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Abstract
In this paper, we present Beagle, an automated data collection system to mine the web for SVG-based
visualization images, label them with their corresponding visualization type (i.e., bar, scatter, pie, etc.), and
make them available as a queryable data store. The key idea behind Beagle is a new SVG-based classification
design to more effectively label visualizations rendered in a browser. Furthermore, Beagle is designed from
the ground up to be extendable and modifiable in a straightforward way, to anticipate when new artifacts
appear on the web, such as new JavaScript libraries, new visualization types, and better browser support for
SVG. We evaluated Beagle’s classification techniques on multiple collections of SVG-based visualizations
extracted from the web, and found that Beagle provides a significant boost in accuracy compared to existing
classification techniques, across a wide variety of visualization types.

0.1 Introduction

Data science has become important in an increasing number of domains, including web design, HCI, and

visualization. For example, Kumar et al. recently developed the Bricolage algorithm [23], which uses a

collection of web pages to learn mappings between different web designs, and uses these mappings to restyle

web pages automatically. Reinecke et al. build computational models over website snapshots to predict how

the visual complexity and colorfulness of a web page will affect a visitor’s initial impression of the web

page [28]. Harrison et al. propose a similar approach to predict first impressions of infographics [18]. In

a related area, Saleh et al. compute low-level visual features (e.g., color histograms) over a collection of

infographics to measure style similarity between infographics [30].

While effective, it is clear that data-driven design systems consistently require a large input collection from

which to build design rules and train machine learning models. For these systems to achieve high prediction

accuracy, their input collections often contain tens to hundreds of thousands of examples, making manual

gathering and tagging prohibitively time consuming to perform. As such, developing automated techniques

for collecting and classifying these collections is of the utmost importance. However, existing work in this

area focuses mainly on collecting and classifying web designs [22, 29, 19, 6]. Web designs style and format

webpages, making them different from visualization designs that focus on visualizations alone. Little work

has been done to support the automated collection and classification of visualization designs.

Furthermore, existing techniques for collecting and classifying web pages are unable to discern visualiza-

tions from other images (e.g., logos), and have no notion of categorizing designs by type. Unlike web page

designs, most visualization designs belong to well-known categories (or types), such as bar and pie charts.

Therefore, the most important feature for an automated visualization collection and classification system is the

ability to accurately label each visualization with its corresponding type. Without this information, visualiza-

tion designers that want to use the collection will have no idea how many examples of each visualization type

are available, or which types are represented, rendering the collection ineffective. For instance, an unlabelled

collection would be useless if a user wants to study design examples of a certain visualization type. Such a

collection would also be ineffective for training visualization design systems, as designs are based heavily on

visualization type.
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In this paper, we present Beagle, an automated system to extract visualizations rendered in a browser,

label them, and make them available as a query-able data store. Beagle consists of three major components:

a Web Crawler for identifying and extracting SVG-based visualizations from webpages, an Annotator for

automatically labeling extracted visualizations with their corresponding visualization type, and a Data Store

that organizes the visualizations into a relational format for storage in a database management system (or

DBMS). The key idea behind Beagle is a new SVG-based classification design to more effectively label

visualizations from the web that were rendered using SVG. Furthermore, Beagle is designed from the ground

up to be extendible and modifiable in a straightforward way. Thus Beagle is designed to anticipate when

new artifacts appear on the web, such as new JavaScript libraries, new visualization types, and more browser

support for SVG. With Beagle, we make the following research contributions:

Identification and Extraction of SVG-based Visualizations: Existing work relies on manual gathering or

other non-generalizable tricks to build large-scale visualization collections [30, 8, 31], and no techniques exist

to create these collections automatically. The Beagle Web Crawler demonstrates how automated processes can

be used to collect over 17000 visualizations from the web.

Flexible visualization Classification: Beagle’s Annotator automatically labels each visualization with its

corresponding visualization type. To do this, Beagle uses a new SVG-based classifier that calculates statistics

over the graphical marks specified inside of an SVG object (e.g., rectangles, lines and circles) to use as

classification features. We found that our new SVG-based classifier can correctly classify our visualization

collection with 82% accuracy. This represents a 20% boost in accuracy compared to existing techniques [31],

in a multi-class classification test across 22 different visualization types.

General-Purpose Data Store: In addition to classifying the visualizations, we recognize that a large

visualization collection is most useful when the designer can efficiently search for visualizations with certain

characteristics. For example, designers may want to search for specific visualization types (e.g., all bar

charts), graphical marks (e.g., all visualizations containing circles), or style properties (e.g., all visualizations

containing more than one fill color). We aim to provide a well-structured data analysis layer that supports a

variety of search filters over thousands of visualizations. To do this, Beagle stores the dataset created by the

Web Crawler and Annotator in a database. We designed a specialized relational schema to support a variety

of queries over the dataset using a well-known query language (SQL). The schema is easily extendable to

anticipate new visualization types and better SVG support in the future.

0.2 SVG Overview

Beagle’s ability to automatically collect and label visualizations relies on identifying and analyzing SVG

images embedded within a web page. Here, we provide a brief explanation of what SVG is, why we use it, and

the specific properties that make it useful for Beagle.
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0.2.1 What is SVG?

SVG [16] is an image format for two-dimensional graphics. SVG is XML-based, making it straightforward to

analyze with an XML parser. Though SVG is also supported outside the web, we study the use case of running

JavaScript code to generate and embed SVG images within a web page. An embedded SVG image is stored

as a node within the Document Object Model (or DOM) tree of a web page as an SVG object, denoted by

the <svg> tag. SVG objects behave like other objects in the DOM tree, such as <body> and <div> objects,

making SVG objects straightforward to locate within and extract from a web page.

0.2.2 Why Use SVG?

We focus on SVG for two reasons: 1) direct access to graphical marks, and 2) access to the code used to render

the SVG visualization. Unlike raster images, SVG describes in plain text the graphical marks used to render an

image, enabling Beagle to classify a large number of visualizations using a small, concise set of SVG elements.

Furthermore, SVG-based visualizations are often created by JavaScript code located directly within the same

web page (e.g., D3.js code [10]), making SVG-based visualizations easier to find on the web, compared to

raster-based visualizations.

0.2.3 How do We Use SVG?

In our classification analyses, we focus on the graphical marks, or shapes that are displayed within an SVG-

based visualization. Specifically, we analyze five types of SVG marks: lines, circles, rectangles, text, and

paths. Each of these marks is called an SVG element. Each SVG element has its own HTML tag: <line>,

<circle>, <rect>, <text>, and <path>. Figure 0-1 contains a box plot and line chart illustrating uses of

all five of these SVG element types. Each element type (i.e., rect, circle, etc.) is associated with specific

properties that define how the element should be rendered, such as width, height, radius, and positioning (i.e.,

x and y). We refer to these properties as attributes.

Graphical marks can also be given additional styling properties, such as fill (i.e., fill color) and

stroke-width (i.e., border width), which control the aesthetics of the element. We call these style at-

tributes. We analyze four style attributes in Beagle: fill, stroke, stroke-width, and font-size.

0.3 System Design Overview

Beagle consists of three major components, illustrated in Figure 0-2: a Web Crawler to find and extract

visualizations from web pages, an Annotator to automatically classify visualizations with their corresponding

visualization types, and a Data Store to store the extracted visualizations as a relational database. The rest of

this section outlines each of the three components within Beagle.
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Figure 0-1: A box plot and line chart illustrating uses of all SVG element tables. The element in box A is a
<circle> element, box B contains a <line>, box C contains a <rect>, box D contains a <path>, and box E
contains a <text>.
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Figure 0-2: Overview of the Beagle architecture.

0.3.1 Web Crawler

The Web Crawler is responsible for finding web pages containing visualizations, and extracting these vi-

sualizations for later classification by the Annotator and storage in the Data Store. It takes a list of urls

as input, and produces a visualization ID’s file and a set of folders as output. The visualization ID’s file

contains: a unique ID for each extracted visualization, and the url of the web page containing the visualization.

Each folder corresponds to a single visualization, and contains several files: the extracted SVG object for

the visualization, a snapshot (i.e., raster image) of the visualization, and the raw HTML for the web page

containing the visualization. Given that web pages do not need to be visited in any particular order, the filtering

process is easy to parallelize. To take advantage of this, the Web Crawler is designed to run in parallel across

multiple processors and multiple machines. We detail the design of our Web Crawler in the Section “Finding

and Extracting Visualizations”.

0.3.2 Annotator

The Annotator manages the automatic classification of visualizations with their corresponding types. It utilizes

a new SVG-based classifier that computes statistics over the elements within a SVG-based visualization. The

Annotator uses these statistics to identify patterns in the frequency, positioning, sizing, and styling of SVG

elements for different visualization types. We detail the design of our SVG-based classifier in the Section

“Automatically Labeling Visualizations”.
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0.3.3 Data Store

The Data Store consists of a Schema Builder to translate the data from the other two components into a

relational data format, and a DBMS for storing the resulting database. Storing the data as a database allows for

fast data processing using the DBMS, and provides access to a well-known query language for interacting

with the data (SQL). We explain the design and usage of our Data Store in the Section “Storing and Querying

Visualizations”.

0.4 Finding and Extracting Visualizations

The aim of our Web Crawler is to find and extract a diverse set of SVG-based visualizations from the web.

Given that our Web Crawler only takes a list of urls of input, an important part of the data collection process is

to identify potential url’s to visit. In this section, we describe our initial url collection approach of randomly

sampling url’s from the web, and how the Web Crawler was used to filter the resulting urls to identify

relevant web pages. We then explain our final technique, where we collect thousands of visualizations from

visualization-focused websites.

0.4.1 General Web Search

Our original url collection approach was to randomly sample urls from the web, and check the corresponding

web pages for SVG-based visualizations. This approach enabled a broad search across visualization tools and

web domains, providing an unbiased view of SVG usage across the web. We used the url index of the Common

Crawl [11] as our source for urls. The Common Crawl is project that scraped the raw webpage data of every

site on the web, and they update this data on a yearly basis. The Common Crawl data is indexed by webpage

urls and other domain information, which means the url index contains almost every url on the web. All this

data is publicly available, and we obtained our url collections by randomly sampling from from this url index.

Web Filtering Process

Given a set of urls selected from the Common Crawl, we must filter for pages that contain SVG visualizations.

While the most direct method for detecting SVG-based visualizations is to search the HTML DOM tree for SVG

objects, this process turns out to be prohibitively time consuming. Most modern SVG-based visualizations are

generated using higher-level libraries such as D3.js [10], Plotly [25], and Raphael [7]. As such, a "superficial”

search of an HTML page will not be able to find the desired SVG objects. Instead, such a web page needs to

be "executed” by a browser to produce the SVG elements. Unfortunately, this code execution process can

be extremely slow when our goal is to crawl and search through the entire internet. In response, we apply

three-stage heuristics to speed up the search process: an Assets Analyzer, a Code Analyzer, and an HTML

analyzer.
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Assets Analyzer

This component is responsible for detecting visualization JavaScript libraries used within a particular web

page. The Assets Analyzer also supports D3.js [10], Plotly [25],Raphael [7], Dygraphs [2], JIT [1], Dimple [4],

Springy [3], and Sigma [5]. The Assets Analyzer takes a list of strings representing the names of the JavaScript

libraries to search for. For a given web page, the Assets Analyzer inspects the list of assets to be downloaded

by the web page, searching for the designated library names. Any relevant pages are then passed on to the

Code Analyzer.

Code Analyzer

This component is responsible for searching for snippets of JavaScript code that could be used to generate an

SVG-based visualization in the browser and detect whether or not any of the SVG-based visualizations are

animated. Knowing whether a visualization is animated is important for the HTML Analyzer, and is explained

in the next section. The Code Analyzer requires a list of visualization code snippets for each JavaScript library

of interest. Each entry in the code snippet list is itself a sublist containing one or more strings. Some example

snippet strings for D3 are “d3.select(”, “.data(”, and “.enter(” to detect SVG-base visualizations and "d3.timer",

"d3.transition", and "setInterval" for to find animated visualizations. Since SVG charts are usually created

with multiple function calls, various code snippets must co-occur in order for a visualization to be created

using this particular JavaScript library. Thus, the code snippets are grouped so that each sublist of strings

represents code snippets that must co-occur. The Code Analyzer downloads all JavaScript code requested by

the web page, as well as the raw HTML of the page. It then searches each of these files for the presence of

visualization code snippets. Any pages containing visualization code are then passed to the HTML Analyzer.

HTML Analyzer

This component is responsible for finding and extracting SVG objects from a web page. However, given that

our Web Crawler is searching for JavaScript libraries that dynamically generate SVG in the browser, we have

to actually run a browser before we can extract any SVG objects, otherwise the SVG will not be rendered in

the page. To do this, we run the Selenium Web Driver [27] with Firefox [14], visit each candidate page in the

Web Driver, execute the JavaScript code in the HTML, then search the DOM tree for SVG objects. If the page

is indicated to have animations, the scraper will wait a few seconds before collecting the SVG element because

the graphical elements in an animated SVG chart may take some time to appear or assemble into a chart.

General Web Crawler Results

We performed an analysis on the results of the General Web Crawl, and this study includes visualization-related

statistics about the general web (e.g. what percentage of pages that used a chart-making library actually built

an SVG chart) and observations on how people visualize data and utilize chart libraries on the web. This

analysis can be found in the appendix. We found with the General Web search that only a small fraction of
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websites actually use JavaScript visualization libraries. As such, we were only able to find a small set of

visualizations to study (i.e., less than 1200 samples). This motivated us to switch to an approach that utilized

visualization-rich websites as sources for urls, and this method is detailed in the next section.

0.4.2 Targeted Web Search

In this url collection approach, we sought out specific "islands” of usage on the web, where users frequently

deposit their data and visualizations at a single, centralized source website. We performed a broad search for

islands that consistently contained SVG-based visualizations, investigating sites such as Tableau Public [33],

Many Eyes [34], and bl.ocks.org [9] for D3 examples [10]. Ignoring the islands that use raster formats

instead of SVG, we chose the two biggest islands to visit using our Web Crawler: bl.ocks.org, and the Plotly

website [25].

Targeted Web Search URL Collection and Visualization Extraction

Plotly and D3 both had individual pages for each one of their charts, and we searched for the urls of all

these chart pages to feed into the SVG extraction pipeline described in Section 0.4.1. For Plotly, urls to

individual chart pages have the format "https://plot.ly/ <username>/<chart id>", where "<username>" is the

user who created the chart, and "<chart id>" is the unique id assigned to the chart. We first utilized the

Plotly Feed page ("https://plot.ly/feed/"), which contains a vast number of example charts along with the

usernames of their creators, to garner a large collection of usernames. We then visited each user’s profiles at

"https://plot.ly/<username>", which lists all the charts created by the user. We collected the chart id’s of all

these charts from the user’s profile to construct the urls for individual chart pages. For D3, we utilized the

bl.ocksplorer search engine ("http://bl.ocksplorer.org/") which takes D3 API calls as input and returns all D3

visualizations that uses the API call. Examples of D3 API calls include "d3.layout.histogram", which is used

to create histograms, and "d3.svg.area" used to create area charts. We compiled a list of such D3 API calls,

programmatically searched for them, and collected the visualization urls of all the search results. We filtered

out duplicate urls. Since url collection for both sites required browser interaction, we utilized the Selenium

Webdriver with Firefox to conduct our url search. The Selenium Webdriver works by making calls to the

firefox browsers to issue specified browser interactions, such as clicking a button.

We extracted SVG visualizations from these urls using the three-stage process outlined above. However,

since we know that urls collected from these two sites call a visualization JavaScript library, we were able to

bypass the Assets Analyzer, and ran the urls directly through the Code Analyzer to mark pages with animated

visualizations, and then through the HTML Analyzer to extract the visualizations.

