
Group Collaboration with App Inventor

by

Xinyue Deng

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 18, 2017

Certified by. .
Harold Abelson

Class of 1922 Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Department Committee on Graduate Theses

2

Group Collaboration with App Inventor

by

Xinyue Deng

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2017, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Collaboration becomes increasingly important in programming as projects become
more complex. With traditional text-based programming languages, programmers
typically use a source code management system to manage the code, merge code
from multiple authors, and optionally lock files for conflict-free editing. There is a
limited corpus of work around collaborative editing of code in visual programming
languages such as block-based programming. I present a collaborative programming
environment to MIT App Inventor, a web-based visual platform for building Android
applications with blocks, which enables many programmers to collaborate in real time
on the same MIT App Inventor project. I design and implement three collaboration
models to evaluate the efficacy of these different collaborative models for users of
App Inventor so as to understand which approach best enables collaboration. Our
results demonstrate that real-time programming decreases the completion time of a
task, improves the interaction between users, and increases users’ likeability towards
collaborative programming. I anticipate that this new collaborative programming
environment will change the way users use MIT App Inventor, and more curriculum
based on the collaborative tools will be designed.

Thesis Supervisor: Harold Abelson
Title: Class of 1922 Professor of Computer Science and Engineering

3

4

Acknowledgments

First, I would like to thank my advisor, Hal Abelson, for provide me with this op-

portunity to design and implement an important feature that will used by millions of

users.

I could not have completed this project without Evan W Patton’s support. He

helped me to formalize the design of the collaborative programming environment, and

figure out the steps I needed to finish the implementation. He also helped me design

the user study.

I appreciate the generosity of Mike Tissenbaum for helping me finalize the metrics

of my user study, and Ilaria Liccardi for advice on the design of user study.

I would not have a thesis without the participation of twenty MIT students. I

have learned how people collaborate under different constrains by observing them. I

thank each of the participants for their time.

I want to thank every undergraduate researchers in MIT App Inventor team, who

participated in the testing of the system. Without their participation, I will not find

bugs in the system and fix them before the user study.

My friend and fellow researcher, Natalie Lao, helped me edit my thesis and fixed

my grammar mistakes.

My dog, Pocky, for being such a good accompany while I worked on my thesis.

Finally, a big thanks to the members of the MIT App Inventor developer team

who answered my questions, reviewed my code, and collaborated with me on this

project.

5

6

Contents

1 Introduction 15

1.1 Motivation . 16

1.2 Use cases . 16

1.3 Contribution . 17

1.4 A sample scenario using collaborative programming environment . . . 17

2 Related Work 21

2.1 Collaboration in text-based programming 21

2.2 Collaboration in blocks-based programming 22

3 Introduction to App Inventor 25

3.1 Overview . 25

3.2 Technology . 27

3.2.1 Google Website Toolkit . 27

3.2.2 Blockly . 28

3.2.3 Data Store . 29

3.3 AIMerger . 29

4 System Design and Implementation 31

4.1 Real-time collaboration vs. version control systems 31

4.2 Design Requirements . 32

4.3 User Interface Design . 33

4.3.1 Share Project . 33

7

4.3.2 User Awareness . 34

4.4 Modification to MIT App Inventor 36

4.4.1 Data store . 36

4.4.2 Event System . 37

4.5 Collaboration Server . 39

4.5.1 Publish-subscribe pattern . 40

4.5.2 Channels . 41

4.5.3 Collaboration Event Listener 42

5 Experiment 45

5.1 Collaboration Models . 45

5.1.1 Project-level Collaboration Model 46

5.1.2 Component-level Collaboration Model 48

5.2 User Study . 51

5.3 Metrics . 52

5.3.1 Average and maximum length of turns 52

5.3.2 Communication rate . 53

5.3.3 Collaboration rate . 53

5.3.4 Mistake rate . 55

5.4 Result . 56

5.4.1 Average and maximum length of turns 58

5.4.2 Communication rate . 59

5.4.3 Collaboration rate . 60

5.4.4 Mistake rate . 61

5.4.5 Likeability . 62

6 Discussion 65

6.1 Collaboration models . 65

6.2 Collaborative programming . 66

6.3 Computational thinking . 67

6.4 Limitation . 68

8

7 Conclusion 69

7.1 Future work . 69

A User Study Task A : Space Invaders 71

B User Study Task B : Get the Gold 73

C App Inventor Group Collaboration Pre-study User Survey 75

D App Inventor Group Collaboration Post-study User Survey 77

9

10

List of Figures

1-1 "Share project" menu item in the dropdown menu of "Projects" . . . 18

1-2 Alice shares project with Bob . 18

1-3 Alice shares project with Carol . 18

1-4 The user interface of Alice after Bob and Carol open the project . . . 19

1-5 The user interface of Designer on Alice’s computer. 19

1-6 The user interface of Blocks on Alice’s computer. 20

3-1 Designer editor for PaintPot, an application that allows a user to draw

on an image with three different colors. 26

3-2 Blocks editor for PaintPot, an application that allows a user to draw

on an image with three different colors. 26

3-3 MIT App Inventor system architecture 27

4-1 The menu item to share projects in the drop-down menu of Projects . 33

4-2 The dialogue to share projects with the collaborator’s email address . 34

4-3 An example of showing user awareness in MIT App Inventor 35

4-4 The publish-subscribe pattern inside MIT App Inventor 40

5-1 User Interface of the leader of a project with project-level collaboration

model . 47

5-2 User Interface of the non-leader of a project with project-level collab-

oration model . 47

5-3 Error message when non-leaders edit the project 48

5-4 User Interface of the Designer with component-level collaboration model 49

11

5-5 User Interface of the Blocks with component-level collaboration model 49

5-6 Error message when users modify components or blocks locked by others 50

5-7 An example of a sub-tree of a project illustrating the collaboration

edge and different kinds of nodes . 54

A-1 The user interface of the Space Invaders App 71

B-1 The user interface of the Space Invaders App 73

12

List of Tables

4.1 Summary of the properties and functionality of events related to De-

signer editor . 39

5.1 Summary of the properties and functionality of events added in the

component-level collaboration model 51

5.2 Assignment of groups on tasks and collaboration models 56

5.3 Experience of each group . 57

5.4 Adjusted completion time of each group, time is in minutes. 58

5.5 Average length of turns based on different collaboration models 58

5.6 Maximum length of turns based on different collaboration models . . 58

5.7 Communication rate based on different collaboration models 59

5.8 Collaboration rate based on different collaboration models 60

5.9 Mistake rate based on different collaboration models 61

5.10 Likeability change towards statement "I like to work with others when

I’m programming." based on different collaboration models 62

5.11 Likeability change towards statement "Programming with others is

helpful for solving problems." based on different collaboration mod-

els . 62

5.12 Likeability change towards statement "It is/would be useful to be able

to program with others in real-time (on the same code)." based on

different collaboration models . 63

13

14

Chapter 1

Introduction

Cloud-based collaborative technologies, such as Google Docs, have become an impor-

tant part of how people work together in real time on all manner of content. However,

real-time collaboration for programming is mostly in the research phase [5, 4, 6]. The

typical collaboration strategy in text-based programming is for programmers to work

separately, and then merge their changes through a version control system, such as

Git. There are a few explorations on collaboration with visual programming tools

[7, 8], like with Scratch and App Inventor, but there is still a long way to go before

a usable platform can be released.

MIT App Inventor is a web application built for students and novice programmers

to develop Android applications using a blocks-based programming language. Users

can build the user interface of an application by dragging and dropping components,

and write the logic of the application by connecting blocks. MIT App Inventor helps

users to build Android applications without knowing the Java syntax and complex

Android framework (More details about MIT App Inventor is in Chapter 3).

As of the time of this writing, MIT App Inventor has over 6 million users from 195

countries, and 164,000+ weekly active users build over 23 million Android applications

[1]. As the number of users increases, and the complexity of projects grows, our

team has received numerous requests for collaborative programming. In this thesis,

I present a collaborative programming environment within MIT App Inventor that

enables users to work on the same project simultaneously, and an experiment to

15

evaluate the efficacy of different collaborative strategies for novices and experts of

App Inventor to understand which approach best enables collaboration.

1.1 Motivation

MIT App Inventor is widely used as an educational tool. It aims to help novice pro-

grammers mitigate the difficulties of programming for Android and make program-

ming more accessible to young people. Studies show that collaborative programming,

such as pair programming, improves the design quality, and reduces defects and im-

proves the technical skills [22, 23]. It is important for MIT App Inventor to provide

users a way to work collaboratively. Thus, young people and novice programmers

would be able to learn how to work with others and build more complicated projects.

On the technical side, MIT App Inventor has millions of users and can support

thousands of users online at the same time, so the collaboration environment adapted

to it likewise needs to be highly scalable and structured. It has been an exciting

challenge for me to work within such a large code base and to implement features

that will be used by millions of users.

