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Abstract 
 
The arterial baroreceptor reflex is the major blood pressure control loop mediated by the 
autonomic nervous system (ANS). It supports arterial blood pressure homeostasis by 
dynamically adjusting heart rate, vascular resistance, venous tone, and cardiac 
contractility. Accurate quantitative models of the baroreflex would provide physiological 
insight, and could allow for real-time tracking of ANS activity in clinical settings. Prior 
work has concentrated on modeling the baroreflex nonparametrically with linear transfer 
functions, or parametrically as an autoregressive moving average model. In this work, we 
formulate beat-to-beat, open and closed loop models of the heart rate arc of the 
baroreflex. Model structure and parameterization are explicitly based on prior 
physiological insights of the response dynamics of the sympathetic and parasympathetic 
branches of the ANS. We analyze the models’ ability to track changes in autonomic 
balance using data from a dual pharmacological blockade and postural study. Our results 
show that the open loop model parameters faithfully track changes in autonomic balance 
resulting from changing posture and autonomic blockade, whereas the closed loop model 
parameters do not. Sensitivity analyses are conducted on the open-loop model parameter 
estimation, which proves to be robust in the presence of varying levels of noise. Overall, 
the contributions of this thesis further the goal of obtaining real-time information about 
the ANS. 
 
Thesis Supervisor: Thomas Heldt 
Title: W.M. Keck Career Development Professor in Biomedical Engineering 
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Chapter 1 
 
 
Introduction 
 
 
In this chapter we motivate the objective of this thesis and briefly review some prior 

work related to the objective. We then summarize our approach, and outline the structure 

of the thesis. 

 

1.1 Motivation 

The arterial baroreceptor reflex (baroreflex) is the major blood pressure control loop 

mediated by the autonomic nervous system (ANS). Blood pressure control is vital for 

maintaining adequate perfusion of the brain and other organs in the body across varying 

physiological states. An abnormal or impaired ANS, known as dysautonomia, can be 

caused by conditions such as traumatic brain injury, stroke, and amyloidosis, and may 

lead to a wide array of conditions including dizziness, orthostatic hypotension, and rapid 

heart rate. Real-time tracking of aggregate ANS activity and autonomic balance (the 

relative strengths of the two branches of the ANS) could be useful in clinical settings by 

providing physicians with information about the trajectory of a patient’s ANS activity. 
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This work attempts to develop methods for real-time quantification of autonomic balance 

using different models of the baroreflex. 

 

1.2 Prior Work 

In the literature, autonomic balance is often estimated either through the examination of 

heart rate variability, or the analysis of models of the baroreflex relating arterial blood 

pressure, heart rate, and respiration. Heart rate variability based methods of determining 

autonomic balance are generally inaccurate due to the difficulty in disambiguating the 

effects of the sympathetic and parasympathetic actions of the ANS on heart rate from 

heart rate data alone. In contrast, the baroreflex modeling work has been better able to 

capture the dynamics of autonomic balance, but the model structures do not lend 

themselves to easy interpretability. In particular, the baroreflex is commonly modeled 

nonparametrically with linear transfer functions or parametrically as an autoregressive 

moving average model. Physiological understanding typically plays a role in the 

interpretation of these models, but less in their formulation. 

 

1.3 Approach 

In this work we first modeled the baroreflex using low order, open and closed-loop 

models. We then estimated the parameters for each models across a variety of subjects 

and experimental conditions using data from a dual pharmacological blockade and 

postural study (N=14 subjects). Afterwards, we estimated autonomic balance in the 

subjects based on parameters extracted from our open and closed-loop models. Our 

approach differs from prior modeling of the baroreflex as we impose model structures 
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and parameterizations explicitly based on prior physiological insights of the response 

dynamics of the two branches of the ANS. 

 

1.4 Thesis Outline 

The remainder of this thesis is organized as follows. In Chapter 2 we introduce 

cardiovascular control physiology and review the heart rate variability literature. 

We then develop both an open loop model of the baroreflex and measures for 

quantifying baroreflex sensitivity in Chapter 3. In Chapter 4 we formulate a 

parameter estimation method for the open-loop model. We subsequently apply 

this method to a dual pharmacological blockade and postural study, estimating 

open-loop model parameters and demonstrate the model’s ability to faithfully 

track autonomic balance. A closed loop model of the baroreflex is developed in 

Chapter 5 and parameter estimation process similar to that in Chapter 4 is 

performed on the models in Chapter 6. In Chapter 7, we probe the sensitivity of 

the open loop model and parameter estimation to noise. We finally conclude the 

thesis with a brief summary of our results and further work to be done in the field 

in Chapter 8.  
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Chapter 2 
 
 
Background 
 
 
Modeling the arterial baroreceptor reflex (baroreflex) is a difficult task that requires an 

appreciation for many facets of cardiovascular and neural physiology. We begin this 

chapter by introducing the mechanics and electrophysiology of the cardiovascular 

system. We then present the autonomic nervous system and its relationship to cardiac 

control, culminating in a description of the arterial baroreflex. Finally, we review a 

domain of literature that probes fluctuations in heart rate and attempts to measure 

sympathovagal balance. 

 

2.1 Cardiovascular Physiology 

The primary function of the cardiovascular system is to keep the central nervous system 

perfused with oxygenated blood. It realizes this function through rhythmic pumping of 

the heart, which facilitates the circulation of oxygenated and deoxygenated blood 

throughout the body. This rhythmic pumping also serves to transport nutrients to organs 
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and tissue throughout the body, and carry away carbon dioxide and other waste products 

for elimination. 

 

2.1.1 Cardiovascular Mechanics 

The heart is a muscular pump composed of four chambers: the right atrium, the right 

ventricle, the left atrium and the left ventricle (Figure 2.1). The atria are the upper 

chambers of the heart. They receive blood from their respective veins and empty into the 

ventricles. The ventricles are the lower chambers of the heart. They pump blood into their 

respective arteries. At the ventriculo-arterial junctions of each chamber is a mechanical 

valve that prevents reverse flow into the chamber. 

Figure 2.1: Sketch of the heart displaying the four chambers, the four valves, and the major vessels. Taken 
from [1]. 
 
 
In addition to the vertical differentiation of the heart chambers, heart function is 

lateralized. During each heartbeat, the right side of the heart receives deoxygenated blood 

from the body via the vena cavae and pumps that blood to the lungs via the pulmonary 
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artery. Simultaneously, the left side of the heart receives oxygenated blood from the 

lungs via the pulmonary vein, and pumps that blood out to the body via the aorta. The 

pumping mechanisms are pressure gradients formed by the rhythmic contraction and 

relaxation of the myocardium (cardiac muscle). The sequence of events that causes the 

beat-to-beat pumping of the heart is defined as the cardiac cycle, and is divided into five 

stages explained below and illustrated in Figure 2.2.  

 

Atrial Systole: This is the first stage of the cardiac cycle, during which the atria contract, 

raising blood pressure in the atria. Throughout this stage, the tricuspid and mitral valves 

are open while the pulmonary and aortic valves are closed. 

 

Isovolumetric Contraction: Following atrial systole all of the heart valves shut and the 

ventricles contract, increasing blood pressure in the ventricles while maintaining a 

constant volume. 

 

Ventricular Ejection: When the pressure in the left ventricle exceeds the pressure in the 

aorta, the aortic valve opens, and oxygenated blood is ejected to the rest of the body. In 

parallel, when the pressure in the right ventricle exceeds the pressure in the pulmonary 

artery, the pulmonic valve opens and deoxygenated blood is ejected into the lungs. 

Systolic arterial blood pressure (SBP), which is the peak blood pressure during the 

cardiac cycle, occurs during this stage. 
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Isovolumetric Relaxation: Towards the end of ejection the ventricular pressure drops. 

Once the left ventricular pressure falls below the aortic pressure, the aortic valve shuts, 

and once the right ventricular pressure falls below the pulmonary arterial pressure, the 

pulmonary valve closes. The closing of these valves commences isovolumetric 

relaxation, with the ventricular pressure continuing to decrease while volume remains 

constant. 

 

Ventricular Filling: In this stage, blood from the atria fill into the ventricles, which is 

initiated by the opening of the tricuspid and mitral valves. This occurs when the 

ventricular pressures drop below the atrial pressures.  

Figure 2.2: Traces of the aortic, left atrial, and left ventricular pressures over the duration of one cardiac 
cycle. Taken from [2]. 
 

As blood leaves the left ventricle it encounters the systemic vasculature. These vessels 

include arteries, veins and capillaries, and resist the flow of blood. The net resistance to 
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blood flow provided by the systemic vasculature is defined as the total peripheral 

resistance (TPR), which is measured in Peripheral Resistance Units (PRU), where 

1𝑃𝑅𝑈 = 1 𝑚𝑚𝐻𝑔 ∗ 𝑠𝑒𝑐
𝑚𝑙 . 

 

2.1.2 Cardiovascular Electrophysiology 

With our discussion of cardiovascular mechanics complete, we will now explore the 

electrophysiological processes that drive the mechanical pumping of the heart. In a 

healthy heart, electrical impulses originate at the sinoatrial node (SA node), which is a 

collection of electrically active cells situated in the right atrium abutting the superior vena 

cava (Figure 2.3). The SA node is the heart’s pacemaker, as its electrically active cells 

normally depolarize spontaneously in a regular fashion. A resultant action potential from 

such a depolarization propagates through the atria via the myocardium, causing the atria 

to contract. It subsequently arrives at the atrioventricular node (AV node), which is 

located at the junction of the atria and ventricles. Action potential conduction through the 

AV node is slow, which provides sufficient time for the atria to contract and for the 

ventricles to fill with blood. Subsequently, the action potential passes through the bundle 

of His and into the Purkinje fibers, which distribute the action potential to ventricles, 

resulting ultimately in contraction of the ventricles [4]. 
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Figure 2.3: Diagram of the heart’s electrical conduction system. Taken from [3]. 
 

