
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2017-015 December 21, 2017

Generating Component-based
Supervised Learning Programs From
Crowdsourced Examples
Jose Cambronero and Martin Rinard

Generating Component-based Supervised Learning
Programs FromCrowdsourced Examples

José Cambronero
CSAIL
MIT

Cambridge, MA, USA
jcamsan@csail.mit.edu

Martin Rinard
CSAIL
MIT

Cambridge, MA, USA
rinard@csail.mit.edu

Abstract
We present CrowdLearn, a new system that processes an ex-
isting corpus of crowdsourced machine learning programs
to learn how to generate e�ective pipelines for solving super-
vised machine learning problems. CrowdLearn uses a prob-
abilistic model of program likelihood, conditioned on the
current sequence of pipeline components and on the charac-
teristicsof the inputdata to thenextcomponent in thepipeline,
to predict candidate pipelines. Our results highlight the e�ec-
tivenessof this technique in leveragingexistingcrowdsourced
programs to generate pipelines that work well on a range of
supervised learning problems.

Keywords programsynthesis, automatedmachine learning,
code mining

1 Introduction
Supervised learning has now become mainstream comput-
ing practice [37]. It has been successfully applied to solve
problems as varied as identifying email spam, mapping gene
expressions todiseases, andpredictingstockreturns [8, 28, 33].
Indeed, it is nowwidely applied across many areas of modern
data science, often by practioners whose primary interest and
focus is on their domain.

Solutions to supervised learning problems now often take
the form of a pipeline of components that 1) prepare the
data for a core learning algorithm, 2) apply a core learn-
ing algorithm, and 3) evaluate the learned model on a held-
out dataset [32]. These pipelines are typically built from
o� the shelf components developed (with signi�cant e�ort)
by machine learning experts. Prominent sources of general
machine learning components include Python Scikit-Learn
(sklearn) [9] and Java Weka [17]. Given the signi�cant re-
sources devoted to developing these components, and the
large range of data transforms, learning algorithms, and eval-
uationmetrics available, amodern practitionermust nownav-
igate a complex space of potential pipelines to �nd a pipeline
that provides a good match for the characteristics of the data
set (and can therefore deliver an e�ective solution to the learn-
ing problem).

1.1 CrowdLearn
We present CrowdLearn, a system that learns to develop
component-based supervised machine learning pipelines by
using crowdsourced code and data examples. CrowdLearn
starts with user data provided in a tabular form, with relevant
features available as columns, and generates a set of pipelines
consisting of API calls that process the data, �t a learning
model, and evaluate it. Critically, CrowdLearn extracts rele-
vant components from supervised learning pipelines written
by humans and predicts a relevant sequence of components in
the pipeline based on characteristics of the input data set. The
goal is to provide users with e�ective, automatically gener-
ated supervised learning pipelines. Potential bene�ts include
the automatic exploitation of machine learning expertise en-
coded in pipelines in supervised learning code repositories,
the reduction/elimination of the need for users to become
knowledgable about complex machine learning components
and APIs, a reduction in the development time and expertise
required to obtain e�ective learning pipelines, and enabling
a broader range of users to productively apply supervised
learning to problems in their domain.

1.2 Basic Approach
We collected a set of 500 human-written programs, each of
which implements a supervised learning pipeline. Together,
theseprograms solve9 supervised learningproblems.Thepro-
grams and data sets are hosted on Kaggle [16], a data science
website that hosts competitions, tutorials, and community
forums for relevant machine learning topics. We instrument
and execute the set of programs to extract the supervised
learning pipeline. Speci�cally, our instrumentation collects
dynamic program traces and includes a rich data abstraction
for parameters to API calls. This abstraction captures key
characteristics (e.g. data types, summary statistics, probabil-
ity densities, column correlations, missing value frequency)
of the input data to that component. We then use a slicing-
based algorithm to extract a canonical representation of the
supervised learning pipeline executed in each dynamic trace.
CrowdLearn uses a probabilistic model of program likeli-

hood, conditioned on the current sequence of pipeline compo-
nents and on the characteristics of the input data to the next
component in the pipeline, to predict candidate pipelines. The
extracted pipelines from the dynamic traces, along with the

1

abstracted input data for each component in the extracted
pipelines, form the training data for the probabilisticmodel of
program likelihood. Given an input dataset, a pipeline depth
bound, and a bound on the number of programs per depth,
CrowdLearn uses the probabilistic model to incrementally
construct candidate learning pipelines.

1.3 Results
We implemented CrowdLearn and trained it on a collection of
500 programs crowdsourced through the Kaggleweb site [16].
We evaluate CrowdLearn by comparing it toAutosklearn [13],
an automated machine learning tool that works with a �xed
set of components.We evaluate our systemon two collections
of data sets. The �rst collection is sourced from Kaggle and
Mulan [34]. These data sets include input data with a variety
of di�erent datatypes and multivariate outputs. CrowdLearn
succesfully produces programs that execute out-of-the-box
and perform better than a simple baseline. For these data sets,
Autosklearn fails to produce a pipeline because its set of com-
ponents doesnot include transformsnecessary to successfully
process the data sets (see Section 12.1). CrowdLearn succeeds
because its training examples include transformations (miss-
ing fromAutosklearn’s manually de�ned search space) that
suitably process the input data.
The second collection of data sets is sourced from Scikit-

Learn [9], theUniversityofCalifornia, Irvine’sMachineLearn-
ing Repository [23], and OpenML [35]. On these data sets,
which have been curated to support machine learning re-
search, CrowdLearn (working with a smaller pipeline search
time) delivers comparable performance to Autosklearn (see
Section 12.3).

Three of the data sets (housing-prices, spooky-author
-identification, titanic) in our evaluation have open
Kaggle leaderboards. As of this writing, CrowdLearn’s top
ranked program for these datasets outperforms 29%, 51%, and
91% of the submissions to these leaderboards, respectively.

1.4 Contributions
• CrowdLearn: It presents CrowdLearn, a new system
that processes an existing corpus of crowdsourced ma-
chine learning programs to learn how to generate ef-
fective supervised learning pipelines.
To the best of our knowledge, CrowdLearn is the �rst
machine learning system that learns how to generate
supervised pipelines from previous human programs.
• Algorithm: It presents the CrowdLearn algorithm,
which uses a probabilistic model of program likelihood,
conditioned on the current sequence of pipeline compo-
nents and on the characteristics of the input data to the
next component in the pipeline, to predict candidate
pipelines.
• Experimental Results: It presents experimental re-
sults that characterize the performance of CrowdLearn
on two collections of supervised learning problems.

1 import xgboost

2 import sklearn

3 import sklearn.feature_extraction.text

4 import sklearn.linear_model.logistic

5 import sklearn.preprocessing.imputation

6 import runtime_helpers

7
8 # transform inputs

9 _t0 = runtime_helpers.ColumnLoop(sklearn.feature_extraction.text.

CountVectorizer).fit(X_train)

10 X_train = _t0.transform(X_train)

11 _t1 = sklearn.preprocessing.imputation.Imputer ().fit(X_train)

12 X_train = _t1.transform(X_train)

13
14 # fit machine learning model

15 _m2 = sklearn.linear_model.logistic.LogisticRegression ().fit(

X_train , y_train)

16
17 # evaluate on test data

18 X_val = _t0.transform(X_val)

19 X_val = _t1.transform(X_val)

20 _m2.score(X_val , y_val)

21
22 def predict(X_new):

23 X_new = _t0.transform(X_new)

24 X_new = _t1.transform(X_new)

25 return _m2.predict(X_new)

Figure 1. Top ranked Python program generated by
CrowdLearn to perform classi�cation on the titanic Kaggle
dataset.

