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Abstract
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Chapter 1

Introduction

National data highway, interactive television, video on demand, massively parallel
computers, and multimedia — these are some of today’s buzzwords. Conceivably in
the future, cable companies will offer over 500 channels to individual homes. Pay-per-
view TV will offer movies, supplanting video rental stores. The more intellectually
curious can use the internet to read books from electronic libraries and find facts from
distant databases. Terminals will display more and more graphics, rather than text.
Phones can send videos as well as voices. Most likely, the first tera-flop computer will
not be a conventional vector supercomputer, but a parailel computer, where tasks
are distributed among hundreds of processors. The rate data moves between these
processors affects the parallel computer overall speed. All these trends depend on
high capacity communication links.

How can today’s telecommunications networks support these emerging technolo-
gies? Will optical fiber rise to the challenge? One possible solution, Time Division
Multiplexing (TDM), maximizes the use of a given high speed link. In this scheme,
several slower data streams are combined into one fast one. Since networks faster than
20 giga-bits per second (Gb/s) are difficult to make, researchers are now trying to
place more than one data channel on a given fiber link. In Wavelength Division Mul-
tiplexing (WDM), these channels are differentiated by wavelength or color. Whether
TDM or WDM or any other scheme is used, further advances are needed in optical

devices — the fundamental building blocks of networks.
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Optical devices send, receive and process data. Typical componeats are semicon-
ductor lasers, optical amplifiers, tunable filters, detector arrays, fast switches, and
directional couplers. As the performance of these devices increases, the cost of fab-
ricating them usually rises. Consequently, the advantages of modeling and designing
prototypes on computers become more and more apparent. This thesis focuses on
computer modeling of optical devices, concentrating on beam propagation techniques

and photonic band gap materials.

1.1 Beam Propagation Method

The Beam Propagation Method (BPM) solves the paraxial wave equation

0E 0'E O°FE

g _ g2 92 g2 2 _ 2
% — B22 + 592 +k [n(:c,y,z) no] E, (1.1)

2]k'n0

where E(z,v,z) is the envelope of the field! distribution, z is the propagation di-
rection, z and y are the transverse dimensions, k is the free space wave vector,
and ng is the effective index. kngy equals k, — the z component of the envelope’s
propagation constant. The paraxial wave equation comes from substituting the field
E(z,y,z)e" 7% into the Helmholtz or wave equation

0? 0?2 o
0x? + oy? + 022

+ k*n(z,y, z)zl (Ee""“""’) =0.
The Helmholtz equation is in the frequency domain so assumes single frequency or
CW light. The assumptions behind paraxial wave equation (1.1) are:?

1. Paraxial approximation: the electromagnetic waves propagate in directions not

far away from a reference axis z (waveguide axis);

2. Scalar approximation: all polarization effects are neglected.

lelectric and magnetic fields in a scalar sense, neglecting polarization
2Thanks to Prof. Wei-ping Huang for listing these approximations
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3. One-way approximation: the electromagnetic waves propagate unidirectionally,
i.e., the reflections due to the index discontinuities along the waveguide axis are

neglected;

4. Isotropic non-magnetic medium: the medium is described by € = €(z,y, ) and

# = Ho-

Compared to Maxwell’s equations, the paraxial wave equation has some advantages.
For example, the paraxial wave equation is first order with respect to 2. So, if one
specifies the fields at one transverse plane (such as z = 0), E(z,%,0), the BPM
can calculate the fields at a neighboring plane z = Az. Then from E(z,y,Az)
BPM calculates E(z,y,2Az). This process repeats until all other desired points are
calculated. Since an e~7%"0%Z envelope with large sinusoidal oscillations is factored
away, the remaining amplitude E is a slowly varying function of z. With a careful
choice of ng, E changes very little with z. As a result, these small changes can be
described by a few points separated by large step sizes Az. As a result, BPM is
computationally very efficient. BPM can be run on personal computers. It is the
standard numerical method for modelling guided wave optics. And in the last few
years, many commercial BPM packages have been introduced. BPM has been used
to calculate the propagation (specifically, transmission and dissipation) of light in 2D
and 3D waveguides of arbitrary indices.

The term BPM was first applied to solutions of equation (1.1) using Fast Fourier
Transforms (FFTs)[! but recently the term has also described finite difference (FD)l
and finite element (FEM)P implementations. FFT based ones were the “method
of choice” in the 70’s.3 However, in the 80’s finite difference was favored. Finite
difference can model a waveguide’s index discontinuities accurately, without Gibbs
oscillaticns. Finite elements has the advantage of modelling waveguides that can not
be decomposed into rectangles accurately (such as fibers). But this method does not

have as large a following. FEM is harder to code. This thesis focuses on the popular

3] feel that FFT is the best method for modelling more gradual index changes such as those
associated with nonlinearities like ngy.
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finite difference implementation.

As BPM has became more popular, scientists have proposed some clever exten-
sions. By assuming the spatial index profiles are piecewise constant, M. S. Stern
has incorporated some polarization dependence. He calls his new scheme the semi-
vectorial approximation.[ W. P. Huang et al.l®l show that this approximation includes
all the terms of the vector wave equation but neglects cross polarization terms. The

governing equations are

r ] 2
19 2h| + %;EI +(n? - ng)/&Ex}

OB, 1 [0[1d,,,], 6 9 - 2 22p
J az —2nok{3y ] ——(n Ey)J +5;2’Ey+(n _no)k Ey}

for the electric fields and

OH, 1 [ ,0 (100, R, 5 5 .s
1782 = 2kn, {" 3y (n2 By ) t g T o)k,
o0, _ 1 2 0 iaﬁy 0’H, 2 _ 2127
"z~ 2kn, {n Oz (n2 Oz ) * oy? = mp KA

for the magnetic fields.

In 1991, G. R. Hadley proposed the transparent boundary condition.[®” This
assumes the second derivative of the fields normal to the computational domain edge
are zero. By allowing nonzero fields at the edge, this boundary condition in practice
reduces the domain size and improves the model fidelity. Previously, the fields at the
edges of the computational domain were set to zero. Or periodic boundary conditions
were employed. Some have pointed out that transparent boundaries can lead to
instabilities. 89l

For a given step size Az, the BPM methods solves (1.1) accurately for a small
range of effective indices near ny. This limits the propagation vectors to a small

angular range. To widen this range, researchers have proposed so-called “wide-

iExplanation: The magnitude of the wave vector is fixed at kn. Since its projection on the z
axis is limited to a small range near kno, the range of angles is also smali.

18



angle” extensions.!'®'3] These methods add higher order terms that were considered
negligible when deriving the paraxial wave equation.

P. Kaczmarski and P. E. Lagasse do not neglect back reflections. They model these
reflections by running the BPM program in reverse. This bidirectional BPM!I* 1%} is
models non resonant reflections admirably. Resonant reflections would require many
BPM runs. A recent journal article(!) compares some of the fancier BPM programs.

The program described in this thesis solves the paraxial wave equation with the
finite difference method in 3D spatial dimensions. It has the semi-vectorial extension
and the transparent boundary condition. The kernel of this code came from Frof.
Wei-Ping Huang’s group at U. of Waterloo. This code solves the large sparse ma-
trix associated with FD-BPM by ORTHOMIN.['] To this code, I have changed the
boundary conditions to allow for 1) E = 0, 2) normal derivative equals zero, and 3)

periodic. In addition, we have built the user interface and analysis routines.

1.2 Eigenmodes from beam propagation

Normally, BPM has been used to calculate the propagation (specifically, transmission
and dissipation) of light in 2D and 3D waveguides of arbitrary indices. But BPM can
also be used to find the eigenmodes of a structure. For example, if at every BPM step,
one calculates the overlap integral of the just-obtained field E(z,y, z) with the initial
field E(z,y,0), the peaks of the Fourier transform lie at the propagation constants of
the transverse modes.['®! If one repropagates and beats with a propagation constant,
one can extract the field distribution corresponding to that propagation constant.[9)
If the BPM is implemented with finite difference or finite element, the eigenvalues
and eigenvectors of the matrix, resulting from the discretization of the paraxial wave
equation, are the propagation constants and eigenmodes of the waveguide. This
linear system has been solved with the shifted inverse power method.#?% The Fast
Fourier Transform also has been used to calculate the Green’s function matrix.[?!! The
Lanczos method can speed up the calculation by reducing the size of the matrix.[*

These matrix methods can produce waveguide modes efficiently.
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Recently, Yevick and Hermansson!?*! showed that propagation along the imag-
inary axis can give the fundamental mode and its effective index quite efficiently.
This method is quite general. It can calculate the mode of a lossless waveguide of
arbitrary geometry and composition. Also, it applies not only to finite difference and
finite element BPM but also to FFT BPM. The foundations of imaginary-distance
propagation were laid when Yevick and Hermansson!?!! suggested that BPM applied
to the imaginary axis can give the fundamental mode of an optical waveguide. The
fundamental mode has the largest propagation constant and thus experiences the most
rapid oscillations in phase when traveling down the real axis. Propagation down the
imaginary axis changes these sinusoidal variations in phase into exponential growths
in amplitude. A sufficiently long imaginary propagation gives the fundamental mode
— the mode with the most growth. Hawkins(?? related this imaginary-distance propa-
gation of optical beams to the path integral formalism of quantum mechanics. Yevick
and Hermansson applied this concept to the beam propagation method®® and re-
lated it to variational techniques.?8] Jiingling et al. has extended this formalism to
active waveguide devices.[?”! Applying the imaginary-distance propagation technique,
Xu et al.[® obtained vector field modes and studied the effect of transverse grid sizes.
Since fine meshes tend to be computationally intensive, Yevick and Hermansson!?!
start with a coarse mesh. After few propagation steps, they refine the mesh in the
transverse direction.

