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Abstract

In this thesis, I analyzed, modelled, and optimized two different techniques of the
long jump: the hitchkick and hang. Using video data, I made a dynamic model
of both techniques, then created a cost function that took torques and angles into
consideration to simulate physical limitations. Using a function minimizing optimizer,
trajectories were simulated over a range of torque limits and angle penalties. Over
the course of 292 simulations, we found that the hitchkick technique improved jump
distances more than the hang technique, improving by up to 34.65% with an average
of 7.7% while the hang technique increased jump distance by a maximum of 30.21%,
with an average of -15.89%.

Thesis Supervisor: Sangbae Kim
Title: Associate Professor
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Chapter 1

Introduction

Studying biomechanics of humans and other organisms has been of interest especially

for dynamic models and robots. Understanding the dynamics of everyday motion

has helped inform models and more accurately establish control systems for robots.

The development of legged robots in the past decades have dramatically increased

research in this area.

Current quadruped and bipedal robots are limited to basic locomotion: walking

and running. However, humans and quadrupeds are capable of much more, such as

jumping, and these motions generally follow a pattern. In the case of human jumping

for distance, the technique to maximize distance travelled has been well practiced and

perfected by athletes. As one of the original Olympic events, the long jump event has

been a competition for centuries. However, there are several techniques jumpers use

in the air to extend their jump, of which two are consistently used by elite jumpers.

In this thesis, we investigate the dynamics of two different long jump techniques

and compare their effectiveness and ability to improve. The hitchkick technique

features the athlete running through the air, while the hang technique has minimal

leg movement. The two techniques are completely opposite in what the athletes do,

but neither has been proven to have an advantage over the other.
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Chapter 2

Background

2.1 Long Jump

As with most track and field events, the long jump is straightforward in its goal to

jump the farthest. However, there are many techniques and nuances that go into

the multiple phases, with several different methods for each. The long jump can be

split up into four phases: run up, takeoff, flight, and landing. Each presents different

motions, and dynamically, different conditions for the optimal jump.

The approach focuses on increasing momentum and maximizing height, which

is relatively straightforward. There are three main objectives: a large horizontal

velocity, a large decrease in center of gravity near the end of the approach, and

accuracy in the length of the run-up. There is a linear relationship between horizontal

velocity and distance of the jump, because in flight, momentum defines how quickly

through the air the athlete travels. Since running speed and lowering the center of

gravity (done in the penultimate step) are relatively easy to master, most jumpers

actually spend time on being consistent with their approach length [4].

Take-off, on the other hand, presents many complications along the entire body;

anything from the placement of the arms to the ground reaction forces can make a

significant difference in the jump. Being in contact with the ground presents the chal-

lenge of external forces, as athletes try to push off the ground as forcefully as possible

to increase vertical velocity. Different models, such as a 17-link model including the
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main muscles have been used to simulate the internal torques and motion of the body

at take-off [3]. Other studies have focused more specifically on the ground reaction

forces related to takeoff. Reaction forces rapidly change over the course of the plant,

where jumpers step forcefully on the jump board. Overall, the greater the force, the

farther the jump [11].

In flight, the center of mass of the jumper flies like a mass in projectile motion.

However, jumpers still have angular momentum about the center of mass. To increase

jump distance, athletes contort themselves such that their legs are as far out and

horizontal as possible to prepare for landing. To do so, jumpers either eliminate this

rotation outright, and hang (appropriately called the hang technique) or run in the

air, called a hitchkick [4]. There has been little proof on a definitive best technique,

but there is one conventional landing position that has been proven to increase jump

distances. This landing position has the torso leaned forward reaching for their toes,

as horizontal as possible. Momentum of the body slides the rest of the body to the

point where the feet made contact with the ground, so even though most of the body

is behind the point of ground contact initially, distance is still maximized as the body

reaches zero velocity [5].

2.2 Biomimetics and Human Motion

Studying locomotion of legged organisms has been of interest to scientists in under-

standing the dynamics. This has been helpful in computer modelling and simulation,

and in a physical application mimicking the movement of organisms helps dictate

the movement of mechanisms. Legged robots also have an advantage over wheeled

vehicles on uneven terrain, including stairs [10]. Quadrupeds have been the most

developed of legged robots, given their higher stability by quantity of limbs and thus

decreased need for high-speed feedback. The study of quadruped locomotion dates

back to 1878, when Eadweard Muybridge first took a succession of a galloping horse.

