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Abstract
Common statistical practice has shown that the
full power of Bayesian methods is not realized
until hierarchical priors are used, as these allow
for greater “robustness” and the ability to “share
statistical strength.” Yet it is an ongoing chal-
lenge to provide a learning-theoretically sound
formalism of such notions that: offers practical
guidance concerning when and how best to uti-
lize hierarchical models; provides insights into
what makes for a good hierarchical prior; and,
when the form of the prior has been chosen, can
guide the choice of hyperparameter settings. We
present a set of analytical tools for understanding
hierarchical priors in both the online and batch
learning settings. We provide regret bounds un-
der log-loss, which show how certain hierarchi-
cal models compare, in retrospect, to the best
single model in the model class. We also show
how to convert a Bayesian log-loss regret bound
into a Bayesian risk bound for any bounded loss,
a result which may be of independent interest.
Risk and regret bounds for Student’s t and hi-
erarchical Gaussian priors allow us to formalize
the concepts of “robustness” and “sharing statis-
tical strength.” Priors for feature selection are in-
vestigated as well. Our results suggest that the
learning-theoretic benefits of using hierarchical
priors can often come at little cost on practical
problems.

1. Introduction
There are two standard justifications for the use of hierar-
chical models. The first is that they allow for the represen-
tation of greater uncertainty by placing “hyperpriors” on
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the hyperparameters of the prior distribution (Berger, 1985;
Bernardo & Smith, 2000; Gelman et al., 2013). By ex-
plicitly modeling the additional uncertainty, there is greater
“robustness” to misspecification and unexpected data. The
second is that hierarchical models permit the “sharing of
statistical strength” between related observations or co-
horts (Gelman et al., 2013). For example, take the recent
“Big Bayes Stories” special issue of the journal Statisti-
cal Science, which was comprised of short articles describ-
ing successful applications of Bayesian models to a diverse
range of problems, including political science, astronomy,
and public health (Mengersen & Robert, 2014). Most of
the Bayesian models were hierarchical, and the need for ro-
bustness and sharing of statistical strength because of lim-
ited data were commonly cited reasons by the practitioners
for choosing a hierarchical Bayesian approach. Gelman &
Hill (2006) and Gelman et al. (2013) both contain further
examples of problems in which hierarchical modeling is
critical to obtaining high-quality inferences.

Within the machine learning and vision literature,
Salakhutdinov et al. (2011) offers an illustrative case study
in the benefits and the pitfalls of employing a hierarchi-
cal model. The motivation of Salakhutdinov et al. (2011)
was that, for image classification tasks, some categories
of objects (e.g., “car” or “dog”) have many labeled pos-
itive and negative examples while other, visually related,
categories (e.g., “bus” or “anteater”) have only a few la-
beled examples. Fig. 1(right, a) shows the distribution of
training examples for the 200 object categories used while
Fig. 1(right, b) shows the same distribution, but now ob-
jects are grouped with those with similar appearances. In
both cases, the distributions are fat-tailed: there are a few
categories with many training examples and many cate-
gories with a few training examples. It was hypothesized
that by using a hierarchical Bayesian model, the classes
with large amounts of labeled data could be used to con-
struct better classifiers for the classes with small amounts
of labeled data.

The model used by Salakhutdinov et al. (2011), which
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we will analyze in Section 4.2, consisted of a hierarchical
Gaussian prior with a logistic regression likelihood. Two-
level, one-level, and flat priors were all tested. The purpose
of using the two-level prior was that it was able to encode
information about which object classes had visually simi-
lar objects (e.g., car and track, dog and horse). Fig. 1(left)
compares the predictive performance of this two-level hi-
erarchical prior with the two more impoverished priors.
Observe that the one-level and two-level priors both im-
prove performance on most object classes compared to the
flat prior, but not all. Furthermore, the two-level prior al-
ways leads to greater improvement than the one-level prior
on object classes where a hierarchical model helps, but
also almost always leads to a greater degradation in per-
formance on object classes where the hierarchical mod-
els decrease performance. Why the different performance
characteristics for the two hierarchical models? Why do
some categories have improved accuracy while others de-
creased accuracy? In a post-hoc analysis, Salakhutdinov
et al. (2011) note that the “objects with the largest im-
provement...borrow visual appearance from other frequent
objects” while “objects with the largest decrease [such as
‘umbrella’ and ‘merchandise’] are abstract, and their visual
appearance is very different from other object categories.”

The results just described lead to numerous theoretical
questions of practical consequence:

Q1 Can we formalize why for some object classes there
was a beneficial sharing of statistical strength, while
for other classes the sharing was detrimental?

Q2 Can we understand when a flat model should be pre-
ferred to a hierarchical one to avoid unfavorable shar-
ing?

Q3 More generally, can we obtain guidance on the best
type of prior for the problem at hand? Perhaps a dif-
ferent hierarchical prior would have been better suited
to learning the image classifiers. For example, could
placing hyperpriors on the variance parameters lead
to greater “robustness” for object categories such as
‘umbrella’ and ‘merchandise,’ whose visual appear-
ance differs from other object categories?

Q4 Once the form of the prior has been chosen, how
should hyperparameters be set to maximize learning?
The settings of the variance hyperparameters was left
unspecified by Salakhutdinov et al. (2011), and it is
not clear a priori how they should be set, or how much
effect their choice will have on learning.

While we have primarily framed these questions in terms
of a single model from one paper, this focus was simply for
concreteness. Similar results leading to the same types of
questions can be found in the numerous articles that make
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Abstract

We present a hierarchical classification model that al-

lows rare objects to borrow statistical strength from related

objects that have many training examples. Unlike many of

the existing object detection and recognition systems that

treat different classes as unrelated entities, our model learns

both a hierarchy for sharing visual appearance across 200

object categories and hierarchical parameters. Our exper-

imental results on the challenging object localization and

detection task demonstrate that the proposed model sub-

stantially improves the accuracy of the standard single ob-

ject detectors that ignore hierarchical structure altogether.

1. Introduction

As we move around the world, some objects are encoun-
tered very frequently (everyday, we see many different peo-
ple, cars, trees, buildings, chairs, etc.), other objects are less
frequent (encountering only a few different instances per
day, such as televisions or mugs), other objects are quite
rare (e.g., speakers, teapots, suitcases, docks), or extremely
rare (seen only a few times each year or less, such as ele-
phants, or aircraft carriers). This distribution of learning
data is very different to the distributions generally used
when training object recognition algorithms. Current work
on learning from few examples generally creates a setting
in which there are N object classes, with M training exam-
ples available per class, with M being small. This setting is
artificial as it is becoming increasingly easy to collect large
amounts of training data [23, 18], at least for a subset of
the object classes. In addition, this artificial distribution of
training data is likely to be quite different to the distribution
of data encountered by humans, or by the mobile agents,
moving around the world.

In this work we focus on the more realistic setting in
which we have some classes containing lots of training data
and many classes containing little data. Our goal is to use
frequent classes to help to learn rare classes for which it
is harder to collect the training data. This biased distribu-
tion is quite frequent and emerges in most natural training
domains. One of the most common examples is when look-
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Figure 1. a) Distribution of amount of training data available per

object class. Objects are sorted by decreasing amount of data. The

distribution is similar to the Zipf’s law, with 9 objects out of 200

accounting for 50% of all the available training data. The two im-

ages show the output of a detector trained to detect vans using only

the training data available for the van class. b) Objects are grouped

into clusters of objects with similar visual appearances. In this

plot clusters (denoted by different colors) are sorted by the cluster

mass (sum of all the samples available) and, within each cluster,

objects are sorted by decreasing amount of data. Rare objects are

likely to be inside a cluster with some very frequent objects. The

images show detections of vans on test images without (top) and

with (bottom) sharing.

ing at the frequency of words. The distribution of words
approximates the Zipf’s law [32]. A distribution similar
to Zipf’s law also has been found in several large object
databases (e.g., what and where [26], labelme [23]). Other
datasets have a uniform distribution over available data per
class (e.g. Caltech 101, ImageNet [18], by making a big ef-
fort during the collection process in order to keep a uniform
distribution over the object samples).

