
Time Series Formalism:

by

Usman Ayyaz

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

@ Massachusetts Institute of Technology 2017. All rights reserved.

Author ...
Signature redacted
Department of Electrical Engineering and Computer Science

May 26, 2017

C ertified by

A ccepted by

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

AUG 14 2017

LIBRARIES
ARCHIVES

Signature redacted
Devavrat Shah

Professor
Thesis Supervisor

Signature redacted
Christopher Terman

Chairman, Masters of Engineering Thesis Committee

A Systems Approach

MITLibraries
77 Massachusetts Avenue
Cambridge, MA 02139
http://Iibraries.mit.edu/ask

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available.

Thank you.

The images contained in this document are of the
best quality available.

2

Time Series Formalism: A Systems Approach

by

Usman Ayyaz

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2017, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

Time series data has become a modern day phenomena: from stock market data to
social media information, modern day data exists as a continuous flow of information
indexed by timestamps. Using this data to gather contextual inference and make
future predictions is vital to gaining an analytical edge. While there are specialized
time series databases and libraries available that optimize for performance and scale,
there is an absence of a unifying framework that standardizes interaction with time
series data sets. We introduce a python-based time series formalism which provides
a SQL style querying interface alongside a rich selection of time series prediction
algorithms. Users can forecast data or impute missing entries using a specialized
prediction query which employs learning models under the hood. The decoupled
architecture of our framework allows it to be easily substituted with any SQL database.
We show the functionality of our abstraction with a single machine implementation
which will be a building block towards a scalable distributed platform for time series
analysis.

Keywords: Time Series, Formalism, SQL, Analytics

Thesis Supervisor: Devavrat Shah
Title: Professor

3

Acknowledgments

Foremost, I would like to express my sincere gratitude to my advisor Prof. Devavrat

Shah for the continuous support of my research, for his patience, motivation, enthusi-

asm, and immense knowledge. His guidance and belief in me helped me navigate the

precarious path of academic research. I am deeply grateful for his mentorship and for

the opportunity to have worked with him. Besides my research advisor, I would like

to thank my academic advisor Adam Hartz and Professor Helen Lee, who were both a

source of guidance and kindness throughout my 5 years at MIT.

I thank my fellow lab mates: Jehangir Amjad, Michael Fleder and Anish Agarwal for

the stimulating discussions and their contribution towards our mutual project. Special

thanks to my friends Arsalan Adil, Ali Abdalla, Suniyya Amna Waraich and Noor

Eddin Amer for their friendship,camaraderie and continued support which made this

journey possible. To Hajar Boughoula, for her friendship and unwavering belief in

me. To Nadeen Abuhasan, for being a trusted friend and a source of optimism and

strength. To Atif Javed for honest advice and Abubakar Abid for setting an example

of excellence. To Hoda Elsharkawi, for spiritual guidance and her friendship. To my

friends, who I left behind in Pakistan for academic pursuit - I miss you every day. To

my school teachers, Dianne Grady McKenzie and Sabahat Zakariya, for instilling in

me a passion for excellence through their dedication and professionalism.

Last but not the least, I would like to thank my family: my mother Rooh Afza, for

her lifelong sacrifices and prayers, my father Muhammad Naeem Ayyaz, for being a

trusted guide, for instilling in me a passion for excellence, for teaching me how to

dream and for your lifelong hard work which has made this moment possible; I will

forever be indebted to your sacrifices. To my nephew, Affan for being a bundle of joy

and to my brother Ali for being an inspiration of resilience and fortitude. To my sister

Mushal Noor for always pushing me on and believing in me, for sharing her strength

with me and for the most trusted of advice. And to Iqra Ali and Saad Javed for the

blessing of family.

4

Contents

1 Introduction

2 Literature Review

2.1 Methods for Time Series

2.2 Time Series Libraries

2.3 Time Series Databases

3 Technical Work

3.1 Time Series Formalism

3.2 System Design

3.2.1 Query Interface

3.3 Database

3.3.1 Azure

3.3.2 PostgreSQL . . .

3.3.3 Youtube8M . . .

3.4 Evaluation

4 Future Work

5 Conclusion

A Documentation

Bibliography

A nalysis .

. .

. .

5

7

11

11

12

13

15

16

18

22

23

23

24

25

27

31

33

35

51

6

Chapter 1

Introduction

Predicting customer intent on the web is an area of growing interest with signifi-

cant impact on revenue and customer satisfaction. In today's highly competitive

economy, understanding online customer intent accurately and at an infinitesimally

short timescale is a significant competitive advantage. Predicting intent for users

interested in exploring, purchasing and troubleshooting, for example, has a direct

impact on providing the best automated service to the customer. This understanding

and inference of context and predictions for the future can be referred to as Time

Series Analytics.

Time series analytics broadly encompasses two different categories of problems:

imputing missing data and forecasting future data. However, data sets often have

missing entries due to system failure, network outage or database issues, which result

in irrecoverable data loss. Filling up these data holes in the past using imputation

methods brings us one step closer to a complete data set. However, the real value of

time series algorithms lies in predicting the future. Trends that appear in the past

continue through in the future as well and the ability to capture these trends accurately

and precisely is at the core of time series predictions. The former is necessary to

gain a complete picture of the past and the latter is at the core of many financial

applications that provide businesses a competitive edge.

Time series data is of enormous interest across all domains of life: from health

sciences to weather forecasts to retail and econometrics, time dependent data are

7

everywhere. However, time series analysis and forecasting are hard problems, albeit

well-studied. The primary departure from standard methodologies for statistical

inference is due to the dependencies across time which renders much work tailored

for independent (and often identically) distributed data to be less relevant without

mitigating conditions. This dependence across time is modeled in several ways:

periodic time series display a cyclical or "seasonal" pattern; trends display a growth

or decay with time or more generally long term relationship in data; and stationary

auto-regressive models capture dependence on the very recent past. For each type

of time series, there exists a rich body of work which allows a practitioner to model

observed data and predict in to the future.

