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ABSTRACT.  7 

We propose a methodology for conducting robust comparative life cycle assessments (LCA) by 8 

leveraging uncertainty. The method evaluates a broad range of the possible scenario space in a 9 

probabilistic fashion while simultaneously considering uncertainty in input data. The method is intended 10 

to ascertain which scenarios have a definitive environmentally preferable choice among the alternatives 11 

being compared and the significance of the differences given uncertainty in the parameters, which 12 

parameters have the most influence on this difference, and how we can identify the resolvable scenarios 13 

(where one alternative in the comparison has a clearly lower environmental impact). This is accomplished 14 

via an aggregated probabilistic scenario-aware analysis, followed by an assessment of which scenarios 15 

have resolvable alternatives. Decision-tree partitioning algorithms are used to isolate meaningful scenario 16 

groups. In instances where the alternatives cannot be resolved for scenarios of interest, influential 17 

parameters are identified using sensitivity analysis. If those parameters can be refined, the process can be 18 

iterated using the refined parameters. We also present definitions of uncertainty quantities that have not 19 

been applied in the field of LCA and approaches for characterizing uncertainty in those quantities. We 20 

then demonstrate the methodology through a case study of pavements. 21 
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INTRODUCTION 24 

As the application of life cycle assessment (LCA) expands, the importance of achieving meaningful and 25 

robust comparisons of the environmental performance of alternatives has increased. Indeed, the stakes are 26 

high for firms selling products and executing processes under consideration in LCAs. For instance, a 27 

European Union biofuels policy requires biofuels producers to demonstrate that the life cycle greenhouse 28 

gas emissions of a fuel are 35% below the baseline footprint of a fossil-derived fuel (this will increase to 29 

50% in 2017 and starting in 2018 new installations will be subject to a 60% reduction).1  30 

LCAs have often included the comparison of products or processes because relative impacts bring 31 

meaning to what is otherwise an abstract concept (e.g., mass of carbon dioxide in the air or disability 32 

adjusted life years). Practitioners have long understood the importance of standards to enable meaningful 33 

comparison including the broad ISO 14040/14044 standards2 and product-focused standards such as the 34 

Publicly Available Specification (PAS) 2050 from the British Standards Institute,3 the Product Life Cycle 35 

Accounting and Reporting Standard from the Greenhouse Gas (GHG) Protocol,4 and the ISO 14067 36 

standard.5 However, to date, there is limited attention paid in the standards on how to investigate and 37 

comment on the significance of the difference between products’ environmental impacts.  38 

Analyzing uncertainty in LCA calculations is one way to evaluate the significance of calculated 39 

differences and this is recognized in the ISO 14044 standard: “An analysis of results for sensitivity and 40 

uncertainty shall be conducted for studies intended to be used in comparative assertions intended to be 41 

disclosed to the public.”2 While this statement is important, there is no guidance in the ISO 14044 standard 42 
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on how to conduct uncertainty analyses to support assertions of the difference of impact between products. 43 

Indeed, there have been calls for such guidance in standards from the literature6 and encouragingly the 44 

PAS 2050 and the Product Life Cycle Accounting and Reporting Standard from the GHG Protocol each 45 

have sections discussing uncertainty. However, the guidance is limited in that the focus is solely on 46 

qualitative characterizations of data quality and quantitative calculations of uncertainty in input data (often 47 

referred to as parameter uncertainty).  48 

We note four challenges that are endemic to the assessment of uncertainty in comparative LCA and 49 

which deserve further guidance. The first challenge is that LCA uncertainty does not solely derive from 50 

conventional sources of data variation; instead it derives from the choices available for the framing of an 51 

LCA and the unique characteristics of individual decision-makers. Collectively these are often referred to 52 

as scenario uncertainty. Second, at present, there is little published guidance on how to combine analyses 53 

of scenario uncertainty with more conventional parameter uncertainty, particularly within comparative 54 

assessments. Third, while parameter and scenario uncertainty are typically analyzed together, their 55 

implications must be assessed distinctly. When scenario uncertainty is analyzed in a manner like 56 

conventional empirical parameters, information about the decision can be lost and the robustness of a 57 

given comparison becomes more ambiguous.  Because the scenario/uncertainty space is large, analytical 58 

methods are important to efficiently synthesize the implications of scenarios. Finally, we note that life 59 

cycle (LC) data, especially data on uncertainty and variation, are costly to collect. Methods to assess 60 

comparative performance should accommodate efforts to reduce this cost through informed triage. 61 

Given these challenges, we build upon previous work reported in the literature to address aspects of the 62 

gap in current LCA literature and practice by describing (and executing) a methodology for conducting 63 

comparative LCAs that 1) improves the definition and characterization of uncertain quantities in LCAs 64 

analyzed in both parameter and scenario analysis, 2) evaluates a broad range of the possible scenario space 65 

while simultaneously considering uncertainty in input data, and 3) efficiently synthesizes the implications 66 

of those results across the scenario space through the use of a categorization and regression tree analysis. 67 

