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Abstract

This thesis explores the use of coevolutionary genetic algorithms as tools in developing
proactive computer network defenses. We also introduce rIPCA, a new coevolution-
ary algorithm with a focus on speed and performance. This work is in response to
the threat of disruption that computer networks face by adaptive attackers. Our
challenge is to improve network defenses by modeling adaptive attacker behavior and
predicting attacks so that we may proactively defend against them. To address this,
we introduce RIVALS, a new cybersecurity project developed to use coevolutionary
algorithms to better defend against adaptive adversarial agents. In this contribution
we describe RIVALS’ current suite of coevolutionary algorithms and how they ex-
plore archiving as a means of maintaining progressive exploration. Our model also
allows us to explore the connectivity of a network under an adversarial threat model.
To examine the suite’s effectiveness, for each algorithm we execute a standard co-
evolutionary benchmark (Compare-on-one) and RIVALS simulations on 3 different
network topologies. Our experiments show that existing algorithms either sacrifice
execution speed or forgo the assurance of consistent results. rIPCA, our adaptation
of IPCA, is able to consistently produce high quality results, albeit with weakened
guarantees, without sacrificing speed.
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Chapter 1

Introduction

1.1 Motivation

Along with the steady increase of internet connected devices in the past decade, we,

as a society, have faced an ever growing list of cyber attacks with ever increasing so-

phistication. As we rely more and more on networks to handle our critical or sensitive

information, it is necessary to make sure that we proactively maintain and update

the security of our networks. Unfortunately, today, many networks are implemented

with cybersecurity as a reactive action rather than a proactive one. Particularly, they

lack the capability to predict potential advanced adaptive attacks. That is, when an

attack is mitigated by a specific defense, it is likely that the attacker will adapt their

attack to bypass the updated network defenses. The network defenses then have to

update as well in response to the attacker’s new attack. This sequence continues and

causes both parties to evolve in response to each other’s actions.

This arms race or attacker-defender dynamics is similar to coevolution in biology.

As such, this problem is well suited to being studied using coevolutionary algorithms.

By leveraging this class of algorithms, we hope to improve the landscape for defenders

as they can then use them to prepare better defenses by simulating an attacker’s

behavior on the network.

In simulating any type of complex behavior with evolutionary algorithms, we face

unique issues. Since simulation can be costly, speed of execution and efficiency of

13



Figure 1-1: RIVALS system overview.

the algorithm become increasingly important. We must also ensure that the results

returned by the algorithm are effective and useful. With these issues in mind, it is

necessary to explore the trade-offs provided by different algorithms as they respect to

speed and quality of results as well as algorithm objectives. Other trade-offs include

complexity of fitness calculation, goal of fitness evaluator and population archives

among others. Fitness in this case relates to the fitness of an individual as it compares

to the adversarial population (i.e. if an individual can deter an attack, its fitness is

higher). As an example of a trade-off made, while archives may provide monotonic

increasing performance for a given population, they come at a high cost on execution

time. Thus, an otherwise powerful algorithm can be potentially made unfit for many

real-world applications.

This research forms part of a larger project, RIVALS (Garcia et al., 2017), a

new cybersecurity project that takes advantage of coevolutionary algorithms. RI-

VALS makes use of coevolutionary algorithms in order to return the optimal defenses

available when under the threat of an adaptive adversary, see Figure 1-1. RIVALS’

purpose is to ensure that we are able to provide resilient network configurations that

can sustain adaptive attacks with respect to network missions or network connectiv-

ity. Through these analyses we can help network designers improve their networks

with proactive attackers in mind.

14



1.2 Research Question

Is it possible to effectively employ coevolutionary algorithms to appropriately model

the complex adaptive behavior of attackers and defenders? Moreover, since this

behavior is inherently complex and network simulation requires a large amount of

computation, we want to know: can we improve on existing algorithms by applying

trade-offs in favor of speed while perhaps sacrificing performance guarantees?

1.3 Contributions

We analyze the effectiveness of our suite of coevolutionary algorithms on both Compare-

on-one, a standard coevolutionary algorithm baseline problem, and on our network

simulator, RIVALS. With Compare-on-one, we can compare our implementations

with previous results and also provide benchmarks for our own variations of the algo-

rithms. Additionally, we introduce rIPCA, a modified version of IPCA in which we

expand on the idea of non-domination and apply this concept to both populations.

This variation implies that we now have weaker guarantees, however, in practice,

despite this trade-off, we find a much faster algorithm with only a slight drop in the

quality of results. Lastly, we determine the usefulness of rIPCA and the other coevo-

lutionary algorithms with respect to our adversarial network simulator. Our network

simulator measures the performance of these algorithms by applying them to two dif-

ferent network security problems: strategic network resource placement and network

mission completion. We have configured these problems to work in conjuntion with

our suite of coevolutionary algorithms. The results and analysis of our experiments

are presented in Chapter 4.

15
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Chapter 2

Related Work

Coevolutionary algorithms such as the IPCA (Jong, 2007) algorithm allow us to

recreate coevolutionary behavior programmatically. Here we introduce existing work

that considers applications of coevolutionoary algorithms. We also describe work

related to cyber security and how previous research has explored adversarial behavior.

2.1 Coevolution

This research is inspired by STEALTH (Simulating Tax Evasion And Law Through

Heuristics) (Hemberg et al., 2016), a paper which applies coevolutionary algorithms

to the field of tax law in order to detect workarounds to tax policy. We build upon the

fact that the adversarial setting between tax evaders and tax policy writers follows the

same type of adversarial dynamics between network attacker and network defenders.

As such, we are able to apply some of the same coevolutionary concepts to our field

of study, cybersecurity.