Targeted Web Search Results

Using the urls collected from our targeted web search (bl.ocks.org and Plotly), we ran the Beagle Web Crawler

two separate times to find and extract SVG-based visualizations. We refer to the resulting visualizations as the
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bl.ocks.org collection and the Plotly collection. Given that our islands are websites dedicated to a specific tool

(or library), each url collected from our islands was likely to produce SVG-based visualizations, allowing us

to collect thousands of visualizations in only a matter of days. For example, the bl.ocks.org crawl took one

day to run, and resulted in 2418 SVG-based visualizations extracted for the bl.ocks.org collection. The Plotly

crawl took roughly one week to run, and resulted in 15232 SVG-based visualizations extracted for the Plotly

collection.

0.5 Automatically Labeling Visualizations

Before designers can use the visualizations extracted by the Web Crawler, they need to know what types of

visualizations were extracted. Given that thousands of visualizations can be extracted by the Web Crawler,

an automated process is required for efficiently labeling visualizations. In this section, we explain how the

Annotator component in Beagle uses a new SVG-based classifier to automatically label extracted visualizations

with their corresponding visualization type.

The Annotator uses basic statistics calculated over SVG elements to discern visualization types. Examples

of some statistics that we calculate are: the average x position of specific elements (e.g., rect’s, circles,

etc.), the average number of elements that share the same y position, the average width of specific elements,

and the number of unique colors observed in the visualization. Each statistic (e.g., average or count) represents

a single classification feature. Our features can easily be computed over any SVG object and are applicable

beyond the specific visualization types we observed, allowing for easy extension of our classifier to support

more visualization types and SVG element types in the future. These features are then passed as input to an

off-the-shelf classification library (Python’s Scikit-Learn) to classify and determine the visualization type.

Our feature extraction code computes a large number of features (85 features), because we calculate

a suite of statistics over the positions, sizes, and styles for four different SVG element types. These fea-

tures are individually covered briefly in this section, and a description of each feature can be found in

Tables 11, 12, 13, 14, 15, 16, 17 in the appendix.

Our features each belong to one of three groups (feature counts noted in parentheses): general features (9),

styling features (19), and per-element features (57). We describe each of these groups and provide intuition for

why these features were selected. The general features are used to count the number of times each type of

element is observed in a visualization. The styling features are used to calculate statistics for how fill color,

border color, border width, and font sizes are manipulated for all elements in the visualization, regardless

of element type. The per-element features are used to calculate statistics on the various positions, sizes, and

styles observed for each of the four SVG elements we study in Beagle: circle (13), rect (10), line (10),

and path (24). The classifier is then evaluated using only the features in each group, and the accuracy from

each group reflects its significance. Furthermore, each group is broken down into smaller subgroups of more

closely-related features, and each subgroup is evaluated for a more in-depth analysis. For the rest of this

section, we explain how we calculate the features in each of our feature groups and evaluate the accuracy of
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each feature group and corresponding subgroups. The accuracy results showed that nearly all feature groups

perform better on Plotly data. The only exceptions are for features that don’t apply to Plotly. These exceptions

are discussed in their respective subsections. Plotly performed better than D3 because there are twice as many

D3 visualization types than Plotly visualization types (22 vs 11 as shown in Table 8), and additional reasons

for Plotly’s higher accuracy are included in their respective subsections.

We originally created 119 features, but found that many were redundant. For example, providing ratios

of circle and line counts is considered redundant when given counts of both circle and line counts, as the

ratios can be inferred from from the count values. We decided to remove the redundant features for several

reasons. First, an excess of features can lead to overfitting. Another motivation is to minimize redundancy

across features. The last and most important motivator is to avoid over engineering the classifier, because this

limits the generalization of the classifier to other vis libraries. To trim our feature set, we identified the best

performing sub groups of features, and removed the rest. All features (including the eliminated features) are

described in Tables 11, 12, 13, 14, 15, 16, 17 in the appendix as mentioned above.

0.5.1 General features

This section describes the implementation and classification accuracy for general features. Each group of

features is itself subdivided into subgroups of related features. "Implementation" describes the intuition

behind general features and provides pseudocode for extracting certain features, and "Classification Accuracy"

presents the results of the classifier evaluated using only features from subgroups as well as features from

entire group, and an analysis of these results. All subsequent feature group sections follow this format.

Implementation

The intuition behind the general features is to get an overview of how prevalent certain elements are within

each visualization. This may be an early indicator for certain visualization types. For example, heavy use of

circles may indicate a scatter or bubble chart. Our general features consist mainly of counts for the most

commonly observed SVG element types. Specifically, circle, rect, path, line, and text types. For each

SVG object (ie each extracted visualization), we count the instances of each element type. Special care is

given to the text type such that labels and legends (eg. tick marks on the axis) are not included. This is

done by filtering out any text that can be casted into a float. These counts are included as individual features

within the "Counts" subgroup of features under the general features. Namely, the features within this subgroup

are "Path Count", "Circle Count", "Rect Count", "Text Word Count", and "Line Count". The accuracy of the

"Counts" subgroup as well as subsequent general features subgroups are shown in Table 1, and the significance

of these subgroups are explained later in "Classification Accuracy". A series of tables in the appendix contains

descriptions of each individual feature and the classification accuracy using that feature alone, for all 85

features. The table references are Table 11, 12, 13, 14, 15, 16, 17. All subsequent feature group sections follow

the structure outlined above.
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We also compute the number of horizontal and vertical "axes lines” in the visualization, which can help

to distinguish between visualizations that often contain axes (e.g., bar charts), and visualizations that do not

(e.g., geographic maps). We define axes lines as SVG elements with the following characteristics: 1) one

or more path elements representing straight lines with at most two tick marks at the endpoints; 2) strictly

horizontal or vertical in orientation; and 3) have length greater than half of the width of the visualization

for horizontal paths, or greater than half the height of the visualization for vertical paths. These counts of

vertical and horizontal axes lines are features within the "Axes Lines" subgroup, which consists of only two

features: "Horizontal Axes Count" and "Vertical Axes Count". The pseudocode for counting and removing

vertical axes lines is shown in Algorithm 1, and this same technique (with some minor adjustments) can be

used for horizontal axes lines.

Algorithm 1 Counting and removing vertical axes lines
1: FUNCTION remove_axes(paths)
2: for path ∈ paths do
3: d_attr← path.get_attr("d")
4: num_v← COUNT(d_attr.contains("v"))
5: num_h← COUNT(d_attr.contains("h"))
6: if num_v = 1 AND num_h <= 2 AND NOT d_attr.contains("z") then
7: if COUNT(get_numbers_from_path(d_attr)) < 7
8: AND get_axes_length(d_attr, True) > 0.5∗ chart_height then
9: vertical_axes.append(path)

10: REMOVE(path)
11: return vertical_axes.length
12: ENDFUNCTION

The pseudocode shown in Algorithm 1 takes the set of all path elements in the visualization as input,

and loops over these paths. For each path, the function remove_axes() extracts it’s "d" attribute using

the get_attr() function, which first searches for the attribute in the SVG element itself, and if the SVG

element has no such attribute, the function searches through the element’s "style" attribute, as styling attributes,

such as fill color, may be specified there. remove_axes() next counts the number of vertical and horizontal

segments (demarcated with "v" and "h", respectively) in the path by inspecting its "d" attribute (lines 4 and 5).

Then two checks are performed on the path in line 6. Vertical axes lines are path elements with one long

vertical segment and up to two horizontal tick marks at the two ends. The boxed region in Figure 0-3 shows

an example of a vertical axis line with two horizontal tick marks at the the two ends (labeled "0" and "7"),

so one check ensures that the path has a single vertical segment and fewer than three horizontal elements.

The other check ensures that there is no "z" in the path’s "d" attribute, since its presence indicates that the

path is closed as described in ’Path "d" Attribute’ subsection of Section 0.5.3 under "Path Features". If a

path passed these checks, and the length of its vertical segment is greater than half of the chart’s height and

there are fewer seven numbers in the d attribute, then the path element is considered a vertical axis line. Axes

lines are usually long enough to span the majority of their corresponding dimension in the chart, which is
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why the vertical axis line must be at least half the chart’s height. The function get_axes_length() in line

8 calculates the height of the vertical axis line by determining the length of the vertical segment within the

axis line, and is straightforward to implement. Axes lines are straight lines with at most two tic marks (one at

each endpoint), which means the "d" attributes of their corresponding path elements cannot have too many

numbers, because numbers in the "d" attribute indicate change of direction. Note that there may be additional

tic marks on the axes lines as shown in Figure 0-3, but these tic marks are individual short path elements that

are not part of the path element drawing the axes lines. We ignored these tic marks as they do not provide

addition information beyond what axes lines give. The function get_numbers_from_path() gets all the

numbers from the path element and the path is only considered when it has fewer than seven numbers. The

"d" attribute of the vertical axis in Figure 0-3 is "M-6,0H0V450H-6", and has two horizontal tick marks, which

corresponds to 5 numbers. This means axes lines should have at most 5 numbers, but we set the maximum

threshold to 6 to maintain some flexibility with regards to coding style (e.g. if the tick marks are specified with

the "l" character and requires two numbers for the destination coordinates as opposed to one as described in

’Path "d" Attribute’). This check filters out path elements with long vertical segments that are not necessarily

axes lines, like line charts with a huge vertical jump. All these checks are performed in lines 6-8. Finally, the

vertical axes lines are removed (line 10) and counted (line 11).

Figure 0-3: Vertical axis (boxed) in a scatter plot illustrating axes characteristics.

In addition to counting the number of non-numerical text elements, we also enumerate the number of

unique x and y-positions a text element belongs in, which is useful for discerning charts with a heavy

emphasis on text like word clouds and geographic maps. These text position counts are features within the
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"Text" subgroup, which consists of the features "Text Unique X Count" and "Text Unique Y Count". The

pseudocode for counting the number of unique x-positions across all text elements is shown in Algorithm 2.

This method can be extended to count the number of unique x or y-positions, or other location-based features

(e.g maximum y-position) for other SVG elements.

Algorithm 2 Counting unique x-positions of all text elements
1: FUNCTION count_unique_text_x_positions(texts)
2: x_set← SET ()
3: for text ∈ texts do
4: tx, ty← get_absolute_location(text, 0, 0)
5: if text.has_attr("x") then
6: x_position← tx+convert_str_to_float(text.get_attr("x"))
7: x_set.add(x_position)
8: return x_set.length
9: ENDFUNCTION

10:
11: FUNCTION get_absolute_location(node, x, y)
12: if node is None then
13: return (x,y)
14: if node.has_attr("transform") then
15: trans f orm← node.get_attr("transform")
16: coordinates← get_coordinates_from_transform(trans f orm)
17: if coordinates then
18: x = x+ coordinates[0]
19: y = y+ coordinates[1]
20: return get_absolute_location(node.parent, x, y)
21: ENDFUNCTION

The first function count_unique_text_x_positions() in Algorithm 2 counts the number of unique

x-positions observed across all SVG text elements. It takes the set of all text elements in the visualization as

input, and for each text element, the code calls the function get_absolute_location(), which calculates

the absolute position of the input element within the visualization. The absolute position of a SVG object (exact

coordinates of its location within the visualization), is not simply the x,y-coordinates specified in its location

attribute. This is because SVG objects are often grouped together, in invisible parent containers, and may even

be nested in several containers. The containers are given x, y positions, and the individual SVG element is

given an x,y position within the parent container. The sum of the element’s coordinates and the positions of all

its parent containers form the absolute location of the object. The element’s x,y-position only makes sense

in the context of its parent containers, and is useless on its own. The SVG element’s relative position within

it’s parent container is specified as x and y-coordinate translations within the element’s "transform" attribute.

To extract absolute location, get_absolute_location() recurses up the SVG DOM tree starting at the

node of interest (line 20), and at each node, extracts the x and y shifts in the transform attribute (lines 15-16)

with the function get_coordinates_from_transform(). Transform attributes are strings with the form

"translate(x,y)", where "x" and "y" are numerical strings representing translations in the x and y directions.
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Subgroup D3 Plotly
Counts 0.6420208500400962 0.6598218471636194

Axes Lines 0.45068163592622296 0.5482419127988748
Text 0.3204490777866881 0.473511486169714

Overall 0.6707297514033681 0.7889357712142522

Table 1: Classifier accuracy on the D3 and Plotly datasets using only features from subgroups of the general
features. The "Overall" accuracy is that of all general features.

get_coordinates_from_transform() extracts the two numerical strings, converts them into floats, and

returns a tuple of the form (x,y). This function can be implemented easily using regular expressions. Once

the x and y translations of the current node has been extracted, get_absolute_location() updates the

aggregate x and y shifts accordingly (lines 18 and 19). Recursion stops once the root of the DOM tree has been

reached (line 14). Users also have the option of specifying x and y-coordinates of text elements via "x" and

"y" attributes, so to account for this possibility, we have a function count_unique_text_x_positions()

that adds the "x" attribute value to the calculated value from get_absolute_location() in line 6. Note that

an SVG element’s location must be specified in a single setting, so an element will not have a "transform"

attribute if it has "x" and "y" attributes. The text’s element’s absolute x-coordinate is added to the set of text

x-coordinates (line 7), which stores the unique x-coordinate values over all text elements, so its final size is

the number of unique x-coordinates across all text elements.

Classification Accuracy

Note that classification accuracy is higher for Plotly than D3 according to Table 1, and another reason

(in addition to the fewer number of chart types for Plotly mentioned above) is that some D3 charts types are

distinguished only by other feature groups. For instance, radii features of circle elements from the circle

features group is used to distinguish scatter and bubble charts in D3, and is unnecessary in Plotly, since Plotly

has scatter plots but not bubble charts.

The "Counts" subgroup performed much better than the other two groups for both datasets, and this is

due to the comprehensiveness of the "Counts" subgroup, which includes counts of every SVG element type,

while the other two subgroups target single SVG elements. The "Text" subgroup performed the worst, which

is to be expected, since its features target text-heavy visualizations, such as word clouds, and is not useful

towards many other chart types. Note the overall accuracy is not much higher than the best subgroup accuracy,

and this could be due to redundancy in the features of different subgroups. For instance, high unique x and

y-coordinate counts for text elements and no axes lines are both strong signals for a word cloud.
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0.5.2 Styling features

Implementation

Differences in visualization types can be found in the way that the SVG elements are styled. For example, how

they are colored (fill color and border colors), given border and line thicknesses, and in the case of text, how

they are sized. Styling is often treated as orthogonal to the layout of elements in the DOM tree, so we analyze

styling using a separate set of features.

When it comes to fill color and border (or stroke) color, we have found that recording the specific colors

used in a visualization is unimportant, because choosing a color palette is largely an individual user preference.

However, we found that counting the number of unique colors observed in the visualization can be useful,

because many visualizations have color applied in a systematic way (i.e., each bar in a bar visualization is

often given a unique color). To create a feature using this information, we compute the total number of unique

fill and stroke colors as two separate features. We also compute other statistics on colors, such as average

number of occurrence of a path fill color (i.e. number of path elements that use a fill color averaged over

all fill colors). All stroke color statistics are included as individual features in the "Stroke Color" subgroup,

which consists of the features "Path Unique Stroke Color Count", "Average Path Stroke Color Count", "Path

Stroke Color Count Variance", "Average Line Stroke Color Count", and "Line Stroke Color Count Variance".

Likewise we have a subgroup for fill-related statistics, which includes the features "Filled Path Count", "Path

Unique Fill Color Count", "Average Path Fill Color Count", "Path Fill Color Count Variance", "Average Circle

Fill Color Count", "Circle Fill Color Count Variance", "Average Rect Fill Color Count", and "Rect Fill Color

Count Variance". In addition, we consider the maximum and minimum stroke widths, as well as maximum and

minimum font sizes. The "Stroke Width" subgroup contains this information about stroke widths and consists

of the features "Maximum Path Stroke Width" and "Minimum Path Stroke Width". Given that visualization

text can have large variations in font size, such as for word clouds, we also compute the total unique font sizes

observed, as well as the variance in font size. The "Font Size" subgroup includes all font-related statistics of

text elements, and has the features "Maximum Text Font Size", "Minimum Text Font Size", "Text Font Size

Variance", and "Text Unique Font Size Count". The accuracy of all these styling features subgroups and the

accuracy of the entire styling features group are shown in Table 2.

