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Abstract

We present a model and variance reduction method for the fast and reliable computation of sta-
tistical outputs of stochastic elliptic partial differential equations. Our method consists of three
main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic par-
tial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the
governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE
to enable real-time solution of the parameterized PDE in the presence of stochastic parameters;
and (3) a multilevel variance reduction method that exploits the statistical correlation among the
different reduced basis approximations and the high-fidelity HDG discretization to accelerate the
convergence of the Monte Carlo simulations. The multilevel variance reduction method provides
efficient computation of the statistical outputs by shifting most of the computational burden from
the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we de-
velop a posteriori error estimates for our approximations of the statistical outputs. Based on these
error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced
basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We
provide numerical examples to demonstrate the performance of the proposed method.
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1. Introduction

The analysis of physical systems is often carried out by mathematical modeling and numerical
simulation. For a given system, the corresponding mathematical model requires certain input data,
such as material properties, forcing terms, boundary conditions and geometry information. For
many problems of interest, input data are not known precisely. In such cases, one may need to
consider input data as random variables and represent them in probabilistic terms. Mathematical
models represented by partial differential equations with random input data are known as stochastic
partial differential equations (SPDEs). Uncertainty in the input data may come from different
sources. It can be that the physical system has some intrinsic variability, for example, uncertainty
in the gust loads on an aircraft, or wind and seismic loading on civil structures. It is also possible that
we are unable to effectively characterize the physical system with a mathematical model because,
for instance, we may have errors in geometry, roughness of surfaces, or multiscale behavior that
we are unable to capture. Therefore, there is a growing need to represent the uncertainty in the
data and effectively propagate it through the mathematical model. The goal of this probabilistic
approach resides in computing statistics of some observable outputs (quantities of interest), which
are usually defined as functionals of the solution of the underlying SPDE.

There exist a number of different approaches to solve SPDEs and retrieve the statistics of the
output. The most common approach is to use Monte Carlo (MC) methods [20, 31]. Monte Carlo
methods only need repeated evaluations of the output functional of the solution of the SPDEs
for different instantiations of the random input. The main advantage of Monte Carlo methods is
that their convergence rate is independent of the dimension of the stochastic space, namely, the
number of random variables. The main caveat of these methods is their slow convergence rate,
which demands a large amount of realizations to achieve accurate results. As a result, a number of
techniques such as quasi Monte Carlo methods [8, 48], Latin Hypercube Sampling [33, 57], variance
reduction methods [8] and multilevel Monte Carlo [27] have been proposed to alleviate the slow
convergence rate of the standard Monte Carlo methods.

Another approach is stochastic Galerkin methods, first introduced by Ghanem et al. in [26], that
generalize the theory of Wiener-Hermite polynomial chaos expansion [63] and combine it with a
finite element method to model uncertainty in a SPDE. In this approach, the random variables
are treated as additional dimensions of the problem and projected onto a stochastic space spanned
by a set of orthogonal polynomials. The problem is then reduced to a system of deterministic
equations, which couple the physical and stochastic dimensions. This methodology has proven to
be very effective when solving partial differential equations (PDEs) in a broad range of applications,
such as diffusion problems and heat conduction [24, 65, 67], structural dynamics [25], transport in
random media [23] and fluid dynamics [10, 66]. The advantage of these methods is that they
converge exponentially fast for a sufficiently regular solution field [2, 3, 18]. However, their main
drawback is that their computational complexity grows combinatorially with the number of random
variables and the number of expansion terms. As a consequence, they are not effective for solving
problems with a large number of random variables.

A more recent approach is stochastic collocation methods (SCM), first introduced in [35] and further
developed in [64]. The main idea is to compute deterministic solutions of the SPDE for certain
instantiations of the random variables and then construct an interpolation function to approximate
the response over the stochastic space. When the interpolation procedure is performed on tensor
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grids, these methods suffer from the exponential growth with the dimensionality of the stochastic
space. To economize the interpolation process in large dimensions, sparse grids (Smolyak [56]) were
introduced for elliptic problems [51, 64], parabolic problems [49] and natural convection problems
[21]. In [1], sparse grids were shown to achieve exponential convergence for problems with smooth
solutions. However, like polynomial chaos expansions, sparse grids still suffer from the curse of
dimensionality in the sense that the number of grid points grows rapidly with the dimension of the
stochastic space. Recently, anisotropy and adaptivity on sparse grids [22, 32] have been used in
SCM [21, 50] to mitigate the elevated cost in high dimensions.

In this paper, we present a model and variance reduction method for the fast and reliable computa-
tion of statistical outputs of stochastic elliptic partial differential equations. Our method consists of
three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic
partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of
the governing PDE; (2) a reduced basis method for the HDG discretization of the underlying PDE
to enable real-time solution of the parameterized PDE in the presence of stochastic parameters;
and (3) a multilevel variance reduction method that exploits the statistical correlation among the
different reduced basis approximations and the high-fidelity HDG discretization to accelerate the
convergence rate of the Monte Carlo simulations. The multilevel variance reduction method pro-
vides efficient computation of the statistical outputs by shifting most of the computational burden
from the high-fidelity HDG approximation to the reduced basis approximations. Although the three
ingredients of our approach exist in the literature, the main contribution of this paper is to put these
methodologies into a unified framework that combines all of their strengths to tackle stochastic el-
liptic PDEs. Another important contribution of the paper is to develop a posteriori error bounds
for the estimates of the statistical outputs and to introduce an algorithm for optimally choosing
the dimensions of the reduced basis approximations and the sizes of MC samples to achieve a given
error tolerance. Last but not least, we present a new HDG formulation that enables the efficient
construction of reduced basis approximations for the HDG discretization of parameterized PDEs.

The HDG method was first introduced in [14] for elliptic problems, subsequently analyzed in [13, 16,
17], and later extended to a wide variety of PDEs [15, 38–46, 59]. The HDG method is particularly
effective for solving elliptic PDEs because it possesses several unique features that distinguish it from
other DG methods. First, it reduces the number of globally coupled unknowns to those required to
represent the trace of the approximate solution on the element boundaries, thereby resulting in a
smaller global systems than other DG methods. Second, the method provides optimal convergence
rates for both the solution and the flux. And third, its flux superconvergence properties can be
exploited to devise a local a postprocess that increases the convergence rate of the approximate
solution by one order. These advantages are the main driver for the development of the Reduced
Basis (RB) method for the HDG discretization of parameterized PDEs. While the RB method is
well developed for the standard finite element discretization of parameterized PDEs [28, 29, 34,
52, 54, 60, 61], the RB method for the HDG approximation of parameterized PDEs has not been
considered before. The HDG discretization has multiple field variables and various equivalent weak
formulations, which make the application of the RB method non straightforward.

Recently, the RB method has been applied to standard continuous Galerkin finite element solutions
of stochastic elliptic PDEs [7, 9, 30]. In this approach, the stochastic PDE is first reformulated as
a parametrized PDE over the coefficients of the Karhunen-Loève expansion of the random fields.
The reduced basis approximation and associated a posteriori error estimation are then developed
for the resulting parametrized PDE. Finally, the output statistics and their error estimates are
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computed with a MC simulation [7, 30] or a stochastic collocation approach [9]. These approaches,
which involve the RB method and its a posteriori error bounds to evaluate the output instead of
the original finite element discretization, have been shown to outperform both standard MC and
stochastic collocation. In this paper, we extend the previous work [7, 30] in several important ways.
We will use the HDG method to construct the RB approximation. We will adopt the multilevel
Monte Carlo strategy [5, 12, 27, 58] and demonstrate a significant computational gain relative to the
standard MC approach. Moreover, we will provide a posteriori error estimates for our prediction
of the statistical outputs without involving a posteriori error bounds for the RB approximation.
This feature will broaden the applicability of our approach to a wide variety of stochastic PDEs for
which a posteriori error bounds for the RB approximation are either not available or too expensive
to compute.

According to the central limit theorem [19], the error in a Monte Carlo estimation of the expec-
tation of an output is proportional to the square root of the ratio of the variance of the output
and the number of samples. Therefore, in order to reduce the error one can increase the number
of samples and/or decrease the variance of the output. Because increasing the number of samples
leads to higher computational cost, various techniques such as the control variates method [6, 8, 31],
the multilevel Monte Carlo method [5, 12, 27, 58], and the multi-fidelity Monte Carlo method [36]
have been proposed to reduce the variance of the output. The control variates method reduces the
variance of the output by making use of the correlation between the output and a surrogate. The
multi-fidelity Monte Carlo method makes use of the statistical correlation between the low-fidelity
(surrogate) and high-fidelity outputs to reduce the number of high-fidelity evaluations needed to
achieve a given accuracy of interest. The multilevel Monte Carlo method applies the principle of
control variates to a sequence of lower fidelity outputs (multigrid approximations) to estimate the
statistics of the high-fidelity output. Likewise, our method applies the principle of control variates
to the HDG approximation and a sequence of reduced basis approximations, thereby shifting the
computational burden from the high-fidelity HDG discretization to the lower fidelity RB approxi-
mations.