In practice, the prominent approach is to utilize a linear combination of the

periodic, trend and auto-regressive models to model the time series. Such an approach

requires iteratively "peeling off" trend, periodic and auto-regressive model structure

using data to produce an eventual combined model. For each stage of peeling off, this

requires evaluating some form of 'model score' across model types and parameters to

choose the best fit. While feasible in principle (and used in practice), by design it is a

hodgepodge that makes it painstaking for the practitioner, as well as computationally

and statistically inefficient. Further, the state-of-art has limited guidance in terms

of how to combat the issue of missing data - natural options being either discarding

some of the data or "filling" missing data by default values or empirical means.

Applications around time series data also introduces a problem of scale, since

the data is often sampled on the scale of milliseconds or nanoseconds in the case of

stock market financial data sets. The total storage required to store a year worth of

data for a single publicly traded stock borders - 100 TB. Data at such massive scale

introduces unique challenges that directly impacts the latency of inference which is

uncompromising in many applications, e.g. high frequency trading. Moreover, the

accuracy of learning and predictions at such a scale becomes a challenge because

classical algorithms need to be rethought from a context time-aware perspective.

In the online world today, time-series context resides in a very wide array of

disparate sources and there is a need for a unifying formalism that provides a theoret-

8

ically powerful and practically implementable framework. In this paper, we propose a

time series formalism that unifies the prediction problem and describe the systems

framework surrounding it. Our aim is to introduce an all encompassing formalism

that simplifies the routines implemented on time series data sets and move one step

closer to a complete end to end solution.

9

10

Chapter 2

Literature Review

Time series analysis is an integral part of econometrics and the classical auto-correlation

models, both parametric and non-parametric, used for forecasting and smoothing have

been thoroughly studied [1]. Departing from the conventional box-jenkins modeling,

alternative approaches using hybrids of artificial neural networkds [2] and support

vector machines[3] have also been successfully employed for time series forecasting.

However, more recently with the onset of big data and the computational complexities

that come along with it, a systems approach towards time series analysis has become

incumbent. The widespread usage of query optimized time series databases like KDB+

q [4] in the financial business and popularity of specialized time series packages point

towards a real need for tools that can address industry requirements. In the following

sections, we provide a brief overview of existing solutions in time series analysis.

2.1 Methods for Time Series Analysis

In statistics and signal processing, a time series is a sequence of data points indexed at

strictly increasing observation time steps in a regular orderly fashion. Conversely, in

irregular time series, the spacing of observation times is not evenly spaced. A common

approach to analyzing unevenly spaced time series is to transform the data into equally

spaced observations using interpolation methods [5j, e.g. estimating missing values

by decomposing the problem as a combined prediction and regression problem [6],

11

and then treating it as any other regular time series . However, transforming data in

such a way can potentially introduce biases especially if the spacing of observations is

highly irregular.

Broadly speaking, the methods for time series analysis can be divided into two

distinct classes: frequency-domain methods and time-domain methods. The former

include spectral and wavelet analyses [7]; the latter include auto-correlation and

cross-correlation analyses. In the time domain, correlation and analysis can be made

in a filter-like manner using scaled correlation, thereby bypassing the need to operate

in the frequency domain. Additionally, time series analysis techniques may be divided

into parametric and non-parametric methods. The parametric approach assumes that

the underlying stationary process has a certain structure which can be modeled by

parameters, e.g. the auto-regressive and moving average parameters in ARMA/ARIMA

models. In this approach, the task is to learn the model parameters that describes

the stochastic process. By contrast, non-parametric approaches explicitly estimate

the covariance of the process without making any structural assumptions about the

process [8]. For the rest of this paper we primarily focus on time-domain methods

and both univariate and multivariate data sets.

2.2 Time Series Libraries

As previously discussed, there are very few industry standard open source time series

algorithm packages available with the few exceptions limited to Python. Libraries

like Numpy and Pandas provide some basic functionality for manipulating time series

objects. Statsmodels [91 builds on top of scipy and provides a good collection of models

ranging from uni-variate auto-regressive models (AR), vector auto-regressive models

(VAR) and uni-variate auto-regressive moving average models (ARMA) [10]. Pyflux,

also built on top of scipy, shares similar functionality to statsmodels with some added

models like generalized autoregressive conditional heteroscedasticity (GARCH) and

generalized autoregressive score (GAS) models [11].

Outside python, R provides an extensive time series analysis library with methods

12

ranging from uni-variate/multi-variate modeling to frequency analysis to decomposition

and filtering of time series, as well as non linear models [12]. Despite boasting a

rich library, R is not as flexible as Python in providing programming interfaces

for application development. Moreover, the object oriented programming paradigms

offered by Python lend more abstraction power than R, making it an ideal candidate for

developing our formalism. Furthermore, we envision systems framework to eventually

bridge with Spark for scalable distributed computation and the existing PySpark [13]

interface between Python and Spark will help in future development of the project.

2.3 Time Series Databases

Time Series databases (TSDB) are optimized for handling storage and retrieval of

time series data. TSDB take advantage of the orderly and increasing nature of time

series data sets to minimize storage overhead and design performance optimized

queries. Scalability and performance are key design metrics for TSDB as applications

need to scale easily to support data in a continuous flow and perform real-time

analysis. Queries for historical data, with complex time ranges, roll ups and time zone

conversions are difficult in a relational database. TSDBs on the other hand impose a

model and this allows them to provide more features for doing so.

InfluxDB [14] is an example of a specialized time series database developed by

InfluxData. It optimizes for fast, high-availability storage and retrieval of time series

data in fields such as operations monitoring, application metrics, Internet of Things

sensor data, and real-time analytics. OpenTSDB [15] is another scalable time series

database built on top of Hadoop and HBase with plugins for Spark as well. It simplifies

the process of storing and analyzing large amounts of time-series data generated by

endpoints like sensors or servers. Both these databases provide examples of current

TSDB solutions in the industry which focus on optimizes storage and retrieval of time

series data. For our system, we use a non-TSDB SQL based database to show the

applicability of our abstraction. However, in the future we will explore TSDB for

performance optimization in algorithms.