But to our knowledge, other groups have not considered the effect of the step size
in the propagation direction. In chapter 2 we present a systematic study of all the
input parameters. We formulate the first and only analytic modell® that describes
how these input parameters affect the method’s stability and convergence. Using this
model, we present two parameter sets that minimizes computer time significantly.[?%]
The accuracy of this analytic model has been verified by many computer runs.]

Though imaginary distance beam propagation method is a useful technique for
calculating the fundamental mode, but sometimes information on higher order modes
is desired. For example, knowledge of the second lowest mode tells whether the

structure is single-moded or not. Yevick and Hermansson suggest the possibility of
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obtaining higher order modes by applying the Prony method?*?! but to our knowl-
edge, they have not presented a numerical implementation of the Prony technique.
Chapter 3 proposes and demonstrates another method — the power method — to

calculate higher order waveguide modes.[%3!]

1.3 Finite Difference Time Domain

The Finite Difference Time Domain (FDTD) method is a general method, because it

integrates Maxwell’s equations

0H

VxFE = [,L"E (12)
VxH = G%E. (1.3)

If the fields are invariant or constant in the z direction, these equations reduce to

0E, _ OH,

ay Mo

_om, _ 0B

or s ot

oH, _OH, _ _OF,
oz oy ot

for TE® fields and

oH, _ OF,

oy ot

_OH, _ 0k

r "ot

9E, 0E, _ OH,

8z Oy "

for TME fields. Note the duality between F and H and between € and p.

The finite difference method divides the computational domain into rectangular

5Here, TE implies that the electric field E, is normal to propagation direction
6Here, TM implies that the magnetic field H, is normal to propagation direction
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grids. For second order accuracy in the derivatives, E' and H fields are displaced by
half grid points in both space and time. This Lax-Windreff or Leapfrog geometry” has
been applied to Maxwell’s equations in 1966 by Yee.3¥ Given electric and magnetic
fields at an initial time, the FDTD program updates the fields, advancing the values
forward in time. This algorithm is very efficient as only three fields need to be stored.
It is also explicit in the sense that the latest time step depends only on previous time
steps (not itself), so it is well suited for parallel computers.®® But explicit schemes
tend to be unstable if the time steps are too large.® The maximum time step is limited

by the Courant-Friedrichs-Lewy (CFL) condition, %!

AT < 1/([v] JAz=2 + Ay=2 + Az~?) (1.4)

where [v] is the maximum phase velocity®

Although the FDTD method is accurate and general, it does have some limitations
or built-in approximations. For example, many try to model unbounded geometries
with a finite domain. The representation of these open boundary conditions tends to
be approximate.

The most widely method, the Ahsorbing Boundary Condition (ABC), permits
waves to leave the computational domain but “absorbs” the incoming waves. Math-
ematically, this can be represented by the one way wave equation. In operator form,

this equation is

n n? ., n cd,\’
'c-azg - C_26t 33; - zag 1- (E—E) = O (15)

where 0, = % is the derivative operator with respect to x, n is the index of refraction
and c is the speed of light in vacuum. This equation applies to fields hitting the

boundary z = constant. Generalizations to the y = constant and to three dimen-

"Books by Amesl32 and Press et al.!33] describe this geometry in more detail.

8 As a point of comparison, most BPM codes use the Crank-Nicholson scheme to advance forward
in z. This scheme is implicit permitting large Az steps, although at the expense of greater storage
requirements.

%In our case, |v| = c and Az = 0.
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sions are straight-forward. First order Taylor expansion of the square root!? leads to

Enquist and Majda’s second order ABC,%"]

n n? 1
—0u— 0] + 50, =0. (1.6)
If the propagation direction is normal to z, the above equation simplifies to the first
order ABC.

8, — 28, =0.
C

For vector FDTD, Murl®®l uses one of Maxwell’s curl equations u8,H, = —0,E, to

simplify (1.6) to

c’)Ez_EBEz_c_uaHz_O
o0r ¢ Ot 2n Oy

These waves incident on the ABC suffer from unwanted back reflections. These
reflections tend to be very low for waves near normal incidence but can be severe
for other angles. Higdon[®® have tried to tailor the ABC for other angles. Trefethen
and Halpern[*® and Blaschak!*!! have tried to expand the square root in (1.5) in
more accurate ways, using Padé, least squares, Chebyshev, and Newman points. In
this, Lindman!*d did some of the pioneering work. Expansion of that square root to
fifth order have been reported*® but these higher order schemes tend to suffer from
instabilities.* One popular scheme — Mei and Fang’s superabsorbing boundary
condition!*®) — improves the second order Mur ABC by canceling out a higher order
error term. Researchers have also applied the concept of one-way wave equations to
cylindrical and spherical coordinates.“47] Bringing the boundary condition right to
the scattering object has been called on-surface radiation condition (OSRC);!*8 this
OSRC is particularly popular in FEM.

Last year, Berenger!*®l introduced a new boundary condition, Perfectly Matched
Layers (PML). Compared to ABC and OSRC, PML reduces spurious reflections by
orders of magnitude. PML places a conductor at the border. But PML splits the

10Dy, Moore et al.l3% in (1.5) offers an intuitive explanation of this tricky derivation. They also
give a good review of ABC and OSRC literature.
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field components so that one component “sees” the conductor but another does not.
With this extra degree of freedom, it is possible 1) to match the impedance so waves
from all directions and frequencies do not reflect!! and 2) to have the fields decay
exponentially. The fields decay so sharply that the grid needs to be compressed in the
conductor. The details of this grid compression are described elsewhere.!**%! Where
the mesh is truncated, the fields can be set to zerol*! or be terminated by ABC.[5% %]

If the fields are set to zero as in a perfect electric conductor, the theoretical reflection

equals the field value at this perfect conductor.

R(6) = exp (-

where 6 is the angle of incidence, opay is the maximum conductivity or the conduc-
tivity at the edge, € is the electric permittivity, § is the thickness of the conductor, n
is order of the polynomial which describes the conductivity’s spatial profile, and c is
the speed of light. In practice, the actual reflectivity is greater than this theoretical
value. The approximations in how the fields and conductivities are differenced in this
absorbing layer lead to mismatched impedances, causing additional reflections. The
conductivity is gently increased from zero near the solution domain to oma near the

mesh edge. Using Berenger’s notation,*% the conductivity ¢ can be expressed as

0(p) = Omax (g)" )

where the distance p into the conductor varies from 0 at the edge of the solution
domain to § next to the perfectly conducting outer boundary. Following Berenger’s
lead, most have used quadratic (n = 2) gradations. Taflove’s® and ourl®® group have
independently shown that quatric (n = 4) gradations suffer from even less reflections
(see chapter 7). Berenger’s formalism has since been expanded from 2D to 3D, 56]
from free space to dielectric,®”) from Cartesian to curved coordinates,® from vector

to parallel computers,® from time to frequency domain,’%>%% from finite difference

11However, De Moerloose and Stuchly!5% show that evanescent waves experience a spurious phase
shift.
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to finite element,® and from FDTD to TLM (transfer matrices).]

If one desires more information on FDTD, let me suggest some references. Three
reviews summarizing the “state of the art” (as of 1995) stand out with its many
references, 62 its broad expanse, %) and its authoritative nature.® Prof. J. A. Kong’s
Progress in Electromagnetic Research (PIER) series!® is also excellent. For something
of a more tutorial nature, I suggest books by Kunz and Luebbers!®3 and Taflove.¢!
To get started, one can purchase FDTD codes with ABC boundaries form Lawrence
Livermore National Lab (3D), Prof. Luebbbers, Prof. Taflove, Prof. Kong (2D),
and Ansoft. These have varying sophistication in user interface. But there are no
“commercial” codss available with the new PML boundaries.

For this thesis, I have worked on two FDTD programs — one scalar-like FDTD
with ABC boundaries and one vector FDTD with PML boundaries. Josh Winn and
I have developed the scalar-like FDTD (see chapter 5) code. This approach does
not suffer from the additional complexity associated with staggered grids. Memory-
wise, it is a bit more efficient since only one dielectric grid needs to be stored. Some
have tried hybrid models using both scalar and vector FDTD.[5] To our knowledge,
wel68.69] are the first to apply this scalar-like FDTD method to solve optical problems.
In particular, we have developed a novel way to measure transmission and reflection(®?)
(chapter 5). We have also ported this code to a massively parallel computer.l* And
we have done the first detailed study of this code (chapter 6), comparing the parallel
machine with a Cray computer. Unfortunately, the new PML boundary condition
has not been yet adapted for scalar-like FDTD, so the simulations in chapters 5 and
6 use the standard ABC approach.

The other FDTD program is a vector implementation, coupled with our new
quatric PML boundaries. Kevin Li wrote parts of this code. The benefits of this
novel boundary condition®® are described in chapter 7. Chapter 8 apply this new
boundary condition to air bridge structures.*-" Our group is the first to apply
FDTD methods to these photonic band gap materials.[%% 7%

FDTD codes can calculate scattering, transmission, reflections, voltages, currents

and impedances. These codes find diverse uses — modelling radar crossections, an-
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tennas, electromagnetic compatibility, waveguides, etc. We apply FDTD to optical

gratings and to photonic band gap materials.