1.2 Use cases

Consider the following scenario: when a group of users wants to build a complex An-

droid application with MIT App Inventor, they can divide the projects into multiple

tasks and assign tasks to team members. In order to test the application, each user

wants to know if their work is consistent with others and does not cause problems to

others’ tasks, so they want to see what other teammates are doing in the project and

changes made by them. In addition, to speed up the progress, user wants to work on

tasks in parallel with different computers.

With the current version of MIT App Inventor, users can only work on the project

with one account, so they need to take turns to edit the project. A real-time collab-

orative programming environment within MIT App Inventor can solve this problem

16

by enabling users share project and see each other’s change in real time.

1.3 Contribution

In my thesis, I present a collaborative programming environment within MIT App

Inventor with three collaboration models and an experiment on the efficacy of differ-

ent collaborative models. My goals were 1. to have a functional system inside App

Inventor that allows users to work collaboratively. 2. to evaluate the efficacy of three

different collaborative models for novices and experts of App Inventor so as to under-

stand which approach best enables collaboration. Among three collaboration models,

I found the real-time collaboration model is the most efficient because it decreases

the completion time, improves the interaction between users and increases the users’

positive attitude towards collaborative programming.

The following chapters explain each step of my project in more detail. In Chapter

2, I outline related work on collaboration in both text-based programming languages

and visual programming tools. Chapter 3 introduces the basics of App Inventor and

the technologies it was built on. In Chapter 4, I describe the design of the collaborative

environment and the techniques I used to implement it, including modifications to

MIT App Inventor. Chapter 5 contains the design, the metrics, and the results of an

experiment on different collaborative strategies. In Chapter 6, I present a discussion

on the efficacy of different collaborative strategies. Chapter 7 concludes my thesis

with a section about future work.

1.4 A sample scenario using collaborative program-

ming environment

Three users, Alice, Bob and Carol, want to build a simple Android application with

MIT App Inventor. The application has three buttons, red, yellow and green, and a

canvas. When user clicks on a button, the canvas changes its background color to the

color shown on the button.

17

Using the collaborative programming environment, Alice creates a project called

ColorButton and shares the project with Bob and Carol by clicking "Share Project"

in the dropdown menu of "Projects" as shown in Figure 1-1.

Figure 1-1: "Share project" menu item in the dropdown menu of "Projects"

When the dialogue pops up, Alice enters Bob’s email address to share the project

with Bob as shown in Figure 1-2

Figure 1-2: Alice shares project with Bob

Similarly, Alice shares the project with Carol as shown in Figure 1-3.

Figure 1-3: Alice shares project with Carol

After Alice shares the project, Bob and Carol can see ColorButton in their project

listings. When other collaborators open the project, colored squares representing

18

other collaborators will appear next to the "Designer" button. When Bob and Carol

open the project, Alice’s project toolbar has two colored squares next to the "De-

signer" button as shown in the Figure 1-4. The red square with capitalized "B"

represents Bob, and the blue square with capitalized "C" represents Carol. Since

Figure 1-4: The user interface of Alice after Bob and Carol open the project

the application needs three buttons and one canvas, Alice adds a canvas component

and then splits tasks with Bob and Carol. They decide that Alice works on the red

button, Bob works on the yellow button and Carol works on the green button. Each

member adds a button below canvas, renames it and modifies the task to show the

corresponding color. Figure 1-5 shows the Designer screen on Alice’s computer.The

red border surrounding the yellow button indicates that Bob is working on the yellow

button, and the blue border surrounding the green button indicates that Carol is

working on the green button. Then, Alice, Bob and Carol program the behavior

Figure 1-5: The user interface of Designer on Alice’s computer.

19

Figure 1-6: The user interface of Blocks on Alice’s computer.

of the button in the Blocks. When a button is clicked, the background color of the

canvas changes to the corresponding color. Figure 1-6 shows the user interface of the

Blocks on Alice’s computer when three users work on the Blocks. The red border

surrounding the blocks indicates that Bob is working on this set of blocks, and the

blue border surrounding the blocks indicates that Carol is working on that set of

blocks. The ColorButton application is successfully finished by Alice, Bob and Carol.

Instead of working on the same machine, three users can modify the project in paral-

lel using different computers with the collaborative programming environment within

MIT App Inventor.

20

Chapter 2

Related Work

2.1 Collaboration in text-based programming

Modern programmers mostly collaborate through a version control system (VCS),

where they work on different copies of the same code base on separate machines, and

then merge their changes. It enables programmers to work on different files without

writing over others’ changes. In the case that two programmers edit the same file, the

VCS will try to resolve the conflicts or report the conflicts to prompt the programmers

to resolve them manually [2]. While the VCS provides teams with many benefits, it

also introduces some difficulties in teamwork, such as isolating incoming changes

from others that might affect one’s current tasks. In 2015, Guzzi, Bacchelli, Riche

and Van Deursen interviewed several professional software developers, and found that

developers had issues about dealing with others’ changes, such as when new changes

changed the dependencies or introduced bugs in the tasks they were working on. Since

developers lacked the same information about each other’s changes, it was hard to

locate the bugs in the new changes. Therefore, Guzzi et al. developed a new extension

to IDE, called Bullevue, which enabled developers to see the history of changes of each

file visually in the editor, and in which developers are able to reverse changes based

on the sub-file level [3].

Other than VCS, real-time collaboration in text-based programming has remained

mostly confined to research settings. Boyer et al. developed a plugin, Ripple for

21

Eclipse, an integrated development environment (IDE) to enable students to collabo-

rate distributively for educational purposes. Ripple provides a synchronized program-

ming view and a chat channel for programmers. Developers can see others’ change in

real time, and they can use the chat channel to communicate [4].

In 2011, Goldman et al. presented Collabode, a web-based Java IDE, to support

real-time collaborative programming. One of the main challenges is to make sure the

code is always error-free, so that any collaborator can compile and run their code

anytime. Collabode solved this problem by only sharing changes if they can compile

successfully [5].

In 2016, Ghorashi et al. built a web-based editor for web programming called

Jimbo, which supports synchronous and asynchronous collaboration. It deployed

operational transforms to achieve eventual consistency with multiple users working

on the same code. It enabled developers to audio chat and text chat to communicate,

and provided a notification system to inform developers about code changes of certain

files. To test the code, it offered a live preview of the website when receiving new

changes [6].

2.2 Collaboration in blocks-based programming

blocks-based programming languages allow developers to program by dragging and

dropping blocks. They are designed to lower the barriers to programming for young

people and novice programmers, because they do not need to worry about the syntax.

AlgoBlock is a tangible programming tool designed for primary and secondary

students to program with physical blocks. Using this tangible programming tool,

students collaborate in a shared workspace, and can monitor others’ work by their

body movements. Different from conventional programming with a personal input,

such as keyboard and mouse, AlgoBlock made the process of programming open, so

that it is easier for students to collaborate and interact [7].

In his master’s thesis in 2015, McKinsey presented a prototype of remote pair

programming, called Turtle Tango, in open online courses with blocks-based pro-

22

gramming. The prototype allows developers to program a turtle to draw on a pane

with blocks collaboratively by receiving others’ changes simultaneously. Users can

also communicate via video chat. In the pilot study, McKinsey found that, by receiv-

ing others’ changes in real time, developers finished the same tasks in less completion

time than without receiving it [8].

There are also other blocks-based programming tools used widely, such as Scratch

[9], and App Inventor [10]. However, they do not support collaborative programming

in their current versions.

23

24

Chapter 3

Introduction to App Inventor

3.1 Overview

MIT App Inventor is a web application for creating Android apps with blocks-based

programming language. It was developed by Google’s Mark Friedman and MIT pro-

fessor Hal Abelson while Abelson was on sabbatical at Google. The major goal of

MIT App Inventor is to make Android programming easier to access for novices.

Instead of needing to understand the Android framework and use complex Java syn-

tax, novice programmers can build an Android application with visual drag-and-drop

blocks within one hour or less [1].

MIT App Inventor consists of two editors: Designer and Blocks. In Designer,

developers can design the user interface of an application by dragging and dropping

components onto the screen. There are two types of components: visible components,

such as Button and Label, are shown inside a mock phone screen in the editor; non-

visible components, such as Camera and TinyDB, are shown in a list under the mock

phone screen. Each type of component has a set of properties that developers can

configure, and a set of blocks that developers can use to control the behavior of a

component. Figure 3-1 shows an example of Designer of PaintPot, an application

that allows a user to draw on an image with three different colors. To access the

blocks, developers can toggle from Designer to Blocks.

Developers use Blocks to control the behavior of the application. The blocks can

25

Figure 3-1: Designer editor for PaintPot, an application that allows a user to draw
on an image with three different colors.