The electrical activity of the heart may be measured using an electrocardiograph 

(ECG), which records in time the electric potential across various locations on the surface 

of the body. An ECG trace with the relevant morphological characteristics labeled is 

provided in Figure 2.4.  
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Figure 2.4: Lead II ECG with standard morphological labels (left). The P, QRS complex, and T wave, 
correspond to atrial depolarization, ventricular depolarization, and ventricular repolarization respectively . 
Sample measurement of an R-R interval in a lead II ECG trace (right). Both figures taken from [5]. 
 

The rhythmic pumping of the heart is divided into beats, i.e. one cardiac cycle occurs per 

beat. One standard measurement for heartbeat duration is the R-R interval (RRI), which 

we define as the time between two successive R peaks in the ECG. Further, the 

instantaneous heart rate (HR) at each beat is defined as  

𝐻𝑅 =  60
𝑅𝑅𝐼 (2.1) 

with units of beats per minute (bpm). In normal resting humans, HR typically ranges 

between 60-100 bpm. For the rest of this thesis, RRI will be used as the measurement of 

heartbeat duration. 

 
2.1.3 Hemodynamics 

Equipped with knowledge of the mechanical and electrical foundations of cardiovascular 

physiology, we will define a few hemodynamic parameters that are central to the 

understanding of cardiovascular control and our future modeling work in this thesis. 
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Stroke volume (SV): This is the volume of blood ejected from the heart during a single 

beat (cycle), measured in milliliters. Mathematically, if 𝑉!" is the volume of the left 

ventricle at the end of isovolumetric contraction, or end of diastole, and 𝑉!" is the volume 

at the end of ejection, or end of systole, then we define stroke volume as the difference 

between these two quantities: 

𝑆𝑉 = 𝑉!" − 𝑉!" (2.2) 

 

Cardiac output (CO): This is the volume of blood pumped out of the heart per minute, 

measured in milliliters/minute. Mathematically, CO is simply the product of heart rate 

and stroke volume: 

𝐶𝑂 = 𝐻𝑅 ∗ 𝑆𝑉  (2.3) 

 

Mean arterial pressure (MAP): This is the average arterial pressure during one cardiac 

cycle and is measured in mmHg. Mathematically, MAP can be expressed as the product 

of CO and TPR: 

𝑀𝐴𝑃 = 𝐶𝑂 ∗ 𝑇𝑃𝑅 = 𝐻𝑅 ∗ 𝑆𝑉 ∗ 𝑇𝑃𝑅 (2.4) 

 
2.2 Cardiovascular Control 

The cardiovascular system maintains perfusion of oxygenated blood to the central 

nervous system by controlling blood pressure. The primary mechanism of blood pressure 

control in the body is the arterial baroreflex, which is mediated by the autonomic nervous 

system (ANS). We now delve into the details of the ANS and the baroreflex. 
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2.2.1 Autonomic Nervous System 

The autonomic nervous system is a branch of the nervous system that regulates 

involuntary functions within the body, including blood pressure control, digestion, and 

arousal. The ANS itself is split into two branches, the sympathetic nervous system (SNS) 

and the parasympathetic nervous system (PNS), which are colloquially known as the fight 

or flight and rest and digest responses, respectively. The PNS is primarily responsible for 

control of baseline functions such as digestion, urination, and sexual arousal, and it 

predominates autonomic activity when the body is at rest. In contrast, the SNS is 

primarily responsible in preparing the body for emergency responses, and it predominates 

autonomic activity when the body is in a state of stress. In addition to their distinct 

functions, the two ANS branches also have distinct communication pathways. The PNS 

acts by releasing the neurotransmitter acetylcholine (ACh) via the vagus nerve, which at 

the heart then binds to muscarinic ACh receptors, while the SNS acts through the release 

of epinephrine and norepinephrine via postganglionic nerves [6]. A diagram of these 

neurochemical pathways is given in Figure 2.5. 

 Due to their different neurochemical pathways, the effect of the SNS and PNS on 

the heart can be inhibited roughly independent of each other with the administration of 

certain pharmacological agents. Drugs that block the binding of ACh to end organ 

muscarinic receptors will shut off the PNS’s cardiac effector mechanism without 

impacting the SNS’s cardiac effector mechanisms. Likewise, drugs the block the binding 

of epinephrine and norepinephrine to end organ beta receptors will shut off the SNS’s 

main cardiac effector mechanism without impacting the PNS’s cardiac effector 

mechanism. Two pharmacological agents that will be used later in this thesis are 
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propranolol and atropine. Propranolol is a competitive antagonist with epinephrine and 

norepinephrine at beta receptors, blunting the SNS’s cardiac effector mechanisms. 

Atropine is a muscarinic competitive antagonist that effectively blocks ACh binding with 

muscarinic receptors at the heart [3]. 

Figure 2.5: Sketch of the ANS’s neurochemical pathways. ACh, NE, Epi, and D, represent the 
acetylcholine, norepinephrine, epinephrine, and dopamine neurotransmitters, respectively. M, N, α, and  β, 
represent the muscarinic, nicotinic, alpha, and beta receptors respectively. Taken from [6]. 
 

2.2.2 Arterial Baroreflex 

The arterial baroreceptors are stretch receptors that line the walls of the carotid artery as 

well as the aortic arch (Figure 2.6). As the arterial walls stretch in response to changes in 

blood pressure, the baroreceptors transmit electrical impulses via the carotid sinus and 

aortic nerves to the brain. The impulse firing rate increases as the transmural pressure at 



	 27 

the baroreceptors increases. These impulses are then relayed to the brain, where the 

medulla integrates them and decides how to adjust blood pressure, subsequently 

assigning actions to the PNS and SNS. From Equation 2.4, it is clear there are three 

factors that can modulate blood pressure; heart rate, stroke volume, and total peripheral 

resistance. The ANS has the ability to alter all three. 

 
Figure 2.6: Sketch of the baroreceptors and their efferent pathways to the brain. Taken from [6]. 
 

 The SA node is innervated by both sympathetic and parasympathetic fibers, 

enabling heart rate control by both the PNS and SNS. Parasympathetic control of heart 

rate is fast, occurring on the timescale of 0.5-2 seconds, whereas sympathetic control of 

heart rate is relatively slow, occurring on the timescale of 2-10 seconds. Recognizing the 

varying timescales and delays of the sympathetic and parasympathetic heart rate effector 

mechanisms will prove useful in the next chapter, where we model the baroreflex and 

attempt to disambiguate the two branches of the ANS. 
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 While heart rate may be significantly regulated by both branches of the ANS, 

cardiac contractility and vascular resistance are primarily regulated by the SNS, as both 

cardiac and vascular smooth muscle are largely innervated by the SNS. The SNS can 

increase the tension in the vascular smooth muscle, which causes an increase in 

peripheral resistance. Similarly, the SNS can increase the tension in cardiac smooth 

muscle, raising cardiac contractility and consequently the stroke volume [7]. 

 Thus far we have introduced the baroreflex as a short-term blood pressure control 

mechanism that works to maintain the pressure at some set-point. In the long-term, 

however, this set-point is not constant. Specifically, the blood pressure set-point is 

subject to change depending on varying conditions such as posture, level of physical 

exertion, or hypertension. Moreover, the predominance of one branch of the ANS over 

the other also depends on a person’s state, as discussed in Section 2.2.1. With respect to 

posture, it has been shown that when moving from a supine to tilted/upright posture, the 

balance between the PNS and SNS in the body swings from greater PNS control to 

greater SNS control [8]. In later parts of this thesis, varying postures will be one set of 

experimental conditions.  

 
2.3 Heart Rate Variability 

Heart rate variability (HRV) is the natural variation in beat-to-beat heart rate caused by 

factors such as thermoregulation, baroreflex, and circadian rhythms. A great amount of 

literature is devoted to examining HRV, and using it to develop a deeper understand of 

autonomic control of the cardiovascular system. While HRV has been examined in both 

the time and frequency domains, the frequency domain analyses are most salient to this 

thesis. 
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Frequency domain HRV analysis focuses on extracting the power spectrum of the 

heart rate signal from subjects under various experimental conditions [9]. Prior work 

elucidated the frequencies at which the ANS controls heart rate by selective blockade of 

the SNS and PNS and examination of the resulting power spectra. Specifically, heart rate 

fluctuations in the frequency range of 0.04-0.5Hz have been found to correspond to 

autonomic control of heart rate in adults [10]. Within this 0.46Hz band, two sub-bands 

have been roughly demarcated, the low frequency band (LF) ranging from 0.05-0.15Hz 

and the high frequency band (HF) ranging from 0.15-0.4Hz [11].  

Power in the HF band is driven primarily by the PNS and respiration, while power 

in the LF band is driven by both the PNS and SNS. Within the LF band there is typically 

a significant peak between 0.10-0.15Hz, which corresponds to fluctuations known as the 

Mayer waves. Prior studies have shown that opening the baroreflex control loop results in 

a loss of the Mayer waves, suggesting that Mayer waves are formed by a resonance in the 

control system [12]. While there is generally very little power in the frequencies above 

the HF band, there is significant power in the frequencies lower than the LF band, i.e. 

0.0-0.04Hz. The underlying physiological mechanism for these sub-LF fluctuations is 

still unknown, but it was hypothesized that they are due to thermoregulation and 

circadian rhythms [13]. 

