G.E.R.T: A Go-Based Toolkit For Embedded
Applications
by
Yanni Coroneos

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2017

(©) Massachusetts Institute of Technology 2017. All rights reserved.

AUbhor .
Department of Electrical Engineering and Computer Science
May 18, 2017

Certified Dy
Dr. Frans Kaashoek

Charles Piper Professor

Thesis Supervisor

Accepted Dy . ..o
Dr. Christopher Terman
Chairman, Masters of Engineering Thesis Committee

G.E.R.T: A Go-Based Toolkit For Embedded Applications
by

Yanni Coroneos

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2017, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Embedded systems are becoming increasingly complicated due to the emergence of
SOCs (system-on-a-chip) with multiple cores, dizzying amounts of peripherals, and
complicated virtual memory systems. Unfortunately, performant embedded systems
for SOCs are still largely written in either bare-metal C or userspace C because high-
level languages running in userspace can have too much latency.

This thesis proposes a new system called G.E.R.T, the Golang Embedded Run-
Time, for multi-core ARM processors. GERT is a modified version of the Go runtime
for bare-metal operation on multi-core ARMv7a SOC’s. It is used to evaluate the
effectiveness of using a high-level, type-safe, and garbage collected language for em-
bedded applications. G.E.R.T provides the multiprocessor support and basic memory
abstractions of a typical embedded toolkit while also enabling the user to leverage
the language features of Go in order to develop concurrent embedded programs that
are easier to reason about than similar ones written in C.

Thesis Supervisor: Dr. Frans Kaashoek
Title: Charles Piper Professor

Acknowledgments

First I would like to thank Frans Kaashoek for introducing me to the field of Operating
Systems and advising me on this thesis. Next, I would like to thank Cody Cutler
for helping me figure out my mistakes whenever I broke the Go runtime. I am also
thankful to some of my closest friends: Tina, Ana, Hannah, and Corey for supporting
me and telling me my laser projector is cool. Finally, I am grateful to my parents, Rula
Coroneos and Emanuel Coroneos, for always supporting my education and motivating

me to achieve more. Thank you for sending me to MIT, I have learned so much.

Contents

1 Introduction

1.1
1.2
1.3

Motivation

GERT

Outline.

2 Why Write System Code in Go?

2.1
2.2

Go Runtime Organization

Go Memory Safety

2.3 Tolerating the Garbage Collector

3 The Go Runtime On Bare Metal

3.1

Step 1 Bring Up

3.2 Step 2 GERT Kernel Installation

3.3

Step 3 Go Runtime Setup

3.3.1 Virtual Memory Setup

3.3.2 Thread Scheduling and Trapframes

3.3.3 Interrupts

3.3.4 Keeping Time . . .

3.3.5 Booting Secondary CPUs

4 How to Use GERT

4.1
4.2

API Inspiration

Writing Interrupt Handlers

13
13
15
15

17
17
18
19

21
22
22
23
23
24
26
28
28

4.3 Building a GERT Program 30

4.4 Design Considerations L. 31
4.5 Writing Drivers oo 31
5 Evaluation 33
5.1 Experimental Setupo 34
5.2 Microbenchmarks 34
5.2.1 Pin Toggle Frequency 34
5.2.2 Response Latency 36
5.2.3 External Event Throughput 37

5.3 Microbenchmark Conclusions 38
5.4 Case Study: Robot Sensor Platform 39
54.1 Overviewo 40

54.2 PWM Motor Control 41
5.4.3 Distance Sensor Reading 43
5.4.4 FEncoder Reading 43
5.4.5 Complications Lo 44
546 Result 44

5.5 Case Study: Laser Projector, 45
5.5.1 Overview 45

5.5.2 Point Serialization 000 46
5.5.3 Path Tracing 47
554 Result o 47

5.6 Evaluation Summary 48
6 Conclusion and Future Work 49

List of Figures

2-1 Bugs That GERT Programs Can Have 19
3-1 GERT Boot Process. * means performed by the Go runtime 21
3-2 Memory Map Before and After Boot 23
3-3 Handling Go Runtime Syscalls 24
3-4 Linux Syscalls That Are Re-implemented in GERT. * means syscall
causes stack switcho 25
3-5 Thread state and Trapframes 26
3-6 Handling Interrupts in GERT 26
4-1 GERT Program Directory Layout 30
5-1 iMXG6 Peripheral Latency 35
5-2 GPIO Toggle Rates of Different Platforms 35
5-3 Event Response Times of Different Platforms. 36
5-4 Platform Event Throughput as CPU’s and Events Increase 38
5-5 Code Breakdown of Robot Sensor Platform 39
5-6 Robot Event Loop 40
5-7 Higher Order Polling Function 41
5-8 Encoder Interrupt 41
5-9 Sample PWM Signals 42
5-10 PWM Register Representation 42
5-11 PWM Driver AP 42
5-12 SPI Driver APT 43

5-13 Motor Speed Monitor 43

5-14 Mirror Galvanometers from [7] L. 45
5-15 Laser Point Structure oo 46
5-16 Laser Point Structureo L oo 46
5-17 CSAIL Logo Generated vs Traced 47

10

List of Tables

11

12

Chapter 1

Introduction

This thesis investigates the feasibility of using a type-safe, high-level, garbage-collected
language for bare-metal programs on a multi-core SOC. We hypothesize that the op-
erating system provides redundant and costly isolation to a HLL program running in
userspace. This can reduce execution speed and increase latency to the point where
an embedded programmer is forced to use C and lose the benefits of a HLL. By run-
ning the high-level code directly on bare-metal, the program can have memory-safety

and good concurrency support, but also higher performance than in userspace.

1.1 Motivation

Modern embedded systems are composed of multi-core SOCs that require careful
thought about concurrency. C is the most commonly used language to program such
low level systems because it is simple and expressive, but it is a double-edged sword.
Low-level code written in C can more easily and directly interface with hardware, but
it can also be plagued with difficult bugs, especially concurrency-related bugs and
memory bugs like use-after-free.

Concurrent, high-level user space programs that do not directly interface with
hardware, on the other hand, are usually written in a high-level language, such as
Rust or Go, which abstracts concurrency and provides memory safety. Rust, Go,

and other High Level Languages (HLL’s) will usually ensure that there is never an

13

out of bounds error, use-after-free error, or unsafe cast. HLL’s can also provide
native concurrency support through primitives like channels. The downsides of HLL’s
are that those nice features come at a cost of garbage collection and many runtime
checks. Despite the shortcomings, HLL’s are still preferred to C programs because
fast, modern computers can neutralize the performance cost. Now that embedded
devices are also very fast, the possibility of using a HLL on a performant embedded

system is attractive.

Embedded programmers are often drawn towards using Linux for their work be-
cause then they can write their embedded program in user space with a high level
language in order to avoid the difficulty and poor concurrency support of C. Popular
platforms that use this paradigm include the Raspi |9] and Beaglebone [1|. However,
embedded programs that run in user space suffer from significant event latency be-
cause of OS isolation mechanisms that exist primarily for buggy C programs. Memory
safe programs written in a HLL do not need to run in different address spaces and
they already ensure that invalid pointers will not be dereferenced, so the OS does not
need to waste more CPU time redundantly ensuring these properties. Unfortunately,
the OS has no way to disable its isolation mechanisms for a single program, so embed-
ded programmers who want to use a HLL must accept the unnecessary performance

penalty.