1.4 Photonic band gaps

Index gratings such as hi-reflection (HR) coatings on optical lens, gratings in optical
fibers, and distributed feedback (DFB) structures in semiconductors are commonly
used to reflect light in a narrow frequency band. These wavelength specific mirrors are
formed by alternating low and high index dielectric layers. Whenever light encounters
a change in refractive index (or dielectric constant), some light is transmitted while
the rest is reflected. In these gratings, the periods of index modulations are set!?
such that reflections from consecutive periods add in phase. This produces a strong
overall reflection in a narrow frequency range, called the “stop band.” And when light
whose frequencies are in the stop band is incident on this grating, the transmitted
light decays exponentially. Propagation is not permitted. These periodic structures
can be modified so that one frequency within the stop band is transmitted (or anti-
reflected). The introduction of a m/2 or A\/4 phase shift splits the grating in two
so that the reflections from these two halves interfere destructively at that “one”
frequency, producing a narrow transmission resonance.

A generalization of DFB gratings, photonic band gap (PBG) materials, can reflect
light in more than one spatial dimension. A material is known to have a “complete”
gap for a particular frequency if it refiects that frequency independent of its incoming
angle (or propagation direction). Such materials tend to have periodicity as viewed
from many directions. And typically, along a given direction or line, the index cor-
rugations tend to be high, so a wide range of frequencies propagating in that given
direction are reflected. In a photonic crystal, these frequency ranges, associated with
each and every direction, overlap intersecting in a much smaller frequency band, called
“complete” band gap. Other intuitive views of photonic band gaps compares them

to energy band gaps in atomic crystals. Why much of the earlier studies of photonic

2¢6 roughly half the wavelength
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crystals borrowed computer codes, concepts (like Bloch waves and Floquet modes),
and notation (from group theory) from solid state physicists! Prof. Joannopoulos et
al.’s book!™ expounds on this analogy.

Just in this decade, a complete, 3D photonic band gap — that reflects light from
all directions in three dimensional space — has been demonstrated experimentally.[")

These photonic crystals have been studied theoretically. The wave vector equation

can be expressed as

V x (Lv X H(r)) = (3)2H(r), (1.7)

e(r) c

where H is the magnetic field, € is the electric permittivity, and r is the position
vector. This linear eigenvalue equation can be cast as matrix form, by using a plane
wave basis. The eigenvalues and eigenvectors of this matrix can lead to propagation
constants w/c and magnetic eigenmodes. This was first done for scalar waves(7677]
and then for the more accurate vector equations.[® Recently, the M.LT. group has
improved the computational efficiency of these matrix operations.[™ Unfortunately,
the plane wave method is not exact; its accuracy is limited. Truncating the basis set
to a finite size makes it hard to model discontinuities in the permittivity.[®” This has
prompted the investigation of other basis sets such as Hermite Gaussians.[8%81]

Recently, the transfer matrix(®? method has gained much popularity. The transfer
matrix relates the transverse fields (z and y only), both electric and magnetic, of one
unit cell to another. Bloch’s theorem says that these fields differ only in phase o
this transfer matrix is unitary. From the eigenvalues, one can extract the propagation
constant k. This matrix can also be used to calculate the transmicsivn and reflection
at one frequency. The matrix can solve arbitrary geometries, including those with
complex permittivities. The transfer matrix is a powerful and versatile method.
Further details are described in Dr. Pendry’s review.®?

Less popular (but also powerful) methods are time dependent beam propagation
method,®! Green’s function (or KKR),®*#] and finite difference time domain. 59]

In later chapters, this thesis will describe the FDTD method in more detail.
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Early theoretical investigations explored various crystal structures in search of a
3D photonic band gap. The face centered cubic (FCC) crystall®”-#8 received much
early attention because of its spherical-like symmetry. But researchers found “com-
plete” gaps first in diamond lattices(®) then in face centered cubic (FCC)!™ and simple
cubic (SC)! crystals. Photonic band gaps also existed for 2D structures with arrays
of cylinders,®:%2 triangles (or hexagons),*®94] and rectangles.9%:93 Experimental ver-
ification has been performed at microwave frequencies.(88:9%:75:96,97] Ag people realized
the difficulty of fabricating such structures, work shifted to structures that can be
more easily constructed®®7%:%9] and more resistant to fabrication-related disorder.(1%!
Recently, some preliminary realization of near-optical photonic crystals have been
reported, using GaAs/AlGaAs cylinders,['®] GaAs honeycombs,1%?] GaAs/AlGaAs
honeycombs, 193 fused fiber cores,!'® etched silicon,!%% and GaAs Yablonov:e.[106]

If the periodicity is broken at one point, a transmission resonance is introduced
witkin the band gap (or stop band). This “defect” resembles a grating’s quarter-wave
(A\/4) phase slip or a crystal’s donor and acceptor modes.'%”) Their transmission prop-
erties are described later in this thesis (chapter 8). Since the fields are localized or
trapped by the grating or photonic band gap, the “defect” also resembles a high
Q rescnator.['® John proposesi”) and reviews!!%®! this localization phenomenon. Re-
cently, Ozbay et al.1'% found that photonic band gap resonators can confine light very
efficiently — without much loss; Q’s of 2000 have been measured. Because photonic
crystals suppress those frequencies in the “stop band”, Yablonovitch points out that
these crystals can suppress spontaneous emission into those frequencies.['!!] This has
been observed experimentally by Martorell et al.''¥ Also, radiative dipole—dipole
interactions also have been suppressed.!!3] The spontaneous emission properties can
also be modified by the defect(''!] and at the band edge.(!!%116] Besides interesting
quantum electrodynamics, these microcavities may form the basis of low threshold
lasers, because their small size or high localization limits the number of carriers to
be pumped and because their suppression of spontaneous emission limits the number
of lasing modes. The use of such low threshold lasers have been proposed for squeez-

ing experiments.l''”) The suppression of radiation leads to more efficient antennac
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substrates.['!8) The suppression of this radiation can also help confine light along a
particular path or in a waveguide. For example, light can travel in air surrounded
by photonic crystals.[''®74] This is conceptually similar to the one dimensional con-
finement by Bragy stacks!!2) and ARROW waveguides,’?!] but photonic crystals arc
more general, also suppressing losses in micro-bends, Y-branches and S-bends.!!??]

Our work on optical filters is built on the novel air bridge geometry,6%108] first
suggested by Prof. Joannopoulos. This air bridge acts as a high Q, micro cavity
resonator!!®® and as a narrow pass band filter.[?%72 Such a filter might find uses in
wavelength division multiplexing (WDM) systems as a channel dropping filter,!!?’
where it would be able to distinguish between closely spaced frequency channels. Jay
Damask[!24128] has done excellent research on these filters. Our work is different in
that we use the high index contrasts of photonic band gap materials. As a result,
we are forced to consider their radiation properties, using such rigorous numerical
schemes as scalar-like and vector finite difference time domain. Our devices exhibit
wide stop bands. And their short lengths allow them to be cascaded; many filters can
fit within the stopband. Such devices would be able to select one narrow frequency
from a data bus containing many frequency channels. Such frequency filtering would
be useful in high bandwidth telecommunication systems. Our theoretical models
and designs are being fabricated by Prof. Kolodziejski’s group (thanks to Ed and
Gale)[12%:1%8] and measured by Prof. Ippen’s group (thanks to Costas, Dave, and
Seigfried).

Photonic band gaps is a growing and expanding field. For more details on the

experimental and theoretical work, consult the recent reviews;[4 11130 they are com-

prehensive and well-written.

1.5 Overview of thesis

The preceding sections of this chapter give an overview of beam propagation method
and the finite difference time domain method. It also reviews prior photonic band

gap research.
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The next few chapters describes the imaginary distance beam propagation method
— a way to calculate waveguide eigenmodes. In particular, chaprer 2 describes a new
analytical formalism that incorporates the salient features of this method. Using
this formalism, we can optimize the calculations of eigenmodes. Chapter 3 extends
this technique to the computation of higher order modes. Chapter 4 shows how this
method can be applied to determine bending losses.

The next group of chapters deals with the finite difference time domain method
and its applications to photonic band gap materials. In particular, chapter 5 describes
how a scalar-like finite difference time domain program: can analyze both the resonator
and transmission characteristics. It also presents a new way to separate reflected and
transmitted light. How well this program ports to a massively parallel supercomputer
is described in chapter 6. Comparisons with single processor machines are also pre-
sented. Chapter 7 discusses the standard FDTD method and details our improvement
to the Perfectly Matched Layer boundary condition. And chapter 8 presents two air
bridge designs — one with very wide stop bands and one with narrow transmission
resonances.

Chapter 9 summaries and concludes. Appendix A lists my publications. Appen-
dices B and C teach how to use the beam propagation and the finite difference time

domain programs.
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Chapter 2

Imaginary Distance Beam

Propagation Method

Summary:

Recently, it has been shown that if the paraxial wave equation is modified such that
fields travel imaginary distances, the field resulting from an imaginary-distance prop-
agation is the fundamental mode of an optical waveguide. For the finite difference
beam propagation method, we derive the factor by which each eigenmode is amplified
during one propagation step. This amplification factor places limits on the inputs -—
step size, input field, effective index guess, and implicitness parameter —— and gives
clues on how to optimize the inputs. In particular, we will identify and study two
optimal sets of inputs, which can reduce computational time significantly. We can
obtain the fundamental mode and its propagation constant within a few propagation

steps.!