We also see coevolution in an adversarial setting in “Increasing infrastructure

resilience through competitive coevolution” (Service and Tauritz, 2009). This paper

explores coevolution as a means to improve infrastructure resilience. In “Red teaming

with coevolution” (Hingston and Preuss, 2011), the authors present coevolutionary

algorithms as a means to determine "strategic and tactical options available to each

side in a conflict situation". These papers are similar to ours in that they deal with

17



coevolution in a competitive setting within an adversarial environment. Our work on

RIVALS, however, focuses on adversarial behavior within network security.

2.2 Adversarial Cyber Security

The study of adversarial dynamics, as it relates to cybersecurity, has expanded re-

cently within the field of Artificial Intelligence. As in our published work Garcia

et al., 2017, we see examples of study of adversarial dynamics in the fields of Evo-

lutionary Computation, Machine Learning, Game Theory and AI-planning. We now

introduce examples of research in these fields in their respective order. In Haddadi

and Zincir-Heywood, 2015, the authors utilize Evolutionary Computation to analyze

botnet dection systems and the effect of botnet evolution. With regards to Machine

Learning, we see how patterns learned from data gathered can be useful in email

spam-filters (Dalvi et al., 2004). Next, Game Theory, a powerful tool used to deter-

mine optimal outcomes in situations between conflicting parties, has seen applications

in adversarial behavior through the paper “autonomous, collaborative control for re-

silient cyber defense” Wagner et al., 2012. Lastly, in AI-Planning, where programs

develop a strategy according to a given set of goals, we see considerations of adver-

sarial dynamics in Silva Arantes et al., 2015. The aforementioned paper considers

“UAV Path Re-planning” under critical situations.

Within the cybersecurity field we also see adversarial dynamics being studied

through the study of Moving Target Defenses (MTDs). The goal of employing MTDs

is to force an adversary to periodically replan its attack as the defender re-allocates

its resources. Previous research (Winterrose and Carter, 2014) has investigated the

use of genetic algorithms in evolving attackers in an environment where defenders

employ the MTD technique.

18



2.3 Adversarial Coevolutionary Cyber Security

Combining these two topics, Coevolutionary Agent-based Network Defense Lightweight

Event System (CANDLES) (Rush, Tauritz, and Kent, 2015), presents a system that

coevolves agent defenders and attackers. Bearing similarity with RIVALS, CANDLES

uses coevolutionary genetic algorithms. However, RIVALS and CANDLES differ in

that RIVALS presents a much more concrete simulation.

While previous research has explored both the field of Coevolution as well as the

field of Adversarial Cyber Security, we have noted that there is currently a lack in re-

search related to the intersection of these topics. Our research aims to reduce this gap

through our analysis of coevolutionary algorithms in the context of network security,

with a focus on developing defenses against adaptive adversarials. Specifically, adver-

sarials with the power to perform DOS (Denial-of-Service) attacks that can disrupt

a network or effectively take down a server and which aim to bypass defensive mea-

sures. This work, together with the other components of RIVALS, has been shown

to be novel and relevant to both the field of coevolution and the field of cybersecurity

(Garcia et al., 2017).
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Chapter 3

Method

In this chapter we introduce our suite of coevolutionary algorithms along with an

overview of the grammars used to incorporate with RIVALS.

3.1 Coevolutionary Algorithms

Coevolutionary algorithms provide a means with which to model coevolutionary be-

havior according to a solution concept (Popovici et al., 2012). Where a solution

concept represents a heuristic for selecting the best individuals per population over a

given generation. In particular, solution concepts may focus on optimizing the fitness

(quality) of individuals for a specific population or they may weigh each population

equally. The quality, or fitness, of an individual is determined by how that individual

performs against its adversaries, the individuals in the adversarial population. These

adversaries are called tests while the individual being optimized is called a solution.

3.1.1 Solution Concepts

A solution concept provides a heuristic for solutions in an evolutionary context. This

notion is important as different problems may require different types of solutions. As

such, it is important that we be able to measure the quality of a solutions (i.e. its fit-

ness) according to a specific goal. Examples of these solution concepts include (Garcia
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et al., 2017):

∙ Best Worst Case A solution’s fitness is its worst performance measure against

the fittest test in the set of tests that it tries to solve

∙ Maximization of Expected Utility A solution’s fitness reflects that its tests

are of equal importance.

∙ Nash Equilibrium favors solutions which lead to stable solution states in

which no sole actor can their improve their state unilaterally.

∙ Pareto Optimal Set Every possible test (solution) is an objective and the

subset of solutions (tests) are the pareto set of this multi-objective space.

3.1.2 Coevolutionary Algorithms with Archives

Pathologies arise in coevolutionary optimization due to its complex dynamics, (Kraw-

iec and Heywood, 2016). These include (Garcia et al., 2017):

∙ Intransitivity, e.g.

– Red Queen Effect

– Cycling

– Transitive dominance, and,

∙ Disengagement (loss of gradient), e.g.

– solution fails to perform in any way on a test

– inability to discover a test to efficiently search for solutions .

To mitigate some of these issues, archives can be added into the coevolution pro-

cess so as to maintain a history of useful solutions with the goal of preserving known

good solutions. An archive maintains these solutions apart from the main coevo-

lutionary process so that they may be stored and not lost (Krawiec and Heywood,
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2016; De Jong, 2005; Jong, 2007; Liskowski and Krawiec, 2016). A coevolutionary

algorithm may employ these archives on one or more of the populations it maintains.

We now describe the suite of coevolutionary algorithms we have implemented for

experimentation with RIVALS (Garcia et al., 2017):

1. COEV and MinMax(Algorithm 1): presents a simple coevolutionary algorithm (Hem-

berg et al., 2016). As seen in the pseudocode, we can adapt its fitness evaluation

to use either the maximum expected utility solution concept or the best worst

solution concept (MinMax).