The objective is to comment on the robustness of an assertion of difference among multiple products or 68 
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processes. In particular, we ascertain 1) which scenarios have a statistically definitive environmentally 69 

preferable choice, 2) which parameters have the most influence on this difference, and 3) how we can 70 

identify the resolvable scenarios. 71 

Our work represents a methodological contribution for uncertainty analyses in comparative LCAs and 72 

highlights the importance of analyzing scenario-related uncertainties in a proper manner.  Specifically, 73 

we demonstrate that results are obscured when these scenario-related uncertainties are evaluated in a 74 

strictly probabilistic fashion. We use a case study of pavements throughout the document to illustrate 75 

concepts and demonstrate the methodology. Details on the models and data used in the case study are 76 

presented first, followed by definitions of quantities used in LCAs and approaches for characterizing 77 

uncertainty in those quantities. The comparative assessment methodology is then described and 78 

demonstrated using the pavements case study. 79 

PAVEMENT LIFE CYCLE ASSESSMENT MODELS AND DATA 80 

We consider two alternative pavements for an urban interstate highway in Missouri in a comparative 81 

LCA. The two alternatives are a hot-mix asphalt concrete (AC) pavement, representing a flexible 82 

pavement, and a jointed plain portland cement concrete (PCC) pavement, representing a rigid pavement. 83 

More technical details about the designs specifications are presented in Section 3 of the supporting 84 

information (SI).  85 

Pavement LCAs usually comprise five phases: material extraction, construction of the pavement, use 86 

phase, maintenance and rehabilitation, and end-of-life.7, 8 Figure S1 in the SI depicts the five phases and 87 

the major subcomponents associated with these phases. A detailed description of the life cycle model is 88 

presented in Noshadravan, et al 9; here we focus on defining the terms and concepts that are of particular 89 

importance to the comparative assessment: analysis period, design life, and particularly the elements that 90 

contribute to the use phase of the pavement.  91 

The first noteworthy elements in pavement LCA are the analysis period and design life of the pavement. 92 

The analysis period is the time boundary of the study and the design life is the life time of the pavement. 93 

The design life defines how frequently maintenance will be considered within the analysis period for the 94 
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LCA. Details on the models used in the use phase portion of the LCA are provided in Section S4 of the 95 

SI, but key elements are summarized here. The use phase could be significant in a comparative life cycle 96 

assessment, especially for high-volume roads, due to the effect of pavement-vehicle interaction (PVI).9, 97 

10 Two major sources of PVI include fuel losses due to changes in roughness and fuel losses due to 98 

deflection of pavements. The LCA model applied in this study accounts for both roughness and deflection 99 

components. The deflection losses are calculated based on the model developed by Akbarian et al.10 100 

Roughness is characterized by the international roughness index (IRI). The prediction of roughness over 101 

time is extracted from output of a pavement design software tool (Pavement-ME), which implements the 102 

calculations specified by the industry design guide. There is an underlying probabilistic model associated 103 

with the prediction of roughness over time using this model. Although the pavement is designed for a 104 

prescribed level of reliability, the uncertainty in the roughness evolution over time can be significant. We 105 

account for this uncertainty in our LCA and propagate it into the estimation of roughness-induced 106 

emissions in pavement LCA.11, 12 The progressive change in the roughness over time relative to its value 107 

at initial construction is calculated and translated to the excess fuel consumption (i.e., fuel consumption 108 

due to pavement roughness beyond the fuel required to move the vehicle) using the empirical model 109 

presented by Zaabar and Chatti.13  110 

Other parameters related to the use phase burden include the fuel economy and traffic growth of both 111 

cars and trucks on pavement, the albedo and carbonation resulting from the pavement material, and the 112 

lighting used to illuminate the pavement. Further details on the data sources for the remainder of the life 113 

cycle inventory are included in the Section S5 of the SI.   114 

We use global warming potential (GWP) as the impact assessment metric in this case study and 115 

calculate it based on the guidelines put forward by the Intergovernmental Panel on Climate Change.14 It 116 

should be emphasized that GWP is only one of many measures of environmental burden and a complete 117 

LCA would calculate multiple measures. Furthermore, our analysis focuses on uncertainty in life cycle 118 

inventory parameters and thus, we do not include uncertainty in the GWP factors, as has been done 119 

elsewhere.15  120 
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DEFINITIONS OF QUANTITIES IN LIFE CYCLE ASSESSMENTS 121 