Figure 3-2: Blocks editor for PaintPot, an application that allows a user to draw on
an image with three different colors.

be dragged and dropped onto the workspace, and connected with other blocks to

form a complete logic. There are built-in blocks and component-specific blocks. The

built-in blocks contain logic common to many programming languages, such as lists,

conditions, and loops. The component-specific blocks contain the specific functions

related to the type of the component. On the workspace, developers can move a set

of blocks to any location by dragging them. They can expand and collapse a set of

blocks, so that they can customize the view of the workspace to work on a certain

set of blocks. In addition, they can enable and disable blocks. By disabling a set of

blocks, this set will not be executed by the application. Figure 3-2 shows Blocks of

26

PaintPot.

3.2 Technology

MIT App Inventor uses a client-server architecture. The client side is responsible for

the user interface, and the server side is in charge of services and database. The client

runs inside a web browser and is built on top of Google Website Toolkit (GWT) and

Blockly. The server runs on Google App Engine (GAE) using the GWT server as a

GAE service and a third-party datastore API called Objectify. Figure 3-3 shows the

relationship between the components of the MIT App Inventor system.

Figure 3-3: MIT App Inventor system architecture

Inside MIT App Inventor, users are identified by their email addresses, and the

system will assign each user a unique identifier in the database. With the current

implementation, each user can only have one session ongoing, which means the user

can only open one MIT App Inventor instance in their browser.

3.2.1 Google Website Toolkit

Google Website Toolkit (GWT) is an open source tool for building web applications

with Java. It compiles and optimizes Java code to JavaScript code for different kinds

of browsers. On the client side, GWT provides components for the user interface,

such as buttons and text boxes, and handles mouse and keyboard events. On the

server side, it integrates AJAX to support communication between client and server.

The GWT client runs inside the web browser, and the GWT server can run on the

Google App Engine. MIT App Inventor deploys both the GWT client and GWT

27

server, and uses the GWT remote procedure call framework to exchange Java objects

between client and server. Another important feature of the GWT is that it allows

developers to integrate native JavaScript code into Java code with its JavaScript

Native Interface (JSNI) feature. Therefore, it is easy for developers to integrate a

third-party JavaScript library or an existing JavaScript code into a GWT application

[11].

3.2.2 Blockly

Blockly is an open-source JavaScript library to create a visual programming editor

for both the web and mobile apps. It is being developed and open sourced by Google.

Blockly provides a workspace and a toolbox. The workspace is the editor where users

can drag and drop blocks, and the toolbox is the drawer containing available blocks.

Developers can define the types of blocks in the toolbox, and they can also customize

new types of blocks. To generate actual code from blocks, developers can use the

built-in generator or define their own generator [12].

In Blockly, there is an event system to catch any changes in the workspace. The

event system abstracts users’ actions into JavaScript objects, and Blockly implements

multiple event listeners to perform different actions when receiving an event. When

we implement the collaborative programming environment, these events are used to

transfer changes between users. In Blockly, they define the following events:

∙ Blockly.Events.CREATE:

This event is fired when user creates a new block in the workspace.

∙ Blockly.Events.DELETE:

Fired when user deletes a block in the workspace.

∙ Blockly.Events.MOVE:

Fired when user moves a block in the workspace to a new location, or attaches

it to another block.

∙ Blockly.Events.CHANGE:

28

Fired when user changes a property of the block, such as a field of the block or

disabling the block.

∙ Blockly.Events.UI:

Fired when user changes the user interface of the block. For example, user

selects the block.

3.2.3 Data Store

Since MIT App Inventor runs on the GAE, it stores data in Google Cloud Storage

(GSC), and it has a relational database using Objectify. When a new user signs up,

the server creates a row for the user in the relational database. When the user creates

a project, the server creates a row for the project, and another row that links the

user and the project in the relational database. GSC only stores the files related to

the projects. For each project, MIT App Inventor stores two files. One file stores

information about all components in Designer with JSON format, and the other file

stores information about all blocks in Blocks with XML format. The server saves

projects every five seconds after it detects new changes, and it generates two new

files corresponding to Designer and Blocks and replaces the old files of this project

in the storage. For each user, project, component, and block, the server assigns them

a unique identifier to distinguish them.

3.3 AIMerger

With the current version of MIT App Inventor, there are two approaches for users to

collaborate on the same project. The first approach is that different users edit the

same project by turns with the same email account. The second approach is remixing,

in which one user exports the project as an AIA file after finishing his part, and then

another user imports the AIA file to her account and works on her part of the project.

Neither approach allows users to work on a project at the same time.

In 2012, Feeney created AIMerger, a project merger tool for MIT App Inventor,

29

in a master’s thesis. It allows developers to merge two App Inventor projects into one

project, and developers can select the screens and assets of each project they want

to merge. Developers can collaborate with this tool by dividing tasks into different

screens and then merging them. However, not all tasks of a project can be easily

divided by screens, and collaborators lack the information about what partners are

working during the collaboration process. In addition, because they do not know

other parts of the application before merging, there could be bugs and problems after

merging the project. Then, they only have one project, so they cannot collaborate

any more without dividing up the project again [13].

30

Chapter 4

System Design and Implementation

In this chapter, we present our design and implementation of the collaborative pro-

gramming environment for MIT App Inventor.

4.1 Real-time collaboration vs. version control sys-

tems

As mentioned in chapter 2, there are two major approaches for collaborative program-

ming: real-time collaboration and version control systems. The traditional approach,

version control systems, does not transfer well to blocks-based programming in MIT

App Inventor for these reasons.The MIT App Inventor server generates one file for

each editor of the project, every change in the editor results in a new file, which

introduces conflicts when using a version control system. For example, if one devel-

oper detaches a set of blocks from its parent block and attaches this set to a new

block, the XML file it produces will change significantly. To resolve the conflict,

developers need to manually choose which part of the file they want to keep, which

makes collaboration complex and laborious. In addition, unlike traditional text-based

programming language, blocks-based programming language has a two-dimensional

workspace, which introduces more difficulty in showing conflicts and the history of

changes made by individual developers.

31

In contrast, real-time collaboration does not require developers to resolve conflicts

manually, and it is easier to show others’ changes simultaneously in the workspace.

This led us to develop a real-time collaboration model to approach the collaborative

programming inside MIT App Inventor.

4.2 Design Requirements

MIT App Inventor is designed to make programming more accessible for novice pro-

grammers and young people, and it is used mostly in introductory computer science

courses. Therefore, our collaborative programming environment is designed for group

course projects of two-to-four students in middle schools, high schools, and colleges.

The current version of MIT App Inventor only allows one user per project, but

we want developers to be able to share projects with others in the collaborative

programming environment. While using real-time collaboration, developers should

be able to see others’ changes simultaneously.

Another important design aspect of a collaborative programming environment is

supporting user awareness. There has been much research about user awareness in

the distributed work groups, and many techniques has been proposed [14]. According

to Dourish, "Awareness involves knowing who is ’around’, what activities are occur-

ring, who is talking with whom; it provides a view of one another in the daily work

environments. Awareness may lead to informal interactions, spontaneous connec-

tions, and the development of shared cultures" [15]. User awareness plays a crucial

role in the collaboration, because it provides context for individual work with the

group progress. Therefore, the collaborative programming environment inside MIT

App Inventor should provide collaborators with enough information about what their

partners are doing in the same project.

In summary, our collaborative programming environment should fulfill the follow-

ing requirements:

1. Users can share projects with others by using their email addresses.

32

2. Users can work on the same project at the same time with different accounts.

The projects in each user’s account are always identical. When users open the

project, they can see others’ changes in real time.

3. While opening the project, users can know who is currently working on the

project, and which part of the project their collaborators are working on.

4.3 User Interface Design

In order to support sharing projects and user awareness, we made a few modifications

to the user interface of current MIT App Inventor.

4.3.1 Share Project

We added a menu item, called "Share Project" in the drop-down menu of "Projects" in

the toolbar. After users click the menu item, a dialogue will pop up for inputting other

collaborator’s email address. Users can share the project with multiple collaborators,

but they can only input one email address at one time. Figure 4-1 and Figure 4-2

show the menu item and the dialogue for sharing projects. After users share the

Figure 4-1: The menu item to share projects in the drop-down menu of Projects

project, their collaborators can find the project in the project listings.

33

Figure 4-2: The dialogue to share projects with the collaborator’s email address

4.3.2 User Awareness

In order to support user awareness, we approached this with the similar techniques

that Google Docs uses [16].

When a user opens a project, he will be assigned a color. If there are other users

who have already opened the project, the new user will be represented as a colored

square next to Designer button. There can be many colored squares if multiple

collaborators open the project. Inside the colored square, there is the capitalized first

letter of new user’s email address. If the user hovers his mouse over the colored square,

it shows the full email address of the collaborator whom the square represents. If the

user closes the project, the colored square representing him will disappear from his

collaborators’ screen. In order to notify the user what his collaborators are working

on, we surround the component and the block with the same color as the colored

square that represents the collaborator. Figure 4-3 shows an example of showing user

awareness in both Designer and Blocks.

In addition, users can see each others’ changes simultaneously in the same project.

There are following scenarios in the MIT App Inventor:

1. When two users work on different screens, their changes will not be shown until

one user opens the other screen.

