and MGXS target variable(s) to
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individually score each feature.

10.3.4 Select-from-Model Feature Importance Ranking

The select-from-model approach is a wrapper method for feature selection. This thesis

uses the SelectFromModel class from the sklearn.featureselection module to

administer select-from-model feature selection. This approach uses a meta-transformer

to select features based on a ranking of their importance weights. Similar to univariate

feature selection, the meta-transformer defines a mapping between the features and some

target variable(s). The iMGXS implementation in this thesis uses the MGXS means &x,,,k,g

as the target variables, and trains multi-dimensional piece-wise constant regression

models from the non-MGXS features (e.g., fractional reactivities, spectral indices, etc.).

For example, the DecisionTreeRegressor from the sklearn. tree module may be used

to train a decision tree [87] and the best features selected by identifying the decision

tree nodes which provide the greatest reduction in variance of the target variables.

Alternatively, the RandomForestRegressor from sklearn.ensemble module maybe

used to train a random forest [88] of multiple decision tree regressors on subsets of the

dataset. The random forest regressor better controls over-fitting than a single decision

tree, and improves the generalization of the select-from-model feature selection method.

10.3.5 Pinch Feature Selection

Each of the preceding feature selection techniques automatically selects or rejects features

based on some test criterion. An obvious alternative is to base feature selection entirely

on user domain knowledge. The iMGXS implementation in this thesis allows users to

employ pinch feature selection to specify a single nuclide, energy group and reaction type

grouping from which to derive features. For example, the case studies in the following

chapter employ the pinch method to select only those features derived from U-238

capture MGXS in group 1 of 2. This is based on the knowledge acquired from Chaps. 8

and 9 that a detailed model of MGXS clustering is necessary for accurate predictions

of pin-wise U-238 capture reaction rates. Alternatively, a user may specify a nuclide,
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energy group, and reaction type grouping which indicates the clustering of other MGXS

which may be more important to cluster for accurate reaction rate predictions. For

example, clustering of U-235 fission MGXS may be a good (e.g., low uncertainty) signal

of U-238 capture MGXS clustering, even if pin-wise fission rates are less sensitive to

MGXS clustering than U-238 capture rates.

Feature selection is used to reduce the feature space to minimize clustering

model complexity. iMGXS uses custom litmus tests to select the most promis-

ing candidate nuclides and reaction types, as well as generic techniques such

as variance thresholding and select-from-model feature importance ranking.

10.4 Dimensionality Reduction

The dimensionality reduction stage in the data processing pipeline in Fig. 10-2 aims

to reduce the number of random variables used to train a machine learning model,

and is closely related to feature selection 2 . A dimensionality reduction method is

a transformation P : RJ ---+ R from the original J-dimensional feature space to a

T-dimensional space with an equivalent descriptive power of the structure, or the

relationships between samples, in the dataset. In general, dimensionality reduction is

used in statistical clustering analysis for the following reasons:

" Reduce dataset storage requirements and model training time

- Improve model performance and reduce sensitivity to outliers

* Make datasets and/or models easier to visualize in 2D or 3D

Many common dimensionality reduction techniques perform a decomposition of the

dataset matrix. These methods attempt to identify latent or hidden variables which

adequately represent the variation of and correlation between features in a lower-

dimensional vector space than the original feature space. The mapping can be repre-

sented as a basis of T functions gt of the feature vectors fk as illustrated in Fig. 10-15.
72Feature transformation can be used in place of or in conjunction with feature selection techniques.
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Figure 10-15: Dimensionality reduction maps the features into a new vector space.

Three matrix decomposition dimensionality reduction methods were implemented

as optional elements of the iMGXS data processing pipeline. The Principal Component

Analysis and Independent Component Analysis methods are highlighted in Sec. 10.4.1

and 10.4.2, respectively The Factor Analysis method is summarized in Sec. 10.4.3.

None of these methods are employed in the case studies of the iMGXS scheme applied

to heterogeneous PWR benchmarks in the following chapter. Nonetheless, they are

mentioned here since it is the author's opinion that they present future opportunities to

improve the predictive accuracy and reduce the training time of the iMGXS scheme.
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10.4.1 Principal Component Analysis

Principal Component Analysis (PCA) [89] is a matrix decomposition of the dataset that is

perhaps the most common technique for dimensionality reduction. PCA is a variance-

centric approach which seeks to reproduce the total variable variance in a dataset with

an orthogonal linear transformation of the feature space. In particular, PCA projects the

features - which may or may not be correlated - onto a linearly uncorrelated basis set of

principal components. The principal components are linear combinations of the features

that are rank-ordered by the amount of variance they account for in the original dataset.

The first few principal components may be selected as the new feature space to reduce

the dimensionality of the dataset while preserving most of the variance.

There are many methods to decompose a dataset into its principal components, but

the most common is known as the Singular-Value Decomposition (SVD) [90]. The SVD

decomposes the K x J dataset matrix P = f, f, f2- fK of feature vectors as follows:

F = Uy'WT (10.7)

The U and W matrices are K x K unitary matrices composed of orthogonal vectors

called the left singular vectors and right singular vectors, respectively. PCA designates the

right singular vectors as the principal components. The E matrix is a K x J rectangular

diagonal matrix of the positive singular values (square roots of the eigenvalues of

F) whose magnitudes are proportional to the amount of variance explained by the

corresponding singular vector. Each sample fk in the original feature space is mapped

to tk in the vector space defined by the principal components as follows:

tk = W f W (10.8)

The SVD defines a loss-less transformation of the dataset. However, dimensionality

reduction uses the truncated K x L matrix WL of the L largest singular values and their

respective singular vectors to map the data into a lower-dimensional feature space.

This thesis implemented an option to use the PCA class in the sklearn. decomposition

Python module for dimensionality reduction in the iMGXS pipeline. This option was
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motivated by the potential for PCA to increase the signal-to-noise ratio - the effects

from spatial self-shielding convolved with MC tally uncertainties - hidden within MGXS

datasets by concentrating the sample variance within only a few principal components,

with the remaining components dominated by the noise from MC 73 . A variant of PCA

known as kernel PCA [91] applies the "kernel trick" with radial basis functions (RBF) or

other kernels to define a non-linear projection to the principal component space. Kernel

PCA may improve the performance of clustering algorithms if the clusters are defined on

complex (e.g., non-convex) manifolds, such as those observed in some MGXS datasets.

Although the use of PCA is not further explored in this thesis, kernel PCA was shown

to induce significantly different clustering model predictions than those models which

were trained on datasets in the original feature space.

10.4.2 Independent Component Analysis

Independent Component Analysis (ICA) [92] is a matrix decomposition method inspired

by signal processing and commonly employed in machine learning applications. ICA

attempts to find maximally independent components to represent the relationships be-

tween samples within feature space. In particular, ICA assumes that the data can be

represented using non-Gaussian and statistically independent components. In contrast

to PCA which maximizes the remaining sample variance explained by each subsequent

principal component, ICA maximizes the statistical independence of the components.

Though ICA is designed to separate superimposed signals, the independent components

may be selected as the new feature space to reduce the dimensionality of a dataset.

ICA represents the observed feature vector fk as a linear superposition of a J*-

dimensional independent component vector Sk plus some additive white Gaussian noise:

fk = W-sk + e (10.9)

where it is assumed that J* < K for dimensionality reduction (i.e., there are fewer

components than samples). The K x J* matrix W 1 is referred to as the mixing matrix,

73 PCA increases the signal-to-noise ratio if the features are distributed with i.i.d. white Gaussian noise.
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and e is assumed to be a zero-mean and uncorrelated Gaussian noise vector. Each

sample is projected into the vector space defined by the independent components as

follows:

Sk N Wfk (10.10)

The problem of ICA is to estimate both the constant mixing matrix and the random

component vectors for each sample by maximizing the mutual independence of each

component. There are a variety of methods to solve for the ICA transformation, such

as "Fast ICA" [93] which uses a fixed-point iteration scheme to optimize the kurtosis

as the cost function that measures component independence. This thesis implemented

an option to use the FastICA class in the sklearn.decomposition Python module

for dimensionality reduction in the iMGXS pipeline. This option was motivated by

the potential for ICA to identify spatial self-shielding effects (e.g., adjacency to CRGTs,

neighboring assembly, or baffle/reflector) as the independent components in a linear

model of the clustering of pin-wise MGXS. Like PCA, the use of ICA is not further

explored in this thesis, though it was shown to induce significantly different clustering

model predictions than those models which were trained on datasets in the original

feature space.

10.4.3 Factor Analysis

Factor Analysis (FA) [94] is a matrix decomposition method that uses a probabilistic

model to describe variability among correlated features in terms of latent or hidden

"factor" variables. The observed feature vectors are modeled as a linear combination

of the latent factors along with some error or noise term(s). FA often produces factors

similar to the principal components identified by PCA. However, FA can be advantageous

since it does not assume that the variance within each feature is equal across the range

of values taken on by other features (i.e., heteroscedastic noise), which is likely not the

case for MGXS features. Like PCA and ICA, the factors found by FA may be selected as

the new feature space to reduce the dimensionality of a dataset.
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FA introduces the continuous, random K-dimensional factor vectors hk for each

sample, and a factor loading matrix W, to represent each feature vector fk as follows:

fk = Whk + sL+ e (10.11)

where the vector g= If f.,f ,.,fJ,.] is comprised of the feature means. The noise

term e is normally distributed with zero mean and a diagonal covariance matrix E such

that the conditional probability of observing the sample fk is given by:

p (fklhk) = N(Whk + M, E) (10.12)

Each sample is projected into the vector space defined by the latent factors as follows:

hk = W 1 (Ik - ) (10.13)

A variety of algorithms may be employed to estimate the factor loading matrix,

including the Expectation-Maximization (EM) algorithm [95] (see Sec. 10.5.4) which

finds the maximum likelihood estimators of the multi-variate Gaussian distribution

in Eqn. 10.12. This thesis implemented an option to use the FactorAnalysis class

in the sklearn. decomposition Python module for dimensionality reduction in the

iMGXS scheme. Similar to ICA, this option was motivated by the potential for FA to

identify spatial self-shielding effects (e.g., adjacency to CRGTs, neighboring assembly, or

baffle/reflector) as the factors in a linear model of the clustering of pin-wise MGXS. Like

PCA and ICA, the use of FA is not further explored in this thesis, though it was shown

to induce significantly different clustering model predictions than those models which

were trained on datasets in the original feature space.
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10.5 Training a Predictor

The predictor training stage of the data processing pipeline in Fig. 10-2 builds a predictive

model and assigns cluster labels k to each fuel pin instance. An unsupervised clustering

algorithm is used to infer structure from the dataset of feature vectors generated by the

feature extraction, feature selection and dimensionality reduction stages. This process

attempts to identify which fuel pin instances should be grouped together with the same

MGXS in order to best predict reaction rate spatial distributions.

Although machine learning researchers have developed many different clustering

algorithms over the last few decades, only one thing is agreed upon by the community:

"clustering is in the eye of the beholder" [96]. Perhaps the best way to differentiate

between algorithms for cluster analysis is their implicit or explicit assumption(s) of

what constitutes a "cluster." In general, all clustering algorithms aim to group samples

such that those assigned to a cluster are more similar than they are to the samples in

other clusters. Beyond that, no precise definition of what makes a "cluster" is broadly

agreed upon. Instead, each clustering algorithm is designed to solve an optimization

problem which may minimize the distances between samples within each cluster, identify

high density regions of feature space, fit a statistical distribution to a given dataset,

among other strategies. For practical reasons, only a select few clustering algorithms

are evaluated within the iMGXS implementation developed for this thesis.

Clustering algorithms are often categorized according to the (multi-)objective function

they seek to minimize and the assumptions they make. This thesis evaluates four different
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clustering algorithms within the iMGXS data processing pipeline. These four algorithms

are associated within one of the following three categories of clustering algorithms:

- Centroid models partition feature space using cluster central vectors

- Connectivity models build dendrograms to relate neighboring samples

- Distribution models build probability distributions to fit the data

Centroid models make assumptions about the size and convexity of each cluster and

optimize the choice of central vectors used to represent the center of each cluster.

Connectivity models assume that the similarity between samples is inversely related to

the distance separating them and build hierarchical models to locally optimize sample

connectivity. Distribution models assume that the observed dataset was generated from a

well-defined probability distribution and optimally select parameters to fit a distribution

model to best predict the data. It is important to note that the various algorithms within

each category may differ according to how they associate each sample with a cluster.

Some algorithms use hard assignments which designate each sample to one particular

cluster, while other algorithms use soft assignments to indicate the likelihood of each

sample belonging to each cluster.

Depending on the clustering algorithm, many different predictors may be built for

different model parameters - including the number of clusters to find, a sample distance

or similarity function, a density threshold, etc. - as is illustrated in the context of the

iMGXS pipeline in Fig. 10-16. The "best" predictor is identified using model selection

techniques as discussed in Sec. 10.6. The following sections provide synopses of the four

clustering algorithms evaluated in this thesis, including the assumptions they make and

the objective functions they optimize. Sec. 10.5.1 describes the k-means algorithm, a

commonly used centroid model which is fast and scalable for large datasets. Sec. 10.5.2

outlines the algorithm for agglomerative clustering and Sec. 10.5.3 presents the BIRCH

algorithm - two connectivity models which are widely used to model data that may

lie on manifolds with with irregular (i.e., non-convex) shapes. Sec. 10.5.4 highlights

the Gaussian Mixture Model (GMM), a distribution model which fits the data to a

mixture of one or more Gaussian probability distributions. Each of these algorithms
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is implemented in the scikit-learn Python package and employed as needed in the

iMGXS data processing pipeline.
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Figure 10-16: Each clustering model assigns labels to each sample.
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10.5.1 k-means Clustering

The k-means algorithm [97,98] constructs a Voronoi tesselation of feature space com-

posed of k Voronoi cells 7 4 . A Voronoi tesselation is a partitioning of feature space into

convex regions based on the distance to a discrete set of "seed" points. In the context of

the k-means, each seed is the centroid of a cluster. Each sample is assigned a cluster

label according to the Voronoi cell that contains it. The k-means algorithm attempts to

minimize the within-cluster sum-of-squares, also known as the inertia:

K

min f - M, 1 (10.14)
k=O -,

where K, and fk are the J-dimensional centroid of cluster m and feature vector for fuel

pin instance k in feature space, respectively. Each of the cluster centroids is stored in

set C = {P, 92,... ,} where M is used in place of k to denote the total number of

clusters to avoid confusion with the k used to index the fuel pin instances.

The key steps of the k-means algorithm are summarized in Alg. 10-1. The first

step initializes M cluster centroids in feature space. A variety of techniques exist to

initialize the centroids, including random selection of M samples as centroids, or the

k-means++ method [99] which uniformly disperses the centroids across high density

regions of feature space. The algorithm then iterates over assignment and update steps.

The assignment step loops over each sample and assigns it to the nearest cluster centroid:

Mt ={fk : ILfk - 4Q 2  fk _ pt 2  Vn, 1 5 n 5 M} (10.15)

where St) represents cluster m at iteration t as the set of nearby samples. The update

step moves each cluster centroid to the mean of those samples assigned to it:

-t+1) = 1 (10.16)

fkESni

The k-means iteration proceeds until the cluster centroids stop moving as defined by

"It should be noted that the "k" in k-means should not be confused for the k commonly used throughout
this thesis to index fuel pin instances.
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some criterion, such as the maximum square distance between successive centroids:

res = max 1pf - pt 11  (10.17)

Algorithm 10-1: k-means Clustering Algorithm

1: Initialize M centroids {Ip, p2 ,. . ., m 1

2: while centroid residual is not converged do
3: Assign each sample fk to nearest centroid p, i Eqn. 10.15
4: Update centroids to mean of samples assigned to each centroid 1 Eqn. 10.16
5: Compute centroid residuals o Eqn. 10.17
6: end while

This thesis employs the k-means algorithm implemented in the KMeans class of

the sklearn. cluster module in the scikit-learn Python package. The Euclidean

distance metric is used to compare the similarity of samples in feature space, and the

k-means++ algorithm is used to initialize cluster centroids. Two attractive features of

k-means are its simplicity and speed. It has a linear computational complexity of ((K)

for K fuel pin instances. The algorithm is relatively easy to parallelize since it primarily

consists of independent calculations of the distances between each sample and cluster

centroid. In addition, out-of-core variants of the algorithm exist for very big datasets

such as those that might be realized if the iMGXS scheme were used to model a full

core 3D PWR. For example, mini-batch k-means [100] is an out-of-core version of the

algorithm and is implemented as MiniBatchKMeans in the sklearn. cluster module.

The k-means algorithm makes a number of assumptions about what constitutes a

"cluster" that have consequences for the types of clusters that it finds. For example,

k-means optimizes the inertia which implicitly assumes that clusters are convex and

isotropic, and in particular, that clusters are spherical and of similar size in feature

space. As a result, k-means is not well-suited to identify clusters with irregular shapes

without special distance metrics and/or dimensionality reduction techniques. Another

complication is that while k-means is provably guaranteed to converge75 , it only finds

local minima of the inertia. Furthermore, the performance is especially sensitive to the

placement of the initial centroids. The k-means++ algorithm is designed to mitigate
75This is only true if the Euclidean distance metric is used.
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this by ensuring that the centroids are uniformly and randomly dispersed across the

important regions of feature space. Nonetheless, since the algorithm is fast, it is common

to run k-means many times with different initial cluster centroids and choose the solution

with the smallest inertia. Finally, k-means requires a user to define the number of clusters

M to find within the dataset. In practice, the optimal value of M is unknown a priori,

and model selection techniques must be used to select from a sequence of cluster models

trained for different values of M, as discussed in Sec. 10.6.

10.5.2 Agglomerative Clustering

The agglomerative clustering algorithm [101] constructs a dendrogram7 6 representing

the similarities between samples. Agglomerative clustering is a bottom-up method from

the more general class of hierarchical clustering algorithms, which also includes the

top-down divisive clustering method. In contrast to k-means which attempts to optimize

the global inertia metric, agglomerative clustering is a greedy algorithm which seeks to

locally minimize a linkage criterion between pairs of samples at each step. In particular,

agglomerative clustering builds a dendrogram to represent a dataset by successively

merging pairs of data points into clusters.

The key steps of the agglomerative clustering algorithm are summarized in Alg. 10-2.

The first step initializes a collection C of clusters Sk, where each sample constitutes a

singleton cluster. The algorithm then iterates to construct a dendrogram representing

M clusters. On each iteration, the affinities or linkage criteria between each pair of

clusters is computed. Many different metrics for cluster affinities exist, including the

Ward linkage criterion [102] given by da,b:

dUb = dA(Sab) - ZOkP-a+b11 2  (10.18)

fkE~a~b

The Ward criterion in Eqn. 10.18 measures the similarity between clusters a and b by

considering the cluster Sa+b that would be formed if clusters Sa and Sb were combined.

In particular, the Ward criterion computes the variance of the samples fk in the combined

76A tree-like diagram used to represent hierarchical relationships between objects.
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Algorithm 10-2: Agglomerative Clustering Algorithm

1: Initialize collection C of K singleton clusters: Sk = fk}

2: while there are too many clusters: ICI> M do
3: Compute pairwise affinities between clusters t Eqn. 10.18
4: Find pair of clusters S, and Sb that are closest
5: Merge clusters Sa and Sb into new cluster Sa+b
6: Remove Sa and Sb from C
7: Add Sa+b to C
8: end while

cluster about its centroid P,+b:

Pti+b - jx k (10.19)
I~~IfkESa+b

The Ward criterion minimizes the sum-of-squared differences within all clusters,

similar to the variance minimization performed by the k-means algorithm. Other com-

mon linkage criteria include the complete-linkage, single-linkage, and average-linkage

criteria. The distance metric used to compare the separation between clusters is spec-

ified independent of the linkage criterion and may include the Manhattan distance

(f 1 norm), Euclidean distance ( 2 norm), among others. This thesis employs the

Agglomerat iveClustering class of the sklearn. cluster module in the sc ikit-learn

Python package. The Ward linkage criterion and Euclidean distance metric are used to

evaluate cluster affinities at each step of the algorithm.

The agglomerative clustering algorithm makes no explicit assumption about the

shape or size of clusters. As a result, it may outperform k-means for datasets with

clusters with non-convex shapes. The linkage criterion as well as the distance metric

have a large impact on the shapes of clusters found by the algorithm 77. In contrast to

k-means, agglomerative clustering does not depend on any starting conditions. However,

these advantages come at a cost since the computational complexity of the algorithm

is ((K 2 log(K)) which is too slow for large datasets. Connectivity constraints may be

employed to improve the performance given some domain knowledge about the local

77Agglomerative clustering is known to exhibit a "rich get richer" behavior with highly uneven cluster
sizes, which may be exacerbated for certain linkage criteria.
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structure, such as a nearest neighbors graph. Finally, similar to the k-means algorithm,

agglomerative clustering requires a user to define the number of clusters M to find

within the dataset. In practice, the optimal value of M is unknown a priori, and model

selection techniques must be used to select from a sequence of cluster models trained

for different values of M, as discussed in Sec. 10.6.

10.5.3 BIRCH

The Balanced Iterative Reducing and Clustering Using Hierarchies (BIRCH) clustering

algorithm [103] is an out-of-core hierarchical clustering algorithm designed for large

datasets. BIRCH reduces the dataset to a series of subclusters contained within the CF

leaf nodes, which are themselves clustered using a standard clustering algorithm such

as k-means or agglomerative clustering. BIRCH is often considered a data reduction

method which represents a dataset as a height-balanced Characteristic Feature Tree

(CFT) composed of Characteristic Feature (CF) nodes. This approach is advantageous

for "big data" settings since it does not require the equal inspection of all data points

to make clustering decisions at each step as do many other algorithms (i.e., k-means,

agglomerative clustering). Instead, BIRCH makes local clustering decisions when insert-

ing a sample into the CFT. After each node's Characteristic Feature has been updated

and the CFT rebalanced, the sample may be discarded (i.e., no longer stored in main

memory).