Since then, successful quadruped robots include Boston Dynamics Big Dog and the

MIT Biomimetics Labs Cheetah.
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III.V.

Figure 2-1: Schematic of the long jump phases. Phase I represents the approach,
where the jumper runs down the runway to gain momentum. The step before hitting

the board is dedicated to lowering the center of gravity to increase the impact of the

next step. Phase II is the takeoff phase; jumpers stomp the ground as hard as possible

to increase impact an upward velocity. Phase III is the flight phase, where the jumper

sails through the air and contorts themselves to prepare for landing. Finally, Phase

IV is the landing phase, where jumpers try to maximize their distance by stretching

their legs out.

Human motion has also been extensively studied. However, bipedal motion presents

a more difficult challenge: there are higher degrees of freedom, and especially in the

case of contact with the ground, more nonlinear dynamics are present. Bipedal motion

has been mainly centered around walking, but given the multiple phases of walking,

quantifying the gait is complicated. In walking, there is a step off (one-legged), impact

(heel strike) and double support (both legs). Each case presents different conditions

based on reaction force and center of gravity, which in turn effects the stability of the

system [10].

Models have been developed for cases where there is no ground contact. In these

cases, the center of mass will follow a parabolic curve (with gravity), and angular mo-

mentum is conserved [1]. In zero gravity cases, external limbs are used by astronauts

to help reposition the body as needed. By producing pitch and yaw, the body can

self-rotate. This is also easily applied to non-living bodies, such as satellites, where

repositioning is crucial to functionality [9].

With gravity, there exist models for somersaults and backflips, both of which are

limited to short time frames before the person reaches the ground again. However,
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this is more applicable especially when building a robot modelled after a human in

the sagittal plane, and has successfully been modelled and created on a smaller scale

[7].

Free space dynamics have also been of interest in cats with their re-positioning

method, which always results in landing feet-first regardless of the direction they were

dropped in. By simplifying the cat into a two-linked mass, the motion of the cats was

quantified dynamically after they were dropped upside-down [8]. Similarly, models

of humans have been done on three and four-linked models, decomposing the human

body into sections of legs, torso, and arms. This serves as a sufficient simplification

of human complexity for dynamic modelling, especially in free space, where there is

no contact with the environment [6].
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Chapter 3

Experimental Design

3.1 Model of the Body

Several studies on human motion have simplified the complexity of the human body

to linked masses. For a planar body in the sagittal plane, this usually combines

the torso with the head, the upper arms and the forearms, and the foot with the

leg. These, combined with the thigh, create a four-linked system that can be used

to model dynamics. Some models consider the arms as negligible, consolidating the

arms to the torso and using to a three-link model. In the case of long jump, the arms

play a significant role, increasing jumps by an average of 21.2% in a standing long

jump [2]. Thus, a four-link model was used for this model.

Links 1, 2, 3, and 4 correspond to the leg, thigh, torso, and arms, respectively. The

general coordinates for the system are for the center of mass (xg, yg), ankle position

(XO, yo), and angles at the ankle, knee, hip, and shoulder (01, 02, 03, 04, respectively).

01 corresponded to the ankle angle with respect to the environment, whereas 02, 03,

and 04 are in the body frame (in relation to the surrounding links to the joint). It is

assumed that the torques act at these joints, which are -1, T2, - 3 , and T4, respectively.

In flight, we assume T to be zero since the body is not in contact with the envi-

ronment. Derivations of values for mass fractions, center of mass location per link,

and moment of inertia from Table 3.1 are calculated using anthropomorphic data and

explained in detail in Appendix A.
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Figure 3-1: Body modeled after four links. Each link represents the leg, thigh,
torso, and arm. The point [x0 , Yo] corresponds to the ankle location, and (xg, yg)
represents the location of the overall center of mass.

3.2 Mathematical Model

Using Lagrange equations of motion, the generalized coordinates used are qg =

[xg, yg, 0]T, with 6 = [61, 62, 63, 6 4]T. Given the lack of contact with external forces

such as the ground in the flight phase, the dynamics for the body at this point is

simply

Jg(qg) 4g + Hg(qg, j4) + Gg(qg) = u (3.1)

where u represents the force vector corresponding to the torques on the joints.