1Most of this chapter has been published in JEEE J. Quantum Electronics.[°)
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2.1 Introduction

Transverse modes of optical waveguides can be calculated by a variety of methods,'3!]

which in general can be divided into two categories — analytic and numerical. Two
popular analytic techniques, the effective index!'¥? and weighted index(!* methods,
can give the mode distributions and propagation constants of scalar waves by assum-
ing the fields have sinusoidal and/or exponential form. Variational methods assume
more complicated trial functions.['3%13] Often these analytic methods are very offi-
cient, leading to quick and intuitive results. For more complicated structures, one
turns to numerical approaches such as the spectral index method,'3® which relies
on Fourier decompositions, and the beam propagation method (BPM), which sclves
the paraxial wave equation by Fast Fourier Transform (FFT),[! finite difference,!?
and finite element!!3”) techniques. Normally, BPM has been applied to calculate the
propagation of light in 2D and 3D waveguides of arbitrary indices. But BPM can
also be used to get the eigenmodes of a structure. For example, if at every BPM step,
one calculates the overlap integral of the just-obtained field E(z,y, z) with the initial
field E(z,y,0), the peaks of the Fourier transform lie at the propagation constants of
the transverse modes.!'8 If one repropagates and beats with a propagation constant,
one can extract the field distribution corresponding to that propagation constant./'9
If the BPM is implemented with finite difference or finite element, the eigenvalues
and eigenvectors of the matrix, resulting from the discretization of the paraxial wave
equation, are the propagation constants and eigenmodes of the waveguide. This linear
system has been solved with the shifted inverse power method.[4 2

Recently, Yevick and Hermansson(?3 showed that propagation along the imaginary
axis can give the fundamental mode and its effective index quite efliciently. This
method applies not only to finite difference and finite element BPM but also to FFT
BPM. The fundamental mode has the largest propagation constant so sees the most
rapid oscillations in phase when traveling down the real axis. Propagation down the
imaginary axis changes these sinusoidal variations in phase into exponential growths

in amplitude. A sufficiently long imaginary propagation gives the fundamental mode
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— the mode with the most growth. For a thorough review, see page 20 of the
introduction.

Much of the previous work on imaginary distance beam propagation has been
done with the finite difference method, which divides the solution domain into a mesh.
Since fine meshes tend to be computationally intensive, Yevick and Hermansson!?*l
start with a coarse mesh. After few propagation steps, they refine the mesh in the
traasverse direction. However, we save computer time by noting that we can use
a very large step size in the propagation direction. In the case of the propagation
along the real axis, the maximum step size has to be chosen so that the interference or
beating between modes can be resolved. Resolving the relative phases between modes
limits the step size to an order of a wavelength. Imaginary propagation transforms
these sinusoidal phase changes to exponential amplitude changes. The step size can
be enlarged since this growth can be linearized over much larger distance. But, what
are the limits to the propagation step size? And should the scheme be explicit or
implicit? How does the input field affect the computation time? We will address
these issues with analytical expressions and numerical results.

First we will describe how imaginary propagation modifies the paraxial wave equa-
tion and its solutions. Next, we show that the finite difference beam propagation
method gives a slightly different solution. For large propagation step sizes, the dis-
crepancy between the two schemes plays a big role. In the theory section, we will
derive the gain or amplification that a given mode experiences each propagation step.
From this amplification factor, we see that the ability to converge to the fundamental
mode is determined by the size of the propagation step, the implicitness of the matrix
solution, the guess for the propagation constant, and the nature of the initial field.
In the discussion and results sections we will describe analytically and demonstrate
numerically how these inputs can be optimized for fast convergence. Finally, we will

derive and study two sets of inputs that give optimal convergence.
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2.2 Theory

First we will review how imaginary propagation can give the fundamental mode of
the paraxial wave equation. The paraxial wave equation comes from substituting the
field E(z,y, z)e~7*™* into the Helmholtz or wave equation. BPM solves the paraxial

wave equation

2E 2
0 _ 9 b +k° [n(x, y,2)% — n%] E,

2]kn05 = —6-22_2 + ay2

where E(z,y, z) is the envelope of field distribution, z is the propagation direction,
z and y are the transverse dimensions, k is the free space wave vector, and ng is
the effective index. Note that kny equals k, — the z component of the envelope’s
propagation constant. If we propagate along the imaginary axis jz, the paraxial wave

equation becomes

% - ¢k, (2.1)
4
where
s_ L (&8 & 2 2
G= g ( 5+ + k% [n(z,y)* - nd] ) . (2.2)

We seek the eigenmodes of waveguides but we must start with a guess for the

eigenmode. In general, the input field is a superposition of the eigenmodes,

E(IB, v, 0) = Z c(i)E(i)(xa y)7

1=1

where E(®)(z,y) is the field distribution of the ith lowest order eigenmode and c()
indicates the amount of the ith eigenmodz in the input field. After a distance z, each

mode sees some gain.

E(z,y,2) = Y D ED(z,)e", (2.3)

i=1

where G is the gain of the ith mode. Since E®) is an eigenmode, its gain can be
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expressed as ‘
k (n8))2 — nZ

eig

@) - Zlegl 0 .
Gv == , (2.4)

Mo
where ng,)g is the ith mode’s effective index. The fundamental mode E(") has the
largest nﬁ,}, so sees the most gain G™M. Thus, the field resulting from a sufficient
long propagation is essentially the fundamental mode; the higher order modes are

negligibly small in comparison.
; — gD Gz
zl_l_’n&)E(.’B, Y, Z) =cC E (xa y)e .

Given lim, o E(z, v, 2), nf;; can be evaluated in two ways. If ng = ne,g, the growth

rate of E gives!?®]

k S!), = kno+ lim In[f E(z,y,z + AZ)da:;i;qz] — In[f E(z,y, z)dxdy].

nt)

For arbitrary ng, n;, can be obtained from the integral(!3%]

i l) @
(kY2 [{k*n?(z,y)|[EO]? — |22 |2 - | 222 ydzdy

etg) = f |E(‘)|2d.1:dy (2.5)

Values of this integral converge (dnfn)g /dz ~ 0) with further propagation, as the field
E(z,vy, z) approaches the fundamental eigenmode. Since we are only interested in the
fundamental mode, we only need to know the steady state or asymptotic solution.
The intermediate or transient solutions do not matter. Therefore, one should skip
over the intermediate solutions, taking the largest step size Az possible. The step
sizes are affected by stability. Will the electric field reach the eigenmode? The step
sizes are also limited by convergence. Does a coarse discretization in z (such as (2.6))
adequately represent the differential equation (such as (2.1))?

To address these issues, we will examine the discrepancy between the difference
and differential equations. Applying finite differencel!®® to (2.1) gives

By~ B

AT = 0GEpiy + (1 — a)GE,, (2.6)
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where F, represents the field at z = nAz. The parameter o sets the degree of
implicitness. If a = 0, the scheme is fully explicit forward Euler. Setting o = 1
corresponds to a fully implicit, backward Euler solution. The Crank-Nicholson case

(a = 1/2) is an average of these two schemes. Solving for E"*! yields

B, = (1 +(1- ix)GAz) E.
1-aGAz

As in the case of the differential equation solution, we can decompose the field into
a sum of eigenmodes. The ith eigenmede E%(z,y) is amplified at each propagation

step by a multiplication factor

1+ (1-a)GWAz

AW = X 2.7
1 - aGOAz 27)
As a result, the field at z = nAz can be written as
w . I3 .
E, =Y WE®D(z,y)(AD)", (2.8)

=1

For a = 1/2, we plot on a logarithmic scale the absolute value of the amplification
|A®)| versus GD Az (figure 2-1). On the same figure we superimpose the equivalent
“amplification factor” of the differential equation and mark the G Az values of a

few modes. The difference between (2.8) and (2.3) yields the global truncation error
o () pli iNz/Az _ G0z
S CWED (g, y) [(AD)/4% - £694].
i=1

Note that as Az approaches 0, the truncation error approaches 0. We neglect the
discretization error in x and y since Ax and Ay are small. In contrast, the discretiza-
tion in z affects the rate of convergence strongly. In the next section we will show
how various parameters affect the number of propagation steps needed to obtain the

fundamental mode E()(z, y).
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Figure 2-1: The absolute value of amplification factor |A®| when o = 1/2 is graphed
versus GO Az for a few representative eigenmodes. For comparison, the graph also
includes the equivalent amplification when the paraxial wave equation is not differ-
enced.

2.3 Discussion

The result of a long imaginary propagation is the eigenmode with the largest absolute
value of the amplification factor. The sign of the amplification factor does not affect
the simulation in the sense that the mode can be normalized and that the effective
index calculation does not depend on the sign of field. So, to obtain the fundamental
mode, we require that |[A(] > |A®)| for 1 > 2. If the absolute value of the amplifica-
tion factor |A®| for a mode 1 is just a little smaller than [A()], then the fundamental
mode can still be obtained but a very long propagation is needed before the ith mode
becomes negligible. On the other hand, if the second largest amplification magnitude
is much smaller than |A®|, EM(z,y) can be obtained quickly. The rate of conver-
gence is proportional to [A1) JAD)|, where |AY)| is second largest amplification factor
magnitude. Normally, the amplification factor does not change rapidly with n.;; so

the second lowest order mode has the second largest amplification factor (j = 2).
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Then the rate of convergence varies with

AW |AW]
| = BAD] 4G . (1 2
A( ) IA(I)I - 8G () dGZ i ( glg gt_l)]) +

dln IA(ll netg( (l) (2)

= l + BG(I) etg elg) +

o)
(1 n_; . 1), . . .
using ——-)-dG(l = k—* and Taylor expansions. So, l—ﬁml increases linearly with the slope

dln |A<1>e|7an§3.