However, styling can also be inherited from parent objects within the DOM, as well as by using Cascading

Style Sheets (or CSS). This potentially results in SVG elements appearing to have no style attributes. To

address this, we first look for style attributes within the element itself. If no styling attributes are found, we

iteratively search the element’s ancestors in the DOM tree for styling attributes. If the element is still without

styling attributes, it is very likely that they are provided in one or more CSS files in the webpage, with the

SVG element’s class names linking it to style attributes specified in the CSS files. A possible extension for

future work is to cross reference each element’s CSS classes with the classes specified in the webpage’s CSS

files. Pseudocode computing the number of paths with each fill color averaged over all fill colors is shown
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in Algorithm 3, and this code also illustrates the style attribute search technique. Other style features can be

extracted using an extension of this idea.

Algorithm 3 Computing number of occurrences of each path "fill" color averaged over all path "fill" colors
1: FUNCTION get_avg_fill_color_occurence(paths)
2: f ill_count←{}
3: for path ∈ paths do
4: f ill_color← find_style_attribute(path, "fill")
5: if f ill_color then
6: if f ill_count.get( f ill_color) then
7: f ill_count[ f ill_color]← f ill_count[ f ill_color]+1
8: else
9: f ill_color[ f ill_color]← 1

10: return AVERAGE( f ill_count.values())
11: ENDFUNCTION
12:
13: FUNCTION find_style_attribute(element, attribute)
14: out put_element← element
15: while out put_element do
16: out put← get_attribute(out put_element, attribute)
17: if out put then
18: return out put
19: out put_element← out put_element.parent
20: return None
21: ENDFUNCTION

The function get_avg_fill_color_occurence() first enumerates the number of path elements with

a particular "fill" color for all "fill" colors present in path elements of the visualization. The function then

averages the counts over all colors, which becomes the value for the "average fill color occurrence" feature.

It takes all path elements in the visualization as input and extracts the fill color of each path using the

function find_style_attribute() in line 4, passing in the path element and the attribute of interest

("fill"). The remaining lines in get_avg_fill_color_occurence() keep track of the count of all "fill"

colors in a pythonic dictionary (similar to a hashmap) in lines 6-9, and finally returns the average count

over all fill colors in line 10. Since the "fill" attribute of a path element is a styling attribute, it’s value

could be set in one of the path’s ancestors as described earlier. The function used to extract the "fill" color

attribute (find_style_attribute()) follows the iterative style-attribute search algorithm mentioned above.

We cannot use the function get_attr() to extract style attributes, because this function does not search

the element’s ancestors for missing attributes, since it is geared towards non-styling attributes that cannot

be inherited, such as the radius of a circle element. find_style_attribute() takes the SVG element

(element) and the attribute of interest (attribute) as input and starting at the input element, traverses up

the SVG DOM tree, searching for the input attribute and returning the first hit.
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Subgroup D3 Plotly
Stroke Width 0.4123496391339214 0.5694327238631036
Stroke Color 0.4380112269446672 0.7197374589779653

Fill 0.46351242983159585 0.8216596343178622
Font Size 0.3199679230152366 0.37093295827473044
Overall 0.6105854049719326 0.8975152367557431

Table 2: Classifier accuracy on the D3 and Plotly datasets using only features from the subgroups from styling
features group. The "Overall" accuracy is that of the entire style features group.

Classification Accuracy

The "Stroke Width", "Stroke Color", and "Fill" subgroups all performed better for Plotly than for D3.

This is due to the fact that the creators of Plotly chose to represent nearly all graphical markers (e.g. circles

in a scatter plot) with path elements. As a result of this emphasis on paths, certain characteristics of path

features are strong indicators for Plotly chart type, and this is not the case for D3. For instance, if a Plotly

visualization has a high count of path elements with fill, it is most likely a scatter chart, as it is unlikely

for other Plotly chart types to have as high of a filled path count. On the other hand, both hexabins and

sunbursts (present only in D3) usually have high filled path counts. These three subgroups yield similar levels

of accuracy for D3 as none of them not provide sufficient information to distinguish many D3 chart types

well. The "Font Size" subgroup performed the worst for both datasets, as expected, as it is targeted towards

text-heavy visualizations, and is not a good indicator for other chart types. For Plotly, the overall accuracy is

not much higher than the best performing subgroup ("Fill"), which could again, be due to redundancy.

0.5.3 Per-Element features

Lastly, we examine the attributes of each SVG element type and use this information to classify visualization

designs. For example, rectangles that share the same y position in a visualization might indicate a bar chart,

and circles that share the same radius in a visualization might indicate a scatterplot. Figure 0-4 illustrates both

of these examples. In Chart A (bar chart), the y-positions (of the bottom left corners) of all the rectangles

representing bars are the same, as shown in the boxed region. Other chart types with rectangles do not have

this property, as shown in Chart B (heat map), where the rectangles are stacked vertically (see boxed region).

In Chart C, all circles representing points in the scatter plot have the same radii (see boxed region). This is

not the case for circles representing axes in radial charts as illustrated by the boxed region in Chart D. Note

that all features are normalized to standardize the feature vectors. X-positions are normalized by dividing by

visualization width, y-positions by visualization height, all line and path lengths by visualization diagonal, and

all shape widths by either width or height (whichever is larger). We extract a base set of features for every

type, and then shape-specific features (e.g. the radius size for circle elements).

Features extracted for all SVG elements : For all elements of the same type within a given visualization

(e.g., for all circles, rect’s, etc.), we calculate a standard set of statistics. Half of these features are
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Figure 0-4: Four chart types illustrating characteristics of rectangle y-positions and circle radii for certain
chart types.
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calculating the maximum and minimum x-position, and then repeating for y-position. The remaining features

calculate: the number of unique x-positions, the number of unique y-positions, and the average number of

elements that share positions. For example, for all rect’s within the visualization, how many share the same y

position on average? Note that we consider the y position of a rect to be its y position plus its height, since

the y-position of an SVG element is defined as distance from the top of its container. Also, locations of path

and line elements are that of their starting points. Tracking x-position and y-position allows us to identify

positioning patterns. For example, vertical bar charts will contain rectangles with the same y-position, and

evenly spaced x-positions. In contrast, scatter charts will have high numbers of both unique x and unique

y-positions, helping the classifier to discern bar charts from scatter charts. All the x-position statistics for each

SVG element type are included as individual features within the "X" subgroup of features in the Per-Element

features group for that shape (e.g. all per-element features for circles are in the "Circle Features" group,

and a subset of these features pertaining to the x-position are in the "X" subgroup for circle elements). The

features in the "X" subgroup are "Maximum X", "Minimum X", "Unique X Count", "Average X Count", and

"X Count Variance", and they are calculated for circle, rect, path, and line elements. Likewise, there is

a "Y" subgroup for y-coordinate statistical features, which include "Maximum Y", "Minimum Y", "Unique

Y Count", "Average Y Count", and "Y Variance". See Algorithm 2 under Section 0.5.1 for an example of

extracting position features.

Circle Features

Implementation For circles, we calculate the maximum radius out of all circle elements in the

visualization and variance in the radii. We considered including both maximum and minimum radius, but

found that the minimum radius feature provided no additional benefit beyond the maximum radius and radii

variance features. Thus, we omitted the minimum radius. We found that maximum radius was better than

minimum radius because visualizations with circle’s of varying sizes, such as bubble charts, are likely to

have circles with rather large radii. The smallest radii in bubble charts are unlikely to be smaller than the

radii of circles in scatter plots, so the minimum radius is worse at distinguishing between these two chart

types. We also consider the maximum number of circles with identical radii. Radii variance helps to discern

visualizations with equal-size circles (e.g., scatter charts), from those with varying circle sizes (e.g., bubble

charts and radial charts). All these radii features are included in the "Radii" subgroup of circle features.

Specifically, the features within the "Radii" subgroup are "Maximum Circle Radius", "Circle Radius Variance",

and "Maximum Circle Radius Count". The accuracies of all subgroups in the circle features group ("X", "Y",

"Radii"), as well as the accuracy of the entire group can be found in Table 3. Pseudocode for extracting the

largest radius out of all circle elements is shown in Algorithm 4, and this method can be extended to extract

all radius-based features.
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Algorithm 4 Calculating the maximum radius over all circle elements in the visualization
1: FUNCTION get_max_radius(circles)
2: radii_list← []
3: for circle ∈ circles do
4: radii_list.append(convert_str_to_float(circle.get_attr("r")))
5: return MAX(radii_list)
6: ENDFUNCTION

Subgroup D3 Plotly
X 0.40096230954290296 0.19503047351148617
Y 0.3863672814755413 0.19465541490857946

Radii 0.40930232558139534 0.1944678856071261
Overall 0.4396150761828388 0.19484294421003281

Table 3: Classifier accuracy on the skewed D3 and Plotly datasets using only features from the subgroups from
"Circle" features group. The "Overall" accuracy is that of the entire "Circle" features group.

This function takes in a list of all circle elements in the visualization as input, and iterates through the list.

For each circle element, the code extracts the circle’s radius (specified in its "r" attribute), and converts the

value into a float, since everything extracted from SVG is of type string, and adds it to a list of all radii seen so

far (lines 3-5). The function then returns the maximum value of the list.

Classification Accuracy

As shown in 3, the "Circle" features group performed significantly better on D3 than on Plotly because

Plotly rarely uses circle elements. This is supported by the fact that every subgroup performs equally as

poor on Plotly, including the group as a whole, since the circle features from every chart type are likely quite

similar. To verify this, we queried the Datastore (Section 0.7) to count the number of Plotly visualizations

using circle elements and found there were only 25 out of the 6544 total visualizations. The "Circle" group

performs decently for D3, as this group is targeted towards a select number of chart types: scatter, bubble,

and radial, and each group has a similar accuracy since they are equally good at discerning between these

chart types. For example, radial charts haves axes made up of concentric circles, which will be signaled by

high radius variance from the "Radius" subgroup and low unique x count from the "X" subgroup. The overall

accuracy is not much higher than that of individual subgroups, due to redundancy, since each subgroup targets

the same set of chart types.

Rect Features

Implementation For rect elements, we do not calculate any unique features other than the x and y position

features described above. Height and width information do not contribute additional information when given

x and y position information. This is because rect graphical elements are usually adjacent to each other

(e.g. treemap) or equally spaced apart (bar graphs), so dimensional information can be inferred by taking the

difference in corresponding in location information. The pseudocode for calculating x and y features should
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Subgroup D3 Plotly
X 0.4920609462710505 0.612751992498828
Y 0.4848436246992783 0.5879043600562588

Overall 0.5008821170809944 0.6347866854195968

Table 4: Classifier accuracy on the D3 and Plotly datasets using only features from the subgroups from rects
features group. The "Overall" accuracy is that of the entire rects features group.

be similar to the pseudocode for calculating text location features shown in Algorithm 2. The accuracies of

the "X" and "Y" subgroups for rect features are shown in Table 4.

Classification Accuracy

The "X" and "Y" subgroups had similar accuracy in both datasets, which is expected because x and

y positioning are generally used equally in most visualizations. For example, if a chart has low variance

in x-position, it could be bar chart with vertical bars or a heatmap, and having a low variance in y-position

indicates that the chart could be a chart with horizontal bars or a heatmap. The higher accuracy for "X"

could be due to the fact that there are more bar charts with vertical bars than horizontal bars in the dataset.

In addition, overall accuracy of the entire group is only slightly higher than the individual subgroups. This

could be due to redundancy. However, having both x and y position information enables the differentiation

of bar charts from heatmaps (for the case with D3), since heatmaps will have high variance in both x and y

positions, while bar charts have high variance in either x or y. However, there are only 32 heatmaps total, out

of the 1247 charts as shown Table X, and since there are considerable more bar chart (154), the classifier is

likely to erroneously classify every heatmap as a bar chart when using a single subgroup, which results in a

32/1247≈ 0.0257 decrease in accuracy, which is comparable to the difference in accuracies between that of

the group and individual subgroups.

Path Features

This section contains additional sections detailing the "d" attribute of path elements that specifies the path’s

trajectory. "d" attributes were analyzed extensively in path features, and are rather complicated with many

different parts. The ’Path "d" Attribute’ section describes the "d" attribute in detail, and ’Path "d" Attribute

Examples’ provides examples illustrating various "d" attribute features.

Path "d" Attribute The "d" attribute of a path element is a string with instructions for drawing the

trajectory of the path [13]. The string consists of a combination of the following instructions: moveto, lineto,

curveto, arcto, and closepath. All these rules are detailed in the appendix, and we present a concise version

here discussing only the instructions analyzed by the classifier. "Lineto" draws a straight line between the

current position and the destination point, which becomes the new current position. "Lineto" is specified as "L

x,y", where "x" and "y" are destination coordinates, and "H x" and "V y" are used for horizontal and vertical
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Command Definition Syntax

Lineto
Draws a straight line between the current position and
the destination point (given by "x" and "y" in Syntax)

"L x,y"
"H x" for horizontal lines
"V y" for vertical lines

Curveto Draws a bezier curve "Q cx,cy,x,y"
Arcto Draws an elliptical arc "A rx,ry,xAxisRotate,LargeArcFlag,SweepFlag,x,y"

Closepath
Draws a straight line from the current position to the
start of the path, creating a closed shape "Z"

Table 5: Table listing the definitions and syntax of path "d" attribute instructions analyzed by the classifier.
See the ’Path "d" Attribute’ section for more detailed explanations.

lines, respectively, where "x" specifies the x-coordinate of the endpoint of the horizontal line, and "y" specifies

the y-coordinate of the endpoint of the vertical line. For all d-attribute instructions, "x" and "y" correspond to

the destination coordinates. "Curveto" draws bezier curves, and bezier curves are parametric curves traced by

polynomial functions [12]. Our features focus on quadratic bezier curves only, and they are specified as "Q

cx,cy,x,y". See the appendix for descriptions of "cx" and "cy" as we did not consider these attributes. "Arcto"

declares an elliptical arc and is specified as "A rx,ry, xAxisRotate, LargeArcFlag, SweepFlag x,y", where

"rx" and "ry" specify the radius in the x and y directions, respectively. See the appendix for descriptions of

the remaining attributes. "Closepath" draws a straight line from the current position to the first point in the

path, creating a closed shape. It is specified with a "z" in the "d" attribute. There are lowercase versions of

all these instructions (e.g. "a" for "Arcto"), where all x and y-coordinate attributes are shifts relative to the

previous position. Table 5 summarizes these "d" attribute commands for quick reference, and these commands

are illustrated in two example path elements described in ’Path "d" Attribute Examples’.

Path "d" Attribute Examples The boxed chord segment of a chord chart shown in Figure 0-5 has the

following "d" attribute:

"M272.9461639226633,-305.9418108070596A410,410,0,0,1,391.69303884469844,-121.14686673870506

Q0,0,-380.088988411556,-153.72820459590378A410,410,0,0,1,-263.8763386673507,-313.79814832390844

Q0,0,272.9461639226633,-305.9418108070596Z".

The first "Arcto" instruction is ("A410,410,0,0,1,391.69303884469844,-121.14686673870506"), where "rx"

and "ry" values of 410 indicate a circular arc, and (391.69303884469844,-121.14686673870506) are the

coordinates of the arc’s endpoint. This instruction draws the circular arc connecting bottom left and top left

vertices of the path element along the circumference of the chord chart. The next command is a "Curveto"

("0,0,-380.088988411556,-153.72820459590378"), which draws a quadratic bezier curve that has an endpoint

at (-380.088988411556,-153.72820459590378). This instruction draws the top curve connecting the top left

and top right vertices across the chord chart. The subsequent instructions are another "Arcto" drawing the

right arc connecting the top right and bottom right vertices, another "Curveto" drawing a curve connecting the

bottom right and bottom left vertices, and an unnecessary "ClosePath" that connects the end point of the path

element at (272.9461639226633,-305.9418108070596) to its starting point at the same location.