2 Example
Wepresent anexample that illustrateshowtouseCrowdLearn
to solve a supervised learning problem, speci�cally the learn-
ingproblemfor theTitanicdataset (titanic) currentlyhosted
on Kaggle [19]. The user �rst acquires the training data from
the Kaggle website. This data takes the form of a CSV �le
that contains a table of training data organized into rows and
columns. Each row corresponds to an observation, with the
features of the observation falling into the corresponding
columns of the table.

The user provides the �le name to CrowdLearn, as well as
a column index indicating the target prediction column in the
training data. CrowdLearn then splits the training �le into
training dataset and a held-out validation dataset, and then
runs its learning algorithm to produce candidate pipelines (as
described in Section 10.1).

2.1 CrowdLearn Pipeline
Figure 1 presents the highest ranked pipeline generated for
the Titanic dataset. X_train and y_train correspond to the
training data, and X_val and y_val correspond to the held-
out validation dataset. The pipeline applies a sequence of
transformations (lines 9 to 12), �ts a logistic regression clas-
si�er (line 15), and evaluates the model’s performance on
the held-out validation data set (lines 18 to 20). The predict
function (lines 22 to 25) produces new predictions for test
data provided by the user.
The �rst component of the pipeline (lines 9-10) applies a

transform that converts strings into tokens, counts the num-
ber of times each token appears in each string, and replaces
the string in the data set with columns that count the number

2

of occurrences of each token. This transformation is required
because the learning algorithm (invoked at line 15) works
only with numeric data (and fails if presented with a data set
that contains text).
The second component of the pipeline (lines 11-12) ap-

plies a transform that imputes missing data (�lling in missing
data with the mean over entries present in the same column).
Again, this transformation is required because the learning
algorithm fails if there is any missing data. Because this im-
putation component works only with numeric data, it also
requires the previous application of a transform (such as the
string to token count conversion transform in the example
pipeline) that converts strings to numeric values.
We note that this pipeline is tailored to the speci�c char-

acteristics of the data on which it operates, the sequence of
transforms which it applies, and the regression algorithm
that processes the transformed data. The pipeline contains
transforms speci�cally designed to work with data sets that
contain text andmissing entries, and these transformsmust be
applied in the speci�c pipeline order. Other data sets require
di�erent transforms (such as centering values to ensure that
every column has zero mean, changes in dimensionality, and
scaling the range of values) and di�erent transform orders
(see Section 12).

As of this writing, the Titanic dataset has an open leader-
board on theKaggleweb site. TheCrowdLearn pipeline in Fig-
ure 1 outperforms 91% of the current submissions on this
leaderboard.

2.2 CrowdLearn Algorithm
CrowdLearn generates this pipeline based on information it
obtains by processing a training set of 500 existing supervised
learning scripts crowdsourced through Kaggle.Workingwith
these scripts, it extracts a canonical representation of the
pipeline that each script implements. It uses this data, along
with the characteristics of thedata that appear at eachpipeline
stage, to obtain a probabilistic model of pipeline likelihood
conditioned on the characteristics of the data and on the previ-
ous components in the pipeline. Given the user’s input train-
ing data, CrowdLearn uses this probabilistic model to incre-
mentally construct candidatepipelines.At eachpipeline stage,
it examines the incoming data and the previous pipeline com-
ponents to estimate likely next components in the pipeline.
In our example, the string to token count transform is

a likely �rst transform because this transform appears fre-
quently in our set of training scripts that process data with
text columns. The imputation component is a likely second
component because this transform appears frequently in our
set of training scripts that process data with missing values.
The imputation component is muchmore likely in the second
position of our pipeline because, in our training set of scripts,
it is used only to process numeric data. CrowdLearn will also
prune any candidate pipelines that attempt to place this com-
ponent �rst because the pipeline will fail during evaluation

whenCrowdLearn runs the candidate pipeline on the training
data.

CrowdLearn applies a logistic regression classi�er to obtain
discrete predictions because the training data contains dis-
crete target vector values. It chooses this particular classi�er
because 1) it appears frequently in our training set of scripts,
and 2) it performs well on the held out data set as measured
by the scoring step (lines 18-20). Here CrowdLearn exploits
the fact that the sklearn API for classi�ers associates an ap-
propriate scoring metric with each classi�er (in the script the
classi�er is linked to the accuracy metric via the _m2 logistic
regression object).

3 Overview of Supervised Learning
LetX :Rn⇥m be the set of real-valued matrices with n rows
andm columns. We refer to each row of X 2 X as an obser-
vation. LetY :Rn⇥1 be the set of real-valued column vectors
with n entries. LetH :X!Y be the set of functions map-
ping elements inX to elements inY , commonly known as a
hypothesis space.

Supervised machine learning corresponds to choosing h 2
H given someX 2X andY 2Y , such thath(X)=Y . It is often
not possible to learn an h that satis�es this equality. It may
also be undesirable to learn an exact mapping, as there may
be unseen data forwhichh produces a poor result if it satis�es
the equality.Often the choiceofh is formulated as anoptimiza-
tion problem. Given some cost function c :Y⇥Y!R then
h⇤=argminhc (h(X),Y). The process of choosingh⇤ is often re-
ferred to as�tting or learning.We denote the set of supervised
machine learning algorithms by the setL :X⇥Y!H .
It is often the case that the domain of Y is not the reals,

but rather a discrete set of labels. When the domain ofY is a
discrete set of labels, the problem is called a classi�cation prob-
lem.When the domain ofY is the reals, the problem is called
a regression problem. For brevity, we formalize the regression
case, but a similar formulation for classi�cation is possible.

4 Canonical Supervised Learning Programs
Let a dataframe be a collection of (potentially named) column
vectors with potentially di�erent datatypes. Let I be the set
of dataframes with n rows andm columns such that X ⇢I.
Let Itrain,Ival 2I andYtrain,Yval 2Y .
Let P represent the set of component-based programs

with structure implementing a supervised learning pipeline.
A program in this set takes as inputs training data train =
(Itrain,Ytrain) and held-out validation data val= (Ival,Yval). The
program learns h 2H using train and evaluates the perfor-
mance of the learned hypothesis on val. The output of the
program ish and the evaluation metric.
For most non-trivial applications, the input Itrain to the

programmust be modi�ed to satisfy constraints imposed by
the learning algorithms available in L. These may be hard
constraints, such as type constraints, which if not satis�ed

3

J((Itrain,Ytrain),(Ival,Yval),[t1,...,tn],l ,e)K=J((t1 (Itrain),Ytrain),(t1 (Ival),Yval),[t2,...,tn],l ,e)KJ((Itrain,Ytrain),(Ival,Yval),[],l ,e)K=J(l (Itrain,Ytrain),e,(Ival,Yval))KJ(h,e,(Ival,Yval))K= (h,e (h,Ival,Yval))
Figure 2. Semantics for programs in P, the set of canonical
supervised learning programs. These programs produce a �t-
ted hypothesis and a hypothesis score on held-out validation
data.

will crash the learning procedure, or soft constraints, such as
normalized values, which if not satis�ed may result in learn-
ing a suboptimal hypothesis. Programs in P may perform
transformations of the input to satisfy these constraints.
Let T : I ! I be the set of functions that transform

dataframes to a space of dataframes with potentially di�er-
ent dimensionality and datatypes. Let E :H ⇥X ⇥Y ! R
be the set of functions that evaluate the performance of a
hypothesis on held-out validation data and produce a model
performance score. A program in P is de�ned as a �ve tuple
(train,val,T ,l ,e), where train is training data, val is held-out
validation data,T = (t1,...,tk) is a sequence of k transforma-
tions where ti 2T , l 2L is a supervised learning algorithm,
and e 2E is an evaluation metric.