The CFT is governed by two user-defined parameters: the threshold T representing

the maximum radius of a subcluster, and the branching factor B specifying the maximum

number of children per CF node 78 . The radius Ra, of the ith subcluster Sa, contained by

CF node Na is defined as the average squared distance of each sample fk assigned to its

i t subcluster from its centroid p,

Ra(-_ ( k - La) 2  (10.20)

78A CF node's children are the CF nodes that it points to at the next level in the Characteristic Feature Tree.
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where the subcluster centroid p.N is computed by Eqn. 10.16. The branching and

threshold factors collectively govern the height-balancing of the tree, with the branching

factor limiting the growth rate of new CF nodes and the threshold upper bounding the

length scale of the subclusters found by the algorithm.

The Characteristic Feature nodes can be distinguished between terminal (leaf) and

non-terminal nodes. Each CF node represents a sequence of at most B subclusters, and

holds the information necessary to represent the subclusters without explicitly storing

the samples assigned to each subcluster. Each CF node Na contains a Characteristic

Feature vector CFa, for its ith subcluster:

CFa = [ISaiI, LSa.,SSa]T (10.21)

The first element is the number of samples within the subcluster. The second and third

elements are referred to as the linear sum LSaj and squared sum SSa. of the samples

assigned to the ith subcluster, and are expressed as follows:

LSaj = Z k (10.22)

fkES,

SSai = 4 (10.23)
fkEN,

The linear and squared sums are all that is needed to uniquely and exactly determine the

nearest subcluster to a sample, and to compute the subcluster radius. Each non-terminal

CF node contains a list (at most B long) of pointers Nai and the CF vectors CFa, for each

of its children. Each terminal CF node a contains a list (at most B long) with the CF

vectors CFa, of each of its subclusters, each of which must have a radius Rai less than

the threshold.

The key steps of the BIRCH clustering algorithm are summarized in Alg. 10-3. BIRCH

consists of a primary loop over all samples to build the Characteristic Feature Tree, and

typically only needs to make a single pass through a dataset. For each sample, BIRCH

starts at the root node and proceeds to traverse the CFT, inserting the sample into each
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Algorithm 10-3: BIRCH Clustering Algorithm

1: Initialize an empty root node N,
2: for each sample k do

3:

4:

5:
6:
7:
8:

9:
10:
11:

12:

13:

14:

15:
16:

17:

18:

19:

20:

> Eqn. 10.20

t Eqn. 10.24

Insert sample into CFT
Initialize node: N <- Nr
for each level of CFT (root-to-leaf) do

Compute radii for each subcluster if merged with sample
Find subcluster Sai with smallest post-merged radius
if N is a terminal node then

Add sample toSa, and update CFa,,
else

Move to child Na, of subcluster: N <- Nai
end if

end for

Balance terminal node
if Ra. > T then

Split subcluster Sai into Sai and Sai
Add subclusters Saij and Sai to node Na,
Remove subcluster Sai from node
if INI> B then

Split node N into nodes N1 and N2

end if
end if

Rebalance CFT
for each level of CFT (leaf-to-root) do

if a child node was split then
Remove child and insert two new children
if |NI> B then

Split node N into nodes N1 and N 2
end if

else
Update CF vector for child with sample

end if
Move to parent NP: N <-- NP

end for

r Eqn. 10.24

33: Input terminal subclusters to standard clustering algorithm > Algs. 10-1, 10-2
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21:

22:

23:

24:

25:
26:

27:

28:

29:

30:
31:

32: end for



CF node and/or height-balancing the tree by creating new nodes as dictated by the

threshold and branching factor. The BIRCH algorithm constructs the CFT by leveraging

the Characteristic Feature Additivity Theorem [103], which allows subcluster Sai to be

merged with the singleton subcluster Sk for sample k without loss of information:

CFa+k = CFai + CFk = [isai|+SJ|, LSai + LS, SSaj + SSk ]T (10.24)

This thesis employs the BIRCH clustering algorithm implemented in the Birch

class of the sklearn. cluster module in the scikit-learn Python package. The

terminal subclusters were clustered using the AgglomerativeClustering from the

scikit-learn package, with the Ward linkage criterion and Euclidean distance metric

(see Sec. 10.5.2). A branching factor of 50 and threshold of 0.5 were used; future work

may seek to identify the most appropriate values for B and T to cluster MGXS datasets.

Like agglomerative clustering, the BIRCH clustering algorithm makes no explicit

assumption about the shape or size of clusters. As a result, it may out-perform k-

means for datasets with clusters with non-convex shapes. In contrast to k-means and

agglomerative clustering, BIRCH is local and does not require an explicit scan of all

data points and existing clusters to make clustering decisions. As a result, BIRCH has a

computational complexity that approaches O(K) for large datasets. Furthermore, unlike

k-means, BIRCH does not depend on any starting conditions. In addition, the user

does not necessarily need to specify the number of clusters to find since the terminal

subclusters can simply be read from the final CFT However, the commonly used variant

of BIRCH employed by this thesis does require the number of clusters M to be specified

for use in a final step which clusters the terminal subclusters in the CFT. As a result,

model selection techniques must be used to select from a sequence of cluster models

trained for different values of M, as discussed in Sec. 10.6.

It should be noted that the datasets clustered in this thesis may be stored in memory

on most modern computing systems, and do not require the use of an out-of-core

algorithm like BIRCH. Nevertheless, BIRCH may be useful if future efforts use iMGXS to

cluster MGXS datasets for full core 3D reactor benchmarks with orders of magnitude
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more samples (e.g., fuel pin instances with axial subdivisions). In addition, the size of

the MGXS datasets may substantially grow if new features are employed by iMGXS in

the future. Finally, BIRCH may be used to cluster MGXS datasets on memory-limited

high-performance hardware such as Graphical Processing Units (GPUs).

10.5.4 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) are a commonly used distribution model approach

to clustering [104]. The GMM is a machine learning algorithm from the broader class

of generative models which attempt to describe the probability distribution from which

a dataset was generated (assuming one exists). The GMM may be thought of as a

generalization of the k-means algorithm to include information about the covariance

between features. The distribution model approach assumes that each sample was

i.i.d. generated from one of a finite number of component Gaussian distributions which

comprise the mixture. The model assumes that each sample contains a latent variable79

that indicates the identity of the component distribution from which it was drawn. In the

context of iMGXS, the latent variables are the cluster labels 4k for each fuel pin instance

k and must be inferred by fitting a GMM to the MGXS dataset.

The generic GMM is parameterized by the number of components (or clusters) M,

as well as the mixture weights iT, means p,, and covariance matrices Em for each

component m E {1, 2,. . ., M}, and is expressed as:

M M

p ) - Z 0) e)n, Em,) (10.25)
m=1 m=1

where each J-dimensional Gaussian component distribution is given by:

;, _m - )x ) (10.26)

The generic GMM is illustrated in Fig. 10-17 with the plate notation commonly used

79A hidden variable which is not observed within a feature vector.
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by the machine learning community to describe complex probability distributions [105].

In summary, small rectangles represent unknown model parameters, unshaded circles

describe unobserved random variables, and shaded circles signify observed random

variables. The dimensionality of non-scalar variables are indicated in brackets inside

each square and circle. Large rectangular plates group subgraphs of variables which

repeat together according to the repetition numbers in the bottom right comers of each

plate (e.g., M and K). The inter-dependences of each model parameter and random

variable within the graph are indicated by directed arrows. Categorical variables, such

as the cluster labels Ik, are related using a squiggly arrow with a T junction.

][JJ]

Fk 1k K
Figure 10-17: Plate notation for a Gaussian Mixture Model.

Algorithm 10-4: Expectation-Maximization Algorithm for GMMs

Initialize means I{/) p3,(0 ,... } 
Initialize soft weights {h( ,h,, hl)

Initialize component weights {i r,7,..., () 3r~}

Initialize component covariances {E1, E . EM
while model parameters are not converged do

Expectation Step: Update soft weights
Maximization Step: Update mixture parameters

end while
Compute cluster labels from MAP estimators 8 0

> Alg. 10-1

> Eqn. 10.27
t Eqn. 10.28

t Eqn. 10.29
> Eqns. (10.27) to (10.28)

> Eqn. 10.31

The number of mixture components M may either be specified by the user or in-

ferred using Variational Bayesian methods. The means p, and variances Em are a priori

80 The maximum a posteriori (MAP) estimate is the mode of the GMM distribution.
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unknown and must be inferred from the data. These parameters cannot be solved

for directly and must be approximated by an iterative algorithm such as Expectation-

Maximization (EM) [95] as summarized in Alg. 10-4. The algorithm introduces soft

weights hm,k which signify the probability that sample k was drawn from mixture com-

ponent m, and are normalized to unity for each sample. The EM algorithm finds the

maximum likelihood parameters for pm and Em on each iteration t and repeats until

convergence.

The first step of the EM algorithm initializes the means s. for the M mixture

components. A variety of approaches exist to initialize the means; it is common to use

the k-means algorithm (Sec. 10.5.1) and extract the cluster centroids for this purpose.

Next, each sample k is associated with the nearest component mean Km by setting soft

weight hmk to unity and all others to zero. Given the initial component means and soft

weights, the mixture weights lrm may be computed for each component m from the

following normalization:

7T2+1 = h(t m,k (10.27)
k=1

The covariance matrices EM for mixture component m are then computed from the

component means and soft weights as follows:

K

E(t+j) = k=1 K(10.28)

k=1

The EM algorithm then proceeds to iterate between expectation and maximization

steps. The expectation step updates the soft weights hm,k with the posterior probabilities

that each sample k was generated from mixture component m:

h(~ =) M (10.29)mk M

rn=1
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The maximization step updates the mixture parameters by first computing the new

component means as the average of all samples biased by the soft weights:

K

h..tJm, rk fA
(t+1) - (10.30)

k=1

The component weights and covariances are updated according to Eqns. 10.27 and 10.28,

respectively The iteration terminates once the GMM parameters converge to within a

user-defined tolerance. The mixture or cluster labels 4k for each sample are inferred

using maximum a posteriori probability (MAP) estimation from the final soft weights:

fk= argmax h(T) (10.31)m,k

The EM algorithm is guaranteed to monotonically increase the likelihood function of

the observed data, but may not necessarily find the global optimum. The algorithm is only

guaranteed to converge to a local maximum of the likelihood function. The converged

solution is highly dependent on the initial component means, though some heuristics,

such as the use of k-means to initialize the means, may make the algorithm more robust

against converging to spurious local maxima. Nevertheless, it is common to run EM many

times with different initial component means and choose the solution with the maximum

likelihood. This thesis employs GMMs fit with the EM algorithm implemented in the

GaussianMixture class of the sklearn.mixture module in the scikit-learn Python

package. A full or dense covariance matrix is fit during the process; approximations

such as diagonal or spherical covariance matrices may alternatively be used to tractably

model very large MGXS datasets.

Although the GMM does not make assumptions about the size or shape of clusters, it

does assume that each cluster is normally distributed. In addition, the EM algorithm

employed by this thesis does require the number of clusters M to be specified. As a result,

model selection techniques must be used to select from a sequence of cluster models

trained for different values of M, as discussed in Sec. 10.6. Alternatively, Variational
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Bayesian estimation methods developed for GMMs [106,107] may be used to automati-

cally infer the number of mixture components using a Dirichlet Process prior over the

parameters for infinite GMMs [108]. These methods are broadly available, including

the BayesianGaussianMixture implementation in the sklearn.mixture module.

Clustering algorithms make different assumptions about what constitutes a

"cluster," and optimize different objective functions to find clusters in data.

The k-means, agglomerative, BIRCH and Gaussian Mixture Model clustering

algorithms were each used within the iMGXS scheme in this thesis.

10.6 Model Selection

The model selection stage of the data processing pipeline in Fig. 10-2 chooses the "best"

predictive model for MGXS clustering. The four clustering algorithms discussed in

Sec. 10.5 require the number of clusters to be specified a priori by the user. Model

selection techniques are used to compare multiple clustering models (i.e, trained for

different numbers of clusters) and choose the most appropriate one for a particular

application. In the context of the iMGXS scheme, the number of MGXS clusters is

unknown, nor is it clear that there will always be a well-defined number of clusters in

highly heterogeneous core configurations. In this case, model selection aims to determine

the fewest number of MGXS clusters needed to meet the requirements for predictive

accuracy and enable the fastest possible MC convergence rate. More specifically, model

selection must identify the optimal number of clusters such that adding another cluster

would only marginally improve the predictive accuracy of multi-group transport codes

such as OpenMOC.

The model selection stage of the iMGXS data processing pipeline is described in

Fig. 10-18. Since iMGXS is an unsupervised scheme for spatial homogenization, a

numerical criterion must be used to quantify the "quality" of each clustering model.

The criterion may be subjected to thresholding or other techniques to automate model

selection and obviate the need for human intervention. When choosing the appropriate
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number of clusters, model selection must strike a balance between:

e Maximum Compression - Assign all samples to a single cluster

* Maximum Accuracy - Assign each sample to its own cluster

In the context of pin-wise spatial homogenization, the former is null homogenization

(Sec. 8.2.2) and the latter is degenerate homogenization (Sec. 8.2.3).

The machine learning community has developed a plethora of model selection

techniques for statistical clustering analysis. The techniques are often segmented into

the following two categories:

* External Evaluation - Validate model data with the ground truth labels

" Internal Evaluation - Score model on its intra- and inter-cluster similarities

External evaluation criteria are useful in supervised learning settings where some or all of

the dataset may include the ground truth cluster labels. In this case, some of the dataset

may be left out of the training phase and used to validate the model trained on the rest of

the data. In the context of iMGXS, none of the samples are labeled and all of the cluster

labels are unknown. As a result, internal evaluation criteria must be used to optimize

cluster models based upon the unlabeled dataset with which each was trained. Internal

evaluation criteria generally attempt to identify cluster models with high intra-cluster

similarities and low inter-cluster similarities8 1. Alternatively, some internal evaluation

criteria act as regularizers to balance model complexity with generality.

The following sections describe several model selection criteria that are use to evalu-

ate the clustering models produce by the iMGXS scheme. Secs. 10.6.1 to 10.6.4 introduce

the Davies-Bouldin, Dunn and Calinski-Harabaz indices and silhouette coefficients. These

criteria use different metrics to quantify intra- and inter-cluster similarities to quantify

the quality of a clustering model. Sec. 10.6.5 presents the Bayesian Information Criterion,

a technique with a strong theoretical formulation that may be used to evaluate GMMs.

Finally, Sec. 10.6.6 discusses cross-validation and how it may be used in conjunction

with any of these model selection criteria to prevent over-fitting.

"Conversely, some criteria minimize and maximize the intra and inter-cluster dissiniliarities, respectively.
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Figure 10-18: Model selection evaluates the clustering models.

It is important to note that model selection may only examine the clustering models.

The clustered MGXS may not be employed in a multi-group transport simulation and
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then compared with respect to some reference MC solution. Although such an exercise

is important as a proof of principle of the iMGXS scheme, it is unacceptable as a model

selection technique since it is supervised. Furthermore, it would nullify the over-arching

goal of this thesis - to obtain MC quality solutions with computationally efficient de-

terministic multi-group transport codes - since it would require the computationally

expensive calculation of a MC reference solution.

10.6.1 Davies-Bouldin Index

The Davies-Bouldin (DB) index [109] is the ratio of intra-cluster to inter-cluster dissimi-

larity, or equivalently, the ratio of within-cluster scatter to between-cluster separation.

The DB index penalizes cluster models with high intra-cluster distances (i.e., low intra-

cluster similarities) and low inter-cluster distances (i.e., high inter-cluster similarities).

The inter-custer distance d (M,, p) is simply the distance between cluster centroids s"
and M in feature space. The most common metric for the intra-cluster distance Rm is

the average distance of all samples in cluster Sm to its centroid p,:

1
2

Rm f kE -t2 (10.32)

This formulation of the intra-cluster distance is equivalent to the subcluster radius used

by the BIRCH clustering algorithm (Eqn. 10.20). The DB index is then the similarity

between each cluster Sm and its most similar one Sm averaged over all of the clusters:

DB = I max a p n (10.33)
K mj n ( ,ps

The "best" clustering model is the one which minimizes the DB index. The DB index

is used to evaluate the clustering models produced by iMGXS in the following chapter.
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10.6.2 Dunn Index

The Dunn index [110] is the ratio of the minimum inter-cluster distance to the maximum

intra-cluster distance, or equivalently, the ratio between the distance separating the two

most similar clusters and the radius of the most dissimilar cluster. The Dunn index seeks

to identify clustering models with high-density (i.e., high intra-cluster similarities) and

well-separated clusters (i.e., low inter-cluster similarities). In contrast to the DB index

which is an average across clusters, the Dunn index is indicative of the most poorly

defined cluster(s) in the model. Various formulations may be used for both the intra-

and inter-cluster distances. This thesis used the same formulations for the intra-cluster

distance Rm, (Eqn. 10.20) and inter-cluster distance d (p, p,) (Eqn. 10.33) as those

used for the DB index. The Dunn index is then given by the following expression:

min d(ps, p)
D = ism: nsm (10.34)

max R
1 p M

The "best" clustering model is the one which maximizes the Dunn index. The Dunn

index is used to evaluate the clustering models produced by iMGXS in the following

chapter.

10.6.3 Calinski-Harabaz Index

The Calinski-Harabaz (CH) index [111] is the ratio of between-cluster and within-cluster

dispersion, and is often referred to as the variance ratio criterion. The CH index is formally

defined as follows:

CH = K-M (10.35)
Tr(W) M -1

where B and W are the between-group and within-group dispersion matrices given by:

M

B = is.mIX (A71-fk) ( -4 f)k (10.36)
m=1
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M

W= ( (A_- )( JA)F (10.37)
m=1 fkESM

The B matrix depends on the mean fk of all samples in the dataset.

The higher the between-group variance and the lower the within-group variance, the

more well-defined the clusters are for a given model. Hence, the "best" clustering model

is the one which maximizes the Calinski-Harabaz index. The Calinski-Harabaz index is

used to evaluate the clustering models produced by iMGXS in the following chapter.

10.6.4 Silhouette Coefficient

The silhouette coefficient [112] is defined for each sample, and compares the average

distance between a sample and all other samples within its assigned cluster to the average

distance to samples in all other clusters. Since the silhouette coefficient is defined for

each sample, it provides a more granular metric to evaluate a clustering model on a

sample-by-sample basis than the Davies-Bouldin, Dunn and Calinski-Harabaz indices.

In particular, a high silhouette coefficient signifies a "well-clustered" sample, while a

low silhouette coefficient may indicate that a sample is an outlier. The distribution of

silhouette coefficients is often visualized with a silhouette plot to aid in identifying the

quality of each cluster in a model. If many samples have a low silhouette coefficient,

then it may indicate the inclusion of too few or too many clusters in the model.

The silhouette coefficient defines the dissimilarity ak of sample fk to its cluster 5m as

the average distance from fk to all points in Sm:

ak= ISm 1 I I (10.38)
ak S MI 1 lfjEfk

jik

Similarly, the smallest dissimilarity bk of sample fk to all other clusters compares the

sample to all samples in the "next best fit" or nearest neighboring cluster S,:
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1A
bk= -- j -- llI (10.39)

The silhouette coefficient for sample fk is then given by the following:

bk-ak
max(ak, bk) (10.40)

The average silhouette coefficient over all samples Sk may be used to measure the overall

quality of a clustering model:

K
k Y-ESk (10.41)

The silhouette coefficient is defined over the range -1 sk 5 +1 where a value near

+1 indicates that the sample is well-matched to its assigned cluster. Likewise, a value

near -1 indicates that sample fk is ill-matched to its assigned cluster and may be more

appropriately matched with the nearest neighboring cluster. Furthermore, a value near

zero indicates that the sample is on the border of two equally valid (but poorly matched)

clusters. Therefore, in general, higher average silhouette coefficient Sk indicate a better

matching of samples to assigned clusters. Hence, the "best" clustering model is the one

which maximizes the average silhouette coefficient. The silhouette coefficient is used to

evaluate the clustering models produced by iMGXS in the following chapter.

10.6.5 Bayesian Information Criterion

The Bayesian Information Criterion (BIC) [113] may be used to optimize parameter

selection for models with well-defined likelihood functions. As a result, of the four

clustering algorithms presented in Sec. 10.5, the BIC may only be used to select the

number of components for GMMs. In contrast to the previously defined model selection

criterion, the BIC is based on an information theory analysis of model complexity and

attempts to measure the "efficiency" with which a parametrized model predicts an

observed dataset. The BIC is an asymptotic result that is only guaranteed to recover the
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"true" number of mixture components in a GMM given an infinite number of samples

which were drawn i.i.d. from a mixture of Gaussians. In practice, the asymptotic result

is only valid if the sample size is much larger than the number of mixture components.

These assumptions are important to consider in the context of the iMGXS data

processing pipeline. Pin-wise MGXS datasets are not necessarily distributed according to

a GMM. The case studies in Chap. 9 indicate that the number of samples per component

should increase with the size of the core geometry8 2. Hence, one might expect that the

BIC would perform better for a full core geometry than for a single assembly

The BIC is based upon the value of the maximum likelihood function L83 :

L = maxp({fl, f 2 , -fK } 1) (10-42)

where the model parameters are denoted by 6 (i.e., the GMM mixture means p, and

covariance matrices Em). The parameters found by the expectation-maximization algo-

rithm maximize the log-likelihood ln (1) for the GMM defined by Eqns. 10.25 and 10.26:

K M

ln( ) = log .I(k> - In j1.m )- 1 .E_1 -i) - ln(27c)
k=1 m=1

(10.43)

where the indicator function ism(k) is equal to 1 if k E Sm and 0 otherwise. The BIC is

then given by the following expression:

BIC = -2 -ln() 161. ln(K) (10.44)

The first term in the BIC uses the maximum log-likelihood to measure the ability of the

GMM to predict the observed MGXS dataset. The second term acts as a regularizer and

penalizes the complexity of the model by comparing the number of model parameters

10 1to the number of observed samples K. The "best" clustering model is the one which

minimizes the Bayesian Information Criterion. The BIC is used to evaluate the GMMs

produced by iMGXS in the following chapter.