There is an extensive literature characterizing sources and types of uncertainty in life cycle assessment 122 

and methods for analyzing the impact of uncertainty on life cycle impact assessment. Huijbregts16 123 

conducted early work on the topic of uncertainty in LCA and since then Lloyd and Ries17 and Williams 124 

et al.18 have published thorough summaries of previous work in the field and a recent contribution also 125 

provides a review of LCA uncertainty methods.15 (We refer readers to the latter three references for a 126 

comprehensive literature review on uncertainty in LCA.) Major life cycle inventories including 127 

developers of ecoinvent19 and the United States Life Cycle Inventory Database20 have built upon and 128 

refined the frameworks outlined in the literature. 129 

The literature and footprinting standards have coalesced around the terminology for types of uncertainty 130 

in LCA proposed by Hujbregts16 and summarized in Lloyd and Ries17 for both life cycle inventories (LCI) 131 

and life cycle impact assessment (LCIA) methods: parameter, scenario, and model uncertainty (parameter 132 

and scenario uncertainty were defined in the introduction; model uncertainty refers to uncertainty in the 133 

mathematical relationships used to develop LCIs and LCIAs).  134 

Although the delineation of the three types of uncertainty appears straightforward, in practice 135 

differentiating the three types in an analysis can prove difficult because there is overlap among them. For 136 

example, parameters may be used in scenarios or choices may be made in models. de Koning et al.21 have 137 

noted that these three types of uncertainty manifest themselves by contributing to the uncertainty of the 138 

final result of an aggregated cradle-to-gate LCA. They correctly point out that all forms of uncertainty are 139 

expressed as uncertainty in a parameter value, even though it is actually an aggregate of parameter, model, 140 

and scenario uncertainty. This overlap can make it challenging for practitioners to characterize uncertainty 141 

and select appropriate uncertainty analysis methods. 142 

We attempt to clarify this matter by describing how literature in the field of risk and policy analysis has 143 

defined uncertainty for different types of quantities that are also used in LCAs. Morgan and Henrion22 144 

define eight types of quantities related to uncertainty and we will discuss the five quantities that are of 145 

most importance for uncertainty analysis in LCA. These five quantities are summarized in Table S1 of 146 
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the SI and described here. Each analysis is framed by decision variables (subjectively selected by the 147 

analyst to frame the decision – a way to answer the question, “what is the best outcome?”, or more 148 

specifically, “which product has the lowest environmental impact?”) and outcome criterion (the metric 149 

from the life cycle impact assessment method used to measure the desirability of possible outcomes). 150 

Empirical parameters represent properties that are measurable, at least in principle, because they can be 151 

said to have a true value (such as electricity consumption by a laptop or particulate emissions from a 152 

diesel engine). By contrast, model domain parameters define the scope of the system being analyzed (e.g., 153 

temporal or geographic boundaries) and there is no true value. Rather, there is an appropriate value that 154 

is selected by the analyst (the interpretation of appropriateness may vary depending on the analyst). 155 

Similarly, value parameters represent aspects of the preferences of the analyst or decision-maker and an 156 

appropriate value is selected by the analyst. Examples include the discount rate applied in cost analyses 157 

(there is no true value), or the allocation method used for the life cycle burden of materials depending on 158 

end-of-life assumptions (such as 50/50 or cut-off methods). 159 

All of the parameters used in the pavement LCA, their quantity type, and their associated uncertainty 160 

are included in Section S6 of the SI; a sampling is included in Table 1Error! Reference source not 161 

found.. It is worth noting that nearly all of the model inputs are empirical quantities, with the exception 162 

of five model domain parameters and two value parameters. Uncertainty characterization for the 163 

parameters will be discussed in the following section.  164 
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Table 1.  A sample of the parameters used in pavement LCA model parametric analysis and their associated uncertainty values (see 165 
Section S6 of SI for a comprehensive list, including data sources for baseline and standard deviation values).  M&R = maintenance 166 
and rehabilitation; SD = standard deviation. Scope refers to whether or not the phenomenon is included in the analysis. 167 

Model input Quantity Type Mean SD Distribution 

Scope: Albedo  Model domain  - - Binary 

Scope: Deflection Model domain - - Binary 

Scope: Roughness  Model domain - - Binary 

Analysis period Model domain - - uniform discrete 

Design life  Model domain - - uniform discrete 

Salvage life allocation  Value  - - Binary 

M&R strategy    Value  - - Binary 

Roughness evolution Empirical  - - uniform discrete 

Traffic growth factor  Empirical  0.030 0.003 lognormal 

Fuel efficiency-cars (mpg) Empirical 23.70 2.152 lognormal 

Fuel efficiency increase (%) Empirical 0.005 0.0006 lognormal 

Fuel loss prediction due to   

roughness, car (gal/in-mile) 