One metric for autonomic balance that emerged from HRV analysis is the 

LF/HF index, defined as the quotient of the total power in the LF band by the total 

power in the HF band [14]. Although LF/HF gained substantial popular in 

physiological literature, its underlying assumption that LF power is primarily due 

to sympathetic control of heart rate is in stark contrast to the observation that both 
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the PNS and SNS make significant contributions to LF. As LF is not 

unambiguously a measure of sympathetic activity, LF/HF is an inherently poor 

metric [15]. Our work in this thesis attempts to address some of the shortcomings 

of HRV analysis, such as the ambiguity in autonomic contributions to the LF 

region. 
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Chapter 3 
 
 
Open-Loop Modeling of Baroreflex 
and Baroreflex Sensitivity 
 
 
While the ultimate goal of this chapter is to determine how to quantify the action of the 

baroreflex, we must first define both a model and a metric for baroreflex activity. The 

discussion of heart rate variability in the preceding chapter leads to a natural starting 

point for this task. That is, observed fluctuations in heart rate may potentially be 

explained by fluctuations in blood pressure via baroreflex control. In this chapter, we 

formulate both a black-box and a parametric open-loop model to describe the behavior of 

the heart-rate arc of the baroreflex, and subsequently develop measures of baroreflex 

activity for each model. 

 

3.1 Open-loop response and Baroreflex Sensitivity 

Open-loop baroreflex function is well described, dating back to the rabbit experiments 

performed by Eberhard Koch in 1931 [16]. In particular, Koch’s experiments 

demonstrated that open-loop control of blood pressure results in a sigmoidal response in 
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R-R interval (RRI). Koch cleverly opened the baroreflex loop by clamping the common 

carotid arteries beneath their respective carotid sinuses, and independently varying the 

pressure applied to the baroreceptors [17].	While Figure 3.1 shows a sketch of a single 

SBPàRRI response curve, the baroreflex constitutes an ensemble of sigmoidal 

responses. Each response in the ensemble is a realization of the baroreflex under a certain 

set of physiological conditions. Different physiological stresses result in both distinct 

operating points (centers) and distinct slopes for the sigmoidal characteristic [18]. In 

addition, physiological variability between individuals results in a different ensemble of 

baroreflex curves for each individual.	

For each response curve, we define baroreflex sensitivity (BRS) as the slope of 

the curve at the operating point, i.e. the slope in the linear region of the sigmoid [18]. In 

the next chapter, we will use BRS as one metric of baroreflex activity. 

	
FIGURE 3.1: Illustrative cartoon of the sigmoidal response in RRI to incremental changes in systolic 
blood pressure (SBP). The purple dot indicates the operating point of this specific baroreflex curve, which 
is set to a SBP of 90 mmHg and an RRI of 825 ms. The blue line is the tangent line of the sigmoid at the 
operating point. Note that as distance from the operating point increases, the slope of the sigmoid 
decreases. 
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3.2 Black-box Open-loop Model 

Using a model will let us build intuition for the system and will be useful for relating our 

observations to BRS. We thus present the assumptions of our model: 

 

Open-loop: Though the human baroreflex is a closed-loop control system, we shall 

temporarily consider a simpler model assumption where it is open-loop. In addition, this 

open-loop model will not make any assumptions about the system parameters, but rather, 

it will consider the system relating SBP to RRI as a black-box. 

 

Time invariance: Given relatively short time durations and steady-state conditions1, the 

response of the baroreflex is time invariant, i.e. the baroreflex is operating along a single 

response characteristic [19]. In practice, this assumption becomes a condition on data 

used for analysis, specifically limiting our model to stationary (in the wide sense) signals 

[20]. 

 

Linearity: Our assumption of time invariance coupled with the observation that most 

spontaneous RRI/SBP fluctuations occur near the operating point (linear region) of the 

baroreflex allows us to make the assumption that the response of RRI to changes in SBP 

is linear [21]. Consequently, we fix the origin of our model as the set-point of the 

response.  

 

																																																								
1 We define steady-state conditions as the state where the stresses on the body are constant and all 
transients have died down. Examples of steady-state conditions are lying down in a fixed position or 
jogging at a constant rate on a controlled surface such as a treadmill. Examples of transients would be the 
movement from standing to sitting, or walking to jogging. 
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Our overall model for the baroreflex is thus an open-loop LTI controller with systolic 

blood pressure as the input and RRI as the output, as shown in Figure 3.2. It is important 

to note that our model only attempts to explicitly characterize the behavior of the heart 

rate control arc of the baroreflex. As mentioned in the prior chapter, the baroreflex 

controls not only heart rate, but cardiac contractility and peripheral vascular tone as well. 

Implicitly, BRS may contain information regarding the activity of non-heart-rate arcs. A 

decline in BRS, for example, could indicate a shift from control of heart rate to control of 

peripheral vascular tone while total heart rate arc baroreflex activity remains constant. 

	
Figure 3.2: Open-loop, black-box model for baroreflex. 
 

3.3 Measuring Baroreflex Sensitivity 

Now that we have defined BRS as our metric for baroreflex activity, we need to estimate 

it. BRS can be computed in both the time domain and the frequency domain. Time 

domain techniques for estimating BRS are based on the sequence method pioneered by 

Di Rienzo et al. [22]. The sequence method obtains sequences of consecutive heartbeats 

where SBP and RRI are simultaneously monotonically increasing or simultaneously 

monotonically decreasing (typically sequences of three or more beats), finds the RRI-

SBP slope for each sequence, and takes the mean of the slopes over all selected 

sequences. This computed mean of slopes is Di Rienzo’s time domain BRS estimate. The 

sequence method, however, suffers from several deficiencies. First, by only considering 
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sequences of consecutive beats, the method acts as an implicit high-pass filter that 

neglects the sympathetic contribution to baroreflex due to the relatively long timescale of 

sympathetic activity [23]. Second, since the sequence method may sample sequences of 

RRI and SBP that lie far from the operating point, the slopes computed from these 

sequences may be much smaller than the slope at the operating point, which leads to 

underestimates of BRS. A common adjustment to the second problem is the requirement 

that the slope of any sequence included in the final slope average must be above a 

minimum threshold [24]. Nevertheless, because this adjustment requires an a priori 

judgment of the shape of the baroreflex characteristic for a given subject and setting, it is 

not a robust estimator, and also cannot be used in real time. 

Most frequency domain methods for estimating BRS are based on the transfer 

function method defined by deBoer et al. (1985) [25]. The transfer function method 

computes the spectral transfer function from the SBP time series to RRI time series, and 

estimates BRS as the magnitude of that transfer function in the low frequency (0.04-

0.15Hz) band. Mathematically, this transfer function is represented as 𝐻 𝑓 =  𝑆𝐵𝑅
𝑆𝐵𝐵

 , 

where 𝑆!" is the cross-spectrum between the SBP time series and the RRI time series, 

and 𝑆!! is the auto-spectrum of the SBP time series. Since the transfer method focuses 

on low frequency fluctuations, it does not implicitly filter out sympathetic contributions 

(unlike the sequence method), but explicitly filters much of the fluctuation due to 

respiratory activity, ultimately improving accuracy [26].	 Additionally, this method 

provides phase information, which can be helpful in elucidating relationships such as 

causality or potentially autonomic balance. While the sequence method and its variants 

are simpler to implement than the transfer function method, this shortcoming is 
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outweighed by the advantages in estimation accuracy and phase information provided by 

the transfer function method. We accordingly use the transfer method in all following 

analyses of the black-box model in this document. Our specific implementation of the 

transfer function method is described in detail in Appendix A.	

	

3.4 Parametric Open-loop Model 

We will now develop a parametric model follows the same assumptions from the model 

in Section 3.2 but varies in structure. First, we directly model both the sympathetic and 

parasympathetic components of the baroreflex response, HBaroreflex. Second, the time 

evolution of this model is beat-to-beat, i.e. the time unit of our discrete time model is one 

beat. Third, we adjust our output variable from R-R interval to heart rate (HR). Our 

parametric model for the baroreflex is thus an open-loop LTI controller with systolic 

blood pressure as the input and HR as the output, evolving in time on a per beat basis. 

The foundation for the parametric system model comes from the work of Chen 

and Mukkamala as shown in Figure 3.3 [27], who synthesized the description of the 

sympathetic and parasympathetic impulse responses in dogs by Berger et al. [28] and the 

system identification work of Mullen et al. [29]. By visual inspection, we model the 

parasympathetic impulse response as a gain, and the sympathetic impulse response as a 

damped, second-order system. The total baroreflex response is therefore the sum of the 

two individual responses since the individual responses are assumed linear. 

Mathematically this is given by Equation 3.1, and is shown schematically in Figure 3.4: 

HBaroreflex (z) = Hp(z)+Hs (z) = Kp +
Ksz

−1

(1−βz−1)2  
 
(3.1) 
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Though we will primarily focus on the model above in this thesis, we will also explore 

variations where the parasympathetic impulse response is either a two tap, or three tap 

finite impulse response of the form: 

Hp2 (z) = Kp +Kp1z
−1

Hp3(z) = Kp +Kp1z
−1 +Kp2z

−2

 

(3.2A) 
 
 
(3.2B) 

 
Figure 3.3: Left: The canine’s parasympathetic impulse response (top), and sympathetic impulse response 
(bottom) [28]. Top Right: ABPàHR transfer function in humans [29]. Bottom Right: Decoupling of 
parasympathetic and sympathetic effects on the ABPàHR transfer function [27]. Full figure taken from 
[27]. 
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Figure 3.4: Overall open-loop parametric model for baroreflex. The diagram on the left displays the two 
sub-systems, one for each branch of the autonomic nervous system. The diagram on the right displays the 
parameterizations of the two branches. 
 