2. IPCA and rIPCA (Algorithm 2): presents our implementation of the IPCA

algorithm which makes use of archives and the Pareto Optimal Set solution

concept. rIPCA applies the Pareto Optimal Set solution concept to both pop-

ulations, as opposed to just the learner population as done in IPCA(see ALG.2

line 9).

3. MaxSolve(Algorithm 3): uses the maximum expected utility solution concept

and archives (De Jong, 2005).

Algorithm 1 Coev

1: procedure Coev(populations, generations)
2: 𝑡← 0
3: best_individuals← ∅
4: while 𝑡 < generations do ◁ run for # generations
5: pop′ ← Generate(populations)
6: if BestWorstCase then
7: pop′ ← EvalBestWorstCaseFitness(pop′)

8: if MaximumExpectedUtility then
9: pop′ ← EvaluateMEUFitness(pop′)

10: populations← Merge(populations, pop′)
11: populations← SortPopulations(populations)
12: best_individuals← ExtractBest(populations)
13: 𝑡← 𝑡+ 1

14: return best_individuals ◁ Returns best solutions found

23



Algorithm 2 IPCA, rIPCA

1: procedure IPCA(populations, generations)
2: 𝑡← 0
3: 𝐿0 ← populations

learners

4: 𝑇 0 ← populations
tests

5: best_individuals← ∅
6: while 𝑡 < generations do ◁ run for # generations
7: 𝑇 𝑡 ← NonDominated(𝐿𝑡, 𝑇 𝑡) ◁ extract pareto-front
8: if rIPCA then
9: 𝐿𝑡 ← NonDominated(𝑇 𝑡, 𝐿𝑡) ◁ extract pareto-front

10: 𝐿𝑡+1 ← 𝐿𝑡

11: 𝑇 𝑡+1 ← 𝑇𝑡

12: 𝑁𝐿← GenerateLearners(𝐿𝑡)
13: 𝑁𝑇 ← GenerateTests(𝑇 𝑡)
14: 𝑇𝑆 ← UsefulTests(𝑁𝑇, 𝑇 𝑡, 𝑁𝐿, 𝐿𝑡)
15: 𝑇 𝑡+1 ← 𝑇 𝑡+1 ∪ 𝑇𝑆
16: for 𝑖 = 1..|𝑁𝐿| do
17: if Useful(𝐿𝑖, 𝐿

𝑡+1, 𝑇 𝑡+1) then
18: 𝐿𝑡+1 ← 𝐿𝑡+1 ∪ 𝐿𝑖

19: if 𝐿𝑡+1 ̸= 𝐿𝑡 then
20: 𝑡← 𝑡+ 1

21: best_individuals← ExtractBest(populations)

22: return best_individuals ◁ Returns best solutions found
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Algorithm 3 MaxSolve

1: procedure submit(LN, TN)
2: 𝐿← 𝐿 ∪ 𝐿𝑁
3: 𝑇 ← 𝑇 ∪ 𝑇𝑁
4: n_solved← {}
5: for 𝑙 ∈ 𝐿 do
6: n_solved[𝑙]← NumberSolved(𝑙, 𝑇 )

7: for (𝑙𝑖, 𝑙𝑗) ∈ 𝐿2, 𝑖 < 𝑗 do
8: if ∀𝑡 ∈ 𝑇 : 𝐺(𝑙𝑖, 𝑡) = 𝐺(𝑙𝑗, 𝑡) then n_solved[𝑙𝑗]← 0

9: Sort(𝐿𝑁, n_solved)
10: for 𝑙 ∈ 𝐿 do
11: if n_solved[𝑙] > 0 then
12: Select(𝑙)

13: for 𝑡 ∈ 𝑇 do
14: if ∃𝑙 ∈ 𝐿 : Solves(𝑙, 𝑡) then
15: Select(𝑡)

16: for 𝑡 ∈ 𝑇 do
17: for 𝑡′ ∈ 𝑇, 𝑡′! = 𝑡 do
18: if ∀𝑙 ∈ 𝐿 : 𝐺(𝑙, 𝑡) = 𝐺(𝑙, 𝑡′) then
19: Deselect(𝑡)

20: return L, T ◁ Returns updated populations

3.1.3 rIPCA

Our proposed variation of IPCA, rIPCA, follows the main structure of the original

algorithm, however, our addition to filter out dominated test individuals means that

we no longer keep all useful tests. As such, we conjecture that rIPCA loses this quality

and is therefore at a disadvantage with respect to IPCA in terms of the quality of

solutions that it is able to produce. In contrast, our changes allow our algorithm to

still perform well on our problem test suite, regardless of its guarantees, while also

improving the simulation execution time drastically. Since IPCA retains all of the

useful individuals from one population, the population size rises indefinitely and forces

the algorithm to perform many more calculations than perhaps are necessary. rIPCA,

on the other hand, filters both the defending population as well as the attacking

population. Thus, we are able remove a large portion of the computation required by

IPCA.
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3.2 Grammatical representation for coevolutionary

search

RIVALS (Garcia et al., 2017) uses complex grammars to facilitate the expression

and exploration of complex attack sequences and defender strategies. This will also

help with incorporating domain knowledge. It uses Grammatical Evolution (GE)

as its method. GE uses a variable length integer representation that maps from a

grammar (O’Neill and Ryan, 2003). An example of GE and competitive coevolution is

in the investigation of spatial coevolution of age layered planes in robocode (Harper,

2014). The ease of use of GE currently outweighs our concern regarding the low

locality of GE operators, e.g. (Whigham et al., 2015).