This article is organized as follows. In Section 2, we introduce a stochastic elliptic boundary
value problem and describe a new weak HDG formulation particularly suited for the reduced basis
method. In Section 3, we describe a reduced basis method for the HDG approximation of the
stochastic elliptic boundary value problem. In Section 4, we develop a multilevel Monte Carlo
method that incorporates the HDG approximation and its reduced basis models into a unified
framework to provide rapid reliable computation of the statistical outputs. In Section 5, we present
numerical results to demonstrate the performance of the proposed method. Finally, in Section 6,
we discuss some directions for future research.

2. The Hybridizable Discontinuous Galerkin Method

2.1. Problem statement

Let D ∈ Rd be a regular domain with Lipschitz boundary ∂D. We consider the following stochastic
boundary value problem: find a function u such that,

−∇ · (κ∇u) + %u = f, ∀x ∈ D , (1a)

κ∇u · n+ νu = g, ∀x ∈ ∂D , (1b)
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where f is the source term, κ is the diffusion coefficient, % is the Helmholtz parameter, ν is the
Robin coefficient, and g is the boundary data. In this problem, one or more than one of the
quantities f, κ, %, ν, g are stochastic functions. For simplicity of exposition we shall assume that κ is
a real stochastic function and that f, %, ν, g are deterministic. The generalization to the case where
one or more of f, %, ν, g are stochastic is straightforward. Note that since we allow f, %, ν, g to be
complex-valued functions, the solution u is in general a complex stochastic function.

We next introduce a probability space (Ω,F , P ), where Ω is the set of outcomes, F is the σ-algebra
of the subsets of Ω, and P is the probability measure. If Z is a real random variable in (Ω,F , P )
and ω a probability event, we denote its expectation by E[Z] =

∫
Ω
Z(ω)dP (ω). We will consider

random functions v in L2(D × Ω) equipped with the following norm

‖v‖2 = E

[∫
D
|v(x, ·)|2dx

]
=

∫
Ω

∫
D
|v(x, ω)|2dx dP (ω).

We will assume that κ ∈ L2(D × Ω) and that κ(x, ω) is bounded and strictly positive, i.e., there
exist constants α1 and α2 such that

0 < α1 ≤ κ(x, ω) ≤ α2 < +∞, a.s. in D × Ω.

We next assume that the random function κ(x, ω) can be written in the following form

κ(x, ω) = κ(x) +

Q∑
q=1

ψq(x)yq(ω), (x, ω) ∈ D × Ω,

where κ(x) is the expectation of κ, ψq(x), q = 1, . . . , Q are uniformly bounded real functions, and
yq(ω) for q = 1 . . . , Q are mutually independent random variables with zero mean. In addition, we
assume that each of the yq(ω) is bounded in the interval Λq = [−γq, γq] with a uniformly bounded
probability density function ρq : Λq → R+. It thus follows that, with a slight overloading of
notation, we can write κ in the form

κ(x,y) = κ(x) +

Q∑
q=1

ψq(x)yq, (x,y) ∈ D × Λ,

where y = (y1, . . . , yQ) and Λ =
∏Q

q=1 Λq.

Therefore, the solution u of (1) can be written as a function of y ∈ Λ, namely, u(x,y). Now let `
be a bounded linear functional. We introduce a random output s defined as

s(y) = `(u(·,y)).

We are interested in evaluating the expectation and variance of s as

E[s] =

∫
Λ

s(y)ρ(y)dy, V [s] =

∫
Λ

(E[s]− s(y))
2
ρ(y)dy,

where ρ(y) =
∏Q

q=1 ρq(yq). Below we describe the hybridizable discontinuous Galerkin method for
solving the model problem (1) and the Monte Carlo simulation for computing estimates of E[s] and
V [s].
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2.2. HDG discretization

We begin by rewriting the governing equation (1) as a first-order system

q −∇u = 0, in D, (2a)

−∇ · κq + % u = f, in D, (2b)

κq · n+ νu = g on ∂D. (2c)

The physical domain D is triangulated into elements T forming a mesh Th satisfying the standard
finite element conditions [11]. Then, letting ∂Th := {∂T : T ∈ Th} and denoting by Fh the set
of the faces F of the elements T ∈ Th, we seek a vector approximation qh ∈ V p

h to q, a scalar
approximation uh ∈ W p

h to u, and a scalar approximation ûh ∈ Mp
h to the trace of u on element

boundaries, where

V p
h = {v ∈ L2(D) : v|T ∈ [Pp(T )]d ∀T ∈ Th},

W p
h = {w ∈ L2(D) : w|T ∈ Pp(T ) ∀T ∈ Th},

Mp
h = {µ ∈ L2(Fh) : µ|F ∈ Pp(F ) ∀F ∈ Fh},

and Pp(D) is a space of complex-valued polynomials of degree at most p on D. Note that ûh are
defined only on the faces of the elements, hence they are single valued. We introduce the following
inner products

(v, w)Th :=
∑
T∈Th

(v, w)T , 〈v, w〉∂Th :=
∑
T∈Th

〈v, w〉∂T ,

where (u, v)D :=
∫
D
uv dx whenever D is a domain in Rd, and 〈u, v〉D :=

∫
D
uv dx whenever D is a

domain in Rd−1. For vector-valued functions v and w, the integrals are similarly defined with the
integrand being the dot product v ·w. Note that w denotes the complex conjugate of w.

The HDG approximations (qh, uh, ûh) in V p
h ×W

p
h ×M

p
h are determined by requiring that

(qh, r)Th + (uh,∇ · r)Th − 〈ûh, r · n〉∂Th = 0, (3a)

(κqh,∇w)Th − 〈κq̂h · n, w〉∂Th + (%uh, w)Th = (f, w)Th , (3b)

〈κq̂h · n, µ〉∂Th + 〈νûh, µ〉∂D = 〈g, µ〉∂D, (3c)

hold for all (r, w, µ) in V p
h ×W

p
h ×M

p
h , where the numerical flux q̂h is defined as

q̂h = qh − τ
(
uh − ûh

)
n, on ∂Th. (4)

Here τ is the so-called stabilization parameter, a global constant with dimensions τ = 1/L where
L is the characteristic lengthscale. We set τ = 1 since we do not consider multiple physical scales
in this work. Further discussions on τ may be found in [14, 39]. By substituting (4) into (3) we
obtain that (qh, uh, ûh) ∈ V p

h ×W
p
h ×M

p
h satisfies

(qh, r)Th + (uh,∇ · r)Th − 〈ûh, r · n〉∂Th = 0, (5a)

(κqh,∇w)Th − 〈κqh · n− κτ(uh − ûh), w〉∂Th + (%uh, w)Th = (f, w)Th , (5b)

〈κqh · n− κτ(uh − ûh), µ〉∂Th + 〈νûh, µ〉∂D = 〈g, µ〉∂D, (5c)

for all (r, w, µ) in V p
h ×W

p
h ×M

p
h . This completes the definition of the HDG method.
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The above weak formulation of the HDG method involves three field variables, namely, qh, uh, and
ûh. However, the first two equations (5a) and (5b) allow us to write both qh and uh in terms of ûh
at the element level due to the fact that our approximation spaces are discontinuous. Therefore,
we can substitute both qh and uh from the first two equations into the last equation (5c) to obtain
a weak formulation in terms of ûh only: find ûh ∈Mp

h such that

âh(ûh, µ) = b̂h(µ), ∀µ ∈Mp
h . (6)

Here we omit the derivation of the bilinear form âh and the linear functional b̂h. Instead we refer
the reader to [39] for a detailed discussion. The reduced weak formulation (6) gives rise to the
following linear system

Âû = b̂, (7)

where û is the vector containing the degrees of freedom of ûh. Because ûh is single valued on the
faces of the finite element mesh, it has significantly fewer degrees of freedom than uh. As a result,
the global matrix system (7) of the HDG method can be much smaller than that of other DG
methods. This results in significant savings in terms of computational time and memory storage.

It turns out that although the formulation (6) results in the smallest possible system, it is not ideal
to use it as the starting point for our reduced basis method. Substituting the first two equations
(5a) and (5b) into the last equation (5c) results in the inverse of the material coefficients κ and
%, which renders the bilinear form âh nonaffine in the material coefficients. Although nonaffine
parameter dependence can be treated by using the empirical interpolation method [4] or the best
points interpolation method [37], such treatment incurs additional cost and is unnecessary. We are
going to derive a new weak formulation of the HDG method, which is suited for the reduced basis
method.