Empirical 0.00017 0.00002 lognormal 

Albedo: coefficient-Asphalt Empirical 0.125 0.011 lognormal 

Albedo: coefficient-Concrete  Empirical 0.325 0.030 lognormal 

PCC thickness (in) Empirical 8.000 0.154 lognormal 

Cement content (lb/yd3) Empirical 564.0 10.830 lognormal 

AC thickness, layer 1 (in) Empirical 2.000 0.038 lognormal 

Binder percentage (%) Empirical 0.087 0.002 lognormal 

impact factor: cement impact  Empirical 1.00 0.230 lognormal 

impact factor: kg of bitumen  Empirical 0.403 0.075 lognormal 

 168 

UNCERTAINTY CHARACTERIZATION FOR PARAMETERS 169 

Morgan and Henrion22 argue that empirical quantities are the only types of quantities whose uncertainty 170 

may be represented by a weighted probability distribution because they have a true value. Thus, their 171 

implication may be evaluated using probabilistic methodologies, such as a Monte Carlo analysis. 172 

Conversely, Morgan and Henrion contend that model domain and value parameters should not be treated 173 

probabilistically because there are no true values and, hence, the frequency of values cannot be 174 

meaningfully defined within the context of the decision. Consequently, they argue it would be 175 

inappropriate to represent uncertainty for these parameters with a subjective weighting or probability, 176 

although it is technically feasible and certainly has been done.21, 23 When the influence of these is 177 

convolved through weighting, important information about their impact is masked and lost.  178 
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We agree with this philosophy but depart from it in part of our approach simply to avoid unnecessary 179 

computation, but adhere to it otherwise. Specifically, we formulate model domain and value parameters 180 

probabilistically only to test for the extreme case of a wholly dominating alternative, and in the context 181 

of a sensitivity analysis to characterize their overall influence on model results. Furthermore, even in such 182 

a context they should be defined as a range of continuous or discrete values with equal likelihood (i.e., an 183 

unweighted or uniform distribution). This enables one to analyze a wide range of systematically or 184 

randomly-generated combinations of model domain and value parameters (each combination of these 185 

framing parameters is a scenario) without specifying that one scenario is more likely than another. 186 

Empirical parameters are generally uncertain in nature. For those parameters for which there is no clear 187 

representative value and/or distribution, a rough distribution should be defined using any number of 188 

methods (e.g., the ecoinvent pedigree matrix19 or underspecification24). In such cases, the analyst should 189 

err toward overestimating uncertainty and if these parameters are identified as influential, using a range 190 

of values. Value and model domain parameters should be characterized using a broad range of discrete or 191 

continuous values with equal likelihood (i.e., unweighted or uniform distribution). (A “broad” range 192 

clearly cannot be defined precisely, but in general one should err on the side of being conservative in this 193 

first step.) 194 

A final complicating factor in characterizing uncertainty in parameters used in LCA, particularly 195 

empirical quantities with probabilistic distributions, is that multiple sources of uncertainty are addressed 196 

in different ways. Section S1 of the SI details our framework for types, sources, and methods for 197 

characterizing uncertainty in parameters, which builds upon the work of others. Section S2 provides 198 

details about how uncertainty characterizations for multiple uncertainty types can be combined into one 199 

probability distribution for a parameter, using the ecoinvent pedigree matrix methodology.  200 

The uncertainty distributions and values for a selection of the parameters in the pavement LCA are 201 

included in Table 1 the complete list is in Section S6 of the SI. All empirical quantities have lognormal 202 

distributions, whereas model domain and value parameters have either binary or uniform discrete 203 

distributions, depending on the parameter type. Lognormal distributions were selected because a) all of 204 
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the parameters were exclusively positive, b) it is a commonly used distribution throughout the LCA 205 

literature, and c) it is conveniently compatible with pedigree based approaches to estimate uncertainty. 206 

To maintain consistency, we use lognormal distributions even for values that are percentages because the 207 

mean and standard deviation values are significantly smaller than one, so the likelihood of sampling 208 

values close to one is essentially zero.  209 

The approach outlined in Sections S1 and S2 of the SI was used to calculate standard deviations for the 210 

parameters in Table 1 (and Section S6 of the SI), including using the ecoinvent pedigree matrix to estimate 211 

quantities due to several types of uncertainty. Furthermore, all parameters are uncorrelated for calculations 212 

of one alternative, but common parameters in the comparative assessment of two alternatives are 213 

correlated across the two alternatives.  214 

METHODOLOGY FOR EVALUATING UNCERTAINTY IN COMPARATIVE LIFE CYCLE 215 

ASSESSMENTS 216 

Some studies exploring the incorporation of uncertainty in comparative life cycle assessments have 217 

focused on evaluating the impact of parameter uncertainty on outcomes.25, 26  Methods typically involve 218 

evaluating the ratios of or differences between the impacts of products being compared. These metrics are 219 

usually referred to as comparison indicators and guidance to this effect is given in product carbon footprint 220 

standards.4 In most LCAs, alternatives should be compared assuming some amount of correlation in input 221 

parameters across the alternatives. This means that meaningful tests of significance should accommodate 222 

that correlation. When Monte Carlo methods are used, statistical characteristics of a comparison indicator 223 

are usually the simplest option which meets this criterion.  224 

While comparison indicator approaches and careful treatment of correlation are critical for the accurate 225 

evaluation of parameter uncertainty, they are only applicable for a given scenario. Comparative 226 

performance of alternatives should be evaluated through a probabilistic analysis which also attempts to 227 

explore the scenario space (i.e., all possible combinations of model domain and value parameters) 228 

comprehensively. 229 
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More expansive comparative LCAs that include both parameter and scenario uncertainty have been 230 

conducted by a few researchers, including Huijbregts et al.,23 de Koning et al.,21 Mattila et al.,27 and 231 