23



Figure 0-5: Chord segment (boxed) in a chord chart illustrating "d" attribute commands.
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The boxed hexagon in a hexabin shown in Figure 0-6 has the following "d" attribute:

"m0,-20l17.32050807568877,9.999999999999998l3.552713678800501e-15,20l-17.320508075688764,

10.000000000000004l-17.32050807568878,-9.999999999999991l-1.0658141036401503e-14,

-19.999999999999993l17.32050807568876,-10.000000000000014z".

It starts at (0,-20), as specified by the "Moveto" command "m0,-20". The next instruction is a "Lineto"

("l17.32050807568877,9.999999999999998") that draws one of the six sides of the hexagon with a line

starting at (0,-20) and extending 17.32050807568877 in the x direction and 9.999999999999998 in the y

direction since the "l" is lowercase. The next four commands are all "Lineto", drawing the next four sides of

the hexagon. The final side is drawn with a "ClosePath" command connecting the start and end points of the

hexagon, and is specified with a "z" at the end of the "d" attribute.

Figure 0-6: Hexagon (boxed) in a hexabin illustrating "d" attribute commands.

Implementation For path elements, we mainly consider the number of characters used to specify each path.

We do this by analyzing the path’s "d” attribute, which is a string containing an ordered list of commands

for how to draw the path (e.g., move to point A, draw a line to point B, etc.). The "d" attribute is explained

in detail in the ’Path "d" Attribute’ section. Specifically, we calculate the maximum, minimum, mean and

variance in the length of the "d” attribute, across all paths. This feature is extremely useful for paths, because

the longer a "d” attribute is, the more detailed it is. Highly detailed paths are often seen when drawing complex

shapes, such as countries or states in geographic maps. These statistics on "d" lengths are features within

the ’"d" Length subgroup, and the individual features are "Maximum Path d-attribute Length", "Minimum

Path d-attribute Length", "Average Path d-attribute Length", "and "Path d-attribute Length Variance". The
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pseudocode to find the maximum length (in number of characters) of the "d" attribute over all path’s is shown

in Algorithm 5.

Algorithm 5 Finding the longest "d" attribute over all paths
1: FUNCTION get_max_d_length(paths)
2: dlengths← []
3: for path ∈ paths do
4: d_lengths.append(path.get_attr("d").length))
5: return MAX(d_lengths)
6: ENDFUNCTION

This function takes the list of all path elements in the chart as input, and gets the length each path’s "d"

attribute (line 4). The function stores all "d" attribute lengths and then returns the maximum value in the list

(line 5).

However, path elements are complex, and can be used in place of other SVG elements. As such, we perform

additional analyses to account for these cases. To find polygon-heavy visualizations (e.g., voronoi and hexabin

visualizations), we compute the number of closed elements (i.e., paths that start and end in the same place)

found across all paths. Then we calculate statistics over all paths that contain at least one closed element.

Specifically, the maximum, minimum, mean, and variance in the length of the "d” attribute of these paths. All

closed paths have a "z" at the end of their "d" attributes as mentioned in the ’Path "d" Attribute’ section, so the

"Z" subgroup contains features describing closed path elements; namely, "Maximum Closed Path d-attribute

Length", "Minimum Closed Path d-attribute Length", "Average Closed Path d-attribute Length", and "Closed

Path d-attribute Length Variance". We also compute the number of arc and curve calls made within a path,

which are used to draw them with path elements. Counting arc calls helps to distinguish visualizations that

contain circles (e.g., scatter, radial, and bubble charts, and chord diagrams). Arc elements also have radii

attributes, which provide useful information; for instance, the variance in arc radii helps discern sunbursts,

which consist of a myriad of stacked arc segments with varying radii. A path arc has both horizontal and

vertical radii, since these arcs are not necessarily circular, and path arc features are calculated separately

for horizontal and vertical radii. Arcs are demarcated with an "A" in the "d" attribute as stated in ’Path "d"

Attribute’, so the subgroup "A arcs" includes features describing arcs, namely "Maximum Circular Arc Counts

per Path Element", "Path Rx Variance", and "Path Ry Variance". Pseudocode for computing the variance in

the horizontal radii ("rx" attribute of the arc, as described in ’Path "d" Attribute’) over all path elements in the

visualization is shown in Algorithm 6. This technique can be extended to extract all arc-related features. path

elements can also be used to draw bezier curves, which are demarcated with a "Q" in the "d" attributed as

mentioned in ’Path "d" Attribute’. These "Q" curves are present in visualizations with a lot of bezier curves,

such as chord charts, so we compute statistics on the occurrence of bezier curves, such as the total number

of bezier curves in a visualization, and the average and minimum number of bezier curves per path. These
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Subgroup D3 Plotly
X 0.5310344827586206 0.8407876230661041
Y 0.5021651964715317 0.8496952648851384
Z 0.4773055332798717 0.946460384435068

"d" Length 0.561186848436247 0.9052977027660571
"A" Arcs 0.35878107457898956 0.4671354899203001

"Q" Curves 0.4259823576583801 0.2582278481012658
Overall 0.643785084202085 0.9638068448195031

Table 6: Classifier accuracy on the D3 and Plotly datasets using only features from the subgroups from "Paths"
features group. The "Overall" accuracy is that of the entire "Paths" features group.

statistics are included in the subgroup "Q curves", which consists of the features ’Minimum Number of "Q"

Curves Per Path’, ’Average Number of "Q" Curves Per Path, and ’Path "Q" Curve Count’.

Algorithm 6 Computing the variance over the horizontal radii of all path arcs
1: FUNCTION compute_rx_var(paths)
2: rx_radii← []
3: for dopath ∈ paths
4: d← path.get_attr("d")
5: for i = 1, i <= d.length,i+= 1 do
6: if d[i].lower() =’a’ then
7: rx← get_numbers_from_path(d[i+1 :] : d.length))[0]
8: rx_radii.append(rx)
9: return VARIANCE(rx_radii)

10: ENDFUNCTION

This function computes the variance in the horizontal radii of all path arcs in the visualization. It takes a

list of all visualization path elements as input, and for each element, the code locates all the arcs, which

are demarcated with the "A" or "a" character in the path’s "d" attribute (line 6). In a path arc, the first two

numbers following the "a" character are the values for the "rx" and "ry" (vertical radius) attributes of the

arc, as explained in the ’Path "d" Attribute’ section. Line 7 of the code extracts the first number following

each "a" symbol of the d-attribute to get the "rx" values of all the arcs in the path, using the function

get_numbers_from_path() that was described earlier. Each "rx" value extracted is added to a list, which

keeps track of all "rx" values, and the variance of all "rx" values stored in the list is returned (line 12), which

gives the variance of "rx" values of all path elements in the visualization.

Classification Accuracy

As expected, the "Path" group performed very well on Plotly, due to its heavy use of path elements

(see Table 6). The low accuracy of the "A Arcs" subgroup on Plotly, which is comparable to the 19 percent

accuracy achieved by circle elements (see Table 3), is due to the fact that Plotly rarely uses bezier curves in

path elements, if at all. The high accuracies of the "X", "Y", "Z", and "d Length" subgroups indicate that there

are characteristics unique to many visualization types among features in each of these groups. For instance,
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Subgroup D3 Plotly
X 0.5185244587008822 0.19465541490857946
Y 0.5164394546912591 0.19484294421003281

Overall 0.5323175621491579 0.19531176746366619

Table 7: Classifier accuracy on the skewed D3 and Plotly datasets using only features from the subgroups from
line features group. The "Overall" accuracy is that of the entire line features group.

scatter charts have low variance in path "d" attribute length, and their lengths may fall within a certain range

that was calculated by the classifier from training. The overall accuracy of this "Path" features group is only

slightly lower than that of the entire classifier (96.4 vs 97.1), which means this group alone is already a great

classifier for Plotly. This is again, expected due to Plotly’s heavy use of path elements.

"A" arcs performed considerably lower than these four groups for D3, which could be due to the fact

that it targets a few visualization types: radial, scatter, pie, and donut, and has fewer features than the high

performing groups (3 vs 4). "X", "Y", "Z", and "d Length" all had relatively similar performances, with "d

Length" performing the best, possibly due to the fact that it targets geographic maps, which, as explained

earlier, have a high representation in the D3 dataset as shown in Table 7. "Q Curves" perform better than "A

arcs" in the D3 dataset, which is unexpected as bezier curves are generally less frequently used. It could be the

case otherwise in D3, where bezier curves are used heavily in chord charts.

Line Features

Implementation For lines, we do not calculate any additional features other than those for x, y positions.

This is due to the fact that lines do not have any unique attributes. The accuracies of the "X" and "Y" subgroups

for line features are shown in Table 7.

Classification Accuracy

The accuracies of each subgroup and the entire group are very close to that of the circle features

group on Plotly, which means Plotly hardly uses line elements. As with circles, we queried the Datastore

(Section 0.7) to count the number of Plotly visualizations using line elements and found there were only 25

as well.

line elements are used by visualizations with a lot of short straight line segments, such as graphs and

box plots, and are hence, targeted towards these visualization types. The "X" and "Y" subgroups performed

equally well in D3, which could be because line elements behave similarly in the targeted visualization types

with respect to these subgroups. lines are used for edges in graphs, and edges are usually scattered through

the graph, so there will be high variance in both x and y positions. Likewise, lines are used for the "whiskers"

and the line segment demarcating the median in a box plot, which means there will be similar variance in
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both x and y positions, but lower than the variance present in graphs. The accuracy of the entire group is very

close to that of the two subgroups due to redundancy in visualization type signal given by each subgroup as

explained earlier.

Python Setup

All feature extraction code was written in Python. Beautiful Soup’s XML parser was used to analyze all

SVG files extracted during data collection. All features extracted from the SVG data were passed into the

Python Scikit-Learn [24] random forest classifier for evaluation. A random forest classifier consists of multiple

decision tree classifiers, each fitting on a certain sub-sample of the dataset, and uses averaging across decision

trees, which improves accuracy and mitigates over-fitting. Tuning on various numbers of decision trees in

the forest yielded 14 decision trees as the optimal number. The details of the classification method and the

analysis results will be presented in the section "Accuracy Results for Labeling Visualizations”.

0.6 Accuracy Results for Labeling Visualizations

The most important component of Beagle is the Annotator. The Annotator automatically classifies each

visualization with its corresponding type, which allows designers to filter the final collection for the specific

visualization types they want to study. As such, it is necessary to analyze how accurately the Annotator can

classify visualizations, to ensure that visualization designers can rely on the classification labels provided

by Beagle. In this section, we evaluate the Annotator’s SVG-based classifier using our two visualization

collections, bl.ocks.org and Plotly, and present classification accuracy results for each collection.

0.6.1 Dataset Details

We use the bl.ocks.org and Plotly visualization collections for our validation experiments. Table 8 provides a

summary of these details for each visualization collection, and Figure 0-7 shows an example of every chart

type present in the entire dataset.

Note that for our experiments, we only use half of the visualizations extracted by the Web Crawler. This is

because many visualizations contain additional complex features that are outside the scope of our classification

evaluation, such as animated visualizations, visualizations requiring user input (e.g., visualizations with text

boxes and radio buttons), coordinated views (i.e., multiple visualizations within a single SVG object), and

diagrams and infographics (e.g., diagrams of the solar system). We explain how we filter for irrelevant

visualizations, and label the remaining visualizations with their corresponding visualization types in the

following section ("Recording Ground Truth”).
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Collection Size Total Types Visualization Type Labels

bl.ocks.org 1247 22

area (32), bar (154), box (11), bubble (70), chord (34), donut (31), heatmap (32),
geographic map (379), graph (60), hexabin (21), line (157), radial (13), pie (7),
sankey (11), scatter (118), treemap (10),voronoi (25),waffle (12),word cloud (6),
sunburst (28), stream graph (13), parallel coordinates (23)

Plotly 6544 11
area (10), bar (1364), box (259), contour (118), donut (193), filled-line (126),
geographic map (184), line (1198), pie (26), radial (17), scatter (3049)

Both Collections 7791 24

area(42), bar (1518), box (11), bubble (70), chord (34), contour (118), donut (224),
filled-line (126), geographic map (583), graph (60), heatmap (32), hexabin (21),
line (1355), parallel coordinates (23), pie (33), radial (30), sankey (11),
scatter (3167), stream graph (13), sunburst (28), treemap (10),
voronoi (25), waffle (12), word cloud (6)

Table 8: General information about each visualization collection in our evaluation.

Figure 0-7: Collage showing every chart type present in the dataset. The chart types are (from left to right, top
to bottom) area, bar, box, contour, filled-line, geographic map, graph, heatmap, hexabin, bubble, line, parallel
coordinates, sankey, treemap, scatter, stream graph, voronoi, waffle, word cloud, radial, sunburst, pie, donut,
and chord.
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bl.ocks.org Dataset

The bl.ocks.org collection was created by crawling the bl.ocks.org website, which contains thousands of

visualizations created using the D3 JavaScript library [10]. This collection contains 1247 D3 visualizations,

and 22 different visualization types, listed in Table 8. We attribute the high number of visualization types to the

fact that D3 is more flexible than many common visualization tools, such as Microsoft Excel, R’s ggplot2 [35],

and Python’s Matplotlib [21]. The bl.ocks.org website also provides designers with a low-risk environment

for experimenting with visualizations, resulting in wider variety. Note that D3 supports all five of the SVG

elements analyzed in the Beagle Annotator, allowing for a diverse set of statistics to be calculated over D3

visualizations.

The bl.ocks.org collection contains many visualization types that are complex, and easily confused with

several other visualization types. For example, chord visualizations are circular (like pie, donut, sunburst,

and radial charts), with lines or curved areas (like sankey visualizations, and line and area charts). Voronoi

visualizations contain many polygons (like maps) or many lines (like line charts or parallel coordinates), and

often contain circles (like scatter and bubble charts). Similarly, Graphs contain many lines (like line charts,

parallel coordinates and voronoi visualizations) and many circles (like scatter and bubble charts). However,

very few of these complex visualization types are studied in previous work [31, 26, 36, 32]. Furthermore, the

visualization types that are evaluated in previous work are a subset of [26, 36, 32] (or nearly a subset of [31])

the types in the bl.ocks.org collection. Thus, the bl.ocks.org collection is expected to be more challenging to

classify than collections studied in previous work.

Plotly Dataset

The Plotly collection was created by crawling the plot.ly website. Although we scraped around 15k visualiza-

tions from Plotly, we ignored any Plotly visualizations that are rendered as raster images (3D visualizations,

2D histograms, and heatmaps), because they lack any useful SVG data. After removing these samples, we

are left with a collection containing 6544 visualizations, across 11 different visualization types. Given that

Plotly is more like a traditional visualization tool, there is less variety in the design of Plotly visualizations,

resulting in fewer visualization types. The available visualization types in the Plotly collection are similar to

the visualization types studied in previous work [26, 36, 32, 31].

In contrast to D3, all Plotly visualizations only consist of path, rect and text elements, even when

rendering circles and rectangles (e.g., for scatter and bar charts). Thus, only a subset of the Annotator’s

statistics are relevant, potentially posing a challenge for Beagle’s classification techniques.

0.6.2 Recording Ground Truth

We treat the automatic classification process as a supervised learning problem. We use supervised learning as a

starting point, because we want to verify that our techniques would actually work in the supervised case. If not,

semi-supervised methods, which are more scalable and a better approach long-term, is of limited use. We plan

31



to switch to semi-supervised or active learning in the future, when for instance, we want to label large scale

scrapes with Beagle.Since we are using supervised learning, in order to train the SVG-based classifier in our

Annotator, we need to apply classification labels to each visualization in our collections (i.e., the visualization

type). We considered the visualization types that appeared in both of our data collections, and created a single

set of labels to cover them. The final set of labels is provided in Table 8, along with the number of samples

observed for each visualization type and each data collection.