There are ongoing efforts to bring high-level languages to desktop operating system
kernels and also single-core microcontrollers, but there is no known system which
provides a high-level language environment for multi-core SOCs. Singularity [15] and
Biscuit [14] are desktop operating system kernels, written in Sing# and Go, which
focus on hosting user-space programs. Copper [2| and MicroPython [6] are small
embedded tool kits, written in Rust and Python, which aim to provide a high-level
programming environment for single-core microcontrollers. Multi-core SOCs have, so

far, been left out of the picture.

14

1.2 GERT

This thesis presents a new embedded toolkit, the Golang Embedded RunTime (GERT),
which is specifically intended for concurrent, bare-metal embedded applications. GERT
is a modified version of the Go runtime which can boot on a bare-metal ARMv7a sys-
tem and execute Go code. With GERT, programmers can write embedded programs
in Go and run them on multi-core bare-metal hardware. The Go language, instead

of the operating system, provides safety and concurrency abstraction.

1.3 Outline

Below is an outline of this thesis.

e Chapter 2 explains why Go was chosen for GERT and also the basic intuition

behind the Go runtime implementation

e Chapter 3 presents the core work of this thesis, or how the runtime was modified

to work on bare metal
e Chapter 4 shows how to use GERT, an essential aspect of any toolkit

e Chapter 5 evaluates GERT on embedded benchmarks and also two embedded

case studies

e Chapter 6 concludes this thesis with a review of the results and their implica-

tions

15

16

Chapter 2

Why Write System Code in Go?

At first glance, Go code looks a lot like C. There are no classes and the language
has a strong type system. This already makes Go a good systems language, but Go’s
greatest feature is its built-in support for concurrency through goroutines and chan-
nels. Goroutines are lightweight threads that the Go runtime can schedule without
help from the operating system. Channels are typed FIFO queues which can help to
serialize asynchronous events, perhaps coming from several goroutines. With these
features and familiarity, writing programs in Go comes naturally to a C programmer,
but with the added bonus that a Go program is also memory safe because of runtime

checks and a garbage collection system.

2.1 Go Runtime Organization

Go’s implementation is reminiscent of a small OS. There are three basic abstractions
in the runtime: G’s, M’s, and P’s. A G, or goroutine, is an executable fragment of Go
code, like a function or group of functions. In a concurrent program, each fragment of
Go code will get its own G. M’s are just OS threads; they can be executing Go code,
blocked in a system call, or idle. Finally, a P represents a processor, or the resources
necessary to allow execution. M’s cannot execute code unless they are associated

with a P. It is the Go scheduler’s job to associate G’s, M’s, and P’s with each other

17

so that code can run. Go’s threads are lightweight and cooperatively scheduled! so
that execution only transfers during blocking operations. The runtime also manages
its own pool of memory and exports its own atomic primitives through the standard
"sync" package. In fact, Go provides most of the common OS primitives natively in
its standard libraries [5].

Go relies on the OS for priveleged operations. Since it runs in userspace, the Go
runtime cannot interface with physical hardware so it uses the OS to get the time,

allocate memory, receive signals.

2.2 Go Memory Safety

Like most high-level languages, Go does not allow the programmer to unsafely ma-
nipulate memory. This means that there is no way to unsafely cast from one data
type to another, it is impossible to use a pointer after it is freed, and accessing an
array out of bounds yields a runtime error. Go also does not allow pointer arithmetic.
These properties are provided by bounds checking all array accesses, a strong type
system, and the lack of a free() function.

Instead of letting the programmer free memory, Go has a garbage collector which
automatically frees memory with no incoming pointers. The garbage collector is
a costly abstraction though because it must scan through all the pointers in the
program. In the worst case scenario, the program must be stopped while the GC
runs, but recent improvements to Go have enabled concurrent garbage collection [4].
GC pauses are still noticeable though.

Compared to C, the properties of Go might seem like training wheels, but this is
exactly the point. The majority of bugs in a C program can be traced to an out of
bounds access (buffer overruns), use-after-free, or null pointer dereference [11]. These
issues are so commonplace in userspace programs, that OS kernels attempt to preempt

the problem by inserting guard pages all over the user program’s address space. In a

LGo code is not totally cooperative because goroutines can be pre-empted during a function call.
Users can write critical sections to avoid this though

18

bare-metal embedded system, though, there is no kernel which can help mitigate the
effects of a memory safety bug. The outcome of triggering a memory safty bug in an
embedded system is usually program curruption and total failure. Preventing such a

scenario is one of the goals of GERT.

Platform Index OOB | User-after-free | Null Dereference | Correctness | Race Conditions

Bare Metal C | v/ v v v v

GERT panic X panic v detectable

Figure 2-1: Bugs That GERT Programs Can Have

Compared to a bare-metal C program, a GERT program is memory safe. The
table in 2-1 summarizes the bugs that GERT programs will not experience. Instead
of crashing from a memory safety bug, a GERT program will panic. In Go, panics
can be recovered so execution can be resumed. GERT does not categorically prevent
any other bugs from occuring, such as correctness bugs or race conditions but Go

does have a race detector which can help identify race conditions.

2.3 Tolerating the Garbage Collector

Go uses a garbage collector to clean up dangling pointers and prevent use-after-free
errors, but it can have serious performance implications for an embedded system.
First of all, the garbage collector may allow an excessive amount of unused memory
to build up before running a scan. This can cause SOCs with small amounts of RAM
to run out of memory. GERT does not attempt to alleviate this problem in any way
because the operating assumption is that powerful multicore SOCs will also have at
least 1GB of RAM. A quick scan through DigiKey does confirm this assumption. The
other problem with the garbage collector is that it has to "stop the world" sometimes
in order to perform its function. This process involves pausing the program and
scanning all of its pointers.

GERT mitigates the effects of a GC collection in two ways, one intentional and

one unintentional. In an embedded system, the danger of a GC collection lies in

19

missing external events. The way GERT intentionally mitigates the effects of the
garbage collector is by allowing interrupts to be serviced even while the world is
stopped. This is possible as long as the interrupt handler does not execute a blocking
operation. The other way GERT unintentionally coexists with the garbage collector is
because many embedded programs are inherently static. Static embedded programs
have a known memory use at compile time so there is no need to allocate memory at
run time and count its references. In fact, some embedded platform libraries do not

even have malloc so all memory use must be static.