34

(a) An example of showing user awareness in Designer

(b) An example of showing user awareness in Blocks

Figure 4-3: An example of showing user awareness in MIT App Inventor

35

2. When two users work on the same screen, and they work on the same editor,

they can see the others’ change immediately on the editor.

3. When two users work on the same screen, but they work on different editors, the

user on Blocks can see the new component added by the user on Designer, and

he can add blocks related to the new component. When the user on Designer

removes a component, the user on Blocks will find that blocks related to that

component are deleted.

To reduce the number of requests sending to the server while maintaining the con-

sistency in case of network failure, projects are reloaded from the server whenever

users open or refresh a project. While users open a project, changes to all screens of

that project will be synchronized, so users do not need to request data from the sever

frequently.

4.4 Modification to MIT App Inventor

The current implementation of the server of MIT App Inventor is designed for single

user, so we made several modifications to it to integrate the collaborative program-

ming environment. We modified schemes in the database to memorize collaboration-

related data, and we implemented an event system to facilitate how messages are

transferred between users.

4.4.1 Data store

A new entry we added to the project data is the permission. When users share a

project with a collaborator, the collaborator’s identifier is added into the permission

of the project, and then a link to the project is created in the collaborator’s profile.

Then, when users refresh their project listing, the shared project will appear. In

addition, the previous implementation in MIT App Inventor only allows the project

owner to upload and delete files of a project, so we modified it to that all users in a

project’s permission could upload and delete files of the project.

36

4.4.2 Event System

Since MIT App Inventor was designed for single user, and it makes the original

implementation too complex to support transferring messages between users. We re-

factored the original code, and implemented an event system in the Designer editor

to facilitate the message transfer for collaboration. The Blockly library has already

provided an event system as discussed in Section 3.2.2, so we used it to transfer

changes related to Blocks.

Event handling follows the observer design pattern, where one object maintains a

list of observers, and notifies them when a state changes [17]. In our case, the object

is Designer, and the observers are event listeners. When users perform an action, such

as dragging a component onto the mock phone screen or changing a property of a

component, the corresponding event will be constructed and fired. When the event is

fired, it will notify the event listeners in Designer, and then the listeners will execute

the corresponding action. To clarify our implementation, we created an abstract class

ComponentEvent containing the common methods used for all events in Designer. All

event classes associated with Designer extend ComponentEvent and customize their

own functions. To transfer data between users over internet, the events need to be

encoded in JSON format. Therefore, each event has the following functions:

1. toJson(): convert the Java event object to a JSON object.

2. fromJson(): convert the JSON object to a Java event object.

In addition, since MIT App Inventor uses both GWT and JavaScript in the front-

end, we created the event objects in JavaScript and its mirror Java class in the GWT,

so that the system can easily exchange information between GWT and JavaScript.

Table 4.1 summaries the properties and functionality of all events we created for De-

signer and Blocks. We added an event of selecting blocks to change the border color

of the blocks when a user selects it. Although Blockly provides an event for selecting

blocks, it does not perform the action we needed.

37

Event class Property When event is fired

CreateComponent

∙ User ID

∙ Component ID

∙ Component type

Create a component

instance with the given

component type and

component ID

DeleteComponent
∙ User ID

∙ Component ID

Delete the component

with the given com-

ponent ID from the

Designer editor.

MoveComponent

∙ User ID

∙ Component ID

∙ Parent component

∙ Index

Move the component

with the given compo-

nent ID to the parent

component at the given

index.

SelectComponent

∙ User ID

∙ Component ID

∙ Selected (boolean)

Select or deselect the

component with the given

component ID depend-

ing on the given selected

value. If the component

is selected, set the compo-

nent’s border color as the

same color of the given

user ID.

38

ComponentProperty

∙ User ID

∙ Component ID

∙ Property name

∙ Property value

Change the current value

of the property of the

component with the given

component ID to the

given property value.

SelectBlock

∙ User ID

∙ Block ID

∙ Selected (boolean)

Select or deselect the

block with the given

block ID depending on

the given selected value.

If the block is selected, set

the block’s border color

as the same color of the

given user ID.

Table 4.1: Summary of the properties and functionality of events related to Designer
editor

4.5 Collaboration Server

In order to see others’ changes simultaneously without reloading the project, the

changes should be transferred to collaborators’ clients immediately after submitting

the changes. Therefore, we implement an independent NodeJS server to handle the

message transfer between clients. The reason that we did not build the collaboration

unit on the original server of MIT App Inventor is that it is harder to implement mes-

sage transfer with Java framework, and it is easier to maintain the code by separating

the collaboration and main services. Inside the NodeJS server, we used Socket.io [18]

to manage the communication between clients and servers, and the Pub/Sub message

system inside Redis [19] to manage the communication between clients.

39

4.5.1 Publish-subscribe pattern

Figure 4-4: The publish-subscribe pattern inside MIT App Inventor

Publish-subscribe pattern is a messaging pattern widely used in peer-to-peer appli-

cations, which the publisher, the sender of the messages, does not send the messages

directly to the specific subscribers, the receivers of the messages, but instead send

it to a channel or an entity, where subscribers of the channel will receive the mes-

sages automatically. In this messaging pattern, the publishers and the subscribers

can communicate without the knowledge of each other [20].

In our collaborative environment, each MIT App Inventor client is both pub-

lisher and subscriber. When users log in, they will subscribe to multiple channels

as needed. When they perform actions, they will send the message encapsulating

the related events to the collaboration server, and tell the server which channel they

want to publish the message on. Then, the clients that subscribe the same chan-

nel will receive the message, transfer the message to the event, and the perform the

corresponding action. Figure 4-4 shows how clients are communicated with each

other with the publish-subscribe messaging pattern inside MIT App Inventor. With

40

the publish-subscribe pattern, developers can receive changes about the project after

their collaborators submit the changes.

4.5.2 Channels

Each MIT App Inventor client will publish and subscribe to three kinds of channels:

1. User channel: The user channel is specified by the user’s email address. Each

client subscribes to only one user channel, which is his own email address.

When users share a project, they publish the project and their information to

the collaborator’s user channel. Therefore, the collaborator will be notified that

a user shares a project with him, and that project will appear in his project

listing.

2. Project channel: Project channel is specified by project id. When users open

a project, they will subscribe to that project channel. This channel is used for

project-level messages. There are three kinds of project-level messages:

∙ User join: When other users open the project, they will publish their

information to the project channel, so that its colored square will appear

on other collaborators’ screen.

∙ User leave: When other users close the project, they will publish their

information to the project channel, so that its colored square will disappear

on other collaborators’ screen.

∙ Media file: When users upload or delete a media file of the project, they

will publish the information about the file to the project channel, so that

the related file will appear or disappear from other collaborators’ projects.

3. Screen channel: The screen channel is specified as combination of the project

id and the screen name. Users can subscribe to multiple screen channels at the

same time, because there could be multiple screens in a project. This channel

is used to publish changes about components and blocks of this screen. When

users perform an action on the editors, such as adding a component or dragging

41

a block, the related events as we discussed in section 4.4.2 and users’ information

will be published to the screen channel. Then, other collaborators can extract

events from the received message and run the event on their side, so that they

can see others’ changes.

4.5.3 Collaboration Event Listener

To publish changes of a screen to the channel, we implemented a class called Collabo-

rationManager, which manages the connection between the MIT App Inventor client

and the collaboration server, and acts as an event listener of the Designer. Whenever

an event is fired, it will be invoked and publish the corresponding events to the screen

channel. Inside this class, there are following functions:

∙ onComponentPropertyChanged(): Called when a property of a component is

changed, publish a ComponentProperty event to the channel.

∙ onComponentRemoved(): Called when a component is removed, publish a Delete-

Component event to the channel.

∙ onComponentAdded(): Called when a component is added, publish a Create-

Component event to the channel.

∙ onComponentRenamed(): Called when the name of a component is changed,

publish a ComponentProperty event to the channel.

∙ onComponentMoved(): Called when a component is moved, publish a Move-

Component event to the channel.

∙ onComponentSelectionChange():Called when a component is selected or dese-

lected, publish a SelectComponent event to the channel.

On the Blocks, we registered a new event listener to the workspace, which publishes

the Blockly events to the channel when the workspace receives a change.

In summary, with changes in the data store and user interface and the implemen-

tation of the event system and collaboration server, users can share projects with

42

others and see others’ changes in the real time, and they can know who are currently

editing the project.

43

44

Chapter 5

Experiment

In this chapter, I present an experiment with the collaborative programming envi-

ronment for MIT App Inventor. In order to find out which approach best enables

collaboration, I made some modifications to support different collaborative schemes

to study how people collaborate under different constraints.