13

14

Chapter 3

Technical Work

Definition 1. A time series model for the observed data xj is a specifi- cation of

the joint distributions (or possibly only the means and covariances) of a sequence of

random variables Xt of which xt is postulated to be a realization. [161

From a classical perspective, a time series Xt can be broken down into four

constituent parts as follows:

o Trend T : long term movement in the mean e.g. linear or polynomial trend

o Periodicity Pt : cyclical fluctuations that repeat regularly over time

* Stationarity St

shifted in time.

: stochastic process with fixed probability distribution when

e Residuals Rt : random noise and systematic fluctuations

These constituent parts combine to form a class of time series which could be

summarized under our formalism. Our goal is to create a systems framework that

provides the necessary tools to manipulate a broad class of time series instances. In

the next section we define the model class of time series in more detail.

15

3.1 Time Series Formalism

We shall consider discrete-time time series data: let Xt E [R denote the value of the

time series at time t E Z. A prevalent approach in time series literature for modeling

is to decompose its dynamics into the following components: (1) stationary-auto-

regressive; (2) periodic; (3) trend; (4) per-step independent noise. Therefore, we

consider the following class of time-series: over an interval [T] = {1, . .. , T} (with

notation X[s: t] = (X8, ... , Xt))

FT = {X[1: T] : X X[1: t - =1] h(t; a, p) + g(t; y) + e(t), Vt}, (3.1)

where h(t; a, p) = Z_> aiXt-i is a deterministic linear function of X[t - 1: t -- p] with

p > 1 parameters a = (ai, ... , ap) such that -1 1ai I < 1; g(t; y) is any deterministic

Lipschitz function of time t; and e(t) are independent and identically distributed

random variables with mean 0 and variance a 2 < 00 representing noise terms.

Given the conditional distribution Xt|X[1 : t - 1] per .FT, we have that

E[XtIX[1: t - 1]] = h(t; a, p) + g (t). (3.2)

Next we argue that several popular time-series models belong to this model class.

Auto-Regressive (AR). The standard auto-regressive (AR) model with parameter

p > 1 and co-efficients a = (ai, , ap) obeys

p

X= Xta + e(t) = h(t; a, p) + e(t). (3.3)

That is, by setting g(t, -y) = 0, any AR(p) belongs to the model class introduced. It is

worth remarking that for well-behaved AR(p) model, :i= jail < 1 holds.

Periodic. A periodic or mixture of finite frequency model obeys

K

=t '1 7k sin(27Wwkt) + Vk cos(2FWkt) + E(t). (3.4)
k=1

16

That is, by setting h(t; a, p) = 0 and with -y =((rk, Vk, Wk))1<k<K,

K

g(t; -Y) = Y 'rk sin(27wwkt) + Vk cos(2wkt), (3.5)
k=1

we have that it belongs the model class since g can be verified to be a Lipschitz

function.

Trend. This class of time series obeys

K

Xt = Yktk + e(t). (3.6)
k=O

That is, by setting h(t; a, p) = 0, with -y (yk)1 k K and g(t; = k ktk, we have

that it belongs to the model class defined above since g can also be verified to be a

Lipschitz function. The model class FT described here sets up the backbone of our

formalism and defines the different constituent parts that describe any time series

instance. This decomposition allows us to create an encompassing algorithmic interface

that can interact will all the moving parts of a time series and employ learning models.

In the next section we describe the system architecture that implements the mentioned

algorithmic interface.

17

3.2 System Design

From data logging to storing sensor output to tracking economic trends, a diverse

set of applications naturally fall under the umbrella of time series model. Businesses

employ applications that analyze time series of user metrics to extract behaviour

patterns that can provide them insights into their products. Extracting these insights,

however, requires a robust framework with performance optimized database queries,

efficient ETL pipelines, context aware algorithms and intuitive visualizations. We

propose a basic system design in 3-1, where time series data is collected in a database,

PostgreSQL in our case, and a learning model is trained on a sub set of this data to

create predictions in the future.

LowLatenCy Storage/REr*,va Stabstally Relcvant Learning and Predictions

Historical Data Bd e m
(e.g. Bitcoin Order Books) ts ctade

Wt nw data to the Mo0*l
New Real-Time Data

(e.g. Bitcoin Order Books) Peedicted Vaiue

(chang) for new
data

Figure 3-1: Framework

Establishing an interface that can store time series instances of FT, retrieve data

and train models is necessary to implement the formalism. Our proposed interface

aims to formalize interaction with the database by defining a class of queries that

integrate learning models with the data. We use SQlAlchemy [17], an object relational

mapper, to define an interface which can be used with any SQL database. SQLAlchemy

provides a rich set of enterprise level persistence patterns to access SQL databases

18

through Pythonic domain language. The interface in itself has the ability to pipeline

with any computing stack. This requires a modularity in approach which is at the

core of our system design. The diagram below summarizes the main components of

our interface and their interactions.

System Design

DB Query

Iodel
n**Wa(FaWW-e {TW.Qybl Tyg90Weys (T~e)

uPWWOteF, rkin* AVO

Cross Validation

TsKey OuerySet

Fiek*s loueryhse
S (MSFTh A = (01, z} -0ta03

IReadDB
stctAntur

*selectUnonuey

---------------- I---------------------------

Database
T*We. ndce,

Uew.-e0nsa FIdoft 1 4

Prediction
Query

Figure 3-2: System Design

As shown in 3-2, our system consists of independent modules with minimal

dependence. The abstractions highlighted in the grey box show the different modules

that work together to communicate with the database. The Model represents the

different learning algorithms in our library e.g., ARMA, USVT with Matrix Completion,

19

WNPEMMOMMOMPOWAMM

Random Forest etc. The algorithm takes in a train query partitioned by the Cross

Validation module and learns the model. To initialize the model, we specify the

input time series using the TsKey identifier, and the target time series which will be

predicted by the model. For example, we initialize the ARMA model to predict APPL

stock price as a function of the bid and ask time series:

ARMA. initialize ({Feature-APPL_{bid}, APPL_{ask}}, Target= {APPL_{price })

The QuerySet consists of a set of queries defined by the model that are upheld

by the ReadDB interface. The query set identifies which tables will be queried and

sets up the data connection with the relevant tables. The actual data access from the

database happens when the selectAll(queries) function makes a call to the database

to retrieve data for the defined queries.