20

Chapter 3

The Go Runtime On Bare Metal

Uboot GERT Loader GERT package main
clocks new stack os_init* GIC_init
UART ——> load ELF mem_init boot_cpus
SDcard GERT ELF: map._Ii:arn user_prog
—|_)mp_|n|

(PA, VA) page_init

(PA, VA) thread_init

Entry sched_init

main

Figure 3-1: GERT Boot Process. * means performed by the Go runtime

Even though Go code is compiled, it relies on a runtime to coordinate certain
actions with the OS and support its concurrency model. Timers, locks, and file
descriptors are just a few of the OS abstractions that the runtime hinges on in order
to function at all. This means that getting compiled Go code to run bare metal on an
SOC requires more than just a boot loader, the Go runtime itself must be modified to
work without any OS abstractions. This poses a bootstrapping problem because any
modifications made to the Go runtime’s initialization process must not inadvertently

cause it to use an abstraction that does not yet exist. For example, creating a new

object with make() ! during the boot process would be disastrous if the GC has not

'In Go, new objects are created with make

21

yet been initialized. Modifying the Go runtime to boot on bare metal is tricky process
because all additions should be made in a non-destructive way that still preserves all
of Go’s useful primitives, including the standard library.

In observation of these constraints, GERT boots via a 3-step process as shown in
figure 3-1. In step 1, u-boot is used to set up device clocks and load the code for step
2 off of an SD card. Step 2 prepares the Go stack with arguments and environment
variables before jumping into GERT. Step 3 runs inside of GERT and it finishes the

boot process by initializing virtual memory, threading, and interrupt handlers.

3.1 Step 1 Bring Up

Unlike desktop PCs, SOCs have no BIOS, so it is entirely the programmer’s job to
initialize device clocks and power on essential peripherals like the memory controller.
U-boot is a simple bootloader which abstracts this laborious process for all of the
SOCs which it supports. GERT uses it to chain load its own, more specialized,
bootloader. The u-boot loader is used to initialize device clocks and execute the

GERT bootloader.

3.2 Step 2 GERT Kernel Installation

The GERT loader is a C program which sets up the initial Go stack and decompresses
the Go kernel ELF into RAM. GERT is compiled as a Linux Go program, so the Go
runtime expects to find arguments and environment variables in its initial stack. This
is a convenient channel for passing information; for example, the GERT loader uses
this to pass the size of the GERT kernel. GERT later uses this size to determine its
location in memory and initialize virtual memory.

The link address of the GERT binary must be also adjusted on a per-SOC basis
in order for the Go runtime to avoid using inaccessible memory. By default, Go
compiler links and loads at 0x0. This is incorrect for most SOCs because they have

reserved regions near that address. Fortunately, the Go compiler can generate code

22

at a different link addresses by passing in a link-time flag, so this is not a significant

problem.

3.3 Step 3 Go Runtime Setup

The Go runtime forms the basis of GERT’s functionality but it is not equipped to
run on bare metal. The final steps of the boot process are accomplished in Go.
GERT initializes the minimum set of OS abstractions to be used by the Go runtime,
before the runtime actually uses them. These abstractions are virtual memory, thread

scheduling, interrupt handling, timers, and booting secondary cores.

3.3.1 Virtual Memory Setup

GERT Memory Map

IMX6 Memory Map AR ==

OXFFFF_FFFF

Interrupt Vectors
OxFFFE_0000 ——-

GERT Loader <——+

<--+ Usable
| Pages

<——+

0x5000_0000 ———>+
Empty Space
Free Space

0x1100_0000 + ksize —-—->+

GERT + Go runtime

0x1000_0000 ——- 0x1100_0000 ———

Gap

MMIO Peripherals 0x1000_0000 ———

0x0011_0000 ——- MMIO Peripherals

0x0011_0000 ——-

Reserved

0x0000_0000 —- Reserved

0x0000_0000 ——-

Figure 3-2: Memory Map Before and After Boot

GERT needs to have virtual memory enabled so the Go runtime can function
properly and so GERT can manage available memory. Fig. 3-2 shows the physical
memory map of an i.MX6 SOC before GERT is booted and after GERT has booted.
Even though the runtime is linked at a high address, Go still requests memory inside
the reserved regions of physical memory so a virtual address must be mapped there.
GERT also uses paging to create a virtually contiguous address space which is easier to
manage than a physically discontiguous address space. For example, the Go runtime

sometimes requests large chunks of continuous memory. It is possible that there is not

23

a large enough chunk of physical memory to return due to fragmentation of MMIO
peripherals, but there will be a big enough chunk in virtual memory. GERT also
recycles the bootloader using virtual memory by simply marking its occupied area as
usable pages.

GERT uses 1MB page tables and it rarely has to reload them. GERT has no
userspace or programs that must be isolated from each other and the Go runtime
only allocates memory infrequently and in large chunks. This is the only time that
GERT has to reload the page tables. This static nature of GERT’s memory space
means that 4kb pages are unnecessary and even costly because they incur a 2-level
page translation ? , unlike 1MB pages which just require a 1-level walk. By the time
user code starts running in GERT, the runtime has nearly completed all of its memory

manipulation.

3.3.2 Thread Scheduling and Trapframes

MoNoNo OJONOS

Runtime

e

T5-stack

$ $

kstack

Figure 3-3: Handling Go Runtime Syscalls

GERT models the entire Go runtime as a black box whose only entry and exit
points are through the syscalls it makes. This model is shown in 3-3 along with the
control flow of sys wield, which invokes the GERT scheduler. To be clear, there is
no such thing as a syscall in GERT} it is a single-address space application that runs

in privileged mode. Whenever the Go runtime makes a syscall, the processor mode

24kb paging in ARMvT7a requires 21 = 4096 entries in the L1 table and 28 = 256 entries in each
L2 table

24

is not changed and a new page table is not installed. Instead, every instance of the
syscall instruction in the Go runtime has been replaced with a function call to trap,
the entry point into the GERT kernel. While execution is in trap, the Go runtime
believes that the OS is servicing its syscall, but in actuality the blocked thread is still
running Go code inside the GERT kernel. The list of Linux syscalls that has to be
re-implemented is shown in fig. 3-4. All syscalls with an * are expensive because they

cause a stack switch to the scheduler’s stack.

Syscall Used For

exit crash

read read from a file descriptor. All reads go to UART
write write to a file descriptor. All writes go to UART
clone spawn a new M

*select blocking read operation

*yield yield to scheduler

mmap allocate large chunks of memory

*futex wait for a condition to become true

clock gettime | goroutine scheduling and time package

getpid runtime asks its pid

Figure 3-4: Linux Syscalls That Are Re-implemented in GERT. * means syscall causes
stack switch

GERT also maintains data structures that track the state of Go threads outside
the runtime’s knowledge. It is important that all state inside the GERT kernel is
allocated outside the Go runtime’s knowledge either with global variables or the
kernel’s static memory allocator. If this constraint is not observed, then it is possible
for the garbage collector to potentially recycle memory from the kernel.

Each thread in GERT has an id, status, futex address, and trapframe associated
with it (3-5). The trapframe records the state of all the registers and the location of
the stack at the time that the Go runtime made a syscall.

When threads go to sleep, the CPU stores their execution context in a trapframe.
When a thread is scheduled, the CPU restores the contents of the thread’s last trap
frame and continues running the thread.

