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ABSTRACT

Sperm transport in the human cervix is a vital step in the process of
fertilization and the roles of the cervix and the cervical mucus have been
extensively discussed and investigated. A mechanism to explain sperm trans-
port through the cervical mucus has been suggested by E. Odeblad. The
cervical mucus was found to consist of large macromolecules suspended in a
water-like fluid. At mid-cycle, the time of maximum fertility, these
molecules align themselves and according to Odeblad oscillate because of
thermal agitation. According to Odeblad this alignment of the macromolecules
furnishes channels of low viscosity fluid through which the sperm may pass
with relative ease aided by the oscillations of the macromolecules.

A mathematical model of Odeblad's proposed mechanism of sperm transport
in the cervix is presented which idealizes the geometry as a self-propelling
infinite sheet in a two-dimensional channel. The sheet propels itself by
propagating waves of lateral displacement. The channel walls are allowed to
vibrate as proposed by Odeblad as right traveling waves, left traveling waves
or standing waves. The propulsive velocity and energy expended by the sheet
and flow rates in the channel are computed. These results are presented and
conclusions are given concerning the effect of wall oscillations on self
propelling sheets. The conclusions of Odeblad's theory are contrasted with
the results of the model.
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Introduction

The passage of spermatozoa through the human cervix is a vital step in

the process of fertilization. Sperm deposited in the vagina must pass

through the mucus filling the cervix. The mechanism of transport in the

cervix and the function of the cervix in fertility has been the subject of

much recent research (Davajan, et.al., 1970; Moghissi and Blandau, 1972).

A survey of current literature examining the structure and function of

the cervix and its secretions is presented. In vitro and in vivo

experimental studies of sperm transport to explain at times conflicting

observed phenomena are also discussed.

One mechanism, proposed by Odeblad (1962), has attempted to explain the

rate of passage of sperm through the cervical mucus. The mucus has been

shown to be anisotropic. This anisotropy is caused by long chain molecules.

These macromolecules align themselves at midcycle and, according to Odeblad,

vibrate. Odeblad (1962) suggests that the vibration aids the passage of

sperm through the cervical mucus plug.

A mathematical model is formulated to investigate the hydrodynamics of

this theory. An idealized geometry of an infinite sheet in a two-dimensional

channel is used. The channel is assumed to be symmetric with waves on the

walls. The sheet, representing the sperm, is propelled by passing waves down

itself. This propulsion was first shown to be possible in low Reynolds

number flow by G. I. Taylor (1951).

Using this model, results are obtained for the propulsive velocity of

the sheet, the energy dissipated by the sheet, and the flow rate in the

channel. For the case of zero amplitude wall motion, the solution reduces
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to results presented by Reynolds (1965) for an oscillating sheet between flat

rigid walls. Also, the present solution has overcome the questions of

uniqueness which Reynolds did not resolve.

Finally, a discussion of the analysis is given in view of Odeblad's

(1962) theory, and alternative mechanisms are considered for sperm transport

through the cervix.
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Section I: Structure and Function of Cervical Mucus

The role of the cervix and of the cervical mucus in sperm transport

has been the object of much investigation and controversy. In this section,

a review of some important aspects of cervical structure and the properties

of the cervical mucus is presented. A discussion of in vitro measure-

ments of sperm penetration in cervical mucus and evidence for the active

and the passive role of the cervix in transport is also given. The section

concludes with a discussion of an interesting theory due to Odeblad, who

assigns an active role to the components of cervical mucus in sperm trans-

port. This theory provides the motivation for the hydrodynamic study which

follows in Section II. Additional reviews of the role of the cervix in

sperm transport are presented by Davajan, et. al. (1970), Moghissi (1969,

1971), and Sobrero (1963). (A bibliography has been prepared by Reproduc-

tion Research Information, Ltd., 1970).

The uterine cervix is a complex anatomical structure. The epithelium

is composed of secretory and ciliated cells (Hafez and Kanagawa, 1972).

The secretory cells are grouped in crypts or clefts resembling gland-like

structures (see Fig. 1-1). These secretory sites are not glands but rather

an extension of the endocervical mucosa (Moghissi, 1972). It has been

reported that there are approximately 100 of these crypts lining the

cervix (Odeblad, 1966). These clefts may run longitudinally, transversely

or obliquely, but they will never cross each other (Moghissi, 1972).
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Secretory Cells

Ciliated Cells

Lumen of Cervix

Fig. I-1

Also, these structures are responsible for the creation of the mucus fill-

ing the cervical lumen (Sobrero, 1969).

According to a recent study by Hafez and Kanagawa (1972), the ciliated

cells are arranged singly or in groups. These cells contain well-developed

kinocilia and comprise about 5% - 9% of the cervical epithelia. When

observed in tissue culture, the cilia are seen to beat with an effective

stroke which is toward the vagina (Fig. 1-2). The principal function of the

ciliated cells seems to be the transport of the secreted mucus into the

cervical lumen (Hafez and Kanagawa, 1972).

The structure and secretory activity of the cervix undergo cyclic

changes in response to hormonal stimulation of the ovaries (Fig. I- 3).
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Direction of Flow

Vagina

Secretory Crypt

Fig. 1-2

During the preovulatory phase of the cycle, estrogen production increases.

The external os of the cervix is seen to dilate under this influence

(Bergman, 1953; Marcus and Marcus, 1968; Odeblad, 1966; Sobrero, 1969).

The cervical mucus also undergoes changes in chemical composition and in

physical properties such as spinnbarkeit and viscosity. (Spinnbarkeit is

the ability of the mucus to be drawn into threads). During the normal men-

strual cycle, the thread length can range from 1 cm. preovulation to 15 cm.

near ovulation (Moghissi, 1966). Karni, et.al. (1971) measured the Newtonian

viscosity through the cycle and found a sizeable decrease to occur near

ovulation. These findings are in agreement with Odeblad's (1966)
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Fig. 1-3

data and the qualitative observations of Moghissi (1966) and others. Karni,

et. al. (1971) also found that the decrease in viscosity of the mucus

correlated with the basal body temperature rise (BBT) and the luteinizing

hormone (LH) surge, thus acting as an indicator of ovulation.
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Corresponding to the observed physical properties of mucus, Odeblad

(1969) has identified five types of cervical secretion. These are summar-

ized in Table I-1. Since sperm penetration is of greatest importance at

Table I-1

or near ovulation, attention will be centered on Type E and G mucus. In

the preovulatory phase, the mucus secretion becomes clear, watery, and trans-

lucent (Bergman, 1953; Gibbons and Mattner, 1966; Moghissi, 1972; Sobrero,

1967). The volume of mucus produced rises from the 20-60 mg/day post-

ovulatory to a possible maximum of 700 mg/day (Moghissi, 1972). Accompany-

ing the rise in mucus production, Schumacher (1970) has observed changes in

the biochemistry of cervical mucus.

11

E Estrogenic Preovulatory Mucus

G Gestrogenic, Postovulatory Mucus

H

H Virginal Mucorrhea (more free-flowing
than Type E)

H2 Prolonged Estrogenic Treatment

H Intense Estrogenic Treatment

Q Chronic Inflammatory Conditions

V Accute Inflammatory Conditions



The study of the biochemistry of cervical mucus has led to the identi-

fication of two components. These have been designated the low viscosity

and high viscosity portions. Studies of the low viscosity component have

shown it to consist of soluble inorganic salts, low molecular weight sugars,

and serum proteins dissolved in water (Davajan, et. al., 1970; Elstein

and MacDonald, 1970; Moghissi and Syner, 1970; Schumacher, 1970; Odeblad

and Rosenberg, 1968). The high viscosity component of cervical mucus is

a gel-like substance consisting of two glycoproteins as well as albumin

(Moghissi and Syner, 1970).

An understanding of sperm penetration through the cervical mucus is

of prime importance in the study of fertility. Two in vitro tests are

now in use to evaluate sperm penetrability in samples of cervical mucus.

These are the Kremer Test and the Miller-Kurzrok Test (Davajan, et. al,

1970). The Kremer Test consists of drawing mucus into a capillary tube

and placing the tube vertically in a reservoir of semen (Davajan, et. al.,

1970) (Fig. 1-4). The movement of the sperm into the capillary tube is

then observed.

Semen Mucus

Miller-Kurzrok Test

Kremer Test

Fig. 1-4
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The Miller-Kurzrok Test is a slide technique. In this test mucus is

placed in a drop on the slide. Semen is deposited adjacent to it and a

cover slip is carefully placed on top so as not to mix the specimens

(Davajan, et. al., 1970) (Fig. 1-4).

The swimming rate of sperm in cervical mucus has been determined using

the above penetration tests. The results of these tests are summarized

in Table 1-2. Carlborg's (1969) results, using a Kremer technique, are

reported for two cases. The first is for data obtained from randomly

Table 1-2

collected samples of cervical mucus. The second result is from earlier

tests performed on ovulatory mucus. The results of Harvey (1960) and

Elstein and MacDonald (1970) were obtained using a slide test with mid-

cycle mucus. All results fell near the most reported averages of Davajan,

et. al., (1970). For the reported speeds in Table 1-2, sperm could move

through the cervix, 25 mm in length (Carlborg, 1969), on their own

motility in approximately 15 minutes.

13

Speed
Investigator Oi/sec)

Belenoshkin(1960) 33

Carlborg (1969) 17 - 35
45

Elstein and MacDonald (1970) 30

Harvey (1960) 32 and 59

Most Reported Average 33 - 55
(Davajan, et.al., 1970)



It is generally accepted (see, e.g., Davajan, et.al., 1970) that sperm

transport through the upper portion of the uterus and Fallopian tubes is

too rapid to be accounted for solely by the motility of the sperm. If only

transport through the cervix is considered, the question is more contro-

versial. Several observers have reported accelerated transport through

the cervix and have proposed mechanisms by which this can be achieved.

Sobrero and McCleod (1962) noted that sperm were present in the

cervical mucus of patients within 90 to 180 seconds after ejaculation. These

observations indicate almost immediate penetration of sperm into cervical

mucus. The first few drops of ejaculated semen are known to contain the

highest concentrations of sperm (Blandau, 1969; Sobrero and McCleod,

1962). In attempting to explain the rapid passage of sperm into the mucus,

Sobrero and McCleod (1962) postulate the following explanation

Sexual intercourse... results in a back-and-forth
movement of mucus from cervix to vagina, where the mucus
comes into intimate contact with the semen even though
they do not appear to mix. These movements of the cervi-
cal mucus may well account for the early appearance of
spermatozoa in the mucus of the cervical canal.