U = [Fx, F,, 71, 72, 73, T4] (3.2)
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Table 3.1: Physical properties of links. Mass, length, center of mass (proximal)
and moment of inertia used for data modelled after Tianna Bartolletta, female long
jump gold medalist in the 2016 Olympics. Derivations for each part are in Appendix
A.

Link Mass (kg), Length Distance to Moment of Iner-
m (m), 1 COM (m), l tial (kg/m2), I

Link 1 (Leg) 7.4707 0.4132 0.1628 0.4187
Link 2 (Thigh) 12.2470 0.3892 0.2206 0.1935
Link 3 (Torso) 35.3938 0.7778 0.2644 7.8925
Link 4 (Shoulder) 6.1235 0.6878 0.3645 1.2060

The matrices for Jg, the inertial matrix, Hg, the non-linear term, and Gg, the gravi-

tational matrix, are detailed in Appendix B [7].

3.3 Video Analyis

Videos of Olympic jumpers from Rio 2016 were analyzed with Tracker, an open

source video analysis tool. Locations of the ankle, knee, hip, shoulder, head, elbow,

and hand were taken over the course of the flight phase and set to an origin point that

was present in the entirety of the analyzed phase as the origin. For these particular

videos, the four-meter mark was set as the origin and then compensated for later

during the data analysis in MATLAB. Points were chosen by inspection or found

using a pattern-matching search in Tracker, which took color patterns and matched

them to the next frame to find where the object moved. Because of the limited size of

the frame, data analysis usually started a couple frames after the athlete had taken

off and went until contact with the ground was made. From there, the data points

were exported to MATLAB for further analysis.

Given the angle the cameras used for the videos were at, scales from the environ-

ment were taken in the horizontal direction. Any vertical landmarks on the ground

would have been highly skewed, but assuming the cameras were very far away from

the jump pit, it can be estimated that horizontal landmarks are unskewed and can

be treated as such. However, the slight skew in camera angle actually changed the

21



2o 0. 4 0.7

Figure 3-2: Tracker interface and data collection. Origin was placed at the 4m
mark and skewed as necessary.

dynamics because of the scaled vertical image. Because the vertical scale was slightly

smaller than that of the horizontal, this resulted in an unknown upward force after

calculating torques from the data. This was resolved by multiplying the vertical coor-

dinate by the tangent of the angle of the camera to unskew the vertical compression.

3.4 Computer Model

In the model, we are looking for the greatest distance travelled by the jumper. To

replicate the dynamics of the jumper, location data from Tracker was taken into

MATLAB then normalized to compensate for the origin offset. These were then

converted to the generalized coordinates q9 and solved for torques. For each jumper,
there were 3-4 different jumps from which data was extracted from to compare to.

From these sets of data, functions were fitted to the Os over time using MATLAB fit

function. The angle data fit 3 rd to 7 th order polynomials as described in Table 3.2. The

r vectors were obtained by using the 9 fit, q9 , and solving the dynamics equations

described above. This output r was used as the seed value in the optimization, a

baseline for the general torques experienced in our model derived from data.

The model was able to reasonably replicate the trajectory of the jumper after

deriving torques and using them to re-calculate the trajectory. There were some
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Angle Polynomial Fit R-squared
Hitchkick 01 5th degree 0.9279

02 5th degree 0.6093
03 3rd degree 0.9207
04 3rd degree 0.6098

Hang 01 4th degree 0.9314
02 7 n degree 0.8340
03 5th degree 0.9526
04 4th degree 0.9517

Table 3.2: Angle function fits and R-squared values for the hitchkick and
hang technique. Hitchkick technique data was taken from Tianna Bartoletta, and
hang technique data from Brittney Reese.

discrepancies, however, as seen in Figure 3-3. This may be due to the fact that

not every jump by that particular athlete is identical, so in averaging the general

trajectory and motion of the athlete, some detail may have been lost. And although

there are many studies on the biomechanics of the human body in the area of centers

of mass and mass, different people have different distributions of weight throughout

the body, which may also contribute to inaccuracies in the model.