We have two main grammar classes for our experiments. The first, to optimize

for strategic resource placement, is our network placement grammar class. In this

grammar, attacks are modeled as simple DOS (Denial of Service) attacks in which a

targeted node is considered unreachable for the entirety of its evaluation. The defenses

are set as tasks which attempt to find a path between two nodes. The attack’s fitness

will improve if it can cause more tasks to fail. The attack grammar for Topology 0,

given start symbol <Attacks>, can be expressed as:

⟨Attacks⟩ ::= DOSAttack(⟨node⟩)

| DOSAttack(⟨node⟩), ⟨Attacks⟩

⟨node⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6

We note that this grammar is recursive with respect to the <Attacks> symbol.

This allows for more variation within the attacker population. Our fitness function,

however, will take into account the amount of attacks included when determining the

performance of that attack, favoring those attacks which minimize their use of re-

sources. The corresponding grammar for the defending population with start symbol

<list> is:

⟨list⟩ ::= [Task(⟨node⟩, ⟨node⟩), Task(⟨node⟩, ⟨node⟩), Task(⟨node⟩, ⟨node⟩), Task(⟨node⟩,

⟨node⟩), Task(⟨node⟩, ⟨node⟩), Task(⟨node⟩, ⟨node⟩)]

⟨node⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6
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This grammar denotes that each defense will test the connectivity between six

pairs of nodes in the network through our concept of a Task.

While resource placement is a useful problem, we also care about the capability to

carry out network tasks even if a node is unreachable for a certain period of time. For

this case, we introduce our second class of grammars, the network mission grammars,

which are time-aware. The corresponding attack grammar is as follows:

⟨Attacks⟩ ::= DOSAttack(⟨node⟩, ⟨start_time⟩, ⟨end_time⟩)

| DOSAttack(⟨node⟩, ⟨start_time⟩, ⟨end_time⟩), ⟨Attacks⟩

⟨node⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6

⟨start_time⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

⟨end_time⟩ ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The defending grammar for the network missions problem makes use of three

different routing protocols. This grammar is simple as it is limited to only a choice

between three options and is thus not presented here. Lastly, as we have three different

topologies for our RIVALS simulator, we implement three versions of these grammars,

each with the corresponding node and time values.
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Chapter 4

Experiments

This chapter presents the experiments we ran on our suite of coevolutionary algo-

rithms. We describe our configurations for the algorithms implemented, include our

results and then follow with a discussion of the results.

4.1 Setup

Our experiments include running on Compare-on-one, a standard coevolutionary al-

gorithm benchmark, as well as experiments using the RIVALS network simulator.

The network simulator has been set up with three increasingly complex topologies as

well as two different optimization problems. Strategic network resource placement,

our first optimization problem, deals with placement of network resources so as to

minimize potential loss of connectivity when faced against an adaptive adversarial.

The second problem, network defenses of mission critical tasks, deals with optimizing

the defense strategy (in our case, network protocol) when faced against an adaptive

adversarial. These experiments help bring us insights into how the algorithms perform

as well as how they can scale over the different topologies.

In Table 4.1 we include our configuration of the algorithms. Our settings follow

the settings for Compare-on-one used in IPCA (Jong, 2007) so that we may compare

with previous results and similar works. Our network configuration follows that of

our published work (Garcia et al., 2017). Each experiment is run over 30 iterations
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Table 4.1: Algorithm Settings
Parameter Setting Compare-on-one Network Simulations &

Network Resource Placement
Population size 10 40 (10 for Topology 2)
Archive size 10 20
Generations 1000 20
Max length 10 20
Parent archive probability 0.9 0.9
Crossover probability 0.8 0.8
Mutation probability 0.1 0.1
Mutation bias low -0.15 NA
Mutation bias high 0.1 NA
Grammar No Yes

and the results are averaged to produce the final results.

We perform our tests on a 24 core, each core an Intel(R) Xeon(R) CPU E5-2630

v4 @ 2.20GHz processor, machine with 96GB of RAM. Tests are performed serially

for greater accuracy and to eliminate any possible interference between tests.

4.1.1 Compare-on-one

In Compare-on-one Jong, 2007, there are two populations: learners and tests. Each

individual in either population is a vector of real numbers with a set size, 10 for

example. When an individual, solution 𝐴, is compared against an individual of the

opposite population, test 𝐵, we consider the position in 𝐵’s vector which contains

the highest value. If 𝐴’s value in the corresponding position is higher than or equal to

𝐵’s, then 𝐴 is said to defeat 𝐵 and lose otherwise. Performance for Compare-on-one

is measured as the “lowest value among all dimensions of an individual” (Jong, 2007).

As mentioned before, we run our experiments on Compare-on-one over 30 runs and

average the results.

4.1.2 Network Mission Simulations

In Garcia et al., 2017 we describe the setup of our network mission simulator. We

reproduce those details here for convenience:

30



1 2 

5 6 
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Figure 4-1: Topology 0, simple network, used to benchmark the defensive actions
for routing of Shortest-path, Flooding and Chord

Context: DDoS attacks are a common way to disrupt certain network resources

and are accomplished by flooding the target with a high volume of traffic. For exam-

ple, like a SYN FLOOD1 attack. The attack grammar, in section 3.2, allows nodes

to be selected and flooded.

Network Topology We start with a simple topology (Figure 4-1, Topology 0)

as a benchmark that allows us to explore simple mission scenarios exhaustively before

scaling up to larger and more realistic topologies (Figures 4-2 & 4-3, Topologies 1 and

2) that are too large to conveniently enumerate all the combinations of attacks.

Missions: A mission is comprised of a sequence of tasks where each task has a

start node, an end node, and a maximum duration after which it fails. Tasks are

meant to simulate different parts of a mission, the parts relevant to a network could

be e.g. coordination via chat between two users, using Internet Relay Chat (IRC),

or transfer of a file using File Transfer Protocol (FTP) from one user to a server. A

1https://en.wikipedia.org/wiki/SYN_flood
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Figure 4-2: Topology 1, larger network providing more nodes and a different topology

mission is successful if every task is completed one after the other in the time allowed

per task. It is unsuccessful if any of the tasks of the mission fail. Currently, missions

are limited to one task to allow us to reason about the results obtained.

