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Distributed Throughput Maximization in
Wireless Networks via Random Power

Allocation
Hyang-Won Lee, Member, IEEE, Eytan Modiano, Senior Member, IEEE, Long Bao Le, Member, IEEE

Abstract—We develop a distributed throughput-optimal power allocation algorithm in wireless networks. The study of this
problem has been limited due to the non-convexity of the underlying optimization problems, that prohibits an efficient solution
even in a centralized setting. By generalizing the randomization framework originally proposed for input queued switches to
SINR rate-based interference model, we characterize the throughput-optimality conditions that enable efficient and distributed
implementation. Using gossiping algorithm, we develop a distributed power allocation algorithm that satisfies the optimality
conditions, thereby achieving (nearly) 100% throughput. We illustrate the performance of our power allocation solution through
numerical simulation.

Index Terms—Throughput-optimal power allocation, randomization framework, SINR-based interference model.
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1 INTRODUCTION

Resource allocation in multihop wireless networks
involves solving a joint link scheduling and power
allocation problem which is very difficult in general
[2], [3]. Due to this difficulty, most of the existing
works in the literature consider a simple setting where
all nodes in the network use fixed transmission power
levels and the resource allocation problem degener-
ates into simply a link scheduling problem [4], [5],
[6], [7]. Furthermore, the link scheduling problem has
been mostly studied assuming a simplistic graph-
based interference model.

In fact, the resource allocation problem has been
considered mainly in two different network settings.
The first setting is a static one which does not take
randomness in the traffic arrival processes into con-
sideration. In particular, it is usually assumed users
either have unlimited amount of traffic to transmit or
have predetermined traffic demands. Here, resource
allocation aims at achieving fair share of resource
among competing traffic flows or developing resource
allocation algorithms which have nice performance
properties (e.g., constructing minimum length sched-
ule to support a traffic demands) [8], [9], [10], [11],
[12]. The second setting assumes random arrival traf-
fic and one of the main objectives of the resource
allocation problem is to maximize the average arrival
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rates which can be supported while maintaining net-
work stability.

In the seminal work of [13], Tassiulas and
Ephremides introduce the concept of stability region,
defined as the set of all arrival rate vectors that
can be stably supported. They also propose a joint
routing and scheduling policy that achieves 100%
throughput, meaning that it stabilizes the network
whenever the arrival rate vector is in the stability
region. More recently, this throughput-optimal policy
has been extended to wireless networks with power
control [14], [15] and for the scenario where arrival
rates lie outside the capacity region [16], [17], [18].

All these resource allocation algorithms, however,
require repeatedly solving a global optimization prob-
lem which is NP-hard in general [17], [3]. Hence, in
multi-hop wireless networks, it may be impractical to
find its solution in every time slot due to limited com-
putation capability, and the need for distributed oper-
ation. As an alternative, distributed greedy scheduling
has been proposed and analyzed [7], [17], [19], [20],
[21]. However, most of the existing works in this
context adopt the graph-based interference models, where
transmissions on any two links in the network are
assumed to be either in conflict or conflict-free. More-
over, the use of greedy scheduling typically results in
throughput reduction by factor of up to 2 under the
primary interference model [17], [19] and (2K+1)2

⌊K/2⌋ in
K-hop interference model for K ≥ 2 [22].

It has been recognized that graph-based interfer-
ence models may be overly simplistic because they
ignore the cumulative effect of wireless interference.
However, going beyond these simplistic interference
models is challenging. In fact, the power allocation
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problem under the SINR rate-based interference model
is non-convex; therefore, obtaining a global optimal
power allocation even in a centralized manner is not
practical. This non-convexity issue in the power allo-
cation problem has been addressed by several papers
[8], [10] considering either the high or low SINR
regimes. Recently, it was shown that this problem is
NP-hard [23], [24], where the optimality conditions
for sum rate maximization are extensively studied.

In this paper, we develop a distributed throughput-
optimal power allocation algorithm under the SINR
rate-based interference model. As mentioned above,
the previously known condition for throughput-
optimal power allocation under this model requires
solving a non-convex optimization problem for every
time slot. Hence, its distributed implementation may
be prohibitive in practice. We take a randomization
approach to develop the optimality conditions that
enable distributed power allocation algorithms. The
randomization technique was originally developed
for input queued switches [25], and later extended
for multi-hop wireless networks assuming the graph-
based primary and secondary interference models [4],
[5]. Its key feature is that it does not seek to find an
optimal schedule in every time slot, and consequently,
solving a difficult scheduling problem can be avoided.
Motivated by this observation, our work attempts
to alleviate the difficulty in solving the non-convex
optimization problem involved in optimal power al-
location, using randomization.

As mentioned above, the throughput optimal
scheduling problem under the graph-based interfer-
ence model has been relatively well understood. In
particular, the randomization has been successfully
applied for developing efficient throughput optimal
scheduling algorithms [4], [5]. On the other hand,
there are few results that deal with the throughput
optimal power control problem under the SINR-based
interference model in which the amount of interfer-
ence and noise is explicitly taken into account. In
[26], [27], [28], [29], optimal scheduling problems are
considered assuming that every transmitting node
uses fixed power levels and the success or failure of a
transmission is determined by certain SINR threshold.

In contrast, we assume a SINR rate-based interfer-
ence model where the transmission rate of a link is
given as a continuous function of its SINR. In [30], the
throughput optimal power control problem was con-
sidered under this model, however the performance
of the proposed power allocation algorithm is not
guaranteed. To the best of our knowledge, there is
no known work that assumes the SINR rate-based
interference model and solves the throughput optimal
power control problem in the stability framework of
[13]. As mentioned above, the problem needed to be
solved in each time slot was shown to be NP-hard in
[23]. Hence, achieving throughput optimality under
the SINR rate-based interference model is likely to

be a hard problem. To circumvent this difficulty, we
develop new tractable throughput optimality condi-
tions by extending the randomization framework, and
develop a distributed power allocation algorithm that
satisfies the new optimality conditions.

2 MODEL AND PROBLEM DESCRIPTION

We consider a multi-hop wireless network modeled
by a graph G = (V,E), where V is the set of nodes and
E is the set of links. Let N be the number of nodes,
i.e., N = |V |. It is assumed that there is a link between
two neighboring nodes if they want to communicate
with each other. We assume that time is slotted and a
time slot interval is of unit length. Let V (a) be the set
of node a’s neighbors, i.e., V (a) = {b ∈ V : (a, b) ∈ E}.
We assume bidirectional links, hence link (a, b) exists
whenever (b, a) does. For simplicity of exposition, we
start by assuming that there is only single-hop traffic
and single channel available in the network. Extension
to the case of multi-hop traffic and multi-channels can
be found in [31]. Node a maintains a data buffer for
each outgoing link (a, b), and its backlog at time t is
denoted by qab(t).

Denote by pab the transmit power allocated to link
(a, b). Each node a has a limited power budget Pmax

a ,
and the total transmit power constraint can be written
as

∑
b∈V (a) pab ≤ Pmax

a . We assume SINR rate-based
interference model. That is, under a power allocation
vector p = [pab,∀(a, b) ∈ E], link (a, b)’s rate rab(p) is
given by

rab(p) = log

1 + gabpab

nb+
∑

i∈V (a)\{b}

gabpai+
∑
i ̸=a

gib
∑

j∈V (i)

pij

 ,

(1)
where nb is the noise power, and gab is the channel
gain from node a to b. It is assumed gab = ∞ if a =
b. Since the nodes are static, the channel gains are
assumed to be fixed over time. Note that the second
term in the denominator of (1) is self-interference, and
the third is mutual interference.

