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Open quantum systems exhibiting initial system-environment correlations are notoriously difficult to simulate.
We point out that given a sufficiently long sample of the exact short-time evolution of the open system dynamics,
one may employ transfer tensors for the further propagation of the reduced open system state. This approach is
numerically advantageous and allows for the simulation of quantum correlation functions in hardly accessible
regimes. We benchmark this approach against analytically exact solutions and exemplify it with the calculation of
emission spectra of multichromophoric systems as well as for the reverse temperature estimation from simulated
spectroscopic data. Finally, we employ our approach for the detection of spectral signatures of electromagnetically
induced transparency in open three-level systems.
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I. INTRODUCTION

The simulation of reduced open quantum systems is usually
facilitated by the assumption of at least an initial product
state between the system and its environment at some initial
point in time [1,2]. However, numerous questions crucially
require one to account for initial correlations between the open
system of interest and its environment. Apart from witnessing
or certifying their existence [3–9], they find very concrete
applications such as the correct simulation of emission spectra
of molecular systems [10–12], their thermodynamic effect
for the extractable work of thermal machines [13,14], or
their effect in charge transfer setups [15,16]. Although it has
recently been pointed out that correlations may already play a
relevant role in the weak system-environment coupling regime
[6], it is in situations of strong coupling to a non-Markovian
environment where initial correlation effects are expected to
be most significant. In this regime, it becomes necessary to
resort to specialized treatments (see, e.g., Refs. [9,17–23]) at
the expense of enhanced computational effort.

Here, methods such as the stochastic Liouville–von Neu-
mann equations [24–26] or the hierarchy of equations of
motion (HEOM) technique [27,28] stand out. Stochastic
Liouville–von Neumann equations are based on the sampling
of environmental trajectories in terms of stochastic realiza-
tions. The number of required trajectories generally scales
with the length of the simulation time rather than with the
strength of the coupling to the environment, its spectral density,
or its temperature, and it is therefore well suited for short
but accurate simulations. In contrast, HEOM scales with the
number of exponential functions required to approximate the
environmental correlation functions and with the coupling
strength. For this reason, it is best suited for high-temperature
baths and Lorentzian spectral densities.

Strategies to circumvent the unfavorable scaling of stochas-
tic Liouville–von Neumann equations have been put forward
[29]. In this context, the transfer-tensor method (TTM) [30]
provides a powerful tool to extend simulations to very long
times [31]. It can be interpreted as a discrete representation

*cerrillo@tu-berlin.de

of the Nakajima-Zwanzig equation and has additionally found
applications in mixed quantum-classical methods [32]. While
originally transfer tensors are obtained from simulations of
separable initial states, here we demonstrate how they can
be correctly applied to account for a large class of initial
system-environment correlations. This enables us to efficiently
compute two-time correlation functions in the steady state such
as absorption and emission spectra, as illustrated in Fig. 1. The
class of initial states that is accessible with the method can be
regarded as preparative transformations of the global thermal
system-environment state. We restrict ourselves to preparative
transformations that affect only the system but are otherwise
general, including, e.g., a measurement performed on the open
system or system-local unitary transformations.

In the following, we first illustrate in Sec. II the break-
down of the quantum regression theorem by exploring how
within a HEOM simulation the effect of initial correlations
becomes increasingly relevant in the strong-coupling and
slow-environment regime. In Sec. III, we demonstrate that
correlated initial states can be treated with TTM, and a
successful benchmark of the joint TTM-HEOM approach
is also presented. In Sec. IV, we apply the proposed TTM
approach for correlated initial states to the calculation of
emission spectra of multichromophoric systems in previously
hardly accessible regimes. There, we combine TTM with
the stochastic path-integral (sPI) method [12], which is an
extension of the stochastic Liouville–von Neumann equation
that is readily applicable for spectra calculations. Additionally,
a detailed balance relation between absorption and emission
spectra is employed for successful temperature estimation
from simulated spectra. Finally, we use a joint TTM-sPI
approach for the detection of spectral signatures of electromag-
netically induced transparency in an open three-level system
in Sec. V.