Attacker: The goal of the attacker is to disrupt the network, with as little effort

as possible, directing its DOS attacks in a way that causes mission failure. The

attacker is quite powerful and can do this through its capability of being able to

specify any node or set of nodes in the network to launch DDoS attacks on. The

attacker has the ability to cause failure in these nodes and specify for how long it

wants the DoS attack on each node to last.

Defender: The goal of the defender is to ensure mission success. The defender

currently does this by choosing among 3 different routing protocols that use different

techniques to deal with the nodes being out of service (attacked): Shortest path

protocol At the beginning of a task, the network calculates the shortest path from

a start node to an end node, and attempts to send the packet along this path. If at

any point along the way the path becomes blocked due to node failure caused by an

attacker, the network waits for the blocked node to become free before continuing.

This protocol is more expensive in terms of time when a network is under attack.
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Figure 4-3: Topology 2, possible network for a more realistic mission

It is also more vulnerable to single nodes being attacked. Flooding protocol The

flooding protocol works by sending multiple copies of the packet along all available

paths and completes the task when the first packet reaches its destination through

any of these paths. This is more expensive in hops but could be cheaper in time when

under an attack.

Chord protocol Chord chooses paths using its finger tables. Even under attack, its

routing persists due to its reconfigurability when a node is lost or returns to service

(see Stoica et al., 2001).

Fitness Functions: We defined fitness functions that reflect the goals of the

attacker and defender. We reward attackers for being able to disrupt a mission by

attacking very few nodes for a short amount of time and punish attackers as the

number of nodes and for how long they attack them increases. The fitness function
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for the attacker is

𝑓𝑎 =
1−𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠

(𝑛_𝑎𝑡𝑡𝑎𝑐𝑘𝑠 · 𝑡𝑜𝑡𝑎𝑙_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) + 𝑛_𝑎𝑡𝑡𝑎𝑐𝑘𝑠

where 𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 is describing whether the entire mission succeeded(1) or

failed(0), 𝑛_𝑎𝑡𝑡𝑎𝑐𝑘𝑠 is the total number of nodes attacked in the network, and

𝑡𝑜𝑡𝑎𝑙_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is the aggregated amount of time nodes were attacked. We include

an additional 𝑛_𝑎𝑡𝑡𝑎𝑐𝑘𝑠 term in the denominator so as to prefer solutions with least

amount of attacks. Note that with the grammar used (Section 3.2), the fitness func-

tion rewards attacker that attack fewer nodes, even though the recursive grammar

allows any number of them.

Similarly, we reward defenders that complete the mission quickly and with a short

amount of hops and punish those that take longer and use more network resources.

For example, the flooding routing mechanism gives a better guarantee that the mission

will be completed than the shortest path protocol, but floods the network and thus

uses many hops around the network to do so. This behavior is taken into account

into the fitness function and punished. The fitness function for the defender is

𝑓𝑑 =
𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑡𝑖𝑚𝑒 · 𝑛_ℎ𝑜𝑝𝑠

where 𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑡𝑖𝑚𝑒 is the total time a specific routing protocol took to complete the

mission and 𝑛_ℎ𝑜𝑝𝑠 is total number of hops taken by the protocol to complete the

mission.

In order to keep the network simulation simple, we assume that every edge is

unit-length.

4.1.3 Strategic Network Resource Placement

Given a network, we would like to know where we should place our most active/critical

services such that, even while under attack, services remain connected to their peers.

To solve this problem we consider our problem under our coevolutionary model and
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assign defending and attacking population. We represent defender individuals as a

series of tuples of start and end nodes in the network (see Sec. 3.2). These individuals

work to determine if there is a working path between the given start and end nodes

under the presence of an attack. An attacker in this problem works by selecting a few

nodes to attack with DOS attacks. The selected nodes by the attacker are then set

to be unreachable. The attacker’s goal is to disrupt the network as much as possible

while minimizing the use of resources. The goal of the defender is to select routes

which maintain high connectivity even while under attack.

Given these goals for the defenders and attackers, we introduce the following

fitness functions:

∙ Defender:

𝑓𝑑 =
𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙

𝑛_𝑡𝑎𝑠𝑘𝑠
− 𝑛_𝑠𝑎𝑚𝑒_𝑛𝑜𝑑𝑒𝑠− 𝑛_𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒_𝑡𝑎𝑠𝑘𝑠

Where 𝑛_𝑡𝑎𝑠𝑘𝑠 represents the number of tasks, 𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 represents the

amount of successful tasks, 𝑛_𝑠𝑎𝑚𝑒_𝑛𝑜𝑑𝑒𝑠 represents how many tasks are such

that the task’s start is the same as its end, and 𝑛_𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒_𝑡𝑎𝑠𝑘𝑠 counts how

many tasks are duplicated. This formula works to promote defenses which are

successful and which don’t include trivial tasks such as those represented by

𝑛_𝑠𝑎𝑚𝑒_𝑛𝑜𝑑𝑒𝑠 and which also don’t include duplicate tasks.

∙ Attacker:

𝑓𝑎 =
𝑛_𝑓𝑎𝑖𝑙𝑒𝑑

𝑛_𝑡𝑎𝑠𝑘𝑠
− 𝑛_𝑎𝑡𝑡𝑎𝑐𝑘𝑠

1000 · 𝑛_𝑡𝑎𝑠𝑘𝑠

In this case, the individual is rewarded for causing tasks to fail but is also penal-

ized for performing many attacks, with respect to the number of tasks it faces.