2.3. A new weak formulation of the HDG method

We begin by deriving a weak formulation of the HDG method upon which our reduced basis method
is constructed. To this end, we introduce two lifting operators l : W p

h → V p
h and m : Mp

h → V p
h

defined as

(l(w), r)Th = −(w,∇ · r)Th , ∀ r ∈ V p
h , (8a)

(m(µ), r)Th = 〈µ, r · n〉∂Th , ∀ r ∈ V p
h . (8b)

It thus follows from (5a) and (8) that we can express qh as a function of uh and ûh as

qh = l(uh) +m(ûh). (9)

By substituting (9) into (5b) and (5c) we arrive at the following weak formulation: find (uh, ûh) ∈
W p

h ×M
p
h such that(

κ(l(uh) +m(ûh)),∇w
)
Th
−
〈
κ(l(uh) +m(ûh)) · n− κτ(uh − ûh), w

〉
∂Th

+ (%uh, w)Th = (f, w)Th ,〈
κ(l(uh) +m(ûh)) · n− κτ(uh − ûh), µ

〉
∂Th

+ 〈νûh, µ〉∂D = 〈g, µ〉∂D,

for all (w, µ) inW p
h×M

p
h . By setting theN -dimensional approximation space to beW p

h := W p
h×M

p
h ,

uh := (uh, ûh), and w := (w, µ) we obtain that uh ∈W p
h , satisfies

ah(uh,w; (κ, %, ν)) = bh(w), ∀w ∈W p
h , (10)
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where the bilinear form ah and the linear functional bh are given by

ah(v,w; (κ, %, ν)) =
(
κ (l(v) +m(η)) ,∇w

)
Th
−
〈
κ(l(v) +m(η)) · n− κτ(v − η), w

〉
∂Th

+ (%v, w)Th +
〈
κ(l(v) +m(η)) · n− κτ(v − η), µ

〉
∂Th

+ 〈νη, µ〉∂D, (11a)

bh(w) = (f, w)Th + 〈g, µ〉∂D, (11b)

for all v := (v, η) ∈ W p
h and w := (w, µ) ∈ W p

h . We note that the bilinear form (11a) is
affine in y = (κ, %, ν). Furthermore, if we select r = κ (l(v) +m(η)) in (8) and substitute into
(11a), we recover a symmetric form, which is also coercive provided κ, %, ν > 0. Henceforth, the
choice (κ, %, ν) = (1, 1, 1) allows us to equip the approximation space W p

h with the inner product

(v,w)W := ah(v,w; (κ, %, ν) = (1, 1, 1)) and the induced norm ‖w‖W =
√

(w,w)W .

We now substitute the expression of κ from (2.1) into (11) to express ah as

ah (v,w; (κ, %, ν)) = ah(v,w;y) = a0
h(v,w) +

Q∑
q=1

yqa
q
h(v,w), (12)

where the bilinear forms are given by aqh(v,w) := ah (v,w; (ψq, 0, 0)) for 1 ≤ q ≤ Q and a0
h(v,w) :=

ah (v,w; (κ, %, ν)). Therefore, we can write the weak formulation (10) as follows: for any y ∈ Λ,
uh(y) ∈W p

h satisfies
ah(uh,w;y) = bh(w), ∀w ∈W p

h . (13)

Finally, we evaluate our realization output as

sh(y) = `h(uh(y)),

where the linear functional `h is obtained from the HDG discretization of `. The key point of the
new HDG formulation (13) for an efficient perfomance of the reduced basis method is the affine
representation (12). This aspect is of crucial importance, and the main reason we prefer (13) to
the reduced weak formulation (6) for constructing the reduced basis approximation. Furthermore,
the new formulation is optimal in terms of degrees of freedom, since we no longer account for the
gradient qh. Finally, even though the parameter independent matrices arising from (12) are used
for the reduced basis approximation, the solution uh is never computed as the solution of the full
system (13). Instead, we can invoke again discontinuity of the approximation spaces to write uh in
terms of ûh. This common strategy in HDG methods enables us to solve for the global degrees of
freedom of ûh only and then recover uh efficiently.

2.4. Monte Carlo sampling with the HDG method

We are interested in evaluating statistics of the output sh(y) such as its expectation and variance.
Let YM = {ym ∈ Λ, 1 ≤ m ≤M} be a set of random samples drawn in the parameter space Λ with
the probability density function ρ(y). We evaluate the following outputs

sh(ym) = `h(uh(ym)), m = 1, . . . ,M. (14)
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The Monte Carlo-HDG (MC-HDG) estimates of the expectation E[s] and variance V [s] can be
computed, respectively, as

EM [sh] =
1

M

M∑
m=1

sh(ym), VM [sh] =
1

M − 1

M∑
m=1

(EM [sh]− sh(ym))
2
. (15)

We shall assume that sh(y) is indistinguishable from s(y) for any y ∈ Λ. Moreover, it is a known
result that the estimators in (15) are unbiased and converge in distribution to

E[sh]− EM [sh]
d−→ N

(
0 ;
V [sh]

M

)
, V [sh]− VM [sh]

d−→ N

(
0 ;
V [(sh − E[sh])

2
]

M

)
.

Confidence intervals can be constructed employing the central limit theorem (CLT), that is for all
a > 0 we have

lim
M→∞

Pr
(∣∣E[sh]− EM [sh]

∣∣ ≤ ∆E
h,M

)
= erf

(
a√
2

)
, (16a)

lim
M→∞

Pr
(∣∣V [sh]− VM [sh]

∣∣ ≤ ∆V
h,M

)
= erf

(
a√
2

)
, (16b)

where

∆E
h,M = a

√
VM [sh]

M
, ∆V

h,M = a

√
VM [(sh − EM [sh])

2
]

M
. (17)

Therefore, in order to guarantee that
∣∣E[sh]− EM [sh]

∣∣ is bounded by a specified error tolerance εtol

with a high probability (say, greater than 0.95), we need to take a ≥ 1.96 and M ≥ a2VM [sh]/ε2tol.
As a result, M can be very large for a small error tolerance. Hence, the evaluations (14)–(15) can
be very demanding.

The remaining goals of this paper are as follows. On one hand, we develop a reduced basis (RB)
method for rapid reliable approximation of the stochastic HDG output sh(y) for any given parameter
vector y in Λ. On the other hand, we develop a multilevel variance reduction method to accelerate
the convergence of the Monte Carlo simulation by exploiting the exponentially fast convergence
of the RB output to the high-fidelity HDG output as a function of the RB dimension. These
two ingredients enable very fast reliable computation of the statistical outputs at a computational
cost which is several orders of magnitude less expensive than that of the MC-HDG approach. We
describe the reduced basis approach in Section 3 and the multilevel variance reduction method in
Section 4.

3. Reduced Basis Method

We consider a “primal-dual” formulation [47, 53] particularly well-suited to good approximation
and error characterization of the output. To this end, we introduce the dual problem of (13): given
y ∈ Λ, the dual solution φh(y) ∈W p

h satisfies

ah(v,φh;y) = −`h(v), ∀ v ∈W p
h .

9



The dual problem plays an important role in improving the convergence rate of both the RB output
and associated error bound.

We next assume that we are given orthonormalized basis functions ζpr
n , ζ

du
n ∈ W p

h , 1 ≤ n ≤
Nmax, such that (ζpr

m , ζ
pr
n )W = (ζdu

m , ζdu
n )W = δmn, 1 ≤ m,n ≤ Nmax. We define the associated

hierarchical RB spaces as

W pr
N = span{ζpr

n , 1 ≤ n ≤ N}, W du
N = span{ζdu

n , 1 ≤ n ≤ N}, N = 1, . . . , Nmax .

In practice, the spaces W pr
N and W du

N consist of orthonormalized primal and dual solutions ζpr
n , ζ

du
n

at selected parameter values generated by a Greedy sampling procedure [28, 55, 61]. For our
present purpose, however, W pr

N and W du
N can in fact represent any sequence of (low-dimensional)

hierarchical approximation spaces. We then apply the Galerkin projection for both the primal and
dual problems: Given y ∈ Λ, we find a primal RB approximation uN (y) ∈W pr

N satisfying

ah(uN (y),w;y) = bh(w), ∀w ∈W pr
N , (18)

and a dual RB approximation φN (y) ∈W du
N satisfying

ah(w,φN (y);y) = −`h(w), ∀w ∈W du
N .

We can now evaluate the RB realization output as

sN (y) = `h(uN (y)) + ah(uN (y),φN (y);y)− bh(φN (y)).

As discussed below, the online computational cost of evaluating the RB output depends only on N
and Q. Hence, for small N and Q, the RB approximation can be significantly less expensive than
the HDG approximation.

The RB output is then used as an approximation to the HDG output in the Monte Carlo simulation.
The Monte Carlo-Reduced Basis (MC-RB) estimates of the expectation and variance of the output
of interest are given by

EM [sN ] =
1

M

M∑
m=1

sN (ym), VM [sN ] =
1

M − 1

M∑
m=1

(EM [sN ]− sN (ym))
2

for the same set of samples YM = {ym ∈ Λ, 1 ≤ m ≤ M}. Since the RB approximation is
constructed upon the HDG approximation these quantities actually approximate the MC-HDG
estimates. We next develop a posteriori error bounds for our MC-RB estimates relative to the
MC-HDG estimates.