82 This assumes that the complexity of heterogeneities - each of which induce MGXS (sub)clusters - does
not also scale with the size of the core geometry.

8 3The probability of observing a dataset given the model parameters 6.
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10.6.6 Cross-Validation

Cross-validation is a technique for model validation [114], and is closely related to the

bootstrap method commonly used to approximate the properties of statistical estima-

tors [115]. Cross-validation is used to assess the generalization of a model by evaluating

it with a dataset independent of the one used to train the model. In general, cross-

validation is used to control model complexity and prevent over-fitting to outliers. The

integration of the predictor training and model selection stages with cross-validation is

highlighted in Alg. 10-5. Cross-validation aims to estimate a predictor's performance by

averaging a model selection criterion across multiple models trained on disjoint subsets

of a dataset. A model selection criterion averaged across multiple models will be more

robust than a single model trained on the complete dataset. Although cross-validation

was not evaluated as part of the iMGXS data processing pipeline for this thesis, it may

be worthwhile to consider its value for model selection in the future.

Algorithm 10-5: Cross-Validation for Clustering Model Selection

1: Divide dataset into P mutually exclusive partitions
2: for each set of model parameters do
3: for each partition p do
4: Train model on data from the other P - 1 partitions
5: Score model with criterion evaluated for partition p
6: end for
7: Average selection criterion across models
8: end for
9: Choose model with best model selection criteria
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10.7 Spatial Homogenization

The final spatial homogenization stage in the data processing pipeline in Fig. 10-2 applies

the selected clustering model to spatially homogenize pin-wise MGXS as illustrated in

Fig. 10-19. Like the degenerate and LNS spatial homogenization schemes (Secs. 8.2.3

and 9.2.1), a single MC calculation of the complete heterogeneous geometry is used to

generate MGXS for all materials. The MGXS are tallied separately for each instance of

fissile material zones using OpenMC's distributed cell tallies (Sec. 4.2.2). The clustering

model found from the preceding stages of the iMGXS data processing pipeline assigns an

integral cluster label fk to each unique pin instance k in the combinatorial geometry (CG).

Track density-weighting (Sec. 9.2.2) is used to average MGXS across all pin instances

with the same cluster label in an identical fashion to LNS spatial homogenization. The

OpenCG region differentiation algorithm (Sec. 4.4.3) is used to build an OpenMOC

geometry with unique cells and materials for each fuel pin which mirrors the clustering

model's representation of the CG model. Like the infinite, null, degenerate and LNS

schemes, spatial self-shielding effects experienced by different non-fissile spatial zones

are averaged across the entire geometry for each non-fissile material.

It is important to recall that iMGXS spatial homogenization aims to homogenize

across as many fuel pin instances as possible while sacrificing little or no accuracy in

downstream multi-group calculations. The observations made in Sec. 9.4 about the

convergence rate for MGXS generated with MC are equally valid for iMGXS as they were
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Model selection techniques are used to choose clustering model parameters,

including the number of clusters. Various methods score clustering models

based upon their intra- and inter-cluster similarities, or penalize model com-

plexity using regularization. The Davies-Bouldin, Dunn and Calinski-Harabaz

indices and silhouette coefficients are implemented for each clustering algo-

rithm employed by the iMGXS scheme, and the Bayesian Information Crite-

rion is implemented for Gaussian Mixture Models.
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Figure 10-19: The detailed iMGXS data processing pipeline.
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for the null, degenerate and LNS schemes. In particular, the standard deviation of the

MGXS homogenized across each cluster is reduced by a factor inversely proportional

to the number of pins in the clusters according to Eqn. 9.5. Therefore, the more fuel

pin instances assigned to each cluster, the faster the MGXS will converge to within an

acceptable level of uncertainty. However, an uneven assignment of pin instances to

clusters will impact the relative accelerated convergence rates achieved for different

clusters. In other words, the overall reduction in MGXS uncertainties - or conversely,

the acceleration of the MGXS convergence rates - will be bounded by the cluster with

the fewest fuel pin instances.

10.8 Clustered Geometries

This section employs the iMGXS spatial homogenization scheme and presents visu-

alizations of the predicted material configurations for each of the six heterogeneous

benchmarks introduced in Chap. 7. The openmc. mgxs module (Sec. 4.2.4) was used

to compute 70-group MGXS with OpenMC, along with all other tallies necessary to

compute each of the features described in Sec. 10.2. The OpenMC simulations were

performed with 1000 batches of 106 particle histories per batch for each benchmark.

Stationarity of the fission source was obtained with 200 inactive batches for the quar-

ter core BEAVRS model, while 100 inactive batches were employed for the other five

benchmarks (Sec. 7.3.1). OpenMC's "iso-in-lab" feature (Sec. 4.2.3) was employed to

enable consistent comparisons between OpenMC's reference results and OpenMOC's

calculations with an isotropic in lab scattering source in the following chapter.

The 70-group MC tally data was condensed to 2-groups for feature extraction within

the iMGXS data processing pipeline. Two different approaches were separately evaluated

for feature selection. Pinch feature selection (Sec. 10.3.5) was used to select features

derived from U-238 capture MGXS in group 1 of 2 (encompassing the resonance region),

as well as the fractional reactivity and spectral index features (Secs. 10.2.2 and 10.2.3).

A second feature selection approach, referred to here as litmus-only feature selection,

only used the reaction fraction thresholding litmus test (Sec. 10.3.1.2) to select the "best"
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reaction type (i.e, total, capture or fission) for each pair of nuclides and energy groups,

for each nuclide in the fuel (i.e., U-234, U-235, U-238, 0-16 and 0-17) and both energy

groups. All available features were used for each selected reaction type, nuclide and

energy group. No dimensionality reduction techniques (Sec. 10.4) were applied to the

selected features. The agglomerative clustering algorithm (Sec. 10.5.2) was used for

each of the case studies presented here84 .

The geometries produced with 2, 4 and 8 clusters for the 1.6% enriched fuel assembly

and 3.1% enriched fuel assembly with 20 BPs are presented in Figs. 10-20 and 10-21,

respectively. Likewise, the geometries produced with 2, 4 and 8 clusters for the 2x2

colorset without and with a reflector are displayed in Figs. 10-22 and 10-23. Finally, the

geometries produced with 2 - 64 clusters, spaced in powers of 2, for the quarter core

BEAVRS model are depicted in Figs. 10-24 to 10-29. Each uniquely colored material

represents a unique set of MGXS. In general, it is apparent that the iMGXS scheme

is able to identify clusters of fuel pins which are related by the presence of similar

neighboring heterogeneities which induce the clustering of samples in feature space 5 .

As a result, iMGXS spatial homogenization would be expected to approach the accuracy

of the degenerate scheme and the convergence rate of the null scheme.

A couple of key observations can be made from Figs. 10-20 to 10-23. First, the

material configurations are highly dependent on the types of features used to train

the clustering model, as evidenced by the very different clustering assignments found

with pinch and litmus-only feature selection. The inclusion of features for many dif-

ferent nuclides and reaction types with litmus-only selection clearly impacts not only

the separation distance, but more importantly, the relationships between samples in

feature space. Pinch feature selection only considers the structure in features derived

from U-238 capture MGXS, along with the spectral indices and fractional reactivities,

while litmus-only feature selection also considers clustering in U-235 fission and other

"The four clustering algorithms highlighted in Sec. 10.5 were observed to produce different clustered
geometries for each of the benchmarks. For the sake of brevity, only those geometries produced by
agglomerative clustering are illustrated here.

8 sThe clustering of samples in feature space does not necessarily reflect the clustering of MGXS. The two
are only equivalent if the features cluster in the same way as the MGXS, and the clustering algorithm
optimizes over the correct objective function governing the structure of the clusters.
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tallied reactions. As was observed from the histograms and quantile-quantile plots

in Secs. 9.1.3.2 and 9.1.4.2, the thermal U-235 MGXS are more sensitive to spatial

self-shielding effects than U-238 resonance capture, even though clustering effects are

more relevant to the prediction of U-238 capture rates. Although pinch and litmus-only

feature selection lead to divergent clustering models, the two are not compared in this

thesis with respect to their impact on the predictions of spatially distributed reaction

rates for practical reasons.

In addition, it is noteworthy that the iMGXS scheme discriminates pins along assembly-

assembly and reflector-assembly interfaces for the 2x2 colorset benchmarks and the

quarter core BEAVRS model. This contrasts with the LNS scheme which fails to dis-

tinguish pins along the various borders of fuel assemblies. The ability of iMGXS to

separate out fuel pins along interfaces without engineering prescriptions illustrates

the key advantage of iMGXS over the LNS scheme. As a result, the iMGXS scheme is

expected to outperform LNS spatial homogenization for arbitrary core geometries.

Interestingly, the models of 2 - 4 clusters for the quarter core BEAVRS model cluster

the pins in the interior fuel assemblies in a way which resembles the clustered geometries

for the individual fuel assemblies in Figs. 10-20 and 10-21. This indicates that the flux

profile in the interior assemblies is similar to that in an infinite lattice. As more clusters

are introduced, the pins along the assembly-assembly interfaces are resolved into their

own clusters. However, it should be noted that more "outlier" pins (pins assigned to the

"wrong" cluster) are observed as more clusters are introduced, although the predictions

with litmus-only feature selection are more "robust" for more clusters. Ideally, the model

selection criteria discussed in Sec. 10.6 may be used to determine the minimum number

of clusters necessary without sacrificing accuracy due to the presence of outliers.

The interested reader is referred to App. D.1 for a presentation of the clustered

geometries produced when non-MGXS features are removed during feature selection

(i.e., the clustering algorithm only considers the pin-wise MGXS means and uncertainties).

This highlights the importance of using features such as the fractional reactivities, spectral

indices and reaction fractions to best identify structures in MC tally data due to spatial self-

shielding effects. Furthermore, App. D.2 illustrates the clustered geometries produced
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when dimensionality reduction techniques such as PCA, ICA and FA are employed.
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Figure 10-20: Materials for the 1.6% enriched fuel assembly with iMGXS spatial ho-
mogenization. The materials for 2, 4, and 8 clusters are illustrated in (a), (c) and (e)
for pinch and in (b), (d) and (f) for litmus-only feature selection, respectively.
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Figure 10-21: Materials for the 3.1% enriched fuel assembly with 20 BPs with iMGXS
spatial homogenization. The materials for 2, 4, and 8 clusters are illustrated in (a), (c)
and (e) for pinch and in (b), (d) and (f) for litmus-only feature selection, respectively.
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Figure 10-22: Materials for the 2x2 periodic colorset with iMGXS spatial homogeniza-
tion. The materials for 2, 4, and 8 clusters are illustrated in (a), (c) and (e) for pinch
and in (b), (d) and (f) for litmus-only feature selection, respectively.
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Figure 10-23: Materials for the 2x2 colorset with water reflector with iMGXS spatial
homogenization. The materials for 2, 4, and 8 clusters are illustrated in (a), (c) and (e)
for pinch and in (b), (d) and (f) for litmus-only feature selection, respectively
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Figure 10-25: Materials for the BEAVRS model with iMGXS spatial homogenization of
4 clusters with pinch feature selection (a) and litmus-only feature selection (b).
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Figure 10-27: Materials for the BEAVRS model with iMGXS spatial homoggnization of
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Figure 10-29: Materials for the BEAVRS model with iMGXS spatial homogenization of
64 clusters with pinch feature selection (a) and litmus-only feature selection (b).
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e The inferential MGXS (iMGXS) spatial homogenization scheme uses unsuper-

vised clustering analysis of MC tally data to predict which fuel pins experience

similar spatial self-shielding effects.

" The iMGXS data processing pipeline is composed of the following stages:

- Feature extraction builds features from MC tallies for each fuel pin.

- Feature selection identifies the features indicative of MGXS clustering.

- Dimensionality reduction projects features into a reduced vector space.

- Predictor training applies a clustering algorithm to the dataset.

- Model selection chooses the best fit clustering model.

- Spatial homogenization averages the MGXS of fuel pins in each cluster.

e The material configurations predicted by the iMGXS scheme for each of the

six heterogeneous benchmarks are illustrated.

e The iMGXS scheme easily identifies clusters of fuel pins adjacent to CRGTs and

BPs - and more importantly, along assembly-assembly and reflector-assembly

interfaces - which the LNS scheme fails to do for arbitrary geometries.
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Chapter 11

Evaluation of the iMGXS Scheme

The preceding chapter introduced a methodology for inferential multi-group cross section

(iMGXS) spatial homogenization. The iMGXS scheme uses unsupervised clustering

algorithms to infer the optimal assignment of fuel pin instances to spatial homogenization

tally zones based on an analysis of "noisy" MC tally data. This chapter evaluates iMGXS

homogenization with respect to the scheme's two primary objectives:

" Approach the accuracy of degenerate spatial homogenization (Sec. 8.2.3)

* Approach the MC convergence of null spatial homogenization (Sec. 8.2.2)

Furthermore, the iMGXS scheme seeks to address the shortcomings of the Local Neighbor

Symmetry (LNS) spatial homogenization scheme (Sec. 9.2) - namely, its inability to

flexibly distinguish MGXS clusters in arbitrary geometries (e.g., pins along assembly-

assembly and assembly-reflector interfaces) - and represents a pathway for reactor

agnostic MGXS generation.

The results presented in this chapter reflect the key observations made in Chaps. 8

and 9 for the null, degenerate and LNS homogenization schemes. First, it was observed

that pin-wise homogenization with track density-weighted MGXS (Sec. 8.4.2) has no

impact on the resultant eigenvalue since all schemes preserve global reactivity. In

addition, it was shown that pin-wise MGXS clustering must be accounted for to accurately

predict pin-wise U-238 capture rates, but it is much less consequential for accurate fission

rate predictions. These results inform the results and analysis presented in this chapter.
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The accuracy of the iMGXS scheme is evaluated with respect to the null and de-

generate schemes in Sec. 11.1. The analysis includes a presentation of the eigenvalue

bias and the distributions of pin-wise U-238 capture rate errors for four clustering algo-

rithms (Sec. 10.5) with varying numbers of clusters, for each of the six PWR benchmarks

(Sec. 7.2). The convergence rate of the OpenMOC solutions with the null, degener-

ate and iMGXS schemes is presented in Sec. 11.2 for "noisy" MC tally data computed

with varying numbers of particle histories. Sec. 11.3 examines the empirical results for

model selection criteria (Sec. 10.6) which may be use to select the most appropriate

number of clusters for the iMGXS scheme. Finally, Sec. 11.4 concludes with an analysis

of the computational resource requirements necessary to reach a desired level of accu-

racy for pin-wise U-238 capture rates for a reference MC calculation in comparison to

deterministic multi-group calculations with the degenerate and iMGXS schemes.

11.1 Multi-Group Results with iMGXS

The openmc .mgxs module (Sec. 4.2.4) was used to compute 70-group MGXS with

OpenMC, along with all other tallies necessary to compute each of the features described

in Sec. 10.2. In contrast to the MGXS generated with OpenMC in Chaps. 8 to 10, the

MGXS used in this chapter were generated with 10x more batches and 10x fewer

histories per batch. The use of so many active batches made it possible to evaluate the

convergence rate of the OpenMOC solutions in Sec. 11.286. In particular, the OpenMC

simulations were performed with 10,000 batches of 105 particle histories per batch for

the assembly and colorset benchmarks, while 106 histories per batch were used for the

quarter core BEAVRS model. Stationarity of the fission source was obtained with 200

inactive batches for the BEAVRS model, while 100 inactive batches were employed for

the other five benchmarks (Sec. 7.3.1). OpenMC's "iso-in-lab" feature (Sec. 4.2.3) was

86As a result of the different OpenMC runtime parameters used in this chapter, the OpenMOC eigenvalues
and capture rate errors differ slightly from those reported in Chaps. 8 to 10. The preceding chapters use
8 - 9 x 108 active histories to generate MGXS, while this chapter use 9.8 - 9.9 x 108 active histories,
since fewer histories are expended in the inactive cycles. Although so few histories per batch might risk
under-sampling of the fission source distribution for a reference MC calculation, it is less of a concern
here since it is assumed that under-sampling is not as problematic for MGXS generation.
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employed to enable consistent comparisons between OpenMC's reference results and

OpenMOC's calculations with an isotropic in lab scattering source.

The 70-group MC tally data was condensed to 2-groups for feature extraction within

the iMGXS data processing pipeline. The litmus-only feature selection approach used

the reaction fraction thresholding litmus test (Sec. 10.3.1.2) to select the "best" reaction

type for each pair of nuclides and energy groups, for each nuclide in the fuel and both

energy groups. All available features were used for each selected reaction type, nuclide

and energy group. No dimensionality reduction techniques (Sec. 10.4) were applied

to the selected features. The k-means, agglomerative, BIRCH and Gaussian Mixture

Model (GMM) clustering algorithms were separately used to train predictors for varying

numbers of clusters (Sec. 10.5) to inform pin-wise spatial homogenization.

Each of the six benchmarks was modeled with OpenMOC using MGXS generated by

the iMGXS spatial homogenization scheme with the same runtime parameters as those

used in Chap. 8 for infinite, null and degenerate homogenization, and in Chap. 9 for

LNS homogenization. The eigenvalue bias is presented in Sec. 11.1.1, while the U-238

capture rate errors are analyzed in Sec. 11.1.2. The pin-wise fission rate errors for the

iMGXS scheme are not considered here since MGXS clustering was previously shown to

be largely inconsequential for fission rate predictions.

11.1.1 Eigenvalues

The OpenMOC eigenvalues were compared to the reference OpenMC eigenvalues from

Tab. 7.1. The eigenvalue bias Ap was computed from Eqn. 5.1 in units of pcm. The

bias is listed in Tab. 11.1 for each benchmark, and varying numbers of clusters for each

clustering algorithm. The same trends highlighted in Sec. 8.4.1 observed from the null

and degenerate biases in Tab. 8.4 remain true for iMGXS spatial homogenization. The

iMGXS eigenvalues are within 10 pcm of those computed with both null and degenerate

homogenization for all benchmarks. As previously noted in Sec. 8.4.1, this is expected

since the MGXS for the null, degenerate and iMGXS schemes are homogenized from

the same flux and should preserve globally-integrated reaction rates. Hence, neither
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the type of clustering algorithm nor the number of clusters is expected to systematically

impact OpenMOC's eigenvalue predictions. Nevertheless, the consistent eigenvalue

biases do support the conclusion that the iMGXS scheme is properly implemented.

Table 11.1: OpenMOC eigenvalue bias Ap for iMGXS spatial homogenization.

Benchmark Clustering # Clusters
Algorithm Null 2 4 8 16 Degen.

Agglomerative -168 -168 -168 -168

1.6% Assm BIRCH -168 -168 -168 -168 -168 -168
GMM -168 -168 -168 -168
k-means -168 -168 -168 -168
Agglomerative -194 -194 -194 -194

3.1% Assm BIRCH -194 -194 -194 -194 -194 -194
GMM -194 -194 -194 -194
k-means -194 -194 -194 -194
Agglomerative -237 -236 -235 -235

3.1% Assm w/ BIRCH -240 -237 -236 -235 -235 -23520 BPs GMM -236 -235 -236 -235
k-means -236 -236 -236 -235
Agglomerative -189 -189 -189 -189

2x2Colorset BIRCH -191 -189 -189 -189 -188 -188
GMM -188 -189 -188 -189
k-means -188 -189 -188 -189
Agglomerative -136 -136 -134 -129

2x2 Colorset BIRCH -141 -138 -137 -136 -132 -141
w/ Reflector GMM -136 -136 -137 -132

k-means -136 -136 -134 -132
Agglomerative -115 -117 -117 -117

BEAVRS Quar- BIRCH -122 -115 -116 -115 -117 -116ter Core GMM -120 -116 -116 -117
k-means -118 -115 -117 -117

85 Null homogenization is equivalent to iMGXS homogenization with a single cluster.
86 Degenerate homogenization is equivalent to iMGXS homogenization with a cluster for each fuel pin.
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The OpenMOC eigenvalues for iMGXS homogenization are consistent to within

10 pcm for all numbers of clusters due to the preservation of global reactivity.

11.1.2 U-238 Capture Rates

The OpenMOC energy-integrated pin-wise U-238 capture rates were compared to the

reference OpenMC capture rates for iMGXS homogenization to compute the percent

relative errors for each pin's capture rates. Sec. 11.1.2.1 investigates the dependence of

the maximum and mean errors with the number of clusters, while Sec. 11.1.2.2 compares

the errors between null, degenerate and iMGXS homogenization. Sec. 11.1.2.3 illustrates

the spatial distributions of U-238 capture rate errors. Finally, Sec. 11.1.2.5 compares

OpenMOC's U-238 capture rate predictions for different clustering models to understand

the relative impact of clustered MGXS for different types of fuel pins.

11.1.2.1 Variation with the Number of Clusters

This section compares the U-238 capture rate for each of the four clustering algorithms

as the number of clusters is varied. The simplest clustering model assigns all fuel pin

instances to the same cluster, which is equivalent to null homogenization; conversely,

the most complex clustering model assigns each fuel pin instance to its own unique

cluster, which is equivalent to degenerate homogenization. Based on the results for LNS

homogenization, it is expected that the U-238 capture rate error can approach that of

degenerate homogenization with only perhaps 10 - 20 clusters for the assembly and

colorset benchmarks. Beyond this point, it is expected that there are diminishing returns

to increased model complexity.

Furthermore, the balance between model complexity and accuracy will depend on

the degree of statistical uncertainty present in the MC tally data, as depicted in Fig. 11-1.