Figure 2 shows the evaluation semantics of such a program.
Weuse I itrain to denote the output of transformation ti on input
I i�1train, with I

0
train= Itrain. The output of this sequence of trans-

formations is used to learn a hypothesish=l (Iktrain,Ytrain). To
evaluate the hypothesis learned, we apply the same sequence
of transformationsT to Ival and use e to score the output of
h(Ikval) relative to Yval. The output of the program is the hy-
pothesis and its score on the held-out validation dataset.

5 Modeling Program Likelihood
We model the conditional probability of a canonical super-
vised learning program (train,val,T ,l ,e) 2P as the probability
of writing the sequence of operations t1, ...,tk ,l , given the
training data. This probability is de�ned as:

Pr(T ,l |Itrain,Ytrain)=

Pr(l |T ,Itrain,Ytrain)
kY
i=1

Pr(ti |T i�1
1 ,Itrain,Ytrain)

where we useT j
i to indicate the sequence ti ...tj , andT

0⇤ is the
empty sequence.
We approximate this distribution by making a Markov as-

sumption [6]oforder j about the transformationsand learning
algorithm in the program. This assumptions means that the
ith pipeline component is only a function of the j previous

calls and its input data. By considering the input data for the
ith call, rather than the initial data, we allow some additional
information �ow beyond the cuto� imposed by our Markov
assumption. So our approximate conditional probability dis-
tribution is

/Pr(l |T kk�j ,Iktrain,Ytrain)
kY
i=1

Pr(ti |T i�1i�j ,I i�1train,Ytrain) (1)

.

6 Abstracting Input for Learning
To estimate the conditional probability distribution de�ned in
Equation (1), we need a data abstraction that is �exible across
di�erent inputs. This �exibility must account for varying di-
mensions, datatypes, and underlying distributions.We de�ne
such an abstraction operation � :I!Rp which summarizes
input data using a real-valued vector of dimensionp. The vec-
tor is designed to capture key characteristics of the data. We
often refer to the application of � as summarizing the input.
Using � , we cast the problem of learning the conditional

probability distribution for supervised learning problems as
a supervised learning problem itself, an approach known as
meta-learning [15]. We consider each transformation ti or
learning algorithm l as a label, and train a discriminative clas-
si�er to predict the appropriate label given the previous j calls
and the current call’s input data.

The featuremap that de�nes� presents a trade-o� between
the richness of the representation, sparsity in training data,
and computational cost required to compute it. Producing
very rich representations reduces the likelihood that we will
observemany instances of the vector in our training data, and
may be more expensive to compute during pipeline search.
Very simple representations are unlikely to capture important
features of the input data. Based on our own experience and
existing literature [1, 30], we de�ne � using the combination
of the following features, which are averaged column-wise
where relevant:

• Type Features: Collection type (e.g. list, array, set);
distribution of types in collection elements (e.g. real,
integer, string).
• Features for Numeric Data: Arithmetic mean; Geo-
metricmean;Median;Minimum;Maximum;Maximum
andminimumof z-score; Interquartie range; Skew; Kur-
tosis; Maximum and minimum of probability density
function evaluation under normal, chi-squared, expo-
nential, and gamma distributions; maximum and min-
imum of cumulative density function evaluation under
normal, chi-squared, exponential, and gamma distribu-
tions; correlation; Count of missing values.
• Features for Categorical Data: Size of domain; Min-
imum, maximum, and mean frequency of elements in
domain; Count of missing values.

4

7 Collecting Training Data
To empirically estimate the conditional probability distribu-
tion of supervised learning programs, we collected and an-
alyzed a set of supervised learning programs crowdsourced
through Kaggle.

7.1 Kaggle
Kaggle [16] is a data science website that hosts competitions,
tutorials, and community forums for relevant machine learn-
ing topics. Users can write their own programs for solving
data science problems and submit their predictions to the com-
petitions. Kaggle o�ers users the ability to write and execute
their programs as scripts in an extensive computational en-
vironment, providing popular data science languages such as
R and Python, commonly used libraries, and access to Kaggle
datasets.

7.2 Meta-Kaggle
Kaggle’sMeta-Kaggle dataset [20] provides public access to
a set of existing user scripts, competition information, and
community information. We use a set of 500 programs from
theMeta-Kaggle dataset to construct our corpus of canonical
supervised learning programs. These programs solved one
of 9 supervised learning problems. We downloaded the data
for these problems, and used this to reproduce the execution
of these programs.

7.3 Preprocessing the Corpus
We chose programs that were written in Python, a popular
data science programming language. We removed all dupli-
cate programs, based on comparing source code as a sequence
of tokens after standardizing various formatting conventions.
We also removed pseudo-duplicates, which we de�ne as pro-
gramswrittenby the sameuseror forked fromthesameparent
script that have similarity ratio of 75% or greater. The simi-
larity ratio used is implemented in Python’s difflib, and is
based on a fast subsequence pattern matching algorithm [29].

This pre-processing of the data is necessary as many of the
Kaggle scripts are slight variations of previous scripts. For ex-
ample we found scripts titled Beating the Benchmark v1.0 and
Beating the Benchmark v1.1, where the latter contained few
semantic di�erences. This kind of iterative, ad-hoc version
management is common in data science development [21],
and often involves savingmultiple versions of �les, comment-
ing out code, and changing call parameters.

We restricted our data collection toAPI calls to two popular
Python machine learning libraries: Scikit-Learn (sklearn) [9]
andXGBoost(xgboost) [10]. Scikit-Learn is an open source im-
plementation of many popular machine learning algorithms
and utilities, targeting medium sized datasets. XGBoost is a
distributed machine learning library based on gradient boost-
ing [14], with Python bindings. With this �nal restriction, we

removed from our dataset any Kaggle user script that did not
use either library.

7.4 Instrumenting Programs
We apply a simple set of static transformations to the Kaggle
user scripts remaining after our preprocessing step. These
transformations lift function calls and assign their output to
a fresh local variable. For example, f(g(x), h(x))would be-
come v_1 = g(x); v_2 = h(x); v_3 = f(v_1, v_2). This
allows us to easily add calls to a set of dynamic instrumen-
tation functions. Recall that our goal is to obtain canonical
supervised learning programs and estimate their conditional
probability distribution, given input data. To do so,we need to
collect information on the API calls made and the (abstracted)
input to thesecalls.Weusedynamic instrumentation tocollect
this data. Our dynamic instrumentation:
• unrolls loops once
• records any API calls to the target libraries
• records information on the object instance for method
calls
• records call parameters abstracted using � (our data
summarization function)
• records memory locations for data dependencies, if
these data dependencies are the output of API calls to
the target libraries
• updates memory locations associated with return val-
ues from API calls to the target libraries

We execute these instrumented Kaggle programs in a vir-
tual machine and reproduce the original execution environ-
ment using Docker containers [25]. This environment in-
cludes the necessary libraries and the original input data for
execution.