Inward and outward movement of the mucus plug has also been. reported

by Belonoshkin (1960), who attributed it not to the action of the penis but

to female orgasm. (Sobrero (1967) could not confirm this finding.) This

movement of mucus has been designated as "insuck". Belonoshkin (1960)

noted that in patients who had not achieved orgasm sperm were not present

in the mucus column. However, in those who had, sperm were found at a

depth of 1 to 1.5 centimeters in the cervical mucus, within 1 to 3 minutes.

On the basis of the average rate of penetration, 1 cm. in 5 minutes,

Belonoshkin (1960) concludes that sperm would not be able to reach that

depth on their own motility in such a short time. He also notes that

orgasm is not necessary for penetration to occur.
14



Fox and Fox (1969) have indicated that during coitus contractions of

the uterus and vagina are observed. In a subsequent investigation, Fox,

et.al. (1970) introduced a rapid telemetric pressure transducer into the

uterus. Pressure recordings were made of the uterine contractions during

female orgasm. Their work showed a pressure drop of 26 cm. of H 20 occurred

in the uterus. This drop in pressure was sustained for approximately 2

minutes and flow of mucus into the cervix should be possible. Enhorning,

et.al. (1963) recorded such retrograde flow in women of normal reproductive

age. This they concluded could account for the transport of sperm once

they had penetrated the mucus. Trapal (Davajan, et.al, 1970) was able

to recover caramine particles in the endometrial cavity after they had

been placed in the vagina prior to coitus without a cervical cap. This

also suggests a retrograde flow in the cervix.

In an effort to determine if the cervix plays an active role in sperm

transport, various experiments have been conducted using inert particles

(Blandau, 1969; Davajan, et.al., 1970; de Boer, 1972; Egli and Newton, 1961;

Sobrero, 1963,1967). These results are summarized in Table 1-3.

Egli and Newton (1961) placed a suspension of carbon particles approxi-

mately the size of spermatozoa in the posterior fornix of three patients.

Each patient was near ovulation and was injected with oxytocin, a hormone

known to cause uterine contractions. Two of the three cases revealed car-

bon particles had been transported to the tubes within one half hour

after deposition. Their results were not conclusive since the anesthetic

may have dilated the external os.

de Boer (1971) attempted to confirm the findings of Egli and Newton

(1961). The results were negative in all but one case. (In this case the

patient had a lacerated cervix.) He then suggested that a lowering of
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Number
of

Investigator Subjects Transport No Transport

de Boer

Vagina 18 1 17

Injection into Cervix
(all phases of cycle) 56 17 39

Egli and Newton 3 2 1

Sobrero

Radiopaque material 11 -- 3 (M,0)
(1963,1967)

Sperm Material

Radiopaque materal
and sperm 9 3(M,0) 3(MO)

6(C) 6(C)

M = Masturbation
C = Coitus
0 = Orgasm

Table 1-3

abdominal pressure may have been responsible for the findings of Egli and

Newton (1961).

In another set of experiments, de Boer (1971) attempted to find out

if particles could be transported once in the cervix. He injected a sus-

pension of carbon particles into the cervix and found after hysterectomy,

that particles were present in the uterus. These findings were not con-

clusive, however, since force was required to inject the suspension into

the cervix and may have caused the particles to move into the uterus. Based

on his findings, de Boer (1971) concluded that sperm motility was essential to

16



pass through the cervix; however, once in the upper genital tract, sperm

could be transported by the activity of the tract.

Sobrero (1963, 1967) conducted experiments using rddiopaque materials

and a mixture of radiopaque material and sperm in a cervical cap. In all

cases, no sign of the inert material was detected above the vagina with or

without orgasm.

Fox and Fox (1967) have raised objections to findings based on the use

of cervical caps and inert materials. They feel that the method and

material used are not natural and should not be expected to simulate inter-

course. They suggest a cup placed over the cervix may cause the os to

become smaller and thus prevent normal passage into the cervix.

Although the bulk of the evidence suggests that inert particles are

not transported by the cervix, it is possible that the cervix and its

secretions may play an "active" role in augmenting sperm transport.

Moghissi (1968) has shown that the presence of cervical mucus is necessary

if sperm are to pass from the vagina into the uterus. Using excised

uteri, he placed the external os of the cervix in semen. In six cases

sperm were found in cervices containing mucus. For two cases in which

the mucus was absent, no sperm were found.

Other mechanisms of accelerated transport through the cervix which have

been presented may be due to pH variations or the formation of phalanges.

As shown in Fig. 1-3, the pH of cervical mucus undergoes cyclic changes.

These variations have been measured by MacDonald and Lumley (1970) and

Moghissi (1966), These findings are important because sperm are render-

ed inactive in an acid environment, (pH 6.5, Moghissi, et.al.,1964 ;

Harvey, 1960). Moghissi (1971) indicates that the maximal speed of sperm

can be expected at a pH of 8.25. This corresponds to the pH value at midcycle.

17



Moghissi, et.al.(1964) noted in slide penetration tests that cer-

vical mucus, when placed in contact with semen, forms fingerlike projections

which they have denoted as phalanges. These projections form what appear

to be entrance points for the sperm to cross the interface between semen

and cervical mucus. The phalanges increase the area of contact and trap

pockets of semen in the mucus. They feel that the phenomenon may account

for the observation of Egli and Newton (1961). This seems unlikely,

however, since the phalanges are microscopic and will not extend large

distances into the mucus.

Gibbons and Mattner (1966, 1971) have suggested that the cervix aids

in sperm transport by functioning as a reservoir for sperm. Based on

observations of bovine mucus, they suggest that the cervix is a receptacle

for the slow release of sperm into the uterus (Gibbons and Mattner, 1966).

The sperm move along the lines of strain of the mucus and into the

cervical crypts (Gibbons and Mattner, 1971). Preliminary work of

Hafez and Kanagawa (1971) is in agreement with the hypothesis. From

the cervical crypts, sperm slowly break through the glycoprotein and move

into the uterus (Gibbons and Mattner, 1971).

The storage also functions as a method of selecting sperm. The

motile sperm are the only ones which are able to move into the crypts

(Gibbons and Mattner, 1971). The non-motile sperm are eliminated.

Odeblad (1959, 1968) has made a detailed study of the physical struc-

ture of cervical mucus. Using nuclear magnetic resonance (NMR) he

found cervical mucus to be anisotropic with something resembling free

water between the macromolecules (Odeblad, 1959). The viscosity of this

substance is about 0.03 poise. (Odeblad, 1962).
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The cervical crypts secrete the long molecules which group together

and form micelles. This gives rise to "... two physiologically relevant

directions within the mucus plug, namely upward and downward."(Odeblad,

1962). The distance at midcycle between the micelles is 1 - 10V while

the diameter is 0.5p (Odeblad, 1968). In the luteal phase, the mucus is

a close mesh with a spacing of about 0.3p (Fig. 1-5).

Midcycle Luteal

Fig. 1-5

Tampion and Gibbons (1962) provided additional evidence for this

structure with their observations that bull sperm would swim in oriented

patterns. They took oestrus bovine mucus and stretched it onto a slide.

Bull sperm were pipetted on to one end of the mucus strand and the slide

was incubated. After incubation the sperm were examined and found to be

moving in the direction of elongation of the mucus. They reasoned that

since the mucus was anisotropic the stretching caused the molecules to

align directionally. To check the results sperm were placed in saline and

19



also into glycoprotein suspended in saline. In both cases the sperm swam

in random fashion (Tampion and Gibbons, 1962). Carlborg (1969) also

observed that in capillary tests for penetration, sperm always tended to

migrate along the axis of the capillary tube. He also noticed that if the

mucus were pushed back and forth in the tube, orderly penetration was dis-

rupted. This led him to the conclusion that aspiration of the mucus into

the tube caused the alignment of macromolecules.

Additional direct evidence for this structure was furnished by Elstein,

Mitchell, and Syrett (1971) using electron microscopy, and by Davajan, et.al.

(1971) who observed aligned fern-like patterns when midcycle mucus was stretched

on slides and allowed to dry. Both teams of investigators observed luteal

phase mucus to be tightly meshed, thus visually confirming Odeblad's struc-

ture.

Odeblad (1962) has presented an interesting theory of the "active"

function of the cervix based on these observations of the structure of the

mucus. To account for the bulk deformability of the mucus, the macro-

molecules must be flexible. "As a consequence of this flexibility, the

macromolecular system must necessarily execute molecular movements of some

kind, owing to the thermal agitation which is present everywhere." (Odeblad,

1962.)

He suggests that the vibration of midcycle micelle segments can be

analyzed as a harmonic oscillator with fixed ends. He concludes that this

corresponds to a standing wave on the micelle. Since the segment is

assumed to be in thermal equilibrium with the surrounding fluid, the oscil-

lations must have a frequency spectrum similar to that of water. The motion

is then thought to be composed of two waves, one traveling up the micelle,

20



the other down. He then postulates a type of "resonance" interaction,

... There is also a frequency band fitting the sperm tail undula-
tion frequency, thus allowing the micelle to act as a kind of lad-
der for the tail when it exerts its propelling action. The micelle

vibrations also give rise to propagating distentions of the intra-
micellar spaces conveying the spermatozoa through the cervical
mucus with a minimum of hydrodynamic resistance. (Odeblad, 1971).

"This can be explained as a type of mechanical resonance between tail fre-

quency and thermal oscillation frequency of the molecular lattice"(Odeblad,

1968). Odeblad concludes that such a model " ... makes it feasible that the

migration of a spermatozoon occurs without exhaustion ... " (Odeblad, 1962).

It will also "... bring about a separation of morphologically or functionally

normal from defective spermatozoa ... " (Odeblad, 1962), and "... may

facilitate exchange of oxygen, carbon dioxide, gludose, and other diffusible

metabolites ... " (Odeblad, 1962).

Davajan, et. al. (1970), in presenting Odeblad's theory, state, "In vivo,

the role of the cilia lining the entire endocervical canal has been totally

ignored. It is well known that the cilia in a specific organ beat in a

propagating manner. This oscillation (beat) created by wave propagation may

be more than sufficient to account for the energy required to maintain

oscillations in the cervical mucus." In view of the findings of Hafez and

Kanagawa (1972), the low number of ciliated cells in the cervical epithelia

makes it unlikely that a wave could effectively propagate down the cervical

canal furnishing energy to the oscillations, and thus the oscillations, if

they exist, must be of thermal origin As Odeblad has suggested.