 

For any given baroreflex response, we can define the parasympathetic-

sympathetic ratio (PSR) as 𝐴𝑝
𝐴𝑝+𝐴𝑠

 where 𝐴! and 𝐴! are the actions of the parasympathetic 

and sympathetic impulse responses, respectively [30]. We define the signal action 

𝐴! = |ℎ![𝑘]|∞
!=−∞

, where ℎ! is the system impulse response, which for the system 

given by Equation 3.1, yields the following PSR: 

PSR =
Kp

Kp +
Ks

(1−β)2
 

 
(3.3) 

This metric is an assessment of autonomic balance and will be used throughout the thesis 

to validate the parametric model and compare varying states of the baroreflex. Finally, 

with a beat-to-beat model, frequency domain analyses become more complicated because 

the model assumes that heartbeats are uniform in duration, i.e. each time step is the same 

[31]. As a consequence, the parametric model is not amenable to the same transfer 

function method that the black-box model is. With the parametric model, we therefore 

will use the PSR, as well as the parasympathetic and sympathetic gains, 𝐾! and 𝐾!, in 

order to determine autonomic balance and baroreflex activity. In the next chapter we will 

proceed to analyze the black-box and parameterized open-loop models.



 
 
Chapter 4 
 
 
Open-loop Model Analysis 
 
 
With a metric (baroreflex sensitivity) and measurement method (transfer function 

analysis) for baroreflex activity defined in Chapter 3, we will now apply the method and 

establish what information it provides. While there is no standard measurement for 

baroreflex activity, the metric can be analyzed using data from a dual pharmacological 

blockade and postural study. Specifically, the physiological interventions in these studies 

affect autonomic balance in predictable ways, as outlined in Chapter 2, allowing us to 

calibrate our understanding of the method. In addition, we perform parameter estimation 

on our parametric open-loop model from Section 3.4, and determine its ability to model 

the baroreflex.  

 

4.1 Experimental Data Set 

For validation we used data from a simultaneous pharmacological blockade and postural 

study performed by Saul et al. [32]. Arterial blood pressure (arterial line measurement) 

and ECG recordings (sampled at 360Hz) were collected from fourteen nonsmoking adult 
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males, without any history of cardiopulmonary disease. Initially, data were recorded for 

each subject in the supine position for thirteen minutes, and then in the standing position 

for thirteen additional minutes. Afterwards, all subjects were returned to the supine state. 

Half of the subjects were administered atropine, a parasympathetic blocking agent, while 

the other half were administered propranolol, a sympathetic blocking agent. Data were 

again collected using the same postural protocol as before. Subsequently, all subjects 

were returned to the supine position and were administered the other autonomic blockade 

drug (atropine if they received propranolol first, and propranolol if they received atropine 

first). Data were then collected again for a final time using the initial postural protocol. 

Sufficient time was given between moving from supine to standing, as well as after the 

administration of autonomic blockade agents to allow for physiological equilibration. The 

experimental protocol is explained in greater depth in Saul et al. [32, 33]. 

Let us now define the term subject-state, as the data collected from an 

experimental subject while the subject was under a certain experimental condition. An 

example of a subject-state would be the data collected for Subject 11 while in the supine 

position after the administration of propranolol. For notational simplicity, each subject-

state is represented by a unique five-character identifier, which will be used throughout 

this thesis. The first two characters are the subject identifier, ranging from ‘01’ to ‘14’. 

The next two characters are the postural states with either the letters ‘ST’ for standing or 

‘SU’ for supine. The final character represents the prevailing pharmacological state, with 

‘C’ indicating control (no blockade), ‘P’ indicating propranolol first, ‘A’ indicating 

atropine first, and ‘B’ indicating the application of both blockers. With 14 subjects and 6 

states per subject (2 tilting positions multiplied by 3 pharmacological conditions), we 
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theoretically have a total of 84 subject-states. Our dataset, however, only contains 

recordings from 79 subject-states, as 5 of the 84 combinations were not available. 

 

4.2 Transfer Function Analysis 

For each subject-state, we extracted the RR-interval (RRI) time series from the ECG 

recording and the systolic blood pressure (SBP) time series from the arterial blood 

pressure recording. We then computed the RRI and SBP power spectra, the transfer 

function from SBP to RRI, and the baroreflex sensitivity (BRS) as detailed in Chapter 3. 

Further details of our transfer function and BRS computations are available in Appendix 

A, in addition to the full set of computed BRS values. 

 

4.2.1 Results 

In the control state, all subjects exhibited a decrease in BRS between the supine position 

and the standing position, with a mean decrease of 12.7 ± 6.3 ms/mmHg, which is 

summarized in Figure 4.1. Physiologically, human vagal tone tends to be stronger in the 

supine position and weaker in the standing position, while sympathetic tone tends to be 

stronger in the standing position and weaker in the supine position. Hence, the categorical 

decrease in BRS as a result of moving from the supine to the standing state suggests that 

BRS is strongly sensitive to parasympathetic activity, as it tracks the expected change in 

vagal tone.  
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FIGURE 4.1: BRS values from supine (SUC) to standing (STC) without pharmacological intervention. 
 

With respect to pharmacological interventions, the application of atropine resulted 

in a significant drop in BRS for each subject (mean decrease of 17.6 ± 11.0 ms/mmHg) 

as displayed in Figure 4.2, which shows the BRS values before and after the application 

of atropine, both times in the supine state, in subjects in whom atropine was administered 

first. We compare BRS values in the supine position to isolate the effect of atropine on 

vagal regulation of heart rate, since changing posture from the standing to supine state 

shifts autonomic balance by increasing parasympathetic activity and reducing 

sympathetic activity. The overall effect of blocking parasympathetic activity is a 

significant reduction in BRS, as was the case in moving from supine to standing (Figure 

4.1). 
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FIGURE 4.2: BRS values from supine and no pharmacological blockade (SUC), and supine after 
application of atropine (SUA). 
 
Meanwhile, the application of propranolol resulted in a slight increase in BRS for most of 

the subjects (mean increase of 2.1 ± 2.6 ms/mmHg) as displayed in Figure 4.3 which 

shows the BRS values before and after the application of propranolol, both times in the 

standing position for subjects who were given propranolol first. In contrast to the atropine 

intervention, we report BRS values in the standing position to isolate the effect of 

propranolol on sympathetic regulation of heart rate. 
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FIGURE 4.3: BRS values from standing and no pharmacological blockade state (STC), and standing with 
application of propranolol (STP). 
 

The effect of pharmacological blockade on BRS is clearly substantial, as illustrated by 

Figures 4.2-4.3. The drop in BRS with the application of atropine, the parasympathetic 

blocker, and very slight rise in BRS with the application of propranolol, the sympathetic 

blocker, are consistent with the hypothesis that BRS (as determined by the transfer 

function method) is a sensitive measure of parasympathetic activity. Physiologically, the 

slight rise in BRS after the application of propranolol may indicate that in the absence of 

one branch of autonomic control, in this case the sympathetic branch, the other branch is 

utilized at a greater rate.  

Other analyses on this dataset have yielded similar results, though by exploring 

separate metrics of autonomic activity and balance. Xiao investigated the connection 

between respiratory rate and autonomic balance, and identified a metric for 
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parasympathetic activity, the parasympathetic index, as the peak of the impulse response 

relating instantaneous lung volume to heart rate [34]. Xiao’s parasympathetic index 

decreased as the subjects shifted from the supine to standing postures, and after the 

application of atropine. These changes to parasympathetic index are in concordance with 

the changes we observed in BRS. 

 

4.3 Open-loop Parameter Estimation 

We will now formalize the parameter estimation problem for the model defined in 

Section 3.4. Recall that in the one-tap model our system transforms SBP to HR governed 

by a Z-transform of the form 

 
 

(4.1) 

If we simulate the dynamics of the system with a given input SBP time series, 𝑆𝐵𝑃, then 

the output of the system will yield an estimated HR time series, 𝐻𝑅, dependent upon the 

given collection of system parameters 𝜃 = [𝐾! 𝐾! 𝛽] . We will define our 

optimization criterion as the ℓ2 norm of the vector difference between the true HR time 

series, 𝐻𝑅, and 𝐻𝑅. 

𝒞 =  𝐻𝑅 −  𝐻𝑅
2

 
 
(4.2) 

If we let 𝐻𝑅  be a function of 𝜃 , then we can frame our estimation problem as 

determining some 𝜃!"# that minimizes 𝒞: 

HBaroreflex (z) = Kp +
Ksz

−1

(1−βz−1)2
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𝜃!"# = argmin
!

𝒞 = argmin
!

𝐻𝑅 −  𝐻𝑅(𝜃)
2

 
 
(4.3) 

Finally we consider what length of data enables robust parameter estimation. In Section 

3.2 we made the assumption that given a sufficiently small window of time our system is 

time invariant and the signal statistics are stationary. The longer the stretch of data, 

however, the weaker this assumption becomes. Hence, estimating parameters over too 

large a window of data may result in poor model fit. In contrast, estimating parameters 

over a window of data with too few beats may result in overfitting to noise, significant 

window-to-window variation in parameter estimates, and poor generalizability. For the 

remainder of this thesis, we will use a window length of 60 beats, which empirically 

serves as a compromise between signal stability and proper conditioning of the parameter 

estimation problem. Furthermore, a 60 beat window is considerably longer than the 

timescale of the slowest cardiovascular control systems of interest, which ranges from 8-

12 beats. If we take an input data series of length N, and segment it into non-overlapping 

data windows of length M, then we have 𝑊 =  𝑁
𝑀  windows, where   represents the 

floor function. Performing windowed estimation ultimately yields an ensemble of W 

values for each model parameter per subject-state recording, which we designate as the 

parameter ensemble.  

With the estimation problem given in Equation 4.3, we performed windowed 

parameter estimation for the one-tap, two-tap, and three-tap open-loop models on each of 

the seventy-nine subject-state recordings. Minimization was achieved using the Basin-

Hopping algorithm (unconstrained), a stochastic global optimization method [35]. 