The futex, which stands for fast user space mutez, is a useful building block that

25

QOO WN —

type thread t struct {

tf trapframe
state uint32
futaddr uintptr
sleeptil timespec
id uint32

type trapframe struct {
Ir uintptr
sp uintptr
fp uintptr
r0 uint32
rl uint32
r2 uint32
r3 uint32
r10 uint32

Figure 3-5: Thread state and Trapframes

the Linux kernel (and now GERT) provides to help with locking. Linux user space
programs can use it to wait until a certain condition becomes true, and the Go runtime

uses it extensively to monitor elapsed time and wake sleeping threads.

3.3.3 Interrupts

CPUO 1
INT 3 CPU1 Ves main.ir
\—> booted? save flag=true
cPU2)
J— i(
INT7 | CPU3 No restore
RET

Figure 3-6: Handling Interrupts in GERT

The interrupt handling process in GERT is explicitly designed so that interrupts
can always be serviced, even when Go’s garbage collector is running. To achieve
this design, GERT puts some restrictions on the Go code in an interrupt handler, as
described below.

When a GC cycle runs, it can potentially stop the world and prevent any Go code
from executing. On a desktop OS it might be OK to disable interrupts during a GC

cycle because it is infrequent, but on an embedded system interrupts could occur

26

at any time, even while the world is stopped. GERT allows interrupts to trigger
at all times by assuming that the interrupt handler does not perform any blocking

operations. A block diagram of the GERT interrupt process is shown in fig. 3-6.

GERT’s interrupt handlers are written in Go and they execute on dedicated inter-
rupt stacks. When GERT receives an interrupt, the target processor automatically
switches its stack to the interrupt stack and then the GERT interrupt handler saves
its old execution context onto the new stack. Before proceeding any further, the
interrupt handler checks a boolean flag to see if GERT has fully booted yet. This
is important for preventing unintentional Go code from executing while the memory
map is still undefined. While secretly executing on the interrupt stack, the processor
can run any Go code as long as it does not invoke the Go scheduler. This is because
the Go runtime is unaware of any interrupt code that can possibly run so it does not
maintain any G’s or M’s to run it. Thus, from the view of the Go runtime, the inter-
rupt handler is running on an unknown secret stack which attaches itself to whichever

M was interrupted.

Interrupt handlers in GERT should not execute blocking operations or allocate
memory from the Go heap 3. The garbage collector is unaware of the hidden interrupt
stacks so any heap-allocated objects on the stacks will become memory leaks because
the GC will never scan it. Fortunately, allocating heap objects in the interrupt
handler will cause a panic because make(), and many other blocking operations, need
to acquire a lock from the runtime. This is dangerous because the runtime keeps track
of which Ms are holding locks and interrupt code can violate its beliefs and cause an

unrecoverable panic.

Interrupt routines should be short and execute quickly in order to avoid missing
sequential interrupts. This limits acceptable operations in an interrupt handler to
toggling global boolean flags and non-blocking reads/writes to memory. A typical
GERT program is unaffected by these constraints because it can use a goroutine to

monitor a flag which is only toggled in the interrupt handler.

3Go maintains a pool of free memory from which it allocates new objects. Most computer
programs have a heap, not just Go programs.

27

3.3.4 Keeping Time

Go needs a timer to schedule goroutines properly. GERT uses the 64bit ARM global
timer which is part of the general ARMv7a architecture [12]. In the timer, each
tick is about 2ns so this means it will not overflow for 1169 years. This means
that GERT does not need a special timer interrupt to know when the counter rolls
over. The current value of the timer is returned whenever the Go runtime calls the

clock_gettime() syscall by reading from its MMIO address.

3.3.5 Booting Secondary CPUs

GERT boots auxiliary CPU’s in two stages. After power on, the primary CPU starts
executing at address 0x0 but the secondary CPU’s are held in a wait for interrupt
state. GERT creates an initial 4kb stack for each additional CPU, which also doubles
as its interrupt stack, before instructing them into a holding pen. The secondary
CPU’s stay in the holding pen while GERT and the Go runtime finish booting because
the virtual memory map is in a state of flux. After GERT has booted, the user must
call Release() which causes the secondary CPU’s to reload their page tables and exit
the holding pen into the GERT scheduler. Now the secondary CPU’s can each run

Go threads normally.

28

Chapter 4

How to Use GERT

It would be silly for this thesis to present a software toolkit and then neglect to show

how to use it.

4.1 API Inspiration

GERT’s API is based on Arduino’s because of its remarkable simplicity. In order
to get started with GERT on a Freescale iMX6 SOC, the programmer must only
implement three functions: wuser init, user loop and irq. user init should contain
code that is run only once on startup, user [oop should contain the main event loop

of the embedded program, and irq is the IRQ handler.

4.2 Writing Interrupt Handlers

Since interrupts can happen even while the world is stopped, the programmer must
make sure that irg never executes a blocking Go function or allocates memory on
the Go heap with make(). These constraints are easily manageable by breaking the
program interrupt logic into two pieces: a monitoring goroutine which watches a
boolean flag, and the interrupt service routine which sets the flag. For example, a
NIC (Network Interface Controller) driver may use interrupts to determine when a

new frame should be retrieved from the NIC. Rather than reading the new frame in

29

the interrupt routine, the NIC driver can set a flag in the interrupt routine so that
a seperate thread inside the NIC driver can retrieve the new frame. This seperate
thread is just an ordinary goroutine with no constraints on the type of code it can

execute.

4.3 Building a GERT Program

— Makefile
— boot

— boot.s

console.c
console.h

elf.h

imx_uart.c

— imx_uart.h

L— link.ld

— embedded

L— files\ not\ shown
irg.go

kernel.go

u-boot

L— files\ not\ shown
— userprog.go

Figure 4-1: GERT Program Directory Layout

GERT needs a bootloader and entry point to start on bare metal. The directory
structure of a GERT program is shown in fig. 4-1. The boot directory contains the
GERT bootloader as well as linker script for it. Userprog.go and irq.go contain the
user-implemented functions as well as the user-implemented irq handler. Kernel.go
does three mundane things: it defines a new entry point for the Go runtime (which just
sets a flag so the runtime knows it is booting on bare metal), it also finishes booting
additional CPU’s, and it configures the ARM Generic Interrupt Controller [13] for
normal operation. The makefile is responsible for stitching the bootloader and GERT
program together into an SD card image for u-boot. It uses go build to build the
GERT program with the modified Go runtime and then inserts the GERT program
as a binary blob into the bootloader’s data section. The makefile also includes a

target which writes u-boot and the final GERT binary to an SD card.

30

4.4 Design Considerations

Every SOC has a different memory map and peripherals, so GERT must be adjusted
accordingly. In order to change the link address of GERT, pass "-T <link address>"
as a link flag into go build. The link address of the bootloader also needs to be changed
too inside link.ld. It is good practice to link the bootloader in an area of RAM that

can be reclaimed once GERT enables paging.

4.5 Writing Drivers

GERT imposes no driver model on the programmer. All drivers in GERT should be
written as normal Go code in the best style for the intended application. GERT ex-
poses no safe methods for reading or writing device memory so any MMIO peripherals
in the SOC must be carefully programmed using the unsafe package. Most MMIO
peripherals arrange their registers contiguously in memory so they can be represented
with a Go struct, which requires only one unsafe cast for initial assignment.

