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Abstract

Elliptic curve cryptography has become a de-facto standard
for protecting the privacy and integrity of internet
communications. To minimize the operational cost and
enable near-universal adoption, increasingly sophisticated
implementation techniques have been developed. While the
complete specification of an elliptic curve cryptosystem (in
terms of middle school mathematics) fits on the back of a
napkin, the fast implementations span thousands of lines of
low-level code and are only intelligible to a small group of
experts. However, the complexity of the code makes it prone
to bugs, which have rendered well-designed security
systems completely ineffective.

I describe a principled approach for writing crypto code
simultaneously with machine-checkable functional
correctness proofs that compose into an end-to-end
certificate tying highly optimized C code to the simplest
specification used for verification so far. Despite using
template-based synthesis for creating low-level code, this
workflow offers good control over performance: I was able
to match the fastest C implementation of X25519 to within 1%
of arithmetic instructions per inner loop and 7% of overall
execution time. While the development method itself relies
heavily on a proof assistant such as Coq and most
techniques are explained through code snippets, every Coq
feature is introduced and motivated when it is first used to
accommodate a non-Coq-savvy reader.

Thesis Supervisor: Adam Chlipala
Associate Professor of Electrical Engineering and Computer
Science
Department of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 The Need for Ubiquitous Encryption
Every internet-connected application needs to deal with the
reality that the network is operated by numerous companies
and governments, most of which have no connection to the
user or the application developers. This has led to the
advice to build “under the assumption that the network is
not only untrusted, but untrustworthy”1: every application 1. Eben Moglen. Why Political

Liberty Depends on Software
Freedom More Than Ever. Feb. 5,
2011. url: https://www.
softwarefreedom.org/
events/2011/fosdem/
moglen-fosdem-keynote.
html.

developer has to decide (on behalf of the users) to either
accept pervasive surveillance2 and modification3 of the

2. Brett Max Kaufman. A Guide
to What We Now Know About
the NSA’s Dragnet Searches of
Your Communications. Aug. 9,
2013. url: https://www.
aclu.org/blog/guide-
what-we-now-know-about-
nsas-dragnet-searches-
your-communications.

3. Gabi Nakibly, Jaime Schcol-
nik, and Yossi Rubin. “Website-
Targeted False Content Injec-
tion by Network Operators”. In:
CoRR abs/1602.07128 (2016).
url: http://arxiv.org/
abs/1602.07128.

network communications, or deploy cryptographic
countermeasures.

1.2 Challenges in Deploying Cryptography
The factors that influence the choice whether to use
cryptography can be roughly separated into three
categories: engineering costs, operational costs, and
confidence in the effectiveness of a potential solution.

Engineering Costs

The difficulty of integrating cryptography depends heavily
on the application, and detailed consideration of it is
outside the scope of this work. Easy-to-deploy pre-made
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solutions are available for common application types. For
example, CertBot4 can automatically configure the most4.

https://certbot.eff.org/ commonly used open source web servers to encrypt all
connections between the user and the server. An even more
comprehensive privacy guarantee can be achieved in apps
where users communicate directly to each other, using the
plug-and-play implementations of the Signal Protocol5.5. https://github.

com/WhisperSystems/
libsignal-protocol-java
(or -c, or -javascript)

Simultaneously, some protocols (such as email) are
notoriously difficult to retrofit with any meaningful security
measures.

Operational Costs

A common concern is that enabling encryption will slow the
application down or cause excess server load. In the vast
majority of applications, the operational cost of properly
implemented cryptography is insignificant in comparison to6. “On our production frontend

machines, SSL/TLS accounts for
less than 1% of the CPU load,
less than 10KB of memory per
connection and less than 2% of
network overhead. Many peo-
ple believe that SSL takes a lot
of CPU time and we hope the
above numbers (public for the
first time) will help to dispel
that.
If you stop reading now you

only need to remember one
thing: SSL/TLS is not computa-
tionally expensive any more.”
Adam Langley. Overclock-

ing SSL. Google, June 29,
2010. url: https://www.
imperialviolet.org/2010/
06/25/overclocking-
ssl.html.

that of the rest of the system6. However, this comfortable
performance level is not an integral feature of cryptography
but rather a result of decades of painstaking research and
engineering. Crucially, an application developer does not
need to understand the extremely sophisticated design and
implementation techniques that make crypto fast – it is a
very good idea to use a dedicated crypto library written by
experts.

Confidence in Cryptography

While important cryptographic algorithms and protocols are
shared between use cases and have been widely vetted for

7. Things that use Ed25519.
Nov. 9, 2016. url: https://
ianix.com/pub/ed25519-
deployment.html.

security, the space of implementations is much more varied.
For example, IANIX lists 250 libraries that provide ed25519
digital signature functionality7. Most of them have never
received an external audit, and unlike when choosing a
cryptographic protocol, no one of them is obviously more
confidence-inspiring than the rest. Among highly optimized

8

https://certbot.eff.org/
https://github.com/WhisperSystems/libsignal-protocol-java
https://github.com/WhisperSystems/libsignal-protocol-java
https://github.com/WhisperSystems/libsignal-protocol-java
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
https://ianix.com/pub/ed25519-deployment.html
https://ianix.com/pub/ed25519-deployment.html
https://ianix.com/pub/ed25519-deployment.html


implementations, even those written by widely respected,
experienced implementers have suffered bugs8. 8. The TweetNaCl9 paper de-

scribes a typo of unknown
impact in the “original” fast
implementation ed25519-
amd64-64-24k: r1 += 0 +
carry should have been r2
+= 0 + carry instead. Au-
thors noted that this line was
one of 16,184 similar lines, and
the issue would not have been
caught by random tests.

9. Daniel J. Bernstein, Bernard
van Gastel, Wesley Janssen,
Tanja Lange, Peter Schwabe,
and Sjaak Smetsers. “Tweet-
NaCl: A crypto library in 100
tweets”. In: Progress in Cryp-
tology – LATINCRYPT 2014. Ed.
by Diego Aranha and Alfred
Menezes. Vol. 8895. Lecture
Notes in Computer Science.
Springer-Verlag Berlin Hei-
delberg, 2015, pp. 64–83. url:
http://cryptojedi.org/
papers/#tweetnacl.

Indeed, reviewing crypto code is a difficult and
unrewarding task. A function whose mathematical definition
using appropriate abstractions would fit on the back of a
napkin might be expanded into tens of thousands of
uniform-looking lines of optimized code. There is also an
issue of incentives: while finding an important bug can bring
the investigator eternal glory and maybe even money from a
bug bounty or a black-market deal, a “successful” audit is
inevitably concluded with a non-glamorous “I didn’t find any
issues”. Worse, if a bug is later found in a library that
previously received a non-critical audit, it can negatively
affect the auditor’s reputation – even to the point of
questioning their goodwill, if there is reason to believe that
the original bug was maliciously inserted.
Yet aggressively optimized implementations are

necessary for “obviously fast enough” speeds, and
questionable confidence in the correctness of an
implementation is a non-starter.

1.3 A Vision For Correct and Fast Crypto
Implementations

The long-term goal of this work is to eliminate the tradeoff
between performance and correctness by connecting
specifications and implementations using
computer-checkable proofs. Given precise models of the
cryptographic primitives and the machines we run them on,
it should not be necessary to manually audit the
implementation – if the proof checks, the code is good to go.
Instead of looking for mistakes and hoping that we don’t
find any, we look for correctness proofs and routinely
release them with the code. As more general theorems tend
to be easier to prove, we mechanize generalized versions of
common implementation strategies, allowing us to generate
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decently performant correct-by-construction
implementations for new primitives by just plugging in a
couple of parameters.
This thesis describes my experience with the

above-described development model across several
abstraction layers: from specialized arbitrary-precision
arithmetic implementations to proofs of high-level
optimizations for elliptic curve cryptosystems. The “top”
specifications used here are higher-level than in any
previous verification work; the pipeline bottoms out to a
minimal subset of the C language. Because no high-end CPU
manufacturer has released an authoritative model of the
timing properties of their processors, we use the standard
informal process for checking that our code is constant time.
The chapters are self-contained in terms of core technical
content, but every Coq feature is explained only the first
time it is used.

1.4 Academic Context and Individual
Contributions

The work described in this thesis is a result of active
collaboration between myself, Jason Gross, and Jade
Philipoom, all advised by professor Adam Chlipala. Earlier,
Robert Sloan built a prototype of the low-level compilation
pipeline which ended up being replaced as the
requirements matured.
I designed the overall architecture of the project,

specified the components, and built early prototypes of
their implementations. I wrote the first (inelegant and
limited) sketch of finite field implementation (and proof)
and defined the specification for the complete version, at
which point Jade took over the work of designing,
implementing, and proving the correctness of the full finite
field implementation synthesis library. Similarly, I built a
proof-of-concept implementation and proof sketch of the
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range analysis pass and the word size selection compiler,
based on which Jason implemented (and proved correct) a
similar design that could handle the full set of operations
used in our code. On the other hand, while I did most of the
coding for the tactic automation for proving elliptic curve
formulas, Jason pointed me to the nsatz tactic and first
proposed the key idea behind extending it to handle
divisions. While the formalization of properties of elliptic
curves is exclusively my work, it was significantly helped by
information gained from early experiments in the same
direction performed by Jason. All in all, we think of this
project as truly joint work.
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Chapter 2

Existing Verification Work

There have been several efforts to mechanically check that a
program precisely implements a primitive cryptographic
operation. The problem of verifying functional correctness
of programs has also been studied generically, and in
various other application domains. This section will provide
a brief overview of the landscape of approaches, explain the
ones that would be applicable here, and finally justify the
high-level choices made in this work. In particular, I seek to
illustrate the reasons why I use Coq (and write my own
automation) instead of relying on highly automated but less
flexible tools predominant in previous work.

To understand the different sources of complexity in
verifying cryptographic implementations, let’s first consider
a rather degenerate case. The salsa20 stream cipher is
specified in terms of simple operations on 32-bit integers1. 1. Daniel J. Bernstein. Salsa20

specification. Apr. 27, 2005.
url: https://cr.yp.to/
snuffle/spec.pdf

The original English-language specificationcan be easily
transcribed to many general-purpose programming
languages. I find it rather meaningless to talk about formally
verifying functional correctness of such a translation: as the
original specification is not machine-readable, there is no
way to tell the difference between interpreting the
specification (e.g., assigning meaning to the ellipsis in
little-endian conversion described in section 8) and
violating it (perhaps by only applying little-endian
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conversion to the first and last word of the input).

2.1 SMT Implementation Equivalence
Checking, SAW

This does not mean that formal methods cannot be used to
gain confidence in a straightforward implementation. For
example, it would still be useful to verify that two
independent translations of the specification to
machine-readable languages coincide. In doing so, the
original English specification would be irrelevant; the
verification work would come down to the differences
between the language and coding style used in the two
implementations. If the implementations are similar
enough, the equivalence can be checked completely2. Robert Dockins, Adam

Foltzer, Joe Hendrix, Brian
Huffman, Dylan McNamee,
and Aaron Tomb. “Construct-
ing Semantic Models of Pro-
grams with the Software Anal-
ysis Workbench”. In: Verified
Software. Theories, Tools,
and Experiments: 8th Interna-
tional Conference, VSTTE 2016,
Toronto, ON, Canada, July 17–18,
2016, Revised Selected Papers.
Ed. by Sandrine Blazy and Mar-
sha Chechik. Springer Interna-
tional Publishing, 2016, pp. 56–
72. isbn: 978-3-319-48869-1.
doi: 10.1007/978-3-319-
48869- 1_5. url: https:
//saw.galois.com/files/
saw-vstte-final.pdf.

automatically using an SMT solver (e.g., CVC4, Z3). Here
“similar enough” roughly means that the differences
between the implementations, as written in the source code,
must either be within the bounds of the theories
understood by the SMT solver (e.g., linear arithmetic, arrays,
bit vectors, but not control flow or number theory) or
amenable to brute-force exploration. The exercise of
verifying the equivalence of two translations of the salsa20
spec has indeed been performed as an example to
demonstrate the use of the Software Analysis Workbench2 of
Galois, Inc, along with AES, DES, and others 3 .

3. https://github.com/
GaloisInc/saw-script/
tree/master/examples

The extent to which these success stories of SMT-based
one-shot verification can be generalized is a lively topic of
debate. I think it is fair to extrapolate that this approach
would work for traditional symmetric cryptography
implementations where the most optimized code performs
roughly the same intermediate computations as those
described in the specification, just in a different manner.
However, verification gets much more challenging (and
interesting) as the specification and the implementation
grow further apart.
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// P384 field reference modulus.
p384_field_mod : [768] -> [384]
p384_field_mod(a)

= drop(if b1 then r0
else if b2 then r1
else if b3 then r2
else if b4 then r3
else r4)

where
[ a23, a22, a21, a20, a19, a18, a17, a16, a15, a14, a13,

a12, a11, a10, a9, a8, a7, a6, a5, a4, a3, a2,
a1, a0] = [ uext x | (x : [32]) <- split a ] : [24][64]

chop : [64] -> ([64],[32])
chop x = (iext(take(x):[32]), drop(x))

(d0, z0) = chop( a0 +a12+a21 +a20-a23)
(d1, z1) = chop(d0 +a1 +a13+a22+a23 -a12-a20)
(d2, z2) = chop(d1 +a2 +a14+a23 -a13-a21)
(d3, z3) = chop(d2 +a3 +a15+a12+a20+a21-a14-a22-a23)
(d4,z4)=chop(d3+a4+(a21<<1)+a16+a13+a12+a20+a22-a15-(a23<<1))
(d5, z5) = chop(d4 +a5 +(a22<<1)+a17+a14+a13+a21+a23-a16)
(d6, z6) = chop(d5 +a6 +(a23<<1)+a18+a15+a14+a22 -a17)
(d7, z7) = chop(d6 +a7 +a19+a16+a15+a23 -a18)
(d8, z8) = chop(d7 +a8 +a20+a17+a16 -a19)
(d9, z9) = chop(d8 +a9 +a21+a18+a17 -a20)
(d10,z10) = chop(d9 +a10 +a22+a19+a18 -a21)
(d11,z11) = chop(d10+a11 +a23+a20+a19 -a22)

r : [13*32]
r = (drop(d11):[32])

# z11 # z10 # z9 # z8 # z7 # z6
# z5 # z4 # z3 # z2 # z1 # z0

p = uext(p384_prime) : [13*32]
// Fix potential underflow
r0 = if (d11@0) then r + p else r
// Fix potential overflow
(r1,b1) = sbb(r0, p)
(r2,b2) = sbb(r1, p)
(r3,b3) = sbb(r2, p)
(r4,b4) = sbb(r3, p)

Figure 2.1: Cryptol specification
of reduction modulo p384 by
Galois, Inc. [n] refers to the
type of n-bit words, sbb stands
for subtract-with-borrow, drop
and chop cast between word
sizes, # concatenates words
with the most significant end
on the left. If it is not obvi-
ous to you how this code im-
plements reduction modulo
p = 2384 − 2128 − 296 +232 − 1, it
may be the case that you didn’t
write it. No need to worry – we
will return to simple specifica-
tions shortly.

Source: https://
github.com/GaloisInc/
saw-script/blob/
master/examples/ecdsa/
cryptol-spec/p384_
field.cry#L50

Cryptol and SAW

The above-mentioned library of Cryptol specifications and
SAW scripts does contain a verification of equivalence
between a Java implementation of ECDSA-p384 and a Cryptol
implementation of ECDSA-p384, but both of them are rather
low-level when compared to the treatment of ECDSA in RFCs
or academic papers . The authors state that the Cryptol
implementation “is intended to closely resemble the English
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specification of the algorithm” which already includes
several non-trivial optimizations. For example, modular
reduction is defined as the optimized multi-tap reduction
formula specialized to the p384 prime (figure 2.1) instead of
referring to the standard definition of modular arithmetic
built into Cryptol. Anecdotally, I find the Cryptol reference
much more difficult to read than the Java implementation –
it is longer, has more complicated data flow, deviates from
standard implementation strategies, and nevertheless
contains the tricky optimizations that make writing ECC code
hard. The ease-of-use argument for SMT-based verification
starts to break down as well: the SAW script driving the
equivalence check is roughly similar in size to the
implementation itself.

2.2 Annotations, Invariants, Proofs

The unexciting assurance-effort trade-off of the verification
of ECDSA described above is perhaps best understood as a
mismatch between the tool and the task. While
optimizations in traditional symmetric-key cryptography
focus on reshuffling computations, implementations of most
asymmetric cryptography rely on sophisticated algorithmic
improvements. In the second scenario, the source code of
the reference and optimized implementations

float
approx_inv_sqrt(float x) {
int m = 0x5f3759df;
int i=m-((*(int*)&x)>>1);
return *(float*)&i;

}

Figure 2.2: This code snippet
computes an approximation of
1/
√
x accurate to within 4%. It

is now feasible to verify this 32-
bit version by brute force but
the general reasoning behind
its correctness (and the only
argument for the correctness
of the wider variants) requires
several pages. Chris Lomont.
Fast Inverse Square Root. 2003.
url: https://www.lomont.
org/Math/Papers/2003/
InvSqrt.pdf. url: https:
//www.lomont.org/Math/
Papers/2003/InvSqrt.pdf.

is not sufficient for understanding why they compute the
same value. While an experienced programmer can
recognize an algorithm and recall its correctness argument,
it would be inadvisable to try to learn to write fast crypto
code by only reading the optimized assembly-language
implementations. Asking an SMT solver to do just that is
inherently an uphill battle. See figure 2.2 for an example
from the domain of numerical computation for computer
graphics: both the C function itself and the correctness
reference are relatively simple, but non-trivial domain
knowledge is required to see the relationship between them.
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To support checking the correctness of tricky
optimizations, verification tools need to provide means for
describing (and verifying) the relationship between two
algorithms. Enlisting the programmer’s assistance in guiding
the correctness proof replaces the “brick wall” between
what can and cannot be verified with a complicated
trade-off between human time spent on writing object code,
writing annotations, improving the verification software, and
waiting for the verification to run. Iterating on these points
simultaneously can also increase the risk of introducing
soundness bugs in the verification software. Depending on
the architecture of the verification tools, there may be no
easy way to tell whether the change that made the verifier
accept the object code as correct simply improved its
reasoning ability or allowed some class of programs to pass
regardless of whether they are actually correct.
Nevertheless, iterating on the code and tools is incredibly
valuable for productivity: well-structured code is easier to
verify, and tool fit is extremely important for productivity.
The three remaining efforts at verifying elliptic curve

cryptography implementations will serve as examples of
different approaches within this design space.

2.3 X25519-amd64 verified using Boolector
and Coq

The bodies of the main loops of the original fast
implementations of Curve25519 written in qhasm for AMD64 4. Yu-Fang Chen, Chang-Hong

Hsu, Hsin-Hung Lin, Peter
Schwabe, Ming-Hsien Tsai,
Bow-Yaw Wang, Bo-Yin Yang,
and Shang-Yi Yang. “Verify-
ing Curve25519 Software”. In:
Proceedings of the 2014 ACM
SIGSAC Conference on Computer
and Communications Security,
CCS’14. ACM, 2014, pp. 299–309.
url: http://cryptojedi.
org/papers/#verify25519.

processors were verified using a combination of the
Boolector SMT solver and the Coq proof assistant4. The code
was annotated with detailed invariants specifying the
relationships between register values after every couple of
instructions. The qhasm code was then machine-translated
into Boolector formulas using a mostly straightforward
2000-line tool written specifically for this use case. The SMT
solver was used to relate the qhasm code to a < 100-line
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x3 = *(uint64 *)(xp + 24)
rax = *(uint64 *)(yp + 0)
(uint128) rdx rax = rax * x3
carry? r3 += rax
c = 0
c += rdx + carry

#// var D0 = A2 + (xp[24]@u128 * yp[0]@u128)@u512 * 2**192
#// cut r7 = 0 && x3 = xp[24] &&
#// A0 = (xp[0]@u128 * yp[0]@u128)@u512 + (xp[0]@u128 *

yp[8]@u128)@u512 * 2**64 +
#// (xp[0]@u128 * yp[16]@u128)@u512 * 2**128 +

(xp[0]@u128 * yp[24]@u128)@u512 * 2**192 &&
#// A1 = A0 +
#// (xp[8]@u128 * yp[0]@u128)@u512 * 2**64 +

(xp[8]@u128 * yp[8]@u128)@u512 * 2**128 +
#// (xp[8]@u128 * yp[16]@u128)@u512 * 2**192 +

(xp[8]@u128 * yp[24]@u128)@u512 * 2**256 &&
#// A2 = A1 +
#// (xp[16]@u128 * yp[0]@u128)@u512 * 2**128 +

(xp[16]@u128 * yp[8]@u128)@u512 * 2**192 +
#// (xp[16]@u128 * yp[16]@u128)@u512 * 2**256+

(xp[16]@u128 * yp[24]@u128)@u512 * 2**320 &&
#// D0 = A2 + (xp[24]@u128 * yp[0]@u128)@u512*2**192 &&
#// r0@u512 + r1@u512 * 2**64 + r2@u512 * 2**128 +

r3@u512 * 2**192 + (r4@u65 + c@u65)@u512 * 2**256 +
r5@u512 * 2**320 + r6@u512 * 2**384 = D0

Figure 2.3: One out of 20 code-
annotation blocks in the mod-
ular multiplication routine of
the verified x25519-amd64-
24k. Lines starting with #//
are annotations; the code (in
qhasm) has semantics similar
to assembly but allows named
variables (register-allocated
without spilling) and C-style
syntax for single assembly in-
structions.

program that uses arbitrary-precision integer arithmetic.
This program was then hand-transcribed to Coq and proven
to compute the correct value modulo 2255 − 19.