II. BREAKDOWN OF THE QUANTUM
REGRESSION THEOREM

We illustrate that the effect of initial correlations becomes
especially relevant for systems located beyond the weak-
coupling regime or systems that feature large correlation
times of the environment. This is formally equivalent to the
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FIG. 1. (a) Sketch of the considered setup and (b) the employed
transfer tensor approach for the simulation of correlated initial states.
(a) Correlated initial states are obtained by means of preparative
transformations R • R† of the thermal steady state of the system-
environment compound. Even though R • R† acts on the open
system subspace only, the environment is indirectly affected by
this transformation when correlations are present. (b) Short-time
trajectories of the correlated reduced open system state are computed
by means of HEOM or stochastic Liouville–von Neumann equations.
These short-time trajectories contain key information about the
environmental influence and the effect of initial correlations onto
the open system dynamics. This information is extracted by means of
TTM and used for an efficient long-time propagation of the correlated
initial state.

breakdown of the quantum regression theorem. We consider
systems that are described in terms of a total Hamiltonian
H , comprised of a system (S), interaction (SE), and envi-
ronmental (E) part, H = HS + HSE + HE . The correlated
initial states of interest are obtained from the thermal system-
environment state, characterized by an inverse temperature
β, and subsequently transformed by a preparative procedure
R • R†,

�(t0) = R
e−βH

Z
R†, (1)

where R only affects the system. We will use a notation where
�(t) denotes the total density matrix, and where the partition
functions corresponding to the total system thermal state Z

and the thermal environmental state ZE are given by Z(E) =
tr{e−βH(E)}. The reduced state describing the open system of
interest is then obtained from the total system state by tracing
out the environmental degrees of freedom, ρ(t) = trE{�(t)}.
Regarding the preparative procedures, they may be of the
form of a projective measurement performed on the open
system, so that R = R† = Po/

√
tr{Poe−βH /Z}, with Po = P

†
o

being the projector associated to the respective measurement
outcome. Alternatively, R • R† might also denote a unitary
transformation that acts on the open system subspace only.
Any admissible transformation for a density matrix is suitable
as long as it is applied locally on the system (Kraus map) [33].
From now on, we will set the initial time to zero for simplicity,
t0 = 0.

It is often assumed that within the weak system-
environment coupling regime, the effect of the preparative
procedure [Eq. (1)] onto the environment can be safely ne-
glected and the correlated initial states �(t0) can consequently
be well approximated by means of the usual initial product

state assumption,

�(0) ≈ ρ(0)
e−βHE

ZE

. (2)

Figure 1(a) provides a sketch of the considered setup. In order
to verify that the error introduced with Eq. (2) generally grows
with the coupling between the open system and its environment
as well as with characteristic environmental correlation times,
we present numerical results obtained for a spin-boson model
governed by the Hamiltonian

H = ε

2
σz − �

2
σx + σxX + HE. (3)

Here, ε denotes the energetic splitting of the two bare levels,
� denotes the tunneling amplitude, and X = ∑

k γk(a†
k + ak)

denotes the collective position of the bosonic environment
described by HE = ∑

k ωka
†
kak , with creation and annihilation

operators a
†
k and ak for environmental modes k with associated

energies ωk . The coupling to the individual environmental
modes is parametrized by γk . The usual Pauli matrices
are denoted by σα; the normalized eigenvectors of σz are
defined by σz |↑〉 = + |↑〉 and σz |↓〉 = − |↓〉. For the results
presented in Fig. 2, characteristic bath correlation functions of

the form trE{eiHEtXe−iHEtXe−βHE /ZE} ≈ λπ ( 1
β

− i ωc

2 )e−ωct

with coupling strength λ and reservoir cutoff ωc have been em-
ployed. These correlation functions are suitable for the HEOM
formalism and approximate the effect of a Drude-Lorentz bath,
described by a spectral density J (ω) = ∑

k γ 2
k δ(ω − ωk) =

λ ωcω

ω2
c+ω2 , in the high-temperature regime [34]. Thereby, the

reorganization energy
∫ ∞

0 dωJ (ω)/ω = λπ/2 quantifies the
overall coupling strength between the two-level system and
its environment, and ωc is inversely proportional to the
characteristic correlation time of the latter.