GERT currently comes with an example driver library in the form of a package
called embedded. The embedded package is not intrinsic to GERT’s functionality,
nor was it optimized for performance in any way. The embedded package just aims
to provide a template for how drivers can be written in the Go language. It only
functions for the Freescale . MX6 and includes drivers for the UART, SPI, PWM,
GIC, USDHC, GPIO, and GPT peripherals. The package also includes a generic
implementation of the FAT32 file system, which is layered on top of a read and write

function that the programmer can define.

31

32

Chapter 5

Evaluation

With GERT, the programmer should be able to implement concurrent embedded pro-
grams which are as performant as the equivalent C implementation without having to
worry about concurrency abstractions and memory safety bugs. In order to evaluate

GERT, there are two questions that must be answered:

1. Does GERT retain good performance despite the costs of using a High Level

Language?
2. Do the concurrency patterns of Go simplify the task of the programmer?

The first question is addressed by microbenchmarks which measure GERT’s speed
in creating and responding to external events. Pin toggle (5.2.1) measures the max-
imum pin toggle frequency. Response latency (5.2.2) measures the minimum time
it takes to respond to an external interrupt. Event throughput (5.2.3) measures the
maximum number of total events that each platform can reliably detect, as well as
how this number scales with additional CPU’s monitoring more simultaneous events.

The second question is harder to answer because difficulty is a subjective measure.
This thesis attempts to show that GERT presents a better framework for concurrency
through two case studies: a robot sensor platform (5.4), which runs motors and
reads sensors, and a galvo laser projector (5.5) which traces images onto a surface by
rotating mirrors at high speeds. The case studies present a real-world experience for

using GERT.

33

5.1 Experimental Setup

In all tests, GERT is run on an i.MX6Quad SOC, which sits on a Wandboard plat-
form, and all measurements are taken with a Rigol DS10547Z oscilloscope. When
GERT is compared to Linux, the SOC runs Debian 8 "Jessie" with hardfloat sup-
port. GERT is also occasionally compared to a Teensy 3.2 microcontroller running
C. The Teensy 3.2 [10] uses a Cortex M4, which is specifically intended for microcon-
troller applications, and has good real-time performance. Even though the Cortex
M4 has a vastly different architecture and purpose than the iMX6, its event response
times provide a good comparison point for GERT and Linux. The Teensy platform

has poor concurrency support though because its Cortex M4 is a single core processor.

5.2 Microbenchmarks

5.2.1 Pin Toggle Frequency

This test measures the speed at which GERT can toggle a simple GPIO pin on the
iMX6 Quad SOC. GPIO pins are an MMIO peripheral on the iMX6 which requires
many clock domain crossings to produce an output. Additionally, MMIO regions
are marked as strongly-ordered device memory in the page tables. This means that
all accesses to MMIO regions must occur in explicit program order. After the toggle
program sets the state of a GPIO pin, this information must pass through the memory
bus, GPIO peripheral, and IO multiplexer peripheral before arriving to the output (5-
1). The latency of this whole process is determined by the 66MHz peripheral clock,
which is the slowest clock in the pipeline. Therefore, the maximum frequency of

66 M Hz

the square wave that can generated by the toggle program is approximately —— =

11M H z. The presence of additional pipeline stages inside the GPIO or IO multiplexer
blocks will further reduce this frequency.

In ARM assembly, pin toggle can be implemented in 4 lines, but compilers and ab-
stractions can increase the instruction count. Higher pin toggling frequency indicates

less code in the critical path. GERT toggles the GPIO pin by directly interfacing

34

Memory
Bus

GPIO IOMUX
Toggle Pad 1
dir=out N

loop: lval=HI P|pad1=HI I:'

*GPIO1 = HI X pad2=LO | pug2

*GPIO1 = LOW pad3=HI D
goto loop

/_> Pad 3

Other 10
528MHz clk J J

66MHz clk

Figure 5-1: iMX6 Peripheral Latency

with the GPIO peripheral on the iMX6, but userspace Linux code must use the sysfs

driver. Results are shown in figure 5-2.

Platform Avg GPIO Toggle Rate
ASM 1.65MHz

GERT Static | 568KHz

Linux C 263KHz

GERT 154KHz

Linux Go 127KHz

Figure 5-2: GPIO Toggle Rates of Different Platforms

The results of the pin toggle initially show that GERT underperforms compared
to user-space Linux C. The reason becomes clear after tracing GERT’s execution
in QEMU; the slowdown is caused by Go’s interfaces in the embedded package. The
GPIO driver in the embedded package uses Go interfaces to abstract all of the different
pins. In order to toggle a single pin with an interface requires 47 instructions: 2
function calls, 19 loads, and 11 stores. In order to increase the toggle speed, a new
static GPIO driver was developed for GERT. The new driver is just a thin layer
over the memory-mapped registers. With static device ID’s, the toggled pin can be
inferred at compile time instead of run time. The performance of the static driver is
also shown in the GERT static row of figure 5-2. With a static driver, GERT is able

to toggle a pin faster than user-space C code, but it is slower compared to assembly.

35

5.2.2 Response Latency

This test measures the time it takes GERT to respond to an external event with
another external event. Specifically, it is the time it takes to produce a rising edge
on a GPIO pin in response to a falling edge on a different GPIO pin. Faster response
times are important for real time control systems, such as ABS brakes in a car or
medical equipment. GERT and the Teensy detect the event with hardware interrupts
but Linux polls the input pin in a tight loop because the userspace sysfs driver does

not expose interrupt attachment points. Results are shown below in figure 5-3.

Platform | Event Reponse Time
Teensy 3.2 | 1us

GERT 6.3us

Linux C 10us

Linux Go | 30us

Figure 5-3: Event Response Times of Different Platforms

The event response times follow the increasing abstraction cost for each system.
The Teensy is very fast because its interrupt controller is vectored and interrupts do
not cause a stack switch. This means that the Teensy can flip a pin within a few
cycles of receiving the interrupt. GERT is slower because the iMX6 does not have a
vectored interrupt controller, the interrupt stack must be switched, and the interrupt
handler is written in Go. When GERT gets an interrupt, it must save its current
state, decide which interrupt it received, and execute its Go handler. Despite this
complexity, the iMX6 can execute more instructions in less time because of its very
high clock rate (792MHz vs 96MHz) so it can keep up with the Teensy.

The Linux configuration is slower because external interrupts cannot directly trig-
ger a response from userspace. In Linux, the GPIO pins are represented by file de-
scriptors so 10 is performed by reading/writing from the appropriate file. In response
to an external interrupt, the Linux kernel sets a flag on the file descriptor which
means that there is data to read. The userspace program does not actually see the

data until it is scheduled again.

36

5.2.3 External Event Throughput

Embedded systems sometimes have to monitor multiple sources of external events
whose frequencies exceed the capabilities of a single cpu. In this situation, additional
CPU’s must be dedicated for the embedded system to reach its throughput target.
This benchmark attempts to simulate such a scenario by delivering a clock signal
simultaneously to 4 external GPIO pins on the iMX6. The total event throughput
should be n - frequency where n is the number of GPIO pins being monitored and
frequency is the input clock frequency. The frequency of the clock is increased until

each platform starts producing incorrect count totals.