In particular, the statistical uncertainties of the "noisy" MC tally data for X particle

histories may preclude the iMGXS scheme from achieving the asymptotic accuracy of the

degenerate scheme with fully converged MGXS. The inclusion of more clusters in iMGXS
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# Clusters
Figure 11-1: Characteristics of reaction rate error convergence with iMGXS in the limit
of infinite particle histories to degenerate homogenization with fully converged MGXS.

scheme will enable it to approach the asymptotic accuracy of the degenerate scheme

if enough particle histories have been simulated to reliably estimate the mean of each

MGXS cluster. The optimal balance between accuracy and speed is achieved when the

majority of the gap in accuracy between the null and degenerate schemes is eliminated

with only a few clusters in iMGXS, which quickly converge with only a fraction of the

particle histories needed to converge the MGXS for the degenerate scheme.

The maximum and mean errors for iMGXS with 1 - 50 clusters are illustrated in

Figs. 11-2 to 11-7 for the individual assembly, 2x2 colorset and quarter core BEAVRS

benchmark models. In particular, the maximum errors are the maximum of the absolute

values of the errors, while the mean errors are the averages of the absolute error

magnitudes. A couple of key observations can be made with regards to the errors'

dependence on the number of clusters, as well as the clustering algorithm. First, it

is clear from Figs. 11-2 to 11-4 that the errors for the individual assemblies is greatly

reduced with only 4 - 8 clusters, with additional clusters having a marginal impact. As

expected, the introduction of spatial heterogeneities requires more clusters to converge

the error reduction. For example, both the max and mean errors are still trending

downward even with 20 clusters for the 2 x 2 colorset with a water reflector.

The different clustering algorithms also vary in terms of their impact on the max and

mean error. However, the figures do not clearly indicate which if any of the algorithms
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consistently under or over-performs the others for all benchmarks. All four algorithms

perform similarly for the 1.6% and 3.1% enriched fuel assemblies without BPs for 1 - 20

clusters, as shown in Figs. 11-2 to 11-3. Although the mean errors are similar for up to 50

clusters for both assemblies, the max errors fluctuate somewhat erratically between 0.2 -

0.4% for 20 - 50 clusters. Similarly, the mean errors for the 3.1% enriched assembly with

20 BPs and the 2x2 colorsets exhibit a consistent downward trend, while the maximum

errors separate and fluctuate wildly beyond 10 clusters for the four clustering algorithms.

Although no algorithm can be clearly chosen as a "winner," the GMM algorithm seems

to most consistently outperform the other clustering algorithms for 10 or more clusters.

Finally, it should be noted that while the mean error is generally a smooth, monoton-

ically decreasing curve, the max error exhibits sharp discontinuities with the addition of

clusters. The maximum error likely decreases in a step-like fashion when the addition of

a new cluster discriminates those fuel pins with the largest error into their own unique

cluster. Evidently, new clusters generally do not refine the MGXS for pins with the worst

errors. This is likely due to the fact that the k-means, agglomerative and GMM clustering

models optimize a global metric representing the cluster assignments of all points in

a dataset, rather than the behavior of the most poorly defined cluster in the model. A

revised clustering algorithm may be needed to achieve the maximum error reduction

with as few clusters as possible, by successively refining the samples in the most poorly

defined clusters. The BIRCH algorithm shows some promise with 10 or fewer clusters,

which may be the result of its locally optimized assignment of samples to clusters.

Only a few MGXS clusters are needed to substantially reduce the U-238 cap-

ture rate errors, with diminishing returns for the inclusion of more clusters.

None of the clustering algorithms is a clear winner, though BIRCH generally

performs the best for <10 clusters, while GMMs do better with 10+ clusters.
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Figure 11-2: The max (a) and mean (b) U-238 capture rate errors for the 1.6% enriched
assembly with iMGXS spatial homogenization.
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Figure 11-3: The max (a) and mean (b) U-238 capture rate errors for the 3.1% enriched
assembly with iMGXS spatial homogenization.
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Figure 11-4: The max (a) and mean (b) U-238 capture rate errors for the 3.1% enriched
assembly with 20 BPs with iMGXS spatial homogenization.
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Figure 11-5: The max (a) and mean (b) U-238 capture rate error for the 2x2 colorset
with iMGXS spatial homogenization.
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Figure 11-6: The max (a) and mean (b) U-238 capture rate error for the 2x2 colorset
with water reflector with iMGXS spatial homogenization.
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Figure 11-7: The max (a) and mean (b) U-238 capture rate error for the quarter core
BEAVRS model with iMGXS spatial homogenization.
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11.1.2.2 Benchmark with Null and Degenerate Schemes

The maximum and mean percent relative errors for each pin's U-238 capture rates are

listed for each benchmark in Tabs. 11.2 and 11.3, respectively, for a variable number

of clusters for each clustering algorithm. In particular, the maximum errors are the

maximum of the absolute values of the errors along with the appropriate sign, while the

mean errors are the averages of the absolute error magnitudes. The errors are tabulated

for 2 - 16 clusters, along with null homogenization (one cluster for all pin instances)

and degenerate homogenization (one cluster per pin instance).

Since the tables simply represent a subset of the data illustrated in Figs. 11-2 to 11-7,

the observations made in Sec. 11.1.2.1 remain valid here. First, the majority of the

error is reduced with only a few clusters. For example, 70 - 80% of the reduction in

the maximum error enabled with degenerate homogenization can be achieved with

only 4 clusters for the 1.6% and 3.1% enriched fuel assembly benchmarks without BPs.

Although 16 clusters (or more) are needed to reduce the error to 70% for the 3.1%

enriched assembly with 20 BPs, over 75% of the error reduction is achieved with only

4 clusters for the periodic 2x2 colorset. Likewise, the addition of a water reflector

to the colorset necessitates the use of 16 or more clusters to reduce the error by 75%

or more. In addition, the maximum errors exhibit greater variation across algorithms

than the mean errors, as was previously noted in Sec. 11.1.2.1. Finally, the BIRCH and

GMM algorithms generally achieve smaller errors than the k-means and agglomerative

clustering algorithms for a fixed number of clusters.
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Table 11.2: Maximum absolute
spatial homogenization for each

U-238 capture rate percent
clustering algorithm.

relative errors for iMGXS

Benchmark Clustering # Clusters
Algorithm Null 2 4 8 16 Degen.

Agglomerative 0.95 -0.53 -0.46 -0.44

1.6% Assm BIRCH -1.10 0.95 -0.54 -0.44 -0.44 0.38
GMM -0.84 -0.53 -0.44 -0.44

k-means -0.84 -0.53 -0.44 -0.44

Agglomerative 1.07 -0.61 -0.52 0.45

3.1% Assm BIRCH -1.26 1.07 -0.61 0.45 -0.42 -0.33
GMM -0.96 -0.61 -0.44 -0.42

k-means -0.96 -0.61 -0.52 0.45

Agglomerative -1.02 0.69 0.68 -0.50

3.1% Assm w/ BIRCH -0.95 -1.02 0.69 -0.53 -0.50 -0.30
20 BPs GMM -1.10 0.68 -0.53 -0.50

k-means -1.10 0.69 -0.69 0.34

Agglomerative -1.09 0.81 0.66 0.68

2x2 Colorset BIRCH -1.30 -1.12 0.77 0.69 0.72 -0.64
GMM -1.14 0.93 0.77 0.65

k-means -1.07 -0.92 -0.83 0.70

Agglomerative -1.76 -1.78 -1.42 -1.28
2x2 Colorset BIRCH -2.00 -1.75 -1.76 -1.37 1.10
w/ Reflector GMM -2.00 -1.77 1.50 1.07

k-means -1.82 -1.69 1.35 -1.26

Agglomerative -4.36 -3.51 -3.44 -3.43

BEAVRS Quar- BIRCH -4.78 -4.44 -3.37 -2.60 -2.27 -3.03
ter Core GMM -4.63 -3.50 -3.57 -3.88

k-means -4.38 -3.81 -3.49 -3.46
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Table 11.3: Mean absolute U-238 capture rate percent
homogenization for each clustering algorithm.

relative errors for iMGXS spatial

Benchmark Clustering # Clusters
Algorithm Null 2 4 8 16 Degen.

Agglomerative 0.35 0.14 0.11 0.08

1.6% Assm BIRCH 0.48 0.35 0.15 0.11 0.08 0.08
GMM 0.29 0.12 0.11 0.08

k-means 0.29 0.14 0.11 0.08

Agglomerative 0.39 0.16 0.12 0.08

3.1% Assm BIRCH 0.54 0.39 0.16 0.12 0.08 0.09
GMM 0.32 0.13 0.10 0.09

k-means 0.32 0.16 0.12 0.09

Agglomerative 0.27 0.19 0.17 0.11
3.1% Assm w/ BIRCH 0.41 0.27 0.19 0.12 0.11 0.09
20 BPs GMM 0.33 0.17 0.12 0.11

k-means 0.33 0.18 0.20 0.10

Agglomerative 0.34 0.21 0.16 0.14

2x2 Colorset BIRCH 0.45 0.34 0.21 0.16 0.14 0.15
GMM 0.31 0.24 0.15 0.14

k-means 0.30 0.21 0.16 0.14

Agglomerative 0.43 0.39 0.29 0.22
2x2 Colorset BIRCH 0.48 0.47 0.39 0.34 0.23 0.16
w/ Reflector GMM 0.48 0.37 0.29 0.24

k-means 0.47 0.37 0.27 0.22

Agglomerative 0.54 0.42 0.40 0.36
BEAVRS Quar- BIRCH 0.49 0.53 0.55 0.52 0.47 0.39
ter Core GMM 0.56 0.47 0.44 0.44

k-means 0.53 0.48 0.43 0.43
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11.1.2.3 Spatial Distributions of U-238 Capture Rate Errors

The spatial distributions of capture rate errors are plotted as heatmaps for the assembly

and colorset benchmarks in Figs. 11-8 to 11-12 with null, degenerate, LNS and iMGXS

homogenization with BIRCH clustering of 2, 4 and 16 clusters. The capture rate errors

for the full core are illustrated in Fig. 11-13 for null and degenerate homogenization,

and in Fig. 11-14 for iMGXS homogenization with BIRCH clustering of 4 and 16 clusters.

A couple of key conclusions can be drawn from these results. First, the results from

Sec. 11.1.2.2 indicated that the errors with iMGXS homogenization with 16 clusters

exceed those for degenerate homogenization for both the 3.1% enriched fuel assembly

with 20 BPs and the periodic 2x2 colorset. This is revealed in the Figs. 11-10 to 11-11

which illustrate a systematic bias which differs from that of the degenerate case. In

particular, the pins facially and diagonally adjacent to the central instrument tube exhibit

the smallest and largest errors in the assembly with 20 BPs, respectively. Likewise, the

pins between the two rings of BPs in the 3.1% enriched fuel assembly exhibit the largest

errors for the periodic colorset. These observations are particularly interesting since the

LNS scheme outperforms iMGXS for these benchmarks while using substantially fewer

materials (9 - 10 LNS materials as compared to 16 iMGXS materials per assembly).

Although LNS necessarily discriminates those pins adjacent to the instrument tube and

BPs into unique clusters, the iMGXS scheme only does so if the feature vectors for those

fuel pins are well-separated from those for other fuel pins in feature space.

Unlike the LNS scheme, the iMGXS scheme excels at discriminating pins along

assembly-assembly and assembly-reflector interfaces as shown in Figs. 11-11 to 11-

1287. This is most obvious for the pins along the assembly-reflector interface which

exhibit nearly the same error for both null and LNS homogenization. The iMGXS scheme

discriminates these pins into unique clusters such that little if any residual bias is observed

with 16 clusters. Indeed, the iMGXS scheme dedicates unique clusters to those pins

along the interfaces before discriminating interior pins adjacent to CRGTs and BPs into

clusters. For this reason, iMGXS may necessarily need to model more unique materials

87However, even with 16 clusters, there are some lingering residual errors for pins along the interfaces
between the bottom right assembly and its neighbors.
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than LNS to achieve the same reduction of the maximum pin-wise error.

Finally, it should be noted that the observations made here are specific to the con-

figuration of the iMGXS data processing pipeline. As noted in Sec. 10.8, the choice of

features and clustering algorithm has a large impact on the clustering model and the

resultant spatial distribution of U-238 capture rate errors. In addition, dimensionality

reduction adds another degree of freedom to the types of clustered geometries that

may be found with the iMGXS scheme. Future work should systematically examine

the spatial error distributions for different configurations of the iMGXS data processing

pipeline to quantify the ability of each to minimize the error with as few clusters as

possible.

The iMGXS scheme does a better job discriminating fuel pins along assembly-

assembly and assembly-reflector interfaces than LNS, but requires more unique

materials to achieve the same reduction in U-238 capture rate errors.
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Figure 11-8: U-238 capture percent relative errors for the 1.6% enriched assembly with
null, degenerate, LNS and iMGXS spatial homogenization.
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Figure 11-9: U-238 capture percent relative errors for the 3. 1% enriched assembly with
null, degenerate, LNS and iMGXS spatial homogenization.
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Figure 11-10: U-238 capture percent relative errors for the 3.1% enriched assembly
with 20 BPs with null, degenerate, LNS and iMGXS spatial homogenization.

369

Null



Null erateDegen-

%ususmm

I
LNS

BIRCH (4)

-1.25 -1.00 -0.75 -0.50 -0.25

BIRC 2

seg ae = map a

0 low" ae

in i M Ms M

0.00 0.25 0.50 0.75
Figure 11-11: U-238 capture percent relative errors for the 2x2 colorset with null,
degenerate, LNS and iMGXS spatial homogenization.
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Figure 11-12: U-238 capture percent relative errors for the 2x2 colorset with a water
reflector with null, degenerate, LNS and iMGXS spatial homogenization.
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Figure 11-14: U-238 capture percent relative errors for the quarter core BEAVRS model
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11.1.2.4 Spatial Distributions of Capture-to-Fission Errors

The U-238 capture rate errors for the quarter core BEAVRS model shown in Figs. 11-13

and 11-14 exhibit a tilt which peaks near the top center of the core. It is unclear why

this tilt is present in the OpenMOC solution, but it may be related to issues encountered

with the Coarse Mesh Finite Difference (CMFD) acceleration scheme in OpenMOC for

this benchmark 88 . The ratio of the energy-integrated U-238 capture rates to the total

fission rates in each fuel pin is an alternative metric to compare OpenMC and OpenMOC

solutions. The spatial distributions of the capture-to-fission ratio errors are plotted as

heatmaps for the null homogenization scheme in Fig. 11-15, and in Figs.11-16 and 11-17

for the LNS, degenerate and iMGXS spatial homogenization schemes. The capture-to-

fission ratio is a useful metric since it is insensitive to the magnitude of the flux in each

fuel pin, which is distorted by the tilt observed for BEAVRS. Instead, the capture-to-

fission ratio indicates whether the shape of the flux in energy is consistent between

OpenMC and OpenMOC in each fuel pin89 . Thus, the capture-to-fission ratio may signify

whether localized spatial self-shielding spectral effects are adequately modeled with

each pin-wise spatial homogenization scheme.

The figures clearly illustrate that the capture-to-fission ratio errors do not exhibit an

asymmetric tilt as do the U-238 capture rate errors. The figures also clearly demonstrate

that the errors are significantly reduced by modeling MGXS clustering. The errors for the

null scheme are largest for the single row of fuel pins adjacent to the baffle and peak in

magnitude at -4.5% for the four pins at the corners of the baffle (Fig. 11-15). In addition,

the null scheme leads to systematically positive errors for fuel pins adjacent to CRGTs

and along assembly-assembly interfaces. The degenerate scheme largely resolves the

systematic errors along the inter-assembly and assembly-baffle interfaces (Fig. 11-1 6b),

reducing the magnitude of the errors from -4.5% - 1.7% to -1.7% - 1.2%. The LNS

scheme also eliminates much of the systematic error distribution (Fig. 11-16a), and

88The CMFD acceleration scheme exhibited some instabilities for the BEAVRS model, and as a result, it

was necessary to use a quarter pin-wise CMFD mesh in OpenMOC (Sec. 8.3.3) in order to stabilize the

scheme. Even still, it is possible that the CMFD scheme was insufficiently converged for the BEAVRS

model, and the presence of a higher order eigenmode may have tilted the flux across the core.
89Most U-238 capture occurs in the resonance region, while most fission occurs at thermal energies.

374



the error distribution is more smoothly varying than the relatively "noisy" distribution

observed for degenerate homogenization90 . However, the fuel pins adjacent to the baffle

still have errors as large as -3.5% with the LNS scheme since it neglects to distinguish

their MGXS from those pins on the interior boundaries of each assembly. The use of

only four clusters with iMGXS largely reduces the errors for many of the interior fuel

pins, and greatly reduces the errors for the pins adjacent to the baffle, but fails to fully

distinguish the fuel pins at the corners of the baffle (Fig. 11-17a). When the iMGXS

scheme is employed with more (i.e., 20) clusters, the fuel pins along the inter-assembly

interfaces, and those pins at the corners of the baffle, are distinguished into unique

clusters, reducing the errors for all pins to within -1.2% - 1.2% (Fig. 11-17b).

90The "noisy" error distribution in Fig. 11-16b is likely due in part to the non-negligible MC statistical
uncertainties for the MGXS in each fuel pin for degenerate homogenization.
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Figure 11-16: Percent relative errors on the U-238 capture to total fission rate ratio for
the quarter core BEAVRS model with LNS (a) and degenerate (b) spatial homogenization.
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11.1.2.5 A Comparison of OpenMOC Solutions

This section directly compares the reaction rates from two different OpenMOC simula-

tions with null and iMGXS homogenization to better understand the impact of MGXS

clustering on the spatial distribution of U-238 capture rate errors. In particular, the

percent relative deviation AiMGXS of the OpenMOC U-238 capture rates for fuel pin

instance k between the null and iMGXS schemes is computed as follows:

G iMGXS G - Null

y k g Ok,g '~ ,g Ok,g

AViMGXS G - 1 Nul X 100 (11.1)

yLJ-rk~g 'fk,gJg=1 .

Unlike the U-238 capture rate error distributions, the relative deviations are not sensitive

to the statistical uncertainties of the OpenMC reference solutions. As a result, it is easier

to visualize the impact of clusters on the U-238 capture rate predictions. Figs. 11-18

to 11-22 present the percent relative deviations for the individual assembly and 2x2

colorset benchmarks for BIRCH clustering of 2, 4, 8 and 16 clusters. Likewise, Figs. 11-23

to 11-25 illustrate the deviations for the quarter core BEAVRS model with k-means,

GMM and BIRCH clustering of 4, 8, 16 and 20 clusters, respectively

The figures illustrate the hierarchical nature of MGXS clustering by discriminating

fuel pins with different spatial self-shielding effects that occur in different regimes. For

example, the first 2 clusters used for the individual assemblies distinguishes fuel pins

which are adjacent (or nearly adjacent) to CRGTs, BPs or instrument tubes from those

which are only surrounded by other fuel pins. The introduction of more clusters further

refines these clusters to identify fuel pins with neighbors which have similar spatial

self-shielding effects. For example, as the iMGXS scheme transitions between 8 - 16

clusters for the 3.1% enriched fuel assembly with 20 BPs (Fig. 11-20), the fuel pins

that are facially and diagonally adjacent to two CRGTs are separated into their own

cluster. As a result, these eight fuel pins have the largest relative deviation from null

homogenization since they experience the largest amount of moderation from the two
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CRGTs. Similarly, the first 2 - 4 clusters in the colorset with a reflector (Fig. 11-22)

discriminate pins along the assembly-assembly and assembly-reflector interfaces. As

more clusters are introduced, they are increasingly customized to model the more local

spatial self-shielding effects affecting the pins within the interior of each assembly due

to the presence of CRGTs and BPs.

The percent relative deviations between OpenMOC solutions with null and

iMGXS homogenization makes it easy to discern the hierarchical nature of

MGXS clustering and its impact on U-238 capture rate predictions.
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Figure 11-18: The percent relative deviation of
for iMGXS and null homogenization for a 1.6%
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enriched assembly.
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Figure 11-19: The percent relative deviation of
for iMGXS and null homogenization for a 3.1%

U-238 capture rate spatial distributions
enriched assembly.
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Figure 11-20: The percent relative deviation of U-238 capture rate spatial distributions
for iMGXS and null homogenization for a 3.1% enriched assembly with 20 BPs.
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Figure 11-21: The percent relative deviation of U-238 capture rate spatial distributions
for iMGXS and null homogenization for a 2x2 colorset.
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Figure 11-22: The percent relative deviation of U-238 capture rate spatial distributions
for iMGXS and null homogenization for a 2 x 2 colorset with a water reflector.
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11.2 Convergence of OpenMOC Solutions

This section demonstrates how quickly multi-group solutions converge with number of

MC particle histories simulated to generate MGXS. In particular, this section quantifies

the number of histories needed to sufficiently converge MGXS for stable OpenMOC

solutions with the null, degenerate and iMGXS spatial homogenization schemes for

each of the six benchmarks. In addition, the convergence of the OpenMOC solutions

are compared to the statistical uncertainties of the corresponding reference OpenMC

calculation. This comparison is used to quantify how much faster a solution for a

specified accuracy can be achieved with OpenMOC with MGXS generated by OpenMC.

This section uses the MC tally data generated by the same OpenMC simulations

which generated MGXS for Sec. 11.1. However, the MGXS in this section are computed

from MC tally data stored as OpenMC statepointfiles for 100 different active batches.

For the assembly and colorset benchmarks, 80% of the statepoints were recorded at a

logarithmically-spaced interval for the first 1 - 1,000 active batches (105 - 108 histories),

while the remaining 20% were recorded at a logarithmically-spaced interval for the

final 1,000 - 9,800 active batches (108 - 10 9 histories). The OpenMC statepoints for

the earliest batches contained MC tally data with the largest statistical uncertainties,

while the tallies for the latter batches had smaller statistical uncertainties. The different

statepoints enabled a thorough evaluation of the sensitivity of OpenMOC's solutions to

the statistical uncertainties of the MGXS.