Fig. 1.a shows the distribution of amount of annotated
data available for 200 object categories from the database
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Figure 1. Right: a) Distribution of training examples per object
class. b) Same as a), but with objects grouped by visual appear-
ance. Left: Improvement in classification accuracy of hierarchi-
cal models compared to flat model. Object categories are sorted
by improvement. Reproduced and reconstructed from Salakhut-
dinov et al. (2011).

use of hierarchical Bayesian methods. For example, one
might instead consider the hierarchical models have been
used in political science for analyzing polling and census
data to predict election outcomes (Ghitza & Gelman, 2013)
and in demography for predicting population growth, life
expectancy, and fertility rates (Raftery et al., 2013; 2012;
Alkema et al., 2011).

In this paper we seek to answer the questions just posed in
terms of two learning-theoretic quantities: regret (in online
learning) and statistical risk (in batch learning). The online
learning setting applies, for example, to the demography
applications and election prediction while the batch setting
is relevant to the image classification problem as well as
election prediction (whether the online or batch analysis
applies to election prediction depends on how the problem
is formulated).

In the online learning framework (Dawid & Vovk, 1999;
Cesa-Bianchi & Lugosi, 2006), no assumptions are made
about the data-generating mechanism. Inputs are presented
to the learner one by one. After receiving each input the
learner predicts the output, then suffers a loss after observ-
ing the true output. The goal of the learner is to not do
much worse (i.e., have large regret) compared to a fixed
class of predictors. Online learning guarantees are attrac-
tive for the analysis of hierarchical Bayesian models be-
cause such models are so often used in exactly those cir-
cumstances when orthodox Bayesian justifications do not
apply: typically the modeler does not think that her model
reflects the true data generating process, but is instead em-
ploying hierarchical methods either to increase robustness
against a poor choice of hyperparameters or to speed learn-
ing by allowing for the sharing of statistical strength be-
tween populations.

Regret bounds, however, do not themselves give any gen-
eralization guarantees about how the learner will perform
on future data. Statistical risk bounds provide guarantees
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about the learner’s expected loss on unseen examples by
making assumptions about how the data are generated —
for example, from an i.i.d. or strongly mixing process. Al-
though there is a stochastic assumption, risk bounds also
do not assume that the data is generated according to the
model used. We derive a general result for transferring
Bayesian regret bounds to risk bounds for bounded losses.

Regret bound for a number of Bayesian models have pre-
viously been developed (Vovk, 2001; Kakade & Ng, 2004;
Kakade et al., 2005; Banerjee, 2006; 2007; Seeger et al.,
2008), with a particular focus on regression and simple
priors such as independent Gaussian distributions for each
regression coefficient. For a discussion of more general
(but asymptotic) Bayesian regret bounds for exponential
families and other sufficiently “regular” model classes, see
Grünwald (2007, Chapter 8). We follow the approach orig-
inally taken in Kakade & Ng (2004), and further explored
in Kakade et al. (2005), Banerjee (2006), and Seeger et al.
(2008), which applies to a large class of Bayesian gener-
alized linear models (GLMs). We extend the technique to
apply to certain non-GLM likelihoods as well, including to
multi-class logistic regression. All proofs are deferred to
the Appendices.

We answer Questions Q1-Q4 in some important cases by
deriving regret bounds for three types of hierarchical pri-
ors. First, we consider the use of an inverse gamma hy-
perprior for the Gaussian prior’s variance parameter and
demonstrate that the hyperprior leads to greater robustness
to data that is well-explained by setting the GLM param-
eter vector to have very large `2 norm. Next, we analyze
hierarchical Gaussian models that allow for the sharing of
statistical strength. Our results, which complement exist-
ing work on transfer and multitask learning theory (Baxter,
1997; Ben-David & Schuller, 2003; Pentina & Lampert,
2014), show that when the parameters with small regret for
a collection of related tasks are either (a) similar or (b) not
unexpected under the prior, then the hierarchical model has
a smaller regret bound than assuming the tasks are inde-
pendent. Finally, we show that spike-and-slab priors can
exploit sparse parameters with small regret.

2. Bayesian Online Learning
In online learning, the learner must predict (a distribution
over) y ∈ Y ⊆ R after observing x ∈ X ⊆ Rn. In
this paper, we assume the prediction is made according to a
generalized linear model (GLM) p(y |x,θ) = p(y |θ · x),
where θ ∈ Θ ⊆ Rn is a parameter vector to be cho-
sen. GLMs provide significant modeling flexibility, and
the class of GLM models and priors we analyze include
a range of models used in real-world scientific applications
(Gelman & Hill, 2006; Gelman et al., 2013). Two widely

used GLMs are the logistic regression likelihood

p(y |θ,x) =
1

1 + exp(yθ · x)
, y ∈ {−1, 1}, (1)

and the Gaussian linear regression likelihood p(y |θ,x) =
N(y |θ · x, σ2), y ∈ R. Since we are taking a Bayesian
approach, we place a prior density p0(θ) on Θ, with cor-
responding distribution P0.1 At time step t, the learner
observes xt, outputs a distribution over Y , then observes
yt ∈ Y . The Bayesian (model average) learner predicts
p(y |xt, Zt−1), where Zt , {(x1, y1), . . . , (xt, yt)}, and
then suffers the log-loss − ln p(yt |xt, Zt−1). Hence, the
cumulative loss incurred is

LBayes(ZT ) ,
∑T
t=1− ln p(yt |xt, Zt−1).

If Q is a distribution over θ, then using Q for
prediction leads to loss on example t of `t(Q) ,
EQ[− ln p(yt |xt,θ)] and hence cumulative loss

LQ(ZT ) , EQ
[∑T

t=1− ln p(yt |xt,θ)
]
.

If Q = δθ, then we write Lθ instead of LQ, so LQ(ZT ) =
EQ[Lθ(ZT )]. Our objective is to derive regret bounds of
the form

R(ZT ,θ) , LBayes(ZT )− Lθ(ZT ) ≤ B(θ) + C(T ),
(2)

where R(ZT ,θ) is the regret and B(θ) + C(T ) is a re-
gret bound depending on the choice of prior P0. We aim
for C(T ) = o(T ), so that for a fixed θ, the average loss
T−1LBayes(ZT ) is bounded by T−1Lθ(ZT ) + o(1).

Our approach to bounding LBayes(ZT ) follows that of
previous work on Bayesian GLM regret bounds with log-
loss (Kakade & Ng, 2004; Kakade et al., 2005; Seeger et al.,
2008), relying on the following well-known result:

Proposition 2.1 (Kakade & Ng (2004); Banerjee (2006)).
The Bayesian cumulative loss is bounded as

LBayes(ZT ) ≤ LQ(ZT ) + KL(Q||P0). (3)

For the GLM model p(y |θ · x), define fy(z) ,
− ln p(y |θ ·x = z). We make two assumptions throughout
the remainder of the paper (they will usually not be stated
explicitly):

|f ′′y (z)| ≤ c for all y, z (A1)

‖xt‖2 ≤ 1 for all t. (A2)

The first assumption can be understood as requiring the
likelihood to be sufficiently smooth. The second assump-
tion sets the scale of the problem, which is necessary since

1Throughout, we use lowercase letters for densities and upper-
case letters to denote the corresponding measures.
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scaling xt up requires scaling θ down, and vice-versa:
p(y |C−1θ · Cx) = p(y |θ · x) for any C 6= 0. Note
that for the Gaussian linear regression model with vari-
ance σ2 and the logistic regression model, (A1) holds with
c = 1/σ2 and c = 1/2, respectively. Proposition 2.1 leads
to the following theorem for obtaining regret bounds for the
Bayesian model average learner.