3.1. A posteriori error estimation

We note from (18) that the residuals rpr
h (w;y) and rdu

h (w;y) associated with uN (y) and φN (y),
respectively, are given by

rpr
h (w;y) = bh(w)− ah(uN (y),w;y), rdu

h (w;y) = −`h(w)− ah(w,φN (y);y),

10



for all w ∈W p
h . The dual norm of the primal residual and the dual norm of the dual residual are

given by

‖rpr
h (·;y)‖W ′ = sup

w∈W p
h

rpr
h (w;y)

‖w‖W
, ‖rdu

h (·;y)‖W ′ = sup
w∈W p

h

rdu
h (w;y)

‖w‖W
.

It is a standard result [47, 55] that

‖uh(y)− uN (y)‖W ≤ ∆pr
N (y) ≡ ‖r

pr
h ( · ;y)‖W ′

β̃(y)
,

‖φh(y)− φN (y)‖W ≤ ∆du
N (y) ≡ ‖r

du
h ( · ;y)‖W ′

β̃(y)
,

|sh(y)− sN (y)| ≤ ∆s
N (y) ≡ β̃(y)∆pr

N (y)∆du
N (y) ,

where β̃(y) is a positive lower bound for the Babuška “inf-sup” stability constant βh(y) defined as

0 < βh(y) ≡ inf
w∈W p

h

sup
v∈W p

h

ah(w,v;y)

‖w‖W ‖v‖W
,

that is, the minimum (generalized) singular value associated with the differential operator. It is
critical to note that the output error (and output error bound) vanishes as the product of the primal
and dual error (bounds), and hence much more rapidly than either the primal or dual error.

It thus follows that we can bound the errors in the MC-RB estimates relative to the MC-HDG
estimates as

|EM [sh]− EM [sN ]| ≤ 1

M

M∑
m=1

|sh(ym)− sN (ym)| ≤ 1

M

M∑
m=1

∆s
N (ym) ≡ ∆E

N,M , (19)

and∣∣VM [sh]− VM [sN ]
∣∣ =

1

M − 1

∣∣∣∣∣
M∑

m=1

(
EM [sh]− sh(ym)

)2

−
(
EM [sN ]− sN (ym)

)2
∣∣∣∣∣

=
1

M − 1

∣∣∣∣∣
M∑

m=1

(
sh(ym)− sN (ym)− EM [sh] + EM [sN ]

)(
sh(ym) + sN (ym)

)∣∣∣∣∣
≤ 1

M − 1

M∑
m=1

(∣∣sh(ym)− sN (ym)
∣∣+
∣∣EM [sh]− EM [sN ]

∣∣)∣∣sh(ym) + sN (ym)
∣∣

≤ 1

M − 1

M∑
m=1

(
∆s

N (ym) + ∆E
N,M

)(
∆s

N (ym) + 2
∣∣sN (ym)

∣∣) ≡ ∆V
N,M . (20)

It should be stated that this error bound is rather pessimistic, and that a more precise bound can
be obtained by introducing suitable dual problems to recover a quadratically convergent bound for
the variance, as reported in [30]. We can also bound the difference between the RB expected value
and the true value. To this end, we note from the triangle inequality that∣∣E[sh]− EM [sN ]

∣∣ ≤ ∣∣E[sh]− EM [sh]
∣∣+
∣∣EM [sh]− EM [sN ]

∣∣, (21)
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Following from (16a), (17), (19), (20), and (21) we define the error bound

∆̃E
N,M = a

√
(VM [sN ] + ∆V

N,M )

M
+ ∆E

N,M (22)

such that

lim
M→∞

Pr
(∣∣E[sh]− EM [sN ]

∣∣ ≤ ∆̃E
N,M

)
≥ erf

(
a√
2

)
.

Clearly, the error bound (22) comprises two terms: the first term is due to the MC sampling, while
the second term is due to the RB approximation.

3.2. Computational strategy

The linearity and parametric affinity of the problem allow for an efficient Offline-Online decomposi-
tion strategy. The Offline stage — parameter independent, computationally intensive but performed
only once — comprises the greedy search for the selection of parameter values, the computation
of snapshots ζpr

n , ζ
du
n , 1 ≤ n ≤ Nmax associated with the HDG approximation space at the selected

parameter values and the formation and storage of several parameter-independent small matrices
and vectors. The Online stage — parameter dependent, performed multiple times — evaluates
sN (y), ∆s

N (y) for any new y with complexity O
(
2N3 + 2(Q+ 1)2N2

)
independent of the dimen-

sion N of the HDG approximation space. The implications are twofold: first, if N and Q are indeed
small, we shall achieve very fast output evaluation, usually several orders of magnitude faster than
the HDG output; second, we may choose the HDG approximation very conservatively — to effec-
tively eliminate the error between the exact output and HDG output — without adversely affecting
the Online (marginal) cost. We refer the reader to [47, 54] for a more thorough description of the
Offline-Online procedure.

It is clear that the error in the RB expected value and its error bound depend on N and Q as well
as on M . Typically, both the error and its error bound decrease very rapidly as a function of N ,
but very slowly as a function of the number of samples M . Hence, M should be chosen very large,
while N can be chosen to be much smaller. Indeed, the (Online) computational cost to evaluate the

RB expected value EM [sN ] and its error bound ∆̃E
N,M scales as O

(
2M(N3 + 2(Q+ 1)2N2)

)
. Since

both Q and N are typically very small, the RB method can effect significant savings relative to the
HDG method. Nevertheless, its performance can be affected by the accuracy of the RB outputs
and the sharpness of the RB error bounds.

4. Model and Variance Reduction Method

4.1. Control variates principle

We first review the essential idea of control variates, which will serve as a building block for our
method. Let X be a random variable. We would like to estimate the expected value of X. Suppose
that we have another random variable Y and that its expected value E[Y ] is either known or
inexpensive to compute. We then introduce a new random variable

X∗ = X + γ(E[Y ]− Y ),

12



where γ is a deterministic coefficient. It is obvious that E[X∗] = E[X] for any choice of γ. However,
the variance of X∗ is different from that of X. Specifically, we have

V [X∗] = V [X] + γ2V [Y ]− 2γCov(X,Y ),

where Cov(X,Y ) = E[XY ]−E[X]E[Y ] is the covariance of X and Y . It can be easily shown that
the following choice

γ =
Cov(X,Y )

V [Y ]

is optimal in the sense that it minimizes the variance of X∗. With this choice, we have

V [X∗] = V [X](1− ρ2(X,Y )),

where ρ(X,Y ) = Cov(X,Y )/
√
V [X]V [Y ] is the correlation coefficient of X and Y . It is clear that

if X and Y are highly correlated (i.e., ρ(X,Y ) is close to ±1) then V [X∗] is much smaller than
V [X]. In that case, the MC simulation of E[X∗] converges significantly faster than that of E[X]
according to the CLT.

In summary, control variate methods try to estimate E[X] by using the “surrogate” expected value
E[Y ] and sampling the reduced variance variable X∗. When the same principle is applied recursively
to estimate E[Y ], the resulting method is called multilevel control variates.

4.2. Two-level Monte Carlo sampling

We now apply the above idea to compute an estimate of E[sh], where sh(y) is the stochastic output
obtained by using the HDG method to solve the underlying stochastic PDE as described in Section
2. To achieve this goal, we introduce

s∗h(y) = sh(y) + γ(E[sN1 ]− sN1(y)),

where sN1
(y) is the RB output developed in Section 3 for some N1 ∈ [1, Nmax]. Because sN1

(y)
generally approximates sh(y) very well, the two outputs are highly correlated. Therefore, we choose
γ = 1 as we expect that the optimal value of γ is close to 1. With this choice, we obtain

E[sh] = E[s∗h] = E[sh − sN1 ] + E[sN1 ]. (23)

The underlying premise here is that the two expectation terms on the right hand side can be
computed efficiently by MC simulations owing to variance reduction and model reduction: the first
term requires a small number of samples because its variance is generally very small, while the
second term is less expensive to evaluate because it involves the RB output.

In particular, let Y 0
M0

= {y0
m ∈ Λ, 1 ≤ m ≤ M0} and Y 1

M1
= {y1

m ∈ Λ, 1 ≤ m ≤ M1} be two
independent sets of random samples drawn in Λ with the probability density function ρ(y). We
calculate our Model and Variance Reduction (MVR) unbiased estimate of E[sh] as

EM0,M1
[sh] = EM0

[sh − sN1
] + EM1

[sN1
], (24)

where

EM0
[sh − sN1

] =
1

M0

M0∑
m=1

(
sh(y0

m)− sN1
(y0

m)
)
, EM1

[sN1
] =

1

M1

M1∑
m=1

sN1
(y1

m) (25)
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We note that our approach computes an estimate of E[sh], while the MC-RB approach described
in the previous section computes an estimate of E[sN ].