A mathematical model, which may give some insight into the interaction

between a sperm and the vibrating micelles which Odeblad (1962) has postulated,

is presented in the next section. This model is used to investigate the

possibility that sperm transport is enhanced by the transfer of energy from

the oscillating micelle to the sperm.
21



Section II: Hydrodynamic Analysis

The first analysis of swimming microorganisms was carried out by

G. I. Taylor (1951). In this work, he estimated the Reynolds number

for a spermatozoon to be (Taylor, 1951),

Re = Inertial Stress -6
Viscous Stress

This indicates that the viscous stresses are much greater than the

inertia stresses, and so the inertia stresses can be neglected. The

spermatozoon was modeled as a two-dimensional doubly infinite sheet

down which waves propagated. The oscillation was considered to have

the form (Fig. II-1),

y = b sin k(x - ct)

where

relative to an observer

y = vertical coordinate

x = horizontal coordinate

b = amplitude of the sheet

k = wave number

c = phase velocity

t = time

fixed to the moving sheet. (Taylor, 1951).
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VPY2 = b sin k(x2-ct)

x
1 2

Fig. II-1

Taylor (1951) assumed the sheet was inextensible (see Appendix I) and found

the propulsive velocity to fourth order to be

- = 1 b 2k2( - 19 b2k2.
c 2 16

Drummond (1966) also considered small amplitude periodic waves of

arbitrary shape and extended Taylor's result to eighth order.

In an attempt to consider more realistic geometries, Taylor (1952)

in a later paper assumed the shape of the body to be that of a cylindrical

filament. Waves of displacement were assumed to pass down the filament

and a propulsive velocity was determined. Hancock (1953) removed Taylor's

(1952) restriction that the disturbance be of small amplitude. Further-

more, Hancock modeled the sperm as a slender filament of non-zero thickness.

By placing a distribution of Stokeslets and doublets along the centerline

23



of the filament, lancock was able to satisfy the boundary conditions of

the problem and determine the velocity of propulsion. In the limiting

case as the amplitude became small relative to the wave length,the result

was found to agree with Taylor (1951, 1952) to order b2k2 for both zero

thickness and non-zero thickness filaments.

The analysis of Hancock (1953) was followed by the work of Gray and

Hancock (1955). Their method for determining the propulsive velocity

used constant drag coefficients suggested by the results of Hancock. The

unknown propulsive velocity of the filament was determined by requiring

the force on the filament to be zero.

To investigate the propulsion of sperm in a bounded fluid, Reynolds

(1965) proposed a two-dimensional model. The model consisted of a doubly

infinite sheet swimming between rigid walls equidistant from the mean plane of

the sheet (Fig. 11-2).

T ~yj

h V y =b sin k(x-ct)

h

Fig. 11-2
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The sheet was assumed to pass waves of lateral displacement down itself.

The form of the waves in a frame moving with the sheet was assumed to be

y = b sin k(x - ct).

The boundary conditions on the sheet were determined as given in Appendix I.

For this geometry, Reynolds (1965) found the propulsive velocity to

depend on both the parameters bk and kh. To second order in bk, propulsive

velocity is given by

Vp _ p _ sinh2 (kh) + k 2 h 2

c bk2 V sinh2 (kh) - k 2 h 2

where

V, = Propulsive velocity in an infinite medium for a

sheet motion of the same amplitude

The rate of energy dissipation per wavelength by the sheet is

W W _ cosh(kh)sinh(kh) + kh + O(a3 )2bzkac2y Wo 0 sinh2(kh) - k2h2

where

W, = Rate of energy dissipated in an infinite medium

Fig. 11-3 gives a sketch of and - as a function of kh. As kh be-

comes small, the velocity increases without bound. However, the energy

output per wavelength also becomes infinite. A more realistic estimate

of the wall effect would be to ask how the velocity varies with kh for

a fixed energy output of the sheet. To maintain a constant dissipation

rate as kh becomes small, the amplitude of the sheet must decrease while

k, i, and c are held constant. For a fixed energy output W, the ratio
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of the velocity of a sheet in a channel to that of a sheet in an infinite

media is given by

p _ sinh 2 (kh) + k2 h 2

V fcosh(kh)sinh(kh) + kh

V
The ratio of V is shown in Fig. 11-4. It is seen that for equal energy

00

dissipation rates in bounded and unbounded fluids, the propulsive velocity

in a channel can be increased above the velocity in an infinite fluid.

An optimum channel spacing does exist for a fixed energy expenditure

and produces a 10% increase in velocity.

In view of Reynolds' (1965) results, the question was posed: Can

an oscillating wall give an increase in velocity greater than that pre-

dicted by the analysis of Reynolds (1965)? An analysis of this question

should furnish insight into the hypothesis Odeblad has proposed for sperm
26
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transport through the cervix as discussed in Section I. A two-dimensional

model similar to that of Reynolds (1965) (Fig. 11-2) was chosen for

the analysis. The walls of the channel were allowed to oscillate and

the sheet was assumed to move by passing sinusoidal waves down itself.

Based on the observation of Tuck (1968), (for further discussion of this

boundary condition, see Appendix I), the waves on sheet are assumed to be

"peristaltic" in nature and the computation is carried to second order

in a = bk. The proposed model is postulated to investigate whether the

phenomena proposed by Odeblad may exist. The model is not intended to

furnish quantitative results on the actual speed of propulsion of sperm

through the cervix.

In pseudo steady flows with vanishingly small Reynolds numbers,

the equations of motion, the Navier-Stokes equations, reduce to (Illingsworth,

1963)

pV2u = Vp (1)

where

u = velocity vector

p = pressure

when conservation of mass for an incompressible fluid is satisfied

V - u = 0. (2)

For two-dimensional problems, we can define a stream function $ such that

ay ax (3)

where

u = x - Direction velocity

v = y - Direction velocity

= Stream function
28



and continuity is satisfied identically. Taking the curl of (1) and substitut-

ing (3) for u and v, we obtain

pVxV 2u = Vx,Vp = 0 (4)

or

V4 = 0 (5)

where in rectangular coordinates

V4 = 4 D4 D4
V4 = + 2 +

Equation (5) is the governing equation in terms of the stream function for low

Reynolds number flow.

The boundaries of the flow field are similar to that of Reynolds (1965).

The sheet is assumed to oscillate about y = 0 while the mean plane of oscilla-

tion of the walls is at y = + h (Fig. 11-5).

Oscillating Wall

+ h yi+ Region
Self-Propelling Sheet

- h - Region

Fig. II-5
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In a fixed frame, the wall undergoes a peristaltic wave motion. The sheet

is assumed to be a peristaltic wave relative to an observer fixed on the moving

sheet. At the walls and the sheet, the fluid is required to satisfy the

no-slip condition. For propulsion with negligible inertia effect, the total

force on the sheet must vanish. This condition was not used by Reynolds

(1965), and led to difficulties concerning the uniqueness of his solution.

To determine the total force, it is necessary to know the stream function in

regions above and below the sheet.

A solution to the governing equation (5) was sought subject to the

no-slip conditions and the zero force condition on the sheet. The solution

was carried out in the form of an asymptotic series. An expression for the

propulsive velocity in terms of the wall parameters, sheet parameters, and

spacing was found. In the present analysis three cases for the wall motion

were considered. They were:

1) Waves traveling in the direction of motion of the waves of the sheet.

2) Waves traveling in a direction opposite to the direction of motion

of the waves of the sheet.

3) Standing waves.

The analysis will be carried out for case 1, while case 2 and case 3 will

be analyzed in Appendices A-VIII and A-IX.

The forms of the wall and the sheet in the fixed frame, Frame 1, are

* * * *
yw - = + h + b sin k (x - c t)wl- - w w 1 w

(6)
* * * *

yl = b sin k [x - (c - V )t]sr cs s 1 s p

Introducing the following dimensionless variables,
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y = k Sy*

x = k x*
s

t = k c t*
s

p =P*

h = k h*
S

*
V

V = P
p cs

U*
U M-

es

k
= cp

The Navier-Stokes equations have the dimensionless form using (7) and (1)

And in terms of the dimensionless stream function equation (5) becomes

The non-dimensional form of the wall and sheet are (Fig. 11-6)

y - = + h + aa sin m(xl - yt)

(10)

ys = a sin [x - (1 - V )t].Ysl p

The solution will be sought in two regions, an upper (+) region and a lower (-)

region. Since the particles on the wall undergo a periodic motion, the

velocity of particles on the wall, as in the case of peristaltic pumping,

is given by

+ + ay wlu -=0, v -- a= + a m y cos m(x -yt)
Wl wl 3t1

(11)
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k
wM =
s
b
bw

S

ss

w
Y =

C
s

(7)

V2u = Vp (8)

V4 = 0 (9)



y + = h + acsin m(xl- yt)

y

V 
)

xp

y = -h - a sin m(x -yt)ywl

Fig. 11-6

In a frame, 2, moving with the sheet at velocity -V , the sheet is seen to

undergo simple sinusoidal motion. Velocity and coordinate transformations give,

u = u2 -V p x x2  Vpt

(12)
v= v2 Y 

,2

The velocity V has been assumed constant. This assumption will be verified

when V is determined. Applying equations (12) to (10) and (11) we obtain (Fig.

11-7)

u -= V , v -= + ac m y cos M[x - (Y + V )t]
W2 P w2  2-L

y + h + aa sin m[x2 - (y + V )t] (13)
W2  - -2p

y = a sin (x2 - t

32



m (Y + V )y += + h + a6 sin m[x2-(y+V )t]
pw

l Y22

y = - h - a sin m [x 2-(y+V )t]

Fig. 11-7

The velocity of particles on the sheet is now found to be (see Appendix I)

u = 0, v s2 = -a cos(x - t)
s2 s2 at 2

(14)

Finally, for an observer moving relative to Frame 2 with a speed 1 (the

non-dimensional phase velocity of the wave), the sheet is brought to rest.