The variable 𝑛_𝑓𝑎𝑖𝑙𝑒𝑑 counts the amount of failed tasks and 𝑛_𝑎𝑡𝑡𝑎𝑐𝑘𝑠 counts

the amount of nodes this individual will attack. Similar to before, 𝑛_𝑡𝑎𝑠𝑘𝑠

represents the number of tasks.

As with the previous experiment setups, we run this experiment over 30 runs and

average the results.
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Table 4.2: Compare-on-one: Execution time and performance results (higher is bet-
ter) for each of the different coevolutionary algorithms. Results are after 1000 gener-
ations and the results are averaged over 30 runs.

Algorithm Exec Time(s) Final Perf.
Coev 15.171± 1.393 0.523± 0.314
MinMax 12.467± 0.934 0.000± 0.000
MaxSolve 23.146± 0.164 0.497± 0.128
IPCA 935.721± 259.952 0.848± 0.045
rIPCA 61.940± 30.404 0.780± 0.228

4.2 Results

In terms of performance, we expected the rIPCA algorithm to be the most promis-

ing as rIPCA builds upon the algorithms mentioned in this paper and also aims to

eliminate redundancies within archive populations thus decreasing overall runtime.

Our experiments show that rIPCA is able to produce similar results to those of IPCA

while performing better in terms of execution time. This section now expands on

each of the results from the experiments.

4.2.1 Compare-on-one

In Table 4.2 we see the results for Compare-on-one on our suite of algorithms. IPCA

and rIPCA perform notably better, with IPCA having less variance and rIPCA per-

forming much faster in terms of execution time. This is expected as IPCA maintains

an archive with monotonic increasing performance while rIPCA opts to simply main-

tain non-dominated archives. Non-dominated archives allow rIPCA to limit the size

of its test population. As such, rIPCA manages to reduce the amount of fitness eval-

uation calls necessary to perform well. However, as seen in Figure 4-4, when running

IPCA and rIPCA for 1250 generations, IPCA is seen to outpace rIPCA in terms of

the quality of results it produces for the learner (defending) population. Unfortu-

nately, the execution time trade-off for this level of performance would render IPCA

too costly for applicable use in RIVALS. Thus making rIPCA a strong contender for

our RIVALS system.
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Figure 4-4: Best fitness value average (over 30 runs) per generation for 1250 genera-
tions on the Compare-on-one problem. Algorithms compared: IPCA and rIPCA

In Figure 4-5 we can see, over 1000 generations, how each algorithm performs. For

this simulation, we compare the performance over the defending population as this is

the population which we have set to optimize for. We note that IPCA shows mono-

tonically increasing performance in its learner (defender) population, which follows

our expectations. rIPCA follows IPCA in performance, however, its performance

increases are not monotonic. Coev and MaxSolve perform similarly, however, the

quality of their results is outmatched by both IPCA and rIPCA. MinMax notably

performs poorly in this problem. This is due mostly to the nature of the problem and

not MinMax itself.
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Figure 4-5: Best fitness value average (over 30 runs) per generation for 1000 genera-
tions on the Compare-on-one problem. Algorithms compared: IPCA, rIPCA, Coev,
MinMax, MaxSolve.
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Table 4.3: Network Mission results for coevolution over all topologies
Topology 0 Topology 1 Topology 2

Algorithm Exec Time(s) Final Perf. Exec Time(s) Final Perf. Exec Time(s) Final Perf.
Coev 10.417 ± 1.650 0.091 ± 0.014 36.911 ± 13.290 0.008 ± 0.001 180.114 ± 80.664 0.005 ± 0.000
MinMax 9.802 ± 1.693 0.045 ± 0.028 34.745 ± 10.351 0.005 ± 0.002 158.955 ± 72.101 0.004 ± 0.001
MaxSolve 20.945 ± 1.336 0.088 ± 0.022 12.322 ± 19.236 0.007 ± 0.001 768.817 ± 342.642 0.005 ± 0.001
IPCA 66.576 ± 6.537 0.097 ± 0.021 266.382 ± 59.253 0.008 ± 0.000 1729.165 ± 623.941 0.005 ± 0.000
rIPCA 47.754 ± 8.108 0.128 ± 0.055 267.784 ± 69.347 0.008 ± 0.000 1566.194 ± 643.867 0.005 ± 0.000

4.2.2 Network Missions

In Garcia et al., 2017, research published in conjunction with this thesis, we presented

the results for network missions under an earlier version of our network simulator.

Here we present our latest results using the most recent version of RIVALS in which

chord, one of the defense protocols, now makes a distinction between the physical and

logical layers of a network. This improves the quality of the results as the experiment

more closely resembles a production environment.

As before with Compare-on-one, we run the network mission simulation over 30

runs and collect the average over the results. In Table 4.3 we show the average and

standard deviation of both the wall-clock execution times as well as of the best fitness

values per generation.

We first consider Topology 0. The algorithms differentiate with IPCA and rIPCA

being superior. We conjecture this is due to the test archives for both IPCA and

rIPCA as these archives help enforce monotonic performance increases. When looking

at Topologies 1 & 2, we do not notice much difference between the algorithms. This

is due to the fact that the topologies are much larger in this case and the defenses

are not as versatile. However, rIPCA maintains to be on par or better than IPCA in

both execution time and performance.

4.2.3 Strategic Network Resource Placement

Below we have included our timing and performance results for the strategic network

resource placement problem. Using this information and the corresponding graphs,

we can better understand how each of these algorithms performs under a simulated

cyber security scenario.