8 Extracting a Component Search Space
The instrumented programs produce a set of dynamic traces,
along with information on the arguments and memory loca-
tions associated with each API component call. We need to
label each call in these dynamic traces as an element in T ,
the set of available transformations, L, the set of available
learning algorithms, or E, the set of available evaluation func-
tions. The calls with appropriate labels can then be collected
to construct the respective sets.
Our approach allows us to avoid manually de�ning the

set of relevant API components for constructing a super-
vised learning pipeline by relying on the experience of Kaggle
users. Inour evaluation,we showthat learning the component
search space allows our system to handle unexpected inputs.
Learning from examples also gives CrowdLearn the �exibility
to adapted to new settings, inwhich di�erent transformations
or learning algorithmsmay be favored by users, by observing
existing examples.

5

8.1 Dynamic
Trace Slicing For Canonical Program Extraction

Algorithm 1 describes our algorithm to 1) label each API call
in a dynamic trace, and 2) extract a canonical supervised learn-
ing program.We exploit the package hierarchy in sklearn and
xgboost’s bindings to label as an element of T any function
or appropriate method call for a class de�ned in sklearn’s
decomposition, feature_extraction, feature_selection, pipeline,
preprocessing, and random_projectionmodules.

Similarly,we label as an element ofE any functionor appro-
priate method call for a class de�ned in sklearn’s: calibration,
metrics,model_selectionmodules. We also use the fact that all
learning algorithms in sklearn and xgboost’s Python bindings
are implemented as classes with a fitmethod to apply the re-
spective learning algorithm todata.We identify all calls tofit
that are not already labeled and label these as elements inL.

We say that a call that has been labeled as an element inL
is a seed for a canonical supervised learning program. There
may be multiple seeds in a single dynamic trace, yielding
multiple canonical programs. For each seed in the trace, we
slice the trace forward using the data dependencies on the
seed call’s return value to identify calls that depend on the
output of that seed. These calls are labeled as elements of E.
We then slice the trace backwards using the data dependency
information for the seed call’s parameters to identify calls that
are inputs to the learning algorithm. These calls are labeled
as elements ofT . Concatenating the backward slice, the seed,
and the forward slice produces a canonical program.

Call labeling in a canonical program is done on a per-seed
basis. Thismeans that a singlemethodon the sameclass canbe
labeled di�erently across di�erent canonical programs. This
provides CrowdLearn with additional �exibility that is not
possiblewith a pre-de�nedmanual speci�cation of the search
space.Additionally, recall that our canonical supervised learn-
ing programs are an input to a probabilistic model, which is
robust to our labeling algorithmmaking occasional mistakes.

9 ADiscriminative Classi�er
for Supervised Learning Programs

We use a discriminative classi�er to model the conditional
probability distribution of programs, given the input data.We
use a common machine learning algorithm to do so: multi-
label logistic regression with L1 regularization.

9.1 Overview ofMulti-label Logistic Regression
Given an input observation x 2 Rm , multi-label logistic re-
gression will predict one of k labels, where k is the number
of possible labels [7]. To predict the label, the model uses a
linear combination of the input observation and a matrix of
learned weightsW 2Rk⇥m , whereWj is the row of weights
associated with label j. For an input x , the classi�er predicts

Algorithm 1 From a dynamic program trace, extract canoni-
cal supervised learning programs where each call has been
labeled as part of T (t),L (l), or E(e)
INPUT: D, a dynamic trace collected through instrumen-

tation of Kaggle user scripts; P , a pre-de�ned mapping
from API calls to labels in e, t,None. Let S����FWD(d , s)
and S����BWD(d , s) respectively, compute a forward and
backward slice on dynamic trace d starting from call s
using data dependencies.

OUTPUT: A set of labeled canonical supervised learning
programs from a single trace.

1: function C���������P���(D, P)
2: progs ;
3: for call D do
4: call.label=P (call.method)
5: end for
6: seeds {call 2 D |call.label = None^ call.method =

.�t}
7: for s seeds do
8: s .label l
9: fwd S����FWD(D,s)
10: bwd S����BWD(D,s)
11: for call fwd do
12: call.label e
13: end for
14: for call bwd do
15: call.label t
16: end for
17: prog C����������(bwd,seed,fwd)
18: progs progs[prog
19: end for
20: return progs
21: end function

Pr(j |x)=
exp(W T

j x)Pk
i=0exp(W T

i x)

argmax
j

Pr(j |x)

To train such a classi�er, we use a training dataset D of
n labeled observations (x (1),� (1)),...,(x (n),� (n)). where� (i) is
the label for the ith input x (i) . We can compute the likelihood
of the training data as follows:

L(D)=
nY
i
Pr(� (i) |x (i))

We can then computeW by maximizing the likelihood,
subject to a L1 penalty on the magnitude ofW . This can be
formulated as a Lagrangian optimization problem

argmax
W

L(D)�� |W |
6

where � is a hyperparameter controlling the degree to which
we penalize large weights (which can lead to over�tting). We
used an o�-the-shelf optimizer in sklearn [9] to computeW .

9.2 Applying Discriminative
Classi�ers to Supervised Learning Programs

Recall that inEquation (1)wede�ned the conditional probabil-
ityof a canonical supervised learningprogramasproportional
to

Pr(l |T k
k�j ,I

k
train,Ytrain)

kY
i=1

Pr(ti |T i�1
i�j ,I

i�1
train,Ytrain) (2)

which has a Markov assumption of order j.
We instantiated j to 2 in our experiments, whichmeans our

model considers only the two previous calls, alongwith input,
when computing the probability of the next component call.
We also abstract out the input data using our � abstraction
function.We trained two separate classi�ers: one for transfor-
mations and one for learning algorithms. Let PrT be the condi-
tional probability computed by the former classi�er, and PrL
be the conditional probability computedby the latter classi�er.
We then rede�ne the conditional probability for a super-

vised learning program to

PrL (l |tk�1,tk�2,� (Iktrain),� (Ytrain))
kY
i=1

PrT (ti |ti�2,ti�1,� (I i�1train),� (Ytrain))

We trained the two classi�ers on the relevant calls in the
canonical supervised learning programs extracted in Sec-
tion 8.1. Algorithm 2 details how we constructed the training
datasets for the two classi�ers.

10 Generating
Supervised Learning Programs

Now that we have a concrete way of quantifying the condi-
tional probability of di�erent supervised learning programs,
we introduce our approach to generating newprogramswhen
given input data by the user.

10.1 Generation Approach
We de�ne the depth of a supervised learning program as the
number of transformations of the input data prior to the appli-
cation of a learning algorithm.We generate programs using
a component-based approach that enumerates programs up
to a bounded depth. The enumeration is done by populating
holes in apre-de�ned sketch for supervised learningpipelines.
We use the conditional probability of programs, as estimated
by our transformation and learning algorithm classi�ers, to
prune programs during the search. Figure 3 shows the general
structure of the sketches used for the programs we generate.

Algorithm2Train a classi�er to predict transformations and
a classi�er to predict learning algorithm choice for supervised
learning programs. Both classi�ers use call n-grams and input
data abstraction.
INPUT: CP, a set of a labeled canonical supervised learning

programs; Let������(c ,p,n) construct an n-gram of size
n components preceding call c in program p.