The transformation equations for this frame, 3, are

v2 = 3

, x2  3 + t

Y2 Y 3

(15)

Using equations (15) with (13) and (14) the velocities of particles on the

sheet and wall in Frame 3 are
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u = V -1, V = + as m Y Cos m[x3 - (y + V - 1)t]
W3 p p

u
s3

= -1

(16)

v - -a cos x .
s33

The boundary shapes are given by (Fig. 11-8).

y w = + h + a( sin m[x - (y + V -1)t]
w2  - -3

(17)

y = a sin x3

Since the inertia terms in the Navier-Stokes Equations have been neglected,

the governing equation (5) for * is invariant under these coordinate transforma-

tions.

m(y + V - 1) y = h + ac sin m[x 3-(y+V -1)t]
P p

S1 - V ys3 = asin x3

y x3= -h - a sin m[x 3-(y+V P-1)t]

m(y + V -1)(Y+Vp 1

Fig. 11-8
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The kinematic boundary conditions for $ are given by the no-slip

velocity condition on the sheet and wall. Dropping the subscript denoting

the frame, these are from (16)

u =
w ay

v = aP
w ax

u = 
+

v =
s ax

+ =V -
yw- p

1

+ = + ac m y cos m [x - (y + V - l)t]
y - p

= -l (18)

= -a cos x

where V is yet to be determined.

Since we are neglecting the inertial terms, the viscous force on the top

and bottom of the sheet must equal zerQ,

(T+ + T-) ds = 0 (19)

For this reason it is necessary as noted previously to determine the solution

in the two regions above and below the sheet.

To obtain a unique solution for the flow field, it is necessary to specify

the external pressure difference applied to ends of the channel. In this

analysis, we assume that there is no imposed pressure gradient.

The boundary conditions are to be evaluated on the sinusoidal boundary

shapes of the sheet and the walls. Equations (18) can be expanded in Taylor

series about their respective mean planes of oscillation:
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ay +h

+ x

ax

ay

2 .x +

+ h + xay

(ywt + h) +

+ h (yx

+

- 1 33 +
+h) + 2x +2haxaV-

(y + h) 2 + fee

S + h)
2 +.

(20)

0y s

+x

ax y s
4 

+

ax

2

0

1 s3 ++
0(s) +j 2 a 4

+ xky 0 s +

0 (ys)2

+I

where y and y are given by (17). Expanding y -by a trigonometric addition
s w w

formula, we obtain

y- = + h + aa sin m[x - (y + V - l)t]
w -- p

+ h
y-= h + cz (F sin mx

(21)
+ G cos mx)

F = cos m(l - y - V )t

G = sin m(l - y - V )t

Similarly, the velocity at the wall can be expanded

v = + ac
w

m y cos m[x - (y + V - 1)t]
p

(22)

= + aa m y(F cos mx - G sin mx)

Substituting ys, (17), and yi , (21), into (20), and equating (20) to the

velocities on the boundary, (18) and (22), yields
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0 + o (a sin x)+ 0 (asinx)2  + -

+ + a2* ( 1 a3*+ (a sin x) 2 +-

ax 0 axay 0 (asinx)+ 2 axy 0

= -a cos x

ay +h+ + h [+ a (F sin mx + G cos mx)] (23)

+ay + h [+ ( sin mx + G cos mx)]2  + = i-v

I~ h+ a3 +h [+ aa (F sin mx + G cos mx)]2 + lV
+ + +

+ Ix+ a (F sin mx + G cos mx)] + ax + h axy + h

+ 3 xayz h [ aa (F sin mx + G cos mx)]2  +

= + a m y (F cos mx - G sin mx).

A solution to

V4 =0 (9)

and the above boundary conditions will be found in the form of an asymptotic

series. A convenient non-dimensional parameter, a = b k , the product of the

amplitude and the wave number of the sheet, is suggested by the boundary

conditions. Since V is also unknown, it, too, must be expanded in a series
p

in a. The series approximations are

- + 0 + +a*1 + a2 2 + O(a3) (24)

and

V = V + av + a2V + 0(a 3). (25)
P P0 P1 P2

Upon substitution of (24) into (9), we find
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V4* + + aV4L+l + a 2V4 + 0(a 3) =
0 1 2

(26)

For (26) to be satisfied for all a, each term multiplying a must vanish

identically. This leads to the following sequence of equations for the

i's to order a2

V4 0 1 2 =
0 (27)

Similarly, the substitution of (24) and (25) into the kinematic boundary

conditions (23) yield,

a [ N + a *
+ a2* 2 + + 0(a 3 )] + a2

0-a
['F0

+ ap+ + a2 2 + 0(a3)] (asin x)

0

[ + a 1  + a2 2+ + 0(a3)]6- 1 2 10

a [N0 +ai1 + + a2 2 + 0(a3)]
0

(a sin x)
2

+ [$a + aip1- + a2* 2

+ -* = 1

+ 0(a3)]

0

+ a33 + + + +az + + (a3)]
2 axay 0 1 2

(a sin x)2+ ... = -a cos x

0

a l + a 2 2 + 0(a
3)] + a2  0 + a* + a21p +

ay2 O 2

(28)

+ 0(a3)]
+1

+ l + 1 213 + + 2* + 0(t3)
x[+ a$ (F sin mx +G cos mx)] + 1 [a r+ + 2+

x[+ a$ (F sin mx + G cos mx)] 2
P+ =1- [V +aV +a 2

+ 0(a3)]

[. 0 + + 1 + + a2p2 + + 0(a3)] + a [0 + a* 1 + a2 2 +

X[+ aa (F sin mx + G cos mx)] + 2ay[ +a*P

x [ (F sin mx + G cos mx)]2

0(a3)]

++ a* + 0 (a3)
17 2

S~E aa m y (F cos mx - ' sin mx)
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Equating like powers of a, we obtain the kinematic boundary conditions for

Vol) *19 *2

3V ~ 0
dy

a0 +30-
ax

ay

ax

a 1 -

0

(29)

0

0
= 0

= 1 -v
P0

= 0

= -z0
sin x

= - x - axay

= -a + 0 +
Pi 

0

0

+

sin x

h
(F sin x + G cos x)

(30)

+ S m y (F cos mx - G sin mx)

+
-(F sinmx + Gcos mx)

39

0

+

9Vp1

ax

a*1 +

ay

a 1 +

ax

h

ax 3y



+

sin 2 x
0 sin x 3

sin x - - a
0

+

2V + aP2 37y
(F sin mx + G cos mx)

+
F si 2

(F sin mx + G cos mx)

2 +

s2 33* 0
2 ay

(F sin mx + G cos mx)

(F sin mx + G cos mx)

The equilibrium condition must also be expanded in a manner similar to the kine-

matic boundary conditions (see Appendix A-II). These conditions are given by

(x (0)+
xy

_ (0)-)
xy 

0

(0)+ (0)-
( - T ) 0yy yy

dx = 0

dx = 0

40

a +

0

3* 2 +

ax
0

a2*

-a

0

0

sin2 x

a
2

ay

1 3 0
-2 Dy

3 2
ax

(31)

00
(32)



T (1)- - X (T(0)+ (0)-
yx xx xx

+ sin x2-( (0)+ T (0)-]
yx

F (1)+
yy

T ) - cos x (T (0)+
yy xy

+ sin x a(T (0)+
ay yy

S (0)-
xy

T (0)-
yy 0

dx = 0

(T (2)+ _ T (2)-) - X (1)+ -T (1) -)+1sin2x 3 2  (0)+_ (0)-
yx yx xx xx 2 3y yx yx

+ sin x (T 1)+ (1) - sin x COS X (T 0)+ (0)-
ay yxY x x dx=0

0

(34)

(T. (2)+ ( T )-)- cos x (T (1)+ - (1)-) + 1sin2 32  (0)+ (0)-
yy yy xy xy 2 X yy yy

+ sin x (T1)+_ (1)-) - sin x cos x (T ()+- T ()- 0

where the stresses are given by

(n)+ +
xxn

.T (n)+ - + + 2
yy n

92p +
2 n

axay
a2ip +
ayax

T (n)+ T -) nap + 2 n
xy yx a2+~x*

ap -
n

ax

apn
ay

- n
ax2ay -

33 * +

a33

(35)

33 +
n

a3ip +
33n

+ 2 z n

41
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yx

dx = 0
0

(33)

00-00
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For the zeroth order solution, the governing equation (27) and the

boundary conditions (29) and (32) are

V4p += 0 (27)

= 1
+

ay 0

(29)
a 0- 1 - V

ay p
+h

a* 0 0
+h 

=0

01 ((0)+ - T(0)- dx = 0
0

(32)

((0)+ - (0)-) dx = 0
CO yy yy 0

Since the boundary conditions are independent of x, we assume that

*0 = f(y) (36)

The most general solution of the biharmonic equation of the form given by

equation (36) is

+ + + 2 + 3
-= A-y + B- y2 + C- y (37)

Since terms proportional to y give rise to external pressure gradients,

these terms will be ignored in the stream functions. The kinematic boundary

conditions give
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A- = 1

(38)
A- +2B h = 1 - V

PO

For the equilibrium boundary condition, we must find the stresses T(0)+
yx

T -0+ and the pressure p6-- From (35), we see that

T(0)+ p +
yy 0

(39)

(0) -2B
yx

and

ap0 + 3 D3* +

axaxy

ap0 + a3 p0 a3
=- 3 + a = 0

so that

p 0 = constant = 0 (40)

since we have assumed we have no imposed pressure gradients.

Substituting (39) and (40) into (32), we get

(-2B+ + 2B-) dx = 0 (41)

For this to be true, we find

-B + + B =0

and

B = B~. (42)

Solving (42) and (38) simultaneously leads to

A+ =A =1 (43)

B = B =V =0
p0

43



+ ' (44)

Equation (43) indicates that to zeroth order there is no propulsive velocity.

Equations (43) and (39) show that all stresses corresponding to the $0

solution are identically zero. This leads to simplified forms of the first

and second order equilibrium conditions. These are:

(T ()+ (1)-) dx = 0
(yx yx x0Go0

(45)

f0 (T()+ - (1)-) dx = 0
yy yy 0

To
F0

(2)+ T (2)- ()+[(T - ) -cos x ( -
yx yx xx

M l+ (1) -+ sin x y (Tr -T

[(T(2)+ T (2)- - X (TM)+
yy yy xy

+()+ (1)-+sinxy (Tyy yy

Also the kinematic boundary conditions simplify

1 + = 0
ay 10

ax

a*1 +
0

T(1) -)

dx =

0

T (1)-)
xy

dx = 0
0

to

= - cos x

-V

a+ 1

ax + h
+ 0 m y (F cos mx - G sin mx)

44
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and

-2 2 1 sin x

0 0

a* 2 + a2*1 +sn
ax - ax~y sin x

0 0

(48)

-v+ a2 *p1

- 2 -V + (F sin mx + G cos mx)
+h +h

+* 2 + a*1 -

ax ~ +S a (F sin mx + G cos mx).

+h +h

We now proceed to find a solution to equations (27), (45), and (47).