When maximizing the rate of convergence or |A()/A?)|, we can vary any of the
four inputs: the initial field E(z,y,0), the scheme parameter «, the effective index
guess ng, and the propagation step size Az. In the each of the following paragraphs, we

will explain how each parameter affects the possibility of and the rate of convergence.

e The input field E(z,y,0) is a superposition of the waveguide eigenmodes. A
necessary condition for obtaining the ith mode is that the input field contains
that eigenmode (c® # 0). For example, if the substrate were symmetric, an
asymmetric E{z,y,0) does not contain the symmetric mode E(!)(2,y) so the
fundamental mode cannot be obtained. But an asymmetric input can lead to
the second lowest order mode E®(z,y). And if the initial field is very close to
the fundamental mode (that is, c!) is large), then only a small number of steps

are needed before the other modes are small relative to the fundamental.

e The implicitness parameter a can be set to any value between 0 and 1.
Recall that oo = 0 denotes a fully explicit solution and that a = 1 specifies a
fully implicit scheme. Figure 2-2 plots the logarithm of amplification magnitude
|A®)| versus G® Az for various o’s. The poles and zeros are at Gpo,e =1/(aAz)

and G()

zZero

= —1/[(1 — a)Az] respectively. Ideally, one should vary the other
three parameters so the fundamental mode is at the pole — the region of highest

slope. In practice, one should avoid the the pole. At the pole (2.6) reduces to
0=0-Enp = [L+ (1 - 0)GAz| E,.
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Figure 2-2: The logarithm of the amplification magnitude |A®)| versus G®Az for
various a/’s.
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Note that E;, is undetermined; it is impossible to get a meaningful solution.
However, one is guaranteed a meaningful solution if all the modes of the input
field lie between the zero and the pole or in the area where 8|A®|/0G® is
positive. This scenario is easily achieved when o = 1 since separation between
the zero and the pole is infinite. When a # 1, modes with large negative GAz
can be situated to the left of the zero. As a result, those modes can have an
amplification magnitude that exceeds the fundamental’s. If Az is arbitrarily
large, we can derive a minimum « to insure that the fundamental mode has the

largest amplification.

-1 11—«
AW A(°°)=a = . 2.
AD] > |4 = |22 = = (29)

The user also has the freedom to vary the effective index ny, shifting and
stretching the eigenvalue distribution G). Equation (2.4) defines the relation-
ship between G and ng. For example, by setting ng to the index of the core
(or cladding), one can set all the G®’s to be negative (or positive). For negative
G Az, convergence is guaranteed when a = 1. If G(!) is positive, one can also
set 7o so the fundamental mode sees the highest gain. One tries to place the
fundamental mode on the left side of the pole. If the fundamental GMWAz is
on the right hand side, a higher order mode may have a higher amplification
magnitude and become the dominant mode. At the beginning of the simula-
tion, the actual value of nf,:; is not known; there is large uncertainty in G, To
minimize the uncertainty in G Az, one should chose a small Az to minimize

the possibility of hitting the pole.

One can also vary the propagation step size Az. The distribution of eigen-
modes in figure 2-1 spreads out with large Az. So, for a given |A®)| versus
G% Az relationship, larger Az’s mean larger gain differences or faster conver-
gence. Unfortunately, one cannot increase Az without limit. First of all, for
explicit solution (a = 0) of the matrix equation (2.6), Az is limited by the

Courant-Friedrichs-Lewy condition.®¥ Second of all, if G > 0, then the ne-
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cessity of avoiding the pole limits Az to 1/ (aé’(l)). Lastly, the gain of the very
high order modes must be smaller than that of the fundamental for conver-
gence. This requirement — jA()| > |A(®)| — leads to a restriction on Az that

is particularly severe for those schemes with small a.

Now understanding how these inputs — the initial field E(z,y,0), the scheme
parameter a, the effective index guess ng, and the propagation step Az — affect
convergence, we try to minimize computation time. We have identified two distinct
regions where the slope d1n|A(M)| /Bne,g is large. In such situations the fundamental

mode can be obtained very quickly.

dln]A®| _ nl}) kA2
onll) ng (1 +(1- a)é(l)Az) (1 - aé(l)Az)

(2.10)

To maximize the slope in (2.10), we will examine two cases: G®) < 0 and G > 0.

optimal set #1: If G® < 0 or ny > ne,g, the slope is infinite when 1 + (1 —
a)GWAz = 0. But in this case, GO) is very close to G8),,, where A® = 0.
So, the gain of the higher order modes (such as G)) may exceed the gain
of the fundamental mode. When |AM| < |A(®)|, it is impossible to get the
fundamental mode. To avoid the problems associated with the zeroes, we set
a = 1. Then the slope is maximized when Az — co. From (2.10), we obtain
LOmlAOY k oal)  on)
200 gp) G ny n2 — (n (1))2

eig  |a=1 Teig

So, if @ =1 and Az — o0, any ngy that exceeds nﬁ,}, is acceptable. But if ng is

closer to ng_,);, convergence is faster. If ne,g is not knowr, we set ng to the index
of the core. Any input field is acceptable. Convergence is not only guaranteed
but also very efficient. In summary, optimal set #1 is {a = 1, ny > ngs), (eg.,

Ty = Neore), Az — 00}.

optimal set #2: In the second scenario, GM > 0. The slope is maximum when the
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denominator is zero. That implies that 1 — aGWAz=0or

k (nt(:’zg])z "0

5t A (2.11)

Here many sets of a, ng, Az are possible. Unfortunately, the values of these

() which is the result or goal of the simulation. Fortunately,

sets depend on n,,

. (1) . .
before the simulation starts, one usually can guess n_;, to a tolerable precision

An (1)

Neig- But to minimize the effect of given uncertainty An,(;; (2.11), we try

to maximize the difference ( ,(5,3) — n2; the uncertainty is a smaller percentage
if the difference were larger. A large difference (ne,g) — n2 implies a small Az
and a small @. The optimal set #2 is {small a, any 7o, small Az} that satisfies

equation (2.11).

In practice, set #1 is easier to implement but if ngg is known to be in a small range,

set #2 may converge faster.

2.4 Results

To validate the theory, we consider a standard ridge-waveguide structure (figure 2-
3), which has been defined by the COST-Working group L["!) The computational
area of 17.1um in z (horizontal) and 3.5um in y (vertical) direction is divided into
a 172 by 71 grid. For the input field E;(z,y,0) we chose a gaussian pulse of the

—(E5 U5 with wr = 1.6pum and wy = 0.4um and with the center (zc, yc)

form e
at (8.5um,1.85um) from the lower left corner. We solve the linear equation (2.6)
in double precision, using ORTHOMIN,!'"] a generalization of the preconditioned
conjugate gradient algorithm.

In these simulations we employed Hadley’s(® transparent boundary condition
(TBC). Since this boundary condition does not require the field to be zero at the
borders but permits nonzero fields, much smaller computational grids can be used.”]

The consequent decrease in computational effort has led to the widespread popularity

of TBC. However, TBC does assume the field at a given border point can be repre-
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Figure 2-3: Ridge waveguide. H1 = 1.1775 ym, H2 = 0.4 pm, H3 = 0.2 pm, H4 =
1.7225 pm, W = 2.4 pm, X1 = 7.35 pm, X2 = 7.35 um.

sented by a single, outgoing plane wave that leaves the computational window. When
a pulse is composed of many wave vectors, this approximation can lead to instabilities
associated with evaluating the wave vector k inaccurately.®) Hoekstra et al.l'¥ have
observed that these instabilities can lead to artificial gain at the borders. We find that

sometimes the instabilities at the borders grow quite quickly, destroying the field pro-
(1)

eig Value that converges. Usually, the

file. As a result, we cannot obtain a field or a n.
TBC is fairly stable.’! And when instabilities do occur, they might be suppressed.
For example, the noise on the borders may belong to higher order modes that see
little gain. Or when E, k;, and k, at the borders are small, errors in calculating
them do not make much of a difference. But a thorough, theoretical understanding
of how TBC affects convergence is beyond the scope of this thesis; this theory does
not include the effect of boundary conditions.

We vary o from 0 to 1 in increments of 0.05. The propagation step sizes Az are

0.1, 0.14, 0.2, 0.3, 0.5, 0.7, 1.0, 1.4, ..., 100 pm. For ny we take two initial guesses:

ng = 3.1 where G > 0 and ny = 3.3 where G) < 0. For each @, ny and Az, we
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n=1.00

n=3.17

n=3.38

n=3.17

Figure 2-4: The amplitude of the fundamental eigenmode E()(z, y) is superimposed
on the outline of the ridge waveguide. This is obtained in only 10 steps!

compute 50 propagation steps?, using equation (2.6). After each propagation step,

(1)

the value n,;, is calculated using the integral (2.5). M is defined as the number of

propagation steps at which the calculated n!) is 3.2035 or within 0.01% of the actual

eig
(1)

value. The actual n,;g is 3.2038. This value compares favorably with the COST value

of 3.2019. The fundamental eigenmode is shown in figure 2-4.

M

In figures 2-5 and 2-6 the number of propagation steps M (a, Az) before n,,, is
within 0.01% of the actual value is plotted for ng = 3.1 and ny = 3.3 as a function
of both & and step size Az. No data is shown if ngl; does not converge within
50 steps. The absence of data does not necessarily imply that the field will never
converge; perhaps the fundamental mode will be dominant hundreds of steps later.