Specifically, Basin-Hopping combines Monte Carlo sampling with local minimization 
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performed at each step [36]. For each subject-state the true demeaned heart rate and 

estimated demeaned heart rate time series were obtained. Additionally, parameter 

ensembles for each subject-state were saved, and the mean and variance of each 

parameter ensemble were computed. Figure 4.4 shows an example of the true and 

estimated demeaned heart rates together, as well as the corresponding parameter 

ensembles used to generate the optimal estimated heart rate for subject-state given the 

one-tap model.  
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FIGURE 4.4: SBP time series comparison plot for 08STC (top) and the estimated model parameters over 
time (bottom). The RMSE between the true and estimated heart rate time series for this recording is 4.0 
bpm. The units of Kp, Ks, and β  are !"#

!!"#
, !"#
!"#$ ∗(!!"#)

, and !
!"#$

 respectively. 
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In each ensemble, parameter estimates from windows that did not cohere well to the 

model assumptions were excluded in the parameter mean and variance computations. We 

describe a window as having good coherence to the model assumptions if the true HR 

and SBP signals move in opposite directions, i.e. that the two signals are roughly 180° 

out of phase. Prior to the parameter estimation, this is a very difficult task to automate 

given the nature of the signals. It was observed, however, that the estimated heart rate 

signal from windows with poor model coherence often exhibited significantly less 

variation than the true heart rate signal. This was not the case for estimated heart rate 

signals from windows that cohered well with the model. Signal variance was therefore 

determined to be a good heuristic for model coherence, and the criterion for window 

inclusion in the parameter ensembles was: 

𝑉𝑎𝑟 𝐻𝑅 >  0.2 ∗ 𝑉𝑎𝑟(𝐻𝑅) 
 
(4.4) 

For the one-tap model, 135 out of a total 787 windows (over the 83 recordings) were 

excluded, and in terms of subject-states, 57 out of the 83 subject-state recordings had 

windows excluded. An example of a subject-state that coheres well with the model is 

shown in Figure 4.5, while an example of a subject-state that coheres poorly with the 

model is shown in Figure 4.6. 
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FIGURE 4.5: Estimated and actual HR time series for 02STC (top), and actual HR and SBP time series for 
02STC (bottom). Note that 02STC coheres well with our model assumptions as the SBP and true HR 
signals are almost completely 180° out of phase with each other. This manifests in close estimation of the 
HR time series. 
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FIGURE 4.6: Estimated and actual HR time series for 01SUC (top), and actual HR and SBP time series 
for 01SUC (bottom). 01SUC does not cohere well with our model assumptions as the SBP and true HR 
signals are inconsistently out of phase with each other. This manifests in poor estimation of the HR time 
series.  
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4.3.1 Results 

In the absence of pharmacological blocking agents, the parasympathetic-sympathetic 

ratio (PSR)1 was depressed in ten out of twelve subjects after subjects shifted from the 

supine to standing position (Figure 4.7). As posture changes from supine to standing, 

sympathetic outflow should increase and parasympathetic outflow should decrease, 

resulting in a decrease in PSR. The estimated PSRs closely track this expected decrease 

in PSR as a result of changing posture, with a mean change of −0.25 ± 0.23 n.u.2  

 
FIGURE 4.7: Plot of PSR in the SUC and STC states for twelve subjects. Subject 12 is excluded, as there 
were no windows that fit the acceptance criterion. 
 

Likewise, expected changes in autonomic balance resulting from pharmacological 

blockade are well tracked by both the estimated PSRs and by the estimated parameter 

																																																								
1 For convenience, the formula for PSR from Section 3.4 is reproduced here: 𝑃𝑆𝑅 =  !!

!! ! !! (!!!)!
  

2 Normalized units	
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values themselves. In the case of sympathetic blockade, we expect PSR to increase and 

Ks to decrease in magnitude after the administration of propranolol. In the case of 

parasympathetic blockade, however, we expect both the PSR and Kp to decrease after the 

administration of atropine.  

The administration of propranolol resulted in categorical increases in PSR with a 

mean change of 0.34±0.20 n.u, and decreases in the magnitude of sympathetic gain, Ks 

(Figure 4.8). The administration of atropine yielded categorical decreases in the 

magnitude of the parasympathetic gain, Kp, and ambiguously altered PSR with a mean 

change of 0.07±0.40 n.u. (Figure 4.9). Though the Kp magnitudes decreased in all 

subjects, in some subjects Kp became positive. More generally, Kp became less negative 

in all subjects due to parasympathetic blockade.  

The ambiguity in changes to PSR as a result of parasympathetic blockade is likely 

a consequence of the lack of resolution in the HR time series, which makes it difficult to 

estimate parameters accurately. In particular, atropine’s affect in reducing HRV manifests 

in some of the SUA recordings as a reduction in the range of RRI values to as low as 

10ms, which in signals sampled at 360Hz yields only 4 possible RRI values (and thus 

only 4 possible HR values), whereas the variability in the SBP signal can yield hundreds 

of SBP values. While the model is unable to accurately estimate parameters in the case of 

strongly inhibited parasympathetic activity, HRV is sufficient in classifying these cases, 

and obviates the need for the model. 
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FIGURE 4.8: Comparison of PSR between the STC and STP recordings (top), and comparison of Ks 
between the STC and STP recordings (bottom). Figure shows means (bars) and standard deviations (error 
bars).
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FIGURE 4.9: Comparison of PSR between the SUC and SUA recordings (top), and comparison of Kp 
between the SUC and SUA recordings (bottom). Figure shows means (bars) and standard deviations (error 
bars). 
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Finally, as the number of taps in the parasympathetic model impulse response 

increased, the RMSE between the true and estimated HR time series decreased (Figure 

4.10).  

FIGURE 4.10: Graphical comparison of decreasing RMSE as taps increase. 14STC is one of the five 
missing records, hence its exclusion from this graph. 

 

While increasing the number of taps in the parasympathetic impulse response results in 

better minimization of the estimation error, using greater than one tap appears 

unwarranted due to two reasons. First, the improvement in error is rather modest, as 

shown in Figure 4.10 with the standing control cases, and the improvement primarily 

occurs in windows in which the model already conforms well to the data. Second, 

parasympathetic impulse responses with greater than one tap are difficult to explain 

physiologically, especially as the parameter estimates (including the sympathetic gain, 

Ks) vary widely within each subject-state record. While the application of regularization 
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to the estimation problem may reduce the variance of the parameter estimates, it would 

necessarily result in an increase in error over the non-regularized estimation, and reduce 

the already modest improvement in error with respect to the one tap model. 

 

4.3.2 Discussion  

By visual inspection, our model comports with the data for some of the subject-states, 

such as subject-state 02STC, and does not comport with the data for other subject-states, 

such as subject-state 01SUC. For windows within a subject-state for which the model 

does not fit well to the data, visual inspection of plots of SBP and HR superimposed, such 

as Figures 4.5-4.6, provide clarity. In particular, as noted in Section 3.1, the structure of 

the model assumes that RRI and SBP covary, or in terms of the system variables, that 

SBP and HR vary in opposite direction. For windows in which the data adhere to that 

assumption, the model performs very well, as shown in Figure 4.5, whereas for windows 

where the data do not adhere to that assumption, the model performs poorly, as shown in 

Figure 4.6. For windows with poor model fit, however, the estimated heart rate typically 

exhibits less variation relative to the true heart rate and is rather flat in shape, which is a 

result of the optimization algorithm preventing error accumulation due to estimation 

overshooting. Including parameter estimates from such windows in the parameter 

ensembles is imprudent, and their removal from the pharmacological blockade dataset 

resulted in either no change or lower variance in parameter estimates across most subject-

state recordings.  

The mean parameter values for each subject-state tracked well with the expected 

change in autonomic balance, illustrated in Figures 4.7-4.9. Moreover, the standard 
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deviations of the parameter ensembles were smaller than changes in the means of the 

parameter ensembles due to a change in state for a single subject. Nevertheless, there are 

remaining questions regarding the stability of the parameter estimates. In the cases of 

subject-states with parameter ensembles exhibiting significant window-to-window 

variability, this may be a result of significant noise or highly time varying properties of 

the baroreflex. Sensitivity analysis will be performed in Chapter 7 to determine the 

effects of noise on the parameter estimation. 

The observation of positive values of Kp while subjects were under 

parasympathetic blockade suggests that Kp may be capturing some of the mechanical 

respiratory contributions to heart rate, that Kp acts as a free parameter that fits to noise 

when parasympathetic activity is severely inhibited, or some combination thereof [32,37]. 

Filtering out heart rate variations due to high frequency respiratory fluctuations could 

potentially reduce error due to respiratory influences, and prevent estimates of Kp from 

becoming positive. Such filtering may prove to be difficult since the beat series cannot be 

uniformly sampled in the time domain if there is any heart rate variability. Without this 

filtering, it appears that as the parasympathetic nervous system is increasingly inhibited, 

we should expect Kp to become less negative, and not necessarily that its magnitude 

decrease.  

Overall, while the open-loop model performs well in fitting much of the data and 

providing evaluations of autonomic balance, there are a few deficiencies. One deficiency 

is that the estimated HR series for many windows, even windows that cohere well to the 

model assumptions, cannot fit to some of the sharp features of the actual HR series. 

Another deficiency is that the variances of the estimated parameters are large in some 
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cases, raising doubts as to the model’s accuracy and assumptions. One possible remedy 

for these flaws is closing the loop, which should more accurately model the closed-loop 

nature of the baroreflex as opposed to the open-loop model. In the proceeding chapters, 

we shall explore a parameterized closed-loop model of baroreflex further. 