Theorem 2.2 (Bayesian regret meta-theorem). Let Qθ∗,φ
be a distribution with parameter φ ∈ Φ ⊆ Rd (written φ if
d = 1) and mean θ∗. If (A1) and (A2) hold, then for all φ,

R(Z,θ∗) ≤ Tc

2
‖VarQθ∗,φ [θ]‖+ KL(Qθ∗,φ||P0),

where ‖ · ‖ is the spectral norm. In particular, if the com-
ponents of θ∗ are uncorrelated, then ‖VarQθ∗,φ [θ]‖ =
supi VarQθ∗,φ [θi]

Theorem 2.2 is our first main result and will be repeatedly
applied in Section 4 by choosing an appropriate Qθ∗,φ and
then optimizingφ. Although the bound appears to be linear
in T , typicallyφ can be chosen such that ‖VarQθ∗,φ [θ]‖ =
Θ(T−1) and KL(Qθ∗,φ||P0) = Θ(lnT ), leading to a log-
arithmic regret bound. Theorem 2.2 provides an attractive
approach to deriving regret bounds because there is no need
to work directly with the posterior, which is often analyti-
cally intractable. For example, there is no closed-form ex-
pression for the posterior of the Bayesian logistic regres-
sion model. The theorem generalizes the approach origi-
nally taken in Kakade & Ng (2004), in which a Gaussian
prior for θ was considered:

Theorem 2.3 (Gaussian regret (Kakade & Ng, 2004)). If
θ ∼ N(0, σ2I), thenR(Z,θ∗) is bounded by

RGBayes(Z,θ
∗) ,

1

2σ2
‖θ∗‖2 +

n

2
ln

(
1 +

Tcσ2

n

)
.

2.1. Beyond GLMs

Theorem 2.2 follows from a more general result, Theo-
rem 2.4, which allows for non-GLM likelihoods. Specif-
ically, instead of the likelihood being a GLM, we assume
the likelihood can be written in the form p(y |x, ξ,ψ) =
p(y | ξx,ψ), where ξ ∈ Rn′×n is a matrix and ψ ∈
Rn′′ . The full parameter vector is θ = (ξ,ψ) ∈ RN ,
N , nn′ + n′′ (implicitly flattening the matrix ξ). Let
fy(z) , − ln p(y | (ξx,ψ) = z). We require the follow-
ing assumption in place of (A1):

‖f ′′y (z)‖ ≤ c for all y,z, (A1’)

where f ′′y (z) denotes the matrix of second partial deriva-
tives (Hessian).

Theorem 2.4 (Generalized Bayesian regret meta-theorem).
Let Qθ∗,φ be a distribution with parameter φ ∈ Φ ⊆ Rd

and mean θ∗. If (A1’) and (A2) hold, then for all φ,

R(Z,θ) ≤ Tc(n′ + n′′)

2
‖VarQθ∗,φ [θ]‖+ KL(Qθ∗,φ||P0),

Of particular interest is that Theorem 2.4 can handle multi-
class logistic regression (MLR). In multi-class regression,
each example xt has one of K labels yt ∈ {1, . . . ,K},
indicating which class the example belongs to. For MLR,
each class k has an associated parameter θ(k). The param-
eters are combined into a single likelihood:

p(yt |θ,xt) =
exp(θ(yt) · x)∑K
k=1 exp(θ(k) · xt)

. (4)

Theorem 2.5 (MLR Gaussian regret). If θ(k) ∼
N(0, σ2I), k = 1, . . . ,K, then using the MLR likelihood
guarantees thatR(Z,θ∗) is bounded by

Rmlr−GBayes (θ∗, Z) ,
1

2σ2
‖θ∗‖2 +

nK

2
ln

(
1 +

TKcσ2

n

)
.

3. Risk Bounds
While online regret bounds are attractive because they
make no assumptions about the data-generating process, it
is also desirable to have risk bounds in the batch setting
since risk bounds provide generalization guarantees for un-
seen data. We now develop a connection between regret
and risk bounds via a PAC-Bayesian analysis (McAllester,
2003; Audibert & Bousquet, 2007; Catoni, 2007). Such
bounds also have the benefit of applying to any bounded
loss (e.g., the 0-1 loss for binary classification), which may
be more task-relevant than the log-loss. In the batch set-
ting, the data ZT are received all at once by the learner and
are assumed to be distributed i.i.d. according to some dis-
tribution D over X × Y: (xt, yt)

i.i.d.∼ D, t = 1, . . . , T . Let
` be a bounded loss function taking a probability distribu-
tion over Y and an element of Y as arguments. Without
loss of generality assume ` ∈ [0, 1]. Writing `θ(x, y) ,
`(p(· |x,θ), y), for any distribution Q over Θ, let

L(Q) , E(x,y)∼DEθ∼Q[`θ(x, y)]

L̂(Q,ZT ) , T−1∑T
t=1 Eθ∼Q[`θ(xt, yt)]

be, respectively, the expected and empirical losses under
Q. PAC-Bayesian analyses consider the risk of the Gibbs
predictor for the distribution Q (i.e., sample θ ∼ Q, pre-
dict with p(· |x,θ)), not the model average over Q (i.e.,
predict with

∫
p(· |x,θ)Q(dθ)). A typical bound (spe-

cialized to the Bayesian setting) is the following (here
pT (θ) , p(θ |ZT )):

Theorem 3.1 (Audibert & Bousquet (2007)). Fix κ > 1/2
and write κ′ , 2κ/(2κ − 1). For any distribution D, with
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probability at least 1− δ over samples (xt, yt)
i.i.d.∼ D,

|L(PT )− L̂(PT , ZT )|

≤ T−1/2
√
κ
√

KL(PT ||P0) + lnκ′/δ .
(5)

Combining the PAC-Bayesian risk bound with Bayesian re-
gret bounds leads to our second main result:
Theorem 3.2. Assume that (2) holds and fix κ > 1/2. For
any distributionD, with probability at least 1−δ over sam-
ples (xt, yt)

i.i.d.∼ D,

|L(PT )− L̂(PT , ZT )|

≤ T−1/2
√
κ

√
B(θ̂) + C(T ) + lnκ′/δ ,

(6)

where θ̂ , arg minθ Lθ(ZT ).

An attractive feature of Theorem 3.2 is that the bound
does not rely on understanding the posterior PT , as is re-
quired by a direct application of a PAC-Bayesian bound
such as that given in Theorem 3.1, which requires calcu-
lating KL(PT ||P0). Yet the PAC-Bayesian regret bound
remains data-dependent due to its dependence on the em-
pirical risk minimizer (ERM) p(y |x, θ̂).

Examining the proof of Theorem 3.2, it is easily seen that
in fact any θ̃ such that Lθ̃(ZT ) < LPT (ZT ) can be chosen
in place of θ̂. Such alternative choices may lead to sig-
nificantly tighter bounds and are particularly important, for
example, in the application of the theorem to the spike-and-
slab prior (cf. Section 4.3), as the ERM parameter will in
almost all circumstances satisfy ‖θ̂‖0 = n, which would
lead to a poor generalization bound when n is large.

In words, Theorem 3.2 can be understood as stating that
if the Bayesian (model average) learner has small log-loss
regret compared to the ERM, then with high probability
the Bayesian Gibbs predictor will generalize well if the
loss function is bounded. Or, as a slogan, the theorem
shows that “small regret in the online learning setting im-
plies good generalization bounds in the batch setting.” The
theorem thus connects PAC-Bayesian bounds, Bayesian re-
gret bounds, and empirical risk minimization.

4. Applications
We now use Theorem 2.2 to analyze hierarchical priors for
robustness, sharing of statistical strength, and feature selec-
tion.

4.1. Hierarchical Priors for Robustness

In this section we answer questions Q2-Q4 as they relate
to hierarchical priors for robust inference, demonstrating
how, with a proper choice of hyperparameters, a hierarchi-
cal prior can lead to increased robustness compared to a flat

prior. Specifically, we analyze a canonical use of a hierar-
chical prior — to capture greater uncertainty in the value of
a parameter by placing a hyperprior on the variance of the
Gaussian prior on that parameter (Berger, 1985; Bishop,
2006; Gelman et al., 2013):

σ2
0 |α, β ∼ Γ−1(α, β) and θi |µ0, σ

2
0 ∼ N(µ0, σ

2
0),

where Γ−1(α, β) is the inverse gamma distribution with
shape α and scale β. Let ν , 2α and σ2 , β/α. Then
the marginal distribution of θ follows the multivariate t-
distribution with location µ01, scale matrix σ2I , and ν de-
grees of freedom:

θ |µ0, σ
2, ν ∼ Tν(µ01, σ

2I),

where 1 is the all-ones vector. The multivariate t-
distribution density is

pT(θ |µ,Σ, ν)

=
Γ(ν+n

2 )
(
1 + 1

ν (θ − µ)>Σ−1(θ − µ)
)− ν+n2

Γ(ν2 )πn/2νn/2|Σ|1/2
.