Gregory et al.28 Huijbregts et al. combined parameter, scenario, and model uncertainty in a single 232 

probabilistic assessment.23 Notably, in doing so they characterized uncertainty in choices (i.e., model 233 

domain and value parameters) using weighted probability functions. Similarly, de Koning et al. explored 234 

parameter, scenario, and model uncertainty by using subjective probabilities for scenarios that reflect the 235 

preferences of a decision-maker.21 Weighting of this form raises some abstract conceptual concerns, but 236 

more importantly also a real practical concern – convolving scenario outcomes through weighting 237 

potentially masks distinct outcomes among the different scenarios. For example, under scenario one, 238 

option A may be preferred; under scenario two, option B may be preferred. A weighted combination of 239 

the outcomes of one and two may suggest that either or no alternative is preferred. Whatever the specific 240 

outcome, details about the nature of comparison are lost. 241 

Before describing our proposed methodology, some contextual comments must be made. As noted in 242 

the introduction, our objective is to be able to comment on the robustness of an assertion of difference 243 

among multiple products or processes. This objective recognizes that a) for any nominal comparison there 244 

are in fact numerous versions of that comparison each situated within distinct scenarios defined by specific 245 

combinations of model domain and value parameters; b) the significance of difference between 246 

alternatives can be evaluated within a given scenario, but that result may not hold (and may, in fact, be 247 

inverted) under other scenarios; and c) the goal of a comparative analysis is to identify the briefest 248 

description of the scenario space within which statistically significant results are observed and conversely 249 

where they are not.  We believe that these points have not been specifically called out in previous work.  250 

Although a scenario could technically be defined as a collection of parameters for a single analysis, this 251 

would include every simulation conducted in a probabilistic sampling method (such as a Monte Carlo 252 

analysis), which is not the way the term is typically used. Instead, we are defining a scenario to be a 253 

collection of framing assumptions; that is, the combined set of value and model domain parameters 254 

(represented by F). Any analyses which share a common set of F represent the same scenario. Scenario 255 
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populations are a collection of scenarios with some common framing assumptions, (i.e., for two scenarios 256 

1 and 2 to be in the same population then 1 2F F   ). This terminology will be demonstrated in the case 257 

study in order to clarify its application.  258 

Our proposed methodology for evaluating uncertainty in comparative life cycle assessments of 259 

alternatives (e.g., processes or products) is outlined in Figure 1. The process is for a single set of decision 260 

variables and outcome criteria (e.g., impact assessment methods) and therefore must be repeated for 261 

different sets of decisions or criteria. It may be necessary to iterate the process several times before 262 

drawing final conclusions.  263 

 264 

Figure 1. Methodology for evaluating uncertainty in comparative life cycle assessments.  is the frequency that one alternative has 265 
lower impact than the other across a set of simulations (βcrit is a minimum threshold for statistical significance, βagg is the frequency 266 

for the aggregated analysis, or the combination of empirical, model domain, and value parameters in an analysis, and βK is the 267 
frequency for each set of framing assumptions). 268 
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The methodology begins with an aggregated probabilistic scenario-aware analysis as shown at the top 269 

of Figure 1. This is a simultaneous analysis of uncertainty in empirical, model domain, and value 270 

parameters using a probabilistic analysis of the relative performance of the alternatives. (Using the 271 

conventional terminology found in the literature, this could be referred to as combined analysis of 272 

parameter, scenario, and model uncertainty across a wide scenario space.) The probabilistic analysis can 273 

be accomplished using any sampling-based method (such as a Monte Carlo or structured sampling) or in 274 

some cases analytical approaches.25 Care must be taken in the analysis to correlate parameters that are 275 

common between the two alternatives.21 (Indeed, one value parameter may involve the use of different 276 

correlation assumptions.) In subsequent mathematical expressions, we will assume that K samples of each 277 

set of value and model domain parameters (F) are generated and the index k represents the kth instance of 278 

those samples. And for each of these K sets of value parameters, M samples of the empirical parameters 279 

are generated (indexed on m). In total, KM samples are generated.   280 

The next step (Step 1a in Figure 1) is to calculate the probability that one alternative has a lower impact 281 

than another across all of the simulations. This is accomplished by calculating a comparison indicator for 282 

each simulation (k,m), CIL,(k,m),
23 which is defined as the ratio between the impacts of two alternatives as 283 

follows:  284 

  , ,( , )