The verify25519 project is remarkable in that it verified an
existing, highly optimized implementation without
modifying the code at all, producing a verified
implementation that is likely to remain the fastest on the
machines that it was designed for. However, there are
several reasons to be less than enthusiastic when it comes
to applying the same strategy to other optimized
implementations. First, even if taking the qhasm-to-SMT
translation as a given, a significant amount of
per-implementation effort must be required for writing the
rather detailed annotations (see figure 7.1 for an example) –
the authors express interest in seeing this process
automated. Second, the use of ad-hoc tools for translating
code to SMT formulas introduces these tools to the trusted
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base – in this case, increasing the application-specific TCB
(excluding Boolector and coqchk) from perhaps 20 lines to
around 2000 lines. A similar concern can be raised about
hand-translating code from Boolector to Coq, even though
the code fragment for which this was necessary is indeed
small.
The most serious concern I have with this SMT-heavy

methodology is predictability. It is exceedingly important to
be able to estimate, given a specification and an
implementation, whether a strategy for verifying their
correspondence would be fruitful and how the effort
required would compare to previous similar projects. Given
the data points from the verify25519 paper and codebase, I
would not even venture to extrapolate as little as to guess
whether one could verify X448 in this style. As described in
section 6, several ad-hoc (but TCB-increasing!) heuristics
were necessary to make different parts of the X25519
verification complete in tolerable time. Furthermore, the
number of annotations required for verifying modular
multiplication increased 27-fold when the modulus length
was roughly doubled from 2127 − 1 to 2255 − 19. Furthermore,
the authors report that Boolector was unable to verify the
modular congruence relations in the representation that
used 64-bit limbs, but worked just fine on the
representation that used fewer bits than the size of the
machine word (51). As far as I understand, the root cause for
this limitation has not been explained beyond “Boolector is
not good at non-linear modular arithmetic”.

2.4 hacl-star

A significant improvement in the ease and predictability of
verification can be achieved by borrowing ideas from
programming itself. Standard abstraction and modularity
techniques have counterparts in verification land, and if the
structure of the code coincides with the structure of its
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correctness argument, the two can be interleaved. In the
fairytale world of inexplicably easy verification, code could
be verified by formatting its doc-comments into
machine-readable specifications. However, performance
requirements in particular are notorious for driving
programmers to give up modularity. An elliptic curve
cryptography library might contain an internal “field
element addition” function that only adds correctly if each
digit in the internal representation of the input field
elements is “small enough” – a requirement which each
caller carefully maintains. The contract of this addition
function can no longer be explained in terms of field
elements: details of the representation must leak through to
allow for fast implementations.

The work of Jean Karim Zinzindohoue, Evmorfia-Iro
Bartzia, and Karthikeyan Bhargavan on implementing elliptic
curve cryptography in the F* language5 can be seen as an5. Jean Karim Zinzindohoue,

Evmorfia-Iro Bartzia, and
Karthikeyan Bhargavan. “A Ver-
ified Extensible Library of Ellip-
tic Curves”. In: IEEE Computer
Security Foundations Sympo-
sium (CSF). 2016.

exploration of this axis of the design space. The initial
release of the library (described in the paper) implemented
most big-integer arithmetic in generic code that were called
from implementations of specific finite fields. However, the
more tricky optimizations such as the modular reduction in
the style of figure 2.1 were implemented and verified
separately for each prime. Even though the reuse of
arithmetic operation code between finite fields is important,
perhaps the biggest reduction in effort was due to reuse of
code (and verification) of the innermost loop of
multiplication (figure 2.4), which was unrolled in qhasm code
discussed earlier, requiring each iteration to be verified
separately. Quantitatively, the generic verification of bignum
operations was completed in several thousand lines of proof
and code, similar to the verification of the X25519-specific
inlined qhasm code.

Unfortunately, creating elliptic curve implementations by
naively composing generic bignum operations makes it
difficult to achieve good performance (the first version of
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val scalar_multiplication_tr_1:
res:bigint_wide -> a:bigint{Similar res a} -> s:limb -> \

ctr:nat{ctr<norm_length} ->
ST unit
(requires (fun h ->

(live h res) /\ (live h a) /\ (getLength h a >= norm_length)
/\ (getLength h res >= norm_length)

/\ (forall (i:nat). (i >= ctr /\ i < norm_length) ==>
v (getValue h a i) * v s < pow2 platform_wide)))

(ensures (fun h0 u h1 ->
(live h0 res) /\ (live h1 res) /\ (live h0 a) /\ (live h1 a)
/\ (getLength h0 res >= norm_length)
/\ (getLength h1 res = getLength h0 res)
/\ (modifies !{getRef res} h0 h1)
/\ (getLength h0 a >= norm_length)
/\ (forall (i:nat). (i >= ctr+1 /\ i < norm_length) ==>

v (getValue h0 a i) * v s < pow2 platform_wide)
/\ (forall (i:nat). (i < getLength h1 res /\ i <> ctr) ==>

(getValue h1 res i == getValue h0 res i))
/\ (v (getValue h1 res ctr) = v (getValue h0 a ctr) * v s)

))
let rec scalar_multiplication_tr_1 res a s ctr =
let ai = index_limb a ctr in
let z = mul_limb_to_wide ai s in
upd_wide res ctr z

Figure 2.4: HACL-star bignum
multiplication, body of the in-
nermost loop. The language is
F*̂, an ML-like impure functional
language with SMT-based ver-
ification. The code is written
in a tail-recursive style but us-
ing mutable memory. The code
between val and let is the
specification. mul_limb_wide
refers to a function that mul-
tiplies two n-bit numbers to
produce a 2n-bit number. The
SMT-based verifier is able to
check that this code conforms
to its specification using only
the information presented
here. Later, additional lem-
mas are used to connect this
with the rest of the bignum
multiplication code, arriving
at the one-line specification of
the full multiplication routine
about a thousand lines later.

hacl-star described in the original paper was 290 times
slower than a reference implementation written in C). The
version of hacl-star currently available online has resorted
to a style much closer to that of verify25519: the codebase
has been split into mostly independent implementations of
each finite field, which are verified separately.

While neither verify25519 nor hacl-star establish a formal
connection between their elliptic curve implementations
and a short mathematical specification of elliptic curves, the
top-level specification of X25519 comes close to the way the
same primitive is described in RFC 7748. Although particular
implementations of some algebraic operations like finding
the inverse of a finite field element are still inlined in the
specification, I think it is likely that a separate verification
effort could connect the implementation to a higher-level
specification by reasoning about its specification alone. In
particular, unlike verify25519, hacl-star’s X25519 specification
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implies that not only is the output correct modulo 2255 − 19,
but also that its specific representation is uniquely defined
by its value modulo 2255 − 19.

2.5 gfverif
The last project, gfverif,6 is completely different from the6. Daniel J. Bernstein and Pe-

ter Schwabe. gfverif. Jan. 1,
2016. url: http://gfverif.
cryptojedi.org/.

last two in that it makes no attempt at achieving complete
or general-purpose verification. Instead, the tool is
restricted to analyzing C code with statically known control
flow and can only deduce modular arithmetic properties
about it. Due to the very specific domain, the verification
software can contain elaborate domain-specific algorithms
for checking these properties. While gfverif can verify
code with loops by unrolling the loops, this description will
focus on the case of straight-line code.
The key idea that makes gfverif work is decomposing

the problem of verifying field arithmetic code into three
parts that we already know how to solve:

1. Some linear combination of some run-time machine
words represents one field element, and a fairly
limited set of operations is performed on these
machine words.

2. The machine words do not overflow.

3. If the machine words are treated as mathematical
integers, the output of the optimized implementation
is congruent to the output of the reference
implementation.

The first requirement is easy to check by reading the code
once.
The second is the subject of a well-known compiler pass,

range analysis. To compute the ranges of all variables,
annotate the input words with the full range and proceed
step-by-step as the execution of the program would,
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computing the range of the output of each operation based
on the ranges of its inputs. It is considered obvious that if a
program operating on machine words completes without
ever exceeding the maximum range of a machine word, it
produces the same output as it would if operating on
mathematical integers.
The third verification step is more difficult than the first

two, but fortunately common computer algebra systems
already implement an algorithm that can be used for this
purpose. In particular, gfverif reuses the decision
procedure for inclusion in ideals of polynomial rings: when
working in the ring R of polynomials with one variable for
each input of the program, the outputs of the optimized and
reference implementations are equivalent modulo m if their
difference belongs to R/m.
The result is very impressive, as long as it is applicable:

only a couple of lines of annotations are necessary to verify
the correctness of the finite field arithmetic of an elliptic
curve implementation. As an additional bonus, the range
analysis can also be used to check that the final output
represents an integer smaller than 2255 − 19, which for many
integer representations implies that the value is
represented canonically. However, the applicability of this
simple strategy is limited: for example, while gfverif
easily verifies the implementation of X25519 that uses 5
machine 64-bit words to represent a 255-bit integer (51 bits
each), the version that ues 4 64-bit integers (64 bits each)
does not seem to fit the requirements imposed by gfverif.
While the current implementation of gfverif is an ad-hoc
combination of separate tools (with ample “XXX” comments
throughout its source code), the strategy is sound, and could
in principle be implemented in a system that allows
composing the gfverif-style verification of some finite
field arithmetic with a higher-level proof that connects that
formula to a simple mathematical definition of an elliptic
curve.
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Chapter 3

Finite Field Arithmetic

This chapter will start from a review of good practices in
reasoning about arithmetic in Coq, and build up to a
minimal library for synthesizing highly optimized finite-field
arithmetic formulas. Detailed discussion of the full scope of
field arithmetic synthesis used in this project is left for
another document, but the version shown here is intended
to be sufficient to form an intuitive understanding sufficient
for reading the rest of this thesis.

3.1 Introduction to Verifying Arithmetic in
Coq

Using Coq to verify code is often described as
labor-intensive and tedious when compared to SMT-based
tools. The real issues are more subtle than that. While the
Coq standard library contains very convenient mechanisms
for proving correctness of arithmetic, even the very same
library contains numerous examples of tedious and fragile
arithmetic proofs. This is an example of the more general
phenomenon that Coq does not prescribe any particular
implementation strategy or coding style. This is very
different from languages like Go, where the standard
toolchain enforces a specific set of practices (e.g., dead code
is considered an error). Different groups use very different
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conventions in their Coq developments (for both code and
proofs) to the extent that it is not obvious from the source
code that the programs are in the same language. Therefore,
it is rather meaningless to criticize Coq for the existence of
long and ugly proofs of simple programs.
I do not mean to say that Coq is just fine, and it is the

user’s problem that they can’t write short and simple proofs.
It is perfectly appropriate to express disappointment that
the ambient knowledge of which strategies work and which
don’t has not been aggregated into a newcomer-friendly
format. A curated repository of exemplary developments
following consistent rules and conventions would be very
valuable, as would high-level analysis of various recurring
design choices. However, when working outside the realm of
tried and true conventions, it is the developer’s
responsibility to notice when the code is going down a
rabbit hole and the proof becoming a long transcript of
mechanically generated steps rather than a minimal
computer-readable encoding of the conceptual correctness
argument.

Square of a Sum, Hard Way and Easy Way

As an example of how a simple verification task can turn
into a morass, let’s consider a straightforward attempt at
proving the middle school formula for the square of a sum:
(a+ b)2 = a2 + 2ab+ b2. I suggest reading a couple of steps
of the proof in figure 3.1 on the next page, skipping to the
longest block near the bottom when boredom starts to kick
in. The entire proof is reproduced here just to visualize its
size and to show that it is feasible, I am not recommending
following its example.
What went wrong in the page-long proof in figure 3.1?

Every rewrite step seems necessary, almost obvious. The
SearchAbout commands could have been avoided if I had
remembered the naming convention for arithmetic lemmas,
but effort spent on remembered lemma names is effort not
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Lemma square_of_sum_the_hard_way (a:Z) (b:Z)
: (a+b)^2 = a^2 + 2*a*b + b^2.
Proof.
SearchAbout (_^2 = _).
(* Output: Z.pow_2_r: forall a : Z, a^2 = a*a *)
rewrite Z.pow_2_r.

(* Goal: (a + b)*(a + b) = a^2 + 2*a*b + b^2 *)
SearchAbout ((_ + _)*_ = _).
(* OMEGA16:forall v c l k : Z, (v*c+l)*k=v*(c*k)+l*k *)
(* Z.mul_add_distr_r:forall n m p:Z, (n+m)*p=n*p+m*p *)
rewrite Z.mul_add_distr_r.

(* Goal: a*(a + b) + b*(a + b) = a^2 + 2*a*b + b^2 *)
rewrite Z.mul_add_distr_l.
(* Goal: a*a + a*b + b*(a + b) = a^2 + 2*a*b + b^2 *)
rewrite Z.mul_add_distr_l.

(* Goal: a*a + a*b + (b*a + b*b) = a^2 + 2*a*b + b^2 *)
rewrite <-Z.pow_2_r.
rewrite <-Z.pow_2_r.

(* Goal: a^2 + a*b + (b*a + b^2) = a^2 + 2*a*b + b^2 *)
SearchAbout (_ + (_ + _) = _).
(* Z.add_assoc: forall n m p:Z, n + (m+p) = n+m + p *)
rewrite Z.add_assoc.

(* Goal: a^2 + a*b + b*a + b^2 = a^2 + 2*a*b + b^2 *)
SearchAbout (?x*?y = ?y*?x).
(* Z.mul_comm: forall n m : Z, n*m = m*n *)
rewrite Z.mul_comm.
(* Goal: a^2 + b*a + b*a + b^2 = a^2 + 2*a*b + b^2 *)
(* No, wanted to turn [b*a] into [a*b]! *)
Undo 1.
rewrite (Z.mul_comm b a).

(* Goal: a^2 + a*b + a*b + b^2 = a^2 + 2*a*b + b^2 *)
SearchAbout (?x + ?x = _).
(* Zplus_diag_eq_mult_2: forall n : Z, n + n = n*2 *)
(* Zred_factor1: forall n : Z, n + n = n*2 *)
(* Z.add_diag: forall n : Z, n + n = 2*n *)
Fail rewrite Z.add_diag.
(* ...Found no subterm matching ”?M1305 + ?M1305”... *)
(* goal is read as [((a^2 + a*b) + a*b) + b^2 = ...] *)
rewrite <-(Z.add_assoc (a^2) (a*b)).

(* Goal: a^2 + (a*b + a*b) + b^2 = a^2 + 2*a*b + b^2*)
rewrite Z.add_diag.
(* Goal: a^2 + 2*(a*b) + b^2 = a^2 + 2*a*b + b^2 *)
(* Almost there... *)
rewrite Z.mul_assoc.

(* Goal: a^2 + 2*a*b + b^2 = a^2 + 2*a*b + b^2 *)
trivial.

Qed.

Figure 3.1: A direct, low-level
proof of a middle school al-
gebra formula. This figure is
a complete .v file. I included
selected pieces of feedback
from the interactive line-by-
line interface as comments
(enclosed between (* and *)).
Even though it is possible to
write valid Coq proofs in a plain
text editor, immediate step-by-
step feedback is essential to
productivity, especially if the
proof strategy is lacking as in
this example.

Require Import ZArith
summons the standard library
definition of (unbounded,
mathematical) integers;
Local Open Scope Z_scope
makes operators +, *, and -
refer to that definition. The
Lemma line can be read as
“given integers a and b, re-
turn (a proof of) the equality
(a+ b)2 = a2 + 2ab+ b2”

The SearchAbout command
queries the Required libraries
for definitions (including
proofs) that contain the given
pattern as a subterm; an un-
derscore in a pattern matches
everything. rewrite lem and
rewrite <-lem locate the
left-hand side (resp. right-hand
side) of the equivalence proof
lem in the goal and replace it
with the other side, automat-
ically filling in arguments of
lem if they are obvious.

rewrite, like all other tactics
used in the interactive proof
mode, is not baked into the
logic of Coq. Every invocation
simply generates a proof that
the new goal implies the previ-
ous one under the hood; these
proofs are checked at Qed.
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spent on doing more useful proofs. At a slightly higher level,
one could argue that maybe I should have tried to reduce
both sides of the equation instead of manipulating the
left-hand side to match the right-hand side. While this hints
at the solution I am going to present at the end of this
discussion, it doesn’t go far enough: while simplifying both
sides would have made this proof more systematic, it would
not have made it significantly shorter, and would not have
eliminated the need to look up (or know) the used lemmas.

A much less sophisticated heuristic is useful at diagnosing
the issue that made this proof blow up to an entire page:
what do we see when we look at the code? We see basic
algebraic properties – distributivity, commutativity,
associativity – applied one at a time. In some sense, they
are necessary: if we were working with some algebraic
structure other than the integers where these laws did not
hold, this lemma might not be true. However, the entire
reason we care about associativity and commutativity is that
reduce the amount of detail we need to care about:
associativity lets us ignore how a sequence of applications
of the same operation is parenthesized, and commutativity
lets us ignore the order of those operations. While this
proof invoked associativity and commutativity, it made no
use of the key insights that make these properties valuable.

Indeed, when writing the proof in figure 3.1 I manually
executed a general technique for using associativity,
commutativity and distributivity to simplify equations. I
claim that manually executing a well-defined procedure to
write Coq proofs should be avoided by default, even though
it is perhaps acceptable in cases where it is possible to
estimate with high confidence that the list of all manual
steps that will ever be performed is shorter than an
implementation of the procedure. Figure 3.2 presents a
much simpler encoding of essentially the same proof: it
calls a standard-library tactic that implements the said
procedure. Unfortunately, the implementation is optimized
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Lemma sum_of_square_ring_simplify (a:Z) (b:Z)
: (a+b)^2 = a^2 + 2*a*b + b^2.
Proof.
ring_simplify.
(* Goal: a^2 + 2*a*b + b^2 = a^2 + 2*a*b + b^2 *)
trivial.

Qed.

Figure 3.2: A proof of the same
lemma as in figure 3.1, this time
using standard library proof
automation.

for speed at the cost of readability, so reproducing it would
not be instructive.
Similarly to rewrite, ring_simplify is not a part of

the verification side of Coq. It just generates proofs, which
end up being conceptually quite similar to the one in figure
3.1. This means that a bug in ring_simplify could cause a
valid proof to be rejected, but cannot allow a false claim to
appear true. While it is debatable whether the Coq proof
checker implementation is simpler than, say, an SMT solver,
it is a huge advantage of Coq that arbitrarily sophisticated
automation can be added without concern about its
correctness: even if a bad proof is generated, it is rejected
by the checker.

3.2 Introduction to Coq “Synthesis Mode”

There is no such thing as “Synthesis Mode” implemented in
Coq. However, it is very useful to conceptually separate the
technique described in this section from the use of Coq to
write code or proofs, the same way as distinguishing
between code and proofs is very useful for maintaining
sanity in a Coq development1. We will start with a minimal 1. In principle, the interac-

tive interface mode of Coq can
be used to write code, and
the static, compiler-like in-
terface can be used to write
proofs. However, doing so in
an unprincipled manner is uni-
versally considered unwise to
the extent that the interactive
mode is commonly referred to
as “proof mode”.

but rather contrived example task: to synthesize some code
for computing (a+ b)2. It won’t even be fast or complicated
code; in fact in most circumstances it will be much slower
than simply computing (a+ b)2, and it would be easier to
write down this synthesized formula directly rather than
deriving it. Nevertheless, I hope this example will be
instructive: coming up with a technique for writing fast code
is often orthogonal to implementing it in proof-producing
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Lemma sum_of_square_synthesis (a b:Z) : { c | c=(a+b)^2}.
Proof.
(* Goal: { c | c = (a+b)^2 } *)
eexists ?[c].
(* Goal: ?c = (a + b)^2 *)

set (please_dont_touch_c := ?c).

(* Goal: please_dont_touch_c = (a + b)^2 *)
ring_simplify.
(* Goal: please_dont_touch_c = a^2 + 2*a*b + b^2 *)

subst please_dont_touch_c.

(* Goal: ?c = a^2 + 2*a*b + b^2 *)
trivial. (* the value of ?[c] is fixed here *)

Defined. (* Not [Qed] - we don't want [c] to be private*)

Print sum_of_square_synthesis.
(* fun a b : Z => *)
(* exist *)
(* (fun c:Z => c = (a+b)^2) - invariant in the type*)
(* (a^2 + 2*a*b + b^2) - synthesized [c] *)
(* ( ... ) - unreadable proof from [ring_simplify]*)

Definition sum_of_square_formula (a:Z) (b:Z) :=
Eval cbv [sum_of_square_synthesis] in (
let '(exist _ c _) := sum_of_square_synthesis a b in c).

Print sum_of_square_formula.
(* fun (a:Z) (b:Z) => a^2 + 2*a*b + b^2 *)

Lemma sum_of_square_formula_correct (a:Z) (b:Z)
: sum_of_square_formula a b = (a+b)^2.
Proof.
apply (proj2_sig (sum_of_square_synthesis a b))

Qed.

Figure 3.3: Deriving the stan-
dard formula for (a+ b)2.

The lemma statement can be
read “given integers a and
b, return a c and a proof that
c = (a + b)2”, which is the con-
ventional way of encoding “c
such that c = (a+ b)2” in Coq.

The eexists defers specifying
the value of c, creating a goal
with an evar on the left-hand
side of the equality. While
most proof objects created
using the interactive mode are
very difficult to read for hu-
mans, this one is quite infor-
mative. Using eexists in the
very beginning of the deriva-
tion forces the value of c to
appear in the beginning of the
proof, even though the expres-
sion for it was determined later
on.

We make a separate defini-
tion for c by using compile-
time evaluation to inline
sum_of_square_synthesis
and extract the appropriate
field.

synthesis-mode code, this example will illustrate the latter.

Please read figure 3.3, paying extra attention to the lines
with comments next to them. There is a fair amount of
boilerplate because no part of Coq was designed for doing
this. Nevertheless, we are able to reuse the same
ring_simplify script that we used in the previous proofs
to do synthesis. This is not quite an accident: it is possible
to theorize about how constructive proofs of existence of
some program correspond to recipes for synthesizing that
program, but there is a much more important property of
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this approach that I would like to highlight: it works. The
overhead caused by the boilerplate for separating out
derived code and its correctness proof quickly becomes
negligible when compared to the derivation itself; standard
programming modularity techniques apply to derivation
rules. Delaware, Pit–Claudel, Gross, and Chlipala describe
how to use (an extension of) this style to build a verified
ahead-of-time query planner for a SQL-like language2. 2. Benjamin Delaware, Clé-

ment Pit–Claudel, Jason Gross,
and Adam Chlipala. “Fiat: De-
ductive Synthesis of Abstract
Data Types in a Proof Assis-
tant”. In: Proc. POPL. 2015. url:
http://plv.csail.mit.
edu/fiat/papers/fiat-
popl2015.pdf.

Pit-Claudel extends the same framework to cover the
“synthesis problem” of optimizing compilation in his thesis3.