39



Table 4.4: Network Resource Placement results for coevolution over all topologies
Topology 0 Topology 1 Topology 2

Algorithm Exec Time(s) Final Perf. Exec Time(s) Final Perf. Exec Time(s) Final Perf.
Coev 10.616 ± 0.444 0.132 ± 0.042 6.092 ± 1.249 0.380 ± 0.154 1.784 ± 0.328 0.182 ± 0.074
MinMax 8.603 ± 1.511 0.017 ± 0.050 4.213 ± 0.369 0.267 ± 0.200 1.482 ± 0.157 0.150 ± 0.094
MaxSolve 11.256 ± 0.507 0.282 ± 0.067 8.327 ± 0.429 0.267 ± 0.200 2.280 ± 0.127 0.184 ± 0.069
IPCA 24.661 ± 1.855 0.461 ± 0.069 12.990 ± 1.563 0.805 ± 0.063 4.188 ± 0.276 0.338 ± 0.074
rIPCA 8.079 ± 0.967 0.333 ± 0.166 5.932 ± 0.950 0.695 ± 0.259 2.245 ± 0.394 0.276 ± 0.132

In Table 4.4 we see the averaged results over 30 runs for each configuration. The

first three algorithms, Coev, MinMax, MaxSolve, perform quickly yet are out per-

formed by both IPCA and rIPCA. Next, rIPCA, while not the best algorithm in

terms of performance, is second place while consistently performing better than IPCA

in terms execution time. This follows our previous results with regards to rIPCA’s

speed. Similarly, we see that rIPCA consistently performs better than Coev, MinMax

and MaxSolve. It is important to note, however, that rIPCA’s results vary more than

IPCA and, as such, rIPCA’s results are not seen to provide high consistency with

respect to performance.

Next, in Figure 4-6, we show how each algorithm compares over time on Topol-

ogy 0. Following with our previous results from Compare-on-one, IPCA continues to

show monotonic increasing performance in the defending population. rIPCA’s results

are also consistent as the results show its performance as second only to IPCA’s.

MinMax is notably a poor performer while MaxSolve and Coev perform within the

average of the group.
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Figure 4-6: Best fitness value average (over 30 runs) per generation for 20 generations
on the Strategic Network Resource Placement problem. Algorithms compared: IPCA,
rIPCA, Coev, MinMax, MaxSolve.
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Chapter 5

Discussion

This chapter reflects on the paths we took while conducting this research. In particu-

lar, we discuss the applicability of evolutionary algorithms in cybersecurity. Moreover,

once having considered their usefulness we explore the trade-offs one makes when us-

ing this variety of algorithms.

5.1 Applicability of Evolutionary Algorithms

In this section we elaborate on the use of evolutionary algorithms with respect to

cybersecurity. Currently, problems of this nature are commonly dealt with manu-

ally. While manual exploration of these issues can be lead to good results through

experience and professional knowledge, it is also not suitable for all cases and often

impossible to do on the scale of large networks. As such, evolutionary algorithms pro-

vide a strong alternative to these issues. However, evolutionary algorithms are also

limited in that, depending on the problem, their simulation may run slow or even

produce weak results. Thus, it is important that their implementations be properly

calibrated and tested before they are used on larger problems.

Our plan with this project was first to calibrate a suite of algorithms against

a standard coevolutionary benchmark problem, Compare-on-one, so that we could

tweak our suite for speed and performance. This was in preparation for our integration

with the network simulator used by RIVALS. Integration with the network simulator
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proved to be successful. Although, as the network simulator grew to be more complex,

the execution times for our simulations started to become simulation heavy rather

than algorithm heavy. This proved our assumption that for us to be able to apply

evolutionary algorithms to cybersecurity, our algorithms needed to be able to improve

on execution time while still performing well. By minimizing simulation evaluations

in rIPCA, we were able to provide a system that could perform well, yet also perform

quickly.

5.2 Speed vs. Quality of Results

In this section we discuss how we manage both speed of execution and quality of

results for our system. As seen before in Chapter 3, our suite of algorithms contain

algorithms with strong guarantees with respect to the quality of there results (i.e.

IPCA & monotonic-increasing performance of learner individuals) as well as algo-

rithms which are fast yet produce weak results. For us, we have to assume that our

model is complex and thus performing any evaluation of fitness of an individual should

be assumed to be expensive. As such, when we optimized the speed of an algorithm

we worked to minimize the amount of expected fitness evaluations rather than focus

necessarily on its wall-clock execution time, though these were often correlated.

In IPCA, we note that the weak learner individuals are pruned through the process

of non-dominated filtering while test individuals are kept for the duration of the ex-

periment. This configuration allows IPCA to guarantee monotonic-increasing fitness

over an experiment. We must note, however, that fitness evaluations are performed

population vs. population. As such, the minimum number of evaluations will be the

product of the population sizes. Under IPCA, this implies that as generations pass,

more and more evaluations will be necessary since the test population is allowed to

grow indefinitely. Given our assumption of expensive fitness calls, this made IPCA

impractical for experiments with a high number of generations to run. Our solu-

tion was then to apply concepts already in IPCA to minimize the amount of fitness

evaluations. This proved to be useful even without the guarantees provided by IPCA.

44



Chapter 6

Conclusions & Future Work

Through this work, we have analyzed a suite of coevolutionary algorithms on a variety

of settings and have introduced our own variation of an existing algorithm. Our

variation, rIPCA, was shown to be on par or close to IPCA in terms of performance

(quality of results) while surpassing IPCA, sometimes by large margins, in terms of

execution speed. We also showed that we were successful in applying them not only

to Compare-on-one, a standard Coevolutionary benchmark problem, but also to our

own network simulator, RIVALS. With these capabilities, we are able to simulate the

evolution of an attacker with DOS capabilities over any given network topology.

In our future work, we will continue to improve the performance and speed of

the coevolutionary algorithms as well as try algorithms with different solution con-

cepts, e.g. Nash Equilibrium (Ficici and Pollack, 2003). Additional algorithms we

look forward to experimenting with are DISCO (Liskowski and Krawiec, 2014) and

DOF (Liskowski and Krawiec, 2016). Both algorithms work to approximate fitness

values in hopes of decreasing the time necessary to calculate them.