Let Aab(t) represent the amount of exogenous data
that arrive to the buffer at the source of link (a, b)
during slot t, and p(t) the power allocation vector for
slot t. Then, the backlog qab(t) evolves according to
the following dynamics:

qab(t+ 1) = max[0, qab(t)− rab(p(t))] +Aab(t). (2)

The arrival process Aab(t) is assumed to be i.i.d. over
time with average λab, i.e., E[Aab(t)] = λab, ∀t. We
assume that all arrival processes Aab(t) have bounded
second moments and they are upper-bounded by
Amax (i.e., Aab(t) ≤ Amax, ∀(a, b) ∈ E). Now, we define
the network stability.

Definition 1: A queue qab(t) is called strongly stable
if

lim sup
t→∞

1

t

t−1∑
τ=0

E {qab(τ)} < ∞. (3)
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A network of queues is called strongly stable if all
individual queues are strongly stable.
For convenience, we will instead use the term stable
to represent the term strongly stable.

Let us drop the indices of a variable to denote its
vector form, for example, q(t) = [qab(t),∀(a, b) ∈ E].
Define the stability region, denoted by Λ, to be the
union of arrival rate vectors λ = (λab, (a, b) ∈ E) such
that there exists a scheduling policy which stabilizes
the network queues. In [14], the stability region for
wireless networks with power control was character-
ized. Let F be the feasible region of transmit power
vectors, i.e., F = {p ≥ 0 :

∑
b∈V (a) pab ≤ Pmax

a , ∀a ∈
V } where p ≥ 0 is component-wise inequality. The
stability region Λ consists of all arrival rate vectors
λ = (λab, (a, b) ∈ E) such that

λ ∈ Convex Hull{r(p) : p ∈ F}. (4)

Note that it is the convex hull of all the feasible link
rate vectors. In [14], it was shown that if in each time
slot t, power is allocated according to the following
max-weight rule, then the network will be stable for
all arrival rates within the stability region.

p∗(t) = argmax
p∈F

∑
(a,b)

qab(t)rab(p). (5)

The optimal solution p∗(t) may not be unique, but in
the case of multiple optimal solutions, our random-
ization framework performs better. Hence, assuming
unique q∗(t) will give a lower bound on the perfor-
mance of our randomization framework. Note that
in the graph-based interference model, link rates are
fixed and the resource allocation problem degenerates
into the link scheduling problem; where the max-
weight scheduling policy which returns a feasible
schedule achieving the maximum weight in each time
slot is throughput-optimal.

The optimization problem (5) is nonconvex in p, and
hence, it may not be possible to find an optimal power
vector for every time slot t, even in a centralized
manner. We address this issue by using randomization,
originally proposed for input queued switches [25]
and wireless networks under graph-based interfer-
ence models [4], [5].

3 RANDOMIZATION FRAMEWORK

3.1 Background on Randomization Framework
The randomization approach was first developed for
scheduling in input queued switches [25], and ex-
tended for distributed operations in multi-hop wire-
less networks [4], [5]. Recall that under these settings,
a feasible schedule is to be found in each time slot.
The key feature of the randomization approach is
that it does not seek to find an optimal schedule
in every slot, and hence, it can significantly reduce
the computation overhead. In every time slot, the
randomization framework does the following:

Algorithm 1 Randomized Power Control Framework
(for each time slot t)

1. RAND-POW: Generate a new random power al-
location vector p̃(t) in a distributed manner.
2. DECIDE: Determine the current power allocation
p(t) by comparing the previous power allocation
p(t − 1) and the new power allocation p̃(t), and
selecting the one with higher weight in (5).

(i) RAND-SCH: generate a new random schedule,
(ii) DECIDE: decide on the current schedule by com-

paring and selecting the better of the new and
old schedules (i.e., the one with higher weight in
(5)).

Lemma 1 ( [25]): Under the condition that the
newly generated schedule in RAND-SCH is optimal
with positive probability, the randomization frame-
work achieves 100% throughput.
Note that in an input queued switch the number of
possible activations is finite. Hence, it is trivial to
develop a random algorithm to satisfy the condition
in Lemma 1. Moreover, the comparison in a switch can
be done in a centralized manner. However, in multi-
hop wireless networks, the DECIDE step is challenging
because each node must compare the network-wide
weighted sum rates achieved by the two schedules
in a distributed manner. In [4], this comparison is
localized over connected subgraphs consisting of old
and new link activations; where the decisions in one
subgraph do not affect the decisions at other sub-
graphs. The communication overhead can be substan-
tially reduced using this localization.

3.2 Extension to SINR Rate-Based Model
Our work is motivated by the intuition that the

difficulty due to the non-convexity in (5) can also
be alleviated using this randomization technique. For
notational convenience, let q(t)T r(p) be the objective
value in (5). A natural extension of the randomization
framework to SINR rate-based interference model will
be as follows. First, in each time slot t, the nodes
generate a new random power allocation vector, de-
noted by p̃(t), in a distributed manner. Second, the
current power vector p(t) is selected by comparing the
new power vector p̃(t) and the previous one p(t− 1);
namely, p(t) = p̃(t) if q(t)T r(p̃(t)) > q(t)T r(p(t − 1))
and p(t) = p(t − 1) otherwise. These two steps are
summarized in Algorithm 1. The key challenge in
this setting is that it may not be possible to devise
a power allocation policy RAND-POW that has a pos-
itive probability of being optimal since the optimal
power allocation takes on real-values. Consequently,
the randomization approach to the power allocation
problem will not be able to achieve 100% throughput
as in the case of the graph-based interference model.
We address this issue by generalizing the condition
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on RAND-SCH in the graph-based interference model;
namely, the newly generated power vector is not
required to be optimal, but is required to be within
a small factor of optimal.

Another challenge lies in the DECIDE part, as the
localized comparison in the graph-based interference
model cannot work in our setting. With the SINR
rate-based interference model, the interference level
experienced at a node is affected by all the other nodes
in the network. Hence, the localized comparison may
lead to a wrong decision, and a network-wide com-
parison will be inevitable. To resolve this problem, we
will use randomized gossiping [32].

We first present new conditions for RAND-POW
and DECIDE, that will be used to characterize the
performance of randomization framework.

Condition 1 (C1): For every time slot t,

Pr
[
q(t)T r(p̃(t)) ≥ (1− γ1)q(t)

T r(p∗(t))
]
≥ δ1 > 0,

where γ1 and δ1 are some positive constants, and p̃(t)
p∗(t) are the new random power vector and optimal
power vector, respectively.
Condition C1 allows for the possibility that the new
random power allocation is within a factor of the
optimal. Notice that when γ1 = 0, C1 becomes the
condition on RAND-SCH in [4], [25] which requires the
new scheduling to be optimal with positive probabil-
ity. This generalization is the key to dealing with the
power control problem (5) using the randomization
approach, and the optimality loss under this condition
will be characterized in Theorem 1.

The following is the condition on DECIDE adopted
from [4].

Condition 2 (C2, [4]): For every time slot t,

q(t)T r(p(t)) ≥ (1−γ2)max{q(t)T r(p(t−1)), q(t)T r(p̃(t))}

with probability at least 1−δ2, where γ2 and δ2(≪ δ1)
are some positive constants.
Condition C2 requires that the weight attained by
the chosen power vector p(t) should not be less than
some factor of the maximum of the weights obtained
by p̃(t) and p(t − 1). This condition was considered
in [4] to account for imperfect comparison in multi-
hop networks. In Section 5, we discuss a distributed
implementation of the DECIDE step that satisfies C2.

The achievable stability region under our random-
ization framework can be characterized as follows:

Theorem 1: If RAND-POW and DECIDE in Algorithm
1 satisfy C1 and C2, then it stabilizes the network for
any arrival rate vector in ρΛ where ρ < 1− (γ1 + (1−
γ1)γ2)− 2

√
δ2
δ1

.
Proof: Here, we briefly prove the theorem. More

detailed version of the proof can be found in [31].
Consider the following Lyapunov function

L(q(t)) :=
∑

(a,b)∈E

qab(t)
2. (6)

Then, the expected conditional T -step Lyapunov drift
is bounded as

∆T (t) = E {L(q(t+ T ))− L(q(t)|q(t))}

≤ 2
T−1∑
τ=0

E
{
q(t+ τ)Tλ− q(t+ τ)T r∗(t+ τ)|q(t)

}
(7)

+B1 + 2

T−1∑
τ=0

E {Ψ(t+ τ)|q(t)} (8)

where B1 is a finite constant,

Ψ(t) := q(t)T r∗(t)− q(t)T r(t), (9)

and r∗(t) is the optimal rate which corresponds to
the optimal power allocation given the queue length
vector q(t) at time t (i.e., it achieves the maximum
weight).