3. Clément Pit-Claudel. “Com-
pilation using Correct-by-
Construction Program Syn-
thesis”. Master’s thesis. Sept.
2016. url: http://pit-
claudel.fr/clement/
MSc/FiatToFacade_Pit-
Claudel_2016.pdf.

The remaining sections in this chapter will describe how this
technique is used to synthesize fast implementations of
low-level arithmetic.

3.3 Synthesizing Field Arithmetic

While many applications can be implemented exclusively by
manipulating numbers using the bounded integer
arithmetic provided by the CPU, cryptographic computations
rely extensively on computing with numbers too large to fit
inside registers. Even standard general purpose
arbitrary-precision arithmetic libraries are rarely applicable
because they do not run in constant time (which is
necessary to avoid leaking secrets through timing). Instead,
specialized arithmetic libraries are implemented separately
for each elliptic curve and finite field. This does not mean
that each implementation is a unique snowflake: a handful
of algorithms cover the vast majority of concrete
implementations. Nevertheless, performance gains of
several orders of magnitude are achieved by writing out the
code for specific parameters: wishing that a compiler
specialized a high-level algorithm has been simply too much
to ask. The remainder of this chapter will build up towards a
verified template that when specialized to specific
parameters produces modular reduction code similar to that
written by experts. The plan is as follows:
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1. Define a representation for multi-word integers,
prioritizing mathematical simplicity and convenience
of proof over execution performance.

2. Write code and proofs for the most general algorithms.

3. Specify concrete parameters and simplify to get
straight-line code akin to what an expert write by hand.

4. Assign appropriately-sized finite-width registers to
each variable in the synthesized code (next chapter).

I would like to stress that the primary motivation behind
the choice of this strategy is to simplify the proofs. Being
able to reuse the code and the proofs for different
implementations is a nice side benefit, but we decided on
this architecture when we were planning to produce an
implementation of arithmetic modulo a single prime to be
run on a single architecture. It is difficult to distill the gist of
the experience that guided us towards this choice, but since
this was perhaps the most important factor that shaped this
field arithmetic library, I will offer some fuzzy extrapolations
in hope that they will be helpful:

• More general statements tend to be easier to prove.
Quantifying over something means its details cannot
pop up to clutter the proof view and lead the effort
astray.

• Thinking in terms of one model of the problem domain
and writing code and proofs in another is very
cumbersome: you end up manually translating every
proof step from the correct framework to the one that
is in the code, often with little help from proof
automation. On the other hand, directly transcribing a
mentally workable model into Coq can be a breeze,
and if all relevant information is present in the goal,
any mechanical process involved in the proofs can be
automated. Therefore, it pays off to first formalize the
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most intuitive representation of the and fix up
performance in a separate proof or synthesis step.

• Synthesis mode with well-written scripts is very
predictable; template metaprogramming is
established. While the additional layers do complicate
performance engineering, the extra effort is
immediately made up for by the simplifications on the
verification side.

3.4 Multi-Word Arithmetic
Our library uses the standard representation of numbers as
multiple digits where each digit is associated with its weight,
which is often left implicit when writing numbers. Even
though we also want the weights to be implicit in the final
code, we include them as a part of our fundamental
representation of numbers for most of the code to simplify
proofs. For example
(10a1 + a0)(10b1 + b0) = 100a1b1 + 10a0b1 + 10b0a1 + a0b0

goes by ring_simplify; trivial, while proving
(10⌊a/10⌋+ (a mod 10))(10⌊b/10⌋+ (b mod 10)) =

100⌊ab/100⌋+ 10(⌊ab/10⌋ mod 10) + (ab mod 10) directly
would be much more annoying. Later, we implement
conversions between the associational and positional
representation and have them fused with the arithmetic
itself so that the associational representation of any
number is never constructed at runtime.
Notice how the associational representation code in

figure 3.4 passes the proofs even though the implementation
of addition is rather sloppy: add [(10,a)] [(10,b)] =
[(10,a), (10,b)] instead of [(10, a+b)]. Indeed,
different limbs with the same weight are implicitly
aggregated when the output is interpreted using eval, so
we’d better follow the same convention when implementing
the conversion from this representation to a positional
number system. This particular hack is not crucial to this
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Let limb : Type := Z*Z. (* weight and runtime value *)
Module Associational.
Definition eval (p:list limb) : Z :=
fold_right Z.add 0 (map (fun t => fst t * snd t) p).

Lemma eval_nil : eval nil = 0.
Proof. trivial. Qed.
Lemma eval_cons p q: eval (p::q) = fst p * snd p + eval q.
Proof. trivial. Qed.
Lemma eval_app p q: eval (p++q) = eval p + eval q.
Proof.
induction p; rewrite <-?app_comm_cons,
?eval_nil, ?eval_cons; nsatz.

Qed.
Hint Rewrite @eval_nil @eval_cons @eval_app : push_eval.

Figure 3.4: The weights and
values of digits are encoded
in a list of pairs in Coq, rep-
resenting x =

∑n
i wixi. The

functions fst and snd return
individual components of a
pair; fold_right Z.add cor-
responds to a big

∑
. Operators

:: and ++ prepend a single
element or a list to another
list respectively. nsatz proves
polynomial equations using
similarly formed givens.

general strategy, but the general idea of writing the easiest
code that passes the proofs and eventually simplifies to
something that runs fast shows up throughout this
development.
Multiplication is only slightly more tricky: we will first

verify multiplication of a multi-limb number by a single-limb
number and then define general multiplication in terms of
that. While the compound definition is reasonable even if
the single-digit multiplication was inlined, the proofs would
be noticeably messier in that style. Proofs by induction
are sensitive to the exact statement of the goal at the
moment induction is invoked, so it is good form to do that
in the beginning of a proof where the goal directly matches
the lemma statement. As a corollary, a proof that needs two
inductions is best broken into two lemmas:

∑
i

(vwi)(xyi) = vx
∑
i

wiyi

∑
i

∑
j

(vixj) (wiyj) =

(∑
i

vixi

)∑
j

wjyj


This completes our implementation and verification of

basic ring operations in the associational representation. In
some sense, it would be fair to say that it was cheating: I
intentionally picked this representation to make the proofs
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Definition runtime_mul := Z.mul.
Infix ”*” := runtime_mul : runtime_scope.
Delimit Scope runtime_scope with RT.

Lemma eval_map_mul (v x:Z) (q:list limb)
: eval (map (fun t => (v*fst t, x*snd t)) q)
= v * x * eval q.
Proof. induction q;
autorewrite with push_map push_eval cancel_pair; nsatz.

Qed.
Hint Rewrite @eval_map_mul : push_eval.

Definition mul (p q:list limb) : list limb :=
flat_map (fun t =>
map (fun t' =>

(fst t*fst t', (snd t*snd t')%RT)
) q

) p.
Lemma eval_mul p q : eval (mul p q) = eval p * eval q.
Proof.
induction p; cbv [mul];
autorewrite with push_flat_map push_eval cancel_pair;
nsatz.

Qed.
Hint Rewrite @eval_mul : push_eval.
End Associational. Import Associational.

Figure 3.5: Code and proofs for
multiplication. We will use the
(...)%RT notation to mark
operations that should not be
evaluated during synthesis.

Throughout the develop-
ment we formulate lemmas
in the “operation pushing”
style whenever possible:
the autorewrite database
push_f contains lemmas of
the form f(g(x)) = g′(f ′(x)),
f(a + b) = f ′(a) + f ′(b), etc.
Here, flat_map f (x::xs)
= f x ++ flat_map f xs
happens to also be evident by
computation if the definition
of flat_map was unfolded
but the conventional advice to
avoid depending directly on
the implementation of some
library function is as applicable
in proofs as it is in code.

easy. Yet these simple functions capture all we need to
know about multi-digit multiplication or addition: more
optimized versions can be derived by reasoning about the
representation alone, leveraging the above functional
correctness proofs for all operation-specific justification.
But first, let’s see what code would be generated from the
current template alone.

The simplified expression contains the correct partial
products, but again lists the two with weight 10 separately,
rather than adding them together. Furthermore, most of the
expression is clutter: whatever code specifically calls a base
10 2-digit multiplication function presumably already knows
that it is going to get back three partial products with
weights 100, 10, and 1, so the list structure and weights are
redundant. The next representation will leave the weights
implicit, and specify the number of limbs in the type.
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Lemma base10_2digit_mul (x y a b : Z) :
{z | eval z = eval [(10,y);(1,x)] * eval [(10,b);(1,a)]}.
Proof.
eexists ?[z].

(*eval ?z = eval [(10,y);(1,x)] * eval [(10,b);(1,a)]*)
rewrite <-eval_mul.
(*eval ?z = eval (mul [(10,y);(1,x)] [(10, b);(1,a)])*)

apply f_equal.

(* ?z = mul [(10, y);(1,x)] [(10,b);(1,a)] *)
cbv -[runtime_mul].
(* ?z = [(100,(y*b));(10,y*a);(10,x*b);(1,x*a)]%RT *)

trivial.
Defined.

Figure 3.6: A rather naive
derivation of a formula for
multiplying 2-digit numbers
in base 10. Note that the origi-
nal goal (the specification) only
mentions the reference integer
multiplication *, not our mul,
which is introduced using a
rewrite during the derivation.

f_equal proves x=y -> f x
= f y. cbv -[f] performs
partial evaluation, leaving f as
is; in (...)%RT, * means the
runtime_mul wrapper of *.

3.5 Positional Representations

Module Positional. Section Positional.
Context (weight : nat -> Z)

(weight_0 : weight 0 = 1)
(weight_nonzero : forall i, weight i <> 0).

Definition to_associational {n:nat} (xs:tuple Z n)
: list limb
:= combine (map weight (seq 0 n)) (Tuple.to_list n xs).

Definition eval {n:nat} (x:tuple Z n) : Z
:= Associational.eval (to_associational x).

Figure 3.7: The Context com-
mand specifies common pa-
rameters to all following defini-
tions and lemmas in the Sec-
tion. Unused section variables
are removed from definitions.
tuple T n is a container for n
values of type T.

As the definition of length-indexed tuples is not a part of
the standard library, our development contains numerous
auxiliary definitions and lemmas. Nevertheless, the next two
definitions in the arithmetic library (and the proofs of their
basic properties) are rather verbose (20 lines total) due to
manual manipulation of lists and tuples. Thus, I only
present a brief summary:

• zeros n : tuple Z n, satisfying eval (zeros n)
= 0.

• add_to_nth {l} n x : tuple Z l -> tuple Z
l s.t. eval (add_to_nth n x xs) = weight
n*x+eval xs if the index n is within the bounds of
the tuple.

36



While 20 lines of spaghetti-proof about lists and tuples is
a step down from the concise style so far, mixing arithmetic
proofs and list/tuple proofs is much, much worse. Before
deciding to have separate associational and positional
representations, I chose to define each biginteger arithmetic
directly on lists of digits, prove what a simple formula for
the length of the output, and them wrap the function in a
tuple-based API. This was a distinctively suboptimal
choice: while we were able to build up the same basic
operations as here and synthesize modular reduction code
for pseudo-mersenne primes, getting to that point required
over a thousand lines of code and a couple of months of
work by two people. While hypothetical improvements
within that design space might bring down the workload by
a factor of a couple, I cannot imagine it being reduced as
much as to have any chance of maintaining the reader’s
attention when sprinkling most of the code throughout this
document.

The last code snippet (3.7) enables us to convert
multi-digit numbers from positional representation to
associational representation. This means that the 2-digit
multiplication function synthesized in 3.6 would no longer
need to take each digit individually as a parameter, rather
the new inputs would be two positional-representation
numbers of 2 digits each (tuple Z 2). However, to get the
multiplication output back a positional representation, we
need to recognize that 100 = 102 to place the value next to it
at index 2. Furthermore, in mixed-radix positional systems
the weights of multiplication outputs do not necessarily
match the weight of any position: for example
(1x0 + 226x1 + 251x2 + . . .)(1y0 + 226y1 + 251y2 + . . .) =

(1x0y0 + 226(x1y0 + x0y1) + 252x1y1 + . . .) even though each
position has a well-defined weight wi = 2⌈25.5i⌉. The
multiplication output can still be forced back into the
desired positional representation by replacing 252x1y1 with
251 · (2x1y1). More generally: each term in the associational
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representation will be assigned to the largest weight in the
positional representation that it is divisble by, with runtime
value scaled by the quotient.

Fixpoint place (t:limb) (i:nat) : nat * Z :=
if dec (fst t mod weight i = 0)
then let c := fst t / weight i in (i, (c * snd t)%RT)
else match i with

| O => (* never happens *) (0, fst t * snd t)%RT
| S i' => place t i'
end.

Lemma place_in_range t n : (fst (place t n) < 1+n)%nat.
Proof. induction n; cbv [place] in *;
break_match; autorewrite with cancel_pair; omega.

Qed.
Lemma weight_place t i
: weight (fst (place t i)) * snd (place t i)
= fst t * snd t.
Proof. induction i; cbv [place] in *;
break_match; autorewrite with cancel_pair;
repeat match goal with
| [H: _ |- _] => progress (unique pose proof

(Z_div_exact_full_2 _ _ (weight_nonzero _) H))
end;
trivial; nsatz.

Qed.

Figure 3.8: Fixpoint is like
Definition, except it allows
recursion on the structure of
the arguments as examined
using match ... with. Ev-
ery nat is either zero (O) or a
successor S.

break_match indicates that
each case of any if or match
should be considered sepa-
rately. omega proves any true
statement about linear arith-
metic.

repeat match goal with
| [H:pattern |- pattern]
=> progress (script)
| [ ... ] => ... end
is the general mechanism for
repeatedly running different
proof scripts based on what
the givens and the goal look
like. The construct keeps try-
ing the different cases until
none of them do anything.
Here I use it to augment any
hypotheses a mod wi = 0 with
a = wi⌊a/wi⌋.

To put everything together, a complete weight-value list is
converted from associational representation to positional
representation by initializing the output to all zeros and
then adding each limb in the input in the correct place
(figure 3.9).

This conversion function finally addresses the issue with
repeated terms with the same weight that was postponed
earlier: converting
[(100,(a1*b1));(10,a1*b0);(10,a0*b1);(1,a0*b0)] to
a 3-digit positional representation with wi = 10i results in
the expected lowest-digit-first tuple
(a0*b0, a1*b0 + a0*b1, a1*b1).
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Definition from_associational n (p:list limb) :=
List.fold_right (fun t =>
let p := place t (pred n) in
add_to_nth (fst p) (snd p)

) (zeros n) p.
Lemma eval_from_associational {n} p (n_nonzero: n <> O)
: eval (from_associational n p) = Associational.eval p.
Proof.
induction p; cbv [from_associational] in *;
repeat match goal with
| _ => progress (unique pose proof

(place_in_range a (pred n)))
| _ => progress (autorewrite with

push_fold_right push_eval)
| _ => progress (rewrite weight_place)
| _ => progress (omega)
| _ => progress (nsatz)
end.

Qed.
Hint Rewrite @eval_from_associational : push_eval.
End Positional.

Figure 3.9: The correctness
proof of placing each limb
at the correct position in the
positional representation is a
straightforward combination of
the properties of add_to_nth,
fold_left, and the last two
lemmas. Instead of specify-
ing the exact combination in
the proof, it is often conve-
nient to write an unordered list
of steps, each of which deals
with one aspect of the prob-
lem. This style is used exten-
sively in our library, and is so
far the only sanity-preserving
way I have found to describe a
proof that handles hundreds
of cases. After all, good lec-
turers just explain how to do
the proof instead of writing out
each step.

3.6 Synthesizing Curve25519 Modular
Reduction

This section will review (and translate to Coq) the standard
method for implementing reduction modulo numbers of the
shape 2k − cl2

tl − . . .− c02
t0 , encompassing what have been

called “generalized Mersenne primes”, “Solinas primes”,
“Crandall primes”, “pseudo-Mersenne primes”, and
“Mersenne primes”. Furthermore, while the trick in question
is particularly fast when k and each ti are multiples of the
radix, the derivation here will cover the general case. In fact,
the formalization does not even assume that the
coefficients are powers of two as shown, even though this
generality will most likely never be put to use.
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Set s = 2k, and c = cl2
tl + . . .+ c02

t0 so m = s− c. To
reduce x modulo m, find a and b such that x = as+ b. Then

x mod m = (as+ b) mod (s− c)

= (a(s− c+ c) + b) mod (s− c)

= (a(s− c) + ac+ b) mod (s− c)

= (ac+ b) mod m

The choice of a and b does not further affect the
correctness of this formula, but it does influence how much
the input is reduced: picking b = x and a = 0 would make
this formula a no-op. One might pick b = x mod s, although
the formula does not require it (and it is often more efficient
to not aim for the minimal b). Even if b = x mod s, the final
output ac+ b is not guaranteed to be the minimal residue.
For many choices of a and b it is sufficiently smaller to
significantly speed up future computations involving this
number, which is why fast reduction is important.

Lemma reduction_rule a b s c (modulus_nonzero:s-c<>0) :
(a + s * b) mod (s - c) = (a + c * b) mod (s - c).

Proof.
replace (a + s * b) with ((a + c*b) + b*(s-c)) by nsatz.
rewrite Z.add_mod, Z_mod_mult, Z.add_0_r, Z.mod_mod.
trivial.

Qed.

Definition reduce (s:Z) (c:list limb) (p:list limb) : list limb
:= let ab := split s p in

(fst ab) ++ mul c (snd ab).

Lemma eval_reduce s c p
(s_nonzero:s<>0) (modulus_nonzero:s-eval c<>0)
: eval (reduce s c p) mod (s-eval c)
= eval p mod (s-eval c).

Proof.
cbv [reduce].
rewrite eval_app, eval_mul,
<-reduction_rule, eval_split; trivial.

Qed.

Figure 3.10: A straigtforward
transcription of the proof
above. Chapter 6 presents ded-
icated scripts for automatically
proving modular arithmetic
facts, but I inlined a manual
proof here to keep this self-
contained.

The function split decom-
poses its argument x into (a, b).
eval_split proves x = sa+ b
(code in figure 3.11).

mul refers to the associational
multi-digit multiplication de-
fined in figure 3.5, expanding
it for a particular c results in
a modulus-specific reduction
formula.

In principle, reduce is parametric over split: any a and
b such that x = as+ b suffice, and one could imagine using
different choices in different contexts. However, all
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modulus-specific reduction formulas I have found in the
literature follow a very simple heuristic: a is picked as large
as possible without requiring any runtime computation to
extract it. Concretely: in an associational representation
x =

∑
iwixi, all limbs with wi mod s = 0 are considered part

of a, and the rest is b.

Fixpoint split (s:Z) (xs:list limb)
: list limb * list limb
:= match xs with

| nil => (nil, nil)
| x::xs' =>
let sxs' := split s xs' in
if dec (fst x mod s = 0)
then (fst sxs', (fst x / s, snd x)::snd sxs')
else (x::fst sxs', snd sxs')

end.

Lemma eval_split s p (s_nonzero:s<>0)
: eval (fst (split s p)) + s * eval (snd (split s p))
= eval p.

Proof.
induction p; cbv [split] in *;
repeat match goal with
| H:_ |- _ => progress (unique pose proof

(Z_div_exact_full_2 _ _ s_nonzero H))
| _ => progress(autorewrite with push_eval cancel_pair)
| _ => progress (break_match)
end; nsatz.

Qed.

Figure 3.11: split returns (b, a)
following the least-significant-
part-first convention in the
code so far.

The correctness proofs in figures 3.10 and 3.9 share a
structure that is quite common throughout our library:

1. Specify induction, if necessary.

2. Open up all definitions that will be reasoned about
directly (as opposed to using already-proven facts).

3. repeat-match-progress with an arbitrarily-ordered
collection of proof steps.

Assuming no step can turn a provable goal into an
unprovable goal, and no infinite loops are created, this style
allows for groups of common steps to be factored out from
proofs whenever a meaningful pattern of what kinds of
goals they prove is discovered.
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Now we are ready to put everything together and derive a
specific formula for multiplication modulo a prime chosen
to make this operation particularly efficient.

Import Positional. Section Mulmod. Context
(w: nat -> Z) (w: w 0 = 1) (w_nz: forall i, w i <> 0).
(m:Z) (m_nz:m <> 0) (s:Z) (s_nz:s <> 0)
(c:list limb) (Hm:m = s - Associational.eval c).
Definition mulmod {n} (a b:tuple Z n) : tuple Z n
:= let a_a : list limb := to_associational w a in

let b_a : list limb := to_associational w b in
let ab_a : list limb := mul a_a b_a in
let abm_a : list limb := reduce s c ab_a in
from_associational w n abm_a.

Lemma eval_mulmod {n} (H:(n<>0)%nat) (f g:tuple Z n) :
eval (mulmod f g) mod m = (eval f * eval g) mod m.

Proof. cbv [mulmod]; rewrite Hm in *.
autorewrite with push_eval; trivial.

Qed.
End Mulmod.