General Approach

As expected, we found that bl.ocks.org has far more variety in its visualization types compared to Plotly. As a

result, we decided to first identify as many visualization types as we could using the bl.ocks.org collection,

then fill in gaps as necessary for Plotly. After an initial pass over the bl.ocks.org visualizations, we found

roughly 22 visualization types (third row of Table 8). We found that Plotly has two visualization types that are

not well-represented by the initial bl.ocks.org label set: "filled-line” visualizations and "contour” visualizations.

Thus, we added these two visualization types to our set, resulting in a final list of 24 visualization types (bottom

row of Table 8).

Consolidating Visualization Types and Styles

Given strong similarities between certain visualization types (i.e., choropleth maps and map projections) and

variations (i.e., grouped and stacked bar visualizations), we opted to merge certain visualization types and

variations to form a less redundant set of labels for classification. Here, we identify the visualization groups

and style groups that we merged, and the reasoning for merging each group.

Geographic Maps: We found four styles of geographic maps in our search: choropleth, contour, map

projections, and general maps. We found that choropleth maps and map projections were very similar to

general maps. As such, we consolidated these three styles into a single label of "geographic map”. However,

contour maps were strikingly different from the other maps, and seemed to be a mixture of area charts and

maps. As such, we kept contour maps as a separate visualization type.

Graphs and Trees: We found three styles of graph-based visualizations: general graphs, trees, and

dendrograms. However, we also found that based on how a tree or dendrogram was organized (e.g., radially, or

from left to right), it was difficult to discern whether a particular visualization should be labeled as a tree, graph

or dendrogram. The fundamental structure of these visualizations were the same. As such, we consolidated all

three into a single "graph” label.

"Stacked,” "Grouped,” and "Filled” Visualization Variations: We observed several variations on common

visualization types, such as bar visualizations (e.g., grouped and stacked bar visualizations) and area visu-

alizations (e.g., filled and stacked area visualizations). We found that even though these visualizations had

some minor differences, the visualizations were still very similar in structure. As such, we grouped each set of

variations into a single visualization type. For example, all bar variations were grouped as "bar” and all area

variations as "area”.
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Applying Labels

Manual labeling was performed for all 1247 visualizations in the bl.ocks.org collection. To do this, snapshots

were taken of the SVG objects, and were labeled by the authors. Irrelevant visualizations were ignored.

For the Plotly collection, each visualization had an HTMLtitle tag embedded within the corresponding

webpage that included the visualization type. The title object was extracted for each Plotly web page,

and filtered for the visualization type. In addition, Plotly allows one to export the code used to render the

visualization in multiple programming languages. Python code was exported for each Plotly visualization, and

the Python code was filtered to remove coordinated views. Plotly does not currently support animations, user

inputs in visualizations, or arbitrary diagrams that do not map directly to a corresponding data table, so these

issues were not a concern for the Plotly collection.

0.6.3 Experimental Setup

For each experiment, the overall accuracy is calculated over ten separate runs of stratified, five-fold cross

validation. With five-fold cross-validation, each dataset is shuffled and partitioned into five groups (or folds).

For each fold, the classifier is trained on the other four folds (or 80% of the data), and tested on the fold that is

left out (20% of the data). We use stratified cross validation, to ensure that each visualization type contains an

equal number of visualizations in every fold. To calculate our accuracy results, we sum the number of correct

answers across all folds and runs, and divide this sum by the total number of records evaluated (i.e., | DC | ∗5,

where | DC | is the size of collection C).

Considering Dataset Skew

When a visualization collection is skewed (i.e., a small number of visualization types represent the majority of

the collection), a classifier can achieve moderately high accuracy by successfully classifying only the most

popular visualization types. However, this bias can result in poor classification accuracy for more obscure

visualization types, which is problematic for the designers interested in studying them. As such, it is critical

that our classification component can accurately label most visualization types.

To account for skew in the number of visualizations per visualization type, we performed two experiments

for each visualization collection: skewed and skew-free. In the skewed experiment, a maximum number of

400 visualizations is allowed per visualization type, and skew is permitted across visualization types (i.e.,

any number less than or equal to 400 is an acceptable number of visualizations, for any visualization type).

We capped the number of visualizations per type to 400, so we could capture skew in the dataset without

overwhelming the number of samples for the less common types. The sample size limit of 400 was selected

based on the D3 dataset, where the visualization type with the most samples had around 400 visualizations.

For both experiments, all visualization types are included in the evaluation.

In the skew-free experiment, we ensured that an equal number of visualizations were provided for each

visualization type. Specifically, we measure classification accuracy when exactly 10 visualizations are selected
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Skewed Skew-Free
- 10 20

bl.ocks.org Beagle 83.2 73.8 83.7
RV 62.9 38.9 46.4

Plotly Beagle 97.1 86.5 91.2
RV 88.5 54.7 65.2

Table 9: Multi-class classification accuracy results (in percent) for Beagle and for ReVision (RV), for both of
our visualization collections. Both dataset configurations were evaluated (skew and skew-free).

per visualization type. Any visualization type that has an insufficient number of visualizations is ignored in

this experiment (i.e., less than 10). For example, word clouds in the bl.ocks.org collection are ignored in this

experiment, because there are only 6 examples available. The evaluation is then repeated with a larger input

set, where twice as many visualizations are provided per visualization type (20 per type). This setup ensures

that no classifier can rely on achieving high accuracy for only a small number of visualization types.

0.6.4 Comparing with ReVision

To evaluate how Beagle improves on existing classification techniques, we compare Beagle to a well-known

raster image classifier: the ReVision visualization classifier [31]. The ReVision code was provided by the

ReVision authors. Here, we provide a brief overview of the ReVision classifier.

ReVision classifies raster images of visualizations by first building a dictionary, or a codebook, of distinctive

image patches that occur frequently in visualizations. ReVision then uses the codebook to extract features

from images for visualization classification. In these experiments, the ReVision codebook is built using the

training data only in our five-fold cross validation.

The Plotly collection is similar to the original collections used to evaluate ReVision [31]. As such, ReVision

is expected to perform as well for Plotly as it has in the past (i.e., about 80% classification accuracy). However,

the bl.ocks.org collection has double the number of visualization types (22 types, versus 10 types [31]), where

many of them are difficult to discern from other types. Thus, we expect ReVision to have lower accuracy for

the bl.ocks.org collection.

0.6.5 Classification of the bl.ocks.org Collection

The goal of these experiments is to evaluate for a targeted, yet extremely diverse corpus (with 22 visualization

types), how accurately we can classify visualizations. The bl.ocks.org collection is expected to be the most

challenging to classify, because it not only covers the majority of visualization types observed in previous

work (8 out of 10 types [31]), but also doubles the number of visualization types that must be classified. Thus,

the bl.ocks.org collection represents the worst-case scenario in our evaluation. In these experiments, we tested

both our skew-free and skewed dataset configurations.
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Skewed Data Classification

This experiment evaluates how well Beagle performs (and how Revision performs) when classifying all

22 visualization types in the entire bl.ocks.org collection. The results are provided in Table 9, labeled

“bl.ocks.org/Beagle/Skewed”. Beagle achieves 82.7% accuracy overall, which is similar to past work [31,

32, 26], but here we classify double the number of visualization types (22 visualization types, 1247 total

visualizations), where many of them are challenging to discern from other types.

Skew-Free Classification

Table 9 shows the accuracy results for classifying the bl.ocks.org collection using our proposed approach

(Beagle). For the skew-free setup, we modified the bl.ocks.org collection such that there was an equal number

of visualizations available per visualization type, before running Beagle (i.e., 10 visualizations per type, and

20 visualizations per type). Visualization types with insufficient numbers of visualizations (i.e., less than 10,

or less than 20, respectively) were not evaluated in this experiment.

The first row of Table 9 shows the overall accuracy of Beagle (labeled “bl.ocks.org/Beagle/Skew-Free”).

With only 10 visualizations per visualization type (10 visualizations, 19 visualization types, 190 visualizations

total), Beagle is able to correctly classify 73.2% of visualizations. With 20 visualizations per visualization

type (14 visualization types, 280 visualizations total), Beagle’s accuracy improves to 81.9% accuracy, showing

that Beagle is effective over a diverse set of visualization types.

0.6.6 Classification of the Plotly Collection

These experiments evaluate how well our classification techniques apply to visualizations rendered by a

completely different non-JavaScript tool (Plotly).

Skewed Classification

In this experiment, no more than 400 visualizations are selected for any given visualization type, resulting in

2133 visualizations being selected for classification. Note that a different random sample is selected for each

cross-validation run. As shown in Table 9 under “Beagle/Plotly/Skewed”, Beagle achieves 97.1% accuracy

overall, providing significantly higher accuracy compared to the bl.ocks.org collection (82.8% accuracy).

Skew-Free classification

The classification accuracy results are provided in Table 9, labeled “Beagle/Plotly/Skew-Free”. Beagle provides

high classification accuracy across the Plotly collection. For the 10 visualizations case (11 visualization types,

110 visualizations total) the accuracy is 85.3%, while for the 20 visualizations case (9 visualization types, 180

visualizations total) the accuracy improves to 93.6%. We also see higher classification accuracy compared

to the bl.ocks.org collection, which is expected, because Plotly has fewer visualization types to classify, and

consists almost entirely of visualization types that have been classified with high accuracy in previous work.

35



The most important features for classifying Plotly visualizations are the features that calculate statistics on

the length of the “d” attribute for the path element. Given that Plotly relies almost entirely on path elements

to render visualizations, and the “d” attribute provides the most information about a given path element, this

result is unsurprising. The feature that calculates the maximum distance between the start and end points of a

path is also instrumental for improving classification accuracy. Calculating the distance between the start and

end points of a path can help differentiate “open” paths (e.g., lines and curves) from “closed” paths (e.g.,

rectangles).

Given Beagle’s high accuracy on both collections, we conclude that our classification techniques are

tool-agnostic, and can be used to classify visualizations made using drastically different tools.

0.6.7 Beagle and ReVision

We repeat our previous experiments using ReVision, and discuss the differences in accuracy between Beagle

and ReVision, and why these differences occur.

Skewed Classification

All visualization types are evaluated in this experiment. The ReVision classifier achieves 62.9% accuracy

on bl.ocks.org, and 88.5% on Plotly. In contrast, Beagle achieves 82.8% accuracy overall for the bl.ocks.org

collection, and performs even better on the Plotly collection (97.1%). ReVision’s low classification accuracy

on the bl.ocks.org collection is due to a combination of low-resolution information (i.e., pixels instead of

graphical marks) and a high number of complex visualization types. When a significant number of complex

visualization types are introduced (i.e., going from Plotly to bl.ocks.org), distinctive features become more

subtle, and a complex combination of fine-grained features are required to discern visualizations. However, it

is more challenging in general to identify distinctive visualization characteristics from the raw pixels of raster

images than from precise graphical objects. Thus, ReVision also performs worse than Beagle on the Plotly

collection.

Skew-Free classification

We found that the ReVision classifier performs significantly worse than Beagle in our skew-free setups. This

is unsurprising, considering the ReVision classifier utilizes computer vision techniques to identify and label

visualizations, and many computer vision techniques require large numbers of examples to be effective. We

observed similar results for the Plotly collection, though ReVision generally had 20% higher accuracy on

the Plotly collection than the bl.ocks.org collection. The need for a large training set is further demonstrated

in ReVision’s significantly higher classification accuracy on the Plotly collection for the skewed case (2133

visualizations total), compared to the skew-free cases (110 - 180 visualizations total).
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0.6.8 Combining the Collections

Though our classification techniques are effective for our individual collections, it is also important for Beagle

to accurately classify visualizations when confronted with more than one tool, and even non-visualization

images. In these experiments, we evaluate our classification performance when combining the two collections

(bl.ocks.org and Plotly), as well as when including non-visualization images.

To combine the collections, we selected equal numbers of visualizations from each collection, for each

visualization type. For types that only appear in one collection, we include everything from this collection (e.g.,

all contour charts from Plotly). For types with more examples in one collection than the other, we sampled

from the larger collection to match the size of the smaller one. Using our skew-free setup, we find that our

classification techniques provide 88% overall accuracy.

We also evaluate whether Beagle can differentiate between visualizations and SVG images that are not

visualizations. To do this, we randomly select 250 visualizations from each collection (500 total), and 500

non-visualization images from over 120 different websites. We train a binary classifier on the 1000 images

using Beagle’s SVG-based features. When evaluating with five runs of five-fold cross validation, we find that

our classification techniques provide 95% overall accuracy. Using this binary classifier, Beagle can employ

a two-stage classification process for corpora containing both visualizations and SVG images that are not

visualizations. The binary classifier can be applied in the first stage to filter for non-visualization images, then

Beagle’s multi-class classifier can be applied in the second stage to classify the remaining visualizations.

0.7 Storing and Querying Visualizations

To help designers quickly and easily search for visualizations within our collection, we propose a Data Store

to automatically format the data collected by our Web Crawler and Annotator into a database that can be

queried using a well-known query language: SQL. In this section, we describe the database schema we apply

to our extracted visualizations dataset, show how one can execute queries using the schema, and present three

interesting ways to query the Data Store.

0.7.1 Schema

Our schema supports a variety of analyses, while still being easy to extend, since SVG adoption will likely grow

in the future. The schema contains three groups of tables: Identifier Tables, Mapper Tables, and Information

Tables. Here, we explain the purpose for each table within the schema.

Identifier Tables

We translate repetitive text labels (e.g., visualization types, SVG element types, etc.) to integer ID’s, and

use Identifier Tables to translate between the two. Any Identifier Table is easily extended by appending new

records to the table. Existing text ID’s can easily be edited directly in the corresponding Identifier Table,
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without modifying other tables in the schema. Each Identifier Table has two columns: one for ID’s, and another

to store the corresponding text label.

Collection Types: for collection types (bl.ocks.org and Plotly).

Visualization Types: for visualization types.

Element Types: for SVG element types.

Attribute Types: for SVG element attribute types (e.g., x position, y position, width etc.).

Style Attribute Types: for style attributes (e.g., fill, stroke, stroke-width, etc.).

Mapper Tables

Mapper Tables track relationships between entities, such as mappings between visualizations and their

corresponding SVG elements, or between each SVG element and its attributes. As such, Mapper Tables only

contain relationship pairings, and thus completely ignore details for individual entities (e.g., the position or

size of an SVG element). Each table consists of two columns of ID’s, one column for each side of the pairing.

Collection-Visualizations: maps each collection to its corresponding list of visualizations.

Visualization-Elements: maps each visualization to its corresponding list of elements.

Information Tables

Information Tables store detailed data about each visualization and SVG element that appears in the dataset.

All of the tables are designed to be easy to extend and modify.

Visualizations: This table contains information about each visualization in the collection: the visualiza-

tion ID, visualization type ID, height, width, library used to create the visualization, and corresponding

url. Each row in the table corresponds to a single visualization. If a visualization belongs to multiple

types, the visualization will be listed once for each type it has. For example, if a visualization consists

of a scatter plot overlaid on a geographic map, the visualization will be listed twice, once with the type

ID for scatter, and once with the type ID for geographic map.

Elements: This table contains information about every SVG element in the collection: the element ID,

and element type ID. Each visualization corresponds to one record in the Visualizations Table.

AttributesThis table contains information about specific attributes for the SVG elements stored in the

Elements Table. Since the attributes associated with different types of SVG elements can vary widely,

we create one row in the Attributes Table for each attribute specified in a given SVG element. Thus, for

each SVG element in the Elements Table, we create a number of records in the Attributes Table equal to

the number of attributes specified in the SVG element. Each row records: the attribute type ID, the SVG

element ID, and a string representing the value of to the attribute. A units column is added because SVG

attributes may have varying units (e.g. the "stroke-width" attribute of a path element may be specified

in "px" or "em".)
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Style Attributes: This table is similar to the Attributes Table, with style attributes instead of SVG

attributes. A units column is also included, since units often vary in style attributes.