Similarly, we exploit the control variates idea to compute an estimate of the true variance V [sh]
given by

VM0,M1
[sh] = EM0

[ζh − ζN1
] + EM1

[ζN1
] , (26)

where ζh := (sh − EM0,M1
[sh])

2
and ζN1

:= (sN1
− EM0,M1

[sh])
2

and the expectations in (26) are
analogous to the expectations in (25). The variance estimate is negatively biased

E [VM0,M1 [sh]− V [sh]] = −V [sh − sN1
]

M0
− V [sN1

]

M1
,

as shown in the Appendix A.

It remains to provide a posteriori estimates for the errors in the expectation and variance. Sub-
tracting (24) from (23) we identify new random variables Z0, Z1 whose limiting distributions are
normal, and since they are independent their sum is also normally distributed,

Z0 = E[sh − sN1
]− EM0

[sh − sN1
] ∼ N

(
0 ;

V [sh − sN1 ]

M0

)
, (27a)

Z1 = E[sN1
]− EM1

[sN1
] ∼ N

(
0 ;

V [sN1
]

M1

)
, (27b)

Z0 + Z1 = E[sh]− EM0,M1 [sh] ∼ N
(

0 ;
V [sh − sN1 ]

M0
+
V [sN1 ]

M1

)
. (27c)

We invoke now the CLT to obtain an error estimate for the expectation error as

lim
M0→∞

lim
M1→∞

Pr
(∣∣E[sh]− EM0,M1

[sh]
∣∣ ≤ ∆E

M0,M1

)
= erf

(
a√
2

)
, (28)

where

∆E
M0,M1

= a

√
VM0

[sh − sN1
]

M0
+
VM1

[sN1
]

M1
, (29a)

VM0 [sh − sN1 ] =
1

M0 − 1

M0∑
m=1

(
EM0 [sh − sN1 ]− sh(y0

m) + sN1(y0
m)
)2
, (29b)

VM1
[sN1

] =
1

M1 − 1

M1∑
m=1

(
EM1

[sN1
]− sN1

(y1
m)
)2
, (29c)

and the variances in (27c) are estimated with their MC counterparts (29b)–(29c).

For the variance, we first define auxiliary variables ζ̂h := (sh − E[sh])
2

and ζ̂N1
:= (sN1

− E[sh])
2

and the auxiliary variance

V̂M0,M1
[sh] = EM0

[ζ̂h − ζ̂N1
] + EM1

[ζ̂N1
] .

The MVR variance estimate in (26) can be rewritten as (see Appendix A)

VM0,M1 [sh] = V̂M0,M1 [sh]−
(
E[sh]− EM0,M1 [sh]

)2
,
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which implies

VM0,M1
[sh]− V [sh] =

(
V̂M0,M1

[sh]− V [sh]
)
−
(
E[sh]− EM0,M1

[sh]
)2
. (30)

Let us consider the two terms in the RHS in reverse order. Convergence in probability for the

second term is guaranteed by (28), that is EM0,M1
[sh] − E[sh]

P−→ 0. Furthermore, repeating the
analysis in (27) for the first term leads to

V̂M0,M1
[sh]− V [sh] ∼ N

(
0 ;

V [ζ̂h − ζ̂N1 ]

M0
+
V [ζ̂N1 ]

M1

)
. (31)

Therefore the limiting distribution of VM0,M1 [sh]− V [sh] is the same as the limiting distribution of

V̂M0,M1
[sh]− V [sh] (Slutzky’s theorem), and the straightforward application of the CLT recovers

lim
M0→∞

lim
M1→∞

Pr
(∣∣V [sh]− VM0,M1

[sh]
∣∣ ≤ ∆V

M0,M1

)
= erf

(
a√
2

)
,

where

∆V
M0,M1

= a

√
VM0

[ζh − ζN1
]

M0
+
VM1

[ζN1
]

M1
, (32a)

VM0 [ζh − ζN1 ] =
1

M0 − 1

M0∑
m=1

(
EM0 [ζh − ζN1 ]− ζh(y0

m) + ζN1(y0
m)
)2
, (32b)

VM1
[ζN1

] =
1

M1 − 1

M1∑
m=1

(
EM1

[ζN1
]− ζN1

(y1
m)
)2
. (32c)

The variances in (31) are again estimated with their MC simulations (32a), and E[sh] in ζ̂h, ζ̂N1 is
replaced by the MVR estimates EM0,M1 [sh], ζh and ζN1 .

We would like to make two observations. First, the model and variance reduction approach described
here requires M0 realizations of the high-fidelity HDG output and M1 realizations of the RB output,
while the MC-RB approach described in the previous section requires M realizations of the RB
output and its error bound. If we take N1 = N then it is reasonable to consider M1 ≈ M .
Furthermore, we take M0 such that the computational cost of M0 realizations of the HDG output
is commensurate with that of M realizations of the RB output bound. In this scenario, the two
approaches have the same computational complexity. The advantage of the present approach is that
it provides more accurate estimates than the MC-RB approach owing to the variance reduction.
Second, unlike the MC-RB approach, the present approach does not require a posteriori error
bounds for the RB output to obtain the error bounds for our estimates of the statistical outputs.
As a result, our approach can be applied to problems for which a posteriori output bounds are
either computationally expensive or theoretically difficult.
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4.3. Multilevel Monte Carlo sampling

The method can be further generalized and improved by pursuing a multilevel control variate
strategy. Given L different RB output models sN`

(y), 1 ≤ ` ≤ L, with N1 > N2 > . . . > NL
3, we

first express the expected value as

E[sh] = E[sh − sN1
] +

L−1∑
`=1

E[sN`
− sN`+1

] + E[sNL
].

We next introduce L+ 1 independent sample sets Y `
M`

= {y`
m ∈ Λ, 1 ≤ m ≤M`}, 0 ≤ ` ≤ L, which

are drawn in Λ with probability density function ρ(y). We then define our estimate of E[sh] as

EM0,...,ML
[sh] = EM0 [sh − sN1 ] +

L−1∑
`=1

EM`
[sN`

− sN`+1
] + EML

[sNL
] .

Extending the analysis in (27) we apply the CLT to the multilevel case to obtain

lim
M0→∞

. . . lim
ML→∞

Pr
(∣∣E[sh]− EM0,...,ML

[sh]
∣∣ ≤ ∆E

M0,...,ML

)
= erf

(
a√
2

)
,

∆E
M0,...,ML

= a

√√√√VM0 [sh − sN1 ]

M0
+

L−1∑
`=1

VM`
[sN`

− sN`+1
]

M`
+
VML

[sNL
]

ML
.

Similarly, the estimate of the variance is defined as

VM0,...,ML
[sh] = EM0

[ζh − ζN1
] +

L−1∑
`=1

EM`
[ζN`
− ζN`+1

] + EML
[ζNL

] ,

where the auxiliary variables are ζh := (sh − EM0,...,ML
[sh])

2
and ζN`

:= (sN`
− EM0,...,ML

[sh])
2

for
` = 1, . . . , L. Combining the results in (30)–(31) with the CLT leads to the following error bound
for the variance estimate

lim
M0→∞

. . . lim
ML→∞

Pr
(∣∣V [sh]− VM0,...,ML

[sh]
∣∣ ≤ ∆V

M0,...,ML

)
= erf

(
a√
2

)
,

∆V
M0,...,ML

= a

√√√√VM0
[ζh − ζN1

]

M0
+

L−1∑
`=1

VM`
[ζN`
− ζN`+1

]

M`
+
VML

[ζNL
]

ML
.

Note that all expectations and variances are MC estimates through the sample sets Y `
M`

for 0 ≤
` ≤ L.

We will refer to the general model and variance reduction method with a sequence of L reduced
basis models as the L-MVR method. For clarity of notation, we shall identify sh − sN1

as level 0,

3In our context, it is natural to number the levels from the finest RB approximation to the coarsest RB approxi-
mation because the finest RB level is closest to the HDG approximation.
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and the subsequent sN`
− sN`+1

as level ` . The method allows us to transfer the computational
burden from the higher-fidelity (expensive) outputs to the lower-fidelity (inexpensive) outputs. In
particular, we can choose N1, N2, . . . , NL so as to have M0 �M1 � . . .�ML. Hence, the number
of evaluations of the higher-fidelity outputs are significantly smaller than those of the lower-fidelity
outputs, thereby resulting in a significant reduction in the overall computational cost. Finally, we
address the issue of how to determine the RB dimensions N1, N2, . . . , NL and the number of samples
M0,M1, . . . ,ML to achieve a specified error tolerance and minimize the computational cost.