Let W ∗(t) = q(t)T r∗(t). Then, using Conditions C1
and C2, we can show

T−1∑
τ=0

E{Ψ(t+ τ)|q(t)} ≤ T

(
γ1 + (1− γ1)γ2 +

1

δ1T

+δ2T
)
W ∗(t) +B2, (10)

where B2 is a finite constant. The first term in (7) is
bounded as
T−1∑
τ=0

{
q(t+ τ)Tλ− q(t+ τ)T r∗(t+ τ)

}
≤ T

[
q(t)Tλ− q(t)T r∗(t)

]
+B3 (11)

where B3 is a finite number. Now, consider any arrival
rate vector λ which lies inside the ρ-scaled stability
region (i.e., inside ρΛ) for 0 < ρ < 1. Then, we have
λ
ρ ∈ Λ and hence, the scaled rate vector λ

ρ can be
represented as as a convex combination of feasible
rate vectors:

λ

ρ
=

∑
i

αir(p
i), (12)

where
∑

i αi = 1 and αi ≥ 0,∀i, and pi is a feasible
power vector. Multiplying both side of (12) by qT /ρ
yields

qTλ = ρ
∑
i

αiq
T r(pi) ≤ ρ

∑
i

αiq
T r∗ = ρqT r∗, (13)

where r∗ is the optimal rate which achieves the max-
imum weight (i.e., qT r∗ = maxp∈F qT r(p)). The above
inequality also implies

qTλ ≤ qT r∗ = W ∗(t) (14)

for any λ lying inside ρΛ.
Using (13), the bound in (11) can be rewritten as

T−1∑
τ=0

{
q(t+ τ)Tλ− q(t+ τ)T r∗(t+ τ)

}
≤ −T (1− ρ)W ∗(t) +B3. (15)
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Pick-
Compare

Data slots

Frame

Pick-
Compare

(a) Frame-based implementation: data transmis-
sion begins after power allocation is updated,
and uses the same power allocation over multi-
ple slots.

Data channel

Data slots

Low bandwidth

control channel

Pick-Compare slots

(b) Control-channel based implementation: sep-
arate low bandwidth control channel is used for
power allocation, in parallel with data channel.

Fig. 1. Frame-based and control-channel based implementations

Using (10) and (15), the conditional expectation of T -
step Lyapunov drift in (7)-(8) can be bounded as

∆T (t) ≤ −2T×{
1− ρ− γ1 − (1− γ1)γ2 −

1

δ1T
− δ2T

}
W ∗(t) +B4

where B4 = B1 + 2B3 + 2B2 is a finite number.
Now, the proof can be completed by choosing T =√
1/(δ1δ2), and applying the inequality (14) and the

condition ρ < 1− γ1 − (1− γ1)γ2 − 2
√

δ2
δ1

.
When γ1 is 0, i.e., when a new power vector is optimal
with probability δ1, the obtained throughput mainly
depends on the comparison performance (γ2). How-
ever, the throughput loss increases as γ1 increases. In
case of perfect comparison (i.e., γ2 = 0 and δ2 = 0),
the throughput loss depends only on the optimality
loss in the random power allocation. In brief, our
randomized power control framework can achieve
nearly 100% throughput if we can develop a power
allocation policy (RAND-POW) and a comparison al-
gorithm (DECIDE) satisfying conditions C1 and C2
with small γ1, γ2 and δ2. In the rest of the paper, we
focus on developing such algorithms. In particular,
in Section 4 we develop a random power allocation
policy that satisfies C1 and in Section 5 we develop a
comparison algorithm that satisfies C2.

3.3 Frame-based Implementation

In this section, we discuss some issues arising in
the implementation of our randomization framework.
First, the RAND-POW step can be easily implemented
as it is easy to generate a random power vector in
a distributed manner, as we demonstrate in Section
4. For the DECIDE phase, each node has to estimate
the global weights qT r in order to make the same
decision on the selection of the current power allo-
cation. In small networks, a centralized entity may
exist (e.g., base station in cellular networks), hence

comparison and decision can be implemented in a
centralized manner. In large networks, however, such
a centralized comparison is prohibitive and we adopt
gossiping for distributed comparison.

In the proof of Theorem 1, we assumed for sim-
plicity that the power allocation is updated for each
data transmission slot by running the RAND-POW and
DECIDE steps. However, it may not be practical to
run these two steps on a slot-by-slot basis because
the DECIDE step may require a significant amount of
communications. In fact, this assumption can be easily
relaxed by running the RAND-POW and DECIDE on
a frame basis as shown in Fig. 1(a); where they
are performed for every multiple data transmission
slots so that the same power allocation is kept for
multiple data slots. By doing so, the control overhead
can be significantly reduced. Moreover, it was shown
in [4] that this frame-based scheduling still achieves
throughput optimality as long as the RAND-POW
and DECIDE steps are performed at regular intervals.
Alternatively, the power control algorithm can be
done on a separate low bandwidth control channel,
in parallel with data transmission, as shown in Fig.
1(b). Again, throughput optimality can be achieved
as long as a new power allocation is generated at
regular (finite duration) intervals. The advantage of
this implementation over the frame-based is clear,
that is, the data transmission does not need to wait
until the update of power allocation is finished, and
consequently it will achieve better performance.

4 RANDOMIZED POWER ALLOCATION

We present a power allocation policy RAND-POW
that satisfies C1, i.e., finds with positive probability
a power vector within a small factor of the optimal
value in (5). The problem (5) is to maximize

p∗ = argmax
p∈F

∑
a∈V

∑
b∈V (a)

qab×

log

1 + gabpab

nb+gab

∑
i∈V (a)\b

pai+
∑
i̸=a

gib
∑

j∈V (i)

pij

 ,

(16)
where F = {p ≥ 0 :

∑
b∈V (a) pab ≤ Pmax

a , ∀a ∈ V }.
Clearly, the new power vector p̃ in RAND-POW is
desired to be as close to p∗ as possible, and hence,
identifying the optimality properties of (16) would be
helpful for generating such p̃. The following lemma
characterizes some useful properties of p∗.

Lemma 2: Under the optimal power allocation p∗,
(i) A node does not transmit while receiving, and

vice versa,
(ii) A node transmits to at most one of its neighbors.

Proof: Recall the assumption gaa = ∞, ∀a. Under
this assumption, if a node transmits while trying
to receive, it will achieve zero rate due to infinite
interference. Hence, at optimal p∗, case (i) does not
happen.
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Matching Pairing

Fig. 2. Matching: either (single) transmission or reception is allowed
for each node. Pairing: node can receive from multiple neighbors but
transmitting to multiple neighbors are not allowed.

To prove (ii), let p∗a =
∑

b∈V (a) p
∗
ab, i.e., p∗a is the total

power transmitted by node a at the optimal allocation.
It is obvious that solving the problem (16) with the
additional constraints

∑
b∈V (a) pab = p∗a, ∀a will result

in the same optimal solution. Hence, the objective
function in (16) can be written as

∑
a

∑
b∈V (a)

qab log

1 +
gabpab

nb + gab(p∗a − pab) +
∑
i ̸=a

gibp∗i

 .