45



46



Bibliography

Dalvi, Nilesh et al. (2004). “Adversarial classification”. In: Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, pp. 99–108.

De Jong, Edwin (2005). “The maxsolve algorithm for coevolution”. In: Proceedings
of the 7th annual conference on Genetic and evolutionary computation. ACM,
pp. 483–489.

Ficici, Sevan G and Jordan B Pollack (2003). “A game-theoretic memory mechanism
for coevolution”. In: Genetic and Evolutionary Computation Conference. Springer,
pp. 286–297.

Garcia, D. et al. (2017). “Investigating Coevolutionary Archive Based Genetic Al-
gorithms on Cyber Defense Networks”. In: Proceedings of the 19th Annual Con-
ference on Genetic and Evolutionary Computation. GECCO ’17. ACM. doi: 10.
475/1234.

Haddadi, Fariba and A Nur Zincir-Heywood (2015). “Botnet Detection System Analy-
sis on the Effect of Botnet Evolution and Feature Representation”. In: Proceedings
of the Companion Publication of the 2015 on Genetic and Evolutionary Compu-
tation Conference. ACM, pp. 893–900.

Harper, Robin (2014). “Evolving robocode tanks for Evo robocode”. In: Genetic Pro-
gramming and Evolvable Machines 15.4, pp. 403–431.

Hemberg, Erik et al. (2016). “Detecting tax evasion: a co-evolutionary approach”. In:
Artificial Intelligence and Law 24.2, pp. 149–182.

Hingston, P. and M. Preuss (2011). “Red teaming with coevolution”. In: Evolutionary
Computation (CEC), 2011 IEEE Congress on, pp. 1155–1163. doi: 10.1109/CEC.
2011.5949747.

Jong, Edwin D de (2007). “A Monotonic Archive for Pareto-Coevolution”. In: Evolu-
tionary Computation 15.1, pp. 61–93.

Krawiec, Krzysztof and Malcolm Heywood (2016). “Solving Complex Problems with
Coevolutionary Algorithms”. In: Proceedings of the 2016 on Genetic and Evolu-
tionary Computation Conference Companion. ACM, pp. 687–713.

Liskowski, Paweł and Krzysztof Krawiec (2014). “Discovery of implicit objectives
by compression of interaction matrix in test-based problems”. In: International
Conference on Parallel Problem Solving from Nature. Springer, pp. 611–620.

— (2016). “Non-negative Matrix Factorization for Unsupervised Derivation of Search
Objectives in Genetic Programming”. In: Proceedings of the 2016 on Genetic and
Evolutionary Computation Conference. ACM, pp. 749–756.

47

https://doi.org/10.475/123 4
https://doi.org/10.475/123 4
https://doi.org/10.1109/CEC.2011.5949747
https://doi.org/10.1109/CEC.2011.5949747


O’Neill, Michael and Conor Ryan (2003). Grammatical evolution: evolutionary auto-
matic programming in an arbitrary language. Vol. 4. Springer.

Popovici, Elena et al. (2012). “Coevolutionary principles”. In: Handbook of Natural
Computing. Springer, pp. 987–1033.

Rush, George, Daniel R Tauritz, and Alexander D Kent (2015). “Coevolutionary
Agent-based Network Defense Lightweight Event System (CANDLES)”. In: Pro-
ceedings of the Companion Publication of the 2015 on Genetic and Evolutionary
Computation Conference. ACM, pp. 859–866.

Service, Travis and Daniel Tauritz (2009). “Increasing infrastructure resilience through
competitive coevolution”. In: New Mathematics and Natural Computation 5.02,
pp. 441–457.

Silva Arantes, Jesimar da et al. (2015). “A Multi-population Genetic Algorithm for
UAV Path Re-planning under Critical Situation”. In: 27th IEEE International
Conference on Tools with Artificial Intelligence, ICTAI 2015, Vietri sul Mare,
Italy, November 9-11, 2015, pp. 486–493. doi: 10.1109/ICTAI.2015.78. url:
http://dx.doi.org/10.1109/ICTAI.2015.78.

Stoica, Ion et al. (2001). “Chord: A scalable peer-to-peer lookup service for inter-
net applications”. In: ACM SIGCOMM Computer Communication Review 31.4,
pp. 149–160.

Wagner, Stuart et al. (2012). “Autonomous, collaborative control for resilient cyber
defense (ACCORD)”. In: Self-Adaptive and Self-Organizing Systems Workshops
(SASOW), 2012 IEEE Sixth International Conference on. IEEE, pp. 39–46.

Whigham, Peter A et al. (2015). “Examining the Best of Both Worlds of Grammatical
Evolution”. In: Proceedings of the 2015 on Genetic and Evolutionary Computation
Conference. ACM, pp. 1111–1118.

Winterrose, Michael L and Kevin M Carter (2014). “Strategic evolution of adversaries
against temporal platform diversity active cyber defenses”. In: Proceedings of the
2014 Symposium on Agent Directed Simulation. Society for Computer Simulation
International, p. 9.

48

https://doi.org/10.1109/ICTAI.2015.78
http://dx.doi.org/10.1109/ICTAI.2015.78

	Introduction
	Motivation
	Research Question
	Contributions

	Related Work
	Coevolution
	Adversarial Cyber Security
	Adversarial Coevolutionary Cyber Security

	Method
	Coevolutionary Algorithms
	Solution Concepts
	Coevolutionary Algorithms with Archives
	rIPCA

	Grammatical representation for coevolutionary search

	Experiments
	Setup
	Compare-on-one
	Network Mission Simulations
	Strategic Network Resource Placement

	Results
	Compare-on-one
	Network Missions
	Strategic Network Resource Placement


	Discussion
	Applicability of Evolutionary Algorithms
	Speed vs. Quality of Results

	Conclusions & Future Work