When ng = 3.1, GMAz is positive. Therefore, figure 2-5 is related to the upper half

2The CPU-time for 50 propagation steps on a IBM RS6000 model 320H is 263 seconds and on a
IBM ES9000-900 mainframe with vector hardware 66.6 seconds.
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CONVERGENCE FOR n0=3.1
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Figure 2-5: For ny = 3.1, the number steps needed for convergence as a function of
« and the step size Az. The shaded blocks show the results of numerical simulations
while the line represents analytic predictions of the boundary dividing converging and
nonconverging regions.
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CONVERGENCE FOR n0=3.3
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Figure 2-6: For ny = 3.3, the number steps needed for convergence as a function of
o and the step size Az. The shaded blocks show the results of numerical simulations
while analytic predictions produce the line that divides converging and nonconve;ging
regions.
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of figure 2-2, which plots |A®(a, GPAz)|. Similarly, no = 3.3 leads to a negative
GWAz. So, figure 2-6 corresponds to the lower half of figure 2-2. Figures 2-5 and 2-6
show that the rate of convergence can vary by factors of 20, just by changing o and
Az. Clearly, a judicious choice of inputs is important to save computational time.

The lines in figures 2-5 and 2-6 separate the regions of convergence and no conver-
gence, as predicted by the amplification factor theory. The theory says that conver-
gence from arbitrary input fields E(z,y,0) requires that the gain of the fundamental
mode |AY)| exceed the gain of the other modes. This necessitates that G < G”f,?,e
so |[AM] > |A®)| and that [AV]| > =2 50 |. | > |A(®)|. The first requirement is
reflected in the top line in figure 2-5. Specifically, that line is a graph of equation
(2.11), marking the location of the poles where A()) = co. The second requirement
creates the bottom line in figure 2-5 and the only line in figure 2-6. There (2.9)
becomes an equality. Occasionally, convergence occurs when the gain of the funda-
mental is less than the gain of the highest modes or when |A()| < |A(®)|. Figures
2-5 and 2-6 show a few of these instances. There the input field E(z, y, 0) is close to
the fundamental mode E()(z,y) so the higher mode components are small initially
and do not grow to the size of the fundamental. If we had propagated more than
50 steps, these higher order modes would have dominated. In a few other instances,
the fields failed to converge to the fundamental, contrary to theoretical predictions.
We attribute such cases to the instabilities associated with the transparent boundary
condition. Other boundary conditions, if they introduce less instabilities, may be
more accurately predicted by our analytic theory. For example, we have tried setting
the field to zero (E = 0) and the normal derivative to zero (O0F/0n = 0). These two
boundary conditions seem to be more stable. Although boundary conditions were
not taken into account in the amplification factor theory, this compact, analytic the-
ory stipulates necessary requirements for convergence. These requirements give very
reasonable, quantitative predictions of the regions of convergence.

The contour plots of |A® (e, G¥) Az)| in figure 2-2 show odd symmetry with respect
to G®Az and a—0.5. So, one naturally wonders why figures 2-5 aud 2-6 do not evince

this symmetry. For example, why aren’t the areas of convergence the same? In fact,
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fractional error

0 20 40 60 80 100
number iterations

Figure 2-7: At each iteration, the effective index ng_,), as calculated in three simula-
tions: set 1) @ = 1, ng = 3.3, Az = 10"%um, M = 5; set 2) a = 0.25, ny = 1.0,
Az =0.2um, M = 4; set 3) o = 0.5, ng = 3.275, Az = 0.1um, M = 88.

it seems that the choice of a ny > ng?q, permits a larger area of “fast” convergence.
There are several explanations. First of all, though figure 2-2 exhibits symmetry
about o — 0.5, explicit and implicit solutions are very different, numerically speaking.
Fully explicit solutions (@ = 0) are limited to very small step sizes while implicit
schemes (a@ = 1) are not. Furthermore, the distribution of the eigenvalues GWs is
not symmetric about 0. The presence of higher order modes means more negative
G%’s than positive ones.

In figures 2-5 and 2-6 we note two regions of extremely fast convergence. These two

regions or “optimal sets” were predicted in the previous section. They correspond
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to the very high slopes that were described in (2.10). The first set — o = 1 and
Az — oo — is indicated in figure 2-6. The second region, which in figure 2-5 is
shaped like a hyperbola (¢Az = constant), is described by (2.11). In this region
GMWAz is close to the pole depicted in figure 2-1 (G ~ (Gﬁ?,e)_). If either o or
Az is changed slightly, the mode might find itself to the right of the pole, where
the slope is negative. There convergence is not guaranteed. This explains why the
“fast” and “no” convergence regions are so close to each other. In figure 2-7 we show
that these two optimal sets can give estimates for the effective index ng; and the
eigenmode within 0.01% accuracy within 5 propagation steps. This is over 15 times
faster than the standard Crank-Nicholson method. Here the starting field is the same
gaussian used for figures 2-5 and 2-6. For the first set, we used a = 1, no = 3.30,
and Az = 1000um. Figure 2-4 shows the fundamental mode, which was obtained
after only 10 propagation steps. In the second case, we use ng = 1.0, Az = 0.2um
and a = 0.25. This corresponds to GMAz = 3.76 and Gl(,’;,),eAz = 4.0. The standard
Crank-Nicholson case was @ = 0.5, ng = &162-3._1_1 and Az = 0.1pm. Using an optimal
set of inputs makes a very big difference.

Optimal set #1 gives very fast convergence. Set #1 has the added bonus that it
is very easy to implement since it does not require a precise knowledge of nf;}, As an
aid to those who will optimize their calculations using set #1, we graph in figure 2-8
the effective index nf;}, at each propagation step for various step sizes Az. This grapn
shows that convergence increases dramatically with increasing step size. But after
a while, the increases start co level off. Very large step sizes may lead to underflow
errors. For example, to resolve between two transverse field values, the decrease in
the square of the field after one step — €262z where G) < 0 — must exceed the
computer’s minimum floating point number. This field must be normalized before it
gets too small. In other words, the large amplitude changes, associated with large
propagation steps, necessitate that we normalize the field every few steps. But large
step sizes tend to give very fast convergence.

Hopefully, figures 2-5 and 2-6 will serve as a guide as to how the convergence

depends on the inputs and to which sets of inputs give the fundamental quickly. In
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Figure 2-8: The calculated value of effective index ngg at each iteration for a = 1,

no = 3.3 and Az = 0.01,0.1,1, 10, 100, 10"%um.
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other words, they give a glimpse of how the inputs determine the rate of convergence.
Figures 2-7 and 2-8 show how optimal sets #1 and #2 give very fast convergence. We
have also shown that the effect of these inputs matches the theoretical predictions,

which stem from knowing the amplification magnitude.

2.5 Conclusion

For finite difference beam propagation method (FD-BPM), we have presented some
of the theoretical framework desc ;ibing how imaginary-distance propagation gives the
fundamental mode of an optical waveguide. Namely, we have derived the amplifica-
tion or gain that each waveguide mode accrues during a propagation step. We have
also described how each of the input parameters — initial field, effective index guess,
implicitness (scheme) parameter, and propagation step size — affect the mode am-
plification factor and how the rate of convergence to the fundamental mode can be
optimized. The predictions of this compact, analytic theory are consistent with the
results from numerical simulations. Finally, we have described two sets of input pa-
rameters that can give the waveguide eigenmode and its propagation constant within

a few propagation steps.
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Chapter 3

Higher order eigenmodes

Summary:

Yevick and Hermansson!?3! presented an efficient numerical method to calculate fun-
damental modes of optical waveguides. We extend their technique to higher order
eigenmodes. Using finite difference beam propagation method, we obtain propagation
constants and field profiles for the three lowest order TE modes in an asyminetric rib

waveguide.!

3.1 Introduction

Recently, Yevick and Hermansson!?®! showed that propagation along the imaginary
axis can give the fundamental mode and its effective index quite efficiently. Yevick
and Hermansson suggest the possibility of obtaining higher order modes by applying
the Prony method?*2!l but to our knowledge, they have not presented a numerical
implementation of the Prony technique. We will calculate higher order modes using
a different technique, the power method. To illustrate the generality of our method,
we choose an asymmetric coupler. The second lowest order mode of asymmetric
structures are not odd so cannot be easily calculated using mirror planes. We calculate
the three lowest order modes using 3D semi-vectorial, finite difference BPM. %138l

Although we demonstrate this power method using finite difference, this method

1Most of this chapter has been published in Optics and Quantum Electronics.3!]
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is general; it can be applied to FFT and FEM BPM, too. We will start with a
brief overview of imaginary distance beam propagation method then describe how we

calculate higher order modes.

3.2 Method
The electric field in an optical waveguide can be expressed as a sum of transverse
modecs
X e
E(z,y,2) = ), cDEV(z,y)e 7m0 (3.1)
i=1

where E()(z,y) is the field distribution of the ith lowest order eigenmode, z is the
propagation direction, £ and y are the transverse dimensions, k is the free space wave
vector, and n((,i) is that mode’s effective index. knf,") equals k£, — the z component of
the propagation constant. Let nf,l) be the largest index and n((,z) the second largest.

The field F obeys the paraxial wave equation:

2
ik - PE  OE

it Wik 2 2 2
0z  0Ox2 + 9y? + k*[n(z,y, 2)* — ng)E.