Seeking a solution of the form

*1- = [(A + B-+:.y ) sinh y + (C +D! y cosh yl sin x

+ [ (E + F+ -) sinh my + (G + H+) cosh my] sin mx

[(I + J+ sinh my + (K + + ) cosh my] cos mx

+ y + 2 y(,49)

We assume that m is fractional or an integer. This assumption is necessary

since we would like the sineand the cosine functions to be orthogonal. It

is not a severe restriction on the generality of the solution, since if an

interaction is to occur between the wall and sheet it should be present at or

near an assumed value of m. Since the solution will be periodic with period

2nn, the equilibrium condition (45) can also be expressed as

00 f2nn

[0 ] dx = 0 => []dx = 0 (50)
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With the assumed form for 1 fj(49), and the boundary conditions,

(47) and (50), we find (see Appendix IV)

i+- = N+ = V = 0. (51)
p1

now takes the form

- [cosh y + d(sinh y - y cosh y) + e y sinh y] sin x

- y (F sin mx + G cos mx) (52)

[f (sinh my - my cosh my) +_ g my sinh my]

where

d = -[cosh(h) sinh(h)+h]/[sinh2 (h) - h 2

e = - sinh (h)/Csinh2 (h) - h 2
(53)

f = [mh cosh(mh) + sinh(mh)]/[sinh2 (mh) - m2 h 2

g = mh sinh (mh)/[sinh2 (mh) - m2 h 2

The propulsive velocity is zero to first order.

Since the governing equation (27) for *2 is the same as 0 and

*1- , we may find the propulsive velocity by assuming a form for 2 - which

satisfies equation (27) and by using only the

a*+

ay 0,+h

and force boundary conditions. The kinematic boundary conditions are
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+
a2 p3$2 +y

0

= -V + -a2

sin x

0
(54)

(F sin mx + G cos mx)

-h

These boundary conditions (54) become (see Appendix V)

D = - + cos 2x

0 2 2

+ y m2g {F[cos(m-1) x - cos(m+1)x]

+ G[sin(m+1) x - sin(m-1)x]}

= -V
P2

a 32y 2  - + $ q {F[cos(m-1) x - cos(m+1) x]
2 -

+ G[sin(m+1) x - sin(m-1) x]}

*

- 62y m2 &.
[2F G sin 2mx + (G2-F) cos 2mx]

Z = [sinh2 (h) + h2 ]/[sinh 2(h) - h2]

= [sinh2 (mh) + m2h 2]/[sinh2 (mh) - m2h2 ]

q = h sinh(h)/[sinh 2 (h) - h2].

We now assume that *2- satisfies the governing equation

V4$ 2 = 0

47
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(27)
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and has, like *0 and + , the following form

$ = sine terms + cosine terms + y + N y2. (56)

Then the differentiation of (56) and evaluation at y = 0, + h give the

following equations for M - and N - when matched with the constant terms

in (55)

+
M-= -

(57)
+ +-- V aM + 2N = V -2 222

-P2 2

From the force equilibrium condition (see Appendix VI), we find

N =N . (58)

Solving (57) and (58) and rewriting our results in dimensional form yields,

*

V c b 2 k2.' c b2 k2 -9
p s s s 2 w w w 2

(59)

N+ = N =0

This gives a second order propulsive velocity for the sheet which is affected

by the wall oscillation.

In equation (59), the propulsive velocity is found to be composed of

two parts. The first portion of the velocity is identical to Reynolds (1965)

result. The second is found to be the same as the velocity of a free (i.e.,

no net force acting) flat sheet being pumped in a channel. The total sheet velocity

to order a2 is the sum of these two problems as indicated in Fig. 11-9.
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Fig. 11-9

It is also interesting to look at some limiting cases of equation (59).

As the amplitude of the wall motion goes to zero, the result becomes

b +0 V =c b 2k 2 - (60)
w p s s s 2

which is Reynolds' (1965) result as expected. For the walls going to infinity,

we find

h +* 00 V= c b 2k 2 1 1 C b 2k 2 (61) p 2 s s s 2 w w w

which shows that the effect of the active boundary at infinity is felt

throughout the fluid.

Another special case of interest is that of equal wavelengths of the

sheet and wall. For m = 1, equation (59) can be written
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V =c b2 k2 Z (1 _ 2y). (62)
p s s s 2

Equation (62) indicates that for a wave traveling in the same direction as

the sheet wave, the velocity will always be less than Reynolds' (1965)

result.

Although equation (59) gives V as a function of bk, k h and k h,p s w
it is difficult to determine the wall effect on propulsion unless the energy

output of the sheet is fixed. To compute the rate of energy dissipation, we

must relate the stream function and velocities in Frame 3 to the corresponding

quantities in the stationary Frame 1. The total power dissipated is

W 0,- (T+ - u') + (T - u-) ds (63)

where u- are velocities in the fixed frame.

The power expenditure per wavelength in dimensionless form is

(see Appendix VII)

W = - 2d + 0(a3 ). (64)

This expression for the energy is identical to that of Reynolds (1965) and

is sketched in Fig. 11-3. This result is simply the rate at which work is

being done by the sheet against the first order pressure terms.

A final quantity of interest is the flow rate through the channel. This

is given by

Q = u dy + f u +dy (65)

which in terms of the stream function is

y y,
s -w

Q f_ dy - J dy (66)
_- ay f y

w S
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where u- and f- are calculated in the fixed frame. Integrating (66)

we find

Q = (y ) + $N(y) - [+ (y ) + $ (y)] (67)
s Yw Yw S

The average flow rate over a period is (see Appendix VII)

- 2 2 2 *
Q = h a 2 m y + O(a 3) (68)

or in dimensional form to second order

05= h b2 k2 c (69)w w w

The flow is seen to be produced only by the motion of the wall.

A similar analysis can be carried out for the case of a left traveling

wave and a standing wave. The results are presented in Table III-1, and

details of the calculation are found in Appendices A-VIII and A-IX.
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Section III: Results and Discussion

Table III-1 summarizes the results of the present investigation in

dimensional form.

Propulsive Velocity in Propulsive Velocity in Terms
Wall Shape Terms of Geometry of Energy Expended

Flat Wall b2k2c P(c
(Reynolds) sss 2 2pkscd \s 2/

Standing Wave b2k2cs W (cs s s2 2pk c~d \s2/
s s

Traveling Wave

Right b2k2c 1 - b2k2c ! rc Z + w w C
s s s2 w w w 2 2pk c2d s b k w 2

s s S ss

* bF
Left b2k2c JZ + b2k2c [c Z -- w w c

s s s 2 w w w 2 2pk c2d 2k w 2
ss

sinh2 (k h) + k2h2
= s

sinh2 (k h) - k2h2
s s

W = -2b2 k Pc2d
s s s

i*
sinh 2 (k h)

w
+ k2 h2

w

sinh2 (k h) - k2h2
w w

cosh(k h)sinh(k h) + k h

sinh2 (k h) - k2h2
s s

Table III-1
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Before presenting a discussion of these results, it is interesting

to note that the solution to the present problem clarifies some aspects of

Reynolds' (1965) treatment of the sheet between two fixed walls.

In obtaining the solution to this problem, it was necessary to seek

the stream function in both the region above and below the sheet. This was

required since the sheet was to have no net viscous force acting on it. In

Reynolds' (1965) paper, the solution in both regions was not considered for

the sheet moving at mid-channel. Only the kinematic boundary conditions on

the sheet and on the walls were imposed on the solution. This led to ques-

tions concerning the uniqueness of his solution. These difficulties do not

arise if the force boundary conditions on the sheet are considered. To

complete the formulation of the problem the imposed pressures at the ends

of the channel must be specified. The kinematic boundary conditions together

with the force condition and a statement concerning imposed pressures give

a unique solution to the posed problem.

From Table III-1, for the case of the traveling waves, we see that the

velocity is composed of two terms. The first is a term involving only the

motion of the sheet. The second term involves only the motion of the wall.

The problem (to the order considered) can be shown to be the superposition

of Reynolds' (1965) problem and that of a rigid flat sheet being pumped in

a channel (see Fig. 11-9). For waves passing in the direction of motion of

the sheet, the velocity is increased by the wall action, while for waves

moving in a direction opposite the sheet motion, the velocity is decreased.

For the right and left traveling wave, it should be noted that the propulsive

velocity can be written for equal wavelengths as

VP = L [b 2k2c + b2k2c]
2 s s w w
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where k = k
s

In this form, we see that the velocity increases or decreases linearly

with the phase velocity of the waves and quadratically with the amplitudes.

In the case of standing waves on the wall the propulsive velocity is

the same as Reynolds'(1965) result for fixed walls. Again to second order,

standing waves can be thought of as the superposition of two traveling

waves in opposite directions (see Appendix IX). The energy expenditure

for movement in a channel as sketched in Fig. 11-3, is greater than that in

an infinite media for equal amplitudes of oscillation. This increased energy

expenditure does lead to increased velocities of propulsion. However, the

rapid rate of energy dissipation is not consistent with a physically realis-

tic situation.

The velocity for a fixed energy expenditure is given in Fig. 11-4. This

velocity is seen to increase by only 10% at the optimal channel spacing, k sh,

equal to 2. No "resonance" interaction exists between the sheet and the

vibrating walls.

These results are inconsistent with Odeblad's (1962) hypothesis that

sperm move with greatly increased velocity and minimum energy expenditures,

between the vibrating micelles, i.e., between channels with standing waves.

In view of the present work, it seems that Odeblad's (1962) theory of

enhanced propulsive sperm velocity by vibrating walls is not supported by a

detailed analysis of an analogous low Reynolds number flow problem.

Alternatives do exist, however, which may explain enhanced transport

in the cervix. On the basis of the data in Table 1-2, the time required for

sperm to pass through the cervix on its own motility (25mm, Carlborg, 1969)
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is approximately 15 minutes. This estimate for the transit time is not

unreasonable based on the observations of Rubenstein, et.al., that sperm are

present in the Fallopian tubes 30 minutes after deposition on the cervix

(Davajan, et.al., 1970).

Though Odeblad's "resonance" and "minimum energy" theory could not be

demonstrated the cervix may still possibly be assigned an "active" role in

sperm transport. These "active" functions may be due to alignment of sperm,

biochemical enhancement or "insuck". The micellular structure of cervical

mucus which Odeblad has presented offers one explanation for the speed with

which sperm move through the cervix. (Odeblad's estimates of 5P/sec for the

velocity of sperm are below those of other investigators in Table 1-2.) The

micelles form channels which may guide the sperm. This causes the sperm to

move directly toward the uterus and not randomly or diffusely in the mucus.