Schema

Figure 0-8 demonstrates how these tables work together to provide a broad view of the dataset. The orange ta-

bles (element_types and attribute_types) are Identifier tables. The green table (visualization_elements)

is a Mapper table. The black tables (elements and attributes) are Information tables. Figure 0-9 shows

examples of a few tables in our database. The first row of the attributes table contains the width at-

tribute of a single rect element, which is stored in the first row of the elements table. We also see which

visualization contains this rect element in the visualization_elements table (i.e., visualization 1). The

element_types and attribute_types tables are used to identify the rect and width types, respectively.

0.7.2 Using the Schema

In this section, we describe how to write SQL queries that use our database schema.

The Identifier tables are useful for enumerating possibilities within the dataset. For example, to count the

number of different visualization types in the dataset, one can perform a count query on the Visualization

Types table: SELECT count(*) FROM visualization_types.

The Mapper Tables are designed to support efficient group-and-count style queries. For example, to

count the total number of visualizations per collection, one can group the Collection-Visualizations table by

collection ID, and count the number of visualizations in each group: SELECT collection_id, count(*)

FROM visualizations GROUP BY collection_id.

Similarly, to count the total number of circle elements in each visualization, one can filter the Visualizations-

Elements Table for circle elements, then group by visualization ID’s (assuming circle elements have

ID=1): SELECT visualization_id, count(*) FROM visualizations_elements WHERE element_id=1

GROUP BY visualization_id.

Furthermore, we can perform joins between Identifier and Mapper Tables to filter queries using human-

readable text labels, rather than numerical identifiers. For example, to filter the previous query using the

string "circle” instead of the ID for type circle (i.e., 1), one can perform an equality join with the Ele-

ment Types table, using the element ID’s as join keys: SELECT ce.visualization_id, count(*) FROM

visualizations_elements AS ce, element_types AS et WHERE ce.element_id=et.id AND et.label

= “circle” GROUP BY ce.visualization_id.

The Attributes Tables provide the ability to filter and group elements using attribute values, allowing one

to perform more sophisticated analyses.For example, for each visualization, suppose we want to calculate

the maximum number of rect elements with identical widths. To do this, we first group the rect objects by

visualization ID and width:

SELECT ce.visualization_id,
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Figure 0-8: The schema of the database, with arrows pointing to corresponding elements that are used to
connect different tables. Columns labeled with "PK" are the primary keys.
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Figure 0-9: An example of what the data might look like in a subset of our database tables. The highlighted
rows show how these five tables connect.

a.value AS width, count(*)

FROM visualization_elements AS ce,

attributes AS a,

element_types AS et,

attribute_types AS at

WHERE ce.element_id=et.id

AND a.attribute_id=at.id

AND ce.element_id=a.element_id

AND et.type="rect"

AND at.type="width"

GROUP BY ce.visualization_id, at.label

Call this query1. To extend query1 to calculate the maximum number of rect elements with identical

width, we perform an additional group by query, using query1 as a subquery: SELECT visualization_id,

max(width) FROM ( [query1] ) GROUP BY visualization_id,

SELECT visualization_id, max(width)

FROM ([query1])

GROUP BY visualization_id
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where [query1] denotes where query1 above should be inserted as a subquery.

0.7.3 Interesting Queries

In this section, we present several queries to perform on the data store that may be of interest to users. They are

the number of hidden elements in each visualization (where "display" is set to "none" or "visibility" is set to

"hidden" or "collapse"), the average number of colors used per chart type, and the average number of circle

elements per chart type. We give the SQL code, an analysis of the results, and a performance measurement of

each the of queries.

Number of hidden elements per visualization

As we collected D3 visualizations, we observed that many of the ones with hidden elements were animated

or interactive, which inspired this first query. A case where hidden elements are present in an interactive

chart is a geographic map where circle elements of varying radii appear over regions of the map when a

user clicks on a button to display population by region. Thus, hidden units can be used as a way to detect

whether or not a chart supports user interaction or is animated. Note, there may be false negatives as not all

charts with interactivity or animations have hidden units (e.g. animated charts where the components do not

appear/disappear). An analyst who wants to study only non-animated and non-interactive charts would find

this method useful in filtering out charts that do not fit these criteria. Furthermore, a visualization designer

could use this hidden unit detection method to determine how frequently charts of a given type are animated or

interactive, and for charts that are animated or interactive, how many hidden units are used, and utilize these

pieces of information to make design decisions, such as whether to make the chart animated/interactive. An

interesting extension to this query would be to find counts of the types of SVG elements that are hidden, to see

what types of elements are most commonly hidden.

The query shown below calculates the average number of hidden elements present in SVG charts by type

for charts with at least one hidden element. It selects all "style" attributes corresponding to hidden objects

("display", "visibility") and selects all these attributes whose value indicates that the element is hidden (e.g.

when "visibility" is set to "hidden"). These attributes are matched with the elements they modify and then

grouped by visualizations the elements belong in. The number of hidden elements per visualization is counted,

the visualizations are grouped by type, and the average hidden element count is taken by type. Note that this

query looks only at the "style_attributes" table (see the Datastore schema in Figure 0-8). SVG elements have a

"visibility" attribute that also handles their display, and is stored in the "attributes" table. An element is also

hidden if its "visibility" attribute is set to "hidden" or "collapse". Thus, to get an accurate average count of

all hidden elements per chart by type, we would need to union this query on "style_attributes" shown below

with a nearly identical query on the "attributes" table that inspects the "visibility" attribute. In general, since

certain SVG features can be specified by either SVG attributes or within the "style" attribute (such as element

visibility), we plan to update the schema so the "attributes" and "style_attributes" tables are merged into a
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single table, which would simplify attribute querying.

SELECT visualization_types.type, AVG(get_hidden.total_hidden)

FROM visualization_types, visualizations,(

SELECT visualizations.id as vis_id, COUNT(distinct visualization_elements.element_id)

AS total_hidden

FROM visualization_types, visualizations, visualization_elements, style_attributes,

style_attribute_types

WHERE visualizations.id = visualization_elements.visualization_id

AND visualization_elements.element_id = style_attributes.svg_element_id

AND style_attributes.attribute_type_id = style_attribute_types.id

AND ((style_attribute_types.type = ’visibility’

AND (UPPER(style_attributes.value) = ’HIDDEN’

OR UPPER(style_attributes.value) = ’COLLAPSE’))

OR (style_attribute_types.type = ’display’

AND upper(style_attributes.value) = ’NONE’)) group by vis_id) AS get_hidden

WHERE visualization_types.id = visualizations.visualization_type_id

AND visualizations.id = get_hidden.vis_id

GROUP BY visualization_types.type;

This query took 23.4 seconds to run. The full query, which includes a union with a very similar query on the

"attributes" table, should take approximately double this time. The results of the full query are shown in Figure

0-10. In addition, the results of a query that counts the total number of charts by type that had at least one

hidden element, where the six chart types with the highest fractions are shown in Figure 0-11. Full results of

these queries are showing Tables and in the appendix.

Based on the results in Figures 0-11 and 0-10, the fraction of charts with hidden units and the average

number of hidden units for charts with hidden units vary significantly by chart type. Sunbursts and parallel

coordinates had the highest fraction of charts with hidden units. Since presence of hidden units is correlated

with animation or user-interactivity, these results signal that a high percentage of sunbursts and parallel

coordinates in our dataset are animated or interactive. We looked at the 15 sunbursts that had hidden units, and

found that 14 of them were animated or interactive. The animations and interactivity featured relevant text

or other graphical features appearing when users hovered over the sunburst, and additional slices appearing

as users hovered over the visualization. Figure 0-12 illustrates an example of an interactive sunburst with

hidden units, where slices and text appear as the user hovers over the visualization, and the link to this sunburst

is "http://bl.ocks.org/fabiovalse/0dfe7280086553c4a233". However, there were a total of 21 sunbursts with

animations and interactivity, which means 7 of them do not have hidden units. These sunbursts consisted of

animations where the slices changed positions or disappeared after some user action, so there are no units
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Figure 0-10: A bar chart comparing the average number of hidden units per chart (with at least one hidden
unit) for each chart type.
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Figure 0-11: A bar chart comparing the top six chart types with the highest fraction of charts with hidden units.
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that are hidden initially. We looked at the 10 parallel coordinates charts with hidden units and found that they

were all interactive, where when the user highlights a portion of the axes, and a previously hidden rectangle

appears and all lines the visualizations that did not fall within the rectangle vanishes. The process is shown in

Figure 0-13, and visualization can be found at "http://bl.ocks.org/syntagmatic/4446b31c6cd746eedaeb". There

are 12 parallel coordinates visualizations that were animated or interactive, and the visualizations without

hidden units had lines that changed colors over time, but no graphical objects were hidden. Based on the

analysis of these two chart types, we could assume that having hidden units is a strong indicator of user

interactivity or animation, but we will have to look at a larger sample size with more chart types from a variety

of different sources to verify this conclusion. One possible explanation for the high fraction of sunbursts

and parallel coordinates with hidden units is that samples for these two types all come from D3 only (see

Table 9), and D3 has great support for incorporating animation and interactivity, and these additional features

work especially well for sunbursts and parallel coordinates. Parallel coordinates often have a lot of lines, so

giving users the option to select which lines to display increases interpretability, as shown in Figure 0-13.

Having relevant text show up as the user hovers over a region of the sunburst conveys additional information

to the user without cluttering up the already multifarious sunburst, as illustrated in Figure 0-12. The Plotly

library has less support for animation and user interactivity, so Plotly charts are less likely to be animated or

interactive. Geographic maps and bubble charts have samples from Plotly, which is why their fraction of charts

with hidden units are lower. Although heatmaps come from D3 only, heatmaps are best represented without

animations/interactivity, since they rely on blocks of varying hues and gradation of colors to represent data,

and animations and user interactions may distort this display of data.

Out of the charts with hidden units, sunbursts and bubble charts have the highest numbers of hidden units

(see 0-10). Since sunbursts and bubble charts often contain vast numbers of individual graphical markers,

which are usually the target of animations/user interactivity, these charts have the highest numbers of hidden

units per chart. Since scatter plots and bubble charts use a marker for each individual data point, and markers

are usually the target for animations/interactivity, one would expect these to charts to have similar counts of

hidden elements. A possible explanation for this is that the bubble charts with hidden elements have more

markers than scatter plots with hidden elements, since there are not very many bubble charts with hidden units

neither type has very many samples with hidden elements according to Figure 0-11 and Table 18. Namely,

bubble charts have 0.04*70 ≈ 3, while scatter plots have 0.003*3167 ≈ 10.

Average number of colors used per chart type

The average number of unique colors is interesting for studying general trends in color usage across chart

types. Visualization designers can use these trends as guidance when deciding on the number of colors to

include in their visualization. For example, suppose a user want to create a parallel coordinates chart, and is

deciding whether or not to give each line a distinct color. Upon seeing that the average number of distinct

colors used in a parallel coordinates chart is very low, the designer reasons that the lines in parallel coordinates
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Figure 0-12: Illustration of a sunburst with hidden slices and text that appear when the user hovers over a
portion of the visualization. The visualization is initially blank, as shown in the top image, and hidden slices
and text start appearing as the user hovers over portions of the graph, as illustrated in the bottom two images.
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Figure 0-13: Illustration of a parallel coordinates diagram that uses a hidden rectangle to select which lines to
display. All lines are visible initially, as shown in the top image, and a rectangle appears as the user selects
which lines to display, as illustrated in the bottom two images.
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charts are usually the same color, and uses this information to decide on the color scheme of one’s chart. There

are charts with color information specified in external CSS and store no color information in their SVG. For

this query analysis, we filtered out charts with no color specified in the SVG.

To perform this query, "style" attributes associated with color, which are of type "stroke" and "fill" for "style"

are selected from "style_attributes". Their attributes are then matched to their corresponding SVG elements,

and grouped by the visualization the elements belong in. A count of the distinct values (that are not "none") for

these colorful attributes used in each visualization is performed. Note that that only visualizations with at least

one color specified appear in this group. The visualizations are then grouped by type, and the average count

is taken. This SQL query on "style_attributes" table only is shown below. Similar to the previous query on

hidden element count, there are SVG attributes associated with color in the "attributes" table, namely attributes

of type "fill", "stroke", and "color". To attain an accurate account of all unique colors used per chart, one

would need to union this query on "style_attributes" with a nearly identical query on "attributes".

SELECT visualization_types.type, AVG(get_colors.total_colors)

FROM visualization_types, visualizations, (

SELECT visualizations.id as vis_id, COUNT(distinct style_attributes.value) AS total_colors

FROM visualizations, visualization_elements, style_attributes, style_attribute_types

WHERE visualizations.id = visualization_elements.visualization_id

AND visualization_elements.element_id = style_attributes.svg_element_id

AND style_attributes.attribute_type_id = style_attribute_types.id

AND (style_attribute_types.type = ’stroke’ or style_attribute_types.type = ’fill’)

AND UPPER(style_attributes.value) != ’NONE’

GROUP BY visualizations.id) AS get_colors

WHERE visualization_types.id = visualizations.visualization_type_id

AND visualizations.id = get_colors.vis_id

GROUP BY visualization_types.type;

This query took 191.5 seconds to complete. The full query, which includes a union with a very similar query

on the "attributes" table, should take approximately double this time. The results of the full query are shown in

Table 20 in the appendix, and the seven visualization types with highest numbers of distinct colors per chart is

illustrated in Figure 0-14.

Note the counts in Figure 0-14 include colors for all components of the graph, including axes, borders,

tic-marks, etc. Based on these results, the number of colors used vary a lot by chart type with choropleth,

hexabin, and heat map all using a huge number of different colors. This is reasonable since these chart

types use color to represent a dimension of data and hence, make use of a myriad of different hues and color

gradation. This results in a huge number of different colors used in these chart types. The results also show
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Figure 0-14: A bar chart comparing the top seven chart types with the highest counts of distinct colors per
chart.
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that similar chart types use very close numbers of distinct colors, which is to be expected. According to Table

20 in the appendix, donut and pie both used around 10, and while scatter and bubble had a difference of 5,

which is insignificant and could be due to the nature of the chart samples for each type.

Since we filtered out charts with color specified externally, we thought it would be interesting to count the

number of such charts by type. This information is useful to visualization designers in that it helps them figure

out how to style their code. For example, when a designer plans on creating a geographic map and sees that it

is common for geographic maps to have color specified outside of the chart SVG, the designer realizes it is

perhaps better to place the color in an external CSS file for geographic maps.

The first part of this query, namely extracting all the visualizations with color specified in the SVG, is identical

to the above SQL query that calculates the average number of distinct colors. Like before, all attributes associ-

ated with color are located, matched to their corresponding element id, and then grouped by the visualizations

containing these colorful elements. These visualizations have color specified internally and must be filtered

out, so we select all visualizations not in this group of visualizations with color set internally, and group the

selected visualizations by type. The number of visualizations per type is then counted. Like before, the SQL

query for extracting from "style_attributes" only is shown below. To attain an accurate count of visualizations

with colors specified externally, one would need to select all visualizations not in the union of the two queries

extracting visualizations with color specified internally from "style_attributes" and from "attributes".

SELECT visualization_types.type,count(*)

FROM visualization_types, (

SELECT visualizations.id AS vis_id2, visualizations.visualization_type_id

AS type_id2

FROM visualizations

WHERE visualizations.id NOT IN (

SELECT visualizations.id AS vis_id

FROM visualizations, visualization_elements, style_attributes, style_attribute_types

WHERE visualizations.id = visualization_elements.visualization_id

AND visualization_elements.element_id = style_attributes.svg_element_id

AND style_attributes.attribute_type_id = style_attribute_types.id

AND (style_attribute_types.type = ’stroke’ OR style_attribute_types.type = ’fill’)

AND upper(style_attributes.value) != ’NONE’

GROUP BY vis_id)) AS get_external

WHERE visualization_types.id = get_external.type_id2

GROUP BY visualization_types.type;
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This query took 54.7 seconds to complete. The full query should take approximately double this time. The

results of the full query is shown in Table 0-15 in the appendix, and the six charts types with highest counts of

charts with color specified externally illustrated in Figure 0-15.