OUTPUT: Two trained classi�ers.Mt :P!T for transfor-
mations, andMl :P!L for learning algorithms.

1: function T�����C����������(CP)
2: for label2 {t ,l } do
3: X ()
4: Y ()
5: for p 2CP do
6: obs {call2p |call.label= label}
7: x ((� (o.args),������(o,p,2)) |o 2obs)
8: � (o.method|o 2obs)
9: X A�����(X ,x)
10: Y A�����(Y ,�)
11: end for
12: Mlabel T����(LogisticRegression,X ,Y)
13: end for
14: returnMt ,Ml
15: end function

hprogrami ::= htransformi* hlearni hscorei
htransformi ::= htransform_�ti htransform_applyi
htransform_�ti ::= t_i = #1.�t(Itrain)
| t_i = ColumnLoop(#1).�t(Itrain)

htransform_applyi ::= Itrain = #1.transform(Itrain)

hmodeli ::= m_i = #1.�t(Itrain,Ytrain)

hscorei ::= m_i.score(Ival,Yval)

Figure 3. Structure of sketches for programs generated by
CrowdLearn. .fit, .transform, and .score are part of the
API for sklearn and xgboost components, which we use to
instantiate our set of transforms (T), learning algorithms (L)
and evaluation (E). Elements of the form #n represent holes
to be �lled with API components.

CrowdLearn uses a greedy algorithm to both extend exist-
ing programs with new components and to produce the �nal
set of programs for a given input. The algorithm takes as input
a bound d on the depth of the programs to generate, a bound
k on the number of programs to produce for a given depth, in-
put training and held-out validation data. CrowdLearn builds
programs incrementally, adding transformations (as single
components and as part of a column-based bounded-loop)
and partially executing the programs to eliminate candidate

7

programs that fail. Algorithm 3 shows how the classi�ers are
used to predict the next call in a program.

Algorithm 4 shows how the extension of programs is used
to greedily enumerate the space of possible programs of a
given depth. At each depth, the algorithm takes the �rst k
programs to succesfully execute after extension. These pro-
grams are the product of adding calls in descending order
of conditional probability to candidate programs, which are
themselves sorted indescendingorder of conditional probabil-
ity. Each program is then extended with a learning algorithm
�tting step, to construct complete programs of that depth.
After the �nal set of programs has been produced, we sort the
generated programs in descending order based on the eval-
uation metric on a held-out validation dataset. This search
algorithm has time complexity O (2 ⇤d ⇤k), where d is the
depth bound, and k is the bound of programs per depth.

Algorithm 3 Greedily extending a sequence of programs
with an additional component predicted by classi�ers trained
on canonical supervised learning program examples
INPUT: P , a sequence of programs sorted in descending or-

der of conditional probability;m, a trained classi�er that
predicts calls in descending order of conditional proba-
bility; k , a bound on the number of programs to return.
Let + mean extending a program with a new call. Let
E��������� :P!B be a predicate that evaluates to true
if the program can be executed without errors.

OUTPUT: At most k programs, extended with one addi-
tional call.

1: function P������P������E��������(P ,m, k)
2: P0 ()
3: for p 2P do
4: ops P������(m,p)
5: ps (p+op |o 2ops^E���������(p+op))
6: P0 A�����(P 0,ps)
7: if |P 0 | �k then
8: return F����(P 0,k)
9: end if
10: end for
11: return F����(P 0,k)
12: end function

11 EvaluationMethodology
We compare CrowdLearn’s generated programs to ensemble-
based pipelines produced by Autosklearn [13], an automated
machine learning system. Autosklearn and CrowdLearn both
instantiate their program components with the sklearnAPI,
use meta-learning to construct candidate programs, and han-
dle regression and classi�cation problems.

We used version 0.18.1 of the sklearn library for our exper-
iments. This is the version of the library we used to execute
the instrumented Kaggle example programs.

Algorithm 4Greedy Enumeration of Supervised Learning
Programs
INPUT: Itrain,Ytrain, input training data; Ival,Yval, evaluation

test data; d , a bound on the depth of the programs; k , a
bound on the number of programs per depth;Mt , a clas-
si�er predicting the next transformation based on the
existing program;Ml , a classi�er predicting the learning
algorithm based on the existing program. Let base be the
empty program. Let S���P��� sort programs in descend-
ing order based on the evaluation metric on the held-out
validation dataset Ival,Yval.

OUTPUT: A sequence of possible programs solving the su-
pervised learning task presented.

1: functionG�������(Itrain,Ytrain, Ival,Yval, d , k ,Mt ,Ml)
2: P ()
3: W (base)
4: for depth20...d do
5: Pdepth P������P������E��������(W ,Ml ,k)
6: P A�����(P ,Pdepth)
7: if depth,d then
8: W P������P������E��������(W ,Mt ,k)
9: end if
10: end for
11: return S���P���(P ,Ival,Yval)
12: end function

We ran each benchmark ten times on AWSm4.xlarge ma-
chines with 16 GB of memory. Each iteration randomly split
the dataset into training and test using a 75/25 split. Both Au-
tosklearn and CrowdLearn were trained/tested on the same
split of the data in each iteration. We present average results.

11.1 Benchmark Datasets
Table 1 shows the �rst collection of datasets used in our eval-
uation. The �rst column in the table shows the dataset name,
the second column shows the type of supervised learning
task, and the third column shows the source of the data. We
used 6 data sets from Kaggle and 4 multivariate regression
datasets from the Mulan project [34], a Java library for multi-
target regression. These datasets were not used by the Kaggle
programs that CrowdLearn uses to build its program likeli-
hood model. We restricted our choice to datasets that were of
medium size and medium dimensionality. We chose datasets
that presented a combination of di�erent datatypes across
columns. We picked datasets that were associated with both
closed and open Kaggle competition leaderboards. For open
competitions, we did not use datasets that are part of featured
competitions, as there are legal complications on publishing
data. We used only Playground and Getting Started datasets.

Table 2 shows the second collection of datasets used in our
evaluation. The �rst column in the table shows the dataset
name, the second column shows the type of supervised learn-
ing task, and the third column shows the source of the data.

8

Dataset Task Source

detecting-insults-in-social-commentary classi�cation Kaggle
sentiment-analysis-on-movie-reviews classi�cation Kaggle
mercedes-benz regression Kaggle
spooky-author-identi�cation classi�cation Kaggle
housing-prices regression Kaggle
titanic classi�cation Kaggle
sf1 multivariate regression Mulan
sf2 multivariate regression Mulan
enb multivariate regression Mulan
jura multivariate regression Mulan

Table 1. We use a �rst collection of datasets to evaluate
CrowdLearn with data that have di�erent datatypes and mul-
tiple target outputs.

We used 5 data sets available through sklearn’s datasets
module, 3 from theUCImachine learning data repository, and
7 datasets from OpenML. We only chose datasets that did not
require transformations outside ofAutosklearn’s search space
so that it works out-of-the-box with these inputs. We used
these datasets to compare the predictive performance of the
pipelines produced by CrowdLearn to the ensemble-based
pipeline produced byAutosklearn.