4.4. Selection method

Let tN`
denote the (Online) wall time to compute the RB output sN`

(y) for ` ≥ 1, and th denote
the wall time to compute the HDG output sh(y) for any given y ∈ Λ. Note that tN`

depends on
N`, while th depends on the finite element approximation spaces. The total (Online) wall time TL
of the L-MVR and the (Online) speedup πL with respect to the MC-HDG method are given by

TL = (th + tN1
)M0 +

L−1∑
`=1

M`

(
tN`

+ tN`+1

)
+ tNL

ML, πL =
thM

TL
. (33)

We wish to find (N1, N2, . . . , NL) and (M0,M1, . . . ,ML) so as to minimize TL, while ensuring that
∆E

M0,...,ML
is equal to a specified error tolerance εtol. This error condition is satisfied if we take

a2VML
[sNL

]

ML
= wLε

2
tol, a2VM0 [sh − sN1 ]

M0
= w0ε

2
tol, a2VM`

[sN`
− sN`+1

]

M`
= w`ε

2
tol, ` ≥ 1, (34)

for any given positive w` ∈ (0, 1), ` = 0, . . . , L such that w0 + w1 + . . . + wL = 1. The choice of
the weights depends on how we would like to distribute the error among the levels. We combine
expressions (33)–(34) to define the cost function

CL =
TLε

2
tol

a2
=
VM0

[sh − sN1
]

w0
(th + tN1) +

L−1∑
`=1

VM`
[sN`

− sN`+1
]

w`

(
tN`

+ tN`+1

)
+ tNL

VML
[sNL

]

wL
.

(35)
We need to determine (M0,M1, . . . ,ML) and (N1, N2, . . . , NL) that minimize CL. Unfortunately,
this is a nonlinear integer optimization problem which is difficult to solve exactly. We thus solve
an approximate problem as follows.

We first introduce a test sample set Y
M̂

= {ŷm ∈ Λ, 1 ≤ m ≤ M̂}. We then precompute and

store the HDG outputs sh(ŷm) for m = 1, . . . , M̂ and the RB outputs sN (ŷm) for m = 1, . . . , M̂
and N = 1, . . . , Nmax. In addition, we also precompute and store th and tN for N = 1, . . . , Nmax.
For any given strictly decreasing L-tuple I = (I1, I2, . . . , IL) ∈ [1, Nmax]L and valid weights w =
(w0, . . . , wL), we can evaluate the equivalent cost function

ĈL(I,w) =

L∑
`=0

Ĉ`
L(I)

w`
=
V
M̂

[sh − sI1 ]

w0
(th + tI1) +

L−1∑
`=1

V
M̂

[sI` − sI`+1
]

w`

(
tI` + tI`+1

)
+ tIL

V
M̂

[sIL ]

wL
,

(36)
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with O
(

(L+ 1)M̂
)

operations count, where all the variances are computed using the test sample

set Y
M̂

. We now set

N ≡ (N1, N2, . . . , NL) = arg min
I

ĈL(I,wI),

s.t. Nmax ≥ I1 > I2 > . . . > IL ≥ 1
(37)

where the weights wI are the minimizers of the equivalent cost for any L-tuple I, that is

wI ≡ (wI
0 , w

I
1 , . . . , w

I
L) = arg min

w
ĈL(I,w),

s.t.

L∑
`=0

w` = 1, w` > 0.
(38)

The KKT conditions for (38) render the optimal weights for any L-tuple I as

wI
` =

√
Ĉ`

L(I)/Ĉ0
L(I)

L∑
`′=0

√
Ĉ`′

L (I)/Ĉ0
L(I)

, ` = 0, . . . , L. (39)

The minimization problem (37) can be approximately solved, for the weights defined in (39), by

simply evaluating the cost function ĈL(I,wI) for all feasible L-tuples I in O((L+ 1)M̂(N − L)×
. . .× (N − 1)/L!) operations count. Even though we present here an optimal choice of the weights,
any valid distribution can be employed.

Having determined the RB dimensions N and the weights wN , we can now proceed with the MC
simulations for all levels. We initially set Y 0

M0
= Y

M̂
, and thus reuse sh(ŷm),m = 1, . . . , M̂ . We

then execute the MC processes for all the levels and enforce the error constraint ∆E
M0,...,ML

= εtol

by adding new random parameters to the sample sets until the following inequalities

ML ≥
a2VML

[sNL
]

wN
L ε

2
tol

, M0 ≥
a2VM0

[sh − sN1
]

wN
0 εtol

, M` ≥
a2VM`

[sN`
− sN`+1

]

wN
` εtol

, ` = 1, . . . , L− 1,

are satisfied and the MC processes are terminated upon satisfaction of these conditions. Therefore,
the sample sets Y `

M`
, ` = 0, . . . , L are continuously updated during the MC runs. Finally, to provide

confidence in the application of the CLT we also need to enforce that M` are greater than a certain
threshold, say 30.

Although we have assumed that the number of levels L is fixed, our approach also allows us to
compare the computational costs for several values of L. Hence, we can determine not only the RB
dimensions and the weights, but also the optimal number of levels, and it can be done efficiently
evaluating expressions (36)–(38). This analysis provides inexpensive means to determine the optimal
multilevel structure.
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5. Numerical Results

5.1. A coercive example: Heat diffusion

In the first example, we consider the one dimensional steady-state heat equation in D = (0, 1):

− (κux)x = f(x), ∀x ∈ D, (40a)

κux = 0, on x = 1, (40b)

u = 0, on x = 0, (40c)

where κ(x, ω) is a piecewise constant function on a series of disjoint subdomains Dq = ((q −
1)/Q, q/Q), q = 1, . . . , Q, that is, κ(x, ω) =

∑Q
q=1 κq(ω)1Dq

, with κq(ω) ∈ [γ−q , γ
+
q ] for all q. For

this problem, we treat κq(ω) as i.i.d. uniform random variables; hence, we can write κ(x, ω) =

κ(x,y) =
∑Q

q=1 yq1Dq
, where yq, q = 1, . . . , Q are i.i.d. random variables with uniform continuous

distributions in the interval [0.1, 1]. The problem (40) has an analytic solution given by

u(x,y) =

∫ x

0

(
1

κ(z,y)

∫ 1

z

f(ξ)dξ

)
dz. (41)

The observable quantity is the average temperature on the domain, namely, s(y) =
∫ 1

0
u(x,y). The

output s, its expectation E[s] and variance V [s] have closed analytic forms, thereby s will be here
used instead of the HDG output sh. Numerical results for a constant source term f(x) = 1 and
Q = 10 are presented below.
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(a) Exact solution u(x,y) for several realizations of
the diffusivity field.
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(b) Average output error bound ∆s
N,avg and average

output error εN,avg for y ∈ YM̂ vs. RB size N.

Figure 1: Representative solutions and the RB convergence of the heat diffusion example.

We show in Figure 1a different realizations of the exact solution in (41). Since the output is
compliant, the dual problem coincides with the primal problem. We thus need to construct the
reduced basis approximation for the primal problem only. Furthermore, since the bilinear form is
coercive and the parameters are positive, we compute the stability constant βh(y) using a bound
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MC-HDG MC-RB (N = 9) 1-MVR (N1 = 5)

M
∣∣E[s] − EM [s]

∣∣ ∆E
h,M

∣∣E[s] − EM [sN ]
∣∣ ∆̃E

N,M

∣∣E[s] − EM0,M1
[s]
∣∣ ∆E

M0,M1

102 2.10e−2 2.6e−2 a 2.19e−2 1.1e−1 + 7.0e−2 a 2.30e−2 2.9e−2 a
103 6.59e−2 8.3e−3 a 7.06e−3 1.1e−1 + 2.2e−2 a 7.30e−3 9.2e−3 a
104 2.08e−3 2.6e−3 a 3.21e−3 1.1e−1 + 7.0e−3 a 2.32e−3 2.9e−3 a
105 6.57e−4 8.3e−4 a 2.88e−3 1.1e−1 + 2.2e−3 a 7.29e−4 9.2e−4 a
106 2.11e−4 2.6e−4 a 2.90e−3 1.1e−1 + 7.0e−4 a 2.32e−4 2.9e−4 a

Table 1: The expectation error and its error bound for different values of M for the MC-HDG
method, the MC-RB method and the 1-MVR method.

conditioner technique [62], which greatly simplifies the process. Our reduced basis is constructed
with Nmax = 10. We show in Figure 1(b) the average output error εN,avg and the average output

error bound ∆s
N,avg as a function of N , where εN,avg =

∑
y∈Y

M̂

∣∣s(y)− sN (y)
∣∣/M̂ and ∆s

N,avg =∑
y∈Y

M̂
∆s

N (y)/M̂ , being Y
M̂

a test set of M̂ = 1000 samples. We observe that the average output

error and the average output error bound converge slowly up to N = 9 and drop rapidly at N = 10.
This is because of the nature of the particular problem which requires N = Q basis functions to
capture all the possible solutions. When we use N < Q, we do not have enough basis functions to
represent all the possible solutions, which in turn causes a slow convergence of the reduced basis
approximation.

MC-HDG 1-MVR (N1 = 5)

M
∣∣V [s] − VM [s]

∣∣ ∆V
h,M

∣∣V [s] − VM0,M1
[s]
∣∣ ∆V

M0,M1

102 9.21e−3 1.1e−2 a 1.24e−2 1.5e−2 a
103 2.91e−3 3.6e−3 a 4.06e−3 5.0e−3 a
104 9.20e−4 1.2e−3 a 1.29e−3 1.6e−3 a
105 2.91e−4 3.6e−4 a 4.07e−4 5.1e−4 a
106 9.29e−5 1.1e−4 a 1.27e−4 1.6e−4 a

Table 2: The variance error and its error bound for different values of M for the MC-HDG method
and the 1-MVR method.