Yevick and Hermansson!?®! propagate the field along the imaginary axis jz. Then,

equation (3.1) becomes

E(z,y,j2) = i c(‘)E(‘)(x, y)e""f(;)z. (3.2)

i=1
Since the mode E() is associated with the largest ng, that mode will sce the most
gain. For large z, E(z,y,j2) ~ c(l)E(l)(z,y)e""gl)z. After a long propagation we
are left with the mode profile with the the largest k,. That means k, and k, are
the smallest; the variation of the field in the transverse direction is at a minimum.
This corresponds to the fundamental mode. From the mode profile we can obtain

the propagation constant either from the growth in the field amplitude®® or from

93



evaluating the variational equation,['%%]

[0’ (z,y, 2)| B — |52 — | 3E[*)dwdy

2 _
(ko)™ = [ 1EPdzdy

(3.3)

One may generalize the method so as to obtain higher order modes. Consider
first the next higher order mode. In coupling structures consisting of two waveguides,
the fundamental and first higher order mode determine the coupling length, an im-
portant design parameter. If the structure is symmetric, the problem i
One simply requires that the field vanish at the symmetry plane and solves for the
fundamental of this new waveguide structure by the same method. If the structure
is not symmetric, one needs a more general approach — an approach which is a gen-
eralization of the Yevick et al. method. Looking at equation (3.2), one notes that, if
the initial field E(z,y,0) contains no component of the fundamental field E®)(z, y),
then the field grows at the rate Icnf,z) corresponding to the (imaginary) propagation
constant of the first higher order mode E®)(z,y), and at lower rates corresponding
to the next higher modes. Since the eigenmodes are orthogonal to each other, one
can subtract the field of all previously calculated eigenmodes to get the next higher
order mode.

This method is analogous to the power method of linear algebra.['3% Each propaga-
tion step is similar to matrix multiplication. After many matrix multiplications, one
gets the largest eigenvalue (or propagation constant) and its eigenvector (eigenmode
profile) contained in the initial vector (field distribution). Therefore, if the initial
vector (field) contains no components of the eigenvectors (eigenmodes) corresponding
to the N largest eigenvalues (propagation constants), repeated matrix multiplica-
tion (imaginary propagation) will yield the N + 1th largest eigenvalue (propagation
constant) and its eigenvector (eigenmode). We can subtract the N lowest order eigen-
modes E® i = 1..N from the field E if all the eigenmodes are orthogonal to each
other.

k2 _ [EW*(z,y)E(z,y, jz)dzdy
J E® (z,y) EQ) (z, y)dzdy
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N
. - T (‘)z i \
Efina(z,9,2) = E(z,y,j2) — 3 et 2B (z, y)

i=1

(N+1) kniV Dz (N+1) — (i) knlz (i)
= " FE (z,9)+ D, e *EY(z,y)
i=N+2

This subtraction must be done once at the onset to insure the initial field does not
contain lower order modes. Numerically, this subtraction may be done imperfectly,
leaving residual traces of the N lowest order modes. Since these traces grow faster
than the other modes, it is necessary to subtract out these N modes at the end
of the simulation. In practice, it is preferable to subtract several times during the
simulation.

A mode that is “cutoff” decays exponentially when propagating along the real
axis. However, propagation along the imaginary axis converts an exponential de-
cay to a phase change. So, this method can obtain “cutoff” modes. It applies to
any dielectric medium with real indices, including weakly nonlinear media with self
phase modulation. In addition, this algorithm can be applied to any of the three
BPM types. We happen to use the finite difference method, specifically a 3D, semi-
vectorial, time independent, Crank-Nicholson scheme.[!38] The resulting sparse ma-
trix is solved by a generalized form of the preconditioned conjugate gradient method
called ORTHOMIN.['] As developed by Stern,[*! the semi-vectorial approach solves
the scalar wave equation but accounts for the discontinuity in fields that result from
index variations. Huang et al.'3® have showed that Stern’s approach is equivalent
to solving the full vector wave equation if one ignores the cross coupling between

transverse field components.

3.3 Application

Recently, several investigators have analyzed asymmetric waveguides, demenstrating
two primary applications. First of all, the coupling lengths of asymmetric structures
depend less on wavelength since the fraction of power transferred is less.110-142] In

addition, if the dispersion curves of the two waveguides intersect at a small angle, then




ASYMMETRIC RIDGE WAVEGUIDE

H1
H2 n=3.17

H3 n=3.38

H4 n=3.17

g -t Bt ——

X1 Wi1 S W2 X2

Figure 3-1: Structure geometry for the asymmetric ridge waveguide.
W1 = 2.08 pm, W2 = 4.00 ym, X1 = 8 pm, X2 = 8 pm, S = 1.92 ym, H1 = 1.02
pm, H2 == 0.42 pm, H3 = 0.18um, H4 = 3.51 pym.

full power transfer occurs only within a narrow band, creating a narrow filter.[*43-115]
The asymmetry in propagation constant can be formed in two ways. Guides with
symmetric geometry can differ in their indices through the electro-optic effect, while
other guides achieve asymmetry in their physical geometries or dimensions. Our
ridge waveguides differ in their widths (see figure 3-1). This geometry was inspired
by Yanagawa et al.’s!*? broad-band 8x8 star coupler.

In the transverse direction we divide the 20 by 6 um region into a grid of 151
by 101 points. The field is set to zero at the boundaries. To get the second lowest
order mode, we must first calculate the fundamental mode. The choice of initial field

stfongly affects the computation time. If the resemblance between the initial field and
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Figure 3-2: Normalized fundamental TE mode (horizontal, in planc)

the fundamental mode is poor, or if the amount of the fundamental mode contained
in the initial field is small, many iterations are needed before the fundamental mode
can grow to the point being dominant. On the other hand, if the initial field closely
resembles the fundamental mode, only a few propagation steps are needed before the
field converges.

Since the mode of the coupled waveguides resembles to first order those of the
individual guides, the input field of the fundamental mode has been chosen as a su-
perposition of two gaussian inputs centered in the high index guiding layer under cach
rib. The gaussians have equal amplitudes and FWHMs (Full Width Half Maximums)
of 20 horizontal and 10 vertical gridpoints. The input fields of the second lowest mode

are identical except that sign of the right gaussian is reversed. For the third lowest



Figure 3-3: Normalized second lowest TE mode (horizontal, in plane)

order mode, the initial field is a superposition of three Gaussian fields: the largest
beam below the larger rib, one beam below the smaller, and another with opposite
amplitude in the middle. From left to right, the FWHMs are 5 by 5, 30 by 15, and 20
by 1) gridpoints in x and y-direction respectively. And from left to right, the relative
amplitudes are 2, -1, and 1.

To obtain the two lowest order TE modes (see figures 3-2 and 3-3), we propagate
300 pums with 0.5pm steps. The convergence is rapid; after only 100 iteration steps.
the ficlds approach within 1% of their final values. The 60O iterations take 62 minutes
on an IBN RS6000 workstation, model 320H (6.0 MEFlops). For the third mode (figure

‘

3-1), the step size was increased to 2 g, This increase does not affect the stability

o8
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Figure 3-4: Normalized third lowest TE mode (horizontal, in plane)

but does lead to faster convergence.? The simulation also involved 600 imaginary
propagation steps. Oue has to be careful about the intervals at which the lower order
modes are subtracted. Frequent subtraction can increase the computation time by a
few percent but keeps the higher order modes small.
Equation (3.3) gives an estimate for the propagation constants. For the strue-
. M f . y . H (I)__ b} - (2)_' a7 . (:” o a1 (1
ture in figure 3-1, we determine ny’ = 3.2005, ny’ = 3.1973 and ny" = 3.1912 (o

wavelength A = 1.55pm.

MER . . U
2Even faster convergence would hiave resulted if we had used the optimal parameter sets of the
previous chapter. But we had not yet discovered this set when we wrote this paper.[1]



3.4 Conclusion

In conclusion, cne can simulate exponential gain by propagation along the imaginary
axis. Lower order modes have larger propagation constants so they will see more gain.
If the eigenmodes are orthogonal, subtracting the fundamental mode leaves the next
higher order mode. Subtracting these two lowest order eigenmodes gives the third
lowest mode. In principle, this method can be extended to find even higher order
modes.

This method can calculate transverse eigenmodes and propagation constants of
any substrate with real indices. Using beam propagation, we obtain the three lowest

order TE modes in an asymmetric coupler.
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Chapter 4

Ways to reduce bending loss

Summary:

We reduce the modal mismatch losses that occur at a junction of curved and straight
rib waveguides, by offsetting the guides and placing isolation trenches. Using a 3D
semi-vectorial beam propagation program, we also can investigate more novel effects
such as rib heights and sidewall slopes. Our consideration of all these effects results

in an optimized design.!

4.1 Introduction

Bent or curved waveguides are important in integrated optics. Bent guides can change
the propagation direction. In addition, they split power in Y-branches and help switch
light in Mach-Zehnders. If such guides have small radii or change direction abruptly,
compact optical devices result. Unfortunately, these compact chips radiate light.
Some power dissipation or “pure bending loss” occurs when light travels down a bend
of constant radius. Additional radiation occurs when the bend radii change. Each
guide with a fixed radius of curvature can be associated with a particular eigenmode.
At a junction where the bending radius changes abruptly, mismatch between these
eigenmodes leads to a transition loss. This transition loss is particularly severe where

straight and curved waveguide segments meet. This junction is the dominant source

1Most of this chapter will be published in IEEE J. Lightwave Technology.!'4]
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transition

radius /R

Figure 4-1: Interface between straight and curved waveguide segments, viewed from
the top of the chip.

of bending ioss for most optical devices.

The most straightforward way to make the straight and curved waveguide modes
look more similar, is to increase the radius of curvature.['47:148] But over the past
decade, many have suggested more sophisticated ways to reduce the transition loss.
Since the field of a curved waveguide tends to be pushed radially outward, E.-G. Neu-
mann et al.l4% proposed offsetting the straight waveguide to improve mode coupling
(figure 4-1). He also suggested placing a trench outside the curved waveguide. This
trench prevents light from spreading outward towards larger radii, thus improving
beam confinement.[9) Others have created such trenches by indiffusion.!'®!! J. Ya-
mauchi et al.['*? has optimized the location of such trenches. Recently, M. K. Smit’s
group!'® has decreased the width of the straight guide, to further reduce the field
mismatch.