Figure 0-15: A bar chart comparing the top seven chart types with the highest counts of distinct colors per
chart.

Geographic map had the highest count of charts with colors specified (262) externally according to 0-15. Given

that there are 563 geographic maps total according to Table 7, this is roughly 45 percent of all geographic maps

in the dataset. While there are a lot of geographic maps (379) according to Table 7, there are considerably more

line and bar charts both of which had significantly fewer charts with color specified externally. Geographic

maps usually have graphical elements overlaid on maps (e.g. circles over map regions where the circle size

indicates the population size of the region). Since maps are very difficult to create from scratch, as they require

a lot of detailed path elements, creators of geographic maps likely attained the map portion as an image or

SVG from elsewhere. It could be possible that a large portion of the 379 geographic maps on D3 (Table 7)

reused the SVG map creation code from a small sample of charts on D3, and all these charts specified color in

external CSS, and the geographic map creators that reused these map SVG code followed this coding style
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of specifying color externally. It is also possible that these chart creators created a separate SVG object to

contain the graphical elements overlaid on the copied SVG map, and decided to improve code organization by

having a separate external CSS snippet specifying color for both SVG objects. Line charts and scatter plots

had the next two highest external color specification counts, but there are significantly more charts of each type

(1355 and 3049, respectively), which is roughly 6.5 percent and 2.6 percent, respectively. These percentages

are insignificantly small and could reflect the percent of users who chose to specify the colors externally for

code organization reasons. This number is low because SVG elements have attributes that enable users to

specify colors easily. For instance, circle SVG elements have a "fill" attribute that users can set to specify

the circle’s fill color.

Average number of circle elements per chart type

The average number of circle SVG elements used for each chart type is interesting to visualization designers

because they would like to see how prevalent circle elements are for the chart type they’re creating. This

information will help them decide what components of their visualizations could be represented by circle

elements based on what others have done in their respective visualizations. For example, assume the designer

is creating a graph, and is unsure of how to represent the vertices. Upon seeing the high prevalence of circle

elements, the designer deduces that circle elements are the popular choice for representing graph vertices,

and proceeds to make a decision based on this information. This element usage statistic could be extended to

all graphical SVG elements (path, rect, etc.) to provide users with a comprehensive summary of the types of

elements and their prevalence for each chart type, which will help designers decide what SVG elements to use

in the visualizations they are creating.

To calculate the average number of circle elements, we first counted all the circle elements in the "el-

ements" table. We then grouped all the circle elements by the id of the visualization they belong in and

counted the number of circles for each visualization. We set the count to 0 for visualizations without circle

elements. We then grouped the visualization circle counts by visualization type and took the average. The

SQL statement for this query is as follows:

SELECT avg(circle_count.coalesce), visualization_types.type

FROM (

SELECT coalesce(circles.count,0), visualizations.id, visualizations.visualization_type_id

FROM (

SELECT count(*), visualization_id

FROM visualization_elements

WHERE element_id in (

SELECT elements.id
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FROM elements, element_types

WHERE elements.type_id = element_types.id AND element_types.type = ’<circle>’)

GROUP BY visualization_id) AS circles

FULL JOIN visualizations on visualizations.id = circles.visualization_id)

AS circle_count

INNER JOIN visualization_types ON visualization_types.id = circle_count.visualization_type_id

GROUP BY visualization_types.type;

This query took 7.65 seconds to complete, and output of this query gives the average number of circle

elements per visualization for each chart type. The seven chart types with the highest counts of circle

elements per chart is shown in Figure 0-16. Full results are shown in Table 22 in the appendix.

Figure 0-16: A bar chart comparing the top seven chart types with the highest counts of circle elements per
chart.

Based on the results in Figure 0-16, the number of circle elements used varies greatly by chart type with

bubble, graph, geographic map, and voronoi all having high counts of circle elements. This is reasonable

since circle elements of varying radii are the markers representing data in bubble charts, and circle
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elements are valid choices for vertices in graphs, and for demarcating cities and centers of mass for geographic

maps and voronoi charts, respectively. The results also show that circle elements are a popular choice for

vertices in graphs. Surprisingly, scatter plots have a relatively low circle count. One would expect their

circle counts to be comparable to that of bubble charts, since they both use circular markers to represent

data. This discrepancy is due to the fact that Plotly uses path elements to represent all graphical markers, and

hence, the scatter plot markers are path elements for Plotly charts. There is huge number of Plotly scatter

charts (3049 according to Table 9) in the dataset and no bubble charts, as shown in Table 1, while there are

only 118 D3 scatter charts that actually use circle elements to represent data. Hence, this significant skew

towards Plotly scatter charts brought the average circle count for scatter charts down. We should note that

the results of the query on our dataset is not representative of trends on the general web, as Plotly is heavily

biased towards path elements, and Plotly charts constitute a significantly majority of our dataset.

0.8 Related Work

Beagle spans several areas of research: web mining, data-driven design, and automated visualization classifica-

tion. In this section, we highlight related projects in these areas.

Within web mining, Beagle is closely related to systems that: 1) extract visualizations or web page designs,

and 2) make the resulting data accessible via query interfaces. Regarding web page design, Webzeitgeist [22]

and D.Tour [29] provide a query interface to explore web page designs. Within visualization, Saleh et al. [30]

propose techniques for similarity-based search of infographics collected from the web. However, to the best of

our knowledge, Beagle is the first to automatically identify and extract visualizations from general webpages.

Beagle is motivated by several existing data-driven design systems. The most relevant involve: 1) automated

re-design of web pages and visualizations, and 2) computational models to describe specific design elements.

The Bricolage system learns mappings between web page designs, and uses them to transfer the layout of one

page to another. The ReVision system [31] extracts data from bar and pie charts, and re-renders this data using

different visualization types. Reinecke et al. model the visual complexity and colorfulness of web pages, in

order to predict first impressions of a web page. Harrison et al. [18] extend this approach to infographics.

Beagle provides automated techniques to build the large input corpora needed by data-driven visualization

techniques.

Beagle also extends existing work in the automated classification of visualizations [32, 31, 26, 20]. Most

projects focus on classifying raster images of charts [31, 26, 20]. Prasad et al. [26] and The ReVision system

[31] apply computer vision techniques to extract features from bitmap images for classification. Huang and Tan

[20] extract graphical marks from raster images, and use them to classify visualizations. However, extracting

data from bitmap images is imperfect, and only works for a small number of chart types [31]. Shao and

Futrelle [32] analyze vector images from PDF’s to classify 36 images, representing five visualization types.

We extend existing work by calculating a suite of statistics over SVG as classification features. Our features

apply to any SVG image, and can be used to accurately classify thousands of visualizations, and as many as 22
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different visualization types.

0.9 Discussion and Conclusion

We presented Beagle, an automated system for collecting, labeling and analyzing visualizations created on

the web. The Beagle architecture has three stand-alone components. The Web Crawler filters web pages to

locate and extract SVG-based visualizations, and was used to extract over 17000 visualizations. The Annotator

uses novel SVG-focused classification techniques, and achieves 82% classification accuracy, in a multi-class

classification test with 22 visualization types. The Data Store translates the final collection to relational format

for storage in a database, and supports searching of the database using a well-known query language (SQL).

However, the system can be improved further. In this section, we discuss two limitations to Beagle, and areas

for future work.

One drawback to the Beagle Web Crawler is that a human has to specify Beagle code snippets for each

visualization library of interest. As a result, a human has to manually update Beagle when a new visualization

library needs to be added. A future direction could be to change how these code snippets are identified, to

allow for automation. One possible approach is to search the JavaScript code for variables that correspond to

SVG objects in the DOM, and use these variables as indicators of code that could be generating visualizations.

There are also limitations in the analyses our Data Store supports. For example, when performing a retro-

spective analysis of visualizations, one lacks the ability to extract the motivation for why these visualizations

were created. One way to address this is to analyze the text of the html page containing each visualization. But

it is generally challenging to infer a person’s motivation for creating a particular visualization after-the-fact.

0.9.1 Future Work

The goal of Beagle is to enable data-driven visualization design. Beagle can collect and classify thousands of

visualizations, and can be extended with existing techniques [31, 17] to collect the corresponding datasets for

these visualizations. The extracted visualization-dataset pairs can then be used as input for machine learning

techniques, to predict how new datasets should be visualized in the future.

Another avenue for future work is to study how visualizations are designed through code. Our Web Crawler

can be augmented to save additional assets from webpages. Visualization techniques could be captured through

JavaScript code and then consolidated into “summary” snippets, similar to the techniques used in the Overcode

system [15]. With design “summaries”, designers could look up the most popular ways to create certain

visualizations, and study differences (and similarities) in designs across visualization types.
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Chart Type Count Libraries
chord 2 Raphael
bar 45 D3, Raphael
heatmap 1 D3
area 7 D3
graph 11 D3, Raphael
treemap 1 R3
scatter 27 Jit, Raphael
geographic map 17 D3, Raphael
donut 41 D3, Raphael
sankey 1 D3
line 27 D3, Jit, Raphael
bubble 9 D3, Raphael

Table 10: Table showing the counts of each visualization type and the libraries creating that type of all extracted
SVG visualizations from the collection of 20 million urls.

0.10 Appendix

.1 General Web Search Results

We decided to look into the urls we filtered to make observations on how people visualize charts on the general

web. We performed a preliminary analysis on 10 million urls selected randomly from the Common Crawl url

index, and discovered that 25.4k webpages called a chart-making library. However, only 20.5k of these urls had

an SVG element, and most of the pages (84.7 percent) with SVG elements had SVG charts, while the rest had

logos and no charts. This means 19.3 percent of those who called a SVG chart library do not use it, which could

be due to removal of logos and/or charts that were previously on the page, or preparation for future addition of

logos and/or charts. We noticed that a lot of filtered urls came from the same small number of domains; we

will refer to these domains as "repetitive domains". An example of a repetitive domain is "stackexchange.com",

where vast number of filtered urls, such as "http://tex.stackexchange.com/users/888/trevis?tab=activity" had

this domain. The 17.4k webpages that contain an SVG chart mostly came from repetitive domains and were

hence, predominantly a single chart type. The repetitive domains were dominated by user profiles on stack

exchange and other forums, and all these forums pages contain line charts that show the user’s activity, as

illustrated in Figure -17. A few other frequently occurring domains include weather and stock forecast sites

that used line charts to illustrate their data. To attain a greater variety of visualization types from the general

web, we decided to create a new dataset from the Common Crawl that did not include any urls with these

repetitive domains. This dataset contained 20 million such urls that were sampled randomly. These urls were

filtered through the code analyzer and yielded 510 total pages that contain chart-making code, and the HTML

analyzer extracted 4720 SVG elements from these pages. However, a large portion (45.3 percent) of these

SVG elements were still logos, and Table 10 below shows the counts for each visualization type found and the

libraries creating that type in the set of extracted SVG visualizations.
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Figure -17: A line chart showing user activity from stack exchange, the most frequently occurring domain in
the dataset, representing 73.8 percent of pages with SVG visualizations.

It can be concluded that a high percentage of users utilize these chart-making libraries to create logos for

their websites, which makes these visualization libraries a convenient tool for SVG logo/icon creation. In

addition, only three out of the eleven visualization libraries were used to create visualizations in the 20 million

url collection according to Table 10, which means the other eight libraries are perhaps rarely used or utilized

mostly for logo creation. D3 and Raphael were both used in large numbers of visualization types, which is to

be expected since they are both well-known and support a myriad of different visualization types.

.2 Path "d" attribute

The "d" attribute of a path element is a string with instructions for drawing the trajectory of the path [13].

The string consists of a combination of the following instructions: moveto, lineto, curveto, arcto, and closepath.

"Moveto" corresponds to picking up the drawing instrument and moving it to another position in the SVG

canvas without drawing a line between the current and destination positions. It is specified as "M x,y", in the

"d" attribute, where "x" and "y" are the destination coordinates that become the new current location. Most

"d" attributes start with a "moveto" command to specify the starting position of the SVG element. "Lineto" is

similar to "Moveto" except a line is drawn between the previous and current locations. "Lineto" is specified

as "L x,y", where "x" and "y" are destination coordinates, and "H x" and "V y" are used for horizontal and

vertical lines, respectively, where "x" specifies the x coordinate of the endpoint of the horizontal line, and

"y" specifies the coordinate of the endpoint of the vertical line. "Curveto" draws quadratic and cubic bezier

curves,and bezier curves are parametric curves drawn by polynomial functions [12]. Our features focus on

quadratic curves only, and they are specified as "Q cx,cy,x,y", where "cx" and "cy" are x,y coordinates of the

58



control point, and "x" and "y" are x,y coordinates of the destination location (relative to the starting position).

"Arcto" declares an elliptical arc and is specified as "A rx,ry, xAxisRotate, LargeArcFlag, SweepFlag x,y",

where "rx" and "ry" specify the radius in the x and y directions, respectively, "xAxisRotate" changes the x-axis

relative to the current reference frame, "LargeArcFlag" has a value of 0 if the smaller arc between the two

endpoints is drawn and 1 if the larger arc is drawn. "SweepFlag" is 1 if the arc is swept in the clockwise

direction and 0 for the counter-clockwise direction. Finally, "x" and "y" are the coordinates of the arc’s end

(destination) point. "ClosePath" draws a straight line from the current position to the first point in the path,

creating a closed shape. It is specified with a "z" in the "d" attribute.