The time evolution of the reduced open system state corre-
sponding to the correlated initial condition [Eq. (1)], ρc(t) =
trE{e−iH t�(0)eiHt }, and the evolution of the reduced state
corresponding to the uncorrelated initial condition [Eq. (2)],
ρuc(t) = trE{e−iH tρ(0) e−βHE

tr{e−βHE }e
iHt }, are compared in Fig. 2.

Their difference is quantified by means of the cumulative
trace distance defined as DS(ρc,ρuc) = ∫ ∞

0 dtD[ρc(t),ρuc(t)],

with D(A,B) = 1
2 tr{

√
(A − B)†(A − B)} denoting the usual

trace distance. From this definition, one can already infer
that the cumulative trace distance would diverge if differences
between ρc and ρuc prevail at the steady state. The considered
correlated initial states are given by means of a unitary rotation
of the total system thermal state according to Eq. (1) with
R = ei π

8 σx [Figs. 2(a), 2(c), and 2(d)] or by means of an
ideal measurement performed on the open system yielding an
outcome associated to the open system state |ψ〉 = 1√

2
(|↑〉 +

i |↓〉), such that the projector Po as described above is given
by Po = |ψ〉 〈ψ | [Fig. 2(b)]. Figures 2(a) and 2(b) point out
that the error introduced in Eq. (2) systematically increases
when increasing the system-environmental coupling strength
λ or the characteristic correlation time of the environment
ω−1

c . Figures 2(c) and 2(d) compare the effect of these initial
correlations in terms of the time evolution of the population
inversion for parameter sets A and B marked in Fig. 2(a).
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FIG. 2. Demonstration of the systematic increase of the error
introduced when approximating a correlated initial state ρc(t) by
means of an uncorrelated initial state ρuc(t) according to Eq. (2) in
the strong-coupling and slow-environment regime. (a) and (b) depict
the cumulative trace distance between solutions based on Eqs. (1)
and (2), whereas (c) and (d) demonstrate the transient difference
in observables directly. (a),(c),(d) Considering a correlated initial
state obtained from a unitary transformation of the global thermal
state according to Eq. (1) with R = ei π

8 σx . (c) (λ = 0.01ε, ωc = 9ε)
and (d) (λ = 0.09ε, ωc = 3ε) show the evolution of the population
inversion of the two-level system for values of λ and ωc as indicated
in (a) by means of the points A and B. (b) Considering a correlated
initial state obtained from a preparative measurement performed on
the open system (see text). The initial inverse temperature for all plots
is given by β = 0.1ε−1; the considered tunneling amplitude is given
by � = ε.

III. INITIAL CORRELATIONS VIA THE
TRANSFER-TENSOR METHOD

By means of the projection operator formalism [1], the
dynamics of the open system state can be formally expressed
in terms of the Nakajima-Zwanzig equation,

d

dt
P�(t) = PLP�(t) +

∫ t

0
dsK(t,s)P�(s)

+PLeQLtQ�(t), (4)

with an operator P projecting onto a product composed of
the reduced system state and an environmental reference
state, e.g., P• = trE{•} e−βHE

ZE
, and Q defined as Q = 1 − P .

Here, the Liouvillian L is given by L• = −i(H • − • H )
and the Nakajima-Zwanzig memory kernel reads as K(t,s) =
PLeQL(t−s)QL. We stress that the third term on the right-hand
side of Eq. (4) vanishes for uncorrelated initial conditions
and consequently represents the effect of initial correlations
in the dynamics of the reduced system state. In analogy to
the Nakajima-Zwanzig equation, the discrete-time evolution

of a reduced system state can be expressed in terms of the
transfer-tensor formalism [30] in the following generalized
form:

ρ(tn) =
n∑

k=1

Tkρ(tn−k) + In[�(t0)], (5)

with transfer tensors Tk corresponding to the evolution of an
initial product state and a correction In[�(t0)] that accounts
for the effect of initial correlations between the system and its
environment. Here, the transfer tensors are defined recursively
by Tk = Ek − ∑k−1

m=1 Tk−mEm, with T1 = E1 and dynamical
maps Ek that determine the evolution of an open system given
an initial separable state of the form �(0) = ρ(0)e−βHE /ZE ,
such that ρ(tk) = Ekρ(0). We emphasize that the tensors Tk

carry key information about the underlying dynamics of the
open system state as they manifest a discrete representation
of the Nakajima-Zwanzig memory kernel within the reduced
open system subspace.