Definition w (i:nat) : Z := 2^Qceiling((25+1/2)*i).
Lemma base_25_5_mul (f g : tuple Z 10) :
{ fg : tuple Z 10 | (eval w fg) mod (2^255-19)

= (eval w f * eval w g) mod (2^255-19) }.
Proof.
(* manually assign names to limbs for pretty-printing*)
destruct f as [[[[[[[[[f9 f8]f7]f6]f5]f4]f3]f2]f1]f0].
destruct g as [[[[[[[[[g9 g8]g7]g6]g5]g4]g3]g2]g1]g0].
eexists ?[fg].
erewrite <-eval_mulmod with (s:=2^255) (c:=[(1,19)]) by

(try eapply pow_ceil_mul_nat_nonzero; vm_decide).
(* eval w ?fg mod (2 ^ 255 - 19)

= eval w (mulmod w (2 ^ 255) [(1, 19)]
(f9, f8,...f0) (g9, g8,...g0)) mod (2^255-19) *)

eapply f_equal2; [|trivial]. eapply f_equal.
(* ?fg = mulmod w (2 ^ 255) [(1, 19)] (f9...) (g9...) *)
cbv -[runtime_mul runtime_add];
cbv [runtime_mul runtime_add].

ring_simplify_subterms.
(* ?fg = *)
(f0g9+ f1g8+ f2g7+ f3g6+ f4g5+ f5g4+ f6g3+ f7g2+ f8g1+ f9g0,

f0g8+ 2f1g7+ f2g6+ 2f3g5+ f4g4+ 2f5g3+ f6g2+ 2f7g1+ f8g0+ 38f9g9,

f0g7+ f1g6+ f2g5+ f3g4+ f4g3+ f5g2+ f6g1+ f7g0+ 19f8g9+ 19f9g8,

f0g6+ 2f1g5+ f2g4+ 2f3g3+ f4g2+ 2f5g1+ f6g0+ 38f7g9+ 19f8g8+ 38f9g7,

f0g5+ f1g4+ f2g3+ f3g2+ f4g1+ f5g0+ 19f6g9+ 19f7g8+ 19f8g7+ 19f9g6,

f0g4+ 2f1g3+ f2g2+ 2f3g1+ f4g0+ 38f5g9+ 19f6g8+ 38f7g7+ 19f8g6+ 38f9g5,

f0g3+ f1g2+ f2g1+ f3g0+ 19f4g9+ 19f5g8+ 19f6g7+ 19f7g6+ 19f8g5+ 19f9g4,

f0g2+ 2f1g1+ f2g0+ 38f3g9+ 19f4g8+ 38f5g7+ 19f6g6+ 38f7g5+ 19f8g4+ 38f9g3,

f0g1+ f1g0+ 19f2g9+ 19f3g8+ 19f4g7+ 19f5g6+ 19f6g5+ 19f7g4+ 19f8g3+ 19f9g2,

f0g0+ 38f1g9+ 19f2g8+ 38f3g7+ 19f4g6+ 38f5g5+ 19f6g4+ 38f7g3+ 19f8g2+ 38f9g1)

trivial.
Defined.

Figure 3.12: mulmod is just a
wrapper for definitions from
the last three sections. The in-
put and output are taken in
compact positional representa-
tions, but the formula itself is
derived using the associational
representation that enables lo-
cal reasoning about each limb.

The correctness is proven by
autorewrite using the cor-
rectness lemmas for the defini-
tions being wrapped.

The concrete goal is to com-
pute fg mod (2255 − 19) given
f, g in positional representa-
tion with wi = 2⌈25.5i⌉ as one
would use on a computer with
native 32-bit arithmetic.

The derivation itself is slightly
more complicated than the
previous ones because the de-
sired implementation tech-
nique is not obvious from the
goal itself. The script here
manually passes 2255 and 19 as
arguments to the mulmod func-
tion and then calls vm_decide
to discharge the side condi-
tons: the modulus is nonzero,
the lowest weight is 1, etc.

As in figure 3.6, the the script
uses cbv -[] to evaluate
all functions except for those
listed, and then also opens up
the specified wrappers (using
cbv []) to reveal the normal
integer multiplication and ad-
dition.
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The resulting formula is not novel; it has been manually
derived as a part of multiple performance engineering
efforts targeting similarly constrained implementations. For
example, the representation shown here appears on page 12
of “NEON crypto” by Bernstein and Schwabe along with
advice about how to implement it efficiently using vector
instructions.

3.7 Work Not Covered Here
This chapter described the parts of the field arithmetic
library that I worked on. Since then, the framework has been
extended to cover additional operations and
implementation strategies. The details of that are the
subject of another story, to be told another time. However,
as the following chapters inherently rely on a broad verified
field arithmetic library, here is a quick summary of the
relevant functionality:

• Common subexpressions: the code derived in these
examples expresses the output as a direct
combination of the function inputs without reusing
any intermediate computations. Arbitrary common
subexpressions represented in the code using let _
:= _ in _ can be preserved during synthesis if the
template code is first converted to continuation
passing style.

• Carries: in the code shown, the values of the limbs
increase. To fit them in machine registers, values are
carried from lower limbs to higher limbs regularly
throughout the computation.

• Saturated limbs: when the weights of the positions
differ by a factor of the machine word size, even
outputs of primitive operations such as addition or
multiplication cannot necessarily be stored in single
registers. Instead, the primitive limb addition and
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multiplication produce output that has been split into
two different variables.

• Modular canonicalization: the modular reduction
formula shown here does not necessarily produce the
smallest representative of the output congruence
class, but as the choice of the representative might
leak information, a full modular reduction is required
at the end of the computation.

• Limb canonicalization: similarly, multiple different
valuations of limbs can represent the same integer,
again risking an information leak.

• Conversion between bases: as weights of the
mixed-radix representations used in fast
implementations are chosen based on hardware
features of the target platform, the inputs and outputs
need to be converted from the wire format and back.
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Chapter 4

Certified Compilers for
Bounded Arithmetic

In the previous chapter we derived correct-by-construction
code for implementing modular arithmetic by representing
each field element using a fixed number of limbs. The
synthesis procedure and correctness proofs assume that
each limb is represented as an arbitrary-precision integer.
Fortunately, an informed choice of parameters leads to code
where the value of each limb always stays within a desired
range, thus enabling fast constant-time implementations
using the arithmetic instructions and registers provided by
the target CPU. For example, the code for multiplication
modulo 2255 − 19 derived in figure 3.12 uses 32-bit
multiplication, 64-bit addition, and needs to store 32-bit and
64-bit intermediates assuming each input limb is between 0

and 226. Yet the last statement is not obvious, and failure to
correctly account for the maximum range of values each
limb can have during execution has resulted in several bugs
(section 7.1). We want to have proofs that the code works
correctly even if the arbitrary-precision integers are
replaced with the native integer types of our favorite CPU.
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4.1 Why Not “Just” Prove Lack of Overflow?

We could go back to the definitions and proofs in the
previous chapter and try to augment them with the possible
ranges of run-time integers. I claim that this would
inherently need to break the modularity that made the
definitions and proofs short. Currently, the proofs about
multiplication consider partial products one at a time,
completely independently of each other. Separately, the
coefficients that appear in front of partial products on
mixed-radix operations do not appear in the definition of
multiplication but rather as a part of the conversion to
positional representation. If we wanted to change the
proofs to include ranges of these output integers, we would
need to bring together all contributors to these ranges. This
is directly contradictory to the strict separation of concerns
we rely on to build short and simple proofs about arithmetic
correctness.

In the first prototype of our field arithmetic library we did
define all operations directly on the positional
representation. We did not get to proving range properties
of individual integers; just showing correctness of modular
multiplication operating directly on a positional
representation required tens of times more proof code than
the version shown here. However, I find it highly unlikely
that the range proofs would have been any simpler – the
complications were not specific to the arithmetic properties
being proven; they were caused by the general awkwardness
of the chosen representation. The hacl-star development
discussed in section 2.4 does include input and output
range specifications for each bignum operation, and
statements and proofs of related invariants make up a large
fraction of the code.

We chose to keep our simple proofs of arithmetic
properties as-is and establish possible ranges of individual
limbs in a separate pass. The gfverif tool discussed in
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section 2.5 also separates out range analysis from arithmetic
verification. However, gfverif and this project can operate
in opposite directions. gfverif starts from concrete C code
where the range of values each variable can hold is
unambiguously determined by its type and checks that
these ranges are never exceeded. Doing so establishes that
the sizes of variables do not matter and the code might as
well have been using arbitrary-precision integers. Our field
arithmetic library produces code that uses
arbitrary-precision integers but does not provide any
information about their ranges. In the end we want to
output code that uses for each variable the fastest type
whose range includes all values that this variable needs to
be able to hold. Importantly, we do not need to verify that
the transformation doesn’t change the code in other ways –
just knowing that it outputs the same value (although
represented using a different type) is sufficient. This hints
that the specification should be roughly of the form
∀ expr, interp (f expr) = interp expr. Of course,
the precise form of the correctness specification will depend
on the implementation strategy, and in particular the
representation used for the programs being transformed.

4.2 Synthesis Mode Proof Scripting?

The Coq system includes elaborate proof scripting
capabilities that can be used for rewriting programs (see 3.3
for an arithmetic example). We tried to use proof scripting to
implement range analysis, but opted for a different strategy
after realizing that the inherent performance limitations of
proof-producing automation are prohibitive in our use case.
This section describes the now-abandoned attempt.
It would be rather convenient if we could prototype

individual range analysis steps using small, illustrative goals
and then glue them together to create what would
essentially be a compiler, synthesizing code that uses
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fixed-precision integers given code that uses
arbitrary-precision integers. For example, we could use the
basic properties of fixed-width words in the Bedrock library
to straightforwardly prove the following rule:

wordToNat_add 64 : forall (n m:nat) (nw mw:word 64),
wordToNat nw = n ->
wordToNat mw = m ->
n+m < 2^64 ->
wordToNat (Word.add nw mw) = Nat.add n m

Figure 4.1: Proposed rule for
deriving code with fixed-size
words.

To synthesize finite-word code, we would state a goal like
{opt : word 64 | wordToNat opt = Nat.add a b},
do eexists to get wordToNat ?opt = Nat.add a b
and eapply wordToNat_add to get two subgoals
wordToNat ?1 = a and wordToNat ?2 = b, which we
could solve recursively. The third subgoal a + b < 2^ 64
could be solved deriving specific bounds on a and b and
showing that the sum of these bounds is below 2^64.
This approach does not actually work because it requires

duplicating subexpressoions to state their ranges. Proving
f(g(x)) < Bf inherently requires proving g(x) < Bg before
proving f(g(x)) < Bf but the synthesis procedure above
consumes these facts in the opposite order, requiring
f(g(h(x))) < Bf before g(h(x)) < Bg. As the former does not
imply the latter, the context would need to contain both
f(g(h(x))) < B and g(h(x)) < Bg at the beginning of the
derivation to avoid re-doing the entire bounds analysis for
each synthesis step. An expression tree of depth n would
have O(n) subexpressions of size O(n) each, so storing all
subexpressions with their bounds would require O(n2)

space1 . Similarly, re-proving the bounds of all1. Careless inlining of common
subexpressions can even cause
exponential blow-up, but it
is avoidable. It is naturally
avoided in the solution pre-
sented in the next section.

subexpressions from scratch for every synthesis step would
require quadratic time. Yet we want to output code with
thousands of primitive integer operations in it, and creating
millions of expression tree nodes is far beyond what one
could expect to finish in a reasonable time when executed in
the rather simplistic interpreter Coq uses for proof scripts.
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The conclusion of back-of-the-envelope calculation was
experimentally confirmed by one of us trying to implement
this strategy anyway.
Even if Coq performance issues were magically fixed, I

would still advocate for abandoning this strategy: doing
quadratic work for annotating each integer with a type
based on its range is as far from intuitive as it can get; a
correct solution would use the range of the previous
intermediate expression to determine the range and the
new code for the next operation.

4.3 Certified Range Analysis

If we do not want to prove the ranges of the outputs of the
generalized field operations and cannot find a way to write a
script to generate a proof for any particular implementation,
what else can we do? More abstractly, the situation is as
follows: we don’t want to write a proof about all code
generated by our template, and don’t want to run proof
scripts to generate case-by-case proofs for any piece of
generated code. At a first glace, these two options look like
the opposite ends of the proof generality spectrum and
suggest that a good solution, if any, must be in the middle.
Instead of starting to try out various intermediate degrees
of integration, I suggest re-thinking the problem statement
in even more general terms, without constraining ourselves
to thinking about the code generated from the field
arithmetic library: it is obviously sufficient (and I claim,
easier!) to verify a procedure for range analysis on arbitrary
straight-line code consisting of known integer operations.
This way, the range range of any specific code (be it
synthesized by the field arithmetic library or not) can be
proven by simply appealing to the correctness proof of the
transformation that performs range analysis and picks
appropriate types for variables.
It is rather straightforward to imagine how a range-based
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type selection compiler could be implemented: to
determine the range of f(x), first recursively determine the
range of x and then use the knowledge about f to bound its
output range given its input range. For example, if f(x) = x2

and we know −4 ≤ x ≤ 3, then 0 ≤ f(x) ≤ 16. Fixed-size
integers can be assigned based on the ranges: perhaps it
makes sense to store f(x) in a single byte. Making this work
while preserving common subexpressions requires slightly
more care: to infer the range of let y := f(x) in g(y),
the analysis first finds the range of f(x), then uses it to find
the range of g(y), and reports the latter as the range for the
overall expression.

Code Representation

To implement a compiler, we will first need to define the
syntax and semantics of the language it accepts. I chose to
use a simply typed representation with named (or if you
prefer, numbered) variables, parametrized over the available
types and operations. For ease of understanding, I will
present the most minimal prototype that contains just these
features and is specialized to binary operations. However,
rest assured, none of these simplifications are essential to
the range analysis and optimization: after I built the
prototype I describe here, the core ideas were ported to a
much richer language already used in our project. Read
figures 4.2 and 4.3 and try to map field arithmetic code (such
as that derived in figure 3.12) to explicit expressions this
form.
Of course, the field library does not produce syntax trees

in the language just prescribed, it produces regular Coq
code. However, if we somehow aqcuired an e representing
the synthesized code, it would be easy to check (and prove!)
that it is correct: partially evaluating interp ctx e would
return the exact synthesized code. We use a simple
unverified script to crawl the synthesized code and
construct e.
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Section language.
Context
(name : Type)
(type : Type)
(opcode : forall (t1 t2 tR : type), Type).

Inductive expr : forall (t:type), Type :=
| BinOp

{t1 t2 tR : type}
(op : opcode t1 t2 tR)
(e1 : expr t1)
(e2 : expr t2)

: expr tR
| LetIn

(x : name)
{tx : type}
(ex : expr tx)
{tC : type}
(eC : expr tC)

: expr tC
| Var

{tx : type}
(x : name)

: expr tx.

Figure 4.2: Complete structure
of the minimal language I used
to prototype and explain range
analysis and optimized repre-
sentation selection.

By convention, lowercase iden-
tifiers such as type represent
actual constructs in the lan-
guage on which the compiler
operates whereas uppercase
Type refers to Coq types.

While the definition of expres-
sions here does not go out of
its way to ensure that the code
is well-formed (for example, it
is possible to have unbound
variables), the Coq type repre-
senting expressions is indexed
by the type of the expression,
and binary operations can only
be constructed if the types
match.

Context
(interp_type : forall (t : type), Type)
(interp_op : forall (t1 t2 tR) (op:opcode t1 t2 tR)
(v1:interp_type t1) (v2:interp_type t2),
interp_type tR)

(ValueContext : context name interp_type).

Local Notation ”x <- mx ; y” :=
(match mx with
| Some x => y
| None => None
end) (only parsing).

Fixpoint interp (ctx : ValueContext) {t} (e : expr t)
: option (interp_type t)
:= match e with

| BinOp _ _ _ op arg1 arg2
=> v1 <- interp ctx arg1;

v2 <- interp ctx arg2;
Some (interp_op _ _ _ op v1 v2)

| LetIn x _ ex _ eC
=> vx <- interp ctx ex;

interp (extendb ctx x vx) eC
| Var t x
=> lookupb ctx x t

end.

Figure 4.3: Complete semantics
of the minimal language for
range analysis. As the syntax
is parametrized over the types
and the operations, the seman-
tics is parametrized over the
mapping from syntactic types
to Coq types, and the specifica-
tions of the operations.

As interpreting a program may
fail due to unbound variables,
we will need to propagate er-
rors through the interpretation.
The notation is just for the con-
venience of reading.

ValueContext implements a
mapping from names to types
and values. It can be manip-
ulated using extendb and
lookupb.
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Range Analysis, Dependently Typed Programming

Figure 4.4 contains a readability-oriented version of the
range analysis and optimized type selection transformation.
The remainder of this section is dedicated to how to actually
write this code: trying to come up with the form shown here
line-by-line is unlikely to result in anything but frustration.
In particular, the code in figure 4.4 is only readable in
practice because all confusing details are carefully left
implicit, to be inferred by Coq’s type inference during type
checking. Unfortunately, type inference only works reliably
on well-typed code; the error messages for
non-type-annotated code correspond to arbitrary guesses
of which parts of the code could be changed to make it
type-check and are hardly ever helpful. Just re-printing the
function using the Print command produces output twice
as long as the shown code due to return type annotations
on match and let expressions; further giving up implicit
arguments and notations by first doing Set Printing All
produces 170 lines. Writing all of it out by hand would be
type-error-prone and tedious.
Fortunately, even though the rules for typechecking

dependently typed Coq code are alien to most earthly
programmers, they can be summarized on a napkin, learned,
and applied mentally without the help of a computer2. The2. This is in stark contrast to

numerous other dependently
typed languages where type
checking inherently relies on
heuristics (perhaps because it
is undecidable in general). One
example of this is F*, which
uses an SMT solver for type-
checking. Indeed, the hacl-star
framework files are sprinkled
with commands to tune various
heuristics and timeouts of the
solver.

key insight that helped me grasp dependent types is that if
types are allowed to depend on values, type checking must
rely on evaluation. For example, the type checker looking up
a type by its alias is no different from the interpreter looking
up the value assigned to a variable. This means that
knowing the rules of computation and the exact definitions
of everything that is used as a type is crucial for mentally
typechecking code. For example, types tuple T 5 and
tuple T (2+3) are interchangable but tuple T (a+b)
and tuple T (b+a) are not because a + b = b + a
does not follow from computation alone, it requires proof.
The case of match statements is particularly confusing

52



Context
{range : forall type, Type}
(type_for_range : forall {t} (r:range t), type)
(op_range :
forall {t1 t2 tR} (op:opcode t1 t2 tR)

(r1:range t1) (r2:range t2), range tR)
(cast_op :

forall t1 t2 tR
(op:opcode t1 t2 tR)
(r1:range t1)
(r2:range t2),

opcode (type_for_range r1)
(type_for_range r2)
(type_for_range (op_range op r1 r2)))

{RangeCtx : context name range}.

Local Arguments type_for_range {t}. (* now implicit *)
Local Arguments op_range {t1 t2 tR}.
Local Notation ”( a , b )” := (existT _ a b).

Fixpoint type_by_range (ctx : RangeCtx) {t} (e : expr t)
: option { r : range t & expr (type_for_range r) }
:= match e with

| BinOp t1 t2 tR op arg1 arg2
=> b1 <- type_by_range ctx arg1;

let '(range1, arg1') := b1 in
b2 <- type_by_range ctx arg2;
let '(range2, arg2') := b2 in
let rangeR := op_range op range1 range2 in
let op' := cast_op t1 t2 tR op range1 range2 in
Some (rangeR, BinOp op' arg1' arg2')

| LetIn x tx ex tC eC
=> bx <- type_by_range ctx ex;

let '(range_x, ex') := bx in
let ctx' := extendb ctx x range_x in
bC <- type_by_range ctx' eC;
let '(range_C, eC') := bC in
Some (range_C, LetIn x ex' eC')

| Var t x
=> range <- lookupb ctx x;

Some (existT _ range (Var x))
end.

Figure 4.4: As the language is
parametrized over types, the
range analysis is parametrized
over the representation of
ranges of these types and rules
for propagating range infor-
mation across operations. Ar-
bitrary heuristics for picking
new types based on a derived
range can be passed in – it is
often unwise to use the type
with smallest range of values
of those applicable because
might be slower than a less re-
strictive type. As a technicality,
cast_op is needed to turn an
operation on the original types
into an operation on the in-
ferred types (even though both
might be printed as *) because
the type of an operation needs
to match its operands.

Range analysis and represen-
tation type selection are per-
formed in one pass, and the re-
turn type of the recursive func-
tion encodes the relationship
between the inferred range
and type. { x : A & B x }
is the type of pairs where the
first component has type A, and
the type of the second compo-
nent is determined by passing
the value of the first compo-
nent, x : A, into the function
B : forall (x:A), Type.
Here B specifies the inferred
return type of the new expres-
sion given its inferred range,
the type of which depends on
the original return type.
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because even though the variable being matched has a
known structure in each case of the match and this
information is used when checking the return type of the
case, it is not considered when referencing any variables
bound outside the match. In particular, while types of
variables bound outside a match may contain references to
the variable being matched on, these occurrences remain
unchanged across the typechecking of all cases instead of3.3. For a more complete ex-

planation of dependent pat-
tern matching (for example,
for the case where the expres-
sion being matched on is not a
variable), I recommend CPDT
section 8.2 (Adam Chlipala.
Certified programming with
dependent types: a pragmatic
introduction to the coq proof
assistant. MIT Press, 2013. url:
http://adam.chlipala.
net/cpdt/cpdt.pdf).

being filled in with the constructor and variables bound in
each case To incrementally construct large dependently
typed definitions, it is helpful to use the Coq interactive
mode normally used for proofs, inserting _ for code yet to
be written. The generated goal will show all information that
would be used to type-check the omitted code. For example,
consider the following attempt at implementing range
analysis with a more specific but incorrect type annotation:

Fixpoint type_by_range (ctx : RangeContext) t (e:expr t)
: option { r : range t & expr (type_for_range r) }.
refine (

match
e

return
option { r : range t & expr (type_for_range r) }

with
| BinOp t1 t2 tR op arg1 arg2 => _
| _ => _
end

).
(* Givens: ..., op : opcode t1 t2 tR, ... *)
(* Goal: option {r:range t & expr(type_for_range r)}*)

Figure 4.5: The interactive dis-
play shows that all connection
between t, the type of e, and
tR, the return type of op, has
been lost. Even though the def-
inition of expr would not allow
a BinOp e to be well-typed if
tR didn’t match t, from the
perspective of the match, t is
just any old variable that might
be bound arbitrarily far away.
No value of _ would make this
typecheck.

As t appears in the type of e, we can rebind it inside the
match by adding an in clause to the match:

refine (
match e
in expr t
return
option {r : range t & expr (type_for_range r)}

with BinOp t1 t2 tR op arg1 arg2 => _ | _ => _ end
).
(* Givens: ..., op : opcode t1 t2 tR, ... *)
(* Goal: option {r:range tR & expr(type_for_range r)}*)

Figure 4.6: The correct type
annotation for the outermost
match in type_by_range.
The interactive-mode feedback
shows tR both in the goal and
in the type of op.
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Variables not appearing in the type of the variable being
matched on can be bound inside the match by having it
return anonymous functions of those variables:

Local Set Universe Polymorphism. (* for [unit : Type] *)
Definition some_tuple_if_nonzero (n:nat) :
forall (_:match n with 0 => unit | S n' => tuple n end),
option { r : nat & tuple r }.

refine (
match n
return
(forall (tn:match n with 0=>unit |S _=>tuple n end),

option { r : nat & tuple r })
with
| 0 => fun (useless:unit) => None
| S n'=> fun (ntuple : tuple (S n')) =>

Some (S n', ntuple)
end).