When ν is finite, the multivariate t-distribution is heavy-
tailed: the probability of ‖θ‖ decreases at a polynomial rate
as ‖θ‖ → ∞, compared to the exponential rate for a mul-
tivariate Gaussian. For example ν = σ2 = 1 and Σ = σ2

gives the multivariate Cauchy distribution. A multivariate
Gaussian with covariance matrix Σ is recovered by taking
ν → ∞. Placing a multivariate t-distribution prior on θ
yields the following regret bound:

Theorem 4.1 (Multivariate t-distribution regret). If θ ∼
Tν(0, σ2I), thenR(Z,θ∗) is bounded by

RmvtBayes(Z,θ
∗) ,

ν + n

2
ln

(
1 +
‖θ∗‖2

νσ2

)
+
n

2
ln

(
(ν + 1)(ν + n)

ν2
+
Tc(ν + 1)σ2

νn

)
.

(7)

Theorem 2.3 can be obtained as a special case of Theo-
rem 4.1 by taking ν →∞.

Assume ν ≥ 1. If ‖θ
∗‖2
νσ2 is small, then

F (‖θ‖) , ν + n

2
ln

(
1 +
‖θ∗‖2

νσ2

)
≈ n+ ν

ν

‖θ∗‖2

σ2
,

so for “small” values of ‖θ∗‖2 (relative to νσ2) the regret
bound behaves similarly to having a Gaussian prior on θ.
However, if ‖θ

∗‖2
νσ2 � 1, then the regret bound grows only

logarithmically with ‖θ‖, as we would expect given that the
multivariate t-distribution has heavy tails. Roughly speak-
ing, F (x) can be thought of as switching from quadratic
to logarithmic behavior when x2 = νσ2, since this is the
value at which F switches from being convex to concave.
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In general, the regret bound is large when the choice of θ∗

with small loss has large magnitude. If a Gaussian prior
is used, the possibility of ‖θ∗‖ being large can be ame-
liorated by choosing σ2 large, since there is only a log-
arithmic regret penalty in σ. However, without a priori
knowledge of how large the optimal θ∗ might be, choos-
ing a multivariate t-distribution prior with a small value for
ν and a moderate value for σ2 allows for guaranteed loga-
rithmic regret in the magnitude of θ∗ no matter how large
‖θ∗‖ is. Hence, the use of the hierarchical (multivariate t-
distribution) prior does in fact yield greater robustness than
the non-hierarchical (Gaussian) prior.2

We can, in fact, develop more specific guidance on the
choice of hyperparameters for the t-distribution. Our goal
is to choose ν such that we obtain a t-distribution regret
bound that is essentially as good as the Gaussian prior re-
gret bound RGBayes = ‖θ∗‖2

2σ2 + n
2 ln

(
1 + Tcσ2

n

)
for small

‖θ∗‖ and better when ‖θ∗‖ is large. If we choose ν equal
to a constant, then for n much larger than ν, we have
RmvtBayes ≈ n

2 ln
(

1 + ‖θ∗‖2
νσ2

)
+ n

2 ln
(
n
ν + Tcσ2

n

)
. In the

case of ‖θ∗‖ small, we therefore have that the first term of
RmvtBayes is approximately n

ν
‖θ∗‖2
2σ2 , and thus larger than the

first term of RGBayes by a factor of n/ν. Furthermore, for
small T � n

cσ2 and any θ∗, the second term of RmvtBayes

is approximately n
2 ln(n/ν) whereas the second term of

RGBayes is approximately Tcσ2 � n. Thus, RmvtBayes with
constant ν is not competitive with RGBayes in the large n
and small T regimes. Instead consider the choice ν = Cn
for constant C > 0, so

RmvtBayes

≈ (C + 1)n

2
ln

(
1 +
‖θ∗‖2

Cnσ2

)
+
n

2
ln

(
C + 1

C
+
Tcσ2

n

)
≤ C + 1

C

‖θ∗‖2

2σ2
+
n

2
ln

(
C + 1

C
+
Tcσ2

n

)
.

In this case, by choosing a moderate value of C, we see
that a multivariate t-distribution prior with ν = Cn has
a competitive regret bound with a Gaussian prior in the
small ‖θ∗‖ regime, and exponentially smaller regret bound
as ‖θ∗‖ becomes large. Furthermore, the t-distribution
prior remains competitive with the Gaussian prior when T
is small.

2A more rigorous version of this statement can be obtained
for the Gaussian regression likelihood by using the fact that
there is a matching lower bound on the regret for the Gaussian
prior/Gaussian regression model (Kakade & Ng, 2004).

4.2. Hierarchical Priors for Sharing Statistical
Strength

4.2.1. BACKGROUND

We next consider hierarchical priors that allow for the shar-
ing of statistical strength, providing answers to Q1 and Q2:
we specify some conditions under which sharing of statis-
tical strength can be achieved and others in which a non-
hierarchical prior is preferable.3 In the machine learning
literature, the goal of “sharing statistical strength” has been
formalized via multitask learning (MTL) and “learning-to-
learn” (LTL) frameworks. A number of theoretical investi-
gations of MTL and LTL haven been carried out, beginning
with a series of papers by Baxter (cf. Baxter, 1997; 2000).
Generically, such MTL and LTL frameworks involve two
or more learning problems that are related to each other in
some manner. The learning properties are investigated as
the number of tasks and/or the number of examples from
each task is increased. Baxter (2000) and Ben-David &
Schuller (2003) give sample complexity bounds based on
classical ideas from statistical and PAC learning theory.
Baxter (1997) examines the asymptotic learning proper-
ties of hierarchical Bayesian models. Pentina & Lampert
(2014) take a PAC-Bayesian approach while Hassan Mah-
mud & Ray (2007); Hassan Mahmud (2009), and Juba
(2006) develop notions of task-relatedness from an (algo-
rithmic) information-theoretic perspective.

Typically, tasks are equated with probability distributions
over examples (e.g., (x, y) pairs). It is assumed that the
tasks are drawn i.i.d. from an unknown task distribution.
The goal is to learn the individual tasks and learn about
the task distribution. Alternatively, a notion of similarity
can be used to relate the tasks: the more similar the tasks,
the greater the advantage of learning them using multitask
algorithms. In the online learning framework no assump-
tions are made about the distribution of examples, so we
consider two MTL scenarios in line with the latter setting.
In the first scenario, one example from one task is received
at each time step. In the second, which is described in the
Appendix E.1, at each time step an example for each task
is received simultaneously.

4.2.2. SEQUENTIAL OBSERVATIONS FROM MULTIPLE
SOURCES

The sequential observation setting is relevant to the im-
age classification example given in the introduction, in
which there are many observations from some data sources
and only a small number of observations from numerous
other data sources. To model this situation, at time step
t, an input xt from source zt is observed, where zt ∈

3For simplicity results are for Gaussian priors, though the ex-
tension to multivariate t-distribution priors is straightforward.
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{1, . . . ,K}. The learner predicts yt according to the poste-
rior of θ(zt) given Zt−1. An equivalent formulation is that
the Bayesian learner observes xt = (0, . . . ,x

(k)
t ,0, . . . )

(if zt = k) at each time, then receives yt. Instead
of using independent Gaussian priors on θ(1), . . . ,θ(K),
place a prior over the means of the K priors. For each
dimension j = 1, . . . , n, let µj |σ2

0 ∼ N(0, σ2
0) and

θ
(k)
j |µj , σ2 ∼ N(µj , σ

2), k = 1, . . . ,K, and write

θ
(1:K)
j , (θ

(1)
j , . . . , θ

(K)
j ). Integrating out µj yields

θ
(1:K)
j |σ2

0 , σ
2 ∼ N(0,Σ), (8)

where, with 1K denoting the K ×K all-ones matrix,

Σ , s2ρ1K + s2(1− ρ)I (9)

s2 , σ2
0 + σ2, ρ , σ2

0/(σ
2
0 + σ2), (10)

This prior corresponds to the one-level prior in Salakhutdi-
nov et al. (2011). Similar results, which will be discussed
qualitatively below, can be obtained for the two-level prior
at the cost of a significantly more complicated bound. De-
fine T (k) ,

∑T
t=1 δk(zt), Z(k) , {(x, y) ∈ Z|zt = k},

and γ2 , Kσ2
0 + σ2

Theorem 4.2 (Hierarchical Gaussian regret, sequential ob-
servations). If θ(1:K)

j ∼ N(0,Σ), j = 1, . . . , n, then
R(Z,θ∗) is bounded by

RHG−seqBayes (Z,θ∗) ,
1

2γ2

∑K
k=1 ‖θ

∗(k)‖2

+
σ2

0

σ2γ2

∑
k<` ‖θ

∗(k) − θ∗(`)‖2 + n
2 ln

(
1 +

Kσ2
0

σ2

)
+
n

2

∑K
k=1 ln

(
1− σ2

0

γ2 + T (k)cσ2

n

)
. (11)

It is instructive to compare the upper bound given in (11)
to
∑
k R

G
Bayes(Z(k),θ

∗(k)) with prior variance s2 = σ2
0 +

σ2. Setting σ0 = σ yields a condition for the hierar-
chical model to have smaller regret bound than the non-
hierarchical model:

4‖θ∗(1) − θ∗(2)‖2 + 3s2n
∑2
k=1 ln

(
4
3n+T (i)cs2

n+T (k)cs2

)
≤ ‖θ∗(1)‖2 + ‖θ∗(2)‖2 + 0.863s2n.