3 -

2.5 - A

1.5 -
b4J

0.5 -

0 J
-1 0 1 2 3 4 5 6 7

distance (m)

Figure 3-3: Data-fitted trajectory vs. torque-derived trajectory. The red
represents the data fit, and the blue represents the torque-derived trajectory. As seen
here, there is some discrepancy between the data and derived trajectory. The derived
trajectory was created by fitting the angles from the data, calculating torques, then
inverse-calculating the angles back again.
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In the interest of also comparing different jumping techniques, this analysis of

angles and torques was done on two different jumpers with different techniques. Two

different jumpers, Tianna Bartoletta and Brittney Reese, were analyzed from 2016

Olympic footage. Both received a gold and silver medal in the long jump that year,

and Bartoletta utilized the hitchkick technique while Reese uses the hang method.

Thus, both styles were modeled then run through the optimizer and compared.

3.5 Optimization

Optimization was done with MATLAB function fmincon. This function works by

taking the minimum of a defined cost function, fc:

minfcQf, qo) (3.3)

S.t. = [Tankle,1, Tankle,1 , Tknee,1, Thip,1 , Tshoulder,1, Tankle,2, -- Tshoulder,end] (3.4)

Tminankle < Tankle,i Tmax,ankle (3.5)

Tminknee < Tknee,i Tmax,knee (3.6)

Tmin,hip Thip,i Tmax,hip (3-7)

Tmin,shoulder Tshoulderi < Imax,shoulder (3.8)

where - are the input torques and qgo is the initial q-vector which contains the

coordinates of the center of mass and angles of links at a given time. The cost function

also takes angles and torques into account. If an angle on a specific link cannot exist

on a human body, the optimizer penalizes unfavorable results so they are less likely

to occur. Torques were either penalized in the same way as unfavorable angles or set

as hard limits.

The cost function was given torques in two different ways. The first method

involved fitting the seed torque data in polynomial fits and optimizing the coefficients

of the variables of those functions. Optimizing the coefficients of the torque functions

proved to limit improvements, since it constrained the torque functions to a specific
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Video Analysis

4

0
I..

Io

Dynamic Model

KI ..Y

17", yJ - - -

CHOOSE COST FUNCTION PARAMETERS

Torque Extraction Torque Extraction

Output 'ajectory output T-J :to

4 4
Compare Trajectory

I -

S... ....... ... ..... ... .......

Figure 3-4: Flow chart of simulation process. A dynamic model was built,
then data from video were used to give sample torques in the case of long jump
flight. Trajectories were then calculated from these torques, and using a cost function
minimizer the trajectory was optimized. The optimization step itself took fine-tuning
to ensure a feasible and ideal solution. Results for the same limit and penalties were
also the same.
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shape which may not have necessarily been the most effective trajectory. Thus, a

torque tape was used. Torque tapes are a "tape" of the torque function over a relevant

amount of time. This increases flexibility by enabling the shape of the torque outputs

to not be constrained to a specific function type.

Different penalties resulted in different results, and even between using a torque

tape versus a torque function there was variation in the distance jumped. Limits

were placed on a range of torques, and penalties on angles of certain limbs. 01 and 94,

corresponding to the ankle and the shoulder, did not have limits set because the ankle

angle (01) is in reference to the environment (body can freely spin if necessary) and

the arm (94) can swing around fully because of the ball-joint nature of the shoulder.

On the other hand, 02 and 93, corresponding to the knee and hip, respectively, were

constrained. The ability to bend in the wrong direction is a strong indication that a

limb is going through the torso or the leg is broken.

Penalties acted in the form of multipliers in the cost function or set as hard limits.

The difference of the angle limit and the actual angle was taken, squared, then added

over the course of the entire simulation to calculate the base of the angle penalty.

This was then multiplied by the angle penalty multiplier (pa), then added to the cost

function output in an attempt to minimize the function:

cost = -distance + Pa (>0 - 9(i)) 2  (3.9)
i=1

Given that the original model after being fit to the data still gave some impossible

angles and incredibly high torques, the cost ranged from heavy penalties to seemingly

trivial ones. When optimizing torques as coefficients of a function, the trajectories

came out relatively stable and feasible. However, using a torque tape resulted in some

very unstable trajectories; the body would flip around, and when angle penalties were

added the jumps were shorter by almost a meter.