The selectAll() function takes a Query object as a parameter which is identifies the

relevant table to query through the TsKey identifier, the start and end times of the

query and what fields to retrieve. Our Cross Validation module partitions the data set

into training, test and validation sets. Furthermore, it also checks if the queried data

is regularized and uses interpolation methods to make it regular if not. A describes

how to connect to the data base and use the QuerySet and CrossValidation modules

explained in our interface.

from datetime import datetime

2 from queries import *

3 from pgtskey import TsKey

import numpy as np

5 from uniform _time splits import UniformTimeSplits

6 from postgres import Postgres

Example 2: Setting up a generic Postgres query :U#

datasource = Postgres(dataset="synthetic")

tskey = TsKey(name-"arma process", fields=['timestamp'J)

2 startdate = datetime(2017, 3, 19, 21, 40, 3, 515734)

enddate = datetime(2017, 3, 19, 22, 40, 2, 515734)

datasetQ = Query (tskeys={tskey }, start _time inc=start _ date , endtime inc

20

=enddate)

timedeltabw pts = np.timedelta64(microsecond=1)

train _valsplit = UniformTimeSplits(QuerySet({datasetQ}) , trainPerc=0.8,

min _timedelta-bwpts-timedelta bw _pts / 2)

' #training and validation set

train _dforig = datasource. select _all _union (train val _split. getTrain))
i val_ dforig = data_ source. select _ all _union (train _ val _split . getVal ())

The Model class encompasses a growing set of time series algorithms that are used

for forecasting timeseries. Here, we briefly cite a USVT based matrix completion

forecasting algorithm that was designed with our interface

Time Series Through Matrix Completion

We model a broad class of time series data FT as a matrix and then show that it

has an approximate low-rank structure. This structure allows the use of a popular

matrix completion technique, specifically singular value thresholding, to "de-noise"

the observation matrix to obtain a low-rank estimation. We then use linear regression

to determine the appropriate relationships between the rows of the estimated matrix.

This relationship is then used to forecast future values of the time series. Our algorithm

provides a principled, robust way to address the challenge of missing data for the

broad model class considered here. The algorithm does not need tuning to adapt

to different types of model parameters class under consideration. We provide finite

sample analysis to guarantee good approximations in terms of the average mean

squared error. Experiments confirm excellent performance, especially in settings with

missing data. This paper has been submitted to NIPS for submission [18].

Our library also includes classical ARMA/ARIMA modeling and other basic

time series algorithms which were inherited from statsmodels and pyflux libraries

and wrapped with our interface. Together these algorithms form the basis of a

comprehensive time series library which we continue to expand in the future.

21

3.2.1 Query Interface

As part of the system design, training data is retrieved from the database for the

learning model and the subsequent predictions are cached back into the database for

the user to query. As new data comes in the model is retrained at fixed intervals and

the model state is stored in the system to make predictions. This helps us provide

real time predictions in a latency sensitive manner. In order to achieve modularity, we

introduce two different notions of querying in our interface - DB Query and Prediction

Query.

Applying learning models on FT requires a robust framework that standardizes

the time series storage, retrieval, transformation and prediction operations through

a simple interface. We take a SQL style querying approach towards designing this

interface, where a user interacts with a time series X [1 : n] as if it is an existing table

in the database. A query for t > n is predicted by a learning model specified by the

user and cached in the database as an update time series X[1 : t]. The query interface

consists of a DB query and a Prediction query, the former returns existing data from

the database and the latter predicts data that is not available in the time range

DB Query.

Our interface expects unit data to be stored as a (type, time range) tuple with an

associated value which can be d-dimensional. Hence, we can define the unit query as

follows

Argument: (type: s; timestamp: [a : b])

Response: X[a: b]d i.e. d-dimensional values in range [a : b]

For example we can query stored values of "AAPL" stock in the time range [a: b] as

follows:

SELECT * FROM "APPL"

WHERE [timestamp] > 'starttime' AND [timestamp] <= 'endtime';

Prediction Query.

Data that is not stored in a table can be predicted by a user defined model and cached

22

in the database.

Argument: (type: s; time range:[a:n])

Response: G(Xt[a: b])) -+ X[a : b], Yt[b + 1 : n]

Here, we define the prediction function G to be any user specified predictive model,

e.g. Random Forest, Linear Regression etc which takes Xt[a : b] E FT as an input to

the training model and predicts Y [b + 1, n] in the future as a function of previous

values Xb, Xb_1 and so on. A sample prediction query on an APPL stock utilizing a

random forest prediction model would be as follows:

SELECT * FROM "APPL"

WHERE [timestamp] > 'starttime' AND [timestamp] <= 'endtime' AND

[model] = "randomforest"

3.3 Database

To provide a complete end to end solution, it is necessary to test your interface with

data sets of varied scale. Our goal is to build a system that has the capacity to process

data on the scale of TB. This would be a novel contribution, since none of the existing

time series libraries like scikit-learn and statsmodels etc, provide latency sensitive

processing at such scale. A significant effort was made on our behalf to research and

host data sets that are relevant to time series analysis. In this section we explain the

data sets in detail and also introduce the computation stack and database used.

3.3.1 Azure

As mentioned before, we envision the final version of this system to be a distributed

scalable platform for time series analysis. Hence, an obvious design choice was to

leverage cloud computing platforms. Azure was a stand out choice as it offers enterprise

level tools for shared computation and database hosting. Moreover, the customized

configurations for SQL style databases and seamless integration with Apache Spark

tied up perfectly with the anticipated future work.

23

We decided for a performance optimized single machine implementation of our

interface to act as a benchmark to future implementations of a distributed architecture.

We used an enterprise 4 Core machine with 56 GB RAM, Linux operatingj system.

In addition, we attached 3 SSD hard drives of 1 TB each to store our data sets and

configured out stack for a network optimized 518200 max IOPS.