5.1 Collaboration Models

The design of a collaborative environment wants to satisfy both the needs of an indi-

vidual and the needs of a group, but there is always the tradeoff between individual

power and the group awareness. In order to maintain the group awareness, such that

all collaborators have the same level of information about the project, the collabo-

rative environment sometimes needs to limit the individual control over the project

[21]. For example, with the real-time collaboration system introduced in Chapter 4,

one can delete a component while others are working on that component, which could

introduce conflicts into the collaboration. As the collaboration system I designed is

the first collaborative programming environment for MIT App Inventor, it is hard to

decide how much individual power user should have in order to achieve the greatest

efficacy of collaboration. Therefore, I design three different collaboration models to

test which approach best enables the collaboration between multiple users: 1. Pro-

ject-level collaboration model 2. Component-level collaboration model 3. Real-time

45

collaboration model

Project-level collaboration model allows only one user to edit the project at any

time. Although the changes are shown on every collaborator’s computer, we expect

to see users work on the same screen if they are co-located. More details about

project-level collaboration model are introduced in Section 5.1.1. Component-level

collaboration model allows users to edit different components or blocks, but two users

cannot modify the same component or blocks at the same time. We expect users split

the tasks based on the components and blocks. More details about component-level

collaboration model are introduced in Section 5.1.2. The real-time collaboration

model allows users to edit any components or blocks at anytime, and it has the same

system introduced in Chapter 4. Users can have different collaboration strategies

with the real-time collaboration model. For example, they can split tasks first and

work separately, or they can discuss solutions and work together.

We expect that users collaborate differently with different collaboration models.

Take the scenario discussed in Section 1.4 as an example, with project-level collab-

oration model, Alice will edit the project to add buttons and their logic. Bob and

Carol will watch her and offer her advice. With the component-level collaboration

model, they will split the tasks based on buttons, and after they finish, they will de-

bug together. With the real-time collaboration model, they can split the tasks based

on buttons, but they can correct each other directly if they find a bug.

5.1.1 Project-level Collaboration Model

Pair programming, where two programmers work on the same project side by side on

one computer, has been a popular collaborative strategy in the last decades. In pair

programming, one programmer is the "Driver", who edits the project and controls

the keyboard and the mouse, and the other programmer is the "Observer", who views

the code and looks for any logic flaws and syntax errors. Two programmers switch

roles after a designated period of time. While pair programming takes more time to

finish the project, it increases the design qualities, reduces defects and improves the

technical skills of both programmers [22, 23].

46

Figure 5-1: User Interface of the leader of a project with project-level collaboration
model

Figure 5-2: User Interface of the non-leader of a project with project-level collabora-
tion model

We took pair programming as an inspiration, and designed the project-level col-

laboration model, where only one user can edit the project at any given time, but

instead of working on the same machine, users can view the project on different

47

machines, and see the changes to the project simultaneously. With project-level col-

laboration model, each project has a leader, and only leader can edit the project,

and other collaborators are in the read-only mode. Figure 5-1 and Figure 5-2 shows

the user interface of the leader and non-leader with project-level collaboration model.

Users can click the "Switch Leader" button to switch the leadership. After switching

leadership, users can edit the project, and other collaborators will be in the read-only

mode, and the text showing the current leader will be changed to the corresponding

user’s email address. When non-leaders try to edit the project, they will receive a

Figure 5-3: Error message when non-leaders edit the project

pop-up error message showing that they are unable to edit the project, and they need

to be the leader to edit the project. Figure 5-3 shows the error message dialogue.

5.1.2 Component-level Collaboration Model

While project-level collaboration model only allows one user to edit the project at

any given time, the component-level collaboration model provides users with more

power over the project. The projects in MIT App Inventor consist of components and

blocks, so with component-level collaboration model, a component or a set of blocks

can be modified by only one user at any given time. Users obtain the lock for the

component or a set of blocks when they select them, and release the lock when they

deselect them. When users select a component, other collaborators cannot modify

this component, but they can modify the blocks associated with this component,

which allows users to split tasks by Designer and Blocks. When users select a block,

48

the entire stack of block’s parents are also locked. Users cannot modify components

or blocks locked by other collaborators. After users obtain the lock of a component

or a block, an event will be sent to other collaborators to notify them the component

or blocked is locked by the users.

Figure 5-4: User Interface of the Designer with component-level collaboration model

Figure 5-5: User Interface of the Blocks with component-level collaboration model

49

In Designer, users can see that the background colors of the components in the

right side panel reflect the colors of other collaborators who currently hold the lock

for the components. Figure 5-4 shows an example of the Designer in the component-

level collaboration model, where User A locks Button 2, and User B locks the Button

1.

In Blocks, when users select or deselect a block, the entire hierarchy of this block,

including its parent blocks and child blocks, will be locked or unlocked respectively.

When blocks are locked, their background colors reflect the colors of the collaborators

who currently hold the lock for the blocks. Figure 5-5 shows an example of Blocks

in the component-level collaboration model, where User A locks the blocks "When

Button 2 is clicked", and User B locks the blocks "When Button 1 is clicked".

Figure 5-6: Error message when users modify components or blocks locked by others

When users modify the components or blocks locked by other collaborators, they

get an error message showing that the components or blocks are locked by others.

Figure 5-6 shows the error message dialogue.

In order to implement the component-level collaboration model, I added more

events to the event system on both Designer and Blocks. Table 5.1 summaries the

properties and functionality of the events added.

Event class Property When event is fired

50

LockComponent
∙ User ID

∙ Component ID

Lock the component of

the given component ID

by the user of the given

user ID in the Designer

UnlockComponent
∙ User ID

∙ Component ID

Unlock the component of

the given component ID

by the user of the given

user ID in the Designer

LockBlock
∙ User ID

∙ Block ID

Lock the block of the

given block ID by the user

of the given user ID in the

Blocks

UnlockBlock
∙ User ID

∙ Block ID

Unlock the block of the

given block ID by the user

of the given user ID in the

Block

Table 5.1: Summary of the properties and functionality of events added in the
component-level collaboration model

5.2 User Study

In order to study the efficacy of the collaboration and understand users’ behavior with

different collaboration models, I designed and ran a user study. Twenty MIT students

over 18 years old participated in the study, and they ranged from freshman to graduate

students. Participants were not required to have any experience in programming or

MIT App Inventor. In order to be familiar with the interface, I sent them a tutorial

51

task before the study, but some participants did not finish it. They were paired

into groups of two, and each group was asked to complete a task in an hour. Six

groups were assigned the task A, Space Invaders, as shown in the Appendix A, and

four groups were assigned the task B, Get the Gold, as shown in the Appendix B.

Two tasks have the same level of difficulty and they use the same set of components.

Before the study, participants need to fill out the pre-study survey as shown in the

Appendix C, which asked about their experience in group projects and blocks-based

programming. After the study, they need to fill out the post-study survey as shown

in the Appendix D, which asked about the advantages and disadvantages of the

collaboration models they used. In order to capture the oral communication between

users, we video recorded the study. In the collaboration server, we recorded every

event sent between users, so that we can analyze the collaborative behavior afterwards.

5.3 Metrics

To quantify the efficacy of different collaboration models, I defined the metrics intro-

duced in the following subsections.

5.3.1 Average and maximum length of turns

In every collaboration model, two programmers edit the projects by turns. With the

project-level collaboration model, programmers switch turns explicitly by clicking

the "Switch Leader" button, but in the other two collaboration models, programmers

switch turns unintentionally. We ranked all operations of a project in chronological

order, and the length of a turn is the number of sequential operations performed by

the same user. Average length of turns (ALT) is defined as following:

𝐴𝐿𝑇 =
Sum of the length of each turn

the number of turns
.

The maximum length of turns (MLT) is the maximum length of turns between two

users. We used ALT and MLT to characterize the collaborative behavior between

52

users, such as how often users switch turns, and how long each individual controls

the project. The lower ALT and MLT mean that users work more often in parallel.

5.3.2 Communication rate

We recorded each group to track their oral communication, and analyzed how they

behaved with different collaboration models. To quantify how much they commu-

nicate, we counted how long they talked with each other and worked on the same

computer, and then divided it by the time of the study to get the communication

rate of each group.

5.3.3 Collaboration rate

We considered that collaboration happens when a user works on top of other collab-

orators’ work. There are several cases when this happens in MIT App Inventor:

1. One user creates a parent block or component, and the other user adds child

blocks or components to it.

2. One user creates a component or a block, and the other user modifies its prop-

erties.

3. Two users work on the same component or set of blocks. This usually occurs

when users fix errors for others or take over others’ work.

A project is represented as a tree, and it has a component root node that represents

all components in Designer, and a block root node that represents all blocks in Blocks.

There are three kinds of nodes in the tree:

1. Component node: It represents a component in Designer or a block in Blocks.

Each component node has one parent node, and multiple child nodes, including

other component nodes and its property nodes.

2. Property node: It represents a property of a component or a block, and it does

not have any child nodes.

53

3. Operation node: It represents a users’ operation on the component or property,

such as moving a component and changing the value of a property. Since the

workspace is two-dimensional, and users can move blocks or components mul-

tiple times to place them correctly, we treat the consecutive operations on the

same component from the same user as one operation node. For example, if the

user A moves a block twice in a row, and user B moves the block once, there are

two operation nodes linked to this block, although three operations occurred.