,( , )

, ,( , )

L B k m

L k m

L A k m

Z
CI

Z
   Equation 1 285 

where , ,( , )L B k mZ  is the environmental impact for alternative B using the life cycle environmental impact 286 

assessment metric L for the specific realization of parameters k and m, and , ,( , )L A k mZ  is the environmental 287 

impact for alternative A using the same metric and same sampled sets of parameters. We define  𝛽  as the 288 

frequency that alternative B has a lower impact than A across some set of scenarios. That is, as: 289 

 𝛽 = 𝑃(𝐶𝐼𝐿 < 1)  Equation 2 290 
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In practice, we estimate through the use of Monte Carlo simulation trials. More specifically, we initially 291 

evaluate an aggregated measure agg which is the fraction of all results {CIL,(1,1),CIL,(1,2),… 292 

CIL,(2,1),CIL,(2,2),… CIL,(k,m)} that are less than one.  Expressed symbolically, that is:   293 

  
,( , )

1 1

1
1 if  is true

where
0 otherwise

K M

L k m

k m

agg

CI

KM


  

   
  




  Equation 3 294 

If agg (or (1-agg)) = 100% (outcome 1a-yes in Figure 1), then one alternative clearly has lower impact 295 

than the other and the analysis is complete. However, this would be extremely unlikely for an aggregated 296 

analysis and thus, the next step (1b) would be to evaluate  k for each scenario, where k is defined as:  297 

 
,( , )

1

1
M

L k m

m

k

CI

M
 

  



 Equation 4 298 

The difference in impact of the two alternatives in a given scenario is considered to be statistically 299 

significant if k or (1-k) is greater than a threshold value, 𝛽𝑐𝑟𝑖𝑡. In the interest of brevity, we will refer 300 

to such cases as resolvable (i.e., we can resolve the difference in the impact of A from the impact of B). 301 

This threshold, 𝛽𝑐𝑟𝑖𝑡, is a decision parameter that controls the level of confidence in the decision and 302 

should be set by the analyst for a given context. As noted previously, it is unlikely that the two alternatives 303 

will be resolvable for all scenarios. By contrast, is likely that some scenarios are of more interest to a 304 

particular set of decision makers (e.g., because their convictions are more likely to be aligned to those 305 

scenarios or because they feel that particular set of framing conditions are likely to be considered valid). 306 

If the alternatives can be resolved for the scenarios of interest (outcome 1b-yes), then the analysis is 307 

complete and the scenarios under which one alternative has a lower impact than another can be identified 308 

as statistically significant. 309 

In the case presented here, the k results were analyzed using a categorization and regression tree 310 

(CART) algorithm implemented in the software JMP. CART identifies a succinct description of the 311 

statistically differentiable subpopulations within the scenario populations by recursively partitioning the 312 

space of input data and fitting a simple regression model within each partition. Comprehensive structured 313 
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sampling was performed for the value and model domain parameters to assess the combination of 314 

scenarios.  315 

If the alternatives cannot be resolved for the scenarios of interest, then the influential parameters for all 316 

scenarios need to be identified in order to determine the parameters that are worthy of further refinement 317 

because of their influence on the result. Influence can be assessed using different methods of sensitivity 318 

analysis.29 These methods include regression-based methods (such as Spearman rank correlation), 319 

variance-based methods (such as Sobol indices), and analytical approaches when uncertainty is 320 

propagated thusly.30, 31  321 

Once influential parameters are identified, an assessment needs to be made as to whether resources are 322 

available to improve the fidelity of the analysis. This would manifest in the refinement of uncertainty 323 

characterization for influential parameters (e.g., more data collection). If the influential parameters cannot 324 

be refined then the analysis is complete and the outcome is that there are insufficient statistically 325 

significant results for the scenarios of interest. If they can be refined, then the entire process should be 326 

repeated using the refined uncertainty characterizations. An analogous, iterative approach to LCA 327 

parameter refinement was previously proposed by Huijbregts.23  328 

PAVEMENT LCA RESULTS 329 

For the pavement LCA seven value and model domain parameters were identified that define the 330 

scenario space and are members of the framing parameters vector (F). Five of these parameters are binary 331 

in nature; for the other two, two representative levels were selected to manage the computational expense 332 

of the analysis. The full factorial combination of these parameters represents 128 scenarios.  For each kth 333 

sample of F, 1,000 samples were taken of the empirical parameters comprising E (M=1,000). The number 334 

of samples has a significant influence on computational intensity because the samples must be run in each 335 

of the 128 scenarios. We conducted a convergence analysis and determined that 1,000 samples was 336 

sufficient to approximate the statistics of the scenarios. The probabilistic scenario-aware analysis results 337 

in an aggregate pool of results that can be disaggregated into 128 probability density functions (PDF) 338 

characterizing the comparison indicator for each scenario.  339 
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1. Probabilistic Scenario-Aware Analysis 340 