3.3.2 PostgreSQL

The design decision to use PostgreSQL as our database primarily stemmed from a need

to have SQL styled query interface for time series data sets. Since, time series have a

fixed schema with a column for timestamps and other associated fields, it immediately

eliminated NoSQL databases from the competition. Moreover, PostgreSQL's MVCC

data storage model is optimized to for large volumes which was of direct interest to us

given the TB scale of data. Unlike, other databases like Cassandra, PostgreSQL does

not put a limit on the number of tables in a database, neither does the performance

decline with increasing number of columns. Both of these consideration were important

design decision as will become apparent as we discuss the data schema. Finally,

PostgreSQL provides a timestamp field datatype which can store time fields at nano-

second granularity. This was a necessary feature for us, since financial data sets like

stock index are sampled at nano-second intervals.

As discussed in the introduction, there are many time series optimized databases

in the market now, however, PostgreSQL have certain definitive advantages:

* Longevity: SQL has been around for almost 50 years and the trend is expected

to continue in the future.

" Ubiquity: It is the most common SQL server with most applications in the

industry.

* Community: It has a well established community which will be essential in

building our open source library.

24

Due to its universality, PostgreSQL provided a solid testing ground to implement

our formalism and easily make it accessible to the community. Since our query interface

is developed using an object relational mapper, we have the flexibility to integrate our

abstraction with any SQL based database. As more concrete use cases our library are

developed, we will explore further database options including possible TSDB solutions.

3.3.3 Youtube8M

YouTube-SM is a large-scale labeled video dataset that consists of millions of YouTube

video IDs and associated labels from a diverse vocabulary of 4700+ visual entities. It

comes with precomputed state-of-the-art audio-visual features from billions of frames

and audio segments, designed to fit on a single hard disk. This makes it possible to

get started on this data set by training a baseline video model in less than a day on

a single machine! At the same time, the data set's scale and diversity can enable

deep exploration of complex audio-visual models that can take weeks to train even in a

distributed fashion. [19]

Here are a few statistics about the data set:

* Each video is public and has at least 1000 views

" Each video is between 120 and 500 seconds long

" Each video is associated with at least one entity from our target vocabulary

The target vocabulary consists of labels for each video. A video can have multiple

labels associated with e.g. {'cat', 'dog', 'tree'}. The YouTube data set is divided into

two genre, video level aggregated features and frame level features. For both genre,

we have the rgb and audio features of the video available. However, for aggregated

video features, we have the mean-rgb and mean-audio for the whole video averaged

over all the frames. Conversely, in the frame level features, we have the mean and

audio features for each frame available. It is to be noted that video are of variable

length ranging anywhere from 2 to 5 minutes. The features are generated from a

25

convolutional neural network and then PCA-ed for compression to return 1024 8-bit

quantized features for each frame. [19]

Video Context

video_-id string PIK
labels int a N

Frame Level Audio Video Level Features Frame Level RGB
videoid Int PK video id string PK videoid string PK
labels int N labels int [N labels double [N
frame_1 double a N mean rgb double D N frame_1 double 0 N
frame_2 double a N mean-audio double a N frame_2 double 0 N
frame_3 double a N Video Context video id string FK frame_3 double] N

frame_300 double a N frame_300 double ON

Figure 3-3: YouTube Video Dataset Schema

The YouTube8M data set is already partitioned into test, train and validate sets.

For the test set the labels are not provided. For each of these partitions, we have

the data schema shown in 3-4. Each entry is identified by a primary key which is

the video ID. The video ID is part of the Video Context table which is referenced by

all the other tables. We made a design decision to store RGB and Audio features in

separate tables to decrease the width of each table respectively. Currently each frame

column stores all the 128 8-bit quantized features for that frame, so decreasing the

table width in half makes page retrieval in PostgreSQL faster.

Tensorflow to PostgreSQL

The YouTube8M data set is publicly available as tfRecord files to be used in TensorFlow.

In order to access the data, we first transformed the tfRecord file to a txt file and

extracted the quantized features after string manipulation. The transformation scripts

along with schema files were made publicly available to users who want to store the

YouTube data set in a SQL data base.[20]

26

tfRecord Postgres
File

Figure 3-4: tfRecord to Postgres Data Plug

Synthetic Data

We also provide access to synthetic data to test system performance for particular

conditions which might not be found in the real data. Moreover, development of

new algorithms require sanity checking which can be done by evaluating performance

on self-defined synthetically generated datasets. For example, we provide sample

ARMA data generators that were used in the testing and development of the USVT

method described above. We also provide generic data insertion scripts in SQLAlchemy

that let us store any data set with minor changes. This gives us the flexibility to

generate appropriate data for our algorithms and assess their performance in a closed

environment.

3.4 Evaluation

As our system evolves, we will be continuously evaluating it against predefined metrics

to ensure we reach our design goals. In light of our initial design motivation, we will

be testing our system against the following metrics:

* Scale: One of the main motivations behind our system is to create a distributed

platform that can process data at a high scale. Current open source libraries

struggle to ingest data beyond multiple GBs. In comparison, we aim to process

data on the scale of TBs in an efficient latency sensitive manner.

27

* Performance: Another goal of this system is to implement distributed version of

classical algorithms specific to time series. Using the vanilla implementations of

these algorithms as a benchmark, we will test the performance of our distributed

implementations to ensure that our accuracy is up to mark.

* Robustness Our system design is required to be fault tolerant with redundancies

in place for system failure. We will be testing our system for robustness and its

ability to take in data sets of varied scale and pipeline them with our suite of

algorithms.

Implementing the USVT algorithm for matrix completion using our interface

provided us with benchmarks to evaluate our system. Here we describe the results of

those experiments to validate that our interface has the capacity to act as an end to

end solution for time series analysis.

Predicting Temperatures in Melbourne

In order to study the applicability of our algorithm to real-world time series data, we

consider predicting the daily low temperatures in Melbourne, Australia in the year

1990 using the 1981-1988 period to train and 1989 to validate. Note that while the

synthetic results were in the large data regimes, this dataset is relatively tiny with

about 3600 data points. As with all real-world datasets, we are unaware of the true

data generating model or levels of noise. We convert the training data points in to

a matrix of dimensions 40 x 3200 and reserve the remaining 400 data points for

testing. Figure 3-5 shows the entire data set (1981-1990) in gray and our in-sample

and out-of-sample predictions in green. Notice that our algorithm produces excellent

qualitative performance.