The clustering models were trained with the most highly converged MC tally

data stored for the final active batch (i.e., the same data used to train the clustering

models employed in Sec. 11.1). These clustering models were then re-applied for spatial

homogenization of the lesser converged MC tally data from earlier active batches. This

methodology permitted a best case assessment of the OpenMOC accuracy one could

hope to achieve if the "best" clustering model were accessible (i.e.. the clustering model

one would find from "fully" converged MC tally data). It is important to note that

this methodology is not representative of how iMGXS would be deployed for MGXS

generation in a production setting. Nevertheless, it was a useful exercise to quantify
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an upper bound on the acceleration achievable if an optimal iMGXS configuration were

invented which could infer reliable cluster assignments from unconverged MC tally data.

The convergence rate of the eigenvalues generated with null, degenerate and iMGXS

homogenization is presented in Sec. 11.2.1. Likewise, the convergence of the U-238

capture rate relative errors is examined in Sec. 11.2.2 for each scheme. The convergence

analysis was performed for the single assembly and 2 x 2 colorset benchmarks, but was

not performed for the quarter core BEAVRS model due to computational constraints.

11.2.1 Eigenvalue Convergence

The OpenMOC eigenvalues were compared to the reference OpenMC eigenvalues from

Tab. 7.1 for each of the 100 active batches. The eigenvalue bias Ap was computed from

Eqn. 5.1 in units of pcm. The batch-by-batch bias is presented in Figs. 11-26 to 11-30

for the individual assembly and 2x2 colorset benchmarks. In particular, the bias is

presented for null, degenerate and iMGXS homogenization with BIRCH clustering of 2,

4 and 10 clusters for the assemblies and periodic colorset, and for 2, 4 and 16 clusters

for the colorset with a water reflector. The biases are highlighted for 10' - 109 active

histories for the assemblies and 106 - 109 histories for the colorsets, respectively9l.

The biases converge to nearly the same value for all of the benchmarks and spatial ho-

mogenization schemes, as expected based on the converged eigenvalue biases tabulated

in Sec. 11.1.1. This is consistent with the fact that globally-integrated reaction rates are

preserved for all schemes irregardless of the number of clusters modeled. Of particular

note is that the bias for the null and iMGXS schemes are quite consistent even with only

105 and 106 particle histories for the assembly and colorset benchmarks, respectively.

The bias for the degenerate scheme deviates by up to 100 pcm, but eventually converges

to the null and iMGXS schemes with enough particle histories. The bias fluctuates on

the order of 500 pcm with fewer than 10 7 particle histories, but converges with 108

histories for all of the benchmarks and schemes.

A number of different factors may cause the eigenvalue to fluctuate and deviate

91Several hundred thousand histories were required to sufficiently converge the MGXS for the colorsets
to compute stable solutions with OpenMOC.
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between schemes for few particle histories. First, the statistical uncertainties of the

MGXS must be minimized in order to converge the OpenMOC eigenvalues. In addition,

it should be recalled from Sec. 3.2 that the MGXS are generated from OpenMC using a

mixture of track-length and analog tally estimators. In particular, the total, fission and

capture MGXS are computed with track-length estimators, while the scattering matrices

and fission spectra are computed from analog estimators since they depend on the

neutron's outgoing energy at each interaction. Although both track-length and analog

estimators will converge to the same expected value, analog estimators will converge

more slowly. As a result, neutron balance will not be preserved for MGXS computed

from a mixture of track-length and analog estimators without a sufficient number of

simulated histories. This issue was the a key motivating factor for Nelson's Nuclear Data

PreProcessor (NDPP) [37] to enable track-length estimators for multi-group scattering

matrices and fission spectra. Methods such as NDPP may be a fruitful area of future

research to enable faster converging eigenvalues from MGXS generated with MC.

The null, degenerate and iMGXS schemes converge to the same eigenvalue

bias with 108 particle histories for the assembly and colorset benchmarks.
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Figure 11-27: Convergence of the eigenvalue bias for the 3.1% enriched assembly.
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11.2.2 U-238 Capture Rate Convergence

The OpenMOC energy-integrated pin-wise U-238 capture rates were compared to the

reference OpenMC capture rates to compute the percent relative errors for each pin's

capture rates for each of the 100 active batches. The batch-by-batch maximum and mean

relative errors are presented in Figs. 11-31 to 11-35 for the individual assembly and 2x2

colorset benchmarks. In particular, the errors are presented for null, degenerate and

iMGXS homogenization with BIRCH clustering of 2, 4 and 10 clusters for the assemblies

and periodic colorset, and for 2, 4 and 16 clusters for the colorset with a water reflector.

In addition, the maximum and mean statistical uncertainty (1-sigma) of the OpenMC

estimate for the pin-wise U-238 capture rates is also highlighted in each figure92 . The

OpenMOC errors and OpenMC uncertainties are highlighted for 105 - 109 active histories

for the assemblies and 106 - 109 histories for the colorsets, respectively91 .

A couple of key conclusions can be drawn from these results. First, the OpenMC

statistical uncertainties converge at a rate similar to the OpenMOC errors for degenerate

homogenization. The maximum OpenMC uncertainty is always less than the maximum

degenerate error. However, the mean uncertainty is greater than the mean degenerate

error for fewer than approximately 500,000,000 histories. With a sufficient number of

histories, the uncertainties fall below the errors. The OpenMC uncertainties approach

zero while the OpenMOC errors approach a non-zero bias dependent on the approx-

imation error separating the OpenMOC and reference OpenMC solutions. The final

converged errors illustrate the same behavior as discussed in Sec. 11.1.2. In particu-

lar, the converged iMGXS errors increasingly approach the degenerate errors as more

clusters are introduced. While the degenerate scheme always outperforms iMGXS, the

improvement is relatively marginal compared to the improvement that iMGXS achieves

with respect to the null scheme.

Both the maximum and mean errors for the null homogenization scheme are con-

verged with only 105 and 106 histories for the assembly and colorset benchmarks,

92Although the OpenMOC relative error and OpenMC statistical uncertainty are not equivalent, it is useful
to compare their convergence rates as a proxy for the relative runtimes of directly computing a reference
solution with OpenMC, versus using OpenMC to generate sufficiently converged MGXS for OpenMOC.
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respectively In contrast, the errors for the degenerate scheme are not fully converged

even with 10' histories. This indicates that at least some fraction of the OpenMOC

relative errors with the degenerate scheme is due to the lingering statistical uncertainties

of the MGXS. The degenerate error would only converge if more particle histories were

simulated to compute the MGXS. The convergence of the iMGXS scheme lies between

that of the null and degenerate schemes, and requires more particle histories to converge

as more clusters are identified. The convergence behavior is increasingly erratic with

more histories, as is illustrated by the maximum error of the iMGXS scheme with 16

clusters for the colorset with water reflector in Fig. 11-35a.

The figures illustrate the potential for iMGXS to achieve nearly the same accuracy

as the degenerate scheme with a factor of 10 or fewer particle histories. Furthermore,

the results indicate that OpenMOC's errors converge at least 10x faster than OpenMC's

statistical uncertainties converge to the same value.

The OpenMOC U-238 capture rate errors with null homogenization converge

with fewer than 106 histories, while the errors with degenerate homogeniza-

tion are not converged even with 109 histories. The convergence rate of the

errors decreases with the number of clusters used in iMGXS spatial homoge-

nization. The iMGXS scheme requires 10 x fewer particle histories to converge

than both the degenerate scheme and the OpenMC reference solution.
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percent relative errors for the 3.1% enriched assembly with 20 BPs.
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Figure 11-34: Convergence of the max (a) and mean (b) absolute U-238 capture rate

percent relative errors for the periodic colorset.
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11.3 Evaluation of Model Selection Techniques

This section analyzes the model selection criteria introduced in Sec. 10.6. The various

criteria are computed for the clustering models trained in Sec. 11.1.2.1. The model

selection criteria are designed to quantitatively compare clustering models, and in

particular, to help choose the optimal number of clusters. In a truly unsupervised (i.e.,

production) setting, the OpenMOC eigenvalue bias and reaction rate errors with respect

to a reference OpenMC solution would not be available to help choose the optimal

number of clusters. Instead, the "best" clustering model would be chosen strictly from

the model selection criteria.

Each criterion was computed for the clustering models built for the 1.6% enriched

fuel assembly and 2x2 colorset with water reflector. The Davies-Bouldin, Dunn and

Calinski-Harabaz indices are presented in Secs. 11.3.1 to 11.3.3, respectively The

silhouette coefficients are presented in Sec. 11.3.4. Finally, Sec. 11.3.5 highlights the

Bayesian Information Criterion (BIC) for the GMM clustering algorithm. Cross-validation

(Sec. 10.6.6) was not employed to compute the heuristics, but could be used in the

future to compute more robust estimates for each criterion.

11.3.1 Davies-Bouldin Index

The Davies-Bouldin (DB) index is the ratio of within-cluster scatter to between-cluster

separation (Sec. 10.6.1), and is presented in Fig. 11-36. In theory, the "best" clustering

model should minimize the DB index. The figures illustrate that the smallest DB indices

correspond to the clustering models with two clusters9 3. As more clusters are added

to each model, the within-cluster scatter should decrease, while the between-cluster

separation should increase. The increasing DB indices indicate that the within-cluster

scatter decreases more slowly than the between-cluster separation increases for both

benchmarks. It is unclear why the DB index behaves in this way. Furthermore, it is not

clear that the DB index would be a useful metric for determining the optimal number of

clusters since it would only choose two clusters for both benchmarks.

93The Davies-Bouldin index is undefined for a single cluster.
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Figure 11-36: Davies-Bouldin indices for the 1.6% enriched assembly (a) and 2x2
colorset with a water reflector (b) for each of the four clustering algorithms.
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11.3.2 Dunn Index

The Dunn index is the ratio of the minimum inter-cluster distance to the maximum

intra-cluster distance (Sec. 10.6.2), and is presented in Fig. 11-37. The Dunn indices are

only highlighted for 3 - 50 clusters since the index was over five orders of magnitude

larger for only two clusters, which would not be useful to plot alongside the indices for

more clusters 94 . In theory, the "best" clustering model should maximize the Dunn index.

The clustering models with only two clusters maximize the Dunn index. As more clusters

are added to each model, both the minimum inter-cluster and maximum intra-cluster

distances should decrease. The decreasing Dunn indices indicate that the minimum inter-

cluster distance decreases more slowly than the maximum intra-cluster distance for both

benchmarks. It is unclear why the Dunn index behaves in this way. Furthermore, it is not

clear that the Dunn index would be a useful metric for determining the optimal number

of clusters since it would only choose two clusters for both benchmarks. Nevertheless,

it should be recalled that the Dunn index is designed to characterize the most poorly

defined cluster(s) in the model. The Dunn index varies in a step-like fashion in the

figures, indicating that the most poorly defined cluster(s) are not typically refined with

each successive cluster added to the models.

94The Dunn index is undefined for a single cluster.
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Figure 11-37: Dunn indices for the 1.6% enriched assembly (a) and 2x2 colorset with
a water reflector (b) for each of the four clustering algorithms.
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11.3.3 Calinski-Harabaz Index

The Calinski-Harabaz (CH) index is the ratio of between-cluster and within-cluster

dispersion (Sec. 10.6.3) and is presented in Fig. 11-38. In theory, the "best" clustering

model should maximize the CH index. The figures illustrate that the largest CH indices

correspond to the clustering models with two clusters 95 . As more clusters are added to

each model, the between-cluster dispersion should increase, while the within-cluster

dispersion should decrease. The decreasing CH indices indicate that the between-cluster

dispersion increases more slowly than the within-cluster dispersion decreases for both

benchmarks. It is unclear why the CH index behaves in this way. Furthermore, it is not

clear that the CH index would be a useful metric for determining the optimal number

of clusters since it would only choose two clusters for both benchmarks. Nevertheless,

unlike the DB and Dunn indices, the CH indices exhibit smoothly varying behavior with

the number of clusters. In addition, the CH indices are very nearly the same for all

four clustering algorithms. Hence, the CH index might be useful if future work designs

features such that the index exhibited a maxima representing the optimal number of

clusters.

95The Calinski-Harabaz index is undefined for a single cluster.
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Figure 11-38: Calinski-Harabaz indices for the 1.6% enriched assembly (a) and 2 x 2
colorset with a water reflector (b) for each of the four clustering algorithms.
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11.3.4 Silhouette Coefficient

The silhouette coefficient compares the average distance between a sample and all other

samples within its assigned cluster to the average distance to samples in all other clusters

(Sec. 10.6.4). The average silhouette coefficients are presented in Fig. 11-39. In theory,

the "best" clustering model should maximize the silhouette coefficient. The figures

illustrate that the largest silhouette coefficients correspond to the clustering models with

only two clusters 96. As more clusters are added to each model, the average distance ak

between a sample k and all other samples within its assigned cluster should decrease,

while the average distance bk between the sample and the samples in other clusters

should increase. The monotonically decreasing silhouette coefficients indicate that in

general, ak decreases more quickly than bk for both benchmarks. It is unclear why the

silhouette coefficients behave in this way. Furthermore, it is not clear that the silhouette

coefficient would be a useful metric for determining the optimal number of clusters since

it would only choose two clusters for both benchmarks. Nevertheless, the silhouette

coefficient exhibits more smoothly varying behavior with the number of clusters than

the DB and Dunn indices, though it is less smooth than the CH indices. In addition, the

silhouette coefficients are very nearly the same for all four clustering algorithms. Hence,

the silhouette coefficient might be useful if future work designs features such that the

coefficient exhibited a maxima representing the optimal number of clusters.

96The silhouette coefficient is undefined for a single cluster.
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Figure 11-39: Silhouette coefficients for the 1.6% enriched assembly (a) and 2x2
colorset with a water reflector (b) for each of the four clustering algorithms.
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11.3.5 Bayesian Information Criterion

The Bayesian Information Criterion (BIC) balances a model's explanatory power, as

quantified by the maximum log-likelihood, with a regularization penalty on model

complexity. Of the four clustering algorithms considered here, only the GMM has a

closed form solution for the BIC (Sec. 10.6.5). The criteria are presented in Fig. 11-40.

In theory, the "best" clustering model should minimize the BIC. The BIC for the 1.6%

enriched assembly (Fig. 11-40a) reaches a minimum with 20 - 24 clusters before the

regularization penalty forces the BIC to increase with more clusters. Although the

BIC for the colorset (Fig. 11-40b) converges to approximately -20,000 for 30 or more

clusters, it does not start increasing even with 50 clusters. This indicates that even

with 50 clusters, the inclusion of additional clusters continues to sufficiently reduce

the maximum log-likelihood function of the GMM enough to balance the regularization

penalty associated with introducing the new mixture components. It is expected that

if enough clusters were included in the plot, the BIC would exhibit a clearly defined

minimum as the regularization penalty begins to dominate the log-likelihood.

Of the model selection metrics evaluated in this thesis, the BIC is the only one which

shows promise as a means to choose the "best" number of clusters for the iMGXS data

processing pipeline. The BIC is a smoothly varying metric for which an unsupervised

thresholding technique could potentially be applied to select the optimal number of

clusters. In particular, future work may consider choosing the optimal number of clusters

for the model with the minimum BIC. Furthermore, it is noteworthy for both benchmarks,

that the BIC achieves over 80% its minimum value with only the first 10 clusters. This

reflects the fact that only a few Gaussian mixture components are needed to model most

of the clustering behavior, with diminishing returns achieved by more complex GMMs.

An alternative approach might choose the optimal number of clusters by considering

the fractional change of the BIC with each successive clutter (i.e., choose the number

of clusters which approaches 80% of the converged minimum). In effect, this would

represent a variation of the BIC in which the regularization term is more heavily weighted

than in Eqn. 10.44 in order to preferentially select models with fewer clusters.
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Figure 11-40: Bayesian information criteria for the 1.6% enriched assembly (a) and
2 x 2 colorset with a water reflector (b) for each of the four clustering algorithms.
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11.4 Synthesis

As discussed in Chap. 1, various methods for reactor physics simulation - and in particu-

lar, pin-wise spatial homogenization - are distinguished by the tradeoffs each makes

between accuracy and speed. The iMGXS scheme was developed to directly model all

energy and spatial self-shielding effects to generate accurate MGXS for computationally

efficient deterministic transport codes. Furthermore, as described in Fig. 10-1, the

iMGXS scheme aims to make it possible to obtain accurate results from deterministic

reactor physics calculations with MGXS generated by MC faster than would be possible

from a direct calculation with MC. The following sections synthesize the performance

and accuracy of the iMGXS scheme to derive some general conclusions about its compu-

tational efficiency relative to other simulation approaches. Sec. 11.4.1 compares the time

required to converge the relative errors for the null, degenerate and iMGXS schemes,

as well as the time required to converge the statistical uncertainties for the reference

OpenMC simulations. Sec. 11.4.2 compares the traditional multi-level approach for

MGXS generation to the spatial homogenization schemes introduced in this thesis which

use the flux from the complete heterogeneous geometry for spatial homogenization.

11.4.1 A Comparison of Simulation Runtimes

This section examines the convergence rates for the U-238 capture rates presented in

Sec. 11.2 to compare the computational resource requirements for the null, degenerate,

LNS and iMGXS schemes relative to a reference MC calculation. It is challenging to

construct a general figure of merit to compare the four different simulation workflows
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may be useful model selection criteria for the iMGXS scheme.



since each one converges to a different solution. Instead, this section simply compares

the simulation runtimes required for each workflow to converge the U-238 capture rates.

In summary, the runtimes for the degenerate, LNS, iMGXS and reference MC simulation

workflows were computed as follows:

1. Count MC particle histories required to:

" To converge degenerate and iMGXS U-238 capture rate errors

o To converge OpenMC U-238 capture rate reference solution uncertainties

2. Compute MC runtime:

9 Multiply OpenMC particle tracking rate by number of histories

3. Compute total runtime:

* Add OpenMC and OpenMOC runtimes

Although the multi-step process to compute the OpenMC runtimes may seem straight-

forward, several subtle points influence the analysis at each step. First, the number of

MC histories required for convergence was based on the mean rather than the maximum

U-238 capture rate error since the mean error was shown to be more limiting for the

OpenMC reference solutions in Sec. 11.29. The first OpenMC statepoint for which

each homogenization scheme converged or stabilized was determined based on a visual

inspection of Figs. 11-31b to 11-35b, and the number of MC histories corresponding

to that statepoint was recorded as the number of histories required to converge the

error98 . The numbers of histories required to converge the statistical uncertainties for the

OpenMC reference solutions were determined from the statepoint at which the OpenMC

uncertainties and the iMGXS errors crossed for each benchmark.

Second, the particle tracking rate is the number of particle histories simulated

per second per CPU core. The tracking rate depends on the computational hardware

employed to run the simulation, as well as the runtime parameters, including the number

of histories per batch. Most importantly, the tracking rate scales with the number of

97The number of histories needed to converge the eigenvalues may be more limiting than that required to
converge the U-238 capture rate errors. However, the convergence behavior of the eigenvalues is the
result of a reaction rate imbalance due to the mixture of analog and track-length tally estimators used
to generate MGXS (Sec. 11.2.1), which may be eliminated with advanced MC tally estimators [37].

98The number of particle histories was conservatively rounded up in each case.
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tally objects in an OpenMC simulation. As shown in Tab. 11.4, the tracking rates are 3 -

4x faster when computing the reference solution than when generating MGXS 99 . The

tracking rates without MGXS are employed to compute the OpenMC runtime for the

reference solution, while the slower rates with MGXS are used to compute the OpenMC

runtimes for the null, degenerate and iMGXS workflows.

Table 11.4: The particle tracking rates for OpenMC.

Benchmark Active Histories / Core-Second
With MGXS Without MGXS 100

Assemblies 1100 3000

Colorsets 1100 3000
BEAVRS Quarter Core 600 2400

Third, the OpenMOC runtimes for the null, degenerate and iMGXS workflows were

recorded and averaged for each benchmark. This is a reasonable approximation since

the OpenMC runtimes are much larger than those for OpenMOC. Nevertheless, it should

be noted that the OpenMOC runtimes for the degenerate scheme were on average 20%

greater than those for the the null and iMGXS schemes. The cause for this slowdown is

likely due to the overhead associated with processing the large number of distinct mate-

rials to tabulate MGXS for Coarse Mesh Finite Difference (CMFD) acceleration. Finally,

this analysis neglects the time spent within the iMGXS data processing pipeline since

this was negligible (i.e., <0.1 core-hour) for all benchmarks and pipeline configurations

(e.g., clustering algorithms) that were tested.

The number of particle histories and OpenMC and OpenMOC runtimes are compiled

in Tab. 11.5 for the single assembly and 2x2 colorset benchmarks. The runtimes for

the iMGXS scheme correspond to BIRCH clustering of 10 clusters for the individual fuel

assembly and periodic 2 x 2 colorset benchmarks, and 16 clusters for the colorset with a

water reflector. As clearly observed from the data, the workflow for null homogenization

is the fastest approach if the resulting error can be tolerated. However, the iMGXS scheme

99The OpenMC reference calculation required two mesh tally objects to compute pin-wise fission and
U-238 capture rates. In contrast, 29 - 56 distinct tally objects were required to tally reaction rates and
fluxes for each nuclide, energy group and reaction type to generate MGXS for each benchmark, even
when using OpenMC's mergeable tally feature (Sec. 4.2.1.3).