Each component node and property node have a list of operation nodes.

Figure 5-7: An example of a sub-tree of a project illustrating the collaboration edge
and different kinds of nodes

We connected component nodes and their children, and the operation nodes of each

component node and property node in chronological order with an edge. We colored

every node in the tree with the colors of its modifiers, and nodes can have multiple

colors if different users work on them. A collaboration edge is defined as the two nodes

it connects have different colors, which means users work on top of other collaborators’

54

work. Figure 5-7 shows an example of a sub-tree of a project, where user A is the

green, and user B is yellow. The dotted line connects component node or property

node with its list of operation nodes, but it is not an edge.

The collaboration rate (CR) is defined as following:

𝐶𝑅 =
Number of collaboration edges

Total number of edges
.

For example, the sub-tree shown in Figure 5-7 has collaboration rate 0.75. The col-

laboration rate reflects how much percentage of the project is done by the mixture of

two users’ work, which depends on how collaborators split their tasks, and the level

of their programming skills. For example, if two experienced programmers split tasks

wisely, the collaboration rate is expected to be low. Alternatively, if two users are ac-

tively working on debugging a problem together, they might have a high collaboration

rate.

5.3.4 Mistake rate

Another aspect of efficacy of collaboration is that how many mistakes or unnecessary

operations occur during the collaboration. Given the final state of a project tree, we

can count the minimal number of operations that were needed to achieve the final

state. Therefore, the mistake rate (MR) of project is defined as:

𝑀𝑅 =
Total Number of operations − Minimal number of operations

Total number of operations
.

It is important to know that users have different experience on MIT App Inventor,

so they can aim at wrong implementation of a task. Even though the final state of a

project tree can be significantly different from the correct solution, it is interesting to

know how users achieve such a state, as long as the group agreed on the implemen-

tation. Therefore, MR does not measure the correctness of the program, instead it

measures how often users correct themselves. The MR can be higher when the users

try different components for a task, which introduces more unnecessary operations to

55

the project.

5.4 Result

We labeled ten groups from G1, G2 to G10, and Table 5.2 summaries the assignment

of groups on the tasks and collaboration models.

Project-level Component-level Real-time

Task A G1, G4 G2, G5 G3, G6

Task B G7 G8 G9, G10

Table 5.2: Assignment of groups on tasks and collaboration models

Table 5.3 shows the experience in programming and blocks-based programming

tools of each group based on the pre-study survey.

Group Experience

G1 Both participants have knowledge in programming, but

none of them have experience in blocks-based programming

tools.

G2 Both have knowledge in programming, but none of them

have experience in blocks-based programming tools.

G3 One participant is very familiar with MIT App Inventor, and

the other has no experience in blocks-based programming

tools.

G4 Both participants have little knowledge in programming,

and no experience in blocks-based programming tools.

G5 One participant did the App Inventor tutorial, and the other

has no experience in blocks-based programming tools.

56

G6 One participant has experience in Scratch, and did the MIT

App Inventor tutorial. The other participant have knowl-

edge in programming, but no experience in blocks-based

programming tools.

G7 One participant has knowledge in Scratch, and the other

participant has experience in Lego Mindstorms.

G8 Both participants have knowledge in programming, and one

participant has knowledge in Scratch.

G9 One participant has experience in Scratch, and the other

participant has experience in Scratch and MIT App Inven-

tor.

G10 Both participants have little knowledge in programming,

and no experience in blocks-based programming tools.

Table 5.3: Experience of each group

The user study lasted about one hour, but students were welcomed to stay longer.

Since the group was not required to finish the task, we counted how much percent-

age of task they completed, and calculated the adjusted time they needed to finish

the task. Table 5.4 summarizes the adjusted time of each group based on different

collaboration models.

Collaboration Model Group Actual Time Completion

Percentage

Adjusted

Time

Project-level

G1 30 35% 85.71

G4 45 40% 112.5

G7 85 90% 94.44

Component-level

G2 55 80% 68.75

G5 42 55% 76.36

G8 53 85% 62.35

57

Real-time

G3 41 100% 41

G6 49 65% 75.38

G9 65 90% 72.22

G10 40 65% 61.54

Table 5.4: Adjusted completion time of each group, time is in minutes.

Since participants had various background on MIT App Inventor, and the study

focused on how participants collaborate instead of technical skills, we allowed them to

ask for help. It is hard to quantify how the help affects the completion time, but the

data suggests that it takes longer to finish the tasks using project-level collaboration

model than the other two collaboration models, which is consistent with our expec-

tation, because only one user can edit the project using project-level collaboration

model.

5.4.1 Average and maximum length of turns

Table 5.5 and Table 5.6 show the average and maximum length of turns of each group

based on different collaboration models. We noticed that ALT and MLT decrease in

Group Project-level Group Component-level Group Real-time
G1 68 G2 6.32 G3 4.92
G4 8.36 G5 6.80 G6 3.98
G7 42.21 G8 4.59 G9 4.33

G10 4.18

Table 5.5: Average length of turns based on different collaboration models

Group Project-level Group Component-level Group Real-time
G1 124 G2 46 G3 39
G4 29 G5 49 G6 21
G7 220 G8 65 G9 26

G10 29

Table 5.6: Maximum length of turns based on different collaboration models

the order of project-level, component-level, and real-time collaboration models. This

58

is reasonable because in project-level collaboration model, the cost of switching leader

is larger compared to the other collaboration models. One exception in project-level

collaboration model is G2. We found that the users in G2 switched leader often

without informing their partner and they mostly focused on their own computers

instead of working on the same computer. The other two groups using project-level

collaboration model, G4 and G7, worked on the same computer mostly.

5.4.2 Communication rate

Group Project-level Group Component-level Group Real-time

G1 78.61% G2 38.64% G3 52.24%

G4 48.15% G5 48.21% G6 42.52%

G7 70.3% G8 37.11% G9 60.38%

G10 62.71%

Average 65.69% 41.32% 54.46%

Table 5.7: Communication rate based on different collaboration models

Table 5.7 shows the communication rate of each group based on different collabo-

ration models. The groups using project-level collaboration model have the highest

communication rate because they focused on one computer most of time. One typical

collaboration strategy they used is that one user edited the project in the MIT App

Inventor, and the other opened the task description and figured out what they needed

to do next. G2 is an exception, because participants kept working on their own com-

puter and lacked communication, which also resulted in longer adjusted completion

time as shown in Table 5.4.

The groups using component-level collaboration model have a lower communica-

tion rate than those using real-time collaboration model. By analyzing the video,

we found that with component-level collaboration model, participants split tasks first

based on components and blocks, and then they tried to solve the task on their own

without communicating. Instead, using real-time collaboration model, some groups

59

did not split tasks explicitly and they discussed solutions together first and then

worked on the project. In addition, we noticed that participants in G5 have bigger

difference between the experience in MIT App Inventor than those in G2 and G8.

Therefore, one user in G5 spent more time on explaining tasks and solutions to the

other, which resulted in higher communication rate. Within groups using real-time

collaboration model, G3 and G6 have lower communication rates. One participant

in G3 is very familiar to MIT App Inventor platform, so he did most of the work

in the project, and taught the other how to complete the task. They did not spend

much time on discussing the solutions, instead most of communication occurred when

debugging. For G6, there were server problem on synchronization when they did the

study, so the communication rate is lower compared to other groups.

5.4.3 Collaboration rate

Group Project-level Group Component-level Group Real-time
G1 25.85% G2 34.81% G3 16.19%
G4 41.91% G5 23.63% G6 24.18%
G7 25.61% G8 25.51% G9 35.00%

G10 41.60%
Average 31.12% 27.98% 29.24%

Table 5.8: Collaboration rate based on different collaboration models

Table 5.8 shows the collaboration rate based on different collaboration models.

The collaboration rate is affected by how each group collaborated. G4 switched leader

more often and communicated less compared to other two groups using project-level

collaboration model, so each member worked on top of others’ work more often.

Within the groups using component-level collaboration model, we noticed that G2

and G8 had a similar communication rate, but their collaboration rate is different. By

analyzing their videos, we found that they adopted different collaboration strategy.

Both groups split the tasks first and worked on their own computers, but when

debugging, G2 used one computer, while G8 fixed bugs on separate computer related

to their own tasks. Another important factor is the users’ experience. Since one

60

participant of G3 is very experienced in MIT App Inventor, he did not need the other

to fix his work, which results in a lower collaboration rate. In addition, I found that

using real-time collaboration models, participants moved others’ blocks more often

than using other two collaboration models. One reason is that they moved others’

blocks to make space for new blocks they worked on, and another reason is that task

arrangement using real-time collaboration is not explicitly, so they switched tasks

more often.

The average collaboration rate does not vary significantly across different collab-

oration models because our sample size is too small to mitigate the effect of other

factors, such as experience and collaboration strtegy.