28

25

20-

15

10

5-

0-

0 50 100 1500 2000 2500 3000 3500

Figure 3-5: Minimum daily temperatures in Melbourne, Australia from 1981-1990. The two

out-of-sample prediction profiles are shown in green.

The above results show that our system is robust enough to integrate a new

algorithm and get good results. As our system moves towards distributed architecture

for scalable computation, the scalability metric will come into focus.

29

30

Chapter 4

Future Work

The time series formalism introduced in this thesis sets up a framework for time

series learning and prediction algorithms. Our aim is to build a system that utilizes

this framework for scalable learning and prediction of large scale time series data

sets. This requires both novel algorithms that leverage the fundamental properties of

time indexed data for learning purposes and a robust distributed system that has the

processing prowess to provide near real-time predictions on TBs of data. The system

design proposed in this paper attempts to set benchmarks through a single machine

implementation. Once we have a proof of concept for a single machine, we can start

designing the architecture for a multi-machine distributed platform. The future steps

in this project can be summarized as follows:

Workr

nyer Worker
results

tasks R Irut cta
Wrker

Figure 4-1: Spark architecture for distributed computation

31

" Spark: Implement the time series formalism in a distributed architecture using

Apache Spark or similar platforms as shown in 4-1.

* Database: Optimize query performance by caching. Provide custom database

functions which users can use to transform data at the storage source and

minimize I/O transfer volume. Research alternative data store methods like

HDFS file system or Azure data lake.

* Algorithms: Implement distributed versions of existing classical algorithms

and provide new algorithms for time series forecasting. Extend the current

formalism and add more functionalities to the library including, an extended

cross validation module, lag and shift operators for time series manipulation and

generic helper methods like L1/L2 norm and other loss functions for algorithm

development.

" Metrics: Define a new database performance metric that compares the ratio

between the retrieval time for DB and Prediction queries. This metric will

become a standard for all algorithms implemented in the library

32

Chapter 5

Conclusion

The widespread prevalence of time series data has created a need for a generic and

scalable analysis platform that specializes in time series specific algorithms. Our aim

was to design an open source platform that adheres to a fixed interface which formalizes

large scale processing and retrieval of time series data and works as a building block

towards more complex operations and algorithmic approaches to extract information

from large data sets. We define a time series model class that adheres to a system

abstraction and provides the framework to implement time series prediction algorithms.

We show the robustness of our system by showing seamless integration with a USVT

based matrix completion method for time series prediction. Furthermore, we extend

the data capacity of the system by integrating a 1.7 TB YouTube video data set which

will be used to test and build scalable algorithms. We envision our platform to become

a building block towards a distributed platform for time series analysis.

33

34

Appendix A

Documentation

Postgres Class

i from sqlalchemy.orm import sessionmaker

2 from sqlalchemy.ext. declarative import declarative _base

3 import traceback

4 import sys

a from iread db import IReadDb

e from codeutils import *

- from datetime import datetime

s from queries import *

9 from pgtskey import TsKey

I import numpy as np

ii from uniform _time_ splits import UniformTimeSplits

12 from exceptions import *

13

14

la class Postgres(IReadDb)

17 def __init_ (self, dataset):

1Is # Provide url to connect to db when query is executed

19 if dataset = "synthetic":

20 self.url *****

21 elif dataset "youtube-video-level":

22 self.url *****

35

elif dataset = "youtube.-frame-level

24 self.url

2.5 else:

26 raise DatasetError("Dataset does not exist")

27

28 self .Base = declarative_ base ()

29 self .db = create_engine(self.url)

30 self.metadata = MetaData(self .db)

Session = sessionmaker(bind=self .db)

32 self. session = Session ()

31

def select _all(self , query)

print (type (query))

36 return query. execute (self . session , self .metadata)

3S def select _ all union(self, qset)

39 if len (qset . queries) != 1:

40 raise NotImplementedError ("not yet handling multiple query

unions")

return self. select all (first (qset . queries))

42

43 def count(self , query):

4 4pass

def estimate size mb(self , query):

47 pass

J8

49 def add _timeseries (self , key, start-time, end_time, fields):

50 class Dataset (self. Base):

Si __table = Table('datasets', self. metadata, autoload=True)

32 try:

53 record Dataset(**{

54 'key': key,

'start _ time ': start _time

'end _time': endtime,

'fields : fields

36

-_1

session .add (record)

session .commit ()

except:

print ("Exception in user code:")

print('-' * 60)

traceback . print _exc (f i e=sys . stdout)

print('-' * 60)

self. session . rollback () Rollback the

finally

self . session . close () K Close the con

chaitges on error

c ti 0 1-n

def delete _timeseries (self):

pass

def __str_(self):

pass

37

5s S

_9

S

611

})
self.

self .

i

Generic Insertion Script

2 from time import time

3 from sqlalchemy.ext. declarative import declarative _base

4 from sqlalchemy .orm import sessionmaker

5 import csv

6 import numpy as np

- from tskey import TsKey

8 from queries import *

9 from usvt_ arma generator import USVTArmaGenerator

12

13 / Example 1: Inserting data into POSTGRES N

14

is #Initialize connection to to remote database.

16 #Make sure Azure VM is running.

18 Base = declarative base()

i1 engine = create_ engine(<machine ip address>)

20 metadata = MetaData(engine)

21 #MetaData object where newly defined Table objects are collected

22 engine.echo = False

25 Define Table Structure for the csv import. If you are inserting new

values to an existing table then simply use __tablename__ = <

existing table name>. SQLAlchemny provides wrapper classes around

generic Postgres datatypes e.g. DateTime, Float etc. Datatype

details can be found here:

2t http://docs.sqalchemy. org en /latest /core/ typebasics. html#generic -types

2 7

2s class Arma_ Process(Base)

29 __tablename___ = arma'

30 # tell SQLAlchemy the name of columns and their attributes:

38

31

32

31

37

38

39

43 i f _name--

44

45

48

49

50

--_ '__main :

starttimeinc = np. datetime64('2016-12-14 20:30:00.123456789')

endtimeinc = starttimeinc + np.timedelta64(3600000, 's ')

time_ deltabw _ pts = np.timedelta64(10, 's')

timeserieskey = TsKey('taco')

dsetQuery = QuerySet. single (

Query (start _time _ inc=start _timeinc , endtime inc=end time_inc,

tskeys={time serieskey}))