Definition dep2sum
(b:bool) : forall (_:if b then Z else Q), Z + Q.

refine (match b
return forall (_:if b then Z else Q), Z + Q
with
| true => fun (x:Z) => inl x
| false => fun (x:Q) => inr x
end).

Figure 4.7: If n is 0, the input
contains no other informa-
tion. If n is nonzero, the input
contains a tuple of length n.
The function returns a tuple
and its length if one is avail-
able and None otherwise. Note
that the argument that poten-
tially contains the tuple is not
even named outside the match
by putting an _ instead of its
name. However, it is bound in
an anonymous function inside
each case of the match. Re-
placing one match case with a
_ would show a goal with the
type of tn appropriately re-
lated to n.

Correctness Proof

I prove the correctness of the combined range inference and
finite type selection optimization using a single induction
over the structure of the input program. To keep the task
manageable, the main proof takes as parameters the
correctness proofs of bounds inference rules for individual
operations, and the fact that the finite type chosen for each
range can in fact represent all values in that range so that
they can be cast back losslessly:
When stating the correctness of the transformation, it is

tempting to try to talk about only expressions that can be
evaluated in an empty context. This is a bad idea in two
ways. First, this notion of correctness is not suitable for
induction: when transforming a LetIn, the recursive call is
made with a non-empty context, so having an inductive
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Local Arguments interp_op {t1 t2 tR}.
Context
(in_range : forall t (r:range t), interp_type t-> Prop)
(interp_op_bounds_correct:
forall t1 t2 tR op r1 r2
(v1 : interp_type t1) (v2 : interp_type t2)
(H1 : in_range t1 r1 v1) (H2 : in_range t2 r2 v2),

in_range tR (op_range op r1 r2) (interp_op op v1 v2))
(cast_back: forall {t r}
(v:interp_type (type_for_range r)), interp_type t)

(pull_cast_back:
forall t1 t2 tR op r1 r2

(v1 : interp_type (type_for_range r1))
(v2 : interp_type (type_for_range r2))
(H1 : in_range t1 r1 (cast_back v1))
(H2 : in_range t2 r2 (cast_back v2)),

interp_op op (cast_back v1) (cast_back v2) =
cast_back (interp_op (cast_op t1 t2 tR op r1 r2) v1 v2))

Figure 4.8: Correctness re-
quirements the range analy-
sis transformation. Note that
while the language being mod-
eled may contain casts, the
cast_back function here is
only used to state the cor-
rectness lemma, it does not
appear in output code. in-
terp_op_bounds_correct
and cast_back are only used
in the correctness proof not
shown here.

hypothesis that only applies to empty calls with contexts is
unhelpful. Worse, it does not even capture the notion of
correctness we care about: the expr type is used to
represent bodies of functions, and since the functions can
have arguments, the context would most likely not be
empty. Instead, the proof quantifies over all possible
contexts in which the input and transformed code is run,
and requires as a precondition that the values in these are
appropriately related to each other and to the “context” for
tracking ranges of variables.

Lemma type_by_range_correct {t} (e:expr t) :
forall {r} e' (rangeCtx : RangeContext)
(He' : type_by_range rangeCtx e = Some (existT _ r e'))
(oldValues : ValueContext) (newValues : ValueContext)
(Hctx : forall {t} n v,

lookupb oldValues n = Some v
-> exists r, lookupb rangeCtx n = Some r

/\ in_range _ r v
/\ exists v',

lookupb newValues n = Some v'
/\ cast_back t r v' = v)

v (Hr : interp oldValues e = Some v )
v' (Hr' : interp newValues e' = Some v'),
in_range _ r v /\ cast_back _ _ v' = v.

Figure 4.9: Complete induc-
tive correctness statement for
range analysis and automatic
selection of finite types and
operations. The key to read-
ing this one is to notice that
most variables are uniquely
specified by the precondition
stated right after introducing
them; the only reason for using
a quantifier is that it is not ob-
vious that such a value exists.

The proof starts by invoking induction e right away:
the location of : forall in the statement separates
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variables that stay the same throughout induction from
those on the right that are allowed to vary. This is
particularly important because recursive calls use different
contexts than the caller, and thus require an inductive
hypothesis that is valid for all contexts. The BinOp and Var
cases are solved by a straightforward combination of the
inductive hypotheses and the fundamental properties of
cast_back and op_range. Unfortunately, while the LetIn
case is conceptually even simpler (“if we add a variable to
the context with the correct range, looking it up later will
return the correct range”), the first order representation of
context and the possibility of unsuccessful lookups inflate
the proof to 80 lines of unexciting instructions for reasoning
about contexts.

4.4 Why Did This Optimization Not Work in
PHOAS?

Proof overhead caused explicit by context manipulation is a
well-known issue in compiler verification; that it shows up
here is completely unsurprising. In fact, the bulk of the
compiler-like transformations in our codebase are
implemented in a style whose main selling point is that it
reuses Coq’s own context manipulation mechanisms for the
embedded language: parametric higher-order abstract 4. Adam Chlipala. “Parametric

Higher-Order Abstract Syntax
for Mechanized Semantics”.
In: Proc. ICFP. 2008, pp. 143–
156. url: http://adam.
chlipala.net/papers/
PhoasICFP08/PhoasICFP08.
pdf.

syntax or PHOAS4. Initially, we tried to implement range
analysis and type selection as PHOAS transformations. This
section will describe why the implementation strategy
shown above is not compatible with PHOAS. To the best of
my knowledge, this is the first documented limitation
inherently caused by the use of Coq binders to represent
object-language binders.
Unlike most of this thesis, this section is only tangentially

related to cryptographic implementations. If you are not
interested in compiler verification, it is safe to skip ahead:
nothing in the rest of this thesis references this section.

57

http://adam.chlipala.net/papers/PhoasICFP08/PhoasICFP08.pdf
http://adam.chlipala.net/papers/PhoasICFP08/PhoasICFP08.pdf
http://adam.chlipala.net/papers/PhoasICFP08/PhoasICFP08.pdf
http://adam.chlipala.net/papers/PhoasICFP08/PhoasICFP08.pdf


Syntax and Semantics in PHOAS

The key idea behind PHOAS is to use Coq functions to
represent code that references previously bound variables
so that Coq function application can be used to substitute in
information about the variable. This directly addresses the
concern of undefined variables left open in figure 4.2: the
second expression in a LetIn node is replaced with a
function from the information about the bound variable to
an expression. This makes it impossible to access the
remainder of the program without first filling in the bound
variable, essentially eliminating the proof effort spent on
handling the case where a variable appearing in an
expression is not associated with a value in the context.
Of course, interpreting an expression where eC does

something other than substitution would not match our
intuition of what an expression is, even though it is
technically defined above. These cases need to be excluded
in correctness proofs of all transformations that change the
binder structure: each one requires an expression
well-formedness precondition which is proven automatically
for each program.

Producing Code from a PHOAS expr

We already saw an example of how to write a function that
returns a simply typed value based on a PHOAS expression –
the interpreter does just that. Other information can be
gathered in a similar manner: A function computing the
number of BinOp nodes in an expression would recurse
similarly to interp but wouldn’t need to substitute
anything for variables. An estimate of the resulting size of
the expression in case all LetIn-bound were substituted in
can be computed by annotating each variable with var t
:= nat – the size of the fully inlined expression for that
variable.
Returning code is more complicated because the var
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Section Syntax.
Context {var : forall (t:type), Type}.
Inductive expr : forall (t:type), Type :=
| BinOp

{t1 t2 tR : type}
(e1 : expr t1)
(e2 : expr t2)
(op : opcode t1 t2 tR)

: expr tR
| LetIn

{tx : type}
(ex : expr tx)
{tC : type}
(eC : forall (x:var tx), expr tC)

: expr tC
| Var

{t : type}
(v : var t)

: expr t.
End Syntax.
Local Arguments expr : clear implicits.

Fixpoint interp {t:type} (e:expr interp_type t)
: interp_type t
:= match e with

| BinOp _ _ _ e1 e2 op
=> interp_op op (interp e1) (interp e2)

| LetIn _ ex _ eC
=> let x := interp ex in

interp (eC x)
| Var _ v
=> v

end.

Figure 4.10: PHOAS syntax and
semantics for the same lan-
guage defined using a simply
typed representation in figures
4.2 and 4.3.

Different values of var t can
be specified to implement
transformations that track
different information about
each variable of type t. Inter-
preting a program is done with
var t := interp_type t,
so every variable is annotated
with the value assigned to it.

The LetIn case of interp
first interprets the expression
for the bound variable to get
x : interp_type tx. The
code after the LetIn is repre-
sented as a function eC from
var tx to expr tC. We picked
var t := interp_type t,
so we can plug in the value
by calling it: this case returns
interp (eC x).

The value plugged into eC is
encountered again inside the
Var case: with the chosen var,
the expr type guarantees that
every Var of type t will contain
a value of type interp_type
t when it is matched on.

annotation is dictated by the next function the resulting
code is passed into. To avoid coupling tranformations to
each other, it makes sense to parametrize each
transformation over the var required by the next one. But
how would the first transformation construct a Var node
which requires a value of type var t without knowing var?
For all it can tell, var tmight be a type with no values at all!
This issue is solved in two parts. First, we can move the

problem around by requiring each Var node in the input
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expression to be annotated with the correct answer
(inputvar t := expr var t), making the Var case
trivial. This creates a second complication in the LetIn
case: now eC needs an expr var tx as input before
revealing the code after the let binder. However, the input
eC is only used to produce the return value of the output
post-binder code eC’, and eC’ gets v : var tx as input!
Thus, we fill eC with Var v.

Section WithVar.
Context (var : type -> Type).
Fixpoint ident {t:type} (e:expr (expr var) t)
: expr var t
:= match e with

| BinOp _ _ _ e1 e2 op
=> BinOp (ident e1) (ident e2) op

| LetIn tx ex _ eC
=> let ex' := ident ex in

let eC' := fun(v:var tx)=>ident (eC(Var v)) in
LetIn ex' eC'

| Var _ v => v
end.

Figure 4.11: PHOAS implemen-
tation of the identity transfor-
mation that does not change
the code at all. Real compiler
optimizations of course imple-
ment more sophisticated logic
but the PHOAS-specifc bits are
essentially the same as here.

Producing Data and Code from a PHOAS expr?

While the patterns for producing data or code are relatively
lightweight, they are also mutually incompatible. It is not
sufficient, for example, to set var t := nat * expr var t because
there is no way to pass a function (eC) half of its input in
return for half of the output. To see the issue more closely,
consider the following attempt at writing a function that
translates all types in an expr.
In short, the types just don’t line up. We briefly

experimented with adding casts to the code and manually
controlling evaluation order to bring the time complexity
back down to linear, which worked. However, the resulting
code was cluttered beyond what I could effectively reason
about, so I did not even attempt to prove it correct in Coq.
As in the field arithmetic case study, different

representations of the same concept can have drastically
different ergonomics in different uses: I wouldn’t want to
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Context (f_op : forall {t1 t2 tR} (op:opcode t1 t2 tR),
forall t1' t2', {tR':type & opcode t1' t2' tR'}).

Local Arguments f_op {t1 t2 tR}.
Fixpoint f
{t:type} (e:expr (fun _ => { t:type & expr var t } ) t)
: { t:type & expr var t}
:= match e with

| Var _ v => v
| BinOp t1 t2 tR e1 e2 op =>
let (t1', e1') := f e1 in
let (t2', e2') := f e2 in
let (tR', op') := f_op op t1' t2' in
(tR', BinOp e1' e2' op')

| LetIn tx ex tC eC =>
let (tx', ex') := f ex in
let vx'' : var tx' := _ (* ??? *) in
let tC' := projT1 (f (eC (tx', Var vx''))) in
let eC''
: forall v, expr var (projT1 (f (eC (tx',Var v))))
:= fun v => projT2 (f (eC (tx', (Var v)))) in

let eC' : forall (v:var tx'), expr var tC' := _ in
(tC', LetIn ex' eC')

end.

Figure 4.12: In the LetIn case,
we would like to call f recur-
sively to determine the output
type, but neither pattern ap-
plies. We cannot just substitute
the tx’ into eC because eC
expects tx and a correspond-
ing variable to be used in the
Var case. If we assume ac-
cess to a suitable var, we can
fill the arguments on a var to
pass into eC to get tx’. No-
tice that we can’t get that var
from a LetIn as in the defini-
tion of ident, because t in
t : type expr var t
needs to be outside of the
LetIn.

Even if we managed to make
one recursive call to get tx’
(perhaps by making up a mean-
ingless expr for eC), we would
need to do another recursive
call to actually output code
eC”, degrading the time com-
plexity from linear to exponen-
tial. Worse, the type of eC”
does not match the one dic-
tated by tx’ due to the use of
a Var different from the one
used for the first recursive call.

write an inliner in a first order representation, and
apparently I cannot write a range analysis optimized in
PHOAS. Fortunately, translating code between the two
representations described here is uncomplicated.
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Chapter 5

Elliptic Curves

5.1 Why Verify Elliptic-Curve-Level Code?
It is tempting to think that low-level arithmetic is
responsible for vast majority of the complexity in
cryptographic implementations. I consider this to be an
oversimplification: the higher abstraction levels are
surprisingly tricky, and verifying them is also worthwhile.
This section will review some sources of complexity in
elliptic-curve-level code.

Minimizing Operational Cost Using Efficient
Representations

Any serious implementation of elliptic curve arithmetic
would use a representation different from the
whiteboard-level specification. Adding two points in a naive
representation requires a division of field elements, which is
hundreds of times slower than the other operations. As a
cryptographic operation involves at least one point-scalar
multiplication, which is implemented as a series of point
additions, it is almost always beneficial to change to the
most convenient coordinate system for performing the bulk
of the computation and then transfer the answer back.
Optimized coordinate systems for elliptic curve arithmetic

are a subject of active research. The Explicit Formulas
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Database1 contains tens of representations and hundreds of1. Daniel J. Bernstein and
Tanja Lange. Explicit-formulas
database. url: https://
hyperelliptic.org/EFD/.

addition procedures, including specialized addition
formulas for certain values of curve parameters for which
especially good performance can be achieved. A fast
addition formula might contain no divisions plus a handful
of coordinate multiplications and coordinate additions2.2. For example, on a com-

plete twisted Edwards curve
(−1)x2 + y2 = 1 + dx2y2 rep-
resented using (X,Y, Z, T ) s.t.
x = X/Z, y = Y /Z, and xy = T/Z,
point addition requires 8 mul-
tiplications, 8 additions and 2
doublings:
A = (Y1 −X1)(Y2 −X2)
B = (Y1 +X1)(Y2 +X2)
C = T1(2d)T2

D = Z12Z2

E = B −A
F = D − C
G = D + C
H = B +A
X3 = EF
Y 3 = GH
T3 = EH
Z3 = FG

As not every elliptic curve admits a single addition
formula that works for all pairs of points (without triggering
a division by zero or equivalent), most addition procedures
specify multiple cases. If the condition that determines
which case is used must remain secret, both cases need to
be computed – otherwise an attacker could infer the secret
condition by measuring the time taken by the addition
computation. This is quite common: when multiplying a
point by a secret scalar, the choice of which points to add
(and thus which cases of the addition procedure are
triggered) depends directly on the bits of the secret key.
This means that the work required for an addition formula
with multiple cases is the sum of the amounts of work for
each case, resulting in a strong incentive to minimize the
number of cases.
It is not obvious that a couple of footnote-sized formulas

would require formal verification: the existence of fast
addition formulas is well-known; the formulas themselves
are relatively simple, and appear in peer-reviewed
publications. However, the editors of the explicit formulas
database discovered 2 significant errors in the literature
when they checked 123 formulas using the Magma computer
algebra system3, and to my best understanding, there was3. Daniel J. Bernstein and Tanja

Lange. The Explicit-Formulas
database. Sept. 5, 2007. url:
https://cr.yp.to/talks/
2007.09.05/slides.pdf,
page 4.

no systematic checking of side-conditions of the formulas.

Applicability of Optimizations

While the formulas themselves can be simple, the
conditions for their applicability are not necessarily so. Yet
there is a strong drive towards using faster, more specialized
formulas, and some very desirable formulas have tricky side
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conditions. It is a pattern that the fastest procedures just
barely cover all cases – if there was a case that could be left
out in a way that improved performance, we would have an
even faster procedure.
For example, Joost Renes, Craig Costello, and Lejla Batina

recommend an addition procedure consisting of a single
40-step formula for use with elliptic curves in Weierstrass
form. The formula in question does not work correctly for all
points for possible parameters of the Weierstrass curve: in
particular, it computes an incorrect value for P +Q if P ̸= Q

but 2P = 2Q (i.e., P −Q has order exactly 2) 4. Nevertheless, 4. Joost Renes, Craig Costello,
and Lejla Batina. “Complete
addition formulas for prime
order elliptic curves”. In: Pro-
ceedings of the 35th Annual
International Conference on Ad-
vances in Cryptology, New York,
USA. Springer-Verlag, May 8,
2016. url: https://eprint.
iacr.org/2015/1060.pdf,
section 5.2.

this formula is considered very desirable even for use on
curves that do contain points of order 2 because many
computations never produce those points. However, code
using that formula with a curve that does have points of
order 2 needs to be carefully vetted.
The optimized addition laws I chose to implement for

Edwards and Montgomery curves also have non-trivial side
conditions but the former only requires information about 5. A point that is not on the de-

sired curve may be on some
other curve. If the point is mul-
tiplied by the secret key and
sent over the network as one
might in a Diffie-Hellman hand-
shake, the attacker would learn
the value of the secret key
modulo the order of a (small)
curve of their choice by com-
puting a discrete logarithm on
that curve. Multiple such mea-
surements can be used to re-
construct the secret key using
the Chinese Remainder Theo-
rem. Tibor Jager, Jorg Schwenk,
and Juraj Somorovsky. “Prac-
tical Invalid Curve Attacks
on TLS-ECDH”. in: (2015). url:
http://euklid.org/pdf/
ECC_Invalid_Curve.pdf.

static parameters and the latter is accompanied with an
alternative proof that the output is safe in the sense that no
secret information is leaked even when the preconditions
are not met.

Library-wide Invariants

Even more commonly, elliptic curve code requires that the
points that it operates on actually satisfy the curve
equation. Otherwise, the result is meaningless but may leak
any secret inputs to the computation5.
Therefore, the function that converts a point from a

space-efficient representation used for transmission to the
internal representation must never output a point that does
not satisfy the curve equation. Again, the point decoding
functions for commonly used representations admit
sophisticated optimizations, leaving room for design and
implementation error.
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Constraints of Higher-Level Protocols

Implementing multiple kinds of cryptographic functionality
can create even more tension between simplicity and cost.
For example, the best-known elliptic curve protocol for
verifiable random functions requires a Diffie-Hellman group
of prime order but the exception-free Montgomery ladder
strategy for Diffie-Hellman key agreement requires the curve
order to be divisible by 4. Adding a new cryptographic
object to an application would require implementations of
its operations for all platforms, additional key management,
and in case of an existing deployment, a backwards
compatibility layer. In many cases, these costs often
outweigh the benefits of simply using a protocol “as it says
on the label”. Instead, the example conflict in this paragraph
can be resolved through clever engineering by choosing a
curve of order 4p where p is a prime, and having the
verifiable random function protocol operate on a specific
order-p subgroup. Yet the required additional code (for
testing subgroup membership) is far from obvious, and any
omission could easily remain undetected as during normal
operation the checks (if implemented) would silently pass.

5.2 Specifying Elliptic Curves

To verify either representations of elliptic curves or code
that uses elliptic curves, we first need a specification of the
elliptic curves, their operations, and proofs of basic
properties of these operations. This section will briefly
review elliptic curves of Edwards, Montgomery and short
Weierstrass form and explain the way these definitions are
written in Coq. The proofs of basic properties of group
structure will be covered in the next section to the extent
they are specific to the elliptic curve in question – most of
the heavy lifting is done by the field equation prover
described in the next chapter.
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Twisted Edwards Curves and Invariants in Types

A twisted Edwards curve over a field F (of characteristic at
least 3) with parameters a and d is defined to contain the
points (x, y) s.t. ax2 + y2 = 1 + dx2y2. Addition of points
(x1, y1) + (x2, y2) is defined similarly to addition of sines and
cosines of angles:

(
x1y2+x2y2

1+dx1x2y1y2
, y1y2−ax1x2

1−dx1x2y1y2

)
. If F contains a

square root of a but no square root of d, the denominators
are never zero. I am not aware of cryptographic use of
parameter choices that do not rule out division by zero;
alternative formulas for these cases are not covered here.
The identity element is (0, 1) and scalar multiplication nP is
defined as addition of P repeated n times.
A straightforward transcription of this specification to Coq

is possible, but getting the relevant notations set up in the
first place requires a fair bit of boilerplate. The only
semantically significant difference comes from Coq
defaulting to constructive logic: we need to specify as a
precondition that it is possible to algorithmically decide
whether two field elements are equal or not, while study of
elliptic curves under the assumptions of classical
mathematics treats this as an axiom.
The representation I chose (figure 5.1) enforces that all

points are in fact on the curve by typing. However, as it
would be unreasonable to expect the Coq type checker to
verify that the addition formula produces valid points when
checking add : point -> point -> point, a proof of
point validity is included as an additional field, next to x

and y. This way, every function computing a pair of field
elements and returning a point needs to be accompanied
with an explicit proof that the output is always on the curve.
Of course, we do not actually compute with the proofs: Coq’s
default evaluation strategy does not materialize proofs
when the overall expression has a simple type, extraction of
OCaml or Haskell code ignores the proof fields, and so does
our own synthesis of low-level code. Nevertheless, every
time I (unintentionally) type Eval vm_compute in P
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instead of Eval vm_compute in (coordinates P), Coq
happily exhausts tens of gigabytes of RAM trying to
(amongst other things) enumerate all relevant cases of a
proof originally given by induction.
The consequences of using expressive types in

specifications reach far beyond evaluation. A major benefit
is that algebraic laws can be proven in their natural form, for
example forall P Q R, P+(Q+R) = (P+Q)+R instead of
forall P Q R, onCurve P -> onCurve Q ->
onCurve R -> P+(Q+R) = (P+Q)+R as one would use
for simply typed points. This is particularly important when
interfacing with pre-existing higher-order functions that
expect an associative operation as an argument but have no
support for separately threading through the fact that this
operation preserves some property of the objects that it is
operating on. For example, we were able to reuse the
standard library implementation of binary exponentiation
(and its correctness proof) as a stepping stone towards our
own constant-time scalar multiplication procedure. On the
other hand, putting an invariant in the types makes the code
depend on the proofs that this invariant is preserved. Worse,
mixing code and types without a plan has so far brought me
only confusion and triggered limitations of standard library
proof scripts. Nevertheless, we were able to find a set of
conventions that seem to have kept us removed from the
horror stories of dependently typed programming. In short:
write code and proofs separately, wrap them together at the
module interface. Every “public” function should as the very
first (innermost) step separate the input values from the
input invariants and as the very last (outermost) step
package the output value with the output invariants.
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Section TwistedEdwardsCurves.
Context
`{field: @Algebra.field

F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv}
{char_ge_3: @Ring.char_ge

F Feq Fzero Fone Fopp Fadd Fsub Fmul 3}
{Feq_dec: DecidableRel Feq}.