Unfortunately, due to the semantics of the ARM Generic Interrupt Controller and
the implications of its 1-N model [13], it is not possible to dedicate multiple CPU’s to a
single interrupt without also having expensive program logic in the interrupt handler
to ensure that only one CPU can service the interrupt. Additionally, this concept
does not even exist in Linux userspace because the state of each pin is represented as
a file descriptor and concurrent reads are undefined for file descriptors. Instead, this
test program dedicates one additional CPU for each event that must be processed,
up to four CPU’s and events. Doing this is easy in GERT because the target CPU of
an interrupt event can be specified during attachment. In Linux, this is accomplished

by dedicating each open file descriptor to a single reader thread.

The purpose of this benchmark is to observe how the total number of serviceable
external events can scale with the number of dedicated CPU’s. The results for each

platform platform are shown in fig. 5-4.

The event throughput of every platform scales approximately linearly, with GERT
achieving the highest throughput. This is an unsurprising result again because Linux
file descriptors are slower at delivering events than a true interrupt handler. GERT’s
higher event throughput per core means that potentially fewer CPU’s can be used to

process the same amount of events. This reduces power and space requirements.

37

— GERT
500 | «---= Linux C
Linux Go

400

w
o
o

events/sec

200

cpus

Figure 5-4: Platform Event Throughput as CPU’s and Events Increase

5.3 Microbenchmark Conclusions

Despite being written in a HLL, GERT can usually outperform userspace Linux C
code in the benchmarks that were conducted. GERT’s performance trailed Linux in
the GPIO toggle test but, after changing the driver to a static model, it also beat
Linux in that test too. This is a promising result because it shows that a HLL, which
provides the same isolations as an OS kernel, can run on bare metal and achieve

higher performance than a user space C program.

Unlike Linux, GERT utilizes a true interrupt handler for delivering events. This

does not seem to matter very much for event latency, but it can explain the throughput

38

differences between GERT and Linux. In GERT, the interrupt handler can directly
increment the event count, but in Linux the userspace program must indirectly ob-
serve the event by reading a file descriptor. If the user space program reads at a bad
time, it can miss a few events before reading again.

GERT and Linux have similar concurrent capabilities. When the frequency of
external events exceeds the response time of a single core, the events can be split
among multiple cores. In GERT, though, this threshold frequency is about 35KHz
faster so the programmer can avoid dedicating additional cores in some cases.

The Go garbage collector was never an issue during any of the tests because the
benchmark programs were all static. Without memory to reclaim, the GC never had
to run. However, if the GC did run, the only test that would have been affected is the
pin toggle test because the GC is allowed to stop the world. In GERT, interrupts can
trigger even when the world is stopped so the GC will not affect the event latency and
throughput benchmarks, but a GC cycle will affect these benchmarks in the Linux

Go program since it polls.

5.4 Case Study: Robot Sensor Platform

Type Line Count
Initialization | 23

Event Loop 19

ADC Driver | 106

Motor Driver | 98

UART 41
Abstractions | 20

Figure 5-5: Code Breakdown of Robot Sensor Platform

In order to evaluate GERT on a realistic workload, I put it on a robot that was
donated to me from MIT’s MASLAB [8] competition. Among other things, the robot
has two drive motors with encoders and also several Sharp GP2Y0A21YK infrared

distance sensors on its perimeter. I wrote a program in Go using GERT to process

39

all of these event sources at the same time and operate the robot. The working robot
can move and poll the distance sensors in response to user input. It can also measure
the rotation rate of its drive motors.

The code breakdown of the robot is included in fig. 5-5. The line counts include
the code that must be included in addition to the base GERT system in order to

produce the functional robot program. It is all written in Go.

5.4.1 Overview

The main body of the robot program is an event loop which waits for events coming
out of an event channel (fig. 5-6). Independent goroutines monitor each sensor and
send events into the event channel. There is a single goroutine that monitors the
event channel and manipulates state in a non-blocking manner.

The robot program uses Go’s higher order functions and closures in order to create
a sensor polling helper function (fig. 5-7). In this paradigm, every sensor gets its own
goroutine which sends data back into a central event loop.

The robot program also configures the GPIO library to use interrupts in order to

count pulses on the encoder (fig. 5-8).

©OTDU e WN -

select {
case event := <—event_chan:
fmt. Printf("%v\n", event)
switch event {
case '"p":
val := adc.Read(0)
fmt.Printf("adc reads %v\n", val)
case "w'":
drive.Forward (0.2)
case "s'":
drive.Backward (0.2)
case "a':
drive.TurnRight (0.2)
case "d":
drive . TurnLeft (0.2)
case " M.

drivé .Stop ()
}

}

Figure 5-6: Robot Event Loop

With these powerful set of abstractions, adding events or sensors into the event
loop is simple because only a Pollfunc() must be implemented. As an added bonus,

this GERT program is automatically concurrent because the Go and GERT schedulers

40

OO U R WN =

OO NOUEWN =

type Pollfunc func() interface{}

func Poll(f Pollfunc, period time.Duration,
sink chan interface{}) chan bool {
kill := make(chan bool)
go func(kill chan bool) {
for {
select {
case <—kill:
return
default:
if period > 0 {
time . Sleep (period)

sink <— f() //sink is wsually the event channel

}
}(kill)

return kill

Figure 5-7: Higher Order Polling Function

embedded . WB_JP4_10. SetInput ()
embedded .WB_JP4_10. EnableIntr (embedded .INTR_FALLING)
embedded . Enable _interrupt (99, 0) //send GPIO1 interrupt to CPUO

//go:nosplit

//go:nowritebarrierec

func irq (irqnum uint32) {
switch irgnum {

case 99:
inc ()
embedded . ClearIntr (1)

}
}

%unc inc () {
count += 1
}

Figure 5-8: Encoder Interrupt

will move idle CPU’s to any available goroutine.

The rest of this case study explains how the sensors are interfaced with GERT

and gives examples of their API’s in Go.

5.4.2 PWM Motor Control

The robot has an MDD10A motor speed controller for controlling the two drive mo-
tors. This device expects a pulse-width modulated signal (PWM) on its input pins in
order to direct power into the motors. A PWM signal has a constant period and the
signal is a logical "on" for part of the time and "off" for the rest of the time (fig. 5-9).

The ratio of "on" time vs the period is called the duty cycle. It is this percentage

which the motor controller translates into a speed for the motor.

41

WO U WN =

W =

1
Duty cycle 25%
0
1
Duty cycle 50%
0
1
Duty cycle 75% J U U ‘
0

Figure 5-9: Sample PWM Signals

The iIMX6Q includes an on-board PWM peripheral which can output several chan-
nels of PWM at a variety of periods and duty cycles. GERT contains a driver for this
PWM peripheral in its embedded package. The PWM peripheral requires no main-
tenance once it is configured so the cost of outputting a PWM signal is essentially a
few loads and stores every time the user changes the period or duty cycle. The API
is shown in fig. 5-11.