Observations on the effect of pH in increasing swimming speed have been

noted previously. It has also been noted that the low viscosity component

of cervical mucus contains nutrients necessary for the metabolic processes

of the sperm. Mann observed (Moghissi and Blandau, 1972) that the sperm

could utilize aerobic metabolism in the cervix which is a much more efficient

method of obtaining energy than the anaerobic metabolism of the sperm in the

male tract.

The theory of "insuck" has, perhaps, been too quickly dismissed (Sobrero,

1963; Sobrero and MacCleod, 1962) as a method of transport of sperm. The

measurements of Fox, Wolff and Baker (1970) on the drop of intrauterine

pressure should be given more careful attention. The pressure drop observed

during orgasm is not small and the duration is on the order of minutes. Under

these conditions, it is possible that retrograde flow could occur in the
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cervix as observed by Enhorning, et.al. (1963), and aid in sperm transport.

The present work has presented a survey of the function of the cervix

in sperm transport. It has also sought to verify aspects of a theory of sperm

transport through the cervix proposed by Odeblad (1962). Based on the analy-

sis of a simple model this theory does not seem supportable. Other "active"

roles may be assigned to the cervix, however, The structure of cervical

mucus presented by Odeblad offers a method by which the sperm may pass

directly through the cervix. Aspects of biochemical enhancement of motility

and "insuck" also offer possible mechanisms for accelerated transport and

should be further investigated. The mechanism of sperm transport is bio-

logically complex and not yet know.

"Finally . . . the only statement that can be made with absolute

certainty is that spermatozoa do get into the upper genital tract."

(Davajan, et.al., 1970).
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Appendix I

Analysis of Swimming Sheet in an Infinite Medium

Taylor (1951) analyzed a doubly infinite sheet swimming in an unbounded

medium. The sheet was assumed to have the form as given by

'Y = 6 .51,/,- (X -C e ) (AI-1)

relative to an observer fixed on the sheet, Frame 2, (Fig. AI-1).

VP

Fig. AI-1

For an observer moving with a velocity c, Frame 3, the sheet appears to be

a fixed curve. The velocity and coordinate transformations are

UAa =U3 X2 = X.3 +-'-

(AI-2)

Applying (AI-2) to (AI-1), we find

y,= 5/A kx3  (AI-3)

Now in Frame 3 the particles on the sheet are seen to slide along the curve

(AI-3) with a velocity Q.

Taylor (1951) then assumed the sheet to be inextensible. For the in-

extensible sheet, a particle will move with a constant velocity which is
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always tangent to the curve, Fig. AI-2,

Y. C-Vp

0
e

Fig. AI-2

The velocities of the particles relative to Frame 3 are given by

l3  >c e = - 9 3 (AI-4)

where

OL n 01 Y = (AI-5)

The quantity Q is yet to be determined.

To determine Q, we note that for a periodic motion, Frame 2, a

particle at point x2 will return to x2 in one period, T. Then from

(AI-2), we find

X3 X AC3 7")0 C (e (AI-6)

or

X3= X, =X (AI-7)

which represents the distance traveled by the particle, as seen by the moving

observer. So the particle moves one arc length in a period and

ARC LE4A/QST Lt 0

r____ fA rXA/X (AI-8)
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For the form of the sheet (AI-3), Q equals

(AI-9)

2rr'f gkz CaSIX3 ' aX3

Expanding (AI-9), in powers of bk and integrating

Q = C E / 4 1 b k2 + (64 k) (A1-10)

Using (AI-10) with (AI-4) and (AI-5), we find by expanding the trigonometric

functions in series

E - cs 2kx + 0(61k4)]

(AI-li)

V3 -c hk CO-s kx kX(63k')3

The boundary conditions at infinity for Frame 3 are given by

0 = p C
(AI-12)V. 0 = 0

The governing partial differential equation in terms of the stream

function is

0 (AI-13)

where

V= &

A solution can be sought in terms of an asymptotic series as outlined in
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(24), and (25). The result of such an expansion is the

following governing equations and boundary conditions (terms involving

O have been omitted from and 2 )

4

0

=0

y P/

Y q 0 C

3b,=0

1 Am
Y' qp0

,J Al

(AI-14)

= 0

a_'

CPXP

- Vp

(AI-15)

= o

0

cos 2kx

@Xy Q 10

V
-o 2

k

(Al-16)
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0
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-C
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L0

S/Xkx

31)z

y-oo

Equations (20),

V A N =
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The solution to (AI-19) to (AI-16) to second order is found to be

\ c 6A (AI-17)

We may investigate how the swimming speed is affected by the proper-

ties of the sheet by assuming the sheet to be "peristaltic" in nature.

In contrast to the inextensible sheet, adjacent particles on a "peristal-

tic" sheet move independently. This means, that in a frame where the motion

of the sheet is simple periodic motion, the horizontal and vertical velo-

cities are

(AI-18)

In Frame 2, the motion is seen to be periodic. Using (AI-1 ), we find

from (AI-18)

,o c6k cos k (x? - c (AI-19)

Moving to Frame 3, the velocities are

U3 =-C ; V3 = - C 6 k cos kx 3  (AI-20)

The boundary conditions at infinity are again (AI-12) and after expanding

as previously indicated,we find the following equations corresponding to

(AI-14) through (AI-16)
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0 0

ay
Vi

74, =0

- c cos kx

-_ ' = - VF
CDp y

Coo=

7 40e =0

3/A kX

4v =0

Dy 10
C

x I

c- vp0

0
-o

(AI-21)

Cy
to

10

Am

y -*

(AI-22)

02V 3/l kx
10

10 Q y

0

o k

y/M

y- jo 0

- VPz
(AI-23)

= 0
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The solution to (AI-21) to (AI-23) is found to be

V =C (AI-24)

This result agrees with the previous result of Taylor (1951). This

correspondence between peristaltic and inextensible sheets was observed

by Tuck (1968) in a discussion of Reynolds' results. Of course, when higher

order terms are considered, the propulsion velocity will depend on the

nature of the sheet.
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Appendix II

Expansion of the Force Boundary Condition

The equilibrium statement given by equation (19) is

The evaluation of this integral requires the forces to be known on the sheet.

In order to evaluate the integral, the forces will be represented in terms

of the stress tensor which will be expanded in a Taylor series about the

mean plane of the sheet. Since it is convenient in this development,

indicial notation and the summation convention will be used. Rewriting

(19) in this manner gives

f T Ti (A111)

where

. /+.- . (AII-2)

and

?7 * = unit outward normal to the sheet

1j = stress tensor

Let the unit normal and the stress tensor be represented by

+ e o)#)4 #) . 2 (r) 4 (c )
(AII-3)z) L t p) -
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Substituting (AII-3) into (AII-2), we obtain

7' ~ (0) to

, t.1
.%, (I) ~ ,~ /7

J (AII-4)

~ (Z) 4
C( /7 o)

(0e

17) ~./i?
mt7 . (0)

+ I tjiZ

Po t
L in a Taylor

S('2) S10

series about y = 0, gives

IL 0+ + 1

(AI -5)

where

Xs = c( S/A X,

Substitution into (AII-4) yields,

(0) ---j to)

n 4fo) i c0t iD

( ) ~ Z!

+(0) 1) t4

S/A/ Y,) 1
J

+ n. L- +L

S/N A,) 10

(AII-6)

Expanding

(0)i (nj
1 0

4.- /7e) (o)
ii

(0)
+ n - C)

(0)

~.. (0)
.

J

tO)to
p7

. z/
./A X I

CPX2
S/Al X,

(It ) .. (a
0) (7 . ..
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From Appendix III, the components of the normal are

/7.

J

(0) 1 )

Cos X, , 0 )
(0 - Cos X, )

and noting that
no)

J7.
(n) -

,equation (AII-6) can be written

S()

(2)

4" S/,V All

-(OS X, ( Z/ 04.

- 42i -) 11
CDXz

-Co's X, . I) -

(Z~+

2D zS/N X 1  --.-

@X

(O-(0)
Z j C 7

S 5 /V X, .; s Z "

- 5 /A/ X, Cos 'k,...
10 *...~JW+)1z/ i .j i0

where 1 and 2 denote x and y directions respectively. Now the arc

length may be represented by

CiS clx, 14 (IX. 2) = o1'V / + qc( COS 2 4

o's = c/x, I C( Cos x, -+ 0 (e'I)]
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Using (AII-8) and (AII-9) the equilibrium expression (AII-1) becomes

#. ) A (0)-
czi - zj ) / X,

-00
- Cos X, (C% 0 (.J - L;)) ~ w X ,

&Xz
( Le i ..

~ (0)-
- C.zi ) 3 to

0o

2- ( i

f2

- COsX, ( (I4-1i

% o), ~ )-
zi - 4. zi

'4 SIN X1 -
OXz

( w )~

- S/N A, 0 C/ X, + 0 (q-) =I
S=/, 2

Equation (AII-10) is the desired expression for the force boundary condi-

tions.
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Appendix III

Computation of the Outward Normal to the Sheet

Fig. AIII-1

The outward normal vector (Fig. AIII-1) to the sheet is equal to

The tangent vector t is defined by

where

j'= Xe, + y z

Substituting (AIII-3) into (AIII-2), we obtain

?h0X
ds-

Now

(AIII-5)
72
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(AIII-2)

(AIII-3)

(AIII-4)
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from which we obtain

Ois dx

Combining (AIII-6) with (AIII-4) we find

C 1 ( )I 2
C/ X dx

but ,

>1 S~ 3IX

and

--- _( COs X

Substituting (AIII-9) into (AIII-7) and expanding, we obtain

Cj E/#. z CosZ 2 '0(toy (,*0 COs

(AIII-8)

(AIII-9)

ez) (AIII-I0)

Finally, we find from (AIII-1)

/' C c os x 3 O a) e,

' [ /- -# ot cox -A 0()] a

the outward normal to the sheet.