Local Notation ”0” := Fzero.
Local Notation ”1” := Fone.
Local Infix ”+” := Fadd. Local Infix ”*” := Fmul.
Local Infix ”-” := Fsub. Local Infix ”/” := Fdiv.
Local Notation ”x ^ 2” := (x*x).
Local Infix ”=” := Feq : type_scope.
Local Notation ”a <> b” := (not (a = b)) : type_scope.

Context {a d : F}
{nonzero_a : a <> 0}
{square_a : exists sqrt_a, sqrt_a^2 = a}
{nonsquare_d : forall x, x^2 <> d}.

Definition point : Type :=
{ xy : F*F
| let '(x,y) := xy in a*x^2 + y^2 = 1+d*x^2*y^2 }.

Definition coordinates (P:point) : F*F :=
let (xy, xy_onCurve_proof) := P in xy.

Program Definition zero : point := (0, 1).

Program Definition add (P1 P2:point) : point :=
match coordinates P1, coordinates P2 return F*F with
| (x1, y1), (x2, y2)
=> (((x1*y2 + y1*x2)/(1 + d*x1*x2*y1*y2)),

((y1*y2 - a*x1*x2)/(1 - d*x1*x2*y1*y2)))
end.

Next Obligation.
destruct P1 as [[??]?], P2 as [[??]?];
eapply Pre.onCurve_add; trivial.

Qed.

Fixpoint mul (n:nat) (P : point) : point :=
match n with
| O => zero
| S n' => add P (mul n' P)
end.

End TwistedEdwardsCurves.

Figure 5.1: The first code block
is boilerplate, existing solely to
assign the obvious notations to
field operations. In principle,
this could be automated using
either typeclass inference or
module functors but I consider
superfluous 10 lines of simple
code to be much more accept-
able than involving one of the
two hairiest features of the Coq
system in the specifications.

The “set” notation
{ x : T | P x } actually
stands for a type with two
fields where the type of the
second field depends on the
value of the first. Here, the first
field contains the coordinates
and the second field a proof
that the coordinates are on the
curve.

The Program Definition
machinery accepts a super-
set of the code Definition
accepts, creating proof obliga-
tions for missing details. Here,
the match is marked to re-
turn F*F, but that value is then
used as a point: the missing
proof of the coordinates be-
ing on the curve is left as an
obligation.

While Program Definition
can be very convenient for
composing code with invariants
in the types, I find its behavior
on match without explicit re-
turn type annotations annoy-
ing: it would create a proof of
(x1, y1) = coordinates
P1, pass it into the match, and
then construct the output in-
variant proof inside the match
rather than at the end of the
function, complicating proofs.
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Montgomery Curves

In almost all cases, a point of a Montgomery curve over a
field F (of characteristic at least 3) with parameters a and
b ̸= 0 has coordinates (x, y) s.t. by2 = x3 + ax2 + x. Similarly,
almost all pairs of points can be added using the formula
k = (y2 − y1)/(x2 − x1); (x1, y1) + (x2, y2) =(
bk2 − a− x1 − x2, (2x1 + x2 + a)k − bk3 − y1

)
. But if this

was it, we wouldn’t need a separate subsection for defining
Montgomery curves.
The above addition formula contains a division, and this

time there is no reasonable way to engineer away the
possibility of the denominator being zero if x1 = x2.
Furthermore, we want Montgomery curve points to form a
group, but no two-coordinate point acts as a zero for the
addition. Based on the geometric interpretation of k as a
slope, adding a point to itself is defined by instead setting k
equal to the slope of a line tangent to the curve at that
point. The remaining case (x, y) + (x,−y) would have an
infinite slope; these points are algebraically the opposites of
each other and their sum is the zero element, denoted∞.
Including cases for adding∞, we have a total of 6 cases in
figure 5.2.

Short Weierstrass Curves

The definition of short Weierstrass curves (figure 5.3) is
structured and motivated similarly to that of Montgomery
curves, but the family of curves it encompasses is more
general. With parameters a and b, the points are∞ and
(x, y) s.t. y2 = x3 + ax+ b. Weierstrass curves do not
necessarily have points that are their own opposites (i.e.,
P +P = P −P = ∞): (x, y) = (x,−y) if y = 0, but x3 + ax+ b

may not have a solution in the underlying field. On the other
hand, every Montgomery curve contains (0, 0) (with
(0, 0) + (0, 0) = ∞) and every Edwards curve contains (0,−1)

(with (0,−1) + (0,−1) = (0, 1) as for angles). A similar
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Local Notation ”' ∞ '” := (inr tt).
Local Notation ”' ∞ '” := unit : type_scope.
Local Notation ”( x , y )” := (inl (pair x y)).

Context {a b : F} {b_nonzero : b <> 0}.
Definition point :=
{ P : F*F + ∞ | match P with

| (x, y) => b*y^2 = x^3 + a*x^2 + x
| ∞ => True
end }.

Definition coordinates (P:point) : (F*F + ∞) :=
let (coords, pf) := P in coords.

Program Definition zero : point := ∞.

Program Definition add (P1 P2:point) : point :=
match coordinates P1, coordinates P2 return F*F + ∞

with
| (x1, y1), (x2, y2) =>
if dec (x1 = x2)
then if dec (y1 = - y2)

then ∞
else let k := (3*x1^2 + 2*a*x1 + 1)/(2*b*y1) in

let x := b*k^2 - a - x1 - x1 in
let y := (2*x1 + x1 + a)*k - b*k^3 - y1 in
(x, y)

else let k := (y2 - y1)/(x2-x1) in
let x := b*k^2 - a - x1 - x2 in
let y := (2*x1 + x2 + a)*k - b*k^3 - y1 in
(x, y)

| ∞, ∞ => ∞
| ∞, _ => coordinates P2
| _, ∞ => coordinates P1
end.

Next Obligation. Proof. (* next section *) Qed.

Figure 5.2: The encod-
ing of ”either (x, y) or
∞” in Coq uses the type
sum A B with constructors
inl (a:A) : sum A B and
inr (b:B) : sum A B, and
the unit type with one con-
structor tt. We use notations
F × F + ∞ and∞. The core
definitions are given by case
analysis on the sum type, even
just to define whether a point
is on the curve.

This code snippet defining
Montgomery curves looks sim-
ilar in length to that defining
twisted Edwards curves only
because I omitted the com-
mon field notation boilerplate
and mul definition from this
one to fit this one on one page.
The increased complexity due
to multiple cases shows up in
all subsequent developments
about Montgomery curves
specifically, either as human
effort in writing the proof or
simply longer execution times
of proof scripts that work case-
by-case.

All considerations about richly
typed representations de-
scribed when defining twisted
Edwards curves apply.

separation applies to points such that 4P = ∞. This makes
short Weierstrass curves strictly more general than
Montgomery and Edwards curves and it can be shown that
every Edwards or Montgomery curve over a field of
characteristic at least 4 corresponds to a Weierstrass curve
through a change of variables. As a consequence, a
definition of Weierstrass curves is very useful to capture
curves not covered by the previous definitions (e.g. curves
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of odd order) but the optimized algorithms that apply to the
more restrictive definitions may not be adaptable to the
general case.

Context {a b : F}.
Definition point := { P | match P with

| (x, y) => y^2 = x^3 + a*x + b
| ∞ => True
end }.

Definition coordinates (P:point) : F*F + ∞ :=
let (coords, _) := P in coords.

Program Definition zero : point := ∞.

Program Definition add (P1 P2:point) : point :=
match coordinates P1, coordinates P2 return F*F + ∞

with
| (x1, y1), (x2, y2) =>
if dec (x1 = x2)
then
if dec (y2 = - y1)
then ∞
else let k := (3*x1^2+a)/(2*y1) in

let x3 := k^2 - x1 - x1 in
let y3 := k*(x1 - x3) - y1 in
(x3, y3)

else let k := (y2 - y1)/(x2 - x1) in
let x3 := k^2 - x1 - x2 in
let y3 := k*(x1 - x3) - y1 in
(x3, y3)

| ∞, ∞ => ∞
| ∞, _ => coordinates P2
| _, ∞ => coordinates P1
end.

Next Obligation. Proof. (* next section *) Qed.

Figure 5.3: Again, I omit all
boilerplate already explained
in the previous definition.

5.3 Proving Basic Properties, Group
Structure

The definitions in the previous section forward-referenced
or outright omitted several important proofs that make the
definitions make sense (and type check in Coq). The reason
for this choice is rooted in the structure and ultimately the
proposed procedure for auditing of the codebase: everyone
with relevant domain knowledge should be able to check
that the functionality of our library is specified correctly by
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reading the files in Spec/ and nothing else. Even though I
chose to write richly typed specifications whose
well-typedness depends on proofs of some basic properties,
these proofs are completely irrelevant to what is being
specified and should not clutter the specification. Even an
adversarially crafted proof couldn’t change the meaning of
the specification when referenced: even though it is
possible to mix proofs and code, Coq does not allow any
information flow from proofs of Props to code.

Closure

As the definition of a group requires, the output of point
addition and point negation need to be on the curve. The
proof goals expressing this requirement are generated
automatically by Program Definition when it is trying to
get a definition to type-check. Each one is straightforward
composition of the validity invariant declared with the
point type and the operation being defined. See figure 5.4
for a goal and figure 5.5 for the proof.

match
match coordinates P1 with
| (x1, y1) =>

match coordinates P2 with
| (x2, y2) =>

if dec (x1 = x2)
then
if dec (y1 = - y2)
then ∞
else (* omitted: doubling case ... *)

else (* omitted: addition case ... *)
| ∞ => coordinates P1
end

| ∞ => match coordinates P2 with
| (_, _) => coordinates P2
| ∞ => ∞
end

end
with
| (x, y) => b * y ^ 2 = x ^ 3 + a * x ^ 2 + x
| ∞%core => True
end

Figure 5.4: Proof obligation
generated by Program Def-
inition for definition add
in figure 5.2. The outermost
match construct originates
from the definition of point;
the definition of adding P1 and
P2 is inlined into it. The two in-
ner matches correspond to the
match on two points in add,
which is just convenient syntax
for the form shown here.

Even though this expression
looks like code, it returns a
proposition. Looking at the
with cases of the outermost
match, we can see that (de-
pending on the outcome of the
addition) the proposition to be
proven is either an equality or
the trivial proposition True.
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Proof. cbv [coordinates]; break_match; trivial; fsatz. Qed.Figure 5.5: Proof of figure 5.4.

At this point, a reader who is actually trying to follow the
reasoning might object that the five words in figure 5.5 do
not constitute a proof by their standards, i.e., that I cheated.
It is not up to me to criticize the reader’s taste in proofs, but
I would rather describe the above as honest trickery: the
script shown does generate proofs for each case laid out in
the auto-generated goal in figure 5.4, and each of these
proofs is checked by the Coq kernel, which knows nothing
about this thesis or even elliptic curves. However, I do not
claim I would be able to explain this proof in front of a
blackboard, or that reading this document would grant
anyone else this power: Coq generated the goals, and Coq
proved the goals, so may the Coq explain. Or as a
mathematician would put it, these proofs are simply too
boring. After all, the above proof script captures everything
that one would remember about the proof even if they had
seen it: each case proceeds by algebraic manipulation
(fsatz) of the coordinates of the points being match-ed
on (and trivial proves True).
The corresponding closure proof for twisted Edwards

curves includes a non-trivial argument6 to show that the6. Theorem 3.3, Daniel J. Bern-
stein and Tanja Lange. “Faster
Addition and Doubling on El-
liptic Curves”. In: Proceedings
of the Advances in Crypotology
13th International Conference
on Theory and Application of
Cryptology and Information
Security. ASIACRYPT’07. Kuch-
ing, Malaysia: Springer-Verlag,
2007, pp. 29–50. isbn: 3-540-
76899-8, 978-3-540-76899-9.
url: https://eprint.iacr.
org/2007/286.

denominators are nonzero (Montgomery and Edwards
addition laws explicitly test for and handle zero
denominators). Again, the Coq translation (figure 5.6) of the
proof does not show any algebraic manipulation and is
shorter than the pencil-and-paper version for a = 1

originally published in a conference paper. Further, while
the paper version was optimized to better communicate
understanding to humans and this one eschews readability
in favor of a troubleshooting-oriented coding style, both
have the same essential elements: explicit case analysis,
explicit construction of

√
d, and an appeal to out-of-band

algebraic manipulation to show that the latter is correct.
Similar arguments are used inline for the optimized addition
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formula proofs described in section 5.4, but I decided to
explicitly state and prove just this step here in hope that it
is instructive for translating algebraic proofs to Coq.

Lemma denominator_nonzero
(a:F) (a_sq: exists sqrt_a, sqrt_a^2 = a) (a_nz: a<>0)
(d:F) (d_nsq: forall sqrt_d, sqrt_d^2 <> d)
(x1 y1:F) (P1ok: a*x1^2 + y1^2 = 1 + d*x1^2*y1^2)
(x2 y2:F) (P2ok: a*x2^2 + y2^2 = 1 + d*x2^2*y2^2)
: (d*x1*x2*y1*y2)^2 <> 1.

Proof.
destruct a_sq as [sqrt_a];
destruct (dec (sqrt_a*x2+y2 = 0));
destruct (dec (sqrt_a*x2-y2 = 0));
try match goal with [H: ?f (sqrt_a * x2) y2 <> 0 |-_]
=> pose proof

(d_nsq ((f (sqrt_a * x1) (d * x1*x2*y1*y2*y1))
/(f (sqrt_a * x2) (y2) * x1 * y1)))

end; fsatz.
Qed.

Figure 5.6: Proof that the de-
nominators in figure 5.1 are
never zero.

Here match goal with ?f in
the pattern binds to f the func-
tion of sqrt_a * x2 and y2
which hypothesis H claims to
be nonzero – either + or -, de-
pending on the outcome of the
earlier case analysis. Either
way, a square root of the non-
square d is constructed, and
fsatz derives contradiction.

In the case the match goal
does not find suitable H and
f, the try in front of it lets
the proof script continue –
both case analyses must have
come out “=0”, so x2 = y2 = 0,
but that contradicts P2ok and
a_nz by fsatz.

Associativity, Commutativity, Invesrses…

Proofs of other properties of elliptic curves required for
them to be commutative groups follow the same overall
pattern as the closure proofs required for type checking. In
particular, the proof scripts only deal with the code
structure of the elliptic curve and group definitions; all
algebraic manipulation is delegated to the fsatz tactic.
More generally, I have tried to keep definition-specific

reasoning as simple and syntax-directed as possible and
separate non-trivial reasoning to tactics based on problem
domain, rather than the lemma or definition that uses the
tactic. Having a clear specification of what kinds of goals
each tactic should solve, and what kinds of goals it is
allowed leave behind is immediately useful to resolve
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situations where a bug fix in a tactic breaks a proof that uses
this tactic. Perhaps even more importantly, this enables
modular reasoning about how much work it would be to
prove one or another property.

Of course, this kind of modularity has its limits. In
particular, it does not capture resource constraints on the
execution of the proof script. A perfectly sound strategy for
decomposing a goal into a finite number of
known-to-be-solvable subgoals can still take unreasonably
long and two proof steps that can be generated separately
just within the available RAM can resulting in an
out-of-memory error when combined. Nevertheless,
decoupling proof methodology from the final proof
generated by the script is unambiguously worth it, even if it
means that the size and generation time of the resulting
proof need to be estimated and controlled separately.
Performance issues also further emphasize the need for
predictable tactics: there is a huge difference between
needing to adjust and re-run a proof script every 10 minutes
and writing it once, even if it needs to be run overnight.

Program Definition opp (P:point) : point :=
match coordinates P return F*F+ ∞ with
| (x1, y1) => (x1, - y1)
| ∞ => ∞
end.

Next Obligation.
cbv [coordinates]; break_match trivial; fsatz.

Qed.

Lemma commutative_group (discr_nz: 4*a^3 + 27*b^2 <> 0)
: Algebra.commutative_group

(eq:=eq) (op:=add) (id:=zero) (inv:=opp).
Proof.
cbv [opp eq zero add coordinates];
repeat match goal with
| [H:_ /\ _ |- _] => destruct H
| _ => progress intro
| _ => progress Algebra.split
| _ => progress break_match
| _ => progress break_match_hyps
end; try contradiction; trivial; fsatz.

Qed.

Figure 5.7: A proof that ev-
ery Weierstrass curve forms
a group.

The proof script follows the
usual pattern of opening up
definitions, simplifying the goal
in ad-hoc ways using a repeat
match …progress, and then
passing each subgoal through
a sequence of tactics that each
either solve it or leave it un-
changed.

contradiction from the Coq
standard library solves all goals
with structurally nonsensical
hypotheses such as False or
∞ = (_, _).
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A Coq proof that every short Weierstrass curve forms a
group is shown in figure 5.7; the one for Edwards curves is
even simpler due to the lack of case analysis. While a similar
direct proof would presumably work for Montgomery curves,
I instead prove that each Montgomery curve is isomorphic to
some Weierstrass curve using the very same tactic
machinery.

5.4 Optimized Representations

To allow for fast computations, I implemented and verified
inversion-free addition formulas for each family of curves.
While transcribing the formulas themselves was trivial,
coming up with precise specifications involved a surprising
amount of guesswork – the formulas themselves are much
better known than the invariants they maintain about the
values they operate on.
For example, XYZT coordinates for Edwards curves

represent the x and y coordinates of each point as fractions
X/Z and Y/Z, carrying around precomputed T=XY/Z. In this
case, the complete invariant is rather obvious: the curve
equation needs to hold on (X/Z,Y/Z), T=XY/Z needs to
hold, and Z needs to be nonzero. The natural way to encode
this in Coq is the same as for the specification of the elliptic
curve: a 4-tuple of field elements carrying an invariant
proof. The correctness of operations on this representation
is easily stated as an isomorphism: operating on the
efficient representation and then converting to the spec
representation should be the same as first converting to the
spec representation and operating there. Again, all proof
obligations are naturally decomposed into field equalities
which can be handled by fsatz.
The optimized single-case addition formulas for

Montgomery and Weierstrass curves are significantly trickier
to reason about because they are not complete: for some
inputs, the formula does not produce the correct answer.
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Furthermore, the Montgomery ladderstep formula7 is used7. Daniel J. Bernstein.
“Curve25519: new Diffie-
Hellman speed records”. In:
Public Key Cryptography - PKC
2006. Proceedings of the 9th
International Conference on
Theory and Practice in Public-
Key Cryptography, New York,
NY, USA, April 24-26. Springer-
Verlag, Feb. 9, 2006. url:
http://cr.yp.to/papers.
html#curve25519 (visited on
08/14/2016), appendix B.

for x-coordinate scalar multiplication without checking that
the input point is on the curve at all, this obviously ruling
out the possibility to encode that fact in the type.
Furthermore, computing on the x coordinate alone prevents
us from converting from the optimized representation back
to the specification representation, forcing the use of a
custom equivalence relation throughout proofs. To
complicate the situation even further, the fraction x/0 is
allowed for nonzero x; it represents the point∞.

Definition projective (P:F*F) : Prop :=
if dec (snd P = 0) then fst P <> 0 else True.

Definition peq(P Q:F*F) := fst P * snd Q = fst Q * snd P.

Lemma to_xz_add (x1:F) (xz x'z':F*F)
(Hxz:projective xz) (Hz'z':projective x'z')
(Q Q':point)
(HQ:peq xz (to_xz Q)) (HQ':peq x'z' (to_xz Q'))
(difference_correct:match coordinates (Q - Q') with

| ∞ => False
| (x,y) => x = x1 /\ x1 <> 0
end)

: peq (to_xz (Q+Q )) (fst (xzladderstep x1 xz x'z'))
/\ peq (to_xz (Q+Q')) (snd (xzladderstep x1 xz x'z')).

Figure 5.8: Statement of main
lemma about xzladderstep,
which efficiently computes the
x coordinates of Q + Q and
Q + Q′ given the x coordinates
of Q − Q′, Q,Q′. The last two
inputs and the outputs use a
projective representation as
fraction x/z; the difference
input implicitly uses z = 1.
+ and - refer to the specifi-
cation of Montgomery curves
(figure 5.2).

The multitude of preconditions is not noteworthy – in
other cases, the same information was required as a part of
the point type. The difference_correct precondition,
however, encodes the inherent limitation of this formula:
adding a point to itself does not work, as doesn’t adding
points whose difference is (0, 0). To safely use this formula,
we separately prove that the difference of two points is
preserved when xzladderstep adds Q to both of them.8. Joost Renes, Craig Costello,

and Lejla Batina. “Complete
addition formulas for prime
order elliptic curves”. In: Pro-
ceedings of the 35th Annual
International Conference on Ad-
vances in Cryptology, New York,
USA. Springer-Verlag, May 8,
2016. url: https://eprint.
iacr.org/2015/1060.pdf.

This is proven by reasoning about the elliptic curve as a
group, without breaking each point into coordinates. The
caller never starts with Q−Q′ ∈ {∞, (0, 0)}.
I was also able to verify that the single-case addition

formula8 for Weierstrass curves of odd order behaves as
expected. Again, the precondition looks rather gnarly when
written in terms of coordinates of the points being added.