The driver is organized in a typical C fashion where the memory map of the
peripheral is represented in a structure (fig. 5-10). Go provided little benefit for
writing the driver. Even though Go is a systems language, it has poor support
for reading/writing arbitrary memory. In Go, the programmer cannot align or pad
structs and they must use the unsafe package in order to modify memory addresses
with unsafe casts. This makes for a generally unsatisfying experience when writing

drivers, but it is no worse than C.

vype PWM regs stract { 208_4000 |PWM Control Register (PWM2_PWMCR) 32
(Slg uinis2 208_4004 |PWM Status Register (PWM2_PWMSR) 32
IR uint32 208_4008 |PWM Interrupt Register (PWM2_PWMIR) 32
f,%R ﬁ:gtgg 208_400C |PWM Sample Register (PWM2_PWMSAR) 32
CNR uint32 208_4010 |PWM Period Register (PWM2_PWMPR) 32

208_4014 |PWM Counter Register (PWM2_PWMCNR)

32

Figure 5-10: PWM Register Representation

func (pwm *PWM periph) Begin(freq khz)

func (pwm *PWM periph) Stop ()

func (pwm *PWM:periph) SetFreq (freq khz)

func (pwm *PWM _periph) SetDuty(dutycycle float32)

Figure 5-11: PWM Driver API

42

fun

QO OWNDU B WN -

5.4.3 Distance Sensor Reading

The Sharp distance sensor outputs an analog voltage proportional to its distance
from the nearest object. A Microchip MCP3008 8-channel ADC is used to convert
this voltage into a digital signal. The MCP3008 communicates in clocked serial (SPT)
with 24bit data frames so the robot program uses GERT’s SPI driver (fig. 5-12).
Much like the PWM peripheral, the SPI peripheral has multiple channels that can
each concurrently send and receive data. The SPI driver also requires no input from

the user except for the data to transmit and receive.

func (spi *SPI_periph) Begin(mode, freq, datalength, channel uint32)
func (spi *SPI_periph) Send(data uint32)
func (spi *SPI_periph) Exchange(data uint32) uint32

Figure 5-12: SPI Driver API

5.4.4 Encoder Reading

The robot program also includes a motor speed monitor which uses the encoders.
Encoders emit a pulse every time the motor rotates a known amount. This amount is
variable depending on the encoder resolution. The encoders on the robot motors emit
pulses at a max rate of 4KHz, corresponding to maximum motor speed. GERT had
no difficulty picking up these pulses because this latency is far higher than GERT’s
latency in fig. 5-3.

The robot program asynchronously reads encoders with a special goroutine which
computes the pulse difference every second (fig. 5-13). The result is sent into the

event channel.

//count is wupdated by the interrupt routine
//and it is the amount of encoder pulses
go func() {

for {
old := count
time. Sleep (1 * time.Second)
new := count
event chan <— new — old

}
10

Figure 5-13: Motor Speed Monitor

43

5.4.5 Complications

Systems do not work perfectly, and this robot is no exception. The switching motor
controller used on this robot emits a lot of noise. The 5v noise spikes measured on the
oscilloscope wreaked havoc on the 3.3v single-ended signals that the iMX6 operates
with, causing serial communication failures and spurious interrupts. To deal with this,
the robot’s motors are connected to an external power supply before taking encoder
measurements in order to remove noise from the digital circuits. Consequently, the
physical robot cannot move very far when the motors are connected to an external

power supply because the power supply cannot move.

5.4.6 Result

GERT is a plausible embedded toolkit to use for robots that incorporate many sensor
systems. By utilizing Go’s language features, an embedded firmware engineer can im-
plement a complicated sensor integration platform on top of GERT without worrying
about issues like scheduling or shared memory. Because it is written in Go, the robot
sensor platform never experienced a single use-after-free, index out of range, or mem-
ory safety bug. As an added bonus, the robot sensor platform also does not contain
a single lock despite the fact that every sensor runs in its own thread. Go channels
can still cause a deadlock though if they are used incorrectly. The Go runtime will
report total deadlock when all goroutines are blocked waiting but it cannot detect

partial deadlock.

The most painful part about using GERT is writing drivers. Interacting with
MMIO peripherals inherently requires unsafe writes and reads to arbitrary memory,
but Go tries very hard to stop the programmer from doing this. Successful drivers
for MMIO peripherals must defeat the type system. In the end, a GERT driver looks
like the equivalent C driver but with many more explicit casts. If a future version
of Go deprecates the unsafe package, it will be catastrophic for GERT’s current

implementation.

44

5.5 Case Study: Laser Projector

Figure 5-14: Mirror Galvanometers from |7|

A scanning-mirror galvanometer laser projector is a device that deflects a laser
beam off of several mirrors in order to draw an image on another surface, as shown in
fig. 5-14. If the entire image can be scanned faster than 24Hz, then the light appears
to blend and the human brain perceives it as a single image rather than many points.
The maximum rate at which the projector can trace points is bounded below by the
speed of the galvos and bounded above by the speed of the software. In this case

study, GERT is used to implement a laser projector with a red laser.

5.5.1 Overview

I selected a laser scanner for this case study because I have a lot of experience pro-
gramming them in C. It is interesting to see how GERT can alter the experience.
Points for the scanner are generated from a vector graphics file on a desktop com-
puter and stored on an sdcard before GERT loads them and traces the image. The
laser projector, unlike the robot sensor platform, does not have to process any external
events or manage concurrency so it is a relatively simple program.

The only challenge for the laser program is to trace points fast enough so that
the image appears smooth. To do this, the laser program runs a dedicated goroutine,
lasermon which loops over all of the points in a circular buffer and sends them in

order to a Microchip MCP4922 DAC. The DAC converts the digital position signal

45

U W N =

© O U B WN -

into an analog voltage and then sends that voltage signal into an analog servo circuit,

which sets the position of the mirrors.

5.5.2 Point Serialization

The laser program uses Go’s native Gob library in order to serialize and de-serialize
points. The laser projector is currently limited to two dimensional images with a
single red laser, so only three properties must be stored for each point: X position, Y
position, and Color. The DAC only has a 12bit resolution so 16bit integers are used

to store each point. The struct is shown below in fig. 5-15

type CompactPoint struct {
X uint1l6
Y uintl6
Color uint8 //either 0 or 1

Figure 5-15: Laser Point Structure

In order to store points, a separate encoding program running on a desktop com-
puter encodes an array of Compact Point structs into a Gob object and writes them to
a file. Next, a utility called go-bindata [3] is used to embed the gob file into the laser
scanner program. Then the laser scanner reads the gob’ed data during initialization.

Code is shown in 5-16.

var points []CompactPoint
contents, err := Asset("bindata.gob")
if err != nil {

panic("bindata not found")

r := bytes.NewBuffer(contents)
d := gob.NewDecoder(r)

err = d.Decode(&points)

if err != nil {

fmt.Printf("error de—GOBing:\n")
panic (err)

Figure 5-16: Laser Point Structure

46

5.5.3 Path Tracing

Lasermon draws points by looping through a circular buffer and transmitting each
point to the DAC. If lasermon sends points too fast, then the scanner cannot keep
up and it displays junk. If lasermon sends points too slow, then the scanner does not
trace the image fast enough and it does not look static.