Dataset Task Source

boston regression sklearn
iris classi�cation sklearn
digits classi�cation sklearn
diabetes regression sklearn
breast_cancer classi�cation sklearn
website-phishing classi�cation UCI
banknote-authentication classi�cation UCI
airfoil-self-noise regression UCI
38 classi�cation OpenML
179 classi�cation OpenML
772 classi�cation OpenML
917 classi�cation OpenML
1049 classi�cation OpenML
1120 classi�cation OpenML
389 classi�cation OpenML

Table 2. We use a second collection of datasets to com-
pare the predictive performance of pipelines generated by
CrowdLearn and the ensemble-based pipelines produced by
Autosklearn. We only chose datasets for which Autosklearn
succesfully produced a pipeline out-of-the-box.

12 Results
Figure4 summarizes thecomponentsused in the top10ranked
pipelines generated by CrowdLearn across the benchmark
datasets. Figure 4a shows learning algorithm components on
the x axis and the fraction of pipelines that used this compo-
nent as their learning algorithm on the y axis. A taller bar
indicates a more popular learning algorithm. Figure 4b shows
data transformation components on thex axis and the fraction

of transformationsusing that componenton theyaxis.A taller
bar indicates a more popular data transformation. Approxi-
mately 2% of the top 10 pipelines generated contained 4 API
components, 33%contained 3API components, 38%contained
two components, and 26% contained a single component. The
time to execute a pipeline is a function of the number of com-
ponents, the complexity of the component implementations,
and the size of the data that each component takes as input.

12.1 Learned Search Space
Table 3 shows CrowdLearn’s performance on the �rst col-
lection of datasets from Kaggle andMulan. The �rst column
identi�es the dataset. The 4 following columns correspond
to the maximum test set performance for the top 1, 3, 5 and
10 programs generated by CrowdLearn. This ranking of pro-
grams is based on a held-out validation dataset that is disjoint
from the test set. Because Autosklearn fails to run out-of-the-
box on these benchmarks,we compare to the dummy strategy,
which predicts the most common label for classi�cation and
the mean for regression problems. The �nal column in the
table indicates the evaluation metric: F1 for classi�cation
problems and R2 for regression problems. For these exper-
iments, we set CrowdLearn’s search depth bound to 2, the
greedy search bound to 30 programs per depth, and a timeout
per API component call of 60 seconds.

CrowdLearn outperforms the dummy strategy in all cases.
Autosklearn fails to execute on the Kaggle datasets as these
datasets have columns of di�erent datatypes, such as string
columns.Forexample, thespooky-author-identification
dataset contains two columns with text: the �rst column
is a string identi�er, and the second column contains free-
form text.Autosklearn fails to run on this dataset and raises
a ValueError. Other datasets produce similar errors.

Autosklearn’s errors on these datasets result from a search
space [5] that does not include an e�ective transformation to
convert strings to a real-valued vector. Autosklearn’s space
includes a one-hot-encoding of text, where each string is
mapped to a binary vector of length equal to the number
of distinct strings. But a one-hot-encoding transformwould
not be informative on a free-form text vector as each string is
likely tobeunique. InCrowdLearn’s case, the setof transforms
extracted from existing code include a TF-IDF transformation
and a transform to convert strings to simple token frequency.
Autosklearn fails to produce an ensemble for the Mulan

datasets because their system does not handle multivariate-
regression [4], a result of a missing method implementation
in sklearn’s API necessary forAutosklearn’s optimization pro-
cess. CrowdLearn, in contrast, handles multivariate regres-
sion without modi�cations to its implementation as many of
the underlying regression algorithms in sklearn can handle
multivariate outputs. CrowdLearn’s simple success criterion
(does a candidate program execute without errors) and rank-
ing algorithms (program likelihood and performance on the

9

(a)Distribution of learning algorithms components in generated
pipelines

(b) Distribution of transformation components in generated
pipelines

Figure 4.Distribution of learning algorithm and transform components in the top ten generated pipelines for our evaluation
datasets. 2% of pipelines generated contained 4 components, 33% of contained 3 components, 38% contained two components,
and 26% contained a single component (the learning algorithm). Our algorithm produces a bounded number of programs of each
depth up to a depth bound.

Dataset Top 1 Top 3 Top 5 Top 10 Dummy Metric

detecting-insults-in-social-commentary 0.77 0.77 0.77 0.77 0.42 F1
enb 0.98 0.98 0.98 0.98 -0.00 R2

housing-prices 0.83 0.85 0.85 0.85 -0.00 R2

jura 0.72 0.73 0.75 0.75 -0.01 R2

mercedes-benz 0.50 0.50 0.50 0.50 -0.00 R2

sentiment-analysis-on-movie-reviews 0.50 0.50 0.50 0.50 0.13 F1
sf1 -0.01 0.02 0.02 0.02 -0.03 R2

sf2 0.10 0.11 0.11 0.11 -0.00 R2

spooky-author-identi�cation 0.84 0.84 0.84 0.84 0.19 F1
titanic 0.82 0.82 0.82 0.82 0.38 F1

Table 3. Performance on the �rst collection of benchmarks.Autosklearn fails to run on these benchmarks out-of-the-box as a
result of their manually-de�ned search space. CrowdLearn produces candidate programs that execute succesfully as a result
of extracting relevant transformations from the crowdsourced examples, its simple success criteria, which simply checks if
programs produced are executable, and its ranking algorithms.

held-out validation data set) allows our system to produce a
pipeline with no special handling.

12.2 Comparing to Kaggle User Programs
Table 4 shows the performance for the top ranked pipeline
produced by CrowdLearn for 3 Kaggle datasets with open
leaderboards. The �rst column shows the dataset. The second
column shows CrowdLearn’s submission percentile (where
higher is better). The third column shows the corresponding
pipeline’s Kaggle score. The �nal column shows the top Kag-
gle score for that dataset. CrowdLearn outperformed 29%, 51%

and 91% of submissions to the housing-prices, spooky-author-
identi�cation, and titanic leaderboards, respectively, as of this
writing.

12.3 Comparative Predictive Performance
Table 5 shows a comparison of the predictive performance
of CrowdLearn’s pipelines and Autosklearn’s ensembles. The
�rst column indicates the corresponding datasets. The next
four columns show the test set performance for the top 1, 3, 5,
and 10 pipelines generated by CrowdLearn. These pipelines
are ranked based on performance on a held-out validation
dataset. The next column shows Autosklearn’s test set per-
formance. The last column indicates the evaluation metric

10

Dataset Submission Percentile CrowdLearn Score Top User Score

housing-prices 29.08 0.16 0.00
spooky-author-identi�cation 51.55 0.47 0.13
titanic 91.51 0.81 1.00

Table 4. Submissions using CrowdLearn to open Kaggle leaderboards. The top-ranked CrowdLearn program for each dataset
outperformed 29%, 51% and 91% of existing submissions as of this writing.

used: F1 for classi�cation and R2 for regression. CrowdLearn
produces a pipeline comparable toAutosklearn in its top 10
programs for all our benchmark datasets.

12.4 Search Times
Table 6 shows the search times for generating CrowdLearn’s
�nal set of programs for the comparative performance eval-
uation. The �rst column indicates the dataset and the sec-
ond column shows the corresponding search time in sec-
onds. CrowdLearn produced the�nal set of programs for each
these benchmark datasets in under 20 minutes. On average,
CrowdLearn completed its search in under 10minutes. For the
iris dataset, CrowdLearn produced the �nal set of programs
in under 5minutes. Recall that these programs produced com-
parable performance toAutosklearn’s ensembles, which were
produced with a default execution time budget of 1 hour per
benchmark dataset.