0 0This corresponds to calculations which only tallied the pin-wise fission and U-238 capture rates.
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outperforms both the degenerate and reference simulation workflows with respect to

the prescribed relative errors on the mean U-238 capture rates. In particular, the iMGXS

scheme requires 5 - 30 x fewer MC particle histories relative to the reference OpenMC

calculation for each of the benchmarks. Furthermore, the total runtime for the workflow

with iMGXS homogenization is 4 - 30x faster than that for the degenerate scheme,

and 2 - 10x faster than the reference calculation. The large variation in acceleration

between the different benchmarks is largely due to the larger number of clusters required

to minimize the error for the colorset with a water reflector as compared to the other

benchmarks. In addition, the acceleration is less significant for the reflected colorset

since the iMGXS scheme only reduces the error by approximately a factor of two, as

compared to three or four for the other benchmarks. These results illustrate the potential

for the iMGXS scheme to enable deterministic transport calculations to converge to a

prescribed accuracy faster than a corresponding reference MC calculation.

11.4.2 A Comparison with a Multi-Level Approach

As a thought experiment, this section briefly considers the computational resources that

would be required if one were to apply a traditional multi-level approach to generate

MGXS with MC. It should be recalled from Sec. 2.5.2 - and specifically Fig. 2-3 - that

multi-level schemes are commonly used to model energy and spatial self-shielding effects

for increasingly complex geometric sub-components (e.g., fuel pins, assemblies, etc.).

The null, degenerate, LNS and iMGXS spatial homogenization schemes introduced in

this thesis abandon the multi-level approach, and instead use MC to model the complete

heterogeneous geometry in a single step. These schemes are more accurate since they use

the "true" MC flux to collapse the cross sections. However, this increased accuracy comes

at a cost - namely, the computational expense of modeling the complete heterogeneous

geometry with MC. This section estimates the computational expense of employing MC

to generate MGXS for the quarter core BEAVRS model with a multi-level scheme and

compares it to the single-step schemes introduced in this thesis.

A multi-level MC scheme would employ separate MC simulations of each unique
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Table 11.5: The computational resources required to converge the OpenMOC relative
error or OpenMC statistical uncertainty on the mean pin-wise U-238 capture rates.

Benchmark Workflow Mean Rel. Max Rel. Histories Runtime [core-hours]
Err. [%] Err. [%] in 1000s OpenMC OpenMOC Total

Null 0.50 -1.1 100 0.025 0.4 0.43

LNS 0.10 0.29 20,000 5.1 0.4 5.5
1.6% Assm iMGXS 0.10 -0.44 20,000 5.1 0.4 5.5

Degenerate 0.10 0.38 500,000 130 0.4 130

Reference 0.10 0.37 650,000 60 60

Null 0.50 -1.3 100 0.025 0.4 0.43

LNS 0.10 0.23 20,000 5.1 0.4 5.5
3.1% Assm iMGXS 0.10 -0.42 20,000 5.1 0.4 5.5

Degenerate 0.10 -0.33 500,000 130 0.4 130

Reference 0.10 0.26 650,000 60 60

Null 0.41 -0.95 100 0.025 0.4 0.43

3.1% Assm LNS 0.13 0.25 20,000 5.1 0.4 5.5

w/ 20 BPs iMGXS 0.13 -0.50 20,000 5.1 0.4 5.5

Degenerate 0.13 0.30 350,000 88 0.4 88

Reference 0.13 0.24 450,000 42 42

Null 0.45 -1.3 100 0.035 2.0 2.0

LNS 0.16 0.44 40,000 10 2.0 12
2x2 Colorset iMGXS 0.16 0.72 40,000 10 2.0 12

Degenerate 0.16 -0.64 1,000,000 350 2.0 350

Reference 0.16 0.45 1,000,000 93 93

Null 0.48 -2.0 100 0.035 5.0 5.0

2x2 Colorset LNS 0.25 -2.0 80,000 20 5.0 25

w/ Reflector iMGXS 0.25 1.1 80,000 20 5.0 25

Degenerate 0.25 -0.80 400,000 101 5.0 110

Reference 0.25 1.9 550,000 51 51

sub-component in the BEAVRS model. The quarter core BEAVRS model is comprised of

assemblies with three different fuel enrichments, each of which is composed of some

configuration of CRGTs and BPs. Only two MC calculations would be required to calculate

the MGXS for each enrichment with or without BPs, for a total of six single-assembly

calculations. In addition, BEAVRS is composed of 3.1% enriched fuel assemblies that are

facially adjacent to the baffle and reflector. This analysis assumes that the self-shielding

effects from the baffle/reflector can be adequately modeled with a single MC calculation

of an assembly adjacent to an assembly-equivalent area of baffle and water reflector'01.

10 1The total spatial domain size would be equivalent to two fuel assemblies.
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Finally, there are four fuel assemblies in the quarter core BEAVRS model that are corner

adjacent to the baffle/reflector. This analyis assumes that two MC calculations would be

required to account for the unique self-shielding effects on these fuel assemblies. The

first would model the three assemblies in an "L" configuration along the y = x diagonal,

along with the baffle, reflector, barrel and neutron shield pad 0 2 . The second would

model the three fuel assemblies in an "L" configuration that are offset from the y = x

diagonal, along with the baffle, reflector and barrelo3.

The computational expense for a multi-level MC scheme can be estimated by summing

the computational expense of generating MGXS for each sub-component. The results in

Tab. 11.5 indicated that approximately 20,000,000 MC particle histories were required

to converge the mean U-238 capture rate errors for iMGXS and LNS homogenization

schemes for the individual fuel assemblies. As a simple approximation, the MC particle

track density required to converge MGXS is assumed to scale linearly with the area of

each sub-component, with 20,000,000 histories required for a single assembly. The

estimated number of particle histories is then divided by the particle tracking rates in

Tab. 11.4 to estimate the runtime for each sub-component. In this analysis, the particle

tracking rate was assumed to be 1,100 histories per core-second.

The number of particle histories and runtimes for each of the assembly, colorset and

corner assembly sub-components in the quarter core BEAVRS model are estimated in

Tab. 11.6. According to this estimation approach, 420 million neutron histories would

be required to converge the MGXS for each of the 9 sub-components with an estimated

runtime of 110 core-hours. The final row of the table applies the same approach to

estimate the number of histories to converge the MGXS for a single MC simulation of

the quarter core BEAVRS geometry. In this case, there are 193/4 fuel assemblies, each of

which would require 20,000,000 histories, for a total of 970 million histories.

The estimated runtime to generate MGXS with a single MC simulation of the quarter

core BEAVRS model is only about twice that required to generate MGXS for each sub-

component. This is a relatively minor price to pay for the accuracy afforded by the MGXS

102The total spatial domain would be equivalent to 9 fuel assemblies in a 3 x 3 assembly configuration.
103The total spatial domain would be equivalent to 2 fuel assemblies in a 2 x 2 assembly configuration.
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Table 11.6: The computational expense of a multi-level MGXS generation scheme.

Component Number Histories Runtime [core-hours]

Multi-Level Approach

Assemblies 6 120,000 30
Reflected Assembly 1 40,000,000 10
Corner Assemblies 2 260,000,000 90
TOTAL 9 420,000,000 110

Single MC Calculation Approach

Quarter Core BEAVRS 1 970,000,000 250

collapsed with "true" MC flux from a single MC simulation of the complete heterogeneous

geometry. Furthermore, the MGXS generated with a single MC calculation will accurately

account for the effects of inter-assembly and and assembly-baffle/reflector interfaces

and leakage on the flux. In addition, the software infrastructure required to generate

and use MGXS for each of the sub-components in a core model would be greater than

that needed to generate MGXS from a single MC simulation of the complete geometry.

This analysis provides a rough estimate of the relative runtimes and is subject to several

key assumptions. Nevertheless, it points to the potential for advanced pin-wise spatial

homogenization schemes - such as those introduced in this thesis - to harness MC to

efficiently generate accurate MGXS for deterministic transport codes.
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* The clustering algorithm and/or the number of clusters has no systematic

impact on the eigenvalues due to the preservation of global reactivity.

* The U-238 capture rate errors are greatly reduced with only a few MGXS

clusters, with diminishing returns for additional clusters.

e The iMGXS scheme requires more clusters to achieve the same error as the

LNS scheme for all benchmarks except the colorset with a water reflector.

e iMGXS outperforms LNS for the reflected colorset since it distinguishes fuel

pins along assembly-assembly and assembly-reflector interfaces.

" Approximately 10x fewer histories are required to converge the errors for

iMGXS than for degenerate homogenization or a reference MC calculation.

" The total runtime for the entire simulation workflow with iMGXS homoge-

nization is 5 - 10x faster than that for the degenerate scheme, and 1.5 - 4x

faster than a reference MC calculation.

e The results in this chapter point to the potential for iMGXS as a means

to efficiently generate MGXS with reactor agnostic MC calculations of the

complete heterogeneous geometry in a single step.
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Conclusions
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Chapter 12

Conclusions

This research was motivated by a desire to obtain Monte Carlo (MC) quality solutions

with computationally efficient deterministic neutron transport methods. This thesis

approached this objective by employing continuous energy MC neutron transport simula-

tions to generate accurate multi-group cross sections (MGXS) for fine-mesh deterministic

transport codes. The new methods developed in this thesis were designed to accelerate

the convergence of MGXS tallied on full-core, fine-spatial meshes by leveraging the

phenomenon of pin-wise MGXS clustering. These methods reduce the computational

burden of MC-based MGXS generation techniques, positioning it as a reactor agnostic

alternative to today's deterministic methods which rely on engineering approximations.

This chapter concludes by evaluating the results presented in this thesis with respect

to this over-arching objective, and by defining a roadmap of the milestones which must

be addressed in the future to design a production-ready methodology for MC-based

reactor agnostic fine-mesh MGXS generation. The key results demonstrated by this thesis

are discussed in Sec. 12.1, the author's contributions to the field of reactor physics are

outlined in Sec. 12.2, and opportunities for future research are summarized in Sec. 12.3.

12.1 Summary of Work

This thesis replaces the traditional multi-level framework used for MGXS generation with

a single full-core MC calculation, as summarized in Sec. 12.1.1. Sec. 12.1.2 highlights
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results which quantify different sources of approximation error in multi-group methods

with MGXS generated by MC. The clustering of pin-wise MGXS due to spatial self-

shielding effects is recapped in Sec. 12.1.3. Finally, Sec. 12.1.4 reviews the performance

of new pin-wise spatial homogenization schemes which model MGXS clustering.

12.1.1 A Single-Step Approach for MGXS Generation

Today's state-of-the-art methods for MGXS generation use a multi-level approach in

space, energy and angle to account for self-shielding effects while approximating the flux

used to collapse cross sections (see Sec. 2.5.2). The flux approximations used in multi-

level schemes are based on engineering prescriptions for specific reactor configurations

and spectra and are not easily generalizable to new core designs. In addition, MC-based

MGXS generation methods to date have retained the multi-level geometric framework

to tabulate MGXS for individual reactor components for subsequent use in full-core

multi-group calculations. Although the use of MC within a multi-level scheme eliminates

the need to approximate the flux in energy, it does not account for spatial self-shielding

effects throughout a reactor core. This thesis replaces the multi-level framework with a

full-core MC calculation that simultaneously accounts for all energy and spatial effects

with a single simulation of the complete heterogeneous geometry.

This work required the development of a "simulation triad" encompassing three

primary simulation codes. The OpenMC Monte Carlo code was utilized to generate multi-

group cross sections on high-spatial-fidelity tally meshes. Second, the OpenMOC code

used MGXS for deterministic multi-group transport calculations. Finally, the OpenCG

library enabled the processing and transfer of tally data on combinatorial geometry

meshes between OpenMC and OpenMOC. The simulation triad directly modeled all

energy and spatial self-shielding effects with a single full-core OpenMC calculation of

the complete heterogeneous geometry to generate MGXS for use in OpenMOC.
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12.1.2 Approximation Error in Multi-Group Methods

This thesis investigated approximation error present in multi-group solutions even when

the "true" flux from MC is used to collapse cross sections for MGXS generation. The

case studies presented in Chap. 5 quantified the eigenvalue bias between OpenMC

and OpenMOC by separately varying the angular discretization, flat source region

discretization and energy group structure while holding all other variables constant. A

systematic bias on the order of -300 pcm was demonstrated for a representative 2D PWR

fuel pin cell with converged angular and spatial discretization schemes and 70-group

cross sections. The iso-in-lab scattering feature was employed in OpenMC to enable

direct comparisons with OpenMOC which assumes an isotropic scattering source, but

this only mitigated the bias by approximately 100 pcm. The remaining -200 pcm was

shown to be caused by over-predictions of U-238 capture rates in resonance energy

groups. As the energy group structures were refined, the errors were magnified for those

energy groups encompassing the three lowest lying U-238 capture resonances.

In collaboration with Gibson [78], the U-238 capture rate errors and resulting

eigenvalue bias were demonstrated to be the result of the flux separability approximation

(Sec. 2.3.2) which permits the use of constant-in-angle MGXS. In particular, it was shown

that the flux separability approximation is not generally valid for U-238 capture since the

angular neutron flux leaving a fuel pin is much more self-shielded in resonance groups

than it is for the neutron flux entering the fuel pin from the moderator. Since the angular

dependence of MGXS is not typically modeled in deterministic multi-group transport

codes, an equivalence scheme is needed to correct for the loss of angular information

when cross sections are collapsed with the scalar rather than the angular flux.

Chap. 6 explored the use of SuPerHomogeneisation (SPH) factors as one possible

equivalence scheme to enforce reaction rate preservation between OpenMC and Open-

MOC. The SPH factor approach uses a reference fixed source to correct the total MGXS

to preserve reaction rates between fine and coarse mesh methods. The SPH factors

systematically eliminated the few percent reaction rate errors in U-238 resonance groups,

and correspondingly reduced the eigenvalue bias from -200 pcm to approximately 10
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pcm. In particular, the SPH factors reduced the total MGXS in resonance groups by 1 -

3% to resolve errors of the same magnitude in each of the lowest lying U-238 capture

resonance groups. Notwithstanding these results, it is unclear if a generalizable scheme

based upon SPH factors may be used to correct for the flux separability approximation.

Future work should further investigate equivalence methods which adequately preserve

reaction rates in fine-mesh transport methods with MC-generated MGXS.

12.1.3 Clustering of Pin-Wise MGXS

This thesis explored the dispersion and clustering of pin-wise MGXS due to the spatial

self-shielding spectral effects in heterogeneous single assembly benchmarks, 2 x 2 assem-

bly colorsets and a quarter core model of the BEAVRS PWR geometry. The results in

Chap. 9 demonstrated that the population variance of pin-wise MGXS increases with

the introduction of geometric heterogeneities such as control rod guide tubes (CRGTs),

burnable poisons (BPs) and water reflectors. The magnitude of the dispersion depended

on the sensitivity of each nuclide, reaction type and energy group to spatial self-shielding

effects. Furthermore, the distributions of pin-wise MGXS plotted as histograms illus-

trated the clustering of MGXS in fuel pins with similar neighboring heterogeneities,

and hence similar spatially self-shielded flux spectra. Although U-235 thermal fission

MGXS exhibited more clearly defined clusters than U-238 capture MGXS, the U-238

capture MGXS varied by up to 1.8% about the population mean while U-235 fission

MGXS varied by only 1.2% about the mean. These results indicate that MGXS clustering

is more challenging to identify but more important to model for accurate U-238 capture

rates than for U-235 fission rates.

This thesis performed a series of case studies to investigate the impact of modeling

(or neglecting) the clustering of pin-wise MGXS due to spatial self-shielding effects.

The null and degenerate pin-wise spatial homogenization schemes were designed to

quantify the magnitude of the approximation error in deterministic methods that can be

resolved by accounting for MGXS clustering. Both schemes use a single MC calculation

104Although all spatial zones may experience spatial self-shielding, this thesis specifically modeled the
impact of spatial self-shielding on MGXS in fissile materials.
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of the complete heterogeneous geometry to collapse MGXS with the "true" flux. Null

homogenization simply assigns all fuel pins to the same MGXS cluster and averages

all spatial self-shielding effects across the entire geometry. The null scheme makes no

effort to account for spatial self-shielding effects experienced by different fuel pins, and

computes a single MGXS for each fuel enrichment. Degenerate spatial homogenization

takes the opposite approach and assigns each fuel pin its own MGXS, and is equivalent to

modeling each fuel pin as a unique MGXS cluster. The degenerate scheme accounts for

all spatial self-shielding effects experienced by each instance of each fuel pin throughout

a heterogeneous geometry. Although degenerate homogenization is more accurate

than null homogenization, it requires many more MC particle histories to converge the

uncertainties on the MGXS tallied separately for each fuel pin.

A series of OpenMOC simulations were performed in Chap. 8 with 70-group MGXS

libraries prepared by the null and degenerate spatial homogenization schemes for

six heterogeneous PWR benchmarks to measure the impact of MGXS clustering on

deterministic calculations. In each case, the OpenMOC eigenvalue, pin-wise fission rate

and U-238 capture rate predictions were compared with reference OpenMC results105 .

The OpenMOC eigenvalues were within 100 - 250 pcm of the reference OpenMC

eigenvalues for all six benchmarks. More importantly, the effect of MGXS clustering had

no impact on the eigenvalue predictions since null and degenerate homogenization use

the same MC flux to collapse the cross sections and therefore preserve global reaction

rates. The effects of MGXS clustering only marginally impacted the OpenMOC fission

rates errors which were <2% for all six benchmarkso6

The U-238 capture rate errors were much more sensitive to MGXS clustering than

the fission rates. The degenerate homogenization scheme reduced the errors by 2 - 4x

with respect to the null scheme for each of the single assembly and colorset benchmarks,

approaching the same error magnitude as that observed for the fission rates. The

errors for the null scheme were largest for fuel pins near control rode guide tubes and

"'sThe case studies were performed for 2-, 8- and 70-group cross sections. The results cited in this
chapter correspond to the 70-group calculations since the fine group structure was necessary to resolve
OpenMOC's U-238 capture rate predictions to within 2% of the reference OpenMC results.

1 06 The degenerate homogenization fission rate errors were 5 -20% less than those for null homogenization.
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along inter-assembly and assembly-reflector interfaces. The degenerate homogenization

scheme reduced the errors for these pins since it accounts for spatial self-shielding

spectral effects, such as the additional moderation provided by neighboring control rod

guide tubes and/or water reflectors. These results indicate that the U-238 capture rate

errors in deterministic multi-group calculations of PWRs are largely dominated by the

approximation(s) made to model pin-wise MGXS clustering.

A large fraction of the fissions that occur in LWR fuel at the end-of-life occur in the

Pu-239 that is bred from U-238 capture reactions. As a result, accurate, high-spatial-

fidelity fission rate predictions are limited by the accuracy of the U-238 capture rate

predictions in burn-up calculations. The results presented in this thesis underscore

the importance of modeling MGXS clustering in order to predict Pu-239 production

and therefore fission rates over time. This is important not only for LWRs, but also for

advanced reactor concepts that are designed to convert sizable amounts of U-238 to

Pu-239 for consumption. In general, MGXS clustering is important to model in reactors

with a complex configuration of absorbing (e.g., control) and/or moderating materials

and relatively short neutron mean free paths (i.e., thermal reactors) such that geometric

heterogeneities shield the localized flux throughout the reactor.

12.1.4 Pin-Wise Spatial Homogenization Schemes

Although the degenerate scheme greatly reduces U-238 capture rate errors by accounting

for MGXS clustering, it is computationally expensive to converge the MC tallies since the

particle track densities in each spatial tally zone is quite small. This thesis developed two

new pin-wise spatial homogenization schemes which aim to strike a balance between

accuracy and computational efficiency by accounting for MGXS clustering to accelerate

the convergence of the MGXS tallies in each fine-spatial-mesh tally zone. The two new

schemes are motivated by the idea that fuel pins with similar neighboring heterogeneities

will have similar microscopic MGXS. In particular, these schemes aim to approach the

accuracy of the degenerate scheme by accounting for spatial self-shielding effects, while

simultaneously approaching the MC convergence of the null scheme by homogenizing
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over as many spatial tally zones (i.e., fuel pins) as possible.

This thesis proposes both engineering-based clustering and statistical clustering

methods to accelerate the convergence of full-core MC calculations for MGXS generation.

Local Neighbor Symmetry (LNS) spatial homogenization (Chap. 9) is an engineering-

based approach which clusters MGXS based on a nearest neighbor analysis of the fuel

pins in a combinatorial geometry. The LNS scheme is akin to geometric templates

employed by some lattice physics codes to predict which groupings of fuel pins are

likely to experience similar spatial self-shielding effects and hence have similar MGXS.

The MGXS are homogenized from "noisy" MC tally data across all pins within the same

LNS grouping. Inferential MGXS (iMGXS) spatial homogenization (Chap. 10) uses

statistical clustering algorithms to infer MGXS clusters directly from "noisy" MC tally

data. Unlike the LNS scheme, the iMGXS has no knowledge of a reactor's geometric or

materials configuration and instead relies on unsupervised machine learning techniques

to determine which fuel pins to cluster in spatial homogenization zones. The iMGXS

scheme is a multi-stage data processing pipeline and includes feature extraction, feature

selection, dimensionality reduction, predictor training, model selection and spatial

homogenization stages. Both LNS and iMGXS homogenization schemes attempt to

model MGXS clustering with fewer materials than degenerate homogenization in order

to accelerate the MC tally convergence rate by homogenizing MGXS across many fuel

pins.

The efficacy of the LNS and iMGXS schemes to identify MGXS clusters was evaluated

for each of the six heterogeneous PWR benchmarks. The "clustered geometries" for

the LNS scheme illustrate the method's ability to distinguish fuel pins with neighboring

CRGTs and/or BPs, but its inability to distinguish fuel pins at the interfaces with neigh-

boring assemblies, reflectors or baffles. In contrast, the iMGXS scheme distinguished

pins with similar neighboring CRGTs and/or BPs, and subsequently distinguished pins

along interfaces into unique clusters. In general, the clustered geometries indicate that

iMGXS scheme can flexibly accommodate arbitrary core heterogeneities better than

heuristic approaches like LNS which must be customized for particular core geometries.