  The first results of this analysis are aggregate measures of the individual designs and their 341 

resolvability.  Figure 2a plots the two aggregate probability density functions (PDF) of GWP for the two 342 

designs across the scenario populations. Figure 2b shows the corresponding PDF of 𝐶𝐼𝐺𝑊𝑃 and a graphical 343 

representation of the fraction of results that fall below one (shaded region). For these results, βagg = 0.75 344 

well below the 1.0 needed to draw a conclusion (c.f. Figure 1, outcome 1a-no). Based on the βagg it would 345 

be tempting to conclude that this comparison is statistically irresolvable. However, that conclusion is 346 

misleading because the aggregate result does not differentiate the numerous underlying decision scenarios 347 

defined by combinations of model domain and value parameters (F).  348 

 

Figure 2. The probabilistic description of aggregated results from combining 128 sets of Monte Carlo realizations. (a) the 

comparison of PDFs of GWP for design A (asphalt) and C (concrete). (b) the PDF of CIGWP. The shaded region corresponds to 

the likelihood that the design A has lower impact than design C.  

We computed βk (see Equation 4) for each of the underlying 128 scenarios as part of the next step in 349 

the methodology. For this case, 41 scenarios are statistically resolved for 𝛽𝑐𝑟𝑖𝑡 = 0.9  (highlighted in 350 

green in Figure 3). Using a CART algorithm it is possible to create a hierarchical categorization of the 351 

various scenarios in terms of their respective beta values to identify the characteristics of resolvable and 352 

irresolvable subpopulations. As such, we can say not only that scenario k produces a statistically 353 

significant result, but also what characteristics it shares with a larger subpopulation.  354 
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Figure 3. Categorization analysis of resolvable scenarios when all empirical quantities are at full range of values (iteration 1). 

Green bars differentiate scenarios that are statistically resolved for βcrit = 0.9 (design C has lower impact than design A). For 

binary model domain parameters (c.f. Figure 2) the scope is either included (incl) or excluded (excl). Parenthetical numbers 

indicate the value of the parameter. Letters a, b, and c denote scenarios discussed in the text. Rough = roughness; AP = Analysis 

period; Defl = deflection; M&R = maintenance and rehabilitation; Des Life = design life. 

This partitioning analysis (shown in Figure 3) reveals that 32 of these resolved scenarios (labelled a in 355 

the figure) share the common features of including the impact of surface albedo (Albedo(incl.)) and 356 

excluding the impact of surface roughness (Rough(excl)). In fact, specifying only these two aspects of a 357 

scenario is sufficient to diagnose that these scenarios can be resolved (irrespective of the state of the other 358 

five scenario variables). The other 10 resolved scenarios are distributed among the states examined, but 359 

all share the common feature of including the impact of pavement deflection (Defl(Incl.)). The 360 

subpopulation of scenarios which exclude albedo effects (Albedo(Excl.) – the left half of tree), serves as 361 

an object lesson on the importance of considering and isolating individual scenarios and scenario 362 

populations. With a βagg of 0.6, this subpopulation seems thoroughly irresolvable. Within this group, 363 

however, one can isolate six specific scenarios (labelled groups b and c in Figure 3) that are, in fact, 364 

resolvable.  365 

For the purposes of exercising the method, we will presume that these initial results were deemed too 366 

ambiguous (i.e., there were too many unresolved scenario states which were deemed of interest). As such, 367 

it would be necessary to refine the influential data to improve the fidelity of the result and expand the 368 
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scenarios under which alternatives are resolvable. To guide that refinement process, we first evaluate the 369 

influence of the various parameters. 370 

2. Influential Parameter Selection 371 

As noted earlier, there are several approaches to identify those parameters with the most influence on 372 

the results. Here we identify the influential parameters through the use of normalized squared Spearman 373 

rank correlation coefficients (SRCC) derived from the simulations run for step 1.32  374 

Figure S3 in the SI shows the results of this global sensitivity analysis. The correlation coefficients are 375 

normalized and represented as a percentage characterizing the relative contribution to the variance of 376 

GWP for different input parameters. The results show that the model domain decision regarding including 377 

or excluding the impact of surface albedo in the scope of analysis has the largest effect (Scope: Albedo) 378 

on the result. Other model domain parameters such as the inclusion of roughness-derived impacts (Scope: 379 