5.4.4 Mistake rate

Group Project-level Group Component-level Group Real-time
G1 68.14% G2 61.25% G3 53.43%
G4 67.52% G5 63.96% G6 75.74%
G7 68.36% G8 80.86% G9 70.88%

G10 65.59%
Average 68.01% 68.69% 66.41%

Table 5.9: Mistake rate based on different collaboration models

Table 5.9 summarizes the mistake rate of each group based on different collabo-

ration models. After analyzing the data, I think although mistake rate reflects how

much participants correct themselves, but it does not show how well participants did

regarding to the correct solution of the project. Since we did not require each group

to complete the task, the final state of their project could be significantly different

from the correct solution. For example, G4 had similar mistake rate compared to

G1 and G7, but its adjusted completion time is much longer. However, mistake rate

shows that experience is an important factor. G3 has the lowest mistake rate, since

one participant was familiar with the platform and made less mistakes. In contrast,

participants in G8 added many unnecessary components at the first, and resolved the

issue by requesting help.

61

5.4.5 Likeability

In addition to the above metrics, we asked participant to answer three same likert

scale problems before and after the study where 1 is "Strongly disagree" and 5 is

"Strongly Agree". To evaluate how different collaboration models improve their like-

ability in programming with others, we counted the percentage of participants whose

likeability towards each statement increases, remains the same or decreases after fin-

ishing the study. Here are the three likert scale statements we asked in the survey, and

Table 5.10, 5.11, 5.12 summarizes likeability changes towards each statement based

on different collaboration models respectively.

1. I like to work with others when I’m programming.

Project-level Component level Real-time
Increase 16.67% 16.67% 37.5%
Same 50% 66.67% 62.5%

Decrease 33.33% 16.67% 0%

Table 5.10: Likeability change towards statement "I like to work with others when
I’m programming." based on different collaboration models

2. Programming with others is helpful for solving problems.

Project-level Component level Real-time
Increase 0% 16.67% 25%
Same 83.33% 83.33% 62.5%

Decrease 16.67% 0% 12.5%

Table 5.11: Likeability change towards statement "Programming with others is helpful
for solving problems." based on different collaboration models

3. It is/would be useful to be able to program with others in real-time (on the

same code).

Based on the data, we found that users’ satisfaction toward collaborative program-

ming is lowest with project-level collaboration model, and highest with real-time

collaboration model. In the post-study survey, some participants using project-level

62

Project-level Component level Real-time
Increase 16.67% 0% 62.5%
Same 50% 83.33% 25%

Decrease 33.33% 16.67% 12.5%

Table 5.12: Likeability change towards statement "It is/would be useful to be able to
program with others in real-time (on the same code)." based on different collaboration
models

programming mentioned that "Switching leader slows them down" and "It would be

great if they can edit the project at the same time".

63

64

Chapter 6

Discussion

6.1 Collaboration models

The three collaboration models we proposed illustrate how we control the individual

power with different constraints. Gutwin et al. discussed three situations about the

trade-off between individual power and group awareness in the collaborative program-

ming environment, and we adapted those inside MIT App Inventor: workspace navi-

gation, that who is allowed to toggle the editors and move around in workspace; arti-

fact manipulation, that who can modify the components and blocks; view representa-

tion, that how users are represented in other collaborators’ screen [21]. For workspace

navigation and view representation, the three collaboration models adopt the same

technique. Users are free to toggle the editors and move around the workspace to

focus on the part they are interested. For example, one user can open the Designer

and the other can open the Blocks. They are represented as colored squares on other

collaborators’ screen, and they have a specific color to indicate which part of the

project they are working one. The major difference between the three collaboration

models is artifact manipulation, since they have the different constraints on editing

the project.

Using different collaboration models, participants showed different collaborative

behaviors, and the efficiency of collaboration depends on how users take advantage

of the constraints. For example, within the groups using project-level collaboration

65

model, G4 adopted different collaboration strategy from G1 and G7, and it ended up

the longest adjusted completion time. It is important that users communicate with

each other using project-level collaboration model, and collaboration is less efficient

by switching leader too often without enough communication.

Although our sample size is small, I think real-time collaboration model is the most

efficient among three collaboration models. The data suggests that it takes shorter

time to complete the task using real-time collaboration model than project-level col-

laboration model, and users were engaged in more communication and collaboration

than component-level collaboration model. In addition, the real-time collaboration

model improves users’ likeability towards collaborative programming most. More

participants would be required in order to determine whether those effects are statis-

tically significant. I think the real-time collaboration model is more intuitive for users

to understand than the other two collaboration models, since people expect to edit

the project at the same time while using collaborative environment such as Google

Docs.

6.2 Collaborative programming

The collaborative programming environment I introduced in this thesis is the first

attempt that enables users program collaboratively in real time in MIT App Inventor.

With the current version of MIT App Inventor, users can only work on a project with

one account, which means they cannot edit the project in parallel. Although AIMerger

enables users program collaboratively by splitting tasks by screens, it does not allow

users to work on the same project and see others’ changes simultaneously [13].

The new environment provides users a new approach to teach and learn. For ex-

ample, it enables "teacher-student" or "mentor-mentee" roles inside MIT App Inven-

tor. Teachers can share the projects with students in read-only mode to demonstrate

ideas and demos. Students can work on group projects after school, because they can

collaborate remotely. In addition to the commonly used pair programming method,

our collaborative programming environment introduced a new mode of cooperation

66

between students. Instead of sitting shoulder-to-shoulder and working on the same

machine, students can work on the different machines in distributed locations and re-

view others’ changes simultaneously. Therefore, the new collaborative programming

environment will encourage more group projects within the curriculum.

As MIT App Inventor is built for students and novice programmers, the collabora-

tive programming environment gives them an opportunity to develop their teamwork

skill at an early stage. Based on the interview with professional software engineers

done by Bacchelli et al, they view collaboration from four perspectives: 1. communi-

cation, 2. helping each other by sharing information, 3. knowing what others know,

and 4. working on the same goal, doing different things [3]. Our real-time collabora-

tive environment addresses three perspectives except the first one. It enables users

to work on the same project, and they can work on different components or blocks.

Since users can toggle editors and move around workspace freely and the project is

identical across different users, they have the same information about the project.

Because we represent users with colored square and indicate the part they work on

with colored border, users share the information about their actions to others.

Our implementation of collaborative programming environment can be generalized

to other blocks-based programming tools, such as Scratch, because we did not use any

techniques specific to MIT App Inventor. The publish-subscribe pattern and event

handling design pattern can be used in any systems.

6.3 Computational thinking

This new collaboration mechanism for MIT App Inventor touches on all four of the

key computational thinking practices of Brennan and Resnick [25]. Multiple users

can incrementally and iteratively build small units either in isolation or together

depending on the complexity of the tasks and expertise of the individuals. Users can

explore different debugging techniques to assist one another in addressing problems

in the code. Reuse and remix of code can happen on a much finer time granularity on

the order of seconds or minutes. Lastly, users can work together to help one another

67

understand and exploit abstraction and modularization techniques within a program.

6.4 Limitation

Our collaborative environment does not address the communication perspective and it

is a challenge to understand others’ thought process when collaborating with blocks-

based programming tools. With the text-based programming languages, program-

mers can know others’ plan via comments. However, it is hard to place comments

in visual programming environment without disrupting actual programming logic.

One way we can handle it is to add a screen for comments, so users can toggle the

comments screen as they need. Another way to help users to understand others is

adding a communication channel, so that users can exchange their ideas while they

are programming.

One problem participants had in the user study is that the project was not syn-

chronized sometime. The failure in the synchronization interrupts the collaboration

and decreases users’ satisfaction towards collaborative programming. Since we only

have one collaboration server, it is easy to have server overloaded and failures when

network is not reliable. One solution is that we build a distributed system infrastruc-

ture in the collaboration server, such as Paxos or Raft, to achieve consensus across

different clients. Another approach is using web real-time communication toolkit,

such as WebRTC [24], to establish peer-to-peer connection between clients, so that

client can not only request data from the server, but also from browsers of other

clients.

68

Chapter 7

Conclusion

In this thesis, I present a real-time collaborative programming environment inside

MIT App Inventor, which enables users work on the same project, and see others’

changes simultaneously. I designed and modified the collaborative environment to

support three collaboration models: 1. Project-level collaboration model, 2. Compo-

nent-level collaboration model, and 3. Real-time collaboration model. I conducted a

user study with twenty participants to evaluate the efficacy of different collaboration

models, and concluded that using real-time collaboration model, users have more

control over the project, they finish the tasks faster and engage in more communica-

tion, and they have a higher likeability towards collaborative programming than using

other two collaboration models. When the real-time collaborative programming envi-

ronment is published to the public, it will change the design of the curriculum based

on MIT App Inventor, and more complex and interesting applications will appear.

7.1 Future work

To publish the collaborative programming environment, there are a few improvements

we can make to the system.

1. To enable user communicate when collaborating in distributed locations, we can

build a chat window inside MIT App Inventor. The chat window allows users

to communicate via text, audio or video.