A series of OpenMOC simulations were performed with MGXS libraries prepared by
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the LNS (Chap. 9) and iMGXS (Chap. 11) spatial homogenization schemes. As expected,

the eigenvalues predicted by both schemes were nearly identical (to within 10 pcm) since

both schemes preserve global reaction rates. Although fission rates are only marginally

impacted by MGXS clustering, the predictions with the LNS and iMGXS schemes were

very nearly as accurate as those for the degenerate scheme. Most importantly, the U-238

capture rate errors approached those for the degenerate scheme to varying degrees

for both schemes. The LNS scheme performed as well the degenerate scheme for the

single assembly benchmarks, but failed to systematically reduce the largest errors in

the pins along inter-assembly and assembly-reflector interfaces. The iMGXS scheme

largely reduced the U-238 capture rate errors with just a few clusters with relatively

diminishing returns for more clusters. The iMGXS scheme required more materials

(i.e., clusters) than LNS to achieve the same accuracy for single assembly benchmarks.

However, iMGXS outperformed LNS for those benchmarks with inter-assembly and

assembly-reflector interfaces, since it assigned unique MGXS to the fuel pins along the

interfaces to account for the local spatially self-shielded flux spectra.

In addition, the simulations were performed to quantify the number of MC particle

histories required to sufficiently converge the MGXS for stable OpenMOC solutions with

each pin-wise spatial homogenization scheme. The eigenvalues for the null, degenerate,

LNS and iMGXS schemes converged to the same value with approximately 108 particle

histories. As expected, the pin-wise U-238 capture rates converged in accordance with the

number of clusters used in each pin-wise spatial homogenization scheme. In particular,

the capture rates for the null scheme quickly converged with only 106 histories, but were

still not yet fully converged for degenerate homogenization even with 109 histories. In

contrast, the LNS and iMGXS schemes converged faster than the degenerate scheme

since they averaged the MGXS tallied for the pins assigned to each cluster. Furthermore,

both schemes converged faster than the statistical uncertainties of the corresponding

reference OpenMC calculation. The magnitude of the acceleration achieved by both

schemes depends on both the number of clusters required to meet the desired level
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of accuracy, as well as the number of fuel pins assigned to each cluster 07. The mean

capture rate rate errors converged 5 - 20x faster than the degenerate scheme or the

OpenMC reference solution uncertainties for the benchmarks considered in this thesis.

These results demonstrate a path forward to generate MGXS with reactor agnostic

MC for computationally efficient deterministic transport codes. This thesis replaced

traditional multi-level MGXS generation schemes with MC calculations of the complete

heterogeneous geometry to generate reactor agnostic MGXS in a single step. Engineering-

based and statistical clustering algorithms were developed to model the clustering of

pin-wise MGXS to reduce the U-238 capture rate errors while simultaneously accelerating

the convergence of the tallied MGXS. The LNS and iMGXS schemes enabled deterministic

reactor physics simulations to produce accurate results from MGXS generated by MC

faster than would be possible with a direct calculation with MC. Furthermore, the iMGXS

scheme was shown to be advantageous over geometric heuristic approaches such as LNS

which must be highly customized for specific types of core geometries.

107The error convergence is limited by the number of pins assigned to the smallest MGXS cluster. The pins
adjacent to the baffle/reflector - which exhibited the largest U-238 capture rate errors - comprised the
smallest clusters in each benchmark and were the most limiting to the overall convergence.
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12.2 Contributions

- Generated MGXS with a single MC simulation of a complete heterogeneous

reactor geometry for use in fine-mesh deterministic transport calculations.

* Implemented a simulation triad that generated MGXS with OpenMC, used

MGXS in deterministic OpenMOC calculations, and transferred MGXS be-

tween codes and built clustered geometries with OpenCG.

- Explored SPH factors as an equivalence scheme between continuous energy

MC and multi-group MOC methods and to correct for approximation error

resulting from constant-in-angle MGXS.

* Developed pin-wise spatial homogenization schemes to model spatial self-

shielding for each fuel pin with varying degrees of granularity and complexity

while simultaneously accelerating MC tally convergence:

- Local Neighbor Symmetry (LNS) homogenization uses a nearest neighbor-

like analysis of a combinatorial geometry to predict which fuel pins will

experience similar spatial self-shielding effects.

- Inferential MGXS (iMGXS) homogenization uses unsupervised statistical

clustering algorithms to predict MGXS clustering from "noisy" MC tally

data without any knowledge of the reactor geometry.

- Quantified approximation error between reference OpenMC and deterministic

OpenMOC calculations of the eigenvalues, pin-wise fission rates and U-238

capture rates for each homogenization scheme.

e Demonstrated that LNS and iMGXS spatial homogenization schemes are

credible paths to generate very accurate MGXS and require fewer MC histories

to generate MGXS and to converge deterministic calculations to a given

accuracy than an equivalent MC calculation.
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12.3 Future Work

This thesis identified several issues which must be investigated in the future to position

single-step MC simulations as a practical alternative to traditional multi-level MGXS

generation techniques. The following sections itemize the author's assessment of the

most important outstanding issues and the order in which they should be addressed.

Sec. 12.3.1 discusses case studies which should be performed to optimize and to evaluate

the performance of the iMGXS spatial homogenization scheme. Sec. 12.3.2 highlights

several key shortcomings in the present approach to generate MGXS with MC which must

be confronted to resolve lingering sources of approximation error between continuous

energy MC and deterministic multi-group methods.

12.3.1 Further Evaluation of the iMGXS Scheme

A number of challenges must be addressed in the future in order for iMGXS to be useful

in a production code setting. Sec. 12.3.1.1 discusses the need for future studies to

determine the number of particle histories required to accurately identify MGXS clusters

from "noisy" MC tally data. Sec. 12.3.1.2 outlines the many remaining challenges

to optimize the various stages of the iMGXS data processing pipeline. Sec. 12.3.1.3

highlights issues which must be resolved to enable fast and reliable calculations with

the simulation triad of OpenMC, OpenMOC and OpenCG.

12.3.1.1 Evaluate the iMGXS Scheme with Noisy Tally Data

The case studies in Sec. 11.2 investigated the number of MC particle histories required

to sufficiently converge MGXS tallied by OpenMC for stable deterministic solutions with

OpenMOC. Each of the studies used "fully converged" MC tally data to train a clustering

model, which was then repeatedly used to cluster fuel pins for spatial homogenization

with "noisier" MC tally data. This was a useful exercise since it provided a lower bound

on how quickly MGXS would converge if a formulation of the iMGXS pipeline is devised

in the future that can accurately identify clusters from "noisy" MC tally data. However,

these results did not adequately gauge the number of MC particle histories required to
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stabilize the OpenMOC solutions with iMGXS in a production-like setting.

Future convergence studies should train clustering models with the "noisy" MC tally

data for each statepoint from an OpenMC simulation to determine how quickly the

clustering predictions converge. Based on this author's preliminary studies, a larger

fraction of fuel pins are assigned to the "wrong" MGXS clusters when the clustering

models are trained with "noisy" MC tally data. As a result, it is reasonable to expect that

the approximation error between OpenMOC and the reference OpenMC solutions will

be larger than that observed in Sec. 11.2 when relatively few particle histories are used

to generate MGXS. However, given enough particle histories, the approximation errors

should approach the converged values presented in Sec. 11.2. The results from future

convergence studies should be used to improve the estimates for the expected runtimes

for OpenMOC simulations with iMGXS in Sec. 11.4.1.

12.3.1.2 Optimize the iMGXS Data Processing Pipeline Configuration

There is a plethora of opportunities to optimize the performance of the iMGXS spatial

homogenization scheme. This thesis tested only but a few of the many different possible

machine learning algorithms that may be interchangeably used within the iMGXS data

processing pipeline. Future work should systematically evaluate various configurations of

the pipeline and score each by the number of MC histories needed to accurately identify

MGXS clusters from "noisy" MC tally data. The feature extraction stage (Sec. 10.2) may

be improved with the development of new MC tallies, or combinations of tallies, to

be used as features which may indicate the existence of MGXS clustering with fewer

particle histories than the features introduced in this thesis. New techniques should

be evaluated for the feature selection stage (Sec. 10.3) to identify those features most

useful for clustering analysis. The dimensionality reduction stage (Sec. 10.4) should

be a key focal point of future work to determine how to extract latent information

from highly correlated features and to reduce the number of features used in clustering

analysis108 . Future efforts may explore different clustering algorithms - and optimize the

'08Although the clustered geometries produced with three different dimensionality reduction techniques
are briefly compared in App. D.2, dimensionality reduction was not used by the iMGXS pipeline for the
simulation results presented in Chap. 11.
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parameters for each with cross-validation - for the predictor training stage (Sec. 10.5).

The performance of each clustering algorithm should be scored according to the number

of clusters required to reduce the U-238 capture rate errors in OpenMOC. Finally, future

work should identify one or more heuristics to reliably determine the most appropriate

number of clusters109 for the model selection stage (Sec. 10.6).

12.3.1.3 Optimize the Computational Performance of the Simulation Triad

The analysis of the quarter core BEAVRS model in Chaps. 8 to 11 was limited by some

computational bottlenecks that must be resolved to enable practical and reliable full-core

calculations with the simulation triad (Chap. 4). First and foremost, a quarter pin mesh

was required to guarantee stable solutions for the BEAVRS model with OpenMOC's

implementation of Coarse Mesh Finite Difference (CMFD) acceleration, which greatly

increased the runtime of each simulation. Future work should improve the stability of

CMFD in OpenMOC for coarser meshes (e.g., quarter assembly meshes) and optimize

the computational efficiency of the CMFD implementation overall. A linear source

approximation (instead of a flat source approximation) would greatly reduce the number

of discretized spatial zones, likewise reducing both the runtime and memory footprint for

OpenMOC simulations. Furthermore, the computational efficiency of the transport solver

in OpenMOC would be greatly improved with the use of Single Instruction, Multiple

Data (SIMD) vectorization over energy groups. In addition to improving OpenMOC's

computational efficiency, the performance of the OpenMC code may be improved in the

future. As noted in Tab. 11.4, the per-core particle tracking rates for OpenMC were 3 -

4x slower with tallies. This performance degradation may be mitigated in the future

with spatial domain decomposition [54], tally servers [53], and/or SIMD vectorization

of the tallying algorithms in OpenMC.

109None of the model selection techniques evaluated in Sec. 11.3 performed as expected except for the

Bayesian Information Criterion, which showed some promise as a means to select the number of

components for Gaussian Mixture Models.
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12.3.2 Improve Methods to Generate MGXS with MC

This thesis identified several areas which must be addressed in order to make MC-based

MGXS generation methods practical for fine-mesh transport codes. Sec. 12.3.2.1 presents

the need for new statistical estimators to improve the tally efficiency of multi-group

scattering matrices. As discussed in Sec. 12.3.2.2, new methods must be developed to

compute transport-corrected MGXS with MC which account for anisotropic scattering,

thereby eliminating the isotropic in lab scattering approximations used throughout this

thesis. Sec. 12.3.2.3 motivates the need for an equivalence method to enforce reaction

rate preservation between continuous energy MC and multi-group deterministic methods

with scalar flux-weighted MGXS. Finally, future work should consider employing MC to

generate MGXS for multi-physics applications as highlighted in Sec. 12.3.2.4.

12.3.2.1 Statistical Efficiencies of Tally Estimators

This thesis generated MGXS using a mixture of track-length and analog tally estimators

as described in Sec. 3.2.1.7. Track-length estimators were used for reaction rate and

flux tallies which depend on the incoming neutron energy (e.g., total, fission), while less

efficient analog estimators were necessary for tallies with an outgoing energy dependence,

including those used to compute multi-group scattering matrices and fission emission

spectra. Although the expectation of track-length and analog statistical estimates are

identical, the variance is typically much larger for the analog estimates for a given

number of particle histories. As a result, the MGXS tallied with a mixture of track-length

and analog estimators will not preserve neutron balance without a sufficient number of

particle histories. This was observed in Sec. 11.2.1 where the eigenvalue estimates for

different pin-wise spatial homogenization schemes only converged to the same value

after 108 particle histories were simulated. Future work may rectify this by designing a

more statistically efficient tally estimator for multi-group scattering matrices and fission

spectra. Nelson developed a theoretically rigorous methodology for this purpose in [37],

though a simple heuristic to simultaneously tally to multiple outgoing energy bins in

scattering collisions may be sufficient for hydrogenous reactor systems.
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12.3.2.2 Tally Estimators for Transport-Corrected MGXS

This thesis implemented a feature to use isotropic in lab ("iso-in-lab") scattering in

OpenMC to enable direct comparisons with OpenMOC which uses an isotropic scattering

source. Isotropic scattering is generally not a valid approximation for nuclear reactors as

is vividly evident by comparing the pin-wise fission and U-238 capture rates for BEAVRS

modeled in OpenMC with iso-in-lab scattering (Figs. 7-14 and 7-20) and anisotropic

scattering (Fig. B-1) 11 0. Future work should account for anisotropic scattering in deter-

ministic multi-group calculations with MGXS generated by MC. The most theoretically

rigorous approach would model a truncated form of the Legendre moment expansion

of the scattering kernel (Sec. 2.2.2) as is done in many deterministic transport codes

today. This approach requires the use of multi-group scattering matrix Legendre mo-

ments which may be computed using the openc . mgxs module. However, a model of the

scattering moments does increase the computational complexity for deterministic codes.

A common alternative is to use a transport correction to the total MGXS and scattering

matrix (Sec. 2.2.3). Future work may aim to develop and validate methods to model

transport corrections for MGXS generated from MC tallies. The work by Liu [25] to

tally diffusion coefficients without approximation in MC may be extended to develop

a reliable method to tally transport-corrected MGXS in MC. The development of an

improved MC-based method to tally transport-corrected MGXS may also make it possible

to maintain a high-level of accuracy with reduced energy group structures. The results

in Chaps. 8 determined that 70 groups were required to sufficiently minimize the U-238

capture rate errors. Future work should employ transport-corrected MGXS in energy

group condensation studies to determine if it is possible to maintain a high-leve of

accuracy with fewer energy groups

" 0The fission and capture rates are much more highly peaked in the assemblies near the periphery
of the core since more neutrons scatter back into the reactor from the reflector with the iso-in-lab
approximation. The reaction rate distributions are flatter when modeled with anisotropic scattering
since more neutons leak from the core.
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12.3.2.3 Equivalence Methods for Angular-Dependent MGXS

The results in Chap. 5 demonstrated how constant-in-angle MGXS leads to U-238 capture

rate errors in resonance groups, resulting in a few hundred pcm eigenvalue bias for a

simple PWR pin cell problem11 . Chap. 6 successfully used SPH factors as an equivalence

scheme to correct for the approximation error resulting from the use of the angular rather

than the scalar flux to collapse cross sections. However, the SPH factor approach suffers

from a number of shortcomings (Sec. 6.4) and it is unclear whether it may be broadly

applied to correct for the flux separability approximation in MGXS generated from MC.

In particular, the SPH factor method is complicated by the need to compute a reference

fixed source with MC for the spatial discretization mesh used in multi-group methods.

In addition, SPH factors do not simply correct for the error due to the flux separability

approximation, but instead indiscriminately correct for all sources of approximation

error between MC and multi-group methods.

As a result, new equivalence schemes should be explored in the future to specifically

correct for the flux separability approximation in arbitrarily discretized geometries. For

example, the angular dependence of the total MGXS may be adequately embedded

into the scattering kernel using the Consistent-P approximation [7] (also known as

the BHS approximation). Alternatively, a coarse set of angular-dependent MGXS may

mitigate most of the approximation error observed between continuous energy MC and

deterministic multi-group methods. For example, a simple approximation might model

two different total MGXS for neutrons entering or leaving a fuel pin. Although such a

coarse angular scheme would not capture the high degree of angular variation of MGXS,

it might capture enough to adequately reduce the integrated error1 2

1"It is also likely that the flux separability approximation was a dominant factor in the <2% pin-wise
fission and U-238 capture rate errors which remained even with the use of highly accurate degenerate
spatial homogenization (Chap. 9), though this was not definitively proven in this thesis.

112 Recent work by Gibson [78] showed that the use of finely discretized angular-dependent MGXS very
nearly eliminated the error in resonance groups resulting from the flux separability approximation.
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12.3.2.4 Multi-Physics Feedback in MGXS

This thesis performed steady-state calculations of PWR benchmarks with fresh fuel at hot

zero power conditions. Future work should build upon the progress made in this thesis

to generate MGXS with MC for multi-physics applications. Further development of the

iMGXS scheme may account for thermal-hydraulic feedback in which fuel temperature

and moderator density gradients are modeled in MC calculations for MGXS generation.

For example, MC calculations performed using Doppler broadened cross sections sampled

on-the-fly with the windowed multipole method in OpenMC [116] to generate MGXS

which accurately reflect the distribution of fuel temperatures across a reactor core. The

extensions of the iMGXS scheme would be most useful if developed in conjunction with

an extension of the simulation framework from two to three dimensions. In addition,

MC may be used to generate MGXS for deterministic codes at each burnup step in a

depletion calculation with the appropriate isotopic vectors modeled in each fuel pin.

Furthermore, future work should consider using the iMGXS scheme in calculations with

thermal-hydraulic feedback and nuclide depletion where the moderator density, fuel

temperature and burnup may be used as features to predict MGXS clustering. Indeed, it

may be valuable to expand upon this thesis' dependence on clustering algorithms and

instead use multivariate regression models (e.g., decision tree regressors) to predict

continuously varying MGXS based on features such as fuel temperature and burnup".

12.3.3 Inspiration for New Research Directions

The iMGXS scheme uses unsupervised statistical clustering methods to replace engineering-

based approximations or heuristics with data-informed decision-making to cluster MGXS

for pin-wise spatial homogenization. This thesis may inspire the future application of

machine learning to closely related issues, such as automating the selection of energy

group boundaries for MGXS generation. However, it is this author's opinion that MGXS

clustering is only one of many potential applications for which machine learning may

113 Regression models may pose a challenge since continuously varying MGXS predictions will not preserve
global reactivity, which is guaranteed by simple(r) discrete predictions from clustering models used to
compute track density-weighted average MGXS (Sec. 9.2.2) in this thesis.
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be used to improve the accuracy and speed of numerical simulations. The scientific

computing community has an increasingly vast array of machine learning algorithms

at its disposal which may be used to automate the tedious and error prone process of

parameter selection. Only the sky is the limit when it comes to harnessing the power of

machine learning in the service of advanced computational physics simulation.
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Appendix A

Energy Group Structures

The energy group structures are from the CASMO-4 lattice physics code [75]. The author

gratefully acknowledges Geoffrey Gunow for his assistance in obtaining the structures.

Table A. 1: One group energy boundaries.

Group No. Lower Bound [MeV] Upper Bound [MeV]

1 0.OOOOE+00 2.OOOOE+01

Table A.2: Two group energy boundaries.

Group No. Lower Bound [MeV] Upper Bound [MeV]

2 O.OOOOE+00 6.2500E-07
1 6.2500E-07 2.OOOOE+01

Table A.3: Four group energy boundaries.

Group No. Lower Bound [MeV] Upper Bound [MeV]

4 O.OOOOE+00 6.2500E-07
3 6.2500E-07 5.5300E-03
2 5.5300E-03 8.2100E-01
1 8.2100E-01 2.OOOOE+01
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Table A.4: Eight group energy boundaries.

Group No. Lower Bound [MeV] Upper Bound [MeV]
8 0.OOOOE+00 5.8000E-08
7 5.8000E-08 1.4000E-07
6 1.4000E-07 2.8000E-07
5 2.8000E-07 6.2500E-07
4 6.2500E-07 4.OOOOE-06
3 4.OOOOE-06 5.5300E-03
2 5.5300E-03 8.2100E-01
1 8.2100E-01 2.OOOOE+01

Table A.5: Sixteen group energy boundaries.

Lower Bound [MeV]
0.OOOOE+00
3.OOOOE-08
5.8000E-08
1.4000E-07
2.8000E-07
3.5000E-07
6.2500E-07

8.5000E-07
9.7200E-07
1.0200E-06
1.0970E-06
1.1500E-06
1.3000E-06

4.OOOOE-06
5.5300E-03
8.2100E-01

Upper Bound [MeV]
3.OOOOE-08
5.8000E-08
1.4000E-07
2.8000E-07
3.5000E-07
6.2500E-07
8.5000E-07
9.7200E-07
1.0200E-06
1.0970E-06
1.1500E-06
1.3000E-06
4.OOOOE-06
5.5300E-03
8.2100E-01

2.OOOOE+01
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Group No.
16

15

14

13

12

11
10
9
8

7
6
5
4
3

2

1



Table A.6: Twenty-five group energy boundaries.