Roughness), maintenance and rehabilitation schedule (M&R), and design life are also important. Among 380 

the empirical quantities, the rate of evolution of roughness (Roughness evolution) and the impact factor 381 

of bitumen (IF Bitumen) are among other top influential parameters.   382 

3. Refine estimate of influential parameters 383 

In this particular pavement analysis it was not possible to collect more refined data. In order to 384 

demonstrate the full, proposed methodology, we approximate that refinement by arbitrarily bounding the 385 

two most influential empirical parameters, the rate of roughness evolution and the impact factor for 386 

bitumen, to narrow ranges. Specifically, we will explore a case where the rate of roughness degradation 387 

is typical (around the median) and where the production of bitumen has high burden (the mean impact 388 

factor for bitumen is around 0.40 kg CO2-eq/kg). The artificial refinement is useful both to demonstrate 389 

the method and to explore the explanatory power of these quantities. If this analysis proves that resolution 390 

of these empirical quantities enables sufficient resolution among the alternatives, it should be easier to 391 

acquire the resources to collect more data and refine our uncertainty estimates.  392 
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The same analysis described in step 1 is repeated, but with the newly refined values for the two most 393 

influential empirical quantities. The βagg for this analysis is improved (0.80), but is still far from 1.0 394 

(outcome 1a-no). As such, we proceed to the disaggregated βk analysis.  395 

For this analysis, 83 of the 128 scenarios are significant using the criterion βcrit = 0.9. Figure 4 shows 396 

the CART analysis pruned to descriptions of resolvable or irresolvable subpopulations. For this round of 397 

analysis, all scenarios where the impact of albedo is included are resolvable irrespective of the state of 398 

any of the other model domain or value parameters (labeled a in Figure 4).  Similarly, the subpopulation 399 

of scenarios labeled b (i.e. scenarios defined by excluding the impact of albedo, with long design lives 400 

(30) and analysis periods (75), and which exclude the impact of roughness (Roughness (ex)), produce 401 

significant results, irrespective of the state of the three remaining parameters: inclusion of deflection 402 

effect, maintenance strategy, and salvage allocation. 403 

 

Figure 4. Categorization analysis for refined data analysis (iteration 2). Green bars differentiate scenarios that are statistically 

resolved for βcrit = 0.9. For binary model domain parameters (c.f. Figure 2) the scope is either included (incl) or excluded (excl). 

Parenthetical numbers indicate the value of the parameter. Letters a, and b denote scenarios discussed in the text. Salv = salvage 

allocation; Defl = deflection; M&R = maintenance and rehabilitation; Rough or Ro = roughness. 

Although the data refinement step successfully produced significant resolution in about 65% (83 of 128) 404 

of scenarios, much of the scenario space remains unresolved. If those scenarios are possibly germane, 405 

then the analyst should iterate through the process again, identifying influential parameters and exploring 406 

whether resources are available to improve the fidelity of parameter estimates. Although an initial 407 
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sensitivity, as presented in Figure S3, provides useful guidance for those iterations, that analysis should 408 

be repeated each time more refined information is introduced. 409 

DISCUSSION 410 

A promising result of this example is that resolution is most strongly driven by model domain 411 

parameters (the inclusion of albedo effects, the manner in which maintenance is modeled, and the design 412 

life – which together represent more than 90% of the variance of the β values), rather than value 413 

parameters such as the analysis period and allocation. Model domain parameters can be resolved through 414 

better information and science about a particular system and through consensus development processes 415 

within the decision-making community (e.g., product category rules). Many value parameters are inherent 416 

to the preferences of the stakeholder and often represent an irreducible form of uncertainty. 417 

Uncertainty is a pervasive challenge in life cycle assessment. Conventional forms of uncertainty in 418 

empirical quantities are clearly important drivers of that uncertainty. It is critical to recognize, however, 419 

that uncertainty in framing (model domain parameters) and decision maker values (value parameters) can 420 

represent even larger sources of uncertainty in LCA results. As a consequence, it is equally critical for 421 

LCA studies to explore a broad range of the scenario space.  422 

It is also important to recognize that these kinds of scenario parameters define specific decision contexts 423 

and as such are not appropriately described by frequency or probability distributions. More pointedly, any 424 

given combination of scenario parameters can represent the perspective of a specific decision-maker. 425 

Because of this, probabilistic comparative analyses should only be framed within the context of a given 426 

scenario. 427 

Here we propose that the appropriate analysis around scenario uncertainty is to identify the classes of 428 

scenarios where statistically defensible decisions can be made (or cannot). The most effective descriptions 429 

are the most terse and, therefore, broad. This final goal has been facilitated through the use of decision-430 

tree partitioning algorithms which appear to offer an efficient means to isolate meaningful scenario 431 

groups. 432 
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Finally, it is important to emphasize that this analysis was done for a single outcome criterion (global 433 

warming potential). A more complete LCA would include similar analyses for multiple outcome criteria 434 

(other LCIA metrics), which would add a multicriteria component to the decision. Results from all the 435 

comparative uncertainty assessments would need to be included in a multicriteria decision analysis, as is 436 

the case for deterministic LCAs. The result space in such a situation is even larger than that of a single 437 

outcome criterion situation. As such, methods like CART will be even more important to systematically 438 

evaluate the space. Future research will explore this topic.  439 
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