73

(AIII-6)

(AI I1- 7)



Appendix IV

Determination of the First Order Stream Function

The assumed form of the stream function given by (49) is

=(A* 48ty) sn b y

(E 4 'ty) -S/ h my

+( (pf 4Jey) -5/,h my

4(Ct -AV0y ) Cos /yJ

4 (i+N e )cos+4k ty oh

Im Y

SIN x

s/A/ Mx

Cos mx

(AIV-l)

Differentiating (AIV-1) with respect to x and y and evaluating at y = 0, +h

boundary conditions, (47), become
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m 65 -Ih ) S/A/h (mh) 4

c0sh (mn7h)

L.- cOsh (m 6)] srn/ ( 2 ) , (m/) 4

-/ i . 2A/ih = V4

= 1 (At
thA

ath) siA//) (h)4 S/AIx

- 4m ,6( I F)siA(wh)+(j -A h) cOsA (mh)J cosmx

-IN / ( A )+ (& . 7) COS 677 nh)3 siAI MX

= 7g my F0 coj x K M Ji mX3
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7' S// MX

3t

10

Id.

- C- coz x 4

. /7 & I t

(AIV-2)

s/m X

S/N mx

.4

mx

4 (m E77 4i 9

6\t
t (es to-/7) sYA A 07)

/./ cos /7 ('m A )3

Ji S." A (m1nh )4(m Z

(C '*- D /7) C 0S A (A)]



Since m is considered to be an integer or fraction, the sine and cosine

terms are orthogonal over a properly chosen period, and equations (AIV-2)

give rise to the following sets of simultaneous equations,

Ai D =Q

C -/ (AIV-3)

(At O8' ) Ooj,$ (h) + (c ,'/&Dh) ch ( 0 ) = h

G =O

m ECo~s A (M h) ic SAl (M) (AV-4)(m /7 h

rm (G* i /h) .s/A (mA) #82' cosAamh>=O

m [ (E AZ ')3uSIh (mA) - (Go // t h) cos A mh)J =

+/ Ym F

m (z : e17) cosA m/ ) /7 .51A/ (m/7 ) (AIV-5)

2/7, (,g ' Li) JsWgA (mA) +/ ' cos /7 (1n =0

rnE (i .Jh)SIAI ( h) 4 ( L COsh (m A)]

(AIV-6)

62 Alh V
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From (AIV-6), we see that

* Z / *h =- Vp, (AIV-7)

V and N + must be determined from the force equilibrium condition.
P1

Before proceeding, we solve (AIV-3) to (AIV-5) and find that,

COJ (4) 1A A (h)+b

JM/,''Ch) -b

Bi = A'9"g ()
Z Z/

E AY mh cos 4&mh)4Mn/n).

~ YnZA h s,/h (rnh)
(AIV-8)

i = -rr 2'$ = 9Y 5 m cosh (,.- h) s1^ h/ h(rn)

S/A/Ih z (M h) M ha

S/IA // ,)/-7?n hZ

sml h Z(,n) _-_

G ='t = 0
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With equations (AIV-8) and (AIV-6), the stream function becomes,

- [ coshX,-
C> ( 5 / y- y cosh y )

y s/N y

-,Y- ( 5sSv

4 N my

4 A/'

m x Cos -i x

rn y cosh m y ) t

)

9

(AIV-9)

rt y r"NA my]

COS A (4) S/A/ A (A) -' A

3/A/h(A) - /7

S/ ) (h)

5,A//Z (6) (AI-1O

M/7 cosA (M7) +/ 3/A//7 (i- h)

S/i4 2 (m h) - / 7 ,z/ 7 r

m /7 S/A h (M h )

5 /A/ /7 " rn A) - M''7/ht
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To find N + and VP1 , we must use the force equilibrium condition equation (50)

~x =Q (AIV-li)

This, for the first order solution, is (45)

~ (y) 

Ox =O

c/x= 0

ax

+

Ox2@(@/01

7~ 2
xy

y? y 4 ax
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jZrur

0

(/) 4
C yy

where

(AIV-12)

4
(I) 0

x 0

@y

(AIV-13)

10

(a)

(b)

ynw



From (AIV-9), we find

- 5cO/h C/ (

4 e (z cos A y

I f

Y m 7z (r, sip

( SAiA m y7'

5/A/ > y + y cosh

4 y S/rn7 y ) I

/71 x + * Cos x)

my cosh My )

/-n y +& y S /A/ h y )I

=-[ c05h y
d ( 5/j h y -y co.s A y )

- e

S// 7 X

y 3IA/7l y]

CoJ /-n X )

If (.s/N h m y Srr y COJ h My ) M y 5/7 -- y

y ;C/ Y .S /A y

Me ( / A /

'm yS/I? my + q(

y y Cosh y)) co-5 x

- g j-nj m )

Sr/lh mny 4 my cosh 7y)
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cOsh

(,2

s/N X

(AIV-14)

&~Xv~V

Y rna
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The pressure gradient is given by

.p..-

+-j

3 ~4

(
ax

.,& c/~}

+4 &; v/ ) a/X
Y(

From (AIV-13b), we find f(y) equals a constant, which must be zero

since we have assumed no imposed pressure gradient. Then, the expression

for p becomes

~j(
3

@ao/- d/ (AIV-17)

From (AIV-14), differentiating & Iwith respect to y gives

:; 0 (I cos / J/~/A y)

3SIA mX " - coS mx)

(AIV-18)

7 5 (3 JII -n my 4 m y co h mY)3
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(AIV-15)

(AIV-16)4 fy)

s,~rm3 (6~?

x y

= - 1 J h A//

4 e ( 3 5ig y,, /7 Y0VC / Ys y)3 1 5 t1X

Ef( 2 v0 o s /- rr 0r ov/ nY )



The pressure then becomes, from (AIV-18) and (AIV-14)

P/ :

s \Y MZ (yC0 /71 X

my 7 2 3

From (AIV-14) and (AIV-19), (AIV-13) becomes

(14ze) su' x 4

Y8V on

- ' Y( /, ( mx 4

(AIV-20)

c co's m')

and the force boundary condition becomes, upon substitution of (AIV-20)

into (AIV-12)

Zn 77

-- = o

(AIV-21)

- 4d, Cos x 
dx :Q

These equations are satisfied if

(AIV-22)
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O 2 5// A y 3 coJ X

S 1/A/ X (AIV-19)

10 = 0 / Co's '

~ I Z / C~ as /

fl') -to=

M YI



Now with (AIV-22), we find from (AIV-7) that

VP O

and

Thus the propulsive velocity and shear flow vanish to this order.
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Appendix V

Calculation of Second Order Kinematic Boundary Conditions

The boundary conditions (54) are

a p'et = -
~y2 I0

-\Vo z ,e

From Appendix IV, equation (AIV-14), we find

evaluated at the designated limits are

s/^/ X

3/IA/ mX

@

CPY 2

(AV-1)

74 a CoS r7X)

These derivatives

)(/5)/NX

;2/6Y mi

(AV-2)

+ cos m)e)

{ C'S A (A)

CoJh (b,) -A

r Ion 2 E S/^/

7

rr, #Gs

4 /7 ch (/i7)

J /7) 1 5//X

Cos rrY ) (AV-3)

f [ sIN h
Z CoJA (Mh) A M /7 3/A/h (MMh1)
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From (AIV-10) we substitute the definition of d, e, f, and g, and find

.1p = -[io2zeJ =

CO/7 (07)

srnh i (h) 4 /Z

- / I T/ t (h)F

- ~f[3,Nt'? (,~,h)

[2 COsv',

+ M7 cosh (mrh)

(r A) -' M h Jtlh (M/)

5/, h (mh) m h

5//,. h (1 -n /7n 2A 1
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2 = 4 A COSh (A)]

+ e (2 cosh () 7' ,1 %/ 7

/7 /ld4Z h 07

JhV 4' Zh -0 /7

(AV-4)

.v *



Substituting (AV-4) into (AV-3) and then into (AV-1), the boundary conditions

are

i 2,e rEg($ / cas mx)s/N K

!y I = t
(AV-5)

( v M Ji nX 4 1G rs mn 743( JW mx mx)

Expanding the trigonometric functions and performing the multiplications,

we get

'; 0 2

C (/7'7

+ , C /, (M/) X

I h =-V 2 Y- M2

, a

which are the desired boundary conditions.
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(/M-/)X - COj

Ov$3/ 2 ey X
4'q -F / Cos ZflX'

7 p Y r1 AI

4 .. Os

4, Y mn 1 Cos (,#- )

fe F*IC Ut /a g
- 5/v (M -i+/) X -3Wf/,

q ' 0i



Appendix VI

Determination of the Second Order Equilibrium Condition

The equilibrium equation for the second order solution is given by

(46) and with equation (50) becomes

4 3/N x ( 1. Cx = O

(AVI-1)
2n 77

C (ztyy
fo0

- yy ) - Co S K CX) 4 xY
+ S/AX ~ z'4-014(

The stresses are given by (35). Rewriting them for reference we have

(t) +
rxx -

7Y(n)

and

xY

a)Pn

-Pn

-Pt7

-?

,;)x Oy

4

Cp
3 y

(AVI-2)

(a)

(b)
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From the assumed form for 12 (56)

= s/IE rsERms *- Cos/NE "FReA7 -A ^1: I -3

(AVI-3)

we see that

S/A/i Ti EA1S # C0S4N E ( AV1-4)

The pressure is found from (AVI-2a) by integration;

74 C OS/A/E T ERM5

(AVI-5)

= 3/ME re Rms 7P CO $/^/IF

From (AVI-2b) we find f(y) equals a constant which must be zero since we

have assumed no imposed pressure gradients. Then from (AVI-5),

and (AVI-2), we find

-()
'YY = /AE eoms 4 CO S/A/E

For the terms, we have from Appendix IV, (AIV-19),
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4 j (y)

(AVI-3),

(AVI-6)

o%*(Z)i t
y X

Z / 4

C)-, 02"
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4 2 e J/A/ y I cos X
pj = -= ; 2 0 coS / y

46 Y mz ScFCoM X - 0 J /A//7Y) (AVI-7)

2 f Cos h r7 y ;r Z 5
J/s/7 i-n y I

and (AIV-14)

II y ; e/ y Sh y

CoS /77

+L yy

- QS/Ov mx)

Mny 3/M4A my (5/N my -A

(AVI-8)

my coSh my)3

Then from (AVI-2), (AVI-7), and (AVI-8), we find

;Zd Cos x

-o 2/8 y M2 f

(AVI-9)

( Cos M - %SVA/ my)
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and from Appendix IV (AIV-20, with N = 0)

oreT -
YXi 0 e ) ,/N X

t 2 ,4 y m

/70) )( (AVI-10)

3/n/ec enn )e)C3

From (AVI-2), we find,

~? z~>4"~
c~?y o)y &x cqy2

-

Differentiating (AVI-7) and (AVI-8), yields

= - ( ; 2/s 42

-/e y- 3 Cos M X

2~/ Mit my 7 2 5

e cosA>y)