In this chapter, we investigate additional ways to further minimize this transition
loss or field mismatch. We take into account all the previous schemes — trench

location, offset amount, and guide width. In addition, we consider the effect of sloping
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sidewalls and guide thicknesses.['®!] The before mentioned calculations neglected or
approximated the dimension extending into the substrate. But our code treats the full
3D geometry without such approximations. And to our knowledge, this paper presents
the first semi-vectorial (that is, non-scalar) computation of transition losses. In the
next section, we describe the numerical method. Next, we direct our optimization
efforts to one common waveguide, the rib waveguide. In particular, we show how

sidewall slopes and rib height can be varied to reduce transition losses.

4.2 Numerical method

First we will describe the theoretical framework that underlies our method. For a
more detailed overview of applicable numerical methods, please refer to the COST-216
study.!!%5] Heiblum and Harris suggested that a curved waveguide in two dimensions
can be conformally mapped to an eguivalent straight waveguide,[!56 where the index
of refraction increases with the increasing radial distance. Since the radius is much
larger than the waveguide dimensions, Heiblum and Harris’ equivalent index can be

accurately linearized.[19%:157:158] Specifically,

where n is the unperturbed index of the waveguide, z is the radial distance from
the guide center, and R is the radius of curvature. To this, Baets and Lagassel!®”)
propagated light down bent guides, using the beam propagation method (BPM).
Saijonmaa and Yevick!!®¥] extended this calculation to three space dimensions. They
calculated not only the radiation loss but also the transition loss. They calculated
the eigenmodes associated with the curved and straight waveguides, by beating the
transverse field with the propagation constant of the desired eigenmode.!"¥) Then an
overlap integral between the straight and curved eigenmodes gives the transmission

coefficient.
f Estraight (xi y) ) Ecurved(:va y) dzx dy

\/f |Eatraight(xa y)|2 dzdy [ IEcurved(xa y) |2 dzx dy)
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The transition loss is one minus the square of the transmission, L = 10log;o(1 — T?).
Other popular ways to calculate eigenmodes of rib waveguides are effective index!!32
and spectral index method.[136:159 I this paper, we use the imaginary distance beam
propagation method — an accurate, numerical method that can applied to arbitrary
geometries.

In particular, we use a 3D, semi-vectorial, finite difference beam propagation
program(13828) with transparent boundary conditions.l”) We have improved the cal-
culation speed by over an order of magnitude by an improved differencing scheme.®!
To illustrate how we minimize transition losses, we model the rib waveguide (figure
4-2), oft studied by the COST-216 group.!!®! The rib is by = 1.4 pm high, spans
w; = 2.4 pm at the bottom and wy; = 2.4 um at the top. From the bottom to top,
the substrate layer thicknesses are hy; = 1.725, hy = 0.2 and h3 = 0.3 um, while the
indices are n = 3.17, 3.38, and 3.17. The total computational window is 17.1 long
by 4.0 um high and is divided into square grids Az = Ay = 0.05 um. In figure 4-2,
the rib in curved waveguide has the same dimensions, for the most part. However,
the trench is w; = 4.0 um wide and has an index of n = 1 (air). It is positioned
w; = 2.00 um away from the rib. The eigenmodes are calculated by choosing implicit
differencing and large reference index. We propagate a large distance 5- 10! um with
only 40 steps. This choice of input parameters has improved the speed of computation

significantly.%

4.3 Results

Here we detail how we minimize transition losses, by optimizing guide offsets, trench
location, rib widths, rib heights, and sidewall slopes. We study one radius of curvature
R = 1.5 mm and one wavelength A\ = 1.5 um. The fundamental eigenmode of a
rib waveguide is pictured in figure 4-3a. This is the amplitude of the electric field
polarized in the page and in the horizontal (or z) direction. As expected, the mode
is centered in the highest index layer. If this rib is part of a curved waveguide,

the mode shifts to the right, to larger radii (figure 4-3b). It appears more weakly
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Figure 4-2: Curved rib waveguide with trench, viewed from the side.
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guided. Equation (4.1) accounts for this by increasing the effective index. This
asymmetric effective index distribution accounts for the lopsided or asymmetric mode
of the curved guide. More power is on the right hand or large radius side. Clearly,
the eigenmode of the straight rib and that of the curved rib are different. As a result,
the transition loss L, given by the overlap integral of the two modes, is very large.
L =-0.9dB.

Since the modes of the straight and curved ribs appear displaced from each other,
offsetting the two ribs decreases the transition loss. Figure 4-4 graphs the loss versus
offset in microns. The loss drops from a high of L = —0.42 dB at offset z,5;y = 0 um
to a minimum of L = —0.334 dB at offset z,;y = 0.5 pum. Introducing a low index
material or a trench to the right of the rib pushes the field to the left or radially
inward. This helps confine the beam, making the curved mode look more similar
to the straight mode. Figure 4-5 graphs the transition loss versus trench—to-rib
separation. We find an optimal trench position of wy = 2.00 um. Another way to
confine the beam or prevent the light from spreading radially is to change the rib
width. In figure 4-6, while the width of straight guide held constant at w = 2.4 um,
the width of the curved guide is varied. Here the transition loss is lowest when the

widths of the two guides are equal; then the transition loss is reduced to -0.032 dB.
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Figure 4-3: Top: Eigenmode of straight rib waveguide. Bottom: Eigenmode of curved
rib waveguide.
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Figure 4-6: Transition loss L plotted for different widths of the curved rib w.

We can reduce the transition loss further, if we increase the height of the curved
rib. We are able to calculate this loss accurately since our program is semi-vectorial
and 3D. Higher ribs increases the effective index of the rib so more light is confined
or guided by the rib. This reduces the spread of the bheam towards higher radii. This
spread stretches the mode profile. What’s more, this distortion is alse asymmetric,
increasing the mismatch between straight and curved modes. As a result, higher
curved ribs reduce the modal mismatch and hence the transition loss (figure 4-7).
But the transition loss increases when the height of the straight rib increases as well.
The other parameters — offset, width, trench — were optimized for a rib height of
hgy = 1.4 pm.

Sometimes problems with the wet or dry etching leads to non-vertical sidewalls.
Sloping sidewalls give us another degree of freedom — ancther way to match the
appearance of curved and straight modes. sidewalls are depicted in figure 4-2. Note

that the straight and curved guides have the same slope. We find that sloping rib
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Figure 4-7: Transition loss L plotted for various rib heights k4. In top curve, only the
height of the curved rib varies while the height of the straight rib remains constant
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Figure 4-8: Transition loss L plotted for various sidewall slopes. The solid line shows
the symmetric case where the two rib sidewalls have equal slopes. For the dotted line,
the inner sidewall is vertical while the outer sidewall varies.

walls does lower the transition loss. The solid line in figure 4-8 plots the transition
loss for various sidewall slopes. Changing the slope of the sidewall is a very small
effect.

In figure 4-3 the mode of the curved waveguide is asymmetric while the straight
mode is symmetric. The trench asymmetrizes the index distribution by lowering the
index at the large radii. But none of the previous schemes asymmetrizes the index
distribution in the rib itself — where most of the power lies. A way to do this is
to have different slopes for the left and right sidewall. Hopefully, the asymmetry in
the rib will cancel or counter the asymmetry induced by equation (4.1). Clearly, this
is very difficult to achieve experimentally. Perhaps, the substrate needs to be tilted
during dry etching. Let’s see what happens if the left or inner sidewall were vertical,
but the slope of the right sidewall varies. The dashed line in figure 4-8 plots the

transition loss as a function of tthe right wall’s slope. This reduction in loss from
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changing the rib index shows the deleterious effect of mode asymmetry.

Now, we combine the optimal values for guide offset z,5; = 0.5 um, rib width
w = 2.4 pm, trench-to-rib separation wy = 2.00 pm, rib height hy = 1.4 pm, and rib
slope 14. This gives a transition loss of only -0.033 dB. All the above calculations
applied to fields that are polarized such that the electric field is in the z direction
(horizontal and in the page). If the fields were scalar, the transition loss is -0.029
dB. There is roughly a 10% difference between scalar and semi-vectorial calculations.
Figure 4-9a is a contour plot of the fundamental mode (E;)of the straight rib. This
mode looks very similar to the mode of the curved rib (figure 4-9b). Compared to

figure 4-3, the light is confined better and shaped better.

4.4 Conclusion

We have lowered the transition loss between straight and curved rib waveguides. We
have optimized the offset between guides, the position of the trench, width of the rib,
height of the rib. Also, we find that the effects of rib slopes and the asymmetry of

index profiles lead to only second order reductions in the transition losses.
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Figure 4-9: Top: Eigenmode of straight rib waveguide. Bottom: Eigenmode of curved
rib waveguide, with optimized guide offset, trench position, rib width, and rib height.
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Chapter 5

A modified Finite Difference Time

Domain code

Summary:

We apply a two dimensional, scalar-like finite difference time domain code to
optical waveguides. In particular, we modify the program to measure reflection and
transmissions of air bridge filters. The quality factor obtained from these transmission

results are consistent with that calculated from resonator’s energy decay.’

5.1 Introducticn

Scalar finite difference codes have been used in acoustics. We show how such codes
ca; be adapted to model the vector waves, such as those found in microwaves and
optics. For a 2D geometry, our adaptation permits the calculation of field components
perpendicular to the solution domain. In addition, we present a new way to separate
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