We now compare the performance of the MC-HDG method with a uniform mesh of h = 1/10,
the MC-RB with N = 9, and the L-MVR with L = 1, N1 = 5, M1 = M and M0 = M/10
in estimating E[s] and V [s] as a function of M . For each M value we repeat the simulations
H = 1000 times, and present in Tables 1 and 2 the average values of the absolute errors and error
bounds for the expectation and the variance respectively. We observe that the 1-MVR method
significantly outperforms the MC-RB method. The improvement is noticeable when we increase
M , since the MC-RB method stagnates around 2.9 × 10−3 whereas 1-MVR keeps reducing the
error as the square root of the number of samples. The stagnation is caused by the inherent bias
arising from the reduced basis method with N = 9, which provides outputs with a level of error of
3× 10−3, as seen in Figure 1(b). With the MC-RB method we are unable to achieve more accurate
estimators than the precision of the reduced basis output. Furthermore, the error bound of the
MC-RB method, ∆̃E

N,M as defined in (22), is the sum of two terms: the first term ∆E
N,M does

not depend on the confidence level, whereas the second term a
√

(VM [sN ] + ∆V
N,M )/M does. We

observe from Table 1 that increasing M does not improve the error bound of the MC-RB method
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since it is dominated by ∆E
N,M , which in many cases can be overly pessimistic. Variance estimations

for the MC-RB are not included in Table 2, as they can only be worse than the expectation results.

The 1-MVR method does not suffer from this stagnation owing to the fact that it directly approxi-
mates E[s] instead of E[sN ]. As a result, the expectation and variance error of the 1-MVR method
can be made arbitrarily small. The same behavior is observed in the error bounds ∆E

M0,M1
and

∆V
M0,M1

defined in (29a) and (32a), which agree with the Monte Carlo dependence on the square
root of the sample size. Even though the accuracy of the estimators and the sharpness of the
bounds for 1-MVR is slightly worse than that of MC-HDG, the former performs ten times less full
model evaluations than the latter. These numerical results show a considerable gain for model and
variance reduction.

5.2. A noncoercive example: Acoustic wave propagation

We consider a wave propagation problem as depicted in Figure 2a. A wave is excited by a Gaus-
sian source term f centered at xs and propagates through a heterogeneous medium κ(x,y). The
governing equation for this model problem is given by

−∇ · (κ∇u)− k2u = f, ∀x ∈ D ,

κ∇u · n− iku = 0, ∀x ∈ ∂DR ,

κ∇u · n = 0, ∀x ∈ ∂DN ,

where f =
10√
2πσs

exp

(
− (x1 − xs1)2 + (x2 − xs2)2

2σ2
s

)
for xs = (−3,−16) and σs = 0.25 is the

source term and k =
√

2 is the wavenumber. Here the physical domain is D = [−15, 15]× [−20, 0].
To describe the κ(x,y) field we use the example described in [9], namely

κ(x,y) = κ+ σy1

√
λ0

2
+ σ

8∑
n=1

√
λn

(
sin

(
nπ

x1 + `/2

`

)
y2n + cos

(
nπ

x1 + `/2

`

)
y2n+1

)
,

where √
λn =

(√
πLc

)1/2
exp

(
− (nπLc)

2

8

)
, n = 0, . . . , 8,

for κ = 1, σ = 1/10, and Lc = 1/12. Here the random variables yn for n = 1, . . . , Q = 17 are
uncorrelated and uniformly distributed with zero mean and unit variance. Hence, we can write
κ(x,y) in the form of the affine expansion (2.1) with Λ = [−

√
3,
√

3]Q. We consider the following
output

s(y) =
1√

2πσO

∫
D
<(u(y)) exp

(
− (x1 − xO1)2 + (x2 − xO2)2

2σ2
O

)
dx,

for xO = (5,−7) and σO = 0.25, which corresponds to the real part of the amplitude at xO

regularized by a Gaussian field. The physical domain is discretized into a triangular mesh of 1420
elements as shown in Figure 2b and polynomials of degree p = 4 are used to represent the numerical
solution uh(y). Figure 2c depicts a realization of the numerical solution obtained using the HDG
method.
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∂DN

∂DR

κ(x,y)
xO

`

xs

(a) Geometry of the wave propagation problem. The
source generates a wave that propagates through the
medium.

(b) Triangular mesh of 1420 elements for the wave
problem. Higher resolution is appreciated at the
source and output locations.

(c) Random realization of the wave amplitude field,
using elements of order p = 4 for a total of N =
32180 degrees of freedom.
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(d) Average output error bound ∆s
N,avg and average

output error εN,avg for y ∈ YM̂ vs. RB size N.

Figure 2: Problem specification, representative solution, and RB convergence of the wave propaga-
tion example

Since the exact values of E[sh] and V [sh] are not known, we approximate them using the MC-
HDG method with a random sample set YM∗ of M∗ = 6.5 × 107 and obtain EM∗ [sh] = 0.2576
and VM∗ [sh] = 0.0596 for a statistical error of 10−4 and 3.1 × 10−5 respectively, corresponding to
0.999 confidence level (a = 3.3). We are going to use E[sh] = EM∗ [sh] and V [sh] = VM∗ [sh] as
the reference values to evaluate the performance of our method. We consider an error tolerance of
10−3 and a confidence level 0.95 for our estimators. To achieve this level of accuracy, the MC-HDG
method requires a random sample set YM of size M = 238447 to compute the MC-HDG estimators
EM [sh], VM [sh].

We next pursue the RB method and show in Figure 2d the average output error εN,avg and its

error bound ∆s
N,avg as a function of N . Here εN,avg =

∑
y∈Y

M̂

∣∣s(y)− sN (y)
∣∣/M̂ and ∆s

N,avg =∑
y∈Y

M̂
∆s

N (y)/M̂ , where Y
M̂

is a test set of M̂ = 100 samples. We observe that the RB error

22



40 50 60 70 80 90

200

300

400

500

600

Speedup

RB size I1

 

 

10

C
o
st

fu
n
c
t
io
n

π1

C1

Ĉ1
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(d) Expectation (left) and variance (right) estimators with 95% confidence interval.

Figure 3: Result for the 1-MVR method vs RB size I1.

bound is about two orders of magnitude larger than the output error. The slow convergence rate
of the RB error bound is expected because the problem is non coercive and has (many) Q = 17
parameters. Since the RB error bounds are quite pessimistic, we will not consider the MC-RB
method to compute the statistical outputs and their error bounds.

We now turn to the 1-MVR and enforce the tolerance ∆E
M0,M1

= εtol = 10−3 and the confidence
level of 0.95. We depict in Figure 3a the computational speedup π1 relative to the MC-HDG
method, the original cost function C1, and the equivalent cost function Ĉ1 as a function of the
RB dimension I1– results for each level size are averaged 8 times. The equivalent cost function Ĉ1

approximates the original cost function C1 reasonably well, despite being drastically less expensive
to evaluate than the true cost function (and available a priori). The equivalent cost is minimized at
N1 = 72, requiring (M0,M1) = (96, 278684) for a speedup π1 = 585, whereas the true cost yields an
optimal RB dimension N1 = 66 and sample sizes (M0,M1) = (106, 308836) that achieve a speedup
π1 = 599. The model and variance reduction strategy is represented in Figures 3b-3c. For small
reduced basis size more accuracy is demanded for level 1, that is w1 < w0, since the RB model
is very inexpensive to evaluate and the variance of sh − sI1 is large. Conversely, for increasing I1
the RB model becomes more costly to compute, whereas the variance of sh − sI1 rapidly decreases
– therefore requiring very few full model evaluations. This change of behavior is detected by the

23



(a) Computational speedup π2. (b) Cost function C2. (c) Equivalent cost function Ĉ2.

(d) Expectation (left) and variance (right) estimators with 95% confidence interval.

Figure 4: Results for the 2-MVR method vs RB sizes I2 and I1.

level selection method by setting w0 < w1, that is requiring higher accuracy for level 0. The model
and variance reduction method therefore seeks a balance between these two phenomena to achieve
optimal efficiency. We next show in Figure 3d the 1-MVR expectation and variance as well as their
error bars as a function of I1. The expectation error bound is equal to the prescribed tolerance
εtol = 10−3, while the error bound for the variance ∆V

M0,M1
decreases from about 4.5 × 10−4 for

small I1 to about 3.2× 10−4 for larger reduced basis size.