Clearly, changing transmit power pab, ∀b ∈ V (a) un-
der fixed total power does not affect the mutual
interference, but only changes the self-interference.
Hence, the new optimization problem can be solved
separately with respect to each node, i.e., for each a,
we only need to maximize

∑
b∈V (a)

qab log

1 +
gabpab

nb + gab(p∗a − pab) +
∑
i ̸=a

gibp∗i


subject to p ≥ 0 and

∑
b∈V (a) pab = p∗a. Since this

function is strictly convex in [pab, ∀b ∈ V (a)], it is
maximized at a corner point, i.e., pab = p∗a for some
b ∈ V (a) and zero for all others. This shows that it
is optimal for each node to transmit to at most one
neighbor.

According to Lemma 2, at an optimal allocation, a
node is not allowed to transmit to multiple neighbors,
and to be a transmitter and receiver simultaneously.
Note, however, that it is possible for a node to re-
ceive from multiple transmitters. This is in contrast
to a matching in which a node cannot be shared by
multiple edges. For ease of exposition, we define the
notion of a pairing as follows:

Definition 2: Assume that the tail and the head of
a directed edge denote a transmitter and a receiver
respectively. A directed subgraph of G is called a
pairing if it satisfies (i) and (ii) in Lemma 2.
Note that a pairing is different from a matching
because it allows a node to be shared by multiple
edges. Figure 2 shows an example of matching and
pairing

4.1 Transmitter-Receiver Pairing
From Lemma 2, it is clear that finding a power allo-
cation can be decomposed into two steps. First, find
a pairing, and then select the transmit power levels

Algorithm 2 RAND-PAIR

1: Each node a decides to be a transmitter w.p. 1/2
and a receiver w.p. 1/2, and initializes Iab =
0,∀b ∈ V (a).

2: Each transmitting node a sends a pair-request mes-
sage (PQM) to one of its neighbors in V (a) uni-
formly at random.

3: If node b receives a PQM, one of the following
happens:
(i) If node b is a receiver, then it accepts the re-

quest and sends a pair-request-accepted mes-
sage (PAM) to node a.

(ii) Otherwise, ignore the PQM and nothing hap-
pens for node a.

4: If node a receives a PAM from node b, set Iab = 1,
meaning that node b is a receiver of node a.

for the given pairing. Since there is a finite number
of pairings, and at least one of them is optimal, it
is easy to generate an optimal pairing with positive
probability. One such algorithm is given by RAND-
PAIR (see Algorithm 2). Let Iab = 1 if node a transmits
to its neighbor b, and 0 otherwise. The goal of RAND-
PAIR is to generate a vector I = [Iab, b ∈ V (a), a ∈ V ]
satisfying the pairing constraints. To do this, each
node a decides to be a transmitter with probability
(w.p.) 1

2 and a receiver w.p. 1
2 . Then, each transmitting

node a sends a pair-request message to one of its
neighbors b. If b decided to be a receiver, it accepts the
request and sends an acceptance message. Otherwise,
it is ignored and nothing happens. Once node a
receives the acceptance message, it updates Iab to
Iab = 1. This algorithm has O(1) computation and
communication complexity, and will find an optimal
pairing with positive probability, as stated in the
following lemma.

Lemma 3: Algorithm RAND-PAIR finds an optimal
pairing with probability at least (4N)−N .

Proof: See [31].

Note that in the interference graph model, a new
scheduling should be a max-weight matching (or
independent set in general) with positive probability.
Because the max-weight matching is one of maximal
matchings, and such a probability can be increased
by performing multiple iterations until the obtained
matching becomes maximal. However, in our case,
maximal pairing1 may not be always optimal. Hence,
performing multiple iterations does not necessarily
enhance the probability of being optimal, and further
it may not guarantee that the obtained pairing has a
positive probability of being optimal.

1. A pairing I is maximal if adding a link (not in I) to I makes
it no longer a pairing
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Algorithm 3 RAND-PSEL (for given pairing I)
1: Each node a initializes p̃ab = 0, ∀b ∈ V (a).
2: Every paired transmitting node a does the following:

(i) Select a number, say u, from [0, Pmax
a ] uni-

formly at random, and set p̃ab = u for b such
that Iab = 1.

4.2 Power Level Selection

Now what remains is to select a power level which
together with RAND-PAIR satisfies C1. Recall that
RAND-PAIR generates a pairing I = [Iab, b ∈ V (a), a ∈
V ]. Given this pairing, the problem (16) is rewritten
by:

p∗(I) =

argmax
p∈F

∑
a∈V

∑
b:Iab=1

qablog

1 + gabpab

nb+
∑
ı ̸=a

∑
j:Iij=1

gibpij

.

(17)
Notice that the self-interference has been removed and
the mutual interference has been simplified due to the
constraints (i) and (ii) in Lemma 2. Since the pairing
I found by RAND-PAIR has a positive probability of
being optimal, the condition C1 can be satisfied if a
power level is selected such that it is within a factor
of the objective in (17) with positive probability. To
meet this requirement, Algorithm RAND-PSEL simply
chooses power levels uniformly at random. In par-
ticular, each transmitting node a randomly selects its
transmit power from the feasible region, i.e., [0, Pmax

a ].
This random power selection meets the requirement
as shown in the following lemma. Assume Pmax

a =
1, ∀a.

Lemma 4: For any ϵ ∈ (0, 1), Algorithm RAND-PSEL
generates a power vector p̃ such that p̃ ∈ B(p∗(I), ϵ)

with probability at least
(

ϵ√
N

)N

, where B(p∗(I), ϵ) =

{p ∈ F : ||p− p∗(I)||2 ≤ ϵ}.
Proof: See [31].

Note that this lemma can be easily extended to the
case of general Pmax

a . Combining Lemmas 3 and 4,
we can show that Condition C1 can be satisfied by
RAND-PAIR and RAND-PSEL.

Theorem 2: Choosing a power allocation according
to RAND-PAIR and RAND-PSEL satisfies C1 with arbi-
trarily small γ1 > 0 and positive δ1 which is a function
of γ1.

Proof: Let f(p) be the objective function in (17),
and consider an arbitrary γ1 ∈ (0, 1). Due to the
continuity of f(p), there exists ϵ > 0 such that
f(p) ≥ (1 − γ1)f(p

∗(I)) for any feasible p such that
||p − p∗(I)|| ≤ ϵ. Let I be a pairing generated by
RAND-PAIR and p̃ be a power vector obtained through
RAND-PSEL, given pairing I . Let I∗ be an optimal

pairing. Then, it follows that

Pr
[
qT r(p̃) ≥ (1− γ1)q

T r(p∗)
]

= Pr [f(p̃) ≥ (1− γ1)f(p
∗(I))|I = I∗] Pr[I = I∗]

≥ Pr [||p̃− p∗(I)||2 ≤ ϵ|I = I∗] Pr[I = I∗]

≥
(

ϵ√
N

)N

· (4N)−N = ( ϵ
4N3/2 )

N ,

where the last inequality is due to Lemmas 3 and 4.
Therefore, the power allocation obtained by RAND-
PAIR and RAND-PSEL achieves at least (1−γ1) fraction
of optimal value of problem (16) with probability at
least δ1 = ( ϵ

4N3/2 )
N > 0, satisfying Condition C1.

Therefore, the optimality loss γ1 can be arbitrarily
small (with small enough ϵ and thus small probability
δ1). According to Theorem 1, the throughput loss due
to this optimality loss (γ1) under our power allocation
is negligible, as long as δ2 ≪ δ1.

Remark: Theorem 2 implies that the random power
allocation hits a near optimal solution in every
( 4N

3/2

ϵ )N slots (in average sense). As a consequence
it can experience large delay or network backlog,
although our work in this paper focuses on the long-
term throughput performance. In fact, recent results
in [33] show that there may not exist a polynomial
time (deterministic or randomized) throughput opti-
mal policy for NP-hard scheduling problem such that
it achieves polynomial network backlog. The power
allocation problem (5) contains a maximum weight
independent set problem [24]. Hence, any polynomial
time power allocation policy that takes on the prob-
lem (5) will experience large delay, as our random
power allocation algorithm will. This implies that our
random power allocation algorithm may not scale
very well as the network size grows. As mentioned
above, in this paper, we focus on the throughput
performance, and we leave this delay and scalability
issue as future research.