78

http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#curve25519
https://eprint.iacr.org/2015/1060.pdf
https://eprint.iacr.org/2015/1060.pdf


This condition can also be specified purely in terms of group
operations on the elliptic curve, without revealing any
internal details (see figure 5.9).

Definition projpoint := { P : F*F*F | let '(X,Y,Z):= P in
Y^2*Z = X^3 + a*X*Z^2 + b*Z^3 /\ (Z = 0 -> Y <> 0)}.

Definition not_exceptional_y (P Q:projpoint) :=
match coordinates (to_affine P - to_affine Q) with
| ∞ => True
| (_, y) => y <> 0
end.

Definition not_exceptional P Q :=
let p := to_affine P in
let q := to_affine Q in
(W.eq (p+p) (q+q) -> W.eq p q).

Figure 5.9: The projective rep-
resentation invariant and pre-
conditions for the single-case
addition formula for Weier-
strass curves. While the pre-
condition is again stated as a
match on the difference of in-
puts, the requirement is differ-
ent from before. Again + and -
refer to the affine representa-
tion (figure 5.3, figure 5.7).

Obviously, the latter form is more suitable for further
reasoning, even if it is concluded with an argument how the
group structure of the particular elliptic curve does not
include any point that could trigger the exceptional cases.
The proof of equivalence between these two statements
consists of two key lemmas: all exceptional cases have
2P = 2Q, and P + P is never exceptional.
Overall, the main challenge in verifying optimized

representations of elliptic curves is getting the invariants
and preconditions exactly right – while the formulas
presented in publications can often be translated to Coq
verbatim, the preconditions are given in prose, or as a part
of the proof, or omitted entirely.

5.5 EdDSA

To check that the definitions of elliptic curves are right, I
coded up a specification of the EdDSA9 digital signature 9. Daniel J. Bernstein, Simon

Josefsson, Tanja Lange, Peter
Schwabe, and Bo-Yin Yang. Ed-
DSA for more curves. 2015. url:
http://cryptojedi.org/
papers/#eddsa.

scheme. The definition in figure 5.10 is parametrized over
the underlying elliptic curve, hash function, base point and
other dependencies. The original paper specification inlines
the definition of twisted Edwards curves, and I only
instantiate it with Edwards curves, but using parameters in a
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definition is a good way to separate out proofs about
different abstraction layers.

Program Definition curveKey (sk:word b) : nat :=
let x := wfirstn n (H sk) in
let x := x - (x mod (2^c)) in

setbit x n.
Definition prngKey (sk:word b) : word b :=
split2 b b (H sk).

Definition public (sk:word b) : word b :=
Eenc (curveKey sk*B).

Program Definition sign (A_:word b) sk {n}(m:word n):=
let r : nat := H (prngKey sk ++ m) in
let R : E := r * B in
let s : nat := curveKey sk in
let S : F l := F.nat_mod l (r + H(Eenc R++A_++m)*s) in

Eenc R ++ Senc S.

Definition valid {n} (m : Word.word n) pk sig : Prop :=
exists A S R,
Eenc A = pk /\ Eenc R ++ Senc S = sig /\
F.to_nat S * B == R + (H(Eenc R++Eenc A++m) mod l)*A.

Figure 5.10: Specification of
EdDSA, without the parameter
declarations.

+, *, and == refer to point ad-
dition, scalar-point multiplica-
tion, and equality on the un-
derlying elliptic curve. Eenc
and Senc are encodings of
points and scalars as b-bit
strings given as parameters
to the specification.

The word b represents bit vec-
tors of length b, ++ is concate-
nation and split2 b b takes
the last b bits. H outputs word
(b+b) and takes as input a
word n for any n.

The specification does not prescribe a verification
algorithm, it just defines which signatures are considered
valid. To derive an implementation, each optimization is
verified individually: for example,the equation on the last
line can be checked by solving it for R and encoding it,
without ever decoding the R received as a part of the
signature. We instantiated this specification with the
parameters for ed25519 and extracted an implementation
that uses binary exponentiation, which passed all tests on
run #2 – after fixing encoding order in the spec.
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Chapter 6

Automated Proofs of Field
Equations

To complete the proofs in the high-level elliptic curve library
described in the previous chapter, I created a custom Coq
tactic fsatz (building on the standard library nsatz). This
chapter will given an overview of its functionality, design,
and implementation.

The elliptic curve formulas can contain addition,
multiplication, division, and powers of coordinates. The
specifications can be reasonably translated into this
formulation if they do not already fit – for example, two
points are equal if and only if their coordinates are equal.
Furthermore, the correctness of the addition formulas
depends only loosely on the properties of the field that the
coordinates are a member of: it is often required that
1 + 1 ̸= 0 (or similar), but there is never need to explicitly 1. Here is an example equa-

tion that one might find in
a high school textbook. It is
proved completely automat-
ically as a part of the test
suite of the proof script de-
scribed in this chapter: given

9
x2+x−2 = 3

x+2 + 7 1
x−1 and ap-

propriate assumptions about
the coefficients and denomi-
nators being nonzero, we have
x = − 1

5 .

examine the behavior of the field operations on some
variables. However, since division is undefined if the
denominator is zero, the system will need to be able to
handle inequalities. Based on this information, I decided to
build a proof script to handle arbitrary implications
between rational equations and inequalities over finite
fields1. More formally: the givens and goal must be of the
form e = e or e ̸= e where e ::= 1 |x | e+ e | − e | e · e | e−1 for
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(potentially multiple) symbolic variables x.

6.1 The nsatz Tactic

The Coq standard library contains a tactic nsatz2 (named2. Loıc̈ Pottier. “Connecting
Gröbner Bases Programs with
Coq to do Proofs in Algebra,
Geometry and Arithmetics”. In:
CoRR abs/1007.3615 (2010). url:
http://arxiv.org/abs/
1007.3615.

after Hilbert’s Nullstensatz) for solving implications between
polynomial equalities. It is my impression that nsatz is
little-known among Coq users, which I think does not do
justice to its usefulness. For example, a single nsatz
invocation automatically completes a notoriously long proof
by algebraic manipulation in figure 6.1.
This section will give an overview of the capabilities of

nsatz, both to give the reader the background necessary
for understanding the following sections and to more
generally explain where else nsatz might be of use.
The prerequisite for using nsatz is that the algebraic

structure in the goal must be an integral domain, that is it
must be a ring where products of nonzero elements are
nonzero. This includes the integers, the rationals, the reals,
and all fields. Unlike the better-known ring tactic, nsatz
does not work on semirings such as nat. For nsatz to work,
the goal must be an equality. The tactic understands
addition, subtraction, multiplication, and powers. Outputs
of unrecognized operations are treated as variables: even
though nsatz can prove a

b + c = c+ a
b , it is just because

nsatz can prove x+ c = c+ x.
There are two potential downsides to using nsatz. A

successful invocation of nsatz does not necessarily solve
the goal. However, the residual goal will by default not
mention any variables and can thus be checked by
computation on all concrete algebraic structures. More
significantly, nsatz provides no performance guarantees.
While most goals are solved within a fraction of a second, I
encountered cases where a single succeeding nsatz call
takes several minutes. In some cases, the running time
fluctuated heavily with minor changes in the goal such as
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Require Import Reals Nsatz. Local Open Scope R_scope.
Local Notation ”x ^ 2” := (x*x)
(only parsing, at level 30).
Local Notation ”x ^ 3” := (x*x*x) (only parsing, at level 30).

Lemma weierstrass_associativity_main_case (* many givens: *)
(a b x1 y1 x2 y2 x4 y4 :R) (A :y1^2-x1^3-a*x1-b = 0)
(B :y2^2-x2^3-a*x2-b = 0) (C :y4^2-x4^3-a*x4-b = 0)
(i3:R) (Hi3:i3*(x2-x1)=1) (k3:R) (Hk3:k3=(y2-y1)*i3)
(x3:R) (Hx3:x3=k3^2-x1-x2) (y3:R) (Hy3:y3=k3*(x1-x3)-y1)
(i7:R) (Hi7:i7*(x4-x3)=1) (k7:R) (Hk7:k7=(y4-y3)*i7)
(x7:R) (Hx7:x7=k7^2-x3-x4) (y7:R) (Hy7:y7=k7*(x3-x7)-y3)
(i6:R) (Hi6:i6*(x4-x2)=1) (k6:R) (Hk6:k6=(y4-y2)*i6)
(x6:R) (Hx6:x6=k6^2-x2-x4) (y6:R) (Hy6:y6=k6*(x2-x6)-y2)
(i9:R) (Hi9:i9*(x6-x1)=1) (k9:R) (Hk9:k9=(y6-y1)*i9)
(x9:R) (Hx9:x9=k9^2-x1-x6) (y9:R) (Hy9:y9=k9*(x1-x9)-y1)
:x9 = x7 /\ y9 = y7. (* the claim *)
Proof. split; nsatz. Qed.

Figure 6.1: Example goal solved
by nsatz. The lemma states
that addition of two different
nonzero non-opposite points
on an elliptic curve in Weier-
strass form is associative. This
lemma is notoriously difficult.
I am not aware of any direct
proof that would be feasible to
check by hand. Indirect proofs
rely on significantly more com-
plicated theory (for example,
the Picard group of divisors)
and direct proofs rely on mod-
ern computer-algebra systems.

re-ordering the givens. Worse, failing goals can take much
longer – on several occasions I ran nsatz overnight and
found it still running when I got back to work, only to
discover that the lemma it was trying to prove was missing a
hypothesis and thus probably untrue. It should be noted
that these limitations are an integral part of the algorithm,
rather than specific to Coq: I have had similar experiences
with the implementations of the same decision procedure
provided in the Sage and Magma computer algebra systems.

Both limitations can be understood by thinking about the
high-level strategy behind nsatz: to show
A = 0 → B = 0 → P = 0, it is sufficient to find a, b, c, r such
that aA+ bB = cP r. The residual goal left behind by nsatz
is precisely c ̸= 0. The algorithm proceeds by trying
increasing integer values of r until P can be reduced to 0 by
a Gröbner basis equivalent to (A, B). The coefficients of the
hypotheses (here a and b) are allowed to be arbitrary
polynomials in the relevant variables, but c is required to be
an integer by default. It is possible to relax this constraint
and speed up the search by marking some variables as
parameters in the nsatz invocation, but then proving c ̸= 0

is no longer trivial (I have not used this option).
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6.2 Eliminating Divisions

While it is seemingly trivial to eliminate division by bringing
all fractions to a common denominator, this approach can
significantly increase the size of the goal. Somebody else
working on this project implemented a
common-denominator-based approach to dealing with
division and attempted to prove that the standard
Weierstrass addition procedure is associative but instead
achieved a stack overflow in the nsatz polynomial
implication prover. The original three-line goal with
fractions in it had expanded to a 750-line polynomial
equation. While the stack overflow has since been fixed,
“the computation still takes ages, because it computes a
HUGE polynomial”3.3. https://coq.inria.fr/

bugs/show_bug.cgi?id=
5085 It is better to introduce new variables for the inverses of

the denominators and specify their status as an inverse
using an addition equation. As the changes to the original
equation are purely local, its size does not blow up. For
example, the goal a = b → x ̸= 0 → a/x = b/x is
transformed to a = b → x ̸= 0 → ix = 1 → ai = bi, which is
solved by nsatz. Importantly, the transformation is
reversible: any field element that gives 1 when multiplied by
x must be the unique inverse of x. However, after
transforming explicit inverses to equations specifying
inverses, all information about inverses is in a format
accepted by nsatz.

Ltac divisions_to_inverses :=
rewrite ?(field_div_definition) in *.

Ltac inverses_to_conditional_equations :=
repeat match goal with
| |- context[inv ?d] =>
unique pose proof constr:(right_multiplicative_inverse d)

| H: context[inv ?d] |- _ =>
unique pose proof constr:(right_multiplicative_inverse d)

end.

Figure 6.2: Unlike common de-
nominator finding, the turning
inverses into equations is a
breeze to implement.
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6.3 Eliminating Inequalities

First, let’s examine two cases where a goal with inequalities
can be transformed into an equivalent goal stated purely in
terms of equalities:

• When trying to prove e1 ̸= e2, it is equivalent to prove
e1 = e2 → 0 = 1.

• When trying to prove a1 ̸= a2 → e1 ̸= e2, it is equivalent
to prove e1 = e2 → a1 = a2.

In both cases, hypotheses stating that two expressions are
equal carry over transparently. However, slightly more care
is needed to make use of multiple inequality hypotheses.
Naively, we tried to merge inequality hypotheses by
multiplying them: b ̸= 0 → a ̸= 0 → e1 ̸= e2 would become
ab ̸= 0 → e1 ̸= e2. However, proving the goals
e1 = e2 → ab = 0 derived through this method was very slow
– we did not investigate the precise reasons for this, but
since the products of all nonzero-denominator hypotheses
were very large in several cases, the slowness is rather
unsurprising.
Instead, the fact that an expression is nonzero can be

encoded as a polynomial equation using inverses: x ̸= 0 iff
there exists i such that xi = 1, and the goal
bi = 1 → aj = 1 → e1 ̸= e2 can be solved using the first
simple case shown above4. In our experience, the 4. While my implementa-

tion relies on field structure
to introduce the inverse, this
method could be generalized
to algebraic domains that are
not fields by allowing fractional
inverses. Doing so is equiva-
lent to injecting the goal and
all hypotheses to the “field
of quotients” (also known as
“field of partial fractions”) of
the original algebraic structure.

polynomial equality goals achieved through this mechanism
can be solved without noticeable wait times even in cases
where a “true by inspection” goal transformed using the
previous method took several minutes. More importantly,
the second method manages to make use of the inequality
hypothesis even if the goal itself is not an inequality: for
example, x2 = y2 → x ̸= −y → x = y is proved automatically,
even though the first version of inequality elimination
would not have applied.
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Eliminating Disjunctions

The basic intuition behind the first attempt at eliminating
inequalities is instead useful for dealing with disjunctions in
goals or hypotheses. In particular, x = 0 ∨ y = 0 iff xy = 0.
Adding this rule is sufficient to automatically prove
x2 = y2 → x = y ∨ x = −y.

6.4 Multiple Inequalities
If a goal contains multiple denominators, all of them may
need to be proven to be nonzero in order to prove the goal
itself. The following is completely non-obvious: the
nonzero-denominator proofs are not independent of each
other. The naive algorithm “prove that each denominator is
nonzero, one at a time” fails at the following example:

1. x+ y = 1 (so x ̸= 0 ∨ ̸= 0)

2. y/x = x/x (so x ̸= 0 → y = 1)

3. z/y = 1/y (so y ̸= 0 → z = 1)

These hypotheses do not imply that x ̸= 0 (z = y = 1 is a
satisfying assignment). Similarly, trying to prove y ̸= 0 from
the first hypothesis alone would not be successful: without
considering the second hypothesis, it might very well be the
case that x = 1 and y = 0. However, if x is nonzero then the
second hypothesis would force y = 1, so y cannot be zero.
Importantly, this can come up if the original goal did not
involve y directly, for example when trying to prove z = 1.
The fix is simple: fsatz should consider all other

hypotheses when trying to prove that a denominator is
nonzero, including those that have denominators which
might need to be proven nonzero in turn (figure 6.3. While in
theory this introduces yet another way fsatz can take
non-polynomial time, in practice the slowdown was
immeasurably small, and was in fact offset by the
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compilation time saved due to the removal of sub-lemmas
working around this issue from two different elliptic
developments.

Ltac forward_nonzero solver_tac :=
repeat match goal with
| [H: (?x <> zero) -> _ |- _ ]
=> let H' := fresh in

assert (H' : (x <> zero)) by
(clear_hypotheses_with_nonzero_requirements;

solver_tac);
specialize (H H')

| [H: (?x <> zero) -> _ |- _ ] (* <-- new case *)
=> let H' := fresh in

assert (H' : (x <> zero)) by
(clear H; solver_tac);

specialize (H H')
end.

Figure 6.3: Implementation of
the fix. The old behavior is still
tried speculatively because it
is usually faster; if the first case
of the match fails the second
one is tried automatically.

While it was relatively straightforward to work around it in
both cases, and the slowdown introduced by the
workarounds was tolerable, I would like to argue that the
recursive fsatz is much better than the early non-recursive
version. The difference is in what can be concluded from a
failure to prove a goal using fsatz. For example, if omega,
the linear arithmetic tactic in Coq, fails to prove a goal, then
the linear hypotheses must insufficient to reach the
conclusion, that is, if all non-linear operations and
hypotheses were replaced with arbitrary variables, the goal
wouldn’t be true. A slightly weaker fact is true when the
correct implementation of fsatz fails to solve a goal: the
goal cannot be proven by algebraically combining the
hypotheses. The non-recursive fsatz, does not have this
property. Worse, the relation “fsatz can prove A from B”
wouldn’t even be transitive, so the user would need to think
whether stating an intermediate lemma and proving it by
fsatz would solve the goal. For example, the lemma in
figure 6.4 could be proven by assert (d*y^2 <> a) by
fsatz; fsatz. Performance and simplicity of proof scripts
are valuable, but predictability of success and
interpretability of failure are much more important.
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Lemma edwards_solve_for_x2 (a sqrt_a d x y : F)
(Hc : a * x^2 + y^2 = 1 + d * x^2 * y^2)
(Ha : sqrt_a^2 = a) (Hd : (sqrt_a / y)^2 <> d)

: x^2 = (y^2 - 1) / (d * y^2 - a).
Proof. fsatz. Qed.

Figure 6.4: A proof about Ed-
wards curve point decom-
pression that would require
an intermediate lemma if
fsatz didn’t solve nonzero-
denominator goals recursively.

6.5 Fields of Unknown But Large
Characteristic

As mentioned earlier, the correctness of most elliptic curve
formulas relies on assumptions about the field
characteristic. In particular, the theory of elliptic curves is
significantly different in binary fields, that is when 1 + 1 = 0,
or “characteristic 2”. Yet it is desirable to prove the
correctness of the formulas once, quantifying over all fields
of suitable characteristic.
Requirements on the field characteristic show up in our

proofs as explicit side conditions generated by the nsatz
tactic. Indeed, nsatz works on x = 0 → y = 0 → e = 0 by
finding a constant c and polynomials a, b such that
ce = ax+ by = 0, leaving it up to the caller of the tactic to
show that c ̸= 0. While proving this side condition for a
specific c by hand is trivial, doing so would have been
prohibitively time-consuming – for example, the proof that
Weierstrass curve addition forms a group involves around
200 cases, all of which are otherwise handled automatically.
Figure 6.5 shows the core of the automated reflective
procedure I wrote to solve these side conditions.
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Ltac reify x := Fixpoint denote (c:coef):R:=
match x with match c with
|one => constr:(Coef_one) |Coef_one => one
|opp ?a => |Coef_opp => opp (denote c)
let a' := reify a in |Coef_add c1 c2 =>
constr:(Coef_opp a') add (denote c1) (denote c2)

|add ?a ?b => |Coef_mul c1 c2 =>
let a' := reify a in mul (denote c1) (denote c2)
let b' := reify b in end.
constr:(Coef_add a' b')

|mul ?a ?b =>
let a' := reify a in
let b' := reify b in
constr:(Coef_mul a' b')

end.

Fixpoint is_nonzero (c:coef) : bool :=
match c with
| Coef_one => true
| Coef_opp c => is_nonzero c
| Coef_mul c1 c2=> andb (is_nonzero c1) (is_nonzero c2)
| _ => is_constant_nonzero (CtoZ c) (* factoring *)
end.

Lemma is_nonzero_correct' c (checked:is_nonzero c = true)
: denote c <> zero.
Proof.
induction c;
repeat match goal with
| [ H : _ |- _ ]
=> progress rewrite Bool.andb_true_iff in H;destruct H
| [ H : _ |- _ ]
=> progress apply is_constant_nonzero_correct in H
| _ => progress (change (denote (Coef_one))

with (of_Z 1) in * )
| _ => progress (change (denote (Coef_opp c))

with (opp (denote c)) in * )
| _ => progress (change (denote (Coef_mul c1 c2))

with (denote c1 * denote c2) in * )
| _ => progress (change (is_nonzero (Coef_mul c1 c2))

with (is_nonzero c1 && is_nonzero c2) in * )
| |- (opp _ <> zero)
=> progress rewrite opp_zero_iff
| |- (_*_<>zero)
=> eapply nonzero_product_iff_nonzero_factor
| _ => solve [eauto

using is_constant_nonzero_correct, le_1_l]
| _ => progress rewrite <-CtoZ_correct
end.

Qed.

Figure 6.5: The reify tac-
tic script constructs an ex-
plicit syntax tree of c ::=
1 | c · c | − c | c + c by in-
specting the goal, after which
a wrapper tactic then calls the
function is_nonzero to deter-
mine whether the expression
(now referenced as the denote
of the explicit syntax tree) is
nonzero under the assumed
characteristic.

The cases for 1, multiplication
and negation are trivial: these
operations cant turn a nonzero
constant into a zero constant.
However, addition of two val-
ues smaller than the field char-
acteristic may produce a value
that is not smaller than the
field characteristic. To prove
that the coefficient is nonzero
for a specific characteristic K,
it would be sufficient to reduce
it modulo K and check that
the result is nonzero. With-
out knowing the value of K,
but assuming that K > C , it
is still possible to show that a
constant c > C is nonzero by
factoring c and checking that
all factors are ≤ C. Conve-
niently, this can be done with-
out proving the correctness of
the factoring algorithm – my
code simply computes the fac-
tors and then checks that mul-
tiplying them indeed returns
the original coefficient.

The choice to use a verified re-
flective procedure instead of
a tactic script was motivated
by ease of coding, not perfor-
mance concerns.
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6.6 Independent Use
fsatz, the tactic I created for solving implications between
field equalities and inequalities, does not depend on any
theory specific to elliptic curves or cryptography. The
dependencies of the file implementing it are contained in
two subdirectories (for algebra definitions and general
tactics), and the properties required of a field are designed
so that they can be satisfied by a field implemented without
any knowledge of these definitions.
Anecdotally, I can report that the following workflow for

manipulating arbitrary algebraic equations is
distraction-free and seamless enough that the loss of
efficiency is outweighed by not having to check for (and
correct) errors:

1. Enter the known equations as hypotheses for any goal:
Lemma wip x y (H:x^2 + y*x + 2=0) : False

2. assert ( …derived equality … ) by fsatz., for
example assert (-x^2 = 2 + x*y) by fsatz.