To conclude this chapter, we will discuss the differences between the transfer 

function method (TF) and the parameterized model-based method (PM). The primary 

difference between the two models is that the TF appears to only be sensitive to 

parasympathetic changes, while the PM appears to be sensitive to both parasympathetic 

and sympathetic changes.  Moreover, the PM provides greater interpretability than the TF 

as it separates the gains of the parasympathetic and sympathetic branches through Kp and 

Ks, respectively, while the TF provides one value, the BRS, increasing the difficulty of 

determining autonomic balance. Despite the clear advantages of the PM in this analysis, 

it is difficult to know which method is more sensitive to aggregate autonomic without 

some gold standard measurement for comparison. 

  





 
 
Chapter 5 
 
 
Closed-loop Modeling of the 
Baroreflex 
 
 
The limitations of transfer function analysis and our open-loop model from the prior 

chapters motivate this chapter. First, because the baroreflex is naturally closed-loop, the 

open-loop model is by default incorrect, and ultimately inadequate in explaining some of 

the observed phenomena in the blood pressure such as Mayer waves. Some features of 

the heart rate waveform, such as the sharpness of the oscillations, may potentially be 

better fit with a closed-loop model as opposed to the open-loop model from Chapter 3. 

Second, while baroreflex sensitivity as determined by the transfer function method yields 

an overall assessment of the heart rate arc of the baroreflex, it does not provide specific 

information regarding autonomic balance. Thus, the goal of this chapter is to develop a 

robust parameterized model that addresses these concerns. 
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5.1 Closed-loop Framework 
 
To address the first concern from the Introduction, we present a closed-loop model of the 

baroreflex. Significant prior work has been done in closed-loop modeling of the 

baroreflex. Akselrod et al. modeled the closed-loop system coupling heart rate (HR) to 

arterial blood pressure (ABP) as the combination of a forward baroreflex arc, 

transforming ABP to HR, and a backward mechanical arc, transforming HR to ABP [10]. 

Both the forward and backward arcs of the control loop were considered LTI systems, 

which resulted in the computation of nonparametric linear transfer functions between the 

variables of interest for analysis. Appel expanded Akselrod’s model to explicitly include 

respiratory contributions to blood pressure (with processing of the instantaneous lung 

volume signal), and then parameterized the system using an autoregressive-moving-

average model [38]. Finally, Saul et al. developed a parameterized closed-loop model 

based on physiological insight that parameterized the responses of the sympathetic and 

parasympathetic branches as first-order low-pass filters [32]. 

The canonical feedback control system1 with a controller, plant, and sensor, as 

shown in Figure 5.1, is the basis for our model. Direct analogies for the controller, plant, 

and sensor, in the baroreflex control loop are the autonomic nervous system, the 

cardiovascular system, and the baroreceptors, respectively. 

 
Figure 5.1: Canonical negative feedback control system.  
 

																																																								
1 In this chapter, we use the terms feedback and closed-loop interchangeably. 
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In terms of system variables, the plant input, plant output, sensed output and reference 

correspond to the heart rate (HR), systolic blood pressure (SBP), baroreceptor pressure, 

and the baroreflex blood pressure set point, respectively. The closed-loop system model 

for the heart rate arc of the baroreflex is shown in Figure 5.2. 

 
 
Figure 5.2: Block diagram of the heart rate baroreflex feedback loop. 
 
5.2 Parameterization 
 
To address the second concern from the Introduction, we shall explicitly parameterize 

each of the blocks in our system model from Figure 5.2. In concordance with our 

parameterized open-loop model, our closed-loop model is also beat-to-beat, and acting on 

the demeaned beat series. 

 
5.2.1 Baroreceptors (sensor)  

The time scale of the response of baroreceptors to changes in blood pressure was 

demonstrated by Eckberg to be approximately 0.25 seconds, while a conservative lower 

bound for heartbeat length in a resting patient is 0.4 seconds [39]. With our beat-to-beat 

model, we make the assumption that beat length is greater than the time scale of the 

baroreceptors response to changes in blood pressure. We therefore model the 

baroreceptor block as a unity gain, implying that at each time step the systolic blood 

pressure and the pressure sensed by the baroreceptors are identical.  
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5.2.2 Autonomic Nervous System (controller) 

We model the autonomic nervous system block in the closed-loop model identically to 

that of the open-loop model presented in Section 3.4: 

 

 
(5.1) 

Where Kp represents the parasympathetic gain, Ks the sympathetic gain, and β the 

characteristic time constant of the sympathetic nervous response. In Chapter 4 it was 

shown that increasing the number of taps in the impulse response of the parasympathetic 

branch does not dramatically improve the fit of the model. We thus use a single-tap 

impulse response to represent the parasympathetic response in order to preserve 

parsimony. 

 
5.2.3 Cardiovascular System (plant) 

The cardiovascular system is modeled as a gain delayed by one beat. Our single-step 

delay element models the latency between decision making at the output of the 

autonomic nervous system, and action at the output of the cardiovascular system [32]. 

This latency was demonstrated by Berger to be approximately 0.42 seconds, which is 

slightly larger than the conservative lower bound for heart beat length of 0.4 seconds 

given in Section 5.2.1 [40].  

In Chapter 2, we established that mean arterial blood pressure is the product of 

heart rate, stroke volume, and total peripheral resistance. It follows that the gain is the 

product of stroke volume and total peripheral resistance. Using standard values for stroke 

volume (70 cc) and total peripheral resistance (1500 dyne-s/cm5) yields a gain on the 

HBaroreflex (z) = Kp +
Ksz

−1

(1−βz−1)2
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order of 1 mmHg/BPM [2]. For simplicity, we assume that the gain is constant in time, 

and is represented by the parameter Kc. 

 
5.2.4 Full Model 

Now that we have parameterized all the blocks, we can assemble the full control loop as 

shown in Figure 5.3. Since the model requires the signals to be demeaned around the 

operating point, our blood pressure set point (reference) is set to zero. In addition, for 

notational clarity we prepend lowercase “d” to each of the signal names, indicating 

deviation from mean value. 

 

 
Figure 5.3: Fully parameterized closed loop model of baroreflex. 
 
 

5.3 Noise 

While it is very difficult to model noise in the system a priori, it is instructive to consider 

what sources of noise exist, what parts of the model they affect, and how to potentially 

counter their effects when estimating model parameters. In our model, sources of noise 

primarily manifest at the output of the cardiovascular block, shown in Figure 5.4. 

 
Figure 5.4: Closed loop model in the presence of noise. Hat notation implies estimate, i.e.  is an 
estimate of the true value of dHR, and  is an estimate of the true value of dSBP. 
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5.3.1 Sources 

One main source of noise comes from the simplicity of our model (modeling error). 

Chiefly, because only the heart rate arc of baroreflex is modeled, the model cannot 

predict changes in systolic blood pressure (SBP) accounted for by beat-to-beat changes in 

cardiac contractility and vascular tone. For example, both stroke volume and total 

peripheral resistance vary in time on a beat-to-beat basis, making Kc beat dependent and 

rendering the cardiovascular system block time variant. Hence, the addition of noise is 

exhibited at the output of the cardiovascular block due to the inability of the time 

invariant model to capture the time varying behavior.  

Another source of noise, though smaller, is the mechanical coupling between 

respiration and the thoracic vasculature. This, too, is a time varying phenomena affecting 

the cardiovascular block, and cannot be modeled in a time invariant manner in the 

absence of a respiratory signal [39]. 

 
5.3.2 Error Compensation 

Unlike in the case of the open-loop model, signal estimation errors can propagate through 

the feedback loop and may lead to significant errors when attempting to estimate model 

parameters (as we shall see in Chapter 6). A major task is preventing divergence of 

system estimates due to feedback of an incorrect estimate. This can be accomplished by 

compensating for the error at each step with the system in Figure 5.5. In this system, the 

input to the ANS block at every time step is a weighted combination of the estimated 

output from the prior time step, 𝑑𝑆𝐵𝑃, and the true output, dSBP. This reduces how far 

an input at any time n+1 will stray from the true output at time n. Additionally, if we set 
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the output and input weights to be γ, and 1- γ, respectively, where 0 < γ < 1, then while 

errors will still occur, they are discounted by a factor of 1- γ for every cycle through the 

loop. For γ chosen sufficiently small, the model maintains its closed-loop character, while 

simultaneously not diverging too far in its estimation. In the limit where γ approaches 1, 

the model is identical to the pure closed-loop model presented in Section 5.2.4.  

 

 
Figure 5.5: Updated control loop with error compensation.  
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Chapter 6 
 
 
Closed-loop Model Analysis 
 
 
In this chapter, we analyze the performance of the two closed-loop models1 defined in 

Chapter 5. We first estimate parameters for the closed-loop models using an optimization 

formulation similar to that from Section 4.3 and the same dataset. With these parameters, 

we then analyze the ability of the closed-loop models to track the expected physiological 

changes in the subjects from the dataset. Finally, we consider the effect that closing the 

loop has on parameter estimation with respect to the open-loop model parameter 

estimates. 

 

6.1 Closed-loop Parameter Estimation 

Closed-loop parameter estimation presents new challenges beyond the formulation for 

open-loop parameter estimation given in Section 4.3. While our error criterion and 

optimization method remain the same, our parameter space has grown with the addition 

																																																								
1 For convenience, we will use the abbreviations CLM for the standard closed loop model from Section 
5.2.4 and CLECM for the closed loop error compensated model from Section 5.3.2 
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of the cardiac parameter 𝐾!. In the closed loop parameter estimation we now have an 

updated collection of system parameters: 

𝜃 = 𝐾! 𝐾!   𝛽 𝐾!  (6.1) 

but the same objective function as in the open-loop case: 

𝜃!"# = argmin
!