5 COMPARISON AND AGREEMENT

The goal of the DECIDE step is to choose a power
allocation p(t) by selecting one of the two power
allocations p(t − 1) and p̃(t), so that Condition C2
can be satisfied. Such a selection is easy in a cen-
tralized setting; namely, a central entity can com-
pare q(t)T r(p(t − 1)) and q(t)T r(p̃(t)), pick the one
having larger value, and disseminate the selection to
every node. In small networks, such a centralized
comparison might be possible, or a spanning tree
could be computed in a distributed manner and used
for the comparison [5]. However, in large networks,
such a centralized computation is prohibitive. For this
reason, we develop a distributed DECIDE policy by
using randomized gossiping [32]. It consists of two
procedures, COMPARE and AGREE. The COMPARE
procedure estimates the objective values achieved
under the new and old power allocations, and the
AGREE procedure uses these estimates to make a
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unanimous decision on the selection of current power
allocation.

Let xnew
b (0) and xold

b (0) be the weighted (receiving)
rates at node b under the new power p̃(t) and old
power p(t − 1), respectively. Then, they can be ex-
pressed as xnew

b (0) =
∑
a∈V

qab(t)rab(p̃(t)) and xold
b (0) =∑

a∈V

qab(t)rab(p(t − 1)). Let Xnew =
∑
a∈V

xnew
a (0) and

Xold =
∑
a∈V

xold
a (0), i.e., Xnew and Xold are the objective

function values under the newly generated power
vector and the old power vector, respectively. The
DECIDE step must choose the new power allocation
if Xnew > Xold, and the old one if Xnew ≤ Xold.
This can also be accomplished using the average
values X̄new and X̄old instead of Xnew and Xold, where
X̄new = Xnew/N and X̄old = Xold/N . Therefore, if
every node can compute an accurate estimate of X̄new
and X̄old, they will be able to make a decision leading
to C2. A randomized gossiping algorithm is used to
estimate X̄new and X̄old. Note that gossiping has been
used extensively for computing averages (See [32],
[34] and references therein).

Typically, gossiping generates a matching for each
iteration. Let xa(k) be the value at node a after
iteration k. The initial value is thus xa(0) and the
global average is

∑
a xa(0)/N . If any two nodes a and

b share the same link under the current matching,
then they update their values to their average, i.e.,
xa(k + 1) = xb(k + 1) = xa(k)+xb(k)

2 . Gossiping keeps
generating a random matching for this averaging
operation, and every node eventually obtains an esti-
mate of the global average

∑
a xa(0)/N . In this paper,

we use a random matching policy in [32] that works
as follows. Let d(a) be the degree of node a, i.e.,
d(a) = |V (a)| and d∗ be the maximum node degree,
i.e., d∗ = maxa∈V d(a). Each node a decides to be ac-
tive with probability (w.p.) 1

2 and inactive w.p. 1
2 . An

active node a does nothing w.p. 1− d(a)
d∗ , and randomly

contacts one of its neighbors w.p. d(a)
d∗

2. Consider an
inactive node b. If b is contacted by node a while it has
not been contacted by any other, then nodes a and b

average their values w.p.
(
1− 1

2d∗

)d∗−d(b). Otherwise,
nothing happens for a.

5.1 COMPARE and AGREE

The COMPARE procedure estimates the averages X̄new
and X̄old using the gossiping described above, and
is shown in Algorithm COMPARE. Note that at each
iteration, a matching is generated and any two nodes
sharing a link in that matching average their values.
Note also that the same matching is used for new and

2. Under the algorithm COMPARE, each active node a has 1
2
d(a)

inactive neighbors in average. Hence for better chance of matching,
it is desirable for an active node with high degree to make an
attempt to match with high probability, while a node with low
degree is desired to attempt with low probability. This is why the
contact probability is proportional to the node degree.

Algorithm 4 COMPARE

1: For iteration k = 1, ...,K, do the following:
(i) Each node a updates xnew

a (k) = xnew
a (k − 1)

and xold
a (k) = xold

a (k − 1).
(ii) Each node decides to be active w.p. 1/2 and

inactive w.p. 1/2. An active node a does
nothing w.p. 1 − d(a)

d∗ , and contacts one of
its neighbors uniformly at random (i.e., with
equal probability 1

d∗ ).
(iii) If node b is contacted, one of the following

happens:
(b) If b is inactive and has not been con-

tacted, they average as xnew
a (k) = xnew

b (k) =
xnew
a (k−1)+xnew

b (k−1)
2 and xold

a (k) = xold
b (k) =

xold
a (k−1)+xold

b (k−1)
2 w.p.

(
1− 1

2d∗

)d∗−d(b).
(c) Otherwise, b ignores the contact and noth-

ing happens for a.

Algorithm 5 AGREE

1: Run gossiping for K̃ iterations to estimate the
average

∑
a∈V

za(0)/N .

2: Each node a selects the new power if za(K̃) ≥ 1,
and the old one otherwise.

old values. After K iterations, every node will obtain
the estimates of new and old average values xnew

a (K)
and xold

a (K).
If the estimates are exact, a unanimous decision

satisfying C2 can be easily made since every node a
will have xnew

a (K) > xold
a (K) (or xnew

a (K) ≤ xold
a (K)).

Such a unanimous decision can also be guaranteed if
the estimates are highly accurate, provided that the
difference |X̄new − X̄old| is sufficiently large. However,
in the case of small difference, decisions can be mixed
even under highly accurate estimation (See Fig. 3),
which can lead to the violation of C2. An additional
procedure is thus needed to ensure that every node
makes the same and right decision.

The AGREE procedure keeps the decision made
by COMPARE if it is unanimous. Otherwise, it keeps
the old power allocation. Note that in the case of
small difference, this selection policy will not incur
big losses in throughput because there is only a small
difference between selecting either the new or the old
power allocation. To do this, the AGREE procedure
uses the estimates xnew

a (K) and xold
a (K) as follows.

Each node a initiates a variable za(0) as follows:

za(0) =

{
1 if xnew

a (K) > xold
a (K)

0 if xnew
a (K) ≤ xold

a (K).

Namely, za(0) is equal to 1 if node a prefers the new
power allocation and 0 otherwise. It runs gossiping
for K̃ iterations (as in COMPARE) to estimate the
average Z̄ =

∑
a∈V

za(0)/N . After that, each node a
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new ( )
a

x k

newX -convergence

oldX -convergence

Node index

1 2 3 4 5

old ( )
a

x k

(a) Large difference: ϵ-convergence may result in
unanimous decision

new ( )
a

x k

newX -convergence

old
X -convergence

Node index

1 2 3 4 5
old ( )
a

x k

(b) Small difference: decisions can be mixed
even under ϵ-convergence

Fig. 3. Impact of difference |X̄new − X̄old| on unanimous decisions

decides to use the new power if za(K̃) = 1 and the
old one otherwise, where za(k) is the value at node a
after iteration k. Note that if za(0)’s are all zero or all
one, then the convergence and unanimous decision is
guaranteed immediately. We will show that this is the
right decision. If there is a mixture of decisions at the
end of COMPARE, the AGREE procedure tries to keep
the old power allocation. The following lemmas show
a unanimous decision is the right decision; hence
justifying the AGREE.

Lemma 5: Suppose that there was an agreement
after COMPARE, i.e., za(0)’s are all zero or all one.
Then, it is the right decision regardless of the values
of X̄new and X̄old in that the power allocation se-
lected based on za(0)’s achieves the objective value of
max{Xnew, Xold}. As a consequence, unanimous wrong
decisions cannot happen after COMPARE.

Proof: To prove Lemma 5, we need the following
lemma. Again, let xa be xnew

a , xold
a or za.

Lemma 6: For every k ≥ 0, the sum is conserved as∑
a∈V

xa(k) =
∑
a∈V

xa(0).