12.5 Recommended Transforms
Figure 5 presents the top-ranked program generated for the
breast_cancer classi�cation dataset. Lines 7 to 8 scale the
input data so that each column has zero mean and unit vari-
ance. Line 9 �ts a support vector machine with an RBF kernel.
This matches the use case suggested by sklearn’s API doc-
umentation for StandardScaler [31], the transformation
component used by the pipeline.

13 RelatedWork
We discuss related work in the areas of automated machine
learning, component-based program synthesis and code min-
ing.

13.1 AutomatedMachine Learning
Autosklearn [13], an automated machine learning tool, uses
Sequential Model-based Algorithm Con�guration [18] to ex-
plore the space of possible supervised learning pipelines.
Their search is initialized using a collection of pipelines that
performed well on similar data during o�ine experiments.
The space of con�gurations is determined by a �xed instan-
tiation of components (from sklearn’s API) and the tuneable
parameters for each of these components.
TPOT [27] is an automated machine learning system that

produces tree-based pipelines, which combine di�erent data

1 import sklearn

2 import xgboost

3 import runtime_helpers

4 import sklearn.svm.classes

5 import sklearn.preprocessing.data

6

7 _t0 = sklearn.preprocessing.data.StandardScaler ().

fit(X_train)

8 X_train = _t0.transform(X_train)

9 _m1 = sklearn.svm.classes.SVC().fit(X_train ,

y_train)

Figure 5. We show the training portion of the top-ranked
pipeline produced by CrowdLearn for the breast_cancer
classi�cation dataset. Prior to �tting an SVM classi�er with
RBF kernel, the pipeline transforms the input so that each
column has zero mean and unit variance. This matches the
suggested use described in sklearn’s component documenta-
tion [31].

processing andmodeling operations. Pipelines are evolved us-
ing genetic programming. The evolution process maximizes
an objective function, such as accuracy in the case of clas-
si�cation, and can be extended to a multi-objective variant
that aims to minimize pipeline complexity. The output is the
single best pipeline.

Recipe [11] uses genetic programming to evolve supervised
classi�cation pipelines generated from a grammar of possible
con�gurations. This grammar-driven approach allows Recipe
to avoid executing potentially invalid candidate pipelines.

Autoweka [22] provides end-to-end supervised learning
pipeline construction for both classi�cation and regression
tasks. The con�guration search process uses the same under-
lying technique asAutosklearn but instantiates components
using the Java-based Weka [17] library.

In contrast to all these systems, CrowdLearn does not have
pre-de�ned components (beyond the instantiation to sklearn
and xgboost), and instead extracts the relevant set of com-
ponents based on existing supervised learning programs
crowdsourced through Kaggle. Manually de�ned con�gu-
ration search spaces limit these systems’ ability to handle un-
expected input data. The programs generated by CrowdLearn
proved to be more �exible, handling benchmark tasks that
these other systems fail to handle appropriately: text data in
covariates and multivariate regression.

11

Dataset Top 1 Top 3 Top 5 Top 10 Autosklearn Metric

airfoil-self-noise 0.92 0.93 0.93 0.93 0.95 R2

boston 0.86 0.87 0.87 0.87 0.87 R2

diabetes 0.44 0.45 0.46 0.46 0.49 R2

1049 0.72 0.74 0.74 0.74 0.75 F1
1120 0.85 0.86 0.86 0.86 0.87 F1
179 0.78 0.79 0.79 0.79 0.79 F1
38 0.92 0.92 0.92 0.92 0.93 F1
389 0.81 0.81 0.81 0.81 0.81 F1
772 0.43 0.47 0.48 0.50 0.50 F1
917 0.84 0.84 0.84 0.84 0.90 F1
banknote-authentication 1.00 1.00 1.00 1.00 1.00 F1
breast_cancer 0.97 0.97 0.97 0.97 0.97 F1
digits 0.98 0.98 0.98 0.98 0.98 F1
iris 0.87 0.99 0.99 0.99 0.96 F1
website-phishing 0.86 0.87 0.87 0.88 0.88 F1

Table 5.We compare the predictive performance of pipelines produced by CrowdLearn and ensembles produced byAutosklearn.
Regression tasks are evaluated using R2, while classi�cation tasks are evaluated using macro-averaged F1. CrowdLearn produces
pipelines comparable toAutosklearn in its top 10 candidates with shorter search times.

Dataset Time (seconds)

1049 396.25
1120 540.69
179 937.05
38 541.03
389 426.40
772 384.35
917 455.93
airfoil-self-noise 354.61
banknote-authentication 298.75
boston 366.02
breast_cancer 313.55
diabetes 252.48
digits 444.09
iris 223.90
website-phishing 273.98

Table 6. CrowdLearn search time for generated programs.
These programs displayed comparable predictive perfor-
mance to the pipelines produced byAutosklearn, which ran
for a default execution time of 1 hour per benchmark.

To incrementally build pipelines, CrowdLearn uses a prob-
abilistic model of program likelihood. Existing systems do
not consider program likelihood.Autosklearn initializes the
pipelines based on a meta-learning approach that chooses
froma set of possible pipelines based on dataset similarity, but
does not explicitly model pipeline modi�cations as a function
of program likelihood. TPOT and Recipe modify pipelines

based on cross-validation performance in their genetic evo-
lution process.

In our experiments, we compare toAutosklearn as both our
systems share an overlap of techniques: sklearn-component
instantiation, meta-learning techniques, and output multiple
pipelines.

13.2 Component-Based
Program Synthesis and CodeMining

Prospector [24] is a component-based program synthesis
tool that uses jungloids, a simple representation of unary class-
based operations, to drive synthesis based on a user-provided
query.The jungloidminingalgorithmtakesexistingprograms
and statically extracts an overapproximation of the jungloids
in the program corpus.

Morpheus [12] is a component-based synthesis system that
produces R programs for table transformations. Morpheus
takes an input/output example and a set of components, with
an over-approximated speci�cation, and uses enumerative
search, along with SMT-based pruning, to produce a program
to perform the table transformation. During synthesis, pos-
sible programs are ranked based on a language model over
relevant source code snippets.

LikeProspector, CrowdLearnminespossible components
from a small set of existing crowdsourced examples. But
CrowdLearn uses dynamic trace slicing as the conditional
probability model for program likelihood uses an abstraction
of the input data to each component call. This use of dynamic
program information also di�ers from Morpheus’s model,
which is trained on a sequence of static source code tokens.

12

There is existing work on building statistical models for
source code and using them to extract programming con-
structs [2]. For example, Bayesian techniques have been ap-
plied to probabilistic grammars to mine idioms from example
repositories [3]. Statistical models of code have also been
used to generate program synthesis candidate sketches [26].
Deep learning techniques have also been used to mine code
repositories for clones [36].

In contrast to some of these approaches, CrowdLearn uses
a much smaller set of example programs (500) to build its con-
ditional probability model. CrowdLearn learns from both the
API components called and their input data by instrument-
ing example programs to obtain dynamic program traces,
whilemany existing approaches focus on applying static anal-
ysis techniques. For constructing pipelines for supervised
learning, the characteristics of the data are key for choosing
appropriate components [15].