(12)

Of particular interest is the “one-shot learning” scenario, in
which only one observation (or a small number of obser-
vations) from a source are made while many observations
are made from some other sources. This setting is exactly
that of the image classification problem of Salakhutdinov
et al. (2011). For concreteness, consider a “large data” task
with T (1) � n

cs2 and a “small data” task T (2) = 2, so that

ln
(

4
3n+T (1)cs2

n+T (1)cs2

)
≈ 0 and (12) becomes (approximately)

4‖θ∗(1) − θ∗(2)‖2 + 3s2n ln

(
4n+ 6cs2

3n+ 6cs2

)
≤ ‖θ∗(1)‖2 + ‖θ∗(2)‖2 + 0.863s2n.

But even for n = 1, 3 ln
(

4n+6cs2

3n+6cs2

)
< 0.863, so the

hierarchical model has smaller regret bound as long as
4‖θ∗(1)−θ∗(2)‖2 ≤ ‖θ∗(1)‖2 +‖θ∗(2)‖2 +Cs2n for some
constant 0 < C < 0.863.

Hierarchical models for one-shot learning are designed
with the goal of providing good predictive power on the
new problem (the second data source) even with a small
number of examples from that problem. To see if this is in
fact the case for the hierarchical prior considered here, we
can investigate how much greater the regret bound is for
T (2) > 0 than for T (2) = 0 with T (1) � n

cs2 fixed. With
σ2

0 = σ2, (11) is greater in the former (K = 2) than the
latter (K = 1) scenario by at most

− ‖θ
∗(1)‖2

6s2
+
‖θ∗(2)‖2

3s2
+

2‖θ∗(1) − θ∗(2)‖2

3s2
+

3T (2)cs2

8
.

So if ‖θ∗(2)‖ is small and θ∗(2) and θ∗(1) are close in `2

distance, the regret bound for the second source is small.

The regret bound for the two-level prior in Salakhutdinov
et al. (2011) is quite similar to that for the one-level prior.
Let sk ∈ {1, . . . , S} denote the superclass of class k. In the
case of image classification, object classes that have similar
visual appearance would have a common superclass. The
two-level prior consistes of an overall parameter prior β ∼
N(0, σ2

0I), superclass parameter priors µ(s) ∼ N(β, σ2
1I),

and class parameter priors θ(k) ∼ N(µ(sk), σ2
2I). The re-

gret bound for the two-level prior is

c0
∑K
k=1 ‖θ

∗(k)‖2 +
∑
k<` ck`‖θ

∗(k) − θ∗(`)‖2

+
n

2

∑K
k=1O(ln(c1 + c2T

(k))) +O(1),
(13)

where c0, c1, c2 > 0 are constants, ck` = c̃sk if sk = s`
and ck` = c̃sks` if sk 6= s`. Furthermore, c̃s > c̃s′s′′ for
all s, s′, s′′ ∈ {1, . . . , S}. Hence, the regret bound’s being
small depends more on the parameter vectors in the same
superclass being close to each other than on parameter vec-
tors from different superclasses being close to each other.
See Appendix E.2 for details. The two-level regret bound
well-explains the results of Salakhutdinov et al. (2011).
The poor performance on image classes with very differ-
ent visual appearance from the other classes is unsurpris-
ing since the parameter vectors that predict these classes
well are going to have large `2 distance from the parameter
vectors of other object classes.
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4.3. Hierarchical Priors for Feature Selection

A shortcoming of the priors investigated so far is the poor
dependence on the feature space dimension n. For exam-
ple, the Gaussian prior regret bound is (approximately)

LBayes(Z) ≤ inf
θ∗
Lθ∗(Z) +

1

2σ2
‖θ∗‖2 +

Tcσ2

2
,

when Tcσ2 � n, so the regret may grow linearly in this
regime.4 In the infinite-dimensional case, Gaussian pro-
cesses can be used while still obtaining meaningful regret
bounds (Kakade et al., 2005; Seeger et al., 2008). However,
methods that are applicable to high-dimensional problems
for which n � T but n is still finite are of great general
interest. For example, in the image classification example
from the introduction, the feature vector has n ≈ 5000,
whereas most object classes have fewer than 200 training
examples. In high-dimensional problems it is desirable to
use feature selection or sparse methods to reduce the ef-
fective dimension of the problem, with the aim of achiev-
ing better generalization performance and increasing in-
terpretability of the model. A popular non-Bayesian ap-
proach for inducing sparsity is `1 regularization, such as the
lasso for linear regression (Tibshirani, 1996). A Bayesian
approach is the Bayesian lasso: the `1 regularizer of the
lasso is converted into a prior, which amounts to placing a
Laplace prior on θ (Park & Casella, 2008). However, the
Bayesian lasso still seems to lead to a linear dependence
on the dimension because the model puts zero prior mass
on a component being exactly zero. A regret bound for
the Bayesian lasso can be found in the Appendix F.1 (we
suspect that our bound is essentially tight, though we have
been unable to obtain a matching lower bound).

Another common Bayesian approach to inducing spar-
sity is to use a hierarchical “spike and slab” prior, which
places positive probability on a component being exactly
zero (Ishwaran & Rao, 2005; Narisetty & He, 2014). One
version of the spike and slab prior is

zi | p ∼ Bern(p) and θi | zi ∼ ziδ0 + (1− zi)N(0, σ2).

So with probability p component i is zero and with prob-
ability 1 − p it is Gaussian-distributed. Integrating out zi
yields prior density p0(θi) = pδ0(θi)+(1−p)N(θi | 0, σ2).
Let ‖v‖0 denote the `0 norm of the vector v.
Theorem 4.3. For the spike-and-slab prior, if m = ‖θ∗‖0,
thenR(Z,θ∗) is bounded by

RSSBayes(Z,θ
∗) ,

1

2σ2
‖θ∗‖2 +m ln

1

1− p
(14)

+ (n−m) ln
1

p
+
m

2
ln

(
1 +

Tcσ2

m

)
.

4Dimension-independent regret bounds for the priors already
considered can be obtained, but at the price of a constant greater
than one front of the Lθ∗(Z) term. See, e.g., Banerjee (2007).

In particular, if p , q1/n for some constant 0 < q < 1,
then RSSBayes(Z,θ

∗) is at most

‖θ∗‖2

2σ2
+m ln

n

1− q
+ ln

1

q
+
m

2
ln
(

1 +
Tcσ2

m

)
. (15)

The theorem shows the importance of properly scaling p
with the dimension of the problem. If p is kept fixed, then
the regret has linear dependence on n. However, by scaling
p to be q1/n, we increase the probability of a component
being zero as the dimension increases and thus are able to
ensure that the regret is only logarithmic in nwhile simulta-
neously maintaining the appropriate linear dependence on
m. The constant q turns out to be the prior probability
that all of the components are set to zero. More gener-
ally,

(
n
k

)
q(n−k)/n(1 − q1/n)k

n→∞→ q lnk q−1

k! , the limiting
prior probability of choosing exactly k components to be
non-zero. Hence, as n → ∞, the prior over the number of
non-zero components converges to a Poisson distribution
with rate parameter ln q−1. So when n is large the expected
number of non-zero components is≈ ln q−1. The choice of
p close to 1 for large n is in notable contrast to the common
practice of setting p = 1/2 or some other constant indepen-
dent of n (Schneider & Corcoran, 2004; Ishwaran & Rao,
2005). Our results strongly recommend against this prac-
tice. See Narisetty & He (2014) for a discussion of purely
statistical reasons to scale p with the dimension.