Proof: Let xa(k) and x(k) be the value of node a
after iteration k and its vector, respectively. Denote by
M(k) the matching found in iteration k. The update
of node values can be expressed as a linear equation
by

x(k + 1) = W (k)x(k), (18)

where W (k) is an N ×N matrix given by

W (k) = I −
∑

(a,b)∈M(k)

(ea − eb)(ea − eb)
T

2
, (19)

where I is the identity matrix and ei is the i-th
element vector whose i-th coordinate is 1 and all

others are zero. The first term in W (k) corresponds
to the original value of each node and the second
term describes the change from the original value. For
example, when node a averages with b, its new value
becomes 1

2xa(k) +
1
2xb(k) = xa(k) − 1

2xa(k) +
1
2xb(k),

where the first term corresponds to I and the last two
terms correspond to the second term in (19). Note
that the matrix W (k) is doubly stochastic, and as a
consequence, the following holds:∑

a∈V

xa(k + 1) = 1⃗T · x(k + 1)

= 1⃗TW (k)x(k)

= 1⃗T · x(k) =
∑
a∈V

xa(k).

The third equality is due to the fact that W (k) is
doubly stochastic. This proves the lemma.

We now prove Lemma 5. Under the assumption
of unanimous decisions after COMPARE, there can be
only two cases including (i) xnew

a (K) > xold
a (K), ∀a

or (ii) xnew
a (K) ≤ xold

a (K),∀a. Suppose case (i), in
which case every node selects the new power. Then,
it follows that∑

a x
new
a (K) >

∑
a x

old
a (K)

⇒
∑

a x
new
a (0) >

∑
a x

old
a (0),

where the second line is due to Lemma 6. Therefore,
selecting the new power is the right decision. Case (ii)
can be proved similarly.
Therefore, it is desirable to keep any unanimous deci-
sion made after COMPARE, because the better power
allocation is always selected under such a decision.
This justifies the AGREE procedure that always keeps
unanimous decisions made after COMPARE.

We now analyze and prove that the combination of
COMPARE and AGREE can satisfy Condition C2. For
the proof, we need to define some parameters. Let
x(k) be the vector of xa(k)’s and X̄ =

∑
a xa(0)/N ,

where xa can be xnew
a , xold

a or za.
Definition 3 (ϵ-convergence time, [32]): For given δ >

0, the ϵ-convergence time K(ϵ, δ) is defined by

K(ϵ, δ) = sup
x(0)

inf

{
k : Pr

[
||x(k)− X̄ 1⃗||

||x(0)||
≤ ϵ

]
≥ 1− δ

}
(20)

where || · || is l2-norm.
Briefly, the ϵ-convergence time is the time until the
estimation vector x(k) falls into the ϵ-neighborhood
(in relative sense) of the average vector X̄ 1⃗ with high
probability.

Assumption 1: Fix arbitrary γ2, δ2 ∈ (0, 1). Consider
positive constants ϵ̂, ϵ, δ, ϵ̃, ϵ̄ and assume the following:

0 < ϵ̂ ≤ γ2

2−γ2
, ϵ = ϵ̂

N , 0 < δ ≤ δ2
2

0 < ϵ̃ < 1
N−1 , ϵ̄ =

ϵ̃
N .

Assume further that K = K(ϵ, δ) in COMPARE and
K̃ = K(ϵ̄, δ) in AGREE.

Let X̄agr be the average objective value achieved
by the above described DECIDE algorithm that runs
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COMPARE and then AGREE. It can be proved that this
policy satisfies C2 as shown in Theorem 3.

Theorem 3: Consider any γ2, δ2 ∈ (0, 1). Under As-
sumption 1, the DECIDE algorithm (COMPARE and
AGREE) achieves

Pr[X̄agr ≥ (1− γ2)max{X̄new, X̄old}] ≥ 1− δ2.

Proof: See Section 5.2.
Remark: As seen above, the ϵ-convergence time

K(ϵ, δ) is a critical parameter because Condition C2
can be guaranteed after ϵ-convergence time in COM-
PARE and AGREE. It is known that in a line or ring
topology, it is given by Θ(−N2 log(ϵδ)) [35]. More-
over, in a complete graph, it is given by K(ϵ, δ) =
Θ(− log(ϵδ)) [32]. In wireless networks, the topol-
ogy can be controlled by adjusting the coding and
transmission rate. That is, if a strong coding is used
with low transmission rate, then the communication
range can be increased (for the purpose of control
signalling only). This will make the topology closer
to a complete graph. In particular, a small network
could be made a complete graph. Hence, if this is
used for gossiping, the ϵ-convergence time will be
substantially improved3. The convergence time can
be further improved by exploiting the geographic in-
formation. In [37], [38], geographic gossip algorithms
were developed such that their convergence time is
O(N). Clearly, this is order optimal for network-
wide averaging, and therefore, the gossiping-based
comparison can be a practical solution in real wireless
networks.

Remark: We briefly discuss the total overhead of
our algorithm. Recall that our algorithm consists of
RAND-POW and DECIDE. In RAND-POW, O(N) and
O(1) computations are needed respectively for RAND-
PAIR, and RAND-PSEL. The DECIDE step runs two
rounds of gossip algorithm which requires O(N3)
computations in the worst case [32]. Therefore, our
algorithm requires O(N3) computations in total.

5.2 Proof of Theorem 3
The theorem is proved in three steps. First, in Sec-
tion 5.2.1, we analyze the case of large difference
|X̄new−X̄old|. In particular, we show that a unanimous
decision can be easily made, given that every has
obtained a good estimate (ϵ-convergence) of averages.
Since any unanimous decision made after COMPARE
is the right decision, the probability of right decision
is the probability of ϵ-convergence in COMPARE. We
show that this probability is high. Second, in Section
5.2.2, we deal with the case of small difference, where
even a good estimate can possibly result in mixed
decisions. The key to dealing with this case is that

3. In fact, the techniques used in [35], [36] for analyzing conver-
gence time show that as the number of disjoint paths increases, the
convergence speed increases. Hence, such a topology control will
enhance the convergence speed. More details can be found in [31].

selecting either the new or old power allocation is
not a bad choice due to |X̄new ≈ X̄old|. We show that
the AGREE procedure attains a unanimous decision
with probability, which in this case implies a fairly
good choice. Finally, Section 5.2.3 combines these
two results to show that COMPARE and AGREE will
select the power allocation that achieves almost the
maximum of new and old objective values with high
probability.

5.2.1 The Case of Large Difference
Let us first delineate between large and small dif-
ferences. Consider an arbitrary ϵ̂ ∈ (0, 1), and let
ϵ = ϵ̂/N . Recall the definition of K(ϵ, δ) in (20). It can
be easily shown that under Algorithm COMPARE, for
any k ≥ K(ϵ, δ),

|xnew
a (k)− X̄new| ≤ ϵ̂X̄new, ∀a ∈ V

|xold
a (k)− X̄old| ≤ ϵ̂X̄old, ∀a ∈ V

(21)

with probability at least 1− δ. Define E1 as the event
that (21) is satisfied, under the assumption that K =
K(ϵ, δ) in Algorithm COMPARE. Then, it is obvious
that Pr[E1] ≥ 1−δ. Define E2 as the event4 that X̄new >
1+ϵ̂
1−ϵ̂X̄old or X̄new ≤ 1−ϵ̂

1+ϵ̂ X̄old. Then, its complement EC
2

is the event that 1−ϵ̂
1+ϵ̂ X̄old < X̄new ≤ 1+ϵ̂

1−ϵ̂X̄old. Note
that the event E2 basically indicates that the difference
between the old and new average values is relatively
large, whereas EC

2 indicates that they are fairly close.
These two events E2 and EC

2 respectively define large
and small differences. In the following, we will see
how these two events affect the performance of our
decision policy.