We proceed analogously for the 2-MVR method computing the speedup with respect to the MC-
HDG method for several values of level sizes I1 and I2. The computational gain is presented in
Figure 4a, and the optimum speedup π2 = 1800 is reached for (N1, N2) = (122, 36), which needs
(M0,M1,M2) = (30, 4102, 286152). The true cost and the equivalent cost present a very similar
behavior, compare Figures 4b-4c, and the level selection method recovers as low fidelity models
the bases (N1, N2) = (139, 36), for sample sizes (M0,M1,M2) = (30, 3483, 281824) and a speedup
π2 = 1778. The accuracy of the estimators is shown in Figure 4d, and we observe that the true
moments lie in all cases inside the confidence intervals (displayed as a surface) computed by the
model and variance reduction method. We now analyze the performance of the L-MVR when an
arbitrary number of levels are considered. The goal is to use the information on the test set to
select not only the level sizes, but also the optimal multilevel model. For simplicity, we consider
the same test set with M̂ = 100 used for the previous cases, and obtain for each number of levels
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L = 1 L = 2 L = 3 L = 4 L = 5

(N1, . . . , NL) 72 (139, 36) (150, 52, 16) (150, 84, 47, 16) (150, 118, 84, 47, 16)
πL 585 1778 2277 2363 2354
CL/C4 4.03 1.33 1.04 1 1.00

ĈL/Ĉ4 4.37 1.38 1.08 1 1.00

Table 3: Predicted optimal level sizes, speedup πL with respect to MC-HDG cost and relative real
and equivalent multilevel cost.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Level ℓ

w
N

 

 

L = 1

L = 2

L = 3

L = 4

L = 5

(a) Distribution of weights.

1 2 3 4 5

0.257

0.2575

0.258

0.2585

0.259

L

 

 

E [sh] EM0,...,ML
[sh] EM [sh]

(b) Expectation estimator with
95% confidence interval.

1 2 3 4 5

0.0592

0.0594

0.0596

0.0598

0.06

0.0602

L

 

 

V [sh] VM0,...,ML
[sh] VM [sh]

(c) Variance estimator with 95%
confidence interval.

Figure 5: Results for the L-MVR for arbitrary number of levels.

the optimal level sizes N = (N1, . . . , NL), weights wN =
(
wN

0 , . . . , wN
L

)
and the equivalent cost

ĈL in (36). We then perform the L-MVR that provides the actual computational cost CL in (35).
Results corresponding to L = 1, 2, 3, 4, 5 are presented in Table 3, for a confidence level of 0.95
and averaged 8 times. The costs are normalized with respect to the minimum costs, attained with
L = 4 for this problem. The actual speedup πL in (33) with respect to MC-HDG is also shown.

The proposed selection method effectively predicts the a priori performance for each model, since
ĈL/Ĉ4 replicates the behavior of CL/C4 quite well. The consideration of an arbitrary number of
levels recovers even greater speedups, and the inexpensive a priori analysis enables the detection
of the optimal model. Furthermore, the weights for each model are shown in Figure 5a, exhibiting
a nonlinear behavior that truly motivates its selection in an optimal automated manner. The
distribution of the weights enforces a larger error on the coarser levels, and requires a smaller error
on the finer levels relying on the reduction of variance. The estimators for each number of levels
also satisfy the required accuracy, as seen in Figure 5b-5c.

6. Conclusions

We have presented a model and variance reduction method for computing statistical outputs of
stochastic elliptic PDEs. We first combined the reduced basis method with the hybridizable discon-
tinuous Galerkin method by introducing a new HDG weak formulation that retains affine parametric
dependence, hence providing rapid and accurate evaluation of the functional output of parametrized
PDEs. We next incorporated them into the multilevel control variate framework to exploit the
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statistical correlation between the RB approximation and the high-fidelity HDG discretization to
accelerate the convergence rate of the Monte Carlo simulations by several orders of magnitude.
We then introduced a posteriori error bounds for the estimates of the statistical outputs. Finally,
we devised an algorithm to select the RB dimensions and the number of levels L. We presented
numerical results for both coercive and noncoercive elliptic problems. The results showed that the
present method provides a significant speedup compared to both the MC-HDG method and the
MC-RB method.

We conclude the paper by pointing out several possible extensions and directions for further re-
search. Firstly, it would be interesting to address the computation of higher order moments, with
the additional difficulties of determining the bias and the limiting distributions. Secondly, we would
like to extend the proposed approach to nonlinear stochastic problems, which will broaden the ap-
plication domain of our method. In this aspect, the main challenge remains the development of
the RB method for the HDG discretization of nonlinear parametrized PDEs. We would also like
to tackle stochastic optimization problems with stochastic PDE constraints, for which the rapid
and reliable evaluation of statistical outputs and their derivatives are crucial to finding an optimal
solution of any stochastic optimization problem. We would like to develop new methods that allow
us to compute not only the statistical outputs but also their derivatives with respect to the decision
variables.
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Appendix A. Bias of estimators

To simplify the notation, we will use the following auxiliary variables

ζh := (sh − EM0,...,ML
[sh])

2
, ζN`

:= (sN`
− EM0,...,ML

[sh])
2
, ` = 1, . . . , L ,

ζ̂h := (sh − E[sh])
2
, ζ̂N`

:= (sN`
− E[sh])

2
, ` = 1, . . . , L ,

sh = EM0,...,ML
[sh] ,

and the auxiliary (unbiased) variance

V̂M0,...,ML
[sh] = EM0 [ζ̂h − ζ̂N1 ] +

L−1∑
`=1

EM`
[ζ̂N`
− ζ̂N`+1

] + EML
[ζ̂NL

]

which allows us to express the L-MVR variance estimate as

VM0,...,ML
[sh] = V̂M0,...,ML

[sh]− (E[sh]− EM0,...,ML
[sh])

2
(A.1)
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We first show the latter expression. We add and subtract E[sh] from every term within the expec-
tations

VM0,...,ML
[sh] = EM0

[(
sh − E[sh]− sh + E[sh]

)2 − (sN1
− E[sh]− sh + E[sh]

)2]
+

L−1∑
`=1

EM`

[(
sN`
− E[sh]− sh + E[sh]

)2 − (sN`+1
− E[sh]− sh + E[sh]

)2]
+ EML

[(
sNL
− E[sh]− sh + E[sh]

)2]
,

and now expanding the squares we arrive at

VM0,...,ML
[sh] = EM0

[
ζ̂h − ζ̂N1

− 2 (sh − E[sh]) (sh − sN1
)
]

+

L−1∑
`=1

EM`

[
ζ̂N`
− ζ̂N`+1

− 2 (sh − E[sh])
(
sN`
− sN`+1

)]
+ EML

[
ζ̂NL
− 2 (sh − E[sh]) (sNL

− E[sh]) + (sh − E[sh])
2
]
.

Applying linearity of the MC expectation operator and grouping terms we arrive at (A.1). The
bias of the L-MVR variance estimate is defined as

E [VM0,...,ML
[sh]− V [sh]] = E

[
V̂M0,...,ML

[sh]− V [sh]
]
− E

[
(E[sh]− EM0,...,ML

[sh])
2
]

= E[sh]2 − E
[
E2

M0,...,ML
[sh]
]
.

(A.2)

since EM0,...,ML
[sh] and V̂M0,...,ML

[sh] are unbiased. If we rename the RB output differences as

z0 := sh − sN1 , zL := sNL
, z` := sN`

− sN`+1
, ` = 1, . . . , L− 1

the expression for expectation of the square of the L-MVR expectation estimate reads

E
[
E2

M0,...,ML
[sh]
]

=

L∑
`=0

1

M2
`

E

( M∑̀
m=1

z`(ym)

)2
+ 2

L∑
`<`′

`=0

E

 M∑̀
m=1

z`(ym)

M`′∑
m′=1

z`′(ym′)


thanks to the linearity of the expectation operator. The latter expression can be further reduced
with

E

( M∑̀
m=1

z`(ym)

)2
 = M`E[z2

` ] + (M2
` −M`)E[z`]

2,

E

 M∑̀
m=1

z`(ym)

M`′∑
m′=1

z`′(ym′)

 = E[z`]E[z`′ ] ,

that hold because we consider independent samples within each level and independent samples
among levels. We then have

E
[
E2

M0,...,ML
[sh]
]

=

L∑
`=0

(
E[z2

` ]− E[z`]
2

M`
+ E[z`]

2

)
+ 2

L∑
`<`′

`=0

E[z`]E[z`′ ] ,
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and by induction on the number of levels, the cross-products can be reduced to

E
[
E2

M0,...,ML
[sh]
]

= E[sh]2 +

L∑
`=0

E[z2
` ]− E[z`]

2

M`
= E[sh]2 +

L∑
`=0

V [z`]

M`
. (A.3)

Hence, if we combine equations (A.2)–(A.3) we obtain the bias of the L-MVR variance estimate

E [VM0,...,ML
[sh]− V [sh]] = −

L∑
`=0

V [z`]

M`
.
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[1] Babuška, I., Nobile, F., Tempone, R., 2007. A stochastic collocation method for elliptic partial
differential equations with random input data. SIAM Journal on Numerical Analysis 45 (3),
1005–1034.

[2] Babuška, I., Tempone, R., Zouraris, G. E., 2004. Galerkin finite element approximations of
stochastic elliptic partial differential equations. SIAM Journal on Numerical Analysis 42 (2),
800–825.
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