Lower Bound [MeV]
0.OOOOE+00
3.OOOOE-08
5.8000E-08
1.4000E-07
2.8000E-07
3.5000E-07
6.2500E-07
9.7200E-07
1.0200E-06
1.0970E-06
1.1500E-06
1.8550E-06

4.OOOOE-06
9.8770E-06
1.5968E-05
1.4873E-04

5.5300E-03
9.1180E-03
1.1100E-01
5.OOOOE-01
8.2100E-01

1.3530E+00
2.2310E+00
3.6790E+00
6.0655E+00

Upper Bound [MeV]
3.0000E-08
5.8000E-08
1.4000E-07
2.8000E-07
3.5000E-07
6.2500E-07
9.7200E-07
1.0200E-06
1.0970E-06
1.1500E-06
1.8550E-06
4.0000E-06
9.8770E-06
1.5968E-05
1.4873E-04
5.5300E-03
9.1180E-03
1.1100E-01
5.0000E-01
8.2100E-01

1.3530E+00
2.2310E+00
3.6790E+00
6.0655E+00
2.0000E+01
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Group No.
25

24
23
22

21

20
19

18
17
16

15

14

13
12

11
10
9
8

7
6
5

4

3
2

1



Table A.7: Forty group energy boundaries.
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Group No.
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Lower Bound [MeV]
0.OOOOE+00

1.5000E-08
3.OOOOE-08
4.2000E-08

5.8000E-08
8.OOOOE-08
1.00OOE-07
1.4000E-07
1.8000E-07
2.2000E-07

2.8000E-07
3.5000E-07
6.2500E-07
8.5000E-07
9.5000E-07

9.7200E-07
1.0200E-06
1.0970E-06
1.1500E-06
1.3000E-06
1.5000E-06
1.8550E-06

2.1000E-06
2.6000E-06
3.3000E-06
4.OOOOE-06
9.8770E-06
1.5968E-05

2.7700E-05
4.8052E-05

1.4873E-04
5.5300E-03
9.1180E-03
1.1100E-01

5.OOOOE-01
8.2100E-01

1.3530E+00
2.2310E+00
3.6790E+00
6.0655E+00

Upper Bound [MeV]
1.5000E-08
3.OOOOE-08
4.2000E-08
5.8000E-08
8.OOOOE-08
1.OOOOE-07
1.4000E-07
1.8000E-07
2.2000E-07
2.8000E-07
3.5000E-07
6.2500E-07
8.5000E-07
9.5000E-07
9.7200E-07
1.0200E-06
1.0970E-06
1.1500E-06
1.3000E-06
1.5000E-06
1.8550E-06
2.1000E-06
2.6000E-06
3.3000E-06
4.OOOOE-06
9.8770E-06
1.5968E-05
2.7700E-05
4.8052E-05
1.4873E-04
5.5300E-03
9.1180E-03
1.1100E-01
5.OOOGE-01
8.2100E-01

1.3530E+00
2.2310E+00
3.6790E+00
6.0655E+00
2.OOOOE+01



Table A.8: Seventy group energy boundaries.
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Group No.
70
69
68

67
66
65

64
63

62

61

60
59

58

57

56

55

54

53

52

51

50
49
48

47
46
45

44
43

42

41

40
39

38

37
36

35

34

33
32

31

30
29

28

27

26

Lower Bound [MeV]
0.0000E+00
5.OOOOE-09
1.0000E-08
1.5000E-08
2.OOOOE-08
2.50OOE-08
3.OOOOE-08
3.5000E-08

4.2000E-08
5.OOOOE-08
5.8000E-08
6.7000E-08
8.OOOOE-08
1.OOOOE-07
1.4000E-07
1.8000E-07
2.2000E-07
2.50OOE-07
2.8000E-07

3.OOOOE-07
3.2000E-07

3.50OE-07
4.OOOOE-07
5.OOOOE-07
6.2500E-07
7.8000E-07
8.50OOE-07

9. 1000E-07
9.5000E-07
9.7200E-07
9.9600E-07
1.0200E-06
1.0450E-06
1.0710E-06
1.0970E-06
1.1230E-06

1.1500E-06
1.3000E-06
1.5000E-06
1.8550E-06

2. 1000E-06
2.6000E-06
3.3000E-06
4.OOOOE-06
9.8770E-06

Upper Bound [MeV]
5.0000E-09
1.0000E-08
1.5000E-08
2.0000E-08
2.5000E-08
3.0000E-08
3.5000E-08
4.2000E-08
5.0000E-08
5.8000E-08
6.7000E-08
8.0000E-08
1.0000E-07
1.4000E-07
1.8000E-07
2.2000E-07
2.5000E-07
2.8000E-07
3.0000E-07
3.2000E-07
3.5000E-07
4.0000E-07
5.0000E-07
6.2500E-07
7.8000E-07
8.5000E-07
9.1000E-07
9.5000E-07
9.7200E-07
9.9600E-07
1.0200E-06
1.0450E-06
1.0710E-06
1.0970E-06
1.1230E-06
1.1500E-06
1.3000E-06
1.5000E-06
1.8550E-06
2.1000E-06
2.6000E-06
3.3000E-06
4.0000E-06
9.8770E-06
1.5968E-05



25

24

23

22

21

20
19

18

17
16

15

14

13

12

11

10
9
8
7
6
5

4
3

2

1

1.5968E-05
2.7700E-05
4.8052E-05
7.5501E-05
1.4873E-04
3.6726E-04
9.0690E-04
1.4251E-03
2.2395E-03
3.5191E-03
5.5300E-03
9.1180E-03
1.5030E-02
2.4780E-02
4.0850E-02
6.7340E-02
1.1100E-01
1.8300E-01
3.0250E-01
5.OOOOE-01
8.2100E-01

1.3530E+00
2.2310E+00
3.6790E+00
6.0655E+00

2.7700E-05
4.8052E-05
7.5501E-05
1.4873E-04
3.6726E-04
9.0690E-04
1.4251E-03

2.2395E-03

3.5191E-03
5.5300E-03
9.1180E-03
1.5030E-02
2.4780E-02
4.0850E-02
6.7340E-02
1.1100E-01
1.8300E-01
3.0250E-01
5.OOOGE-01
8.2100E-01

1.3530E+00
2.2310E+00
3.6790E+00
6.0655E+00
2.OOOOE+01



Appendix B

Heterogeneous BEAVRS Model

Parameters

B.1 Material Isotopic Compositions

The isotopic compositions used in the PWR benchmark models in Part IV were identical

to those in the BEAVRS PWR model v1.1.1 [62] and are reproduced in the tables below.

Table B.1: Composition of air (0.000616 g/cc).

Nudlide Densi S. /bkcm-
C-12 6.7565e-09
C-13 7.3076e-11
0-16 5.2864e-06
0-17 2.0137e-09
N-14 1.9681e-05
N-15 7.1900e-08
Ar-36 7.9414e-10
Ar-38 1.4915e-10
Ar-40 2.3506e-07

447



Table B.2: Composition of borated water (0.740582 g/cc).

Nuclide Density [atom/b-cm]
H-1 4.9457e-02
H-2 7.4196e-06
B-10 8.0042e-06
B-11 3.2218e-05
0-16 2.4672e-02
0-17 9.3982e-06

Table B.3: Composition of borosilicate glass (2.260000 g/cc).

Nuclide Density [atom/b-cm]
B-10 9.6506e-04
B-11 3.9189e-03
0-16 4.6511e-02
0-17 1.7717e-05
Al-27 1.7352e-03
Si-28 1.6924e-02
Si-29 8.5977e-04
Si-30 5.6743e-04

Table B.4: Composition of 1.6% enriched U0 2 fuel (10.31341 g/cc).

Nuclide Density [atom/b-cm]
U-234 3.0131E-06
U-235 3.7503E-04
U-238 2.2625e-02
0-16 4.5895e-02
0-17 1.7482e-05

Table B.5: Composition of 3.1% enriched U0 2 fuel (10.34115 g/cc).

Nuclide Density [atom/b-cm]
U-234 5.7987e-06
U-235 7.2175e-04
U-238 2.2253e-02
0-16 4.5850e-02
0-17 1.7466e-05

Table B.6: Composition of helium (0.001598 g/cc).

Nuclide Density [atom/b-cm]
He-4 2.4044e-04
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Table B.7: Composition of SS304 stainless steel (8.03 g/cc).

Nuclide Density [atom/b-cm]
Si-28 9.5274e-04
Si-29 4.8400e-05
Si-30 3.1943e-05
Cr-50 7.6778e-04
Cr-52 1.4806e-02
Cr-53 1.6789e-03
Cr-54 4.1791e-04
Mn-55 1.7604e-03
Fe-54 3.4620e-03
Fe-56 5.4345e-02
Fe-57 1.2551e-03
Fe-58 1.6703e-04
Ni-58 5.6089e-03
Ni-60 2.1605e-03
Ni-61 9.3917e-05
Ni-62 2.9945e-04
Ni-64 7.6261e-05

Composition of zircaloy 4 (6.55 g/cc).

Nuclide Density [atom/b-cm]
0-16 3.0743e-04
0-17 1.1711e-07
Cr-50 3.2962e-06
Cr-52 6.3564e-05
Cr-53 7.2076e-06
Cr-54 1.7941e-06
Fe-54 8.6699e-06
Fe-56 1.3610e-04
Fe-57 3.1431e-06
Fe-58 4.1829e-07
Zr-90 2.1827e-02
Zr-91 4.7600e-03
Zr-92 7.2758e-03
Zr-94 7.3734e-03
Zr-96 1.1879e-03

Sn-112 4.6735e-06
Sn-114 3.1799e-06
Sn-115 1.6381e-06
Sn-116 7.0055e-05
Sn-117 3.7003e-05
Sn-118 1.1669e-04
Sn-119 4.1387e-05
Sn-120 1.5697e-04
Sn-122 2.2308e-05
Sn-124 2.7897e-05
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B.2 Geometric Configuration

The geometric pin cell parameters for the PWR benchmark models in Part IV were

identical to those in the BEAVRS PWR model v1.1.1 [62] at the core axial mid-plane.

The pin cell radii are reproduced in the table below for clarity.

Table B.9: Pin cell radii for the BEAVRS model.

Material Radius [cm]
Fuel Pin

Fuel 0.39218
Helium 0.40005
Zircaloy 0.45720

Control Rod Guide Tube
Borated Water 0.56134
Zircaloy 0.60198

Instrument Tube
Air 0.43688
Zircaloy 0.48387
Borated Water 0.56134
Zircaloy 0.60198

Burnable Poison
Air 0.21400
Stainless Steel 0.23051
Air 0.24130
Borosilicate Glass 0.42672
Air 0.43688
Stainless Steel 0.48387
Borated Water 0.56134
Zircaloy 0.60198
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B.3 BEAVRS Reaction Rates

The BEAVRS reference reaction rate distributions used in Chap. 7.1 were computed

using isotropic in lab scattering in OpenMC to enable comparisons between OpenMC

and OpenMOC. The fission and U-238 capture rate spatial distributions are highly

skewed with this approximation. In particular, the distributions are significantly more

peaked in the assemblies near the corner reflectors since the isotropic-in-lab scattering

approximation does not model the preferential streaming and leakage of neutrons

through the reflector due to anisotropic scattering in water. The "true" fission and

U-238 capture rate spatial distributions computed using normal anisotropic scattering in

OpenMC are illustrated below for comparison purpose, and as a reminder of the necessity

for accurate models of higher order scattering in high-fidelity full-core deterministic

transport calculations.
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Figure B-1: Fission rates (a) and U-238 capture rates (b) for the 2D quarter core BEAVRS
model tallied using a pin-wise mesh in OpenMC with anisotropic scattering.
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Appendix C

Quantification of Spatial Self-Shielding

Effects

This section provides figures illustrating the impacts of the infinite, null and spatial

homogenization as an addendum to Chap. 8. The percent relative fission and U-238

capture rate errors between OpenMC and OpenMOC for each homogenization scheme

and benchmark for 2, 8 and 70 energy groups are illustrated in Sec. C.1 and Sec. C.2,

respectively. Sec. C.3 illustrates the U-238 capture rate absolute errors for the 2x2

colorset with reflector and quarter core BEAVRS benchmarks.

C.e Fission Rate Relative Errors

The percent relative fission rate errors between OpenMC and OpenMOC for each ho-

mogenization scheme and benchmark for 2, 8 and 70 energy groups are shown in the

following figures. These heatmaps complement Figs. 8-4 to 8-9 by illustrating the error

distributions for solutions computed by OpenMOC with 2-group MGXS.
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Figure C-i: Fission rate percent relative errors for a 1.6% enriched assembly corre-
sponding to the reference in Fig. 7-9.
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Figure C-2: Fission rate percent relative errors for a 3.1% enriched assembly corre-

sponding to the reference in Fig. 7-10.

455

C

z



2 Groups

F+ 1M

~J

8 Groups 70 Groups

U

-' a

U
U Em

U.
~-4  A. ~IL

L IF

*

S p

-3.0 -2.4 -1.8 -1.2 -0.6 0.0 0.6 1.2 1.8

Figure C-3: Fission rate percent relative errors for a 3.1% enriched assembly with 20
BPs corresponding to the reference in Fig. 7-11.
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Figure C-5: Fission rate percent relative errors for a 2x2 colorset with a reflector
corresponding to the reference in Fig. 7-13.
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Figure C-6: Fission rate percent relative errors for the quarter core BEAVRS model
corresponding to the reference in Fig. 7-14.
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C.2 U-238 Capture Rate Relative Errors

The percent relative U-238 capture rate errors between OpenMC and OpenMOC for each

spatial homogenization scheme and benchmark for 2, 8 and 70 energy groups are shown

in the following figures. These heatmaps complement Figs. 8-10 to 8-15 by illustrating

the error distributions for solutions computed by OpenMOC with 2-group MGXS.
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Figure C-7: U-238 capture rate percent relative errors errors for a 1.6% enriched
assembly corresponding to the reference in Fig. 7-15.
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Figure C-8: U-238 capture rate percent relative errors errors for a 3.1% enriched
assembly corresponding to the reference in Fig. 7-16.
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Figure C-9: U-238 capture rate percent relative errors errors for a 3.1% enriched
assembly with 20 BPs corresponding to the reference in Fig. 7-17.
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Figure C-12: U-238 capture percent relative errors rate errors for the 2D quarter core
BEAVRS model corresponding to the reference in Fig. 7-20.
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C.3 Capture Rate Absolute Errors

The fission and U-238 reaction rates vary much more across pins for benchmarks with

leakage due to vacuum boundary conditions (BCs), such as the 2x2 colorset and quarter

core BEAVRS models. In these models, it can be useful to investigate the absolute

reaction rate error in addition to the percent relative error. The reason for this is that it

is important to reduce the error in those pins in which the reaction rates are largest and

hence the most limiting to reactor performance (i.e., the hottest fuel pins). The absolute

error spatial distributions better illustrate improved reaction rate predictions in the pins

that matter most in these benchmark models.

Figs. C-13 and C-14 show the U-238 capture rate absolute errors between OpenMC

and OpenMOC for the null and degenerate spatial homogenizations with 8 and 70

energy groups for the 2x2 colorset benchmarks. Figs. C-15 to C-17 show the U-238

capture rate absolute errors for the null, degenerate and LNS schemes for 70 energy

groups. These heatmaps complement the percent relative errors in Figs. 8-14 to 8-15.

The absolute errors are not shown for the benchmarks with all reflective BCs since they

very closely mirror the percent relative error distributions.
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Figure C-13: U-238 capture rate absolute errors for a 2x2 colorset corresponding to
the reference in Fig. 7-18.
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Figure C-14: U-238 capture rate absolute errors for a 2x2 colorset with a reflector
corresponding to the reference in Fig. 7-19.
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Figure C-15: U-238 capture rate absolute errors for the 2D quarter core BEAVRS model
with null spatial homogenization corresponding to the reference in Fig. 7-20.
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Figure C-16: U-238 capture rate absolute errors for the 2D quarter core BEAVRS model
with degenerate spatial homogenization corresponding to the reference in Fig. 7-20.
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Figure C-17: U-238 capture rate absolute errors for the 2D quarter core BEAVRS model
with LNS spatial homogenization corresponding to the reference in Fig. 7-20.
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Appendix D

Clustered Geometries with iMGXS

Spatial Homogenization

The iMGXS spatial homogenization scheme is presented in Chap. 10 and a number of

example "clustered geometries" generated with the scheme are highlighted in Sec. 10.8.

The iMGXS scheme is highly configurable, and various methods may be employed for

feature extraction, feature selection and dimensionality reduction which greatly impact

the resultant materials configuration found by a clustering algorithm. The geometries in

Sec. 10.8 were generated using the agglomerative clustering algorithm (Sec. 10.5.2)

with datasets filtered by pinch and litmus-only feature selection (Secs. 10.3.5 and 10.8).

The importance of using non-MGXS features is illustrated in Sec. D.1, while Sec. D.2

demonstrates the impact of using dimensionality reduction techniques.

D. 1 Clustering without Features

The different types of features considered in this thesis are presented in Sec. 10.2.

Since the objective of using unsupervised clustering algorithms in the iMGXS scheme

is to identify the clustering of pin-wise MGXS - and to apply this information in the

spatial homogenization process - it may be useful to consider whether the non-MGXS
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features'4 are necessary or whether the MGXS can simply be clustered by themselves.

The clustered geometries presented in Sec. 10.8 were found by clustering both MGXS

and non-MGXS features. This section illustrates the geometries that are found when

only the pin-wise MGXS means and uncertainties are selected as features by the iMGXS

data processing pipeline.

The clustered geometries for the individual fuel assembly and 2 x 2 colorset bench-

marks are shown in Figs. D-1 to D-4. Likewise, Figs. D-5 to D-6 highlight the clustered

geometries for the quarter core BEAVRS model. Similar to the analysis in Sec. 10.8, the

agglomerative clustering algorithm (Sec. 10.5.2) is employed with the same 2-group

MC tally datasets used in Sec. 10.8. Both pinch and litmus-only feature selection tech-

niques were used to select the "best" reaction type for each pair of nuclides and energy

groups, for each nuclide in the fuel and both energy groups. No dimensionality reduction

techniques (Sec. 10.4) were applied to the selected features.

The most important insight that can be drawn from the figures is that the clustering

models are much "noisier" than those found when the non-MGXS features are considered

in Sec. 10.8. This illustrates the importance of using some features which may better

reveal the effects of clustering in MC tally data due to spatial self-shielding effects

than the pin-wise MGXS themselves. In addition, some of the non-MGXS features are

energy-integrated and/or summed across nuclides (e.g., fractional reactivities) and will

necessarily have smaller statistical uncertainties than microscopic MGXS115.

" 4The fractional reactivities (Sec. 10.2.2), spectral indices (Sec. 10.2.3) and reaction fractions (Sec. 10.2.4)
are examples of non-MGXS features.

"sAlthough this is true in general, it should not make a difference here since the MC tally data used in

this analysis was very highly converged.
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Figure D-1: Materials for the 1.6% enriched fuel assembly with iMGXS homogenization
without non-MGXS features. The materials for 2, 4, and 8 clusters are illustrated in (a),
(c) and (e) for pinch feature selection, and in (b), (d) and (f) for litmus-only feature
selection, respectively
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Figure D-2: Materials for the 3.1% enriched fuel assembly with 20 BPs with iMGXS
homogenization without non-MGXS features. The materials for 2, 4, and 8 clusters are
illustrated in (a), (c) and (e) for pinch feature selection, and in (b), (d) and (f) for
litmus-only feature selection, respectively.
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Figure D-3: Materials for the 2 x 2 colorset with iMGXS homogenization without non-
MGXS features. The materials for 2, 4, and 8 clusters are illustrated in (a), (c) and
(e) for pinch feature selection, and in (b), (d) and (f) for litmus-only feature selection,
respectively
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Figure D-4: Materials for the 2 x 2 colorset with water reflector with iMGXS homogeniza-
tion without non-MGXS features. The materials for 2, 4, and 8 clusters are illustrated
in (a), (c) and (e) for pinch feature selection, and in (b), (d) and (f) for litmus-only
feature selection, respectively
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D.2 Clustering With Dimensionality Reduction

A variety of dimensionality reduction techniques such as Principal Component Analysis

(PCA, Sec. 10.4.1), Independent Component Analysis (ICA, Sec. 10.4.1) and Factor Analy-

sis (FA, Sec. 10.4.3) may be used by the iMGXS data processing pipeline. Dimensionality

reduction extracts information from features into a low-dimensional vector space to

reduce data storage and predictor training time, and to control model complexity. The

clustered geometries presented in Sec. 10.8 were found by clustering features which

were not subjected to dimensionality reduction. This section illustrates the geometries

that are found when PCA, ICA or FA are employed.

The clustered geometries for the individual fuel assembly and 2x2 colorset bench-

marks are shown in Figs. D-7 to D-10. Similar to the analysis in Sec. 10.8, the agglomer-

ative clustering algorithm (Sec. 10.5.2) is applied to find four clusters from the same

2-group MC tally datasets used in Sec. 10.8. The litmus-only feature selection technique

was used to select the "best" reaction type for each pair of nuclides and energy groups,

for each nuclide in the fuel and both energy groups. In each case, PCA, ICA and FA are

considered along with the base case of no dimensionality reduction. The PCA, ICA and

FA methods were each used to identify two new features as linear combinations of the

original features. The two new features were then used in place of the original features

in the predictor training phase of the iMGXS data processing pipeline.

The most important insight that can be drawn from the figures is that dimensionality

reduction techniques have a dramatic impact on the resultant cluster models. It is beyond

the scope of this thesis to determine the fundamental reason(s) why each dimensionality

reduction technique leads to unique cluster models. Nevertheless, it is clear that each

technique's construction of a linear basis set to optimize different metrics (i.e., sample

variance and mutual independence for PCA and ICA, respectively) separates the samples

in highly distinct structures from those observed in the original feature space. Although

this thesis does not further consider the impact of dimensionality reduction on the

efficacy of the iMGXS scheme, it is the author's opinion that it may be especially helpful

to cluster "noisy" MGXS data, and may be a promising avenue for future research.
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Figure D-7: Materials for the 1.6% enriched fuel assembly with iMGXS homogenization.
The materials without dimensionality reduction (a) are compared to those identified
when PCA (b), ICA (c) and factor analyis (d) are applied, respectively
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Figure D-8: Materials for the 3.1% enriched fuel assembly with 20 BPs with iMGXS
homogenization. The materials without dimensionality reduction (a) are compared to
those identified when PCA (b), ICA (c) and factor analyis (d) are applied, respectively.
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Figure D-9: Materials for the 2x2 colorset with iMGXS homogenization. The materials
without dimensionality reduction (a) are compared to those identified when PCA (b),
ICA (c) and factor analyis (d) are applied, respectively
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(d)
Figure D-10: Materials for the 2x2 colorset with a water reflector with iMGXS homog-
enization. The materials without dimensionality reduction (a) are compared to those
identified when PCA (b), ICA (c) and factor analyis (d) are applied, respectively.
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