Consider a naive policy Π such that each node a
decides its power based on its own estimates obtained
by running COMPARE, that is, it switches to the new
power if xnew

a (K) > xold
a (K) and keeps the old one

otherwise.
Lemma 7: Assume K = K(ϵ, δ) in Algorithm COM-

PARE. Then, the policy Π

Pr[X̄Π ≥ max{X̄new, X̄old}|E1, E2] = 1,

where X̄Π is the average objective value of the power
vector selected under the policy Π.

Proof: Given E1, (21) holds, and consequently it
follows that for all a,

(1− ϵ̂)X̄new − (1 + ϵ̂)X̄old
≤ xnew

a (K)− xold
a (K) ≤ (1 + ϵ̂)X̄new − (1− ϵ̂)X̄old.

Further, given E2, we have X̄new > 1+ϵ̂
1−ϵ̂X̄old or X̄new ≤

1−ϵ̂
1+ϵ̂ X̄old. In the first case, the above sandwich in-
equality implies xnew

a (K) > xold
a (K), ∀a. Consequently,

every node will select the new power under the policy
Π so that X̄Π = X̄new. Note that this is the right
decision because X̄new > X̄old in this case. The second
case can be proved similarly.

4. Note that X̄new is a random variable.
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The following is a consequence of Lemma 7.
Corollary 1: Given EC

2 , i.e., if 1−ϵ̂
1+ϵ̂ X̄old < X̄new ≤

1+ϵ̂
1−ϵ̂X̄old, the policy Π can result in mixed decisions
even after ϵ-convergence.

Lemma 7 shows that when the difference between
X̄new and X̄old is sufficiently large, the desired selec-
tion can be made easily based solely on the COMPARE
procedure. On the other hand, according to the above
corollary, if they are too close, the decisions can be
mixed, that can possibly lead to the violation of C2.
Note also that as the accuracy of estimation increases
(i.e., ϵ̂ decreases), the region of mixed decisions di-
minishes.

5.2.2 The Case of Small Difference
So far we have seen that when the difference is large
(i.e., given E2), a unanimous decision can be easily
made right after COMPARE. Moreover, any unanimous
decision is kept by AGREE, and hence, Lemma 7
also hold for AGREE. This subsection studies the case
where the decisions are mixed after COMPARE, in
particular when the difference is small.

Recall that if za(0)’s are all zero or all one, then
the convergence and the right decision are guaranteed
immediately under the decision algorithm AGREE
(See Lemma 5). Hence, assume that such a case has
not happened, so that there is a mixture of nodes
with za(0) = 0 and za(0) = 1. Consider any ϵ̃ ∈
(0, 1/(N−1)) and let ϵ̄ = ϵ̃/N . Then, as argued in (21),
after K̃ = K(ϵ̄, δ) iterations in AGREE, every node a
will obtain

(1− ϵ̃)Z̄ ≤ za(K̃) ≤ (1 + ϵ̃)Z̄ (22)

with probability at least 1−δ. Consequently, the above
inequality implies 0 < za(K̃) < 1, ∀a since 1/N ≤ Z̄ ≤
(N − 1)/N and ϵ̃ < 1/(N − 1). Hence, every node
will acknowledge that there are mixed decisions, and
hence they will decide to use the old power.

Let E3 denote this event, i.e., E3 is the event that
every node obtains ϵ̃ approximation of Z̄ (as in (22))
under the assumption that K̃ = K(ϵ̄, δ). Note that
Pr[E3] ≥ 1 − δ. The following lemma shows the
performance of AGREE under some conditions.

Lemma 8: Let X̄agr be the average objective value
achieved by AGREE. Then,

Pr[X̄agr ≥ (1− 2ϵ̃/(1 + ϵ̃))max{X̄new, X̄old}|EC
2 , E3] = 1.

Proof: Note first that given E3, the AGREE policy
will result in agreed decisions. If za(0)’s were all zero
or one, then it follows from Lemma 5 that X̄agr =
max{X̄new, X̄old}. If this was not the case, then every
node will select the old power given E3; so that X̄agr =
X̄old. Further, given EC

2 , we have 1−ϵ̂
1+ϵ̂ X̄old < X̄new ≤

1+ϵ̂
1−ϵ̂X̄old. Consequently, it follows that X̄agr = X̄old ≥
1−ϵ̃
1+ϵ̃ max{X̄new, X̄old}. Therefore, the agreed decisions
are made achieving at least 1− 2ϵ̃

1+ϵ̃ of the maximum
of old and new values.

Lemma 8 implies that when the case of small differ-
ence can be addressed by the AGREE procedure. That
is, if the decisions were unanimous after COMPARE,
they are right decisions and kept by AGREE. Even
if the decisions are mixed, the AGREE procedure
can guarantee almost the maximum of new and old
objective values with high probability.

5.2.3 Combining All The Results

We now combine all the above results to complete the
proof. For any trivial event A (i.e., event having zero
probability measure), assume the convention P (·|A) =
0 where P (·) is probability measure. We will use the
following relationship for any events A,B,C:

P (A|B) = P (A|B,C)P (C|B) + P (A|B,CC)P (CC |B).
(23)

Recall E1, E2, E3 are respectively the events of ϵ-
convergence in COMPARE, relatively large difference
between X̄new and X̄old, and ϵ̄-convergence in AGREE.

Let X̄max = max{X̄new, X̄old}. First, note that

Pr[X̄agr ≥ (1− γ2)X̄max]
= Pr[X̄agr ≥ (1− γ2)X̄max|E1] · Pr[E1]

+Pr[X̄agr ≥ (1− γ2)X̄max|EC
1 ] · Pr[EC

1 ]
≥ (1− δ) Pr[X̄agr ≥ (1− γ2)X̄max|E1],

where the inequality follows from the facts that the
second term is nonnegative and Pr[E1] ≥ 1− δ. Using
the relationship (23), the last line can be rewritten as

= (1− δ)
{
Pr[X̄agr ≥ (1− γ2)X̄max|E1, E2] · Pr[E2|E1]

+Pr[X̄agr ≥ (1− γ2)X̄max|E1, EC
2 ] · Pr[EC

2 |E1]
}

≥ (1− δ) {Pr[E2|E1]
+Pr[X̄agr ≥ (1− γ2)X̄max|E1, EC

2 ] · Pr[EC
2 |E1]

}
≥ (1− δ) Pr[X̄agr ≥ (1− γ2)X̄max|E1, EC

2 ],

The second inequality follows from Lemma 7, and
the last inequality follows from the fact Pr[E2|E1] +
Pr[EC

2 |E1] = 1. Similarly to the above (where (23) was
applied and the second term was removed for pro-
ceeding the inequality), the last line can be rewritten
as

≥ (1− δ) Pr[X̄agr ≥ (1− γ2)X̄max|E1, EC
2 , E3] · Pr[E3|E1, EC

2 ].

Recall Pr[E3] ≥ 1− δ, and this is true regardless of the
initial value z(0). The events E1 and EC

2 only affect
the initial value, hence the conditional probability
Pr[E3|E1, EC

2 ] is also no less than 1−δ. By Assumption
1, we also have (1 − γ2) ≤ (1 − 2ϵ̃

1+ϵ̃ ). The above
inequality is then rewritten as

≥ (1− δ)2 Pr[X̄agr ≥ (1− 2ϵ̃
1+ϵ̃ )X̄max|E1, EC

2 , E3].

The proof is completed by noting that Lemma 8 holds
even if it is additionally conditioned on E1 and using
δ ≤ δ2

2 in Assumption 1.
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5.3 Sign-wise Convergence
In order for a unanimous decision to be made after
running COMPARE, every node a has to obtain the
estimate such that xnew

a (k) > xold
a (k) (or xnew

a (k) ≤
xold
a (k)). Without loss of generality, we assume X̄new >

X̄old. Obviously, the ϵ-convergence is not a necessary
condition for xnew

a (k) > xold
a (k), ∀a. Therefore, the ϵ-

convergence time is a conservative lower bound in that
a unanimous decision can be possibly made without
having ϵ-approximation of the actual average. This
has led us to define a new concept of sign-wise con-
vergence (or s-convergence).