5. Conclusion
In this paper we set out to understand and quantify the
learning-theoretic benefits of Bayesian hierarchical mod-
eling. In Section 4, we used first our main result, Theo-
rem 2.2, to analyze three specific hierarchical priors that,
particularly when combined with a logistic or Gaussian re-
gression likelihood, are widely used in practice. Indeed,
these prior-likelihood combinations have often been used
with substantial success even in situations when they are
known to be rather poor models for the data generating
mechanism. Our analysis offers an explanation for this suc-
cess. The priors we analyzed are representative of the va-
riety of ways in which hierarchical models are employed:
representing uncertainty in hyperparameters, tying together
related groups of observations, and creating more compli-
cated distributions from simpler ones. Thus, our results
answer Questions Q1-Q4 in some important cases and ex-
emplify a learning-theoretic analysis technique that can be
applied to other hierarchical models. In addition, using our
second main result, Theorem 3.2, all of the insights gained
in Section 4 for the log-loss regret setting apply equally
well to the batch setting of statistical risk with bounded
loss, further extending the applicability of our conclusions.
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A. Regret Bounds for Non-GLM Likelihoods
Recall Proposition 2.1, restated here for convenience:

Proposition. The Bayesian cumulative loss is bounded as

LBayes(ZT ) ≤ LQ(ZT ) + KL(Q||P0). (A.1)

Proof of Theorem 2.4. Fix a choice of θ∗ and φ and write Q = Qθ∗,φ. Take a second-order Taylor expansion of fy about
z∗, yielding

fy(z) = fy(z∗) + f ′y(z∗)>(z − z∗) +
1

2
(z − z∗)>f ′′y (ζ(z))(z − z∗),

for some function ζ. Let z = (ξx,ψ) with θ ∼ Q and let z∗ = E[z] = (ξ∗x,ψ∗). Hence,

Ez[fy(z)] = fy(z∗) + f ′y(z∗)>0 +
1

2
Ez
[
(z − z∗)>f ′′y (ζ(z))(z − z∗)

]
≤ fy(z∗) +

c

2
Ez
[
(z − z∗)>(z − z∗)

]
.

Defining

ω , (x, . . . ,x︸ ︷︷ ︸
n′ times

, 1, . . . , 1︸ ︷︷ ︸
n′′ times

),

we next observe that

(z − z∗)>(z − z∗) = ω>(θ − θ∗)(θ − θ∗)>ω. (A.2)

Letting Σ = Var[θ], we thus have

Ez
[
(z − z∗)>(z − z∗)

]
= ω>Eθ[(θ − θ∗)(θ − θ∗)>]ω

≤ ‖ω‖22‖Eθ[(θ − θ∗)(θ − θ∗)>]‖
= (n′‖x‖22 + n′′)‖Σ‖
≤ (n′ + n′′)‖Σ‖

since it is assumed that ‖x‖2 ≤ 1. Noting that LQ(ZT ) =
∑
t EQ[fyt(ξxt,ψ)] and Lθ∗(ZT ) =

∑
t fyt(ξ

∗xt,ψ
∗), we

have

LQ(ZT ) ≤ Lθ∗(ZT ) +
Tc(n′ + n′′)‖Σ‖

2
. (A.3)

Combining (A.1) and (A.3) yields the theorem.

Proof of Theorem 2.2. Follows as a special case of Theorem 2.4 by choosing n′ = 1 and n′′ = 0.

A.1. Application to Multi-class Logistic Regression

For multi-class logistic regression (MLR) y ∈ {1, . . . ,K} is one of K classes, the parameters are θ = {θ(k)}Kk=1, and the
likelihood is

p(y |θ,x) =
exp(θ(y) · x)∑K
k=1 exp(θ(k) · x)

. (A.4)

In order to apply Theorem 2.4, we require the following result:

Proposition A.1. Assumption (A1’) holds for the MLR likelihood with c = 1/2.
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Proof. First note that

fy(z) = −zy + ln
∑K
k=1 e

zi , (A.5)

where zi = θ(k) · x, and hence the Hessian of fy(z) is independent of y:

f ′′y (z) =
1

(
∑K
k=1 e

zi)2


∑
i 6=1 e

z1+zi −ez1+z2 . . . −ez1+zK

−ez2+z1
∑
i 6=2 e

z2+zi . . . −ez2+zK

...
. . .

 (A.6)

Applying Gershgorin’s circle theorem, we find that

‖f ′′y (z)‖ ≤
2ez1

∑
i6=1 e

zi

(
∑K
k=1 e

zk)2
, (A.7)

where with loss of generality we have applied the theorem to the first row of the Hessian. Defining a , ez1 ≥ 0 and
b ,

∑
i 6=1 e

zi ≥ 0, we have ‖f ′′y (z)‖ ≤ 2ab
(a+b)2 . Maximization over the positive orthant occurs at a = b > 0, so

‖f ′′y (z)‖ ≤ 1/2.

Reasoning similarly to Theorem E.1, one can easily prove:

Theorem A.2 (Hierarchical Gaussian regret, multi-class regression). If θ(1:K)
j ∼ N(0,Σ), j = 1, . . . , n, then using the

MLR likelihood guarantees thatR(Z,θ∗) is bounded by

Rmlr−HGBayes (Z,θ∗) ,
1

2γ2

∑K
k=1 ‖θ

∗(k)‖2 +
σ2
0

σ2γ2

∑
k<` ‖θ

∗(k) − θ∗(`)‖2

+
n

2
ln

(
1 +

Kσ2
0

σ2

)
+
nK

2
ln

(
1− σ2

0

γ2
+
Tσ2

2n

)
,

(A.8)

where γ2 , Kσ2
0 + σ2.

Theorem 2.5 follows as a special case of Theorem A.2 by taking σ2
0 = 0.

B. Proof of Theorem 3.2
Since pT (θ) = p(Y |X,θ)p0(θ)

p(Y |X) ,

KL(PT ||P0) = EPT
[
ln
pT (θ)

p0(θ)

]
= EPT

[
ln
p(Y |X,θ)

p(Y |X)

]
= LBayes(ZT )− LPT (ZT ). (B.1)

Combining (2) and (B.1) with Theorem 3.1 implies that with probability 1− δ, for all θ,

|L(PT )− L̂(PT , ZT )| ≤
√
κ

√
Lθ(ZT )− LPT (ZT ) +B(θ) + C(T ) + lnκ′/δ

T
.

Observing that Lθ∗(ZT ) < LPT (ZT ), so Lθ∗(ZT )− LPT (ZT ) < 0, completes the proof.
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C. KL Divergence Derivations
C.1. Multivariate Gaussians

Let Di = N(µi,Σi), i = 1, 2, where dim(µi) = n. Then

KL(D1||D2) =
1

2
ED1

[
ln
|Σ2|
|Σ1|

− (x− µ1)>Σ−1
1 (x− µ1) + (x− µ2)>Σ−1

2 (x− µ2)

]
=

1

2

{
ln
|Σ2|
|Σ1|

+ ED1

[
−Tr(Σ−1

1 (x− µ1)>(x− µ1)) + Tr(Σ−1
2 (x− µ2)>(x− µ2))

]}
=

1

2

{
ln
|Σ2|
|Σ1|

− Tr(Σ−1
1 Σ1) + ED1

[
Tr(Σ−1

2 (x>x− 2x>µ2 + µ>2 µ2))
]}

=
1

2

{
ln
|Σ2|
|Σ1|

− n+ ED1

[
Tr(Σ−1

2 (x>x− 2x>µ2 + µ>2 µ2))
]}

=
1

2

{
ln
|Σ2|
|Σ1|

− n+ Tr(Σ−1
2 (Σ1 + µ>1 µ1 − 2µ>1 µ2 + µ>2 µ2))

}
=

1

2

{
ln
|Σ2|
|Σ1|

− n+ Tr(Σ−1
2 Σ1) + (µ1 − µ2)>Σ−1

2 (µ1 − µ2)

}
.