Additionally, different techniques resulted in different optimization issues and re-

sults. The hang technique was simpler to model, since the limbs of the athlete were

relatively motionless, but the optimizer still had lots of issues preventing the body
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from twisting wildly. On the other hand, the hitchkick is very active in nature as the

jumper runs in the air. This method was more difficult to model, but the simulation

was easier to control.

3.5.1 Optimization Parameters

The torque-tape model, given greater flexibility and speed, was ultimately chosen to

optimize the jump. Adding torque penalties made the simulation in the coefficient

model stall as the function minimizer struggled to find smaller values given the non-

linear nature of the dynamics. Additionally, changes in the coefficients were still

constrained to that particular torque function shape. However, in using the torque-

tape, the minimizer had to be contained such that overly large torques and angles

would not occur.

The simulation was run over a range of torques limits and angle penalties in an

attempt to identify a trend for an optimal and feasible range to optimize around.

Torques were limited from +2000Nm down to just t5Nm and angles were penalized

with a multiplier of 1E-6 all the way up to 1E8. Between the hitchkick and hang

technique, the simulation and optimizer was run a total of 292 times.

An analysis of 181 hitchkick simulations showed the greatest distances were gen-

erally towards the smaller torque limits, but not always. The higher torque ranges

resulted in either very large distances or ones smaller than initial condition due to

the size of the torque limits. Because of this wild variation, torques within [-500, 500]

consistently improved the jump as opposed to making it worse. This also coincides

with humanly-possible torques of around 200Nm [12].

Plotting the penalties and limits over the distance jumped resulted in many

straight lines, as seen in Figures 3-6 and 3-7. This is due to the fact that after

a certain point, increasing penalties to discourage certain behavior eventually over-

shadows the distance metric, and the optimizer would create very similar trajectories

with similar distances. Thus, the best place to take optimization parameters is at the

peak right before the plateau.

Limiting the torques also prevented the model from erratic behavior, resulting in
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Figure 3-5: Optimization of torque functions compared to that of torque
tapes. These simulations were done with no torque limits or penalties and an angle
penalty of 1E-3. Clearly, torque tapes give more freedom to the model, and generally

travel greater distances. Red represents the initial trajectory, orange the data-fit
with functions, and blue the optimized trajectory. (a) Torque-function optimization

method, with a final distance of 6.2908m. (b) Torque-tape optimization, with a final
distance of 7.5881m.
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a smoother trajectory because the bodies were limited in speed given low torques.

Additionally, the smoother trajectory looked more similar to what is already done in

long jump because of the prevention of full body flips and segment spinning.
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Figure 3-8: Hitchkick optimization results from angle penalties of a 1E-5
multiplier. Orange timelapse represents the inital seed trajectory, blue represents
the optimized timelapse; the black dot is the initial landing point, and the red dot is
the optimizaed one. (a) Trajectory of a torque limit of [-10, 10] Nm. (b) Trajectory
of a torque limit of [-1000, 1000]. These parameters resulted in the largest increase of
distance given non-zero.limits and penalties, with a 21.71% increase for 1ONm limit
and 24.51% increase for the 100ONm torque limit. However, it is clear that the smaller
torque range is more feasible because of the slower motion: jumpers are in the air for
less than a second, so wild spins would not be humanly possible.
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Chapter 4

Results

Comparing the two types of jumps, the hitchkick technique resulted in higher dis-

tances. Although initial modelling of the hang technique appeared to be simpler,

the hang technique became more warped than the hitchkick technique in simulations.

Optimization parameters resulted in different outcomes depending on the technique,

so the best hitchkick parameters were not the highest performing ones for the hang

technique.

The hang technique averaged lower distance increases of -15.86% but still consis-

tently increased distances by over 10% otherwise and is capable of increasing up to

20% with limits and penalties. Trajectories coming from the hang technique were

incredibly warped and impossible for a human to perform them as seen in Figure 4-2.

This may be due to the stationary nature of the technique, causing the ability for

flexibility in torque tapes to twist the bodies.