𝐻𝑅 − 𝐻𝑅(𝜃)
2

 
 
(6.2) 

As opposed to the open-loop model, the closed-loop models are not fed a continuous 

stream of inputs of the true systolic blood pressure (SBP) into the autonomic nervous 

system (ANS) block at each time step (beat). We therefore adjust our simulation method 

by providing initial conditions to drive the system. Specifically, we set the input to the 

ANS at time step 𝑛 = 0 to be the true value of SBP at the beginning of the data window. 

In the CLM case, an estimate of SBP at the output of the cardiovascular system (CVS) 

block at each beat is fed as the input to the ANS block of the following beat. Similarly, in 

the CLECM case, a weighted sum of the estimated SBP at the output of the CVS block 

and true SBP at each time step is fed as the input to the ANS block. By recognizing that 

the CLM is a special case of the CLECM where 𝛾 = 1, the time evolution of both of the 

models may be simulated identically. Finally, to prevent divergence of our parameter 

estimates from physiological limits, we bound our parameter estimation to conservative 

approximations of those limits given below  

𝐾! 𝜖 −3, 3 ;   𝐾! 𝜖 −3, 3 ;   𝛽 𝜖 0, 1 ;  𝐾! 𝜖 −3, 3  (6.3) 

with units of !"#
!!"#

 , !"#
!"#$ ∗(!!"#)

 , !
!"#$

 , and !!"#
!"#

  respectively [29]. 

Using the estimation problem given by Equation 6.2, we performed windowed 

parameter estimation for the CLM and CLECM (with 𝛾 = 0.5) on each of the seventy-
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nine subject-state recordings. Parameter ensembles for each subject-state were saved, and 

the mean and variance of each parameter ensemble were computed.  

Just as in the open-loop case, we excluded parameters in our parameter ensembles 

from windows where the model did not cohere well with the model assumptions, using 

the criterion given by Equation 4.4. For the CLM, 82 out of a total 787 windows (over the 

83 recordings) were excluded, and in terms of subject-states, 37 out of the 83 subject-

state recordings had windows excluded. For the CLECM, 68 out of a total 787 windows 

(over the 83 recordings) were excluded, and in terms of subject-states, 42 out of the 83 

subject-state recordings had windows excluded.  

 

6.2 Results 

Both the CLM and CLECM were unable to track postural changes in the absence of 

pharmacological blockading agents. The CLM computed parasympathetic-sympathetic 

ratio (PSR) was depressed in five of thirteen subjects with a mean change of 0.07 ± 0.29 

n.u.2 after subjects shifted from the supine to the standing position (Figure 6.1). Similarly, 

the CLECM computed PSR was depressed in eight of thirteen subjects with a mean 

change of −0.07 ± 0.37 n.u. (Figure 6.1). Neither of the two models exhibit a consistent 

decrease in PSR, which is in contrast to the physiological expectation that sympathetic 

outflow increase and parasympathetic outflow decrease as posture shifts from the supine 

to standing position. 

 With regards to the expected changes in autonomic balance due to 

pharmacological blockade, the CLM was unable to track such changes while the CLECM 

																																																								
2 normalized units 
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was able to track such changes, though with low fidelity. Neither the administration of 

propranolol nor the administration of atropine resulted in any discernible trends in PSR, 

Kp, or Ks given the CLM, as any changes in parameter values were well within the error 

of the parameter estimation for all subjects (Figures 6.2, 6.3). For the CLECM, the 

administration of propranolol yielded no discernible trend in PSR, and resulted in Ks 

becoming less negative in five of the six subjects, though most of these changes were 

within the error of the parameter estimation (Figure 6.4). This does not comport with the 

physiological expectation that PSR increases, and Ks decrease in magnitude. The 

administration of atropine also yielded no discernible trend in PSR for the CLECM, but 

did result in Kp becoming more positive in all seven of the subjects, with a population 

change outside the margin of error of the parameter estimation (Figure 6.5). This 

observed change is in agreement with the physiological expectation that PSR increase, 

and Kp decrease in magnitude. 
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FIGURE 6.1: Plot of PSR in the SUC and STC states for thirteen subjects computed given CLM model 
(top) and CLECM model (bottom). 
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FIGURE 6.2: For the CLM, comparison of PSR between the STC and STP recordings (left), and 
comparison of Ks between the SUC and SUA recordings (right). 
 

 
FIGURE 6.3: For the CLM, comparison of PSR between the SUC and SUA recordings (left), and 
comparison of Kp between the SUC and SUA recordings (right).  
 

 
FIGURE 6.4: For the CLECM, comparison of PSR between the STC and STP recordings (left), and 
comparison of Ks between the SUC and SUA recordings (right).  



	 75 

 
FIGURE 6.5: For the CLECM, comparison of PSR between the SUC and SUA recordings (left), and 
comparison of Kp between the SUC and SUA recordings (right).  
 
 
6.3 Discussion 

Whereas the open-loop model effectively tracked changes in autonomic balance, the 

closed-loop models surprisingly did not. Combining the results of this chapter with the 

results from Chapter 4, a clear relationship emerges between a model’s ability to track 

changes in autonomic balance and whether or not it is open or closed loop. In particular, 

we find that as the model becomes more closed in character, i.e. the strength of the 

feedforward arm of the control loop decreases relative to the strength of the feedback arm 

of the control loop, the variance of the parameter estimates increases, while the 

parameters no longer track the physiological changes. A naïve interpretation of this 

relationship is that closed-loop models are less accurate models of the baroreflex than 

open-loop models. It appears, however, that closed-loop models are not less accurate 

models, rather that model error due to only considering the heart-rate arc of the 

baroreflex accumulates when closing the loop, which leads to aberrant parameter 

estimates. Model noise does not affect the open-loop model as significantly as the closed-

loop models since the input at each beat is the true SBP, which prevents error 

accumulation and propagation over time. Lastly, it is important to note that the CLM 
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places implicit conditions on the poles of the system. The system is undriven beyond its 

initial conditions, which requires that at least one system pole have a magnitude very 

close to unity such that there is no runaway decay of the output, and that no pole has a 

magnitude larger than unity in order to prevent runaway growth of the output. 



 
 
Chapter 7 
 
 
Closed-loop Model Analysis 
 
 
In Chapter 4 we demonstrated that model parameters of an open-loop model for 

baroreflex were able to accurately track changes in autonomic balance. We motivate this 

chapter by considering how those model parameters are obtained, and how large the 

effect size is with regards to changes in autonomic balance. In Section 7.1 we present a 

method for testing the sensitivity of our parameter estimates to perturbations in the inputs 

to our parameter estimation. We then execute this method on the same dataset used in 

Chapter 4, and evaluate the sensitivity of our model in Section 7.2.  

 

7.1 Methods 

Our criterion of success for the open-loop model was if it could correctly detect changes 

in autonomic balance. In particular, we tested whether or not certain model parameters 

changed in an expected direction after a subject switched between two states of differing 

autonomic activity (supine to standing, parasympathetic blockade, sympathetic 

blockade). Accordingly, in this sensitivity analysis, our first evaluation criterion is how 
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well the model parameters are able to track their expected changes when the inputs to the 

parameter estimation algorithm are perturbed. Our second evaluation criterion is how 

greatly do the parameter estimates themselves change between the unperturbed and 

perturbed parameter estimation, and whether the new parameters maintain physiological 

relevance and meaning. In the presence of noise, the first criterion measures the model’s 

precision while the second criterion measures its accuracy. In the following section, will 

will evaluate these criteria qualitatively. 

 With our evaluative criteria defined, we now move on to our perturbation method. 

Given a subject-state (as defined in Chapter 4), we perturb either 𝑆𝐵𝑃 or 𝐻𝑅 with some 

well defined level of noise before performing parameter estimation on the open-loop 

model (for notational convenience, we denote the perturbed signals with a subscript p, i.e. 

𝑆𝐵𝑃! and 𝐻𝑅!). Specifically, the parameter estimation algorithm either feeds 𝑆𝐵𝑃! as 

the input into the open-loop model while fitting the output to 𝐻𝑅, or it feeds 𝑆𝐵𝑃 as the 

input into the open-loop model while fitting the output to 𝐻𝑅!. In this analysis, we 

perturb the signals with additive white Gaussian noise (AWGN), as AWGN is zero-mean 

in the time domain, and has a uniform power spectrum in the frequency domain [41]. 

Mathematically our perturbed signal is: 

𝑋! = 𝑋 + 𝑍 (7.1) 

Where the elements of 𝑍 are samples independently and identically distributed from a 

Gaussian distribution with a mean of zero and a variance of 𝜎2, defined as: 

𝜎2 = 𝛼 ∗ 𝑣𝑎𝑟(𝑋), (7.2) 
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In this structure, the variance of the perturbation signal is just some proportion, 𝛼, of the 

variance of the input signal, 𝑋. Thus, setting 𝛼 and determining which signal to perturb 

(𝑆𝐵𝑃 or 𝐻𝑅) defines the perturbation scheme. 

 Using the same dataset, parameter estimation formulation, and parameter 

inclusion criteria as in Section 4.3, we tested four perturbation schemes summarized in 

Table 7.1, running each scheme once per subject-state.  

Perturbation 
Scheme 

 
𝑋 

 
𝛼 

Number of 
Windows 
Excluded 

Number of 
Effected 
Subject-states 

A 𝑆𝐵𝑃 0.05 137 60 
B 𝑆𝐵𝑃 0.10 151 64 
C 𝐻𝑅 0.05 143 59 
D 𝐻𝑅 0.10 159 63 
Control Neither 0 135 57 
Table 7.1: Summary of perturbation schemes. In all four schemes (A-D), parameters were estimated for 
787 distinct windows. The bottom row labeled “control” represents the unperturbed open loop parameter 
estimation performed in Chapter 4. 
 