14 Conclusion
We presented CrowdLearn, a new system that processes an
existing corpus of crowdsourced machine learning programs
to learn how to generate e�ective pipelines for solving super-
vised machine learning problems. CrowdLearn uses a prob-
abilistic model of program likelihood, conditioned on the
current sequence of pipeline components and on the charac-
teristicsof the inputdata to thenextcomponent in thepipeline,
to predict candidate pipelines. Our results highlight the e�ec-
tivenessof this technique in leveragingexistingcrowdsourced
programs to generate pipelines that work well on a range of
supervised learning problems.

References
[1] Shawkat Ali and Kate A Smith-Miles. 2006. A meta-learning ap-

proach to automatic kernel selection for support vector machines.
Neurocomputing 70, 1 (2006), 173–186.

[2] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles
Sutton. 2017. A Survey of Machine Learning for Big Code and
Naturalness. arXiv preprint arXiv:1709.06182 (2017).

[3] Miltiadis Allamanis and Charles Sutton. 2014. Mining idioms from
source code. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 472–483.

[4] Autosklearn. 2017. Github Repository Issue 292. (2017).
h�ps://github.com/automl/auto-sklearn/issues/292

[5] Autosklearn. 2017. Github Repository (pipeline components). (2017).
h�ps://github.com/automl/auto-sklearn/tree/master/autosklearn/
pipeline/components

[6] Leonard E Baum and Ted Petrie. 1966. Statistical inference for
probabilistic functions of �nite state Markov chains. The annals of
mathematical statistics 37, 6 (1966), 1554–1563.

[7] Christopher M Bishop. 2006. Pattern recognition and machine learning.
springer.

[8] Allan Borodin, Ran El-Yaniv, and Vincent Gogan. 2004. Can we learn
to beat the best stock. In Advances in Neural Information Processing
Systems. 345–352.

[9] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa,
Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer,
Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas,
Arnaud Joly, Brian Holt, and Gaël Varoquaux. 2013. API design for

machine learning software: experiences from the scikit-learn project.
In ECML PKDD Workshop: Languages for Data Mining and Machine
Learning. 108–122.

[10] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree
Boosting System. CoRR abs/1603.02754 (2016). arXiv:1603.02754
h�p://arxiv.org/abs/1603.02754

[11] Alex GC de Sá, Walter José GS Pinto, Luiz Otavio VB Oliveira, and
Gisele L Pappa. 2017. RECIPE: A Grammar-Based Framework
for Automatically Evolving Classi�cation Pipelines. In European
Conference on Genetic Programming. Springer, 246–261.

[12] Yu Feng, Ruben Martins, Jacob Van Ge�en, Isil Dillig, and Swarat
Chaudhuri. 2017. Component-based synthesis of table consolidation
and transformation tasks from examples. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 422–436.

[13] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Sprin-
genberg, Manuel Blum, and Frank Hutter. 2015. E�cient and robust
automated machine learning. In Advances in Neural Information
Processing Systems. 2962–2970.

[14] Jerome H Friedman. 2001. Greedy function approximation: a gradient
boosting machine. Annals of statistics (2001), 1189–1232.

[15] Christophe Giraud-Carrier, Ricardo Vilalta, and Pavel Brazdil. 2004.
Introduction to the special issue on meta-learning. Machine learning
54, 3 (2004), 187–193.

[16] Google. 2017. KaggleWebsite. (2017). h�ps://www.kaggle.com/
[17] Mark Hall, Eibe Frank, Geo�rey Holmes, Bernhard Pfahringer, Peter

Reutemann, and Ian HWitten. 2009. TheWEKA data mining software:
an update. ACM SIGKDD explorations newsletter 11, 1 (2009), 10–18.

[18] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequen-
tial Model-Based Optimization for General Algorithm Con�guration.
LION 5 (2011), 507–523.

[19] Kaggle. 2015. Titanic: Machine Learning from Disaster (Start here!
Predict survival on the Titanic and get familiar with ML basics). (2015).
h�ps://www.kaggle.com/c/titanic

[20] Kaggle. 2017. Meta-Kaggle. (2017). h�ps://www.kaggle.com/kaggle/
meta-kaggle/data

[21] Mary Beth Kery, Amber Horvath, and Brad AMyers. 2017. Variolite:
Supporting Exploratory Programming by Data Scientists.. In CHI.
1265–1276.

[22] Lars Kottho�, Chris Thornton, Holger HHoos, FrankHutter, and Kevin
Leyton-Brown. 2016. Auto-WEKA 2.0: Automatic model selection and
hyperparameter optimization inWEKA. Journal of Machine Learning
Research 17 (2016), 1–5.

[23] M. Lichman. 2013. UCI Machine Learning Repository. (2013).
h�p://archive.ics.uci.edu/ml

[24] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005.
Jungloid mining: helping to navigate the API jungle. In ACM SIGPLAN
Notices, Vol. 40. ACM, 48–61.

[25] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for
Consistent Development and Deployment. Linux J. 2014, 239, Article
2 (March 2014). h�p://dl.acm.org/citation.cfm?id=2600239.2600241

[26] VijayaraghavanMurali, Swarat Chaudhuri, and Chris Jermaine. 2017.
Bayesian Sketch Learning for Program Synthesis. arXiv preprint
arXiv:1703.05698 (2017).

[27] Randal S Olson, Nathan Bartley, Ryan J Urbanowicz, and Jason H
Moore. 2016. Evaluation of a tree-based pipeline optimization tool
for automating data science. In Proceedings of the 2016 on Genetic and
Evolutionary Computation Conference. ACM, 485–492.

[28] Patrick Pantel, Dekang Lin, et al. 1998. Spamcop: A spam classi�cation
& organization program. In Proceedings of AAAI-98 Workshop on
Learning for Text Categorization. 95–98.

[29] John W Ratcli� and David E Metzener. 1988. Pattern-matching-the
gestalt approach. Dr Dobbs Journal 13, 7 (1988), 46.

13

[30] Matthias Reif, Faisal Shafait, Markus Goldstein, Thomas Breuel, and
Andreas Dengel. 2014. Automatic classi�er selection for non-experts.
Pattern Analysis and Applications 17, 1 (2014), 83–96.

[31] Scikit-Learn. 2017. sklearn.preprocessing.StandardScaler Documenta-
tion. (2017). h�p://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.StandardScaler.html

[32] Evan R Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J
Franklin, and Benjamin Recht. 2017. Keystoneml: Optimizing pipelines
for large-scale advanced analytics. In Data Engineering (ICDE), 2017
IEEE 33rd International Conference on. IEEE, 535–546.

[33] Adi L Tarca, Vincent J Carey, Xue-wen Chen, Roberto Romero, and
Sorin Drăghici. 2007. Machine learning and its applications to biology.
PLoS computational biology 3, 6 (2007), e116.

[34] Grigorios Tsoumakas, Eleftherios Spyromitros-Xiou�s, Jozef Vilcek,
and Ioannis Vlahavas. 2011. Mulan: A java library for multi-label
learning. Journal ofMachineLearningResearch12, Jul (2011), 2411–2414.

[35] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo.
2013. OpenML: Networked Science in Machine Learning. SIGKDD Ex-
plorations 15, 2 (2013), 49–60. h�ps://doi.org/10.1145/2641190.2641198

[36] Martin White, Michele Tufano, Christopher Vendome, and Denys
Poshyvanyk. 2016. Deep learning code fragments for code clone
detection. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering. ACM, 87–98.

[37] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016.
Data Mining: Practical machine learning tools and techniques. Morgan
Kaufmann.

14