C.2. Gaussian and t-Distribution

Let D1 = N(µ1,Σ1) and D2 = Tν(µ2,Σ2), where dim(µi) = k. Then

KL(D1||D2) = ln

(
Γ(ν2 )νk/2

Γ(ν+k
2 )

)
+
k

2
lnπ +

1

2
ln |Σ2| −

k

2
ln 2πe− 1

2
ln |Σ1|

+
ν + k

2
ED1

[
ln

(
1 +

1

ν
(x− µ2)>Σ−1

2 (x− µ2)

)]
= ln

(
Γ(ν2 )νk/2

Γ(ν+k
2 )

)
+

1

2
ln
|Σ2|
|Σ1|

− k

2
ln 2e

+
ν + k

2
ED1

[
ln

(
1 +

1

ν
(x− µ2)>Σ−1

2 (x− µ2)

)]
.

For the first term, if k is even, then

Γ(ν2 )νk/2

Γ(ν+k
2 )

=
νk/2

(ν+k
2 )k/2

,

where yn = y(y − 1) . . . (y − n + 1) is the descending factorial. Now assume k is odd. By Gautschi’s inequality,
Γ(a)

Γ(a+1/2) ≤
(

2a+1
2a2

)1/2
. Choosing a = ν/2 yields

Γ(ν2 )νk/2

Γ(ν+k
2 )

=
Γ(ν2 )ν1/2ν(k−1)/2

Γ(ν+1
2 )(ν+k

2 )(k−1)/2
≤ (ν + 1)1/2ν(k−1)/2

(ν2 )1/2(ν+k
2 )(k−1)/2

.

Now, bounding the expectation gives

ED1

[
ln

(
1 +

1

ν
(x− µ2)>Σ−1

2 (x− µ2)

)]
≤ ln

(
1 +

1

ν
ED1

[
(x− µ2)>Σ−1

2 (x− µ2)
])

= ln

(
1 +

1

ν
Tr(Σ−1

2 Σ1) +
1

ν
(µ1 − µ2)>Σ−1

2 (µ1 − µ2)

)
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≤ ln

(
1 +

1

ν
(µ1 − µ2)>Σ−1

2 (µ1 − µ2)

)
+

Tr(Σ−1
2 Σ1)

ν + (µ1 − µ2)>Σ−1
2 (µ1 − µ2)

≤ ln

(
1 +

1

ν
(µ1 − µ2)>Σ−1

2 (µ1 − µ2)

)
+

1

ν
Tr(Σ−1

2 Σ1),

where the second inequality follows from the fact that ln(a+ b) ≤ ln(a) + b/a. Combining everything yields

KL(D1||D2) ≤ ln Λν,k +
1

2
ln
|Σ2|
|Σ1|

− k

2
ln 2e+

ν + k

2ν
Tr(Σ−1

2 Σ1)

+
ν + k

2
ln

(
1 +

1

ν
(µ1 − µ2)>Σ−1

2 (µ1 − µ2)

)
,

where

Λν,k =


νk/2

( ν+k2 )k/2
if k is even

(ν+1)1/2ν(k−1)/2

( ν2 )1/2( ν+k2 )(k−1)/2 if k is odd.

C.3. Gaussian and Laplace

Let D1 = N(µ, σ2) and D2 = Lap(β). Then

KL(D1||D2) = ln(2β) +
1

β
ED1 [|x|]− 1

2
ln(2πeσ2)

= ln(2β) +
1

2β

[
µErf

(
µ√
2 σ

)
+

2
√

2 σ√
π

exp

{
− µ2

2σ2

}]
− 1

2
ln(2πeσ2)

≤ 1

2
ln

2β2

σ2
+

1

2β

[
|µ|

√
1− exp

{
− 2µ2

πσ2

}
+

2
√

2 σ√
π

exp

{
− µ2

2σ2

}]
− 1

2
ln(πe).

D. Proof of Theorem 4.1
Choose Qθ∗,φ = N(θ∗, φ2I). With P0 = Tν(0, σ2I), we have (Appendix C.2)

KL(Qθ∗,φ||P0) ≤ ln Λν,n +
n

2
ln
σ2

φ2
− n

2
ln 2e+

n(ν + n)

2ν

φ2

σ2
+
ν + n

2
ln

(
1 +

1

νσ2
‖θ∗‖2

)
,

where

Λν,n =


νn/2

( ν+n2 )n/2
if n is even

(ν+1)1/2ν(n−1)/2

( ν2 )1/2( ν+n2 )(n−1)/2 if n is odd.

Note that if n is even then Λν,n
2n/2

≤ 1 and if n is odd then Λν,n
2n/2

≤ ν+1
ν . Since VarQθ∗,φ [θi] = φ2, we have

LBayes(Z) ≤ inf
θ∗
Lθ∗(Z) +

Tcφ2

2
+
n

2
ln
ν + 1

ν
+
n

2
ln
σ2

φ2
− n

2
+
n(ν + n)

2ν

φ2

σ2
+
ν + n

2
ln

(
1 +

1

νσ2
‖θ∗‖2

)
Choosing φ2 = νσ2n

Tcνσ2+(ν+n)n yields the theorem.

E. More on Hierarchical Priors for Sharing Statistical Strength
E.1. Multiple Simultaneous Observations

The Bayesian learner receives K input-output pairs {(x(k)
t , y

(k)
t )}Kk=1 at each time step. Each output is predicted using

a separate weight vector θ(k), so the k-th likelihood is p(y |θ(k) · x), k = 1, . . . ,K. Write Z(k) , {(x(k)
t , y

(k)
t )}Tt=1.
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Instead of using independent Gaussian priors on θ(1), . . . ,θ(K), place a prior over the means of the K priors. For each
dimension j = 1, . . . , n, let

µj |σ2
0 ∼ N(0, σ2

0) (E.1)

and

θ
(k)
j |µj , σ

2 ∼ N(µj , σ
2), k = 1, . . . ,K, (E.2)

and write θ(1:K)
j , (θ

(1)
j , . . . , θ

(K)
j ). Integrating out µj yields

θ
(1:K)
j |σ2

0 , σ
2 ∼ N(0,Σ), (E.3)

where, with 1K denoting the K ×K all-ones matrix,

Σ , s2ρ1K + s2(1− ρ)I s2 , σ2
0 + σ2 ρ ,

σ2
0

σ2
0 + σ2

, (E.4)

The Bayesian learner uses this hierarchical prior to simultaneously predict y(1)
t , . . . , y

(K)
t . For the following theorem, we

must replace (A2) with an appropriately modified assumption for the simultaneous prediction task:

‖x(k)
t ‖2 ≤ 1 for all t, k. (A2’)

Theorem E.1 (Hierarchical Gaussian regret, simultaneous observations). If θ(1:K)
j ∼ N(0,Σ), j = 1, . . . , n, and (A2’)

holds in lieu of (A2), thenR(Z,θ∗) is bounded by

RHG−simBayes (Z,θ∗) ,
1

2γ2

∑K
k=1 ‖θ

∗(k)‖2 +
σ2
0

σ2γ2

∑
k<` ‖θ

∗(k) − θ∗(`)‖2

+
n

2
ln

(
1 +

Kσ2
0

σ2

)
+
nK

2
ln

(
1− σ2

0

γ2
+
Tcσ2

n

)
,

(E.5)

where γ2 , Kσ2
0 + σ2.

It is instructive to compare the upper bound given in (E.5) to
∑
k R

G
Bayes(Z(k),θ

∗(k)) with prior variance s2 = σ2
0 + σ2.