7.2 Results 

The combination of the open-loop model and parameter estimation formulation from 

Chapter 4 appears to be rather robust in the presence of low noise (5% and 10% signal 

variance in our schemes). All four perturbations schemes performed as well as the 

unperturbed parameter estimation in tracking the change in autonomic balance due to 

postural changes (Figure 7.1).  
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Figure 7.1: Changes in PSR from SUC to STC for each perturbation scheme. The “No Noise” scheme is 
the original set of estimates. Population mean is represented by the subject “pop.” 
 

In consonance with this result, the four perturbation schemes also performed as well as 

the unperturbed parameter estimation in tracking the change in autonomic balance caused 

by pharmacological blockade (Figure 7.2). From these results, it is clear the model 

satisfies the first criterion, i.e. tracking the relative shifts in autonomic balance, at the 

levels of noise injected into the system. The model also appears to satisfy the second 

evaluation criteria, the amount that the estimated parameters changed from the 

unperturbed scheme to the perturbed schemes. Visually, it is clear from Figure 7.3 that 

the estimated parameters of the perturbed systems do not significantly deviate from the 

estimated parameters of the unperturbed system, with the exception of the Kp parameter 

for the subject-state 13SUC. 
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Though illuminating, this analysis is also limited. Given that each perturbation 

scheme was simulated only once per subject-state, a subject-state with few coherent data 

windows could have its parameter estimates exhibit significant deviations from the 

unperturbed values if the realization of the AWGN in any of its data windows is 

particularly noisy. Likewise, such a subject-state could observe very small deviations 

from the unperturbed values if the realization of the AWGN in any of its data windows is 

very quiet. Examining a distribution of estimated parameter values for each subject-state 

given a certain perturbation scheme would enhance this analysis, but would require 

performing parameter estimation on multiple realizations of each perturbation scheme, a 

rather time intensive task. 

Missing from this analysis is perturbation of the SBP signal by standard noise 

patterns introduced by blood pressure monitoring equipment. Two common types of 

noise are a static offset or a slow drift (over the time scale of minutes) in the arterial 

blood pressure (ABP) waveform. A static offset in the ABP waveform results in a static 

offset in the SBP time series, which is then removed by the demeaning process in the 

parameter estimation and consequently does not alter any parameter estimates. A slow 

drift in the ABP waveform poses a more difficult challenge, but could likely be removed 

by some processing such as passing the ABP waveform through a high-pass or band-pass 

filter. Thus, neither of the standard sources of noise in blood pressure measurement 

should pose problems for the open-loop parameter estimation. 
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Figure 7.2: Changes in Ks from STC to STP for each perturbation scheme (top). Changes in Kp from SUC 
to SUA for each perturbation scheme (bottom). The subject “pop” represents population mean. 
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Figure 7.3: Estimated Ks in STC state for each perturbation scheme (top). Estimated Kp in SUC state for 
each perturbation scheme (bottom). The subject “pop” represents population mean.  





 
 
Chapter 8 
 
 
Conclusions 
 
 
8.1 Contributions 

The work in this thesis has contributed to the study of cardiovascular control and 

autonomic balance in two ways. First, we demonstrated that a low-order, open-loop 

model of baroreflex is able to track autonomic balance across a number of physiological 

states with varying degrees of autonomic activity and balance. Second, the lackluster 

performance of the closed-loop model in tracking autonomic balance demonstrated the 

limitations of models of baroreflex that only contain the heart rate control arc of blood 

pressure. These contributions may eventually lead to real-time tracking of the autonomic 

nervous system in a clinical setting. 
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8.2 Future Work 

Three major areas for future exploration are data quantity, modeling, and data processing: 

 

Data quantity: Given our dataset, we were able to demonstrate that the open-loop model 

is able to track changes in autonomic balance when the intervention effect is large, such 

as the change after pharmacological blockade of the SNS, the change after 

pharmacological blockade of the PNS, and the change after transitioning from the supine 

to standing posture. A dataset with more subjects and a finer sampling of physiological 

states along the axis of autonomic balance would provide a better evaluation of the 

model’s sensitivity to changes in autonomic balance. Finer sampling of states could be 

achieved by recording data at varying levels of tilting, as opposed to the binary 

supine/standing regime. Similarly, different doses of the pharmacological agents could be 

administered to vary the level of sympathetic or parasympathetic blockade. 

 

Modeling: Model error in the closed-loop model may most easily be reduced by adding in 

the contributions of the non heart rate arcs of the baroreflex. These contributions would 

be incorporated into the cardiovascular system block, and for example could include 

beat-to-beat values of total peripheral resistance (which can be extracted under suitable 

assumptions from the SBP signal using the Windkessel model) [7]. 

 

Data Processing: As mentioned in Chapter 4, respiratory contributions to heart rate 

variability will result in parameter values that are more positive than expected, 

particularly for the parasympathetic parameter. Removing these fluctuations from the 
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heart rate signal would likely improve the parameter estimates, and reduce parameter 

ensemble variability. This, however, requires developing a special filtering method for 

the heart rate time series because it is not uniformly spaced in the time domain. 
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Appendix A 
 
 
We outline below our transfer function analysis methodology, beginning with signal 

extraction and ending with the computation of the baroreflex sensitivity (BRS). We also 

provide a table summarizing all of the BRS values computed using our implementation of 

the transfer function method. 

 
Signal Extraction: 

Given a subject-state, we assume that its ECG and ABP waveforms are time aligned (at 

least within the resolution of a beat). We then perform beat onset detection and extract 

the RRI beat series from the ECG recording employing the Pan-Topmkins algorithm 

[42]. Using the ABP waveform and the beat onsets, we next obtain the SBP beat series by 

finding the maximum pressure in the ABP waveform during each heartbeat. For both the 

RRI and SBP beat series, we generate a corresponding time series using a sample and 

hold. In the time series, each sample is held for the duration of a beat, i.e. it is held for the 

corresponding R-R interval. For example, suppose we had (2, 5, 3) and (88, 84, 80) as our 

RRI and and SBP beat series respectively, where for convenience we measure RRI in 

units of samples, then their respective time series would be (2, 2, 5, 5, 5, 5, 5, 3, 3, 3) and 

(88, 88, 84, 84, 84, 84, 84, 80, 80, 80). Lastly, we decimate the RRI and SBP time series 

to 2Hz signals that we will label as RRId and SBPd 
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BRS Computation: 

Using Welch’s method with a window size of 256 samples, an overlap of 128 samples, 

and Hamming windowing, we compute the auto-spectra of both RRId and SBPd, as well 

as the cross-spectrum between RRId and SBPd [43]. We obtain the coherence between 

RRId and SBPd by taking the per frequency quotient of the magnitude of the cross-

spectrum squared by the product of the RRId and SBPd auto-spectra. We next compute 

the transfer function from SBPd to RRId by taking the per frequency quotient of the cross 

spectrum by the auto-spectrum of SBPd. Finally, we estimate BRS as the magnitude of 

the transfer function at the frequency in the LF band (0.04-0.15Hz) with greatest 

coherence. All of the computations beginning with the coherence are expressed 

mathematically below. 

RRI𝑑 𝐴𝑢𝑡𝑜𝑠𝑝𝑒𝑐𝑡𝑟𝑎 ∶= 𝑆𝑅𝑅 𝑓  

 
SBP𝑑 𝐴𝑢𝑡𝑜𝑠𝑝𝑒𝑐𝑡𝑟𝑎 ∶= 𝑆𝐵𝐵 𝑓   

 
𝐶𝑟𝑜𝑠𝑠 𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚 ∶=  𝑆𝐵𝑅(𝑓) 

 

𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 ∶= 𝛾2 𝑓 =
𝑆𝐵𝑅(𝑓) 2

𝑆𝐵𝐵 𝑓 ∗ 𝑆𝑅𝑅(𝑓)
 

 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∶= 𝐻 𝑓 = 𝑆𝐵𝑅(𝑓)
𝑆𝐵𝐵 𝑓

 

 

   𝑓∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝛾2 𝑓    𝑓𝑜𝑟     𝑓 𝜖 0.05, 15  

 

𝐵𝑅𝑆 = 𝐻(𝑓∗)  
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Propranolol	First	 Subject		 01	 03	 05	 08	 10	 12	

	ST	 B	 1.89	 N/A	 0.94	 5.02	 0.91	 0.93	
	

	
C	 9.53	 6.73	 31.73	 12.59	 11	 10.57	

	
	

P	 9.39	 13.63	 32.15	 15.99	 10.32	 12.96	
	SU	 B	 1.64	 5.76	 1.01	 4.23	 0.64	 1.6	

	
	

C	 17.24	 22.92	 45.61	 16.78	 30.9	 30.74	
	

	
P	 17.77	 50.28	 49.83	 15.83	 30.96	 38.69	

	
	 	 	 	 	 	 	 	 	Atropine	First	 Subject	 02	 04	 06	 07	 09	 11	 13	
ST	 A		 0.96	 1.62	 1.9	 0.56	 1.55	 1.05	 0.82	

	
B	 2.42	 2.53	 2.04	 1.53	 1.56	 2.96	 3.21	

	
C	 7.09	 8.27	 16.41	 10.45	 8.27	 6.41	 10.44	

SU	 A		 6.78	 0.99	 1.47	 12.39	 2.03	 2.07	 0.69	

	
B	 5.59	 4.64	 5.68	 1.04	 1.87	 4.5	 1.28	

	
C	 11.53	 21.92	 42.59	 21.61	 17	 14.13	 20.99	

Table A.1: BRS values obtained for each subject-state using our implementation of the 
transfer function method.  To find a subject state, first look for the column corresponding 
to the subject, and then find the row corresponding to the three-letter state. 
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