:2 datasource = USVTArmaGenerator(const=10.0, phi=[-0.4, 0.3, 0.2],

theta=[], # phi=[-0.2, 0.4, -0.11, theta=[],

53 sigma=1.0, burnin period=np.

timedelta64 (int (le2) , 's '),

r4 data_spacing_ delta=timedeltabwpts

d set _ queries=dset Query)

56

58

59

6 1

62

try:

data = datasource. select _ all_ union (dsetQuery)

a = data["taco"]. iteritems ()

for i in a:

record = ArmaProcess(**{

'timest amp ': i [01

39

timestamp = Column(DateTime, primary key=True , nullable=False)

value = Column(Float)

def readCSV(filename)

data = []

with open(filename , 'r ') as csvfile

header = csvfile .readline ()

reader = csv.reader(csvfile)

for i in reader:

data. append (i)

return data

'value': i [1J

s.add(record) Add all the records

ey 3

64

67

68

69

7()

71

72

7:3

40

s. commit() Atteipt to coinut all the records

except:

print (there was an error ")

s .rollback () Rollback the chaiInges ou error

finally

s close() Close the c(nnlection

print ("Time elapsed: " + str (time() - t) + " s.")

tfRecord to SQL Data Plug

2 from time import time

3 from sqlalchemy. ext. declarative import declarative _ base

4 from sqlalchemy.orm import sessionmaker

5 from sqlalchemy. types import String , Integer , Float

6 from sqlalchemy. dialects import postgresql

7 from sqlalchemy .orm import sessionmaker

s from sqlalchemy.ext. declarative import declarative _base

9 from sqlalchemy import *

10 import tensorflow as tf

ii import sys

12 import traceback

13 from os import listdir

14 from os.path import isfile , join

15

16 filepath = "/datadrive3 /video-level -train"

17

18 # Initialize connection to to remote database. Make sure Azure VM is

running

1o Base = declarative base()

2o engine = create _ engine (" post gresql /usman: ayyaz~localhost :5432/ post gres

")

21 metadata = MetaData(engine) # MetaData object where newly defined Table

objects are collected

22 engine.echo = False

21 class YoutubeVideo(Base):

__tablename__ = 'train'

27 # tell SQLAlchemy the name of columns and their attributes:

2S videoid = Column(String , primary _key=True, nullable=False)

29 labels = Column(postgresql.ARRAY(Integer))

:50 mean rgb = Column(post gresql.ARRAY(Float))

3 1 mean-audio = Column(postgresql .ARRAY(Float))

41

def getFilenames (path):

files = []

for f in listdir(path):

if f.endswith(".tfrecord"):

files .append(join (path, f))

return files

40

41 return [f for f in listdir(path) if isfile (join(path, f))]

44 if __name_ - main_':

45

4U Base. metadata. create_all (engine) # creates all tables stored in the

metadata

47 # Create the session

48 session = sessionmaker ()

49 session . configure (bind=engine)

so s = session ()

51

F2 tfrecordfiles = getFilenames(filepath)

count = 0

for filename in tfrecord_ files

print

}LJH Hl lir V4#.14#H6l i +l 1/h ill/L/hil ii ill1
print

11 " + filename + "# "

print

fill 1 ill IN)/ I 11 I t I lif if i 11 Ii ifif I;

print

count

count += 1

print

42

36

37

38

39

67 recorditerator = tf . python_io. tf_ record _ iterator (path=filename)

6S for string_record in recorditerator

6,9 video = {}

70 frames = t f . t r ain . Example()

71 frames . ParseFromString (string _record)

72 video ["videoid"I = frames. features. feature ["videoid"J.

bytes list . value [01

73 labels = str (frames . features . feature [" labels" . int64_list .

value) [1: -1

74 labels = int (i [: -11) for i in labels . split (" ,")
video["labels" = labels

77 meanrgb = str (frames. features. feature ["meanrgb"].

float _ list)

7s a = meanrgb. split ("\n") [: -11

79 video["mean rgb"I = [float(i.split(":")[1]) for i in aJ

81 mean-audio = str (frames. features. feature ["mean-audio".

float _ list)
8- a = meanaudio. split("\n")[: 1]

81 video["meanaudio"I = [float(i.split(":")[1]) for i in a]

S F try:

S6 record = YoutubeVideo(**{

$7 'video id ': video ["video _id"J,

SS 'labels': video ["labels "f

89 'meanrgb': video ["mean rgb"],

9. 'meanaudio': video ["mean_audio"]

92 s.add(record) # Add all the records

93 s.commit() # Attempt to commit all the records

94 except:

9!_1 print

96 "Exception in user code:"

97 print

9s -' *60

43

traceback print_ exe (fil e=sys . stdout)

print

'-' * 60

s . rollback () A Rollback the changes on error

finally :

s . close () Close the coinec t i1

44

100

101,

102

.103

Query Class

2 import pandas as pd

3 from sqlalchemy import *

4 from exceptions import TsKeyError , FieldError

6

7 class TypeTime(object):

.1" def __init__ (self , tskey , time):

9 self. _tskey tskey

10 self. _time = time

i. r.aise NotImplementedError

12

13 @property

14 def tskey(self):

.15 return self. _tskey

16

17 @property

is def time(self):

19 return self._time

20

21 def __str__(self):

22 return '{0} {1} '.format(self.tskey, self.time)

23

2.4

25 class Query(object):

It fi it

27 Interface to query schema

19 def __init__ (self, tskeys , starttime_inc , endtime_inc)

.3o """I i

:1 query defined by (time, type) keys , start and end time (

inclusive)

32 :paraum tskeys: set<TsKey> or collection

33 Time series keys

45

parain st art _ t i it1 _ ii c: tip .(at (! t ine 64

35 inclusive

3J : param endtiiie inc : h) . dih t t im111('64

ci' in elusi ve

38

39 self. _tskeys = frozenset (tskeys)

40 self. _starttimeinc = starttimeinc

41 self. _endtimeinc = endtimeine

42

43 def execute (self , session ,metadata)

14

4 Dataset = Table('datasets', metadata, autoload=True)

46 if len(self. _tskeys) > 1:

47 raise NotImplementedError("not handling multiple queries yet

"I)

49 else

50 # Check if Table exists

51 key = next(iter(self._tskeys))

:2 if session.query(exists() .where(Dataset.c.key = key.name)).

scalar ()

53 print (key.name)

timeseries = Table(key.name, metadata, autoload=True)

if key. fields [0]

key.fields = [c.name for c in timeseries.c]

response = session . query(timeseries) . filter (

58 and_ (timeseries.c.timestamp >= self.

start _time _inc

59 timeseries.c.timestamp <= self.