.3 Single Feature Descriptions and Classification Accuracies

This section contains tables describing all 119 features we came up with, including the features that were

trimmed. In addition to the brief description, the accuracy of the classifier using that feature only is included.
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Feature Feature Description D3 Plotly
Vertical Axes Count Number of vertical axes lines 0.43736968724939856 0.35208626347866856
Horizontal Axes
Count

Number of vertical axes lines 0.4202085004009623 0.3734756349797303

Circle Count Count of all circle elements 0.3945469125902165 0.19484294421003281
Maximum Circle X x-coordinate of the circle with the largest

x-coordinate
0.371130713712911 0.1949367088607595

Minimum Circle X x-coordinate of the circle with the smallest
x-coordinate

0.36150761828388134 0.19484294421003281

Average Circle X
Count

Average count of each x-coordinate by oc-
currence

0.3626303127506014 0.1949367088607595

Circle X Count Vari-
ance

Variance in count of each x-coordinate by
occurrence

0.33039294306335204 0.19146741678387247

Circle Unique X
Count

Count of all unique x-coordinates for cen-
ters

0.3635926222935044 0.1944678856071261

Maximum Circle Y y-coordinate of the circle with the largest
y-coordinate

0.36728147554129914 0.19503047351148617

Minimum Circle Y y-coordinate of the circle with the smallest
y-coordinate

0.3696872493985565 0.19465541490857946

Average Circle Y
Count

Average count of each y-coordinate by oc-
currence

0.3563753007217322 0.1945616502578528

Circle Y Count Vari-
ance

Variance in count of each y-coordinate by
occurrence

0.3355252606255012 0.18931082981715894

Circle Unique Y
Count

Count of all unique y-coordinates for cen-
ters

0.3648757016840417 0.1945616502578528

Average Circle Fill
Color Count

Average count of each fill color by occur-
rence

0.3504410585404972 0.18912330051570558

Circle Fill Color
Count Variance

Variance over count of each fill color by
occurrence

0.3339214113873296 0.1875293014533521

Maximum Circle Ra-
dius

Radius of circle with the largest radius 0.3870088211708099 0.19465541490857946

Maximum Circle Ra-
dius Count

Count of the most frequently occurring ra-
dius value

0.38941459502806736 0.1945616502578528

Circle Radius Vari-
ance

Variance over all radii 0.3457898957497995 0.19362400375058603

Table 11: Definitions of all circle and axes features used followed by the classification accuracy of using that
feature only on the D3 and Plotly dataset. Note all attributes mentioned refer to the SVG element targeted
by the feature only. For example the "Average count of each x-coordinate by occurrence" description for the
"Average Circle X Count" feature refers the the x-coordinates of circle elements only.
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Feature Feature Description D3 Plotly
Path Count Total number of path elements 0.47506014434643146 0.5719643694327239
Filled Path Count Total number of path elements with fill 0.3151563753007217 0.6913267698077825
Maximum Path X x-coordinate of the path element starting at

the largest x-position
0.4415396952686447 0.6845757149554618

Minimum Path X x-coordinate of the path element starting at
the smallest x-position

0.42919005613472333 0.6503516174402251

Average Path X
Count

Average count of each x-coordinate by oc-
currence

0.454691259021652 0.5723394280356305

Path X Count Vari-
ance

Variance in count of the x-coordinate for
each starting position by occurrence

0.28291900561347233 0.5336146272855133

Path Unique X Count Count of all unique x-coordinates for start-
ing positions

0.4343223736968725 0.5838724800750117

Maximum Path Y y-coordinate of the path element starting at
the largest y-position

0.40064153969526867 0.6631973745897797

Minimum Path Y y-coordinate of the path element starting at
the smallest y-position

0.4202085004009623 0.6187529301453352

Average Path Y
Count

Average count of each y-coordinate by oc-
currence

0.4068965517241379 0.5916549460853259

Path Y Count Vari-
ance

Variance in count of the y-coordinate for
each starting position by occurrence

0.2814755412991179 0.5757149554617909

Path Unique Y Count Count of all unique y-coordinates for start-
ing positions

0.38011226944667204 0.5759024847632442

Minimum Path
Stroke Width

Stroke width of the path element with the
smallest stroke width

0.32028869286287087 0.4141584622597281

Average Path Stroke
Color Count

Average count of each stroke color by oc-
currence

0.3839615076182839 0.5065166432255039

Path Stroke Color
Count Variance

Variance in count of each stroke color by
occurrence

0.3153167602245389 0.4251289263947492

Path Unique Stroke
Color Count

Number of unique stroke colors used 0.3980753809141941 0.5807782466010314

Maximum Path
Stroke Width

Largest stroke width used in a path element 0.41459502806736165 0.4344116268166901

Table 12: Table showing single feature descriptions and classification accuracy results for path elements.
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Feature Feature Description D3 Plotly
Minimum Path
d-attribute Length

Minimum number of characters in d-
attribute out of all path elements

0.42502004811547717 0.5462728551336147

Maximum Path d-
attribute Length

Maximum number of characters in d-
attribute out of all path elements

0.5080994386527666 0.8324425691514299

Average Path d-
attribute Length

Average number of characters in d-attribute
of all path elements

0.4423416198877306 0.7250820440693858

Path d-attribute
Length Variance

Variance over number of characters in d-
attribute of all path elements

0.3546110665597434 0.5528363806844819

Maximum Closed
Path d-attribute
Length

Maximum number of characters in d-
attribute out of all closed path elements

0.4372093023255814 0.8973277074542897

Minimum Closed
Path d-attribute
Length

Minimum number of characters in d-
attribute out of all closed path elements

0.4056134723336006 0.6986404125644632

Average Closed Path
d-attribute Length

Average number of characters in d-attribute
of all closed (d-attribute ending with z char-
acter) path elements

0.4118684843624699 0.849789029535865

Closed Path d-
attribute Length
Variance

Variance over number of characters in d-
attribute of all closed path elements

0.326383319967923 0.483075480543835

Average Path Fill
Color Count

Average count of each fill color by occur-
rence

0.29895749799518845 0.6280356305672762

Path Fill Color Count
Variance

Variance in count of each fill color by oc-
currence

0.30681635926222933 0.36802625410220347

Path Unique Fill
Color Count

Number of unique fill colors used 0.3143544506816359 0.6986404125644632

Maximum Circular
"A" Arc Counts per
Path Element

Maximum number of circular arcs in any
path element

0.3339214113873296 0.37674636661978433

Path Rx Variance Variance over rx attributes of arcs in all
paths

0.34947874899759424 0.296952648851383

Path Ry Variance Variance over ry attributes of arcs in all
paths

0.35028067361668 0.29554617909048286

Path "Q" Curve
Count

Count of all "Q" Curves 0.33327987169206097 0.25419596812001877

Minimum "Q" Curve
Count Per Path

"Q" Curve count for the path with the
fewest "Q" Curves

0.40769847634322376 0.1940928270042194

Average "q "Arc
Count Per Path

Average number of "Q" Curves per path 0.33360064153969526 0.2547585560243788

Table 13: Continuation of table showing single feature descriptions and classification accuracy results for path
elements.
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Feature Feature Description D3 Plotly
Rect Count Count of all rect elements 0.41379310344827586 0.556305672761369
Maximum Rect X x-coordinate of the rect with the largest x-

coordinate
0.40272654370489175 0.5479606188466948

Minimum Rect X x-coordinate of the rect with the smallest
x-coordinate

0.3991980753809142 0.19034224097515237

Average Rect X
Count

Average count of each x-coordinate by oc-
currence

0.3767441860465116 0.2505391467416784

Rect X Count Vari-
ance

Variance in count of each x-coordinate by
occurrence

0.33793103448275863 0.4923581809657759

Rect Unique X Count Count of all unique x-coordinates used 0.36150761828388134 0.4360056258790436
Minimum Rect Y y-coordinate of the rect with the smallest

y-coordinate
0.3927826784282277 0.18724800750117207

Maximum Rect Y y-coordinate of the rect with the largest y-
coordinate

0.4296712109061748 0.4840131270511017

Average Rect Y
Count

Average count of each y-coordinate by oc-
currence

0.3942261427425822 0.4052508204406939

Rect Y Count Vari-
ance

Variance in count of each y-coordinate by
occurrence

0.3624699278267843 0.4935771214252227

Rect Unique Y Count Count of all unique y-coordinates used 0.38283881315156376 0.46591654946085326
Average Rect Fill
Color Count

Average count of each fill color by occur-
rence

0.35797914995990376 0.49413970932958273

Rect Fill Color Count
Variance

Variance in count of each fill color by oc-
currence

0.3307137129109864 0.47801218940459445

Table 14: Table showing single feature descriptions and classification accuracy results for rect elements.
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Feature Feature Description D3 Plotly
Line Count Total number of line elements 0.4513231756214916 0.19371776840131272
Maximum Line X x-coordinate of the line starting at the great-

est x-position
0.4423416198877306 0.19512423816221283

Minimum Line X x-coordinate of the line starting at the small-
est x-position

0.44266238973536487 0.19474917955930615

Average Line X
Count

Average count of each x-coordinate by oc-
currence

0.44025661587810744 0.19437412095639944

Line X Count Vari-
ance

Variance in count of each x-coordinate by
occurrence

0.4400962309542903 0.19474917955930615

Line Unique X Count Count of all unique x-coordinates for start-
ing points

0.4663993584603047 0.1941865916549461

Maximum Line Y y-coordinate of the line starting at the high-
est y-position

0.4171611868484362 0.1949367088607595

Minimum Line Y y-coordinate of the line starting at the low-
est y-position

0.44346431435445066 0.1949367088607595

Average Line Y
Count

Average count of each y-coordinate by oc-
currence

0.43817161186848436 0.19540553211439288

Line Y Count Vari-
ance

Variance in count of each y-coordinate by
occurrence

0.4463512429831596 0.19503047351148617

Line Unique Y Count Count of all unique y-coordinates for start-
ing points

0.434803528468324 0.19474917955930615

Average Line Stroke
Color Count

Average count of each stroke color by oc-
currence

0.336327185244587 0.19484294421003281

Line Stroke Color
Count Variance

Variance over count of each stroke color by
occurrence

0.3151563753007217 0.19165494608532582

Text Word Count Number of text elements that are not num-
bers

0.4171611868484362 0.5379278012189405

Text Unique X Count Number of unique x-coordinates used 0.3199679230152366 0.42090951711204877
Text Unique Y Count Number of unique x-coordinates used 0.3190056134723336 0.4301922175339897
Maximum Text Font
Size

Largest font size used in text elements 0.31836407377706494 0.2677918424753868

Minimum Text Font
Size

Smallest font size used in text elements 0.31836407377706494 0.2717299578059072

Text Font Size Vari-
ance

Variance in font sizes over all text elements 0.3119486768243785 0.1925925925925926

Text Unique Font
Size Count

Number of unique font sizes used over all
texts

0.31980753809141943 0.370182841068917

Table 15: Table showing single feature descriptions and classification accuracy results for line and text
elements.
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Feature Feature Description D3 Plotly
Circle X Variance Variance over all x-coordinates for circles 0.3629510825982358 0.19231129864041258
Circle Y Variance Variance over all y-coordinates for circles 0.36808340016038493 0.1894045944678856
Minimum Circle Ra-
dius

Radius of circle with the smallest radius 0.37866880513231754 0.19474917955930615

Path X Variance Variance over x-coordinates of starting po-
sitions of all paths

0.32862870890136325 0.6164088138771683

Path Y Variance Variance over y-coordinates of starting po-
sitions of all paths

0.31242983159583 0.5618377871542428

Circular Arc Count Total number of circular arcs (a arcs where
rx = ry) in all path elements

0.3467522052927025 0.48251289263947494

Minimum Circular
Arc Count per Path
Element

Minimum number of circular arcs in any
path element

0.4296712109061748 0.2904828879512424

Average Circular Arc
Counts per Path Ele-
ment

Average number of circular arcs per path
element

0.34418604651162793 0.5129864041256447

Minimum Non-
circular Arc Count
per Path Element

Minimum number of non-circular arcs in
any path element

0.4041700080192462 0.19071729957805908

Path Unique Rx
Count

Count of unique values for the rx attributes
of a arcs in paths

0.34017642341619886 48598218471636195

Path Unique Ry
Count

Count of unique values for the ry attributes
of arcs in paths

0.3408179631114675 0.48748241912798873

Maximum Number of
"Q" Curves Per Path

"Q" Curve count for the path with the most
"Q" Curves

0.2521331458040319 0.2521331458040319

Path z Count Total number of occurrences of z in d at-
tributes of all path elements

0.39855653568564553 0.6071261134552274

Maximum Path Dis-
placement

Largest distance between the start and end
points of a path

0.37658380112269446 0.7199249882794186

Table 16: Table showing unused single feature descriptions and classification accuracy results for circle and
path elements.
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Feature Feature Description D3 Plotly
Rect X Variance Variance over all y-coordinates 0.38235765838011226 0.5443975621190811
Rect Y Variance Variance over all y-coordinates 0.4234161988773055 0.5355836849507736
Minimum Rect Width Width of the narrowest rect element 0.3648757016840417 0.1875293014533521
Maximum Rect
Width Count

Count of the most frequently occurring
width

0.3648757016840417 0.18734177215189873

Average Rect Width
Count

Average count of each width value by oc-
currence

0.3648757016840417 0.18762306610407875

Rect Unique Width
Count

Count of all unique widths 0.39599037690457095 0.4378809188935771

Rect Unique Height
Count

Count of all unique height 0.39823576583801124 0.4481950304735115

Minimum Rect
Height

Height of the shortest rect element 0.3648757016840417 0.4488513830285982

Maximum Rect
Height Count

Count of the most frequently occurring
height

0.3648757016840417 0.1875293014533521

Average Rect Height
Count

Average count of each height value by oc-
currence

0.3648757016840417 0.1874355368026254

Line X Variance Variance over all y-coordinates 0.43416198877305534 0.19465541490857946
Line Y Variance Variance over all y-coordinates 0.44170008019246193 0.19503047351148617
Minimum Line
Length

Length (distance between endpoints) of the
shortest line

0.44891740176423417 0.19474917955930615

Maximum Line
Length

Length of the longest line 0.45501202886928627 0.19362400375058603

Line Length Variance Variance over lengths of all lines 0.3491579791499599 0.19484294421003281
Vertical and Horizon-
tal Line Count

Total number of lines that are vertical or
horizontal

0.42004811547714516 0.1949367088607595

Circle to Path Ratio Ratio of the number of circle elements to
the number of paths

0.32991178829190054 0.19540553211439288

Circle to Line Ratio Ratio of the number of circle elements to
the number of lines

0.3931034482758621 0.1945616502578528

Table 17: Table showing unused single feature descriptions and classification accuracy results for rect and line
elements, as well as element count ratios.
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.4 Datastore Query Results

This section contains the outputs of all the complex queries discussed in Section 0.7.3.
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fraction type
0.53571 sunburst
0.43478 parallel_coordinates
0.10000 graph
0.04286 bubble
0.03125 heat_map
0.02381 area
0.01847 geographic_map
0.00593 bar
0.00446 donut
0.00379 scatter
0.00369 line
0.00000 box
0.00000 chord
0.00000 contour
0.00000 filled_line
0.00000 hexabin
0.00000 pie
0.00000 radial
0.00000 sankey
0.00000 stream graph
0.00000 treemap
0.00000 voronoi
0.0000 waffle
0.0000 word_cloud

Table 18: Fractions of charts with hidden elements (left column) per chart type (right column)

avg type
377.0000000000000000 bubble
214.7333333333333333 sunburst
47.9166666666666667 scatter
28.8000000000000000 parallel_coordinates
23.4285714285714286 geographic_map
13.2000000000000000 line
11.5000000000000000 graph
6.1111111111111111 bar

1.00000000000000000000 heat_map
1.00000000000000000000 area
1.00000000000000000000 donut

Table 19: Average number of hidden elements per chart with at least one hidden element (left column) for
each chart type (right column)
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avg type
259.3241379310344828 choropleth
128.3181818181818182 hexabin
127.0588235294117647 heat_map
94.0536004331348132 other
68.3333333333333333 treemap
44.8470588235294118 scatter_geo
35.2571428571428571 voronoi
32.5724637681159420 contour
28.7647058823529412 sunburst
27.5000000000000000 word_cloud
22.2727272727272727 sankey
20.9743589743589744 bubble
20.1666666666666667 graph
18.0874316939890710 geographic_map
15.5980861244019139 filled_line
15.5226458321094989 scatter
12.7307692307692308 radial
10.9687500000000000 chord
10.8669724770642202 donut
10.0400000000000000 waffle
9.9090909090909091 pie
9.0782301810339194 line
7.8565400843881857 box
7.6725123903926801 bar
7.4375000000000000 stream_graph
6.2162162162162162 area
2.4285714285714286 parallel_coordinates

Table 20: Average number of distinct colors per chart (left column) with at least one color for each chart type
(right column).

avg type
262 geographic_map
115 other
89 line
79 scatter
69 bar
38 bubble
17 area
15 parallel_coordinates
14 voronoi
12 graph
6 donut
5 chord
5 box
5 radial
2 hexabin
1 sankey
1 stream_graph
1 filled_line

Table 21: Counts of chart per type (left column) with color specified externally (right column).
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avg type
1166.8048780487804878 bubble
368.9838709677419355 graph
308.0051020408163265 geographic_map
210.0857142857142857 voronoi
91.1000000000000000 radial
14.9117647058823529 chord
13.7221366204417052 other
8.8609244961395769 scatter
1.4504811791935680 line

0.97183098591549295775 box
0.76190476190476190476 area
0.63636363636363636364 hexabin
0.62500000000000000000 waffle
0.25000000000000000000 sunburst
0.15178571428571428571 donut
0.05699745547073791349 bar
0.00000000000000000000 word_cloud
0.00000000000000000000 contour
0.00000000000000000000 filled_line
0.00000000000000000000 stream_graph
0.00000000000000000000 treemap
0.00000000000000000000 choropleth
0.00000000000000000000 scatter_geo
0.00000000000000000000 parallel_coordinates
0.00000000000000000000 sankey
0.00000000000000000000 pie
0.00000000000000000000 heat_map

Table 22: Average number of circle SVG elements per chart (left column) for each chart type (right column).
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