Here, we propose the use of transfer tensors for correlated
initial states in the following manner:

(i) First, the transfer tensors corresponding to an initial
product state featuring a thermal bath, �(0) = ρ(0)e−βHE /ZE ,
are learned from a suitable simulation method of choice.

(ii) In a second step, the reduced density matrix corre-
sponding to the correlated initial state of interest is propagated
up to some time τ > ω−1

c covering at least the length of the
memory kernel, such that K(t > τ − t0) ≈ 0. This step can
be conducted by means of any appropriate numerically exact
simulation method, for instance, by integrating the stochastic
Liouville–von Neumann equations [24] or HEOM [28].

(iii) Third, the correction term In[�(0)] that quantifies
the effect of initial correlations onto the dynamics can
be determined. A sufficient decay of In[�(0)] within the
simulation time τ verifies the suitability of the final step:
a subsequent efficient propagation by means of the transfer
tensors only.

This approach is illustrated in Fig. 3 and benchmarked in
combination with HEOM against exact results. For this, an
exactly solvable variant of the spin-boson model [Eq. (3)]
given by

H = ε

2
σz + σzX + HE, (6)

with a characteristic environmental correlation function
tr{eiHEtXe−iHEtXe−βHE /ZE} = λπ ( 1

β
− i ωc

2 )e−ωct , is consid-

ered. The evolution of a correlated initial state Re−βH /ZR†

with R = eiπ/8σx is shown in Figs. 3(b) and 3(c) by means
of the real and imaginary part of the reduced density matrix
element 〈↑| ρ(t) |↓〉. The result obtained when considering an
uncorrelated initial state trE{�(0)}e−βHE /ZE is additionally
shown for comparison. The large discrepancies between ini-
tially correlated and uncorrelated simulations are mostly due
to the strong system-environment coupling and further reveal
the necessity to account for initial correlations. Remarkable
agreement is shown between the exact and the TTM-HEOM
results. Figure 3(a) further verifies the suitability of the
approach by showing the decay of the transfer tensors and
the correction term |In[�(t0)]| within the range t = 0 to
t = ε−1. In view of the strong suppression over several orders
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FIG. 3. Demonstration of the application of the transfer-tensor
method for correlated initial states, considering the pure-dephasing
spin-boson model [Eq. (6)]. The chosen parameters are β =
0.2ε−1, λ = 0.5ε, and ωc = 50ε with a discrete-time spacing of
�t = 0.01ε−1. The considered correlated initial state reads �(0) =
Re−βH /tr{e−βH }R† with R = eiπ/8σx . (a) Illustration of the decay
of the exact transfer tensors Tn and the correction In[�(0)] (using
the Frobenius norm | • |). (b) Evolution of the real part of the
nontrivial reduced density matrix element 〈↑| ρ(t) |↓〉. The corre-
sponding result obtained when considering an uncorrelated initial
state trE{�(0)}e−βHE /tr{e−βHE } is shown for comparison (green
dashed line). Triangles show the perfectly matching results obtained
when using transfer tensors learned from the numerically exact
HEOM for a subsequent propagation of the initial sample. The
initial sample ranges from t = 0 to t = ε−1 and covers the length
of the memory kernel and the period of nonvanishing In[�(0)]. (c)
Evolution of the imaginary part of the nontrivial reduced density
matrix element, otherwise as (b).

of magnitude, the reduced open system state can be safely
further propagated in time by means of transfer tensors as
described above.