% SVN '7 x) (AVI-13)
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;: / ( s7/ h y # V1

* e (2 cos A y o y sll A

cosh Y)

V2 C=s x

(A r Os mx

(.Si trmy + m y owsh my

-, q ( z cosA my

/77 xr) (Avi-14)

+A m y 3/A/A / M

' e (s/IA y / yY

(AC J/N m K

my 4 rmy cos , 7My,)3

and from (AIV-18)

cosh y

+e (3 511V? y

V mX + "

my 71A1

U,

my)

my 4 ny ccs A7
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9x ,

3 3
y

-0 8r m 3

[ my> r" y

y1

)Cox M X (AVI-15)

; 3 3 3/A /7 y -' y /^ h Y)

cosA

p,. 3 (As,,

my 4

y) J/" X

(AVI-16)

Q sz3/v41 Y M-1

r. y) I



(AVI-16) into (AVI-il) and (AVI-12) gives on

evaluation at y = 0,

- (/*e)
10

:; ?AY m33

Cos X

(A? co s -n x

(AVI-17)

- /a x

-24Y m,3 .f (?%r/dn

with (AVI-4), (AVI-6), (AVI-9), (AVI-10) , (AVI-17), and (AVI-18), equations

(AVI-1) become

T E RMS

4 1 j IN 2 X

- 2 V 4 '2A) )

Clx = 0

2 n r

C /V/ac ,' COSht./~

r,,x 7' C M )Cs

e y I 2Cx =0

0
(AVI-18)

rMx GCos rMx)

I Cr
72RMST 4 O/S Ile

401 d COs xz

(AVI-19)

M 3 COj mx - ~,
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Carrying out the integration, we obtain

- 42 / - 2 d - 4 / 7 \ *7 77 / =0 (AVI-20)

and

(AVI-21)

This is the equation required to determine VP2

For the case m = 1, (AVI-19) gives

/2 / -z / - 47 rV* A 4

(AVI-22)

= 0

and again

=A A / (AVI-23)
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Appendix VII

Calculation of Energy Expended and Flow Rate

The energy dissipated per wavelength by the sheet in the fixed frame

is given by (64)

(t' ~ ~')* /5

The velocity and coordinates in the fixed Frame, 1, are related to Frame 3

by the following transformations

u * u, +1 -Vp x, = x.3 + ( v )i

(AVII-2)

From the stream function, we find

i- +O~L O(
(AVII-3)

The velocity in the fixed frame is found by combining (AVII-3) and (AVII-2)

u = -c C4a E + 1: 0144 4 a 2 O?_ + *0 (0 -)1 0/ - Vp
(AVII-4)

Since

>I

we find

4P 2 i2 +v , ' +) ]f (AVII-5)

Oy
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This indicates u 1 and *P , the fixed frame velocity and stream functions,

are 0( a ).

From the above and the expansion of .in Appendix II (AII-10), we

find the energy to be a second order quantity and equals

ryx
r ) ) )

YX - l 04I dX

(AVII-6)

.,. ( 3)

From the boundary condition (47), we see that

and (AVII-6) reduces to

Iv= - q Z
z ().

Ly )v, J 1 dX O 0-1)
(AVII-8)

Equation (AIV-20) gives

~ yYY ~YY = -4 00-4X - (/-Vpe I]

and (47) gives

S0 = os C OSk- (/- Vp) I (AVI-10)

in the fixed frame. Substituting (AVII-9) and (AVII-10) into (AVII-8), we

obtain

or

4 0 ( 3 ) (AVII-il)
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The flow rate as given by equation (67) is

Xs) 7L-(yo) - (AVII-12)

where * is a fixed frame quantity. Expanding (AVII-12) in a Taylor series

about y = 0 and y = +h and * in powers of a, we have to 0(a2 )

0I -

4 1t,-

Y*/

(AVII-13)

+ o~4~1
0

SIA/ CX - (I-VI)L'

SI M CX 1

From the boundary conditions (47), we find

=(0
Y 0

(AVII-14)

It h,
and from equation (52)

Y 1= - S/,A . x - (/- v) I

CosA (A) * d C s/ ij h

+ e s (A/).J d

i$ Y $ /.O Mr X- ('V)il4

(A ) -Ah

S114

(AVII-15)

co sh (A)]

E x - (/- Vp)t3

OCloS

S1 t A (rb) ~-h r7 Cosh
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$2 in the fixed frame from (56) and (57) 
is

Oz 5/i/e reRms eo;s/& r MV- ( - om)y
(AVII-16)

Substituting (AVII-14) to (AVII-16) into (AVII-13) and averaging over the

proper number of wavelengths, we obtain

Q 2( - (AVII-17)

This is the desired flow rate.
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Appendix VIII

The Analysis of Left Traveling Waves on the Wall

This analysis follows the same procedure as outlined previously. For

the fixed frame (Frame 1), the wall shape is given by

. 4 Crp J/t t (X, (AVIII-1)

The velocity of particles on the wall are

0 +;+ O'f Y M CoS M (X Y d)(AVIII-2)

Moving to Frame 3, we find

wa3  ~ ~ Y o /73 L) 3 # Y/np
(AVIII-3)

The velocity of the sheet remains as in equation (16)

U =0 VS 3) - : COS X.3 (AVIII-4)

and the boundary shapes are

4

yW3

(AVIII-5)

YS3 = 0 .5// X3

Expanding (AVIII-3) and (AVIII-5) by trigonometric identities yields

(I/7 1 -6)
(AVIII-6)
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and

V' ,e Yr /7 cas rX - /N

(AVIII-7)

where

$"= c'os (y Y+'/-vp)e

o= su (Y +/ Vp)i

The boundary conditions become, as in (29), (30), and (31),

10
=1

(AVIII-8)

(4

c~?X

= - P

/1

LA4
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(AVIII--9)

VPV

S/N ))

S/A/ K
(0

(AVIII-10)

zI - V I A.

ha @x Cy 14h
Cos /n x 4.
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0

C)h l' - Co$ X
10

1=
~3I I
c~X

AY m Cos

&2o S10

It/I

-I'

E3,// mx)

I

D y

I



The derivatives of 0 have been omitted in (AVIII-9) and (AVIII-10) since

the boundary conditions of *0 are identical with the previous solution, and

we have

(AVIII-li)

The boundary conditions for $ are similar to equations (47) with y re-

placed by -y. This leads to a stream function

- C0o5b y ci (S,/ h Y - y Coshy )

Y (/ o )/A/ )

tC I'SI/V U) COS r W )e

[ f m yS - y CosA m y) (AVII

rn y 5/A/ h rn y I

where d, e, f, and g are given in (53).

The boundary conditions necessary for determining V
P2

1-12)

are
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,5/E T6I1eMS 4 CoS/A/6 r21'4S

(AVIII-13)

2
* /6 re eRs 4 cos/me rEe ms

where k and L are found in (55). Following the arguments presented

previously we find

2
4 16 Z /1 (AVIII-14)

Similarly we find the energy in the fixed frame to be

(AVIII-15)

and the flow rate is given by

= -/ z /46 (AVIII-16)
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Appendix IX

The Analysis of Standing Waves on the Wall

Following the previous analysis of the right traveling wave, the

boundary shapes for standing waves in the fixed frame are given by

+V. A t 0 11/ m X, /-?I (X_1)

This gives rise to wall particle velocities of

VW1 -)ll dr Y /7 S/N rrX, 3/N M Ye
(AIX-2)

In Frame 3, we have

vh el oi r/ e

and the sheet particle velocities are

4 A?
) v13=

(AIX-3)

(16)

- a CO zk 3 (AIX-4)

The boundary shapes transform to

= c( S/A/k'j

Cos M Y-

(AIX-5)
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We now expand the velocities (AIX-3) and boundary shapes (AIX-5) using

trigonometric identities

CoMX C Cos r (/- VO -Yl

- 0 . rro , -

The bracketed quantities are seen to be

( S/N m ( / - VP)6 d- 3/A m ( -+/ -Vp)t I

(AIX-7)

1.0Y m [(p F*)
2

C'OS M

)SIm .1
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S/51t (/ -VP Y)&l
(AIX-6)

2 2

2-. '

Then (AIX-6) becomes

vfw. (AIX-8)

- Cos rn (Y +/ -vp 3RdCo's M 0-y v)6



The wall shape also expands to give

= :t 6 :t af 4 S/d m X m x]

(AIX-9)

2 Cos

This gives rise to the following boundary conditions,

k;10
ay

-I

(AIX-10)

4.

~?IO It/i
c~X

-0

- C o'$X

(AIX-li)

-Vp

Cos rr X - (cL..4)s/~A~, m)(1
a

&yf
I0

Sth
CD-_X
Cx X

= ; r -.
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@y 2

-

I

;xay

Vp i7
t 17

I (P F)
Z 5/1#V M 9)

COS rri

I ?, Ih

The solution is given by (44)

y

We find that the boundary conditions (AIX-li) are similar to equations (47)

with F and G replaced by F-Fy-- and G-G By analogy isByaaog2k

- [ cosh y r- (51h y -A y Cos A y)

3

-2 x

.5/N X

+o rM x

C f (Yswh r y - ,#My Cos/ MY)

r /y ./ my A
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10 SwiX
10

(AIX-12)

~2 j ,5/N fll x

4(

(AIX-13)

'4-t

(AIX-14)

I

0-G 0%0 *



with d, e, f, g being given by (53).

From (AIX-12) the boundary conditions needed to determing V
P2

to be

4. 5M~/E Td~E'-'~45
2

4 C O3IA/e 7-46RMA5

(AIX-15)

-. i 2YI Mze [ - (
gWjz

4 A
51N ZMX

4' S/i1iE 7 E1E"Mi

Expanding the sine squared and cosine squared terms in (AIX-15) we obtain

c~)/ -h
VP/ 12Y

4- 5/e

and the bracketed quantity is zero from the definitions of F, G, F

G . This gives a propulsive velocity of

I :(AIX

*
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are found

4
I

4 cc S11/ R

r?-eg/h1 S (AIX-16)

'/ C,5/N E 7M S

and

-17)

714e C (-42 0 1*
M . Ir - 1C



Following the previous analogy, we find the energy in the fixed frame to be

k 01(AIX-18)

and the flow rate is

(AIX-19)

It is interesting to note that the boundary conditions (AIX-li)

are the superposition of the right and left traveling waves of one-half

amplitude. The above results (to second order) could have been obtained

by superposing the two previous solutions.
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