To do so, we find ∆(θ∗) ,
∑
k R

G
Bayes(Z(k),θ

∗(k))−RHGBayes(Z,θ
∗):

∆(θ∗) =
(K − 1)σ2

0

2γ2s2

∑K
k=1 ‖θ

∗(k)‖2 − σ2
0

σ2γ2

∑
k<` ‖θ

∗(k) − θ∗(`)‖2

− nK

2
ln

n s2σ2 (1− σ2
0

γ2 ) + Tcs2

n+ Tcs2

− n

2
ln

([
1 +

Kσ2
0

σ2

]
σ2K

s2K

)
For example, setting σ0 = σ, so the correlation ρ is 1/2, and K = 2, we find that if

4‖θ∗(1) − θ∗(2)‖2 + 6s2n ln

( 4
3n+ Tcs2

n+ Tcs2

)
≤ ‖θ∗(1)‖2 + ‖θ∗(2)‖2 + 0.863s2n,

then the hierarchical model has a smaller regret bound than the non-hierarchical model.5 As long as Tcs2 > 2n, the
condition becomes 4‖θ∗(1) − θ∗(2)‖2 ≤ ‖θ∗(1)‖2 + ‖θ∗(2)‖2 +Cs2n for some 0 < C < 0.863. In this case there are two
important observations about the benefits of the hierarchical model. First, noting that the expected magnitude of ‖θ∗(1)‖2
and ‖θ∗(2)‖2 is σ2n, as long as ‖θ∗(1)‖2 and ‖θ∗(2)‖2 are only a constant fraction C/4 of their expected magnitudes,
the hierarchical model will always have smaller regret bound. Second, even if the previous condition does not hold, the
difference in ‖θ∗(1) − θ∗(2)‖ must be significantly larger than the expected magnitudes of ‖θ∗(1)‖2 and ‖θ∗(2)‖2 for the
hierarchical model to have a larger regret bound than the non-hierarchical model. Thus, the use of the hierarchical model
has potentially significantly reduced regret compared to the non-hierarchical model.

5 For clarity, we have replaced 3 ln(4/3) with the bound 0.863.
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E.2. Two-level Prior

In this section we derive bounds for the two-level prior in the case of sequential observations. Recall that the prior is

β ∼ N(0, σ2
0I) (E.6)

µ(s) ∼ N(β, σ2
1I) s = 1, . . . , S (E.7)

θ(k) ∼ N(µ(sk), σ2
2I) k = 1, . . . ,K. (E.8)

Integrating out β, we immediately obtain:

µ
(1:S)
i ∼ N(0,Σµ), (E.9)

where Σµ , σ2
01S + σ2

1I . Writing µi = µ
(1:S)
i and θi = θ

(1:K)
i , we have(

µi
θi

)
∼ N (0,Σ) , Σ ,

(
Σµ Σµθ
Σ>µθ Σθ

)
. (E.10)

Hence,

θi |µi ∼ N(Σ>µθΣ
−1
µ µi,Σθ − Σ>µθΣ

−1
µ Σµθ). (E.11)

Define the matrix P such that Pks = 1{s = sk}. We therefore have Σ>µθΣ
−1
µ µi = Pµi and hence Σ>µθ = PΣµ, and

furthermore Σθ − Σ>µθΣ
−1
µ Σµθ = σ2

2I and hence Σθ = σ2
2I + PΣµP

>.

Hence, the prior on θi is P0 = N(0,Σθ). Choose Qθ∗i ,φ = N(θ∗i ,diagφ), yielding

KL(Qθ∗i ,φ||P0) =
1

2

{
ln
|Σθ|∏
k φ

2
k

− k − Tr(Σ−1
θ )

∑
k

φ2
k + (θ∗i )

>Σ−1
θ θ

∗
i

}
. (E.12)

Straightforward calculations show that the regret is bounded by
n∑
i=1

(θ∗i )
>Σ−1

θ θ
∗
i +

K∑
k=1

n

2
ln

(
2 Tr(Σ−1

θ ) +
cT (k)

n

)
+
n

2
ln |Σθ|. (E.13)

E.3. Proof of Theorem E.1

First take n = 1, which will later generalize to arbitrary n. Choose Qθ∗(1:K),φ = N(θ∗(1:K), φ2I) and note that

|Σ| = σ2K−2(Kσ2
0 + σ2) = σ2K−2γ2 and Σ−1 = − σ2

0

σ2γ2
1K +

1

σ2
I.

Thus (Appendix C.1)

KL(Qθ∗(1:K),φ||P0) =
1

2

{
ln
|Σ|
|φ2I|

−K + φ2 Tr(Σ−1) + (θ∗(1:K))>Σ−1θ∗(1:K)

}
=
K

2
ln
σ2γ2/K

φ2σ2/K
− K

2
+
K(γ2 − σ2

0)

2σ2γ2
φ2

+
1

2γ2

K∑
k=1

(θ∗(k))2 +
σ2

0

σ2γ2

∑
k<`

(θ∗(k) − θ∗(`))2.

Moving to the case of general n, since VarQθ∗,φ [
∑
k θ

(k)
j ] = Kφ2 for all j = 1, . . . , n, applying Theorem 2.2 gives

LBayes(Z) ≤
K∑
k=1

Lθ∗(k)(Z
(k)) +

TKcφ2

2
+
nK

2
ln
σ2γ2/K

φ2σ2/K
− nK

2

nK(γ2 − σ2
0)

2σ2γ2
φ2 +

1

2γ2

K∑
k=1

‖θ∗(k)‖2 +
σ2

0

σ2γ2

∑
k<`

‖θ∗(k) − θ∗(`)‖2.

Choosing φ2 = nσ2γ2

n(γ2−σ2
0)+Tcσ2γ2 yields the theorem.
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E.4. Proof of Theorem 4.2

The proof is similar to that for Theorem E.1. However, use separate variances for each source:

Qθ∗(1:K),φ =
∏
k

Qθ∗(k),φk =
∏
k

N(θ∗(k), φ2
k).

The error term from the Taylor expansion used in Theorem 2.2 is
∑
k
T (k)cφ2

k

2 , so

LBayes(Z) ≤
K∑
k=1

Lθ∗(k)(Z
(k)) +

∑
k

T (k)cφ2
k

2
+
n

2
ln

σ2Kγ2

σ2
∏
k φ

2
k

− nK

2

n(γ2 − σ2
0)

2σ2γ2

∑
k

φ2
k +

1

2γ2

K∑
k=1

‖θ∗(k)‖2 +
σ2

0

σ2γ2

∑
k<`

‖θ∗(k) − θ∗(`)‖2.

Choosing φ2
k = nσ2γ2

n(γ2−σ2
0)+T (k)cσ2γ2 yields the theorem.

F. More on Feature Selection
F.1. The Bayesian Lasso

For Bayesian model average learner we have:
Theorem F.1 (GLM Bayesian lasso regret). If θi ∼ Lap(θi, β), i = 1, . . . , n, then

R(Z,θ∗) ≤ 1

2β

∑
i

min

{√
2

πφ2
(θ∗i )2, |θ∗i |

}

+
n

2
ln

 2T 2c2β4(√
2n2 + Tcnβ2π −

√
2n2

)2

 .

(F.1)

In the regime of Tcβ2 � n, (F.1) becomes (approximately)

R(Z,θ∗) ≤ 1

2β

∑
i

min

{√
2

πφ2
(θ∗i )2, |θ∗i |

}
+ Cn

for some constant C independent of β and c. Hence, even for sparse θ∗, the regret bound is Θ(n). The inequalities used to
prove the regret bound are all quite tight, so we conjecture that, up to constant factors, there is a matching lower bound, as
least in the Gaussian regression case.

F.2. Proof of Theorem F.1

Apply Theorem 2.2 with Qθ∗,φ = N(θ∗, φ2I). Since p0(θ) =
∏
i Lap(θi, β), we have (see Appendix C.3)

KL(Qθ∗,φ||P0) ≤ n

2
ln

2β2
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2
ln(πe) +
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.

Since VarQθ∗,φ [θi] = φ2,

LBayes(Z) ≤ inf
θ∗
Lθ∗(Z) +

Tcφ2

2
− n

2
ln(πe) +

√
2 nφ√
π β

+
n

2
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2β2
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+

1

2β
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πφ2
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}
.

Choosing φ2 =

(√
2n2+Tcnβ2π −

√
2n2

)2

T 2c2β2π gives the desired result.
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F.3. Proof of Theorem 4.3

Fix some θ∗. If θ∗i = 0, then let Qθ∗i ,φ2 = δ0, so KL(Qθ∗i ,φ2 ||P0) = ln 1
p . If θ∗i = 0, then let Qθ∗i ,φ2 = N(θ∗i , φ

2), so

KL(Qθ∗i ,φ2 ||P0) = KL(Qθ∗i ,φ2 ||N(0, σ2)) + ln
1

1− p
.

The rest of the proof of (14) then closely follows earlier ones. To obtain (15), we observe that if p = q1/n, then

m ln
1

1− p
= m ln

1

1− q1/n
≤ m ln

n

1− q

and

(n−m) ln
1

p
=
n−m
n

ln
1

q
≤ ln

1

q
.