69

2. To improve the scalability and synchronization problem, we can deploy We-

bRTC to enable users request data from the server and browsers of other clients,

so that we mitigate the server overload and the lag of synchronization.

70

Appendix A

User Study Task A : Space Invaders

Figure A-1: The user interface of the Space
Invaders App

The Space Invaders App features a

player controlled rocket and an alien

spaceship.The player scores points by

hitting the alien spaceship with a bul-

let while the alien spaceship appears in

random locations.

Components you would use:

∙ Clock

∙ ImageSprite

∙ Canvas

∙ Label

∙ Button

App Functionality:

1. Initialize Game:

Score should be zero, and bullet should be invisible, put rocket and saucer at

an initial position.

71

2. Restart Button:

Sometimes, users might want to restart the game and reset their score. Users

can do this by clicking the Reset Button. When this happens, we need to set

the score back to 0, and reset rocket and saucer’s position.

3. Score Label:

This label shows the current score.

4. Game Play:

User can drag the rocket only along its X axis. When the rocket is dragged set

its X property to be the currentX that we dragged the sprite to.

When user touches the rocket, we fired a bullet whose heading is 90 and speed

is 5. Bullet is a Ball component on the canvas. Heading is a value from 0 to

360 that indicates what direction the sprite should be moving towards. 0/360

is to the left, 90 is up, 180 is right, and 270 is down. The speed is measured in

pixels/sec.

If the bullet hit the saucer, the score should increase by 1. Bullet should become

invisible, and the saucer should move to a new position. If the bullet hits the

top edge of our canvas, it should disappear.

To make the game even harder, we set a Clock component, which has 3000 time

interval. When the clock goes off, we reset saucer’s position.

72

Appendix B

User Study Task B : Get the Gold

Figure B-1: The user interface of the Space In-
vaders App

Get the Gold app features a

player controls a pirate ship to

collect gold. The goal of the

game is to collect all coins on the

screen. Components you would

use:

∙ Button

∙ Label

∙ ImageSprite

∙ Canvas

∙ Clock

App Functionality:

1. Game Initialization:

There are five coins on the screen, and a pirate ship. When game starts, place

coins and ship at random positions on the canvas.

2. Time Label:

Create a label to display the time that it took you to get all the gold. It’s initial

state is 0:0.

73

3. Reset Button:

When reset button is clicked, reset game to its initial state.

4. Clock:

You will need a clock component. Set its time interval to 2000. When timer

goes off, move the coins that have not been collected by the ship to new random

positions.

5. Pirate Ship: Set the initial speed to 6. When ship is flung, set the heading of

the ship to the new heading. When ship hit the edge, bounce ship back. When

ship collides with the coins, make the coin disappear on the screen

74

Appendix C

App Inventor Group Collaboration

Pre-study User Survey

1. What year are you?

∙ Freshman

∙ Sophomore

∙ Junior

∙ Senior

∙ Graduate Student

2. Which major are you?

3. Have you ever participated in group projects, including class assignment? If

yes, what is the largest team size?

4. Have you used any of the following block-based programming tools?

∙ App Inventor

∙ Snap!

∙ Scratch

∙ Lego Mindstorms

75

5. Have you ever built an Android application?

6. On a scale of 1-5 (with 1 being the lowest and 5 being the highest) please rate

the following statements

∙ I like to work with others when I’m programming.

∙ Programming with others is helpful for solving problems.

∙ It is/would be useful to be able to program with others in real-time (on

the same code).

76

Appendix D

App Inventor Group Collaboration

Post-study User Survey

1. Please circle the collaborative mode you did with and write down the task name

you did:

∙ Project-level collaborative mode:

∙ Component-level collaborative mode:

∙ Real-time collaborative mode:

2. In this collaborative mode, please explain in detail the ways used to identify

what your teammate was doing within the App Inventor interface.

3. Please describe any instances during this collaborative mode that you found it

particularly useful to collaborate with your partner in real time.

4. Please describe any instances during this collaborative mode that you found it

particularly frustrating to collaborate with your partner in real time.

5. What changes would you make to the system if you are the engineer in App

Inventor?

6. Do you have any additional comments about this collaborative modes, or the

real-time collaboration in App Inventor in general?

77

7. On a scale of 1-5 (with 1 being the lowest and 5 being the highest) please rate

the following statements

∙ I like to work with others when I’m programming.

∙ Programming with others is helpful for solving problems.

∙ It is/would be useful to be able to program with others in real-time (on

the same code).

78

Bibliography

[1] "About Us." About Us | Explore MIT App Inventor. MIT App Inventor Team,

n.d. Web. 19 Apr. 2017.

[2] D. Spinellis, "Version control systems," in IEEE Software, vol. 22, no. 5, pp.

108-109, Sept.-Oct. 2005.

[3] Guzzi, Anja, Alberto Bacchelli, Yann Riche, and Arie Van Deursen. "Supporting

Developers’Coordination in the IDE." Proceedings of the 18th ACM Conference

on Computer Supported Cooperative Work & Social Computing - CSCW ’15

(2015)

[4] Boyer, Kristy Elizabeth, August A. Dwight, R. Taylor Fondren, Mladen A. Vouk,

and James C. Lester. "A Development Environment for Distributed Synchronous

Collaborative Programming." ACM SIGCSE Bulletin 40.3 (2008): 158.

[5] Goldman, Max, Greg Little, and Robert C. Miller. "Real-time Collaborative

Coding in a Web IDE." Proceedings of the 24th Annual ACM Symposium on

User Interface Software and Technology - UIST ’11 (2011)

[6] Ghorashi, Soroush, and Carlos Jensen. "Jimbo." Proceedings of the 9th Interna-

tional Workshop on Cooperative and Human Aspects of Software Engineering -

CHASE ’16 (2016)

[7] Suzuki, Hideyuki, and Hiroshi Kato. "AlgoBlock âĂŤan Open Programming Lan-

guage." Interaction-level Support for Collaborative Learning. L. Erlbaum Asso-

ciates Inc., Oct. 1995

79

[8] McKinsey, Jonathan. "Remote Pair Programming in a Visual Programming Lan-

guage." Thesis. EECS Department, University of California, Berkeley, 2015.

[9] Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Eve-

lyn Eastmond. "The Scratch Programming Language and Environment." ACM

Transactions on Computing Education 10.4 (2010)

[10] Wolber, David, Hal Abelson, Ellen Spertus, and Liz Looney. App Inventor 2:

Create Your Own Android Apps. Beijing: O’Reilly, 2014

[11] "Overview." GWT Project. N.p., n.d. Web. 01 May 2017.

<http://www.gwtproject.org/overview.html>.

[12] "Blockly | Google Developers." Google. Google, n.d. Web. 01 May 2017.

<https://developers.google.com/blockly/>.

[13] Feeney, Katherine Kyle. "ENCOURAGING COLLABORATION THROUGH

APP INVENTOR." Thesis. Mills College, 2012. Web.

[14] Gross, Tom. "Supporting Effortless Coordination: 25 Years of Awareness Re-

search." Computer Supported Cooperative Work (CSCW) 22.4-6 (2013): 425-74.

[15] Dourish, Paul, and Sara Bly. "Portholes." Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems - CHI ’92 (1992): n. pag.

[16] Google Docs. Google Inc., n.d. Web. <https://www.google.com/docs/about/>.

[17] Gamma, Erich, Richard Helm, Ralph E. Johnson, and John Vlissides. Design

Patterns: Elements of Reusable Object-oriented Software. New Dehli: Pearson

Education, 2015. Print.

[18] Socket.IO. Web. 05 May 2017. <https://socket.io/>.

[19] "Pub/Sub." Redis. Web. 05 May 2017. <https://redis.io/topics/pubsub>.

[20] Bender, Matthias, Sebastian Michel, Sebastian Parkitny, and Gerhard Weikum.

"A Comparative Study of Pub/Sub Methods in Structured P2P Networks."

80

Databases, Information Systems, and Peer-to-Peer Computing Lecture Notes

in Computer Science (n.d.): 385-96.

[21] Gutwin, Carl, and Saul Greenberg. "Design for Individuals, Design for Groups."

Proceedings of the 1998 ACM Conference on Computer Supported Cooperative

Work - CSCW ’98 (1998): n. pag. Web.

[22] Cockburn, Alistair, and Laurie Williams. "The costs and benefits of pair pro-

gramming." Extreme programming examined (2000): 223-247.

[23] McDowell, Charlie, et al. "Pair programming improves student retention, confi-

dence, and program quality." Communications of the ACM 49.8 (2006): 90-95.

[24] "WebRTC Home | WebRTC." WebRTC Home | WebRTC. N.p., n.d. Web. 19

May 2017. <https://webrtc.org/>.

[25] Brennan, Karen, and Mitchel Resnick. "New Frameworks for Studying and As-

sessing the Development of Computational Thinking." Proceedings of the 2012

Annual Meeting of the American Educational Research Association, Vancouver,

Canada (2012): n. pag. Web.

81