In the hitchkick technique, however, distances were able to increase by over 30%

given unbounded limits (no torque limits nor angle penalties) and otherwise consis-

tently over 15% improvement. It also averaged an increase of 7.7%. The smoother,

more reasonable trajectories, such as the one seen in Figure 4-1, normally did not go

as far as more physically impossible simulations, but seem feasible while still being

an improvement in distance.
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Figure 4-1: Physically feasible result of an optimized hitchkick jump. An
optimized jump, landing on the foot, of a hitchkick-seeded jump with a distance of
7.13m given torque limits of [-10, 10]Nm and an angle penalty multiplier of 1. The

orange time-lapse represents the initial seed trajectory, blue represents the optimized
time-lapse; the black dot is the initial landing point, and the red dot is the optimized
one. (a) Original trajectory taken from averaging four data sets. Black represents the
centers of mass. (b) Angle fits of the four joints, over 4 data sets. (c) Torque output

of optimized trajectory. Torques max out at lONm, since the limits were set as such.

(d) Optimized trajectory, one of the smoothest and most feasible results.
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Figure 4-2: Hitchkick optimization compared to hang optimization. Both
trajectories had torque limits of [-10, 10]Nm and angle penalties of 1E4. Orange

timelapse represents the initial seed trajectory, blue represents the optimized time-

lapse; the black dot is the initial landing point, and the red dot is the optimized one.

The hitchkick model and optimizer worked much better across most of the penalties

and limits set, with an average of 7.7% increase, whereas the hang technique averaged

a 15.89% decrease over the same range of limitations. Clearly, the hang technique

optimizer creates physically impossible plots.
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Figure 4-3: Histogram of hitchkick and hang results. Results of the simulations
run based on torque limits ranging from [-5, 5] to [-2000, 2000] and angle multipli-
ers ranging from 1E-6 to 1E8. For the hitchkick seed, n=181, and for the hang,
n=111. Despite having a larger range, the hitchkick optimizer performed better over-
all compared to the hang optimizer, averaging a 7.7% increase compared to a 15.89%
decrease.
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Chapter 5

Conclusions and Future Work

Although the hang technique is simpler and theoretically easier to simulate, its sim-

plicity may have caused the resulting trajectories to contort to an extreme extent.

On the other hand, the hitchkick technique was capable of optimizing to smooth

trajectories given tight torque limits, ani consistently improved distances by over

20%.

Optimization clearly proved to be tricky, given the non-linear nature of the dy-

namics. This was evident in the initial spread of the testing parameters, where there

was no clear minimum and likely many local minima in the cost function. In addition

to reconsidering and optimizing the parameters themselves, further work could be

done in categorizing the best parameters for different techniques, and not just for an

individual.

One major flaw in the model is that it calculates the distance travelled based on

the first point of contact with the ground. This disregards the rest of the body, and

in the case of nearly-horizontal landing, another part of the body will likely touch the

ground closer to the board, shortening the distance measured. Future simulations

could consider the entire landing by adding a reaction force once the body breaks

the ground plane, forcing the body to slide horizontally. Additionally, the distance

measured could be that of the last body segment to pass through the ground plane.

This would assume a lack of friction in the horizontal direction when the jumper lands

in the sand, which may be a non-negligible factor in the methods used today.
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Given some of these humanly impossible trajectories, a robot could be designed

to meet that criteria and execute the optimized jumps without a problem. By elim-

inating the limitations of the human body, this model could be applied to machines

to enhance performance. Although bipedal robots are hardly past the stage of simple

locomotion, enabling such machines to do as much and more than a human opens the

door to a more functional machine that may actually make an impact on society.
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Appendix A

Anthropomorphic Data for the

Human Body

To find the center of mass, the mass was multiplied by the COM fraction from Table

A.1. For the center of mass of an entire system of n links,

x = -_ T" ixes

with M being the total mass, m the mass of the specific link, and x, the COM

distance for that link.

Moment of inertia was also calculated:

I =x

with Xr representing the radius of gyration of the link. [12]

Segment Weight/ COM/Segment Radius of Gyration
Segment Total Body Weight Length (Proximal) (Proximal)
Head & Neck 0.081 1.000 0.116
Upper Arm 0.028 0.436 0.542
Forearm & Hand 0.022 0.682 0.827
Trunk 0.497 0.500 -
Thigh 0.100 0.433 0.540
Foot & Leg 0.061 0.606 0.735
Total Arm 0.500 0.530 0.645
Trunk, Head, & Neck 0.578 0.660 0.830

Table A.1: Anthropomorphic Data.
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Appendix B