Definition 4: A real-number vector x is said to be
uniform in sign (u.i.s.) if x > 0 (or x ≤ 0) component
wise.

Definition 5 (s-convergence time): For a sequence of
vectors {x(k)}, the sign-wise convergence time Ks(δ) is
defined by

Ks(δ) = inf {k ≥ 0 : Pr [x(k) is u.i.s. ] ≥ 1− δ} . (24)

Let xdif
a (k) = xnew

a (k) − xold
a (k), then a unanimous

decision can be made when the vector xdif(k) is u.i.s.
The following result is obvious.

Lemma 9: Note that once a sequence {xdif(k)} gen-
erated by Algorithm COMPARE becomes u.i.s., it will
remain u.i.s. forever.

Proof: Suppose that xdif(k) is u.i.s, and consider
any two nodes a,b. Since the vector is u.i.s., we have
xnew
a (k) > xold

a (k) and xnew
b (k) > xold

b (k). If they
average in the next iteration, then

xnew
a (k + 1) =

xnew
a (k)+xnew

b (k)
2 >

xold
a (k)+xold

b (k)
2 = xold

a (k + 1),

and the same is true for node b. This completes the
proof.
As a consequence, after any K ≥ Ks(δ2) iterations in
COMPARE, a decision can be made such that C2 is
satisfied with γ2 = 0. Now, it remains to identify the
value of Ks(δ) in terms of network parameters. Let
X̄dif = X̄new − X̄old, then by assumption X̄dif > 0.

Lemma 10: The following is a sufficient condition
for the sign-wise convergence of vector xdif(k):

||xdif(k)− X̄dif1⃗|| <
√
NX̄dif

(
N

α2
− 1

)1/2

, (25)

where α is a constant in (1,
√
N).

Proof: For notational convenience, drop all the
indices and consider an N -dimensional vector x such
that

∑
i xi = NX̄ . We want to find the condition when

x > 0 component wise. To get some intuition, we start
from the case of N = 2. In this case, the condition is
easily obtained as x1x2 > 0 (Since we are assuming
X̄new > X̄old, the case of x1 ≤ 0 & x2 ≤ 0 cannot
happen), but this form of condition is not easy to
extend to higher dimension. Consider the normalized
vector x

||x|| , which has exactly the same properties as
x in terms of sign-wise convergence. This vector lies
on the unit circle as shown in Fig. 4. Observe that any

1
x

1 1
,

2 2

1,0

2
x

0,1

|| ||

x

x

Fig. 4. Sign-wise convergence condition in 2-dimension

u.i.s. vector lies on the solid line, and the vector 1√
2
1⃗ at

its center. We call this standard vector. It is easy to see
that if the inner product of standard vector and x

||x|| is
greater than certain value, then x is u.i.s. That value
can be easily computed as 1√

2
, hence the condition is

written as
1√
2
1⃗ · x

||x||
>

1√
2
. (26)

Expanding and rearranging the above condition
yields x1x2 > 0. In this case, this is a necessary and
sufficient condition (given that x1 ≤ 0 & x2 ≤ 0 cannot
happen).

For higher dimension, we take similar approach.
First, the standard vector 1√

N
1⃗ will lie at the center of

the space where all the u.i.s. vectors exist. Similarly
to the 2-dimensional case, it is obvious that any u.i.s.
vector can be described as

1√
N

1⃗ · x

||x||
>

α√
N

⇒ α||x|| <
∑
i

xi. (27)

Notice that this a natural generalization of (26), except
for α. For N = 2, α was 1. However, we can show that
α should be greater than 1 as below.

Lemma 11 ( [31]): Assume N ≥ 3. In order for the
condition (27) to describe u.i.s vectors, it should be
1 < α <

√
N .

Squaring both side of the inequality (27) and using
the condition

∑
i xi = NX̄ yields

||x||2 < N2X̄2

α2

||x− X̄ 1⃗|| <
√
NX̄

(
N
α2 − 1

)1/2
.

This proves the lemma since the vector xdif(k) satisfies
all the conditions assumed on x here.
Since the same matching is used for averaging new
and old values in COMPARE, xdif(k), defined by
xnew(k) − xold(k), will be updated in the same way
as xnew(k) and xold(k). Further, dividing both side of
(25) by ||xdif(0)||, we obtain

||xdif(k)− X̄dif1⃗||
||xdif(0)||

<

√
NX̄dif

||xdif(0)||

(
N

α2
− 1

)1/2

, (28)

In comparison with the condition in (20), the only dif-
ference is the right hand side (RHS) of the inequality.
The RHS constant ϵ in (20) is obviously some value
between 0 and 1. Moreover, the RHS value in (28)
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is positive by assumption, and in fact no less than
(N/α2 − 1)1/2 < 1; this is because ||xdif(0)|| is convex
and thus minimized when xdif

a (k) = X̄dif, ∀a in which
case the RHS becomes (N/α2 − 1)1/2 < 1. Hence, in
the worst case, ϵ and (N/α2−1)1/2 are about the same.
This implies that the two notions of convergence have
the same order of convergence speed.

Nevertheless, we expect that they will show a
substantial difference in convergence time. In (20),
the constant ϵ is required to be very small because
for C2 to be satisfied, we need ϵ = ϵ̂/N where
ϵ̂ ≤ γ2/(2 − γ2). In (28), the right hand side value
depends on the initial condition. If X̄dif is large, then
the sign-wise convergence can be substantially faster
than the ϵ-convergence. On the other hand, if it is
very small, the sign-wise convergence time will be
relatively the same as the ϵ-convergence time. In the
next section, we verify through simulations that the
sign-wise convergence time is much smaller than the
ϵ-convergence time.

6 SIMULATION RESULTS

We generated a network topology by randomly plac-
ing N nodes in a plane. For each link (a, b), packets
arrive according to a Poisson arrival process of rate
0.5, with the mean packet size of 2λ. The offered
load is thus λ, and this parameter will be changed
to examine the algorithm performance. Let dab be the
distance between nodes a and b. The channel gain gab
is fixed to 1/(1 + d4ab) if a ̸= b, and as assumed in
Section 2, gab = ∞ if a = b. The noise power and the
maximum transmit power are fixed as na = 0.01 and
Pmax
a = 1 for every node a.
Figure 5(a) compares ϵ-convergence time and sign-

wise convergence time of the gossiping-based averag-
ing in Algorithm COMPARE. The ϵ-convergence time
increases quadratically in number of nodes, whereas
the s-convergence time increases linearly. Hence, the
gossiping-based decision can satisfy C2 with much
less iterations than expected in the ϵ-convergence
analysis. Figure 5(b) plots the stability performance
of distributed comparison (Algorithms RAND-PAIR,
RAND-PSEL and DECIDE; denoted by distributed)
and centralized comparison (Algorithms RAND-PAIR,
RAND-PSEL with centralized comparison; denoted by

centralized comp.). The centralized comparison sat-
isfies C2 with γ2 = 0 and δ2 = 0, and hence by
Theorem 1, it achieves nearly 100% throughput. As
the number of iterations (K in Algorithm COMPARE)
increases, the performance of distributed comparison
approaches that of centralized comparison. This im-
plies that our distributed power control scheme can
achieve maximum throughput.

7 CONCLUSION

We considered the problem of achieving maximum
throughput under SINR rate-based model in multi-
hop wireless networks. In particular, we focused on
distributed implementation of optimal power allo-
cation algorithm. Typically, this requires repeatedly
solving an optimal power allocation problem by
taking into account channel conditions and queue
backlog information. However, finding such a power
allocation for every time slot is impractical due to
not only the difficulty of the problem but also the
need for distributed operation. By applying random-
ization approach, we characterized new throughput-
optimality conditions that enable distributed imple-
mentation. We developed a randomized power alloca-
tion that satisfies the new optimality conditions, and a
distributed gossip-based comparison mechanism that
achieves 100% throughput, together with the random-
ized power allocation.
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