Lasermon attempts to mitigate these issues by heuristically adjusting how long it
should wait between sending successive points to the scanner. If the norm-2 distance
of the current point is far from the last point, lasermon waits longer in a busy loop
before transmitting the next point. With tuning, this approach can work for a specific
image, but it does not work very well in general because the laser scanners are not
an LTI system. A better solution to the scanner problem is a state-space feedback
controller which includes lasermon in the loop. That work is out of scope for this

thesis though.

5.5.4 Result

Figure 5-17: CSAIL Logo Generated vs Traced

The laser scanner programmed with GERT is able to successfully trace an SVG
of the CSAIL logo at 24Hz (fig 5-17). The scan rate is not a limitation of GERT,
but the mirror galvos themselves. GERT is capable of transmitting points at several

megaherts — the rate of its SPI peripheral — but the galvos cannot keep up with it.

47

The laser scanner takes no user input or external event input so it is not a very
complicated program. The most useful feature of Go, for the laser scanner, is the
Gob library for point serialization. Based on my experience programming other laser
scanners in C and 8051 assembly, this one was much easier to implement because Go
caught every out-of-bounds index error and also prevented memory use errors from

ever occurring.

5.6 Evaluation Summary

GERT was evaluated both quantitatively in the benchmark section and qualitatively
in the case study section. The benchmarks show that GERT can achieve lower event
latency and higher event throughput than the equivalent programs written in user
space C and Go code. This is a great result because it indicates that any embedded
programs which are written for user space can achieve potentially higher performance
in GERT.

Writing embedded programs in GERT is also easier than writing them in C. Chan-
nels and goroutines are excellent concurrency primitives. With these two primitives,
program architecture can be very moduler and performant. A good example is the
sensor paradigm from the Robot Sensor Platform (5.4) where each sensor became
associated with a goroutine and a channel. Since GERT inherits the Go standard
libraries, GERT programs are also more portable than bare-metal C programs. If
GERT ever gets ported to different platforms, existing GERT applications will need
few modifications to run on the new platform because the Go runtime presents the

same abstractions everywhere that it runs.

48

Chapter 6

Conclusion and Future Work

This thesis has presented GERT as part of an effort to investigate the efficacy of
using a type-safe, garbage-collected, high-level language on a multi-core embedded
system. The premise of this idea is that OS kernels provide redundant and costly
isolation to programs which do not require it because they are written in a HLL.
GERT demonstrates, through micro benchmarks, that removing the OS from an
embedded platform and running the high-level code directly on bare metal, can be
more performant than even a user space C program in Linux. Writing embedded
programs with GERT is also relatively painless because of Go’s concurrency patterns
and its portable standard library. The goal of this thesis is not to convince everyone
to use GERT, but rather to show that performant embedded programs do not have
to be written in C anymore. HLLs can provide memory safety and concurrency
abstractions even while running on bare metal.

The GERT project still leaves a few questions unanswered. First of all, GERT was
never benchmarked against bare metal C running on the iMX6. This is because there
was not enough time to develop an RTOS that could provide similar semantics to Go.
Instead, a Teensy with a cortex M4 processor was used to establish an ideal latency
baseline for an embedded system. GERT is not likely to outperform a well-written
RTOS, but GERT programs will still be more portable.

It is also possible that GERT can exist as a kernel module inside of Linux, instead

of a stand-alone bootable binary. Since GERT is already memory-safe, it should be

49

able to run in kernel mode without crashing the whole system. This is an especially
desirable avenue to approach because it means that an embedded programmer can
have the convenience of developing a GERT program in user space before installing it
as a kernel module where it can run more efficiently. Re-spinning GERT as a kernel
module may also allow it to hook into existing Linux drivers for the network card
and the file system, greatly reducing the number of drivers that have to be written

for each platform.

50

Bibliography

[1] Beagle bone main site. http://beagleboard.org/bone. Accessed: 2017-08-24.
[2] Copper. https://github.com/japaric/copper. Accessed: 2017-08-24.

[3] go-bindata. https://github.com/jteeuwen/go-bindata. Accessed: 2017-08-
24.

[4] Go ge: Prioritizing low latency and simplicity. https://blog.golang.org/
golbgc. Accessed: 2017-08-24.

[5] Go standard libraries. https://golang.org/pkg/#stdlib. Accessed: 2017-08-
24.

[6] Micropython. https://micropython.org/. Accessed: 2017-08-24.

[7] Mirror galvanomoter image. http://www.zamisel.com/SSpostavka2.html. Ac-
cessed: 2017-08-24.

[8] Mit maslab. http://maslab.mit.edu/2017/. Accessed: 2017-08-24.
[9] Raspberry pi main site. https://www.raspberrypi.org. Accessed: 2017-08-24.

[10] Teensy usb development board. https://www.pjrc.com/store/teensy32.
html. Accessed: 2017-08-24.

[11] Periklis Akritidis. Practical memory safety for c. Technical Report UCAM-CL-
TR-798.

[12] ARM. ARM Architecture Reference Manual, ddi 0406 edition, 2012.

[13] ARM. ARM Generic Interrupt Controller, ihi 0048b.b edition, 2013. section
3.2.3.

[14] Cody Cutler, Robert Morris, and Frans Kaashoek. The performance of a kernel
written in a high-level garbage-collected language. in submission.

[15] Galen Hunt and Jim Larus. Singularity: Rethinking the software stack. ACM
SIGOPS Operating Systems Review, 41,/2:37-49, April 2007.

51

http://beagleboard.org/bone
https://github.com/japaric/copper
https://github.com/jteeuwen/go-bindata
https://blog.golang.org/go15gc
https://blog.golang.org/go15gc
https://golang.org/pkg/#stdlib
https://micropython.org/
http://www.zamisel.com/SSpostavka2.html
http://maslab.mit.edu/2017/
https://www.raspberrypi.org
https://www.pjrc.com/store/teensy32.html
https://www.pjrc.com/store/teensy32.html

	Introduction
	Motivation
	GERT
	Outline

	Why Write System Code in Go?
	Go Runtime Organization
	Go Memory Safety
	Tolerating the Garbage Collector

	The Go Runtime On Bare Metal
	Step 1 Bring Up
	Step 2 GERT Kernel Installation
	Step 3 Go Runtime Setup
	Virtual Memory Setup
	Thread Scheduling and Trapframes
	Interrupts
	Keeping Time
	Booting Secondary CPUs

	How to Use GERT
	API Inspiration
	Writing Interrupt Handlers
	Building a GERT Program
	Design Considerations
	Writing Drivers

	Evaluation
	Experimental Setup
	Microbenchmarks
	Pin Toggle Frequency
	Response Latency
	External Event Throughput

	Microbenchmark Conclusions
	Case Study: Robot Sensor Platform
	Overview
	PWM Motor Control
	Distance Sensor Reading
	Encoder Reading
	Complications
	Result

	Case Study: Laser Projector
	Overview
	Point Serialization
	Path Tracing
	Result

	Evaluation Summary

	Conclusion and Future Work