Dynamics of a four-link

unconstrained uystem

The flight phase dynamics, taken from Hyon, et al, were derived for a four-linked

robot [7]. Assuming the kinetic energy of the four-linked system is K = _ T J(q)4,

this can be converted to qg as follows:

1 1 =1.
K = IT Jq2 = qgR()q = 1q J9,(0)qg (B.1)

Converting the center of mass position to the ankle position can be done by

multiplying [x0 , Yo] by the rotation matrix:

Xg Xol

Yg Yoj

1 b i ci + b 2 c 1 2 + b3 c 1 2 3 + b4 c1 2 3 4

bis1 + b 2 s 1 2 + b3s 1 2 3 + b4 s1 2 3 4

M = MI + m 2 + m 3 + m 4

bi = -milci - (M 2 + M3 + n4 )li

b2 = -- n2lc2 (M 3 + mT4 )12
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b3 = -m3lc3 - m 413

b4 = -m4lc4

s 12 - sin(01 + 02 + )

c12 - =cos (01 + 62 + )

The inertial matrix, Jg, is as follows:

M 0 0 0 0 0

0 M 0 0 0 0

Jg (0) 0 0 Jg33 Jg34 Jg35  Jg36

0 0 J34 Jg44 Jg45 Jg46

0 0 Jg35 J45 Jg55 Jg56

0 0 J936 Jg46 Jg56 Jg66

J933= 2(k5c2 + k6c3 + k7c4 + k8c2 3 + kqc 3 4 + kioc234 + kus2 + k12 s 2 3 + k13s 2 34 ) +

+ k2 + k3 +k 4 ,

J934 = k 5c2 + 2k6c 3 + 2k7c4 + k8c23 + 2k9c 34 + kiOc 234 + kus 2 + k12 S2 3 + k13 s 234 +

+ k2 + k3 ,

J935= k6c3 + 2k7 c4 + k8c 23 + k9 c34 + kjoc234 + k1 2s 23 + k1 3s 234 + k 4 + k 3 ,

J936= k7 c4 + k9c 34 + kjoc 234 + k13 s 234 + k 4 ,

J44 = 2k6c 3 + 2k7c 4 + 2k9c 34 + k2 + k3 + k4 ,

J945 = k6c3 + 2k7 c4 + k9c 34 + k3 + k4 ,

J946 = k7 c4 + k9c 34 + k4 ,

J955 = 2k7c4 + k3 + k4 ,

J956 = k7 c4 + k4 ,

Jg66 = k4,
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with

ki = (Mallb )/M,

k2 = (Ma22 b2)/M,

k3 = (Ma33 b2)/M,

k4 = (Ma44b4)/M,

k5 = (b 5b2 )/M,

k6 = (Ma14 b2 b3)/M,

k7 = (Ma23 b4 b3)/M,

k8 = (b 5b 3)/M,

k9 = (Ma4sb2 b4)/M,

kjo = (b5b4 )/M,

ki = (Ma25 + bib2 )/M,

k12 = (Ma3 4 + bib 3)/M,

k13= (Ma35 + bb4 )/M,

a14 = (m3lc3 + m 413)12 ,

a2 3  m41c413,

a2 5  (m2c2 + m 31 2 + m 41 2) 11,

a3 4 - (m3lc3 + m 4 13) 11,

a3 5  M41,411,

allI1 + m1 Cl, + (M 2 + M 3 + iM 4) 1 ,

a22 = 12 + M2 c2 + (M 3 + in4 ) l2,

a33 = 13 + M 3 .3 + M 4l3,

a 4 4 = 14 + m 4 l 4 ,

a 45 = m4lc4l2-

Lengths 1 and l represent length of respective link and distance from rotation to

the center of mass for each link, respectively, which can be found in Table 3.1.

Using Lagrange's equations of motion, where the only source of potential energy

is from gravity,
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d (OK)

where G9 is the gravitational vector,

Gg (q)

with

d (OK
dt (q' ad j

OK
-q+,u

1 =

0

Mg

0

0

0

0

,(qg)ijg + dJg (qg)dg

and

Hg(qg, 4?,) J - OKdtJg( Oqci

resulting in:

Jg(qg) 4g + Hg(qg, 4g) + G(qg) = u

(B.2)

(B.3)

(B.4)

(B.5)
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