3. Edit (or copy) and re-execute the last line as desired.

4. Replace the original goal False with the derived
equation. All intermediate steps can be removed.

6.7 Future (Grunt) Work
I cannot but prescribe a single action item towards
improving the field algebra automation: fix bugs in the
underlying nsatz tactic. While perfectly usable for “sane”
goals written by a human, the unverified computation that
tries to construct a proof certificate produces stack
overflows in corner-cases that can arise from goals left
behind by fsatz. For example, Coq bug #5359 describes a
situation where removing a hypothesis makes nsatz able5. https://coq.inria.fr/

bugs/show_bug.cgi?id=
5359 to solve a goal where it previously terminated due to stack

overflow5.
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Chapter 7

Deployment Considerations

7.1 Avoiding Historical Bugs

This section will review common issues with correctness of
implementations of arithmetic-based cryptography and
recount which ones are ruled out by the correctness proofs
described in this thesis. The guarantees provided by other
verification efforts described in chapter 2 will be highlighted
if different.
I analyzed deployed cryptographic software for a sample

of functional-correctness bugs specific to the functions
being implemented. This means that generic issues such as
memory mismanagement and side channels were excluded.
On the other hand, I included bugs that could reasonably be
attributed either to the cryptographic security of the
protocol as implemented, or a failure to implement a known
secure protocol.
The sample in table 7.1 includes the first 25 bugs I

foundthat fit the specified criteria. I did not intentionally
exclude bugs for any other reason. A more thorough search
would inevitably uncover more bugs.
We observed that while the mistakes were often “small” in

the sense that the difference between the original and
corrected versions was minimal (in one case, a single
character), understanding why one is correct and the other
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is not requires significant contextual information,
sometimes across multiple abstraction layers. In sharp
contrast with the top-level specification, it is nontrivial to
write the specification of a subroutine that captures all
required behaviors and yet allows for important
optimizations.

Arbitrary-Precision Arithmetic Bugs

Of the 25 bugs, 19 had to do with low-level multi-precision
arithmetic. In this category, it is nontrivial to distinguish
between design errors (code correctly implements the
programmer’s flawed understanding) and coding mistakes
(typos, missed low-level details) based on the code itself, so
I referred to relevant bug-tracker discussion if available.
Similarly, it is extremely difficult to estimate the security1. Billy Brumley, Manuel B. M.

Barbosa, Daniel Page, and Fred-
erik R G Vercauteren. “Practical
realisation and elimination of
an ECC-related software bug at-
tack”. In: (2011). url: https:
//eprint.iacr.org/2011/
633.pdf.

impact of these bugs: Brumley, Barbosa, Page, and
Vercauteren demonstrate1 a sophisticated exploit against
OpenSSL bug 1593, and Bernstein and Schwabe estimate2

2. Daniel J. Bernstein and Pe-
ter Schwabe. gfverif. Jan. 1,
2016. url: http://gfverif.
cryptojedi.org/.

that a well-equipped attacker would be able to exploit
OpenSSL CVE-2015-3193, but we do not know about all of the
bugs. A detailed analysis of exploitability is outside the
scope of this project, and I choose not to speculate.
Here are three example bugs for which an explanation

was available:

• The TweetNaCl paper3 describes a typo in3. Daniel J. Bernstein, Bernard
van Gastel, Wesley Janssen,
Tanja Lange, Peter Schwabe,
and Sjaak Smetsers. “Tweet-
NaCl: A crypto library in 100
tweets”. In: Progress in Cryp-
tology – LATINCRYPT 2014. Ed.
by Diego Aranha and Alfred
Menezes. Vol. 8895. Lecture
Notes in Computer Science.
Springer-Verlag Berlin Hei-
delberg, 2015, pp. 64–83. url:
http://cryptojedi.org/
papers/#tweetnacl.

ed25519-amd64-64-24k: r1 += 0 + carry should
have been r2 += 0 + carry instead. Authors noted
that the issue would not have been caught by random
tests.

• OpenSSL issue 1593 was traced back to confusion
between the postconditions of exact division with
remainder and an operation like our split (section
3.6) that produces a q and r s.t. x = qm+ r, but does
not guarantee that r is the smallest possible. The
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Table 7.1: A sample of crypto-specific implementation bugs.

Reference Specification Implementation Defect
openssl#3607 sqrmod p256 64-bit Montgomery form, AMD64 limb overflow
go#13515 expmod uintptr-sized Montgomery form, Go carry handling
NaCl ed25519 F25519 mul, square 64-bit pseudo-Mersenne, AMD64 carry handling
openssl#0c687d7e poly1305 32-bit pseudo-Mersenne; x86, ARM bad truncation
openssl#ef5c9b11 expmod 64-bit Montgomery form, AMD64 carry handling
nettle#09e3ce4d mod secp-256r1 carry handling
socat#7 DH in Z∗

p irrelevant non-prime p
invalid-curve NIST ECDH irrelevant not onCurve
donna#8edc799f F25519 output 32-bit pseudo-Mersenne, C non-canonical
CVE-2006-4339 RSA-PKCS-1 check irrelevant padding check
CVE-2014-3570 bignum squaring
ic#237002094 p256 Barrett only one cond. subtraction unkown if ok
openssl#1593 mod P384 carry handling exploitable
go#fa09811d poly1305 reduction AMD64 asm, -=3 found quickly
jose-adobe ECDH-ES 5 libraries not onCurve
tweetnacl-m[15] F25519 output bit-twiddly C bounds? typo?
tweetnacl-U32 irrelevant bit-twiddly C sizeof(long) != 4
CVE-2017-3732 x^2 mod m Montgomery form, AMD64 asm carry, exploitable
openssl#c2633b8f a + b mod p256 Montgomery form, AMD64 asm non-canonical
openssl#59dfcabf Weier. Jacobian Montgomery form, AMD64 and C ∞ confusion
openssl#a970db05 poly1305 Lazy reduction in x86 asm lost bit 59
openssl#6825d74b poly1305 AVX2 addition and reduction bounds?
openssl#74acf42c poly1305 multiple implementations carry handling
ed25519.py ed25519 reference accepts signatures others reject missing h mod l
CryptoNote bug anti-double-spending additive curve25519 point need order(P) = l

probability of a random test triggering this bug was
bounded to 10 · 2−29.

• One of the two bugs uncovered in OpenSSL issue 3607
was summarized by its author as “Got math wrong :-(”,
which I think referred to an erroneous manual
execution of the range analysis algorithm described in
section 4.3. The discussion was concluded when the
patched version was found to be “good for ~6B random
tests” and the reviewer saw that “there aren’t any
low-hanging bugs left.”

Higher-Level Bugs

While field arithmetic indeed accounts for the nastiest
crypto bugs I have seen, confusion about operations with
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elliptic curve points is not obviously any less dangerous. In
particular, I do not agree with the notion that
elliptic-curve-level code is inherently simpler or less
error-prone.
Jager, Schwenk, and Somorovsky demonstrate4 how,4. Tibor Jager, Jorg Schwenk,

and Juraj Somorovsky. “Prac-
tical Invalid Curve Attacks
on TLS-ECDH”. in: (2015). url:
http://euklid.org/pdf/
ECC_Invalid_Curve.pdf.

because an elliptic-curve point-decoding function failed to
establish that the point indeed lies on the elliptic curve,
devastating remote attacks were enabled against TLS/HTTPS
security implemented by the Oracle Java and Bouncy Castle
libraries. Years later, essentially the same issue was
re-discovered in 5 libraries implementing JSON Web
Encryption standard.
When trying to prove equivalence between the naive and

optimized formulas for ed25519 signature verification, I
discovered a discrepancy between the specification (and the
Python reference implementation) of ed25519 and all serious
implementations I tested (C ”ref”, ed25519-donna,
ed25519-amd64-51-30k). In particular, a malicious actor
would be able to create a signature that is considered good
by any implementation that follows the specification to the
letter but considered invalid by the optimized
implementation. The difference comes from the fact that
the point (h mod l)P is equal to hP only if P has order l, but
Curve25519 also contains points of other orders, even
though a good signer never generates them. The
optimization is sound in the sense that it makes no new
signatures valid, and it significantly simplifies
implementation. I changed our specification to match the
current practice. However, in some settings it is critical that
all parties in a protocol agree precisely on which signatures5. Simon Josefsson and Ilari

Liusvaara. Edwards-curve Dig-
ital Signature Algorithm (Ed-
DSA). Internet-Draft draft-irtf-
cfrg-eddsa-08. IETF Secre-
tariat, Aug. 2016. url: http:
/ / tools . ietf . org /
internet-drafts/draft-
irtf-cfrg-eddsa-08.txt.

are valid and which are not (e.g., a disagreement might
cause a crypto-currency to fork). The latest IETF draft5, due
to an independent fix, contains this updated specification.
Not all confusion about composite-order points ends up

this lucky: the CryptoNote cryptocurrency framework also
used a composite-order curve with a protocol that is secure

94

http://euklid.org/pdf/ECC_Invalid_Curve.pdf
http://euklid.org/pdf/ECC_Invalid_Curve.pdf
http://tools.ietf.org/internet-drafts/draft-irtf-cfrg-eddsa-08.txt
http://tools.ietf.org/internet-drafts/draft-irtf-cfrg-eddsa-08.txt
http://tools.ietf.org/internet-drafts/draft-irtf-cfrg-eddsa-08.txt
http://tools.ietf.org/internet-drafts/draft-irtf-cfrg-eddsa-08.txt


on prime-order curves, leading to a double-spending
vulnerability. The fix was simple: the code now rejects all
points not in the prime-order subgroup of the elliptic-curve
group. I find this case particularly interesting from a
verification standpoint: writing a specification based on the
existing code in CryptoNote would have most likely resulted
in an insecure specification that matches the code, however,
a functional specification extracted from the security
argument of the protocol would have caught the bug.
Elliptic curves are not the only high-level structure whose

implementations have suffered dangerous bugs:
CVE-2006-4339 involves improper validation during parsing
that allowed for bogus RSA signatures to pass as valid. Even
more embarrassingly, Socat security advisory 7 admits
unbounded loss of security due to a hardcoded constant
that was required to be prime actually being composite (and
of unknown origin).

Verification Scope

All verification efforts described in this paper rule out the
multiprecision arithmetic bugs that result where the output
is plainly incorrect. gfverif, hacl-star and this project also
rule out bugs where the output represents the correct
number, but in a non-canonical representative.
No other that I am aware of rules out realistic

elliptic-curve-level bugs. While gfverif and hacl-star use
Sage-verified elliptic curve formulas from EFD, there is not a
rigorous connection between the preconditions of the
formulas and the code calling them. I am not aware of any
other project making any attempt at showing that the
implemented elliptic curve satisfies the requirements of the
higher-level cryptographic primitives.
All described projects include an unverified language

translation phase:

1. hacl-star uses the F* extraction mechanism to
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generate code.

2. gfverif replaces the integer types in the C code under
test.

3. verify25519 translates qhasm code into SMT-solver
formulas.

4. This project contains a formal semantics for a
straight-line subset of C and pretty-prints the code in
that language as C.

Unlike other projects, our pretty-printing does not require
name mangling or structural changes: the constructs in our
formalized output languages map one-to-one to constructs
in standard C. In principle, we could actually prove that the
formal language we use for output code maps directly to the
C language as formalized, for example, in the CompCert C
compiler frontend specification6. This has not been a6. Robbert Krebbers, Xavier

Leroy, and Freek Wiedijk. “For-
mal C Semantics: CompCert
and the C Standard”. In: In-
teractive Theorem Proving:
5th International Conference,
ITP 2014, Held as Part of the
Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 14-17,
2014. Proceedings. Ed. by Ger-
win Klein and Ruben Gamboa.
Cham: Springer International
Publishing, 2014, pp. 543–548.
isbn: 978-3-319-08970-6. doi:
10.1007/978- 3- 319-
08970- 6_36. url: http:
//gallium.inria.fr/
~xleroy/publi/Formal-C-
CompCert.pdf.

priority because our output language is very simple; I do not
expect that it would be difficult.

7.2 Engineering

Integration Effort

As the code synthesized for unsaturated arithmetic is output
as plain C, it is rather straightforward to include it verbatim
in all developments that can call C code. Unfortunately, the
output code is even less susceptible to manual review than
hand-written optimized C code: for example, the variable
names are completely uninformative. The C code we have
synthesized so far is still (subjectively) easier to read than
hand-optimized assembly code.
Alternatively, a project seeking to use synthesized crypto

code could include the synthesis pipeline as a compile-time
dependency. In that case, the high-level specifications could
be reviewed, relying completely on the Coq proof checker
for correctness of the output code. The most obvious
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downside of this approach is that it might drastically
increase the resource requirements for compiling the
application: currently, the Coq continuous integration build
service takes more than an hour to build Coq and this
project. Less obviously, the Coq version required for
building most of this library (8.6) is not available in the
repositories of any mainstream free software distribution.

Creating Implementations for New Parameters

The effort required for creating a cryptographic
implementation in the style presented here depends on
whether the required high-level algorithms are already
present in our library.
If all required algorithms are present, specializing them to

a particular cryptographic primitive is trivial.

Definition s : Z := 2^255.
Definition c : list limb := [(1, 19)].
(* modulus = 2^s - eval c = 2^255 - 1*19 *)

Definition numlimbs := 5%nat.
Definition bitwidth := 64.

Figure 7.1: Required parameters
for synthesizing an implemen-
tation of arithmetic modulo
2255 − 19. Only the last two pa-
rameters differ between target
architectures.

Verifying New Algorithms on Existing Representations

In general, estimating the effort required for a new Coq
development required good knowledge of the algorithm and
its correctness proof – there is no general rule of thumb, and
the measures of simplicity common in software engineering
do not necessarily apply. Instead of trying to completely
characterize the flexibility of this approach, I will give a
couple of examples.
Adding a new elliptic curve formula for an existing

coordinate system took me 20 minutes the last time I did it:
write it down, find the formula that it should be equivalent
to, state the equivalence, call fsatz to prove it.
Adding a new algebraic optimization to the field element

representation is similarly simple, with the caveat that it
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may not be obvious which representation to use or whether
a new one is required. For example, factoring out
multiplications by 2 and 19 in the formula synthesized in
section 3.6 can be done by printing the current code, editing
it into the desired form, and calling ring to prove it
equivalent to the synthesized code. A major upside of the
synthesis approach is that it minimizes sunk cost:
optimizations that change large amounts of code can be
introduced in a way that leverages the less-optimized code
for their correctness proof.
On the other hand, optimizing multiplication using

Karatsuba’s trick is deceptive. It could be easily written
down (either for a concrete number of limbs or in terms of
split). However, I think that range analysis would fail to
establish that (a+ b)(c+ d)− (ac+ bd) is always
non-negative. For example, given 0 ≤ a, b, c, d ≤ 1, range
analysis would infer 0 ≤ (a+ b)(c+ d) ≤ 4, and
0 ≤ (ac+ bd) ≤ 2, and then naively
−2 ≤ (a+ b)(c+ d)− (ac+ bd) ≤ 4 without noticing that
(ab+ cd) cancels out. As the current back-end does not
include finite integer types that can take both negative and
positive values, the translation to C would fail.

Completely New Representations

Adding a new elliptic curve coordinate system requires
understanding its complete representation invariant –
which, for example, is not included in the Explicit Formulas
Database. Equipped with this knowledge, creating a new
coordinate system for an elliptic curve shape that has
already been formalized should be simple in principle.
However, every time I have done it, I have encountered new
bugs in the nsatz tactic in the Coq standard library and
spent several hours working around them.
Introducing a new representation for multi-precision

integers would require first figuring out the general form of
the desired representation (potentially very difficult) and
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then formalizing it as in chapter 3 (rather straightforward).
Every time we have done this, the work needed to go back to
the drawing board at least once because we missed
something in the first step.

7.3 Performance

To help the reader estimate performance of code
synthesized using the methodology presented here, this
section presents a case study of implementing the X25519
Diffie-Hellman function on 64-bit processors. I chose this
primitive because our library contains correctness proofs of
all low-level and high-level optimizations required to
achieve decent performance. While the low-level
optimizations cover large classes of realistic crypto
primitives, the library lacks serious optimizations at the
cyclic group level and above. For example, it is possible to
synthesize an ed25519 implementation using the same field
arithmetic as in this X25519 implementation, but I would
have to either use a simplistic binary exponentiation
procedure and accept a significant performance degradation
or use an unverified fixed-window exponentiation routine.
This is not to say that higher-level optimizations are
particularly difficult to verify: the reason they are not
present in our library is that none of us found them
interesting enough to work on.
Table 7.2 shows the performance our synthesized code

Implementtation CPU cycles µs at 2.6GHz
amd64-64 148248 57
amd64-51 159384 61
sandy2x 160992 62
donna-c64 164716 63
fiat51d 176796 68
fiat51 196200 75
ref10 371472 143
ref 6278332 2415

Table 7.2: X25519 Diffie-
Hellman Key Agreement Per-
formance. The measure-
ments were taken on an In-
tel Broadwell i7-5600U using
the SUPERCOP benchmarking
tool. Turbo Boost and Hyper-
Threading were disabled.
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along with the best X25519 implementations on SUPERCOP.
The fastest non-assembly implementation, donna-c64, is is
16% faster than the automatically synthesized fiat51. As
our synthesis pipeline does not include instruction-level
optimizations, I paused the synthesis pipeline at the point
where field operations are defined in terms of many
mathematical-integer limbs and manually rewrote the order
of operations to match that of donna-c64 (see figure 7.2).
Nevertheless, donna-c64 is still 7% faster than the
manually optimized fiat51d implementation.

(* Goal: ?square a = *)
(* let '(r4, r3, r2, r1, r0) := a in *)
(* (2*r0*r4 + 2*r1*r3 + r2^2, *)
(* 2*r0*r3 + 2*r1*r2 + 19*r4^2, *)
(* 2*r0*r2 + r1^2 + 19*(2*r3*r4), *)
(* 2*r0*r1 + 19*(2*r2*r4 + r3^2), *)
(* r0^2 + 19*(2*r1*r4 + 2*r2*r3)) *)

(* fully automatic derivation would do [reflexivity] *)

(* micro-optimized formula from curve2551-donna: *)
instantiate (1 := fun a =>
let '(r4, r3, r2, r1, r0) := a in
let d0 := r0*2 in
let d1 := r1*2 in
let d2 := r2*2*19 in
let d419 := r4*19 in
let d4 := d419*2 in
let t0 := r0*r0 + d4*r1 + d2*r3 in
let t1 := d0*r1 + d4*r2 + r3*(r3*19) in
let t2 := d0*r2 + r1*r1 + d4*r3 in
let t3 := d0*r3 + d1*r2 + r4*d419 in
let t4 := d0*r4 + d1*r3 + r2*r2 in
(t4, t3, t2, t1, t0)

).
(* equivalence proof: *)
break_match; repeat apply (f_equal2 pair);
ring_simplify; trivial.

Defined.

Figure 7.2: One of the two man-
ual optimizations differentiat-
ing fiat51d from fiat51. The
other one, for field element
multiplication, is very similar to
this one.

The primary reason this code
is faster than the synthesized
code is that (19*a)*b is faster
than 19*(a*b). This in turn
is true because the later com-
pilation stages assign a and
b to 32-bit variables, making
a*b a 64-bit value and thus re-
quiring a 64-bit multiplication
when scaling by 19. Instead,
the range analysis transforma-
tion will determine that 19*a
still fits in a 32-bit variable,
and emit a 32-bit multiplica-
tion for the scaling. The C com-
piler further optimizes this to
19*a = a + (a + a*8)*2,
computed using two lea in-
structions without using the
multiplier at all.

I do not have a fine-grained explanation for the observed
7% performance difference – both of them use the same
radix 251 and the same formulas. For both fiat and donna,
the best timings (shown here) were achieved using gcc
-march=native -mtune=native -O3
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-fomit-frame-pointer -fwrapv version
6.3.1 20170306. However, there is also an unexplained
3% performance difference between donna-c64 and the
amd64-51 assembly implementation optimized for the very
first Intel i7 processors. On the other hand, the difference
between the two fastest qualitatively different
implementation strategies (amd64-64 and amd64-51) is
just 7%, so it would be careless to neglect this difference.
To understand where the extra time is spent, I used

callgrind –dump-instr=yes to generate
instruction-level timing profiles of the donna-c64 and
fiat-51d implementations. I then identified the loop
where most of the time was spent, disassembled it, and
counted instructions as a crude measure of cost. Table 7.3
contains the findings. In short, donna-c64 has 5% fewer
instructions in the inner loop, and 10% fewer moves, but the
counts of arithmetic instructions are nearly identical.

Instruction donna-c64 fiat51d
mov 635 709
add 229 231
mulx 190 190
adc 180 180
lea 105 113
and 89 91
xor 60 60
shr 59 50
shrd 50 49
movabs 24 29
sub 20 20
movq 0 12
movzbl 2 2
subl 1 1
shlb 1 1
neg 1 1
jne 1 1
Total 1647 1740

Table 7.3: Inner loop instruc-
tion usage breakdown for
fiat51d and donna-c64.

One possible explanation of this is that the use of short
arrays for long-lived intermediate results (in donna-c64)
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guides the C compiler towards better stack and register
management, whereas the fiat51d implementation uses
simple variables for all inner-loop state. However, memory
optimizations are outside the scope of this project, and it is
unlikely that the observed difference is due to arithmetic.
The choice of which implementation to use out of these

depends on the performance constraints and target
platforms. If the application only needs to run on amd64
machines, amd64-64 is probably the best choice. It is the
fastest, and while the verify25519 verification may be seen as
less rigorous than the Coq-based strategy here, the qhasm
compiler used to create amd64-64 is also much less
complicated than C compilers used in the fiat and donna
implementations. For use cases requiring portability across
instruction sets, the question comes down to whether a 7%
decrease in execution time outweighs the confidence
derived from Coq-based correctness proofs. A
middle-of-the-road solution could be to use a SMT-solver
based tool to check that the donna-c64 code is equivalent
to fiat51d – I haven’t tried it, but given the extent to which
the two are similar, it is reasonable to expect that this task is
much simpler than verifying donna-c64 from scratch.
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