_endtime inc)). all ()
60 else

11 response = session . query (*[c for c in timeseries .c

if c.name in key. fields]) . filter (
62 and_ (timeseries.c.timestamp >= self.

_start _time inc ,

(.6 timeseries.c.timestamp <= self.

46

end _time inc)). all ()

1$ tablecolumns [c.name for c in timeseries.c]

66 data =

67

68 for i in response:

69 a = []

70 for col name in key. fields:

71 if colname in tablecolumns:

72 a.append(getattr (i ,colname))

73 else

74 raise FieldError ("Field does not exist")

data.append(a)

77 result = pd.DataFrame(data=data, columns=key. fields)

78 return result

80 else

81 raise TsKeyError("Key does not exist")

82

S3 @property

84 def tskeys(self):

.S:- return self ._tskeys

s7 @property

ss def starttime-inc(self)

89 return self . _start time inc

90

91 Uproperty

92 def endtime_inc(self):

93 return self. _endtimeinc

97, def __eq _(self , other):

97 :paran other:

9S : return:

47

99 till It

100 if other is None:

101 return False

102

103 if isinstance (other , self.__class__)

10-11 return self. ___dict__ = other .__dict _

105

106 raise NotImplementedError(" equals not implemented for " + other.

__class__)

107

108 def __hash__(self):

109 return hash(self .tskeys) + 11*hash(self.starttime inc) + 17*

hash(s eIf .endtimeinc)

110

IH. def __contains__ (self , typeTime)

112 I

113 check if the given (type time) is contained w/i this

114 that is , typeTime. tskey in this . tskeys and time in IstartTimeInc

endTimelnc)

1:1s : param typeTime: TypeTime

no : return: true if typeTime. tskey in this . tskey and time in

startTimelInc , endTimelnc)

117

us raise NotImplementedError

#return typeTinie.tskey in self.tskeys \

120 # and typeTime.time >= self. startTimeInc \

121 and typeTime.time < self . endTimelnc

122

123

121 class QuerySet(object):

1125 i ti

12C Represents a set of IQuery 's

127

12S

129 def __init_(self , queries)

1.30 -t i i

48

initialize this w/ the given queries

:param queries: set I Query.>

IQuery objects

it itit

#_qIset = queries

self . _queries = frozenset (queries)

131

132

133

134

135

136

138

1401

142

143

144

145

1.16

.148

149

:1501

15 1

1 2

1S3

154

155

157

158

15 9

'160

.16 1

162

163

164

Check if a given

:param typetime:

:return: boolean

true if time

false o/w

(tskey , time) is contained w/i this query set

is covered by the given queries

it if if

for q in self. queries:

if typetime in q:

return True

return False

@staticmethod

def single (q)
1111il1

Construct

:param q:

"i1"1"

from single query

IQuery

return QuerySet(queries=frozenset ([q]))

49

@property

def queries (self):

return self . _ queries

def __contains__(self , typetime)

50

Bibliography

[1] MW Watson. Time series: Economic forecasting.

[2] G Peter Zhang. Time series forecasting using a hybrid arima and neural network
model. Neurocomputing, 50:159-175, 2003.

[3] Kyoung-jae Kim. Financial time series forecasting using support vector machines.
Neurocomputing, 55(1):307-319, 2003.

[4] Roberto Salama. A regression testing framework for financial time-series databases:
an effective combination of fitnesse, scala, and kdb/q. In Proceedings of the ACM
international conference companion on Object oriented programming systems
languages and applications companion, pages 149-154. ACM, 2011.

[5] Gregory C Chow and An-loh Lin. Best linear unbiased interpolation, distribution,
and extrapolation of time series by related series. The review of Economics and

Statistics, pages 372-375, 1971.

[6] Mohsen Pourahmadi. Estimation and interpolation of missing values of a station-
ary time series. Journal of Time Series Analysis, 10(2):149-169, 1989.

[7] Maurice Bertram Priestley. Spectral analysis and time series. 1981.

[8] Peter M Robinson. Nonparametric estimators for time series. Journal of Time

Series Analysis, 4(3):185-207, 1983.

[9] Wes McKinney, Josef Perktold, and Skipper Seabold. Time series analysis in
python with statsmodels. Jarrodmillman. Com, pages 96-102, 2011.

[10] Statsmodels time series analysis - tsa. http: //www. statsmodels. org/stable/

tsa. html.

[11] Pyflux an open source time series library for the python programming language.
http://www.pyflux.com/garch-models/.

[12] CRAN time series analysis in r. https://cran.r-project.org/web/views/
TimeSeries .html.

[13] PySpark spark programming model to python. https: //spark. apache . org/
docs/0.9.0/python-programming-guide.html.

51

[14] P Dix. Influxdb: One year of influxdb and the road to 276 1.0, 2014.

[15] B Sigoure. Opentsdb scalable time series database (tsdb). Stumble Upon, 2012.

[16] Time Series Analysis. https: //www.math.kth. se/matstat/gru/sf2943/ts.
pdf.

[17] SQLAlchemy object relational mapper. https: //www. sqlalchemy. org/.

[18] Timeseries forecasting using matrix completion. (in press).

[19] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici,
Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan. Youtube-8m:
A large-scale video classification benchmark. arXiv preprint arXiv:1609.08675,
2016.

[20] tfRecord-SQL data plug. https://github.com/UsmanAyyaz/tfRecord-SQL.

52