We emphasize that the verification of the suitability of
the presented transfer-tensor method for correlated initial
states can be ensured by monitoring the required decays of
the inhomogeneous contribution |In[�(t0)]| and the transfer
tensors |Tn|—even for models that do not allow for an exact
solution. Sufficient decays have been verified for all of the
presented results.

IV. APPLICATION: EMISSION SPECTRA
OF MULTICHROMOPHORIC SYSTEMS

As we will see, the calculation of emission spectra of
multichromophoric systems provides an application that, most
importantly, requires one to account for correlated initial
states. Here, we refer to systems that have been extensively
discussed in Refs. [10–12]. The molecular systems of in-
terest are modeled by means of 1 � i � N internal excited
states |ei〉, which span a single-exciton manifold and that
are coupled diagonally to the collective positions of their
individual bosonic environments. Additionally, these systems
feature an internal ground state, denoted by |g〉, that is
uncoupled from the excited states and their thermal baths
in the Hamiltonian description. However, transitions between
the excited manifold and the internal ground state can be

formally incorporated by interactions with a further generic
environment of the form μ ⊗ B, with system dipole operator

μ =
N∑

i=1

(|ei〉 〈g| + H.c.) (7)

and some arbitrary environment operator B. Omitting this
further environment from the discussion, the corresponding
Hamiltonian reads

H =HS +
N∑

i=1

|ei〉 〈ei | Xi + HE, (8)

with a total number of N independent bosonic baths,
HE = ∑N

i=1

∑
ki

ωki
a
†
ki
aki

, and their collective positions, Xi =∑
ki

γki
(aki

+ a
†
ki

). The open system Hamiltonian representing
the single-exciton manifold reads

HS =
N∑

i=1

εi |ei〉 〈ei | +
N∑

i<j=1

(vij |ei〉 〈ej | + H.c.), (9)

and allows for interactions vij among the excited states. Emis-
sion E(ω) and absorption A(ω) spectra are generically linked
to transitions between the internal excited states and the ground
state. They are obtained by computing Fourier transforms
of the respective dipole-dipole correlation functions [10],
E(ω) = ∫ ∞

−∞ dte−iωtE(t) and A(ω) = ∫ ∞
−∞ dteiωtA(t), with

A(t) = tr{μ(t)μ�g(0)}, (10)

E(t) = tr{μ(t)μ�e(0)}. (11)

Here, μ(t) = eiHtμe−iH t denotes the time-evolved dipole
operator. The considered initial state for absorption processes
�g(0) is a product state composed of the internal ground state
and thermal bath states. It can be obtained from the global
thermal state by means of a projection onto the ground state,
�g(0) = Rge

−βH /ZR
†
g . Here, Rg denotes the normalized pro-

jector onto the ground state, Rg = R
†
g = Pg/

√
tr{Pge−βH /Z}

with Pg = |g〉 〈g|. For emission processes, on the other hand,
a correlated initial thermal state that is equilibrated within the
excited subspace needs to be considered. It is defined as the
projection of the global thermal state onto the excited subspace
�e(0) = Ree

−βH /ZR
†
e , with Re = R

†
e = Pe/

√
tr{Pee−βH /Z}

and Pe = ∑N
i=1 |ei〉 〈ei |. This state may be prepared by optical

pumping [35] or similar procedures. We note that such transi-
tions between the excited and the ground manifold are beyond
Eq. (8) but would, e.g., correspond to the linear response effect
of the system on additional environmental modes.

The absorption and emission spectra fulfill a Kubo-Martin-
Schwinger-like relation,

E(t − iβ) = A∗(t)
ZE

Ze

, (12)

with Ze = tr{Pee
−βH }, and which translates into the frequency

domain as

E(ω) = A(ω)e−βω ZE

Ze

. (13)
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This can be derived from the form of the dipole oper-
ators, PeμPe = PgμPg = 0 and PeμPg = PgμPe = 1, to-
gether with the fact that the total Hamiltonian does not
couple the ground state with the excited manifold, PeHPg =
PgHPe = 0, and it fulfills PgHPg = HEPg and PeHPe =
HPe. As a consequence, the absorption and emission dipole-
dipole correlation functions can be rewritten as E(t) =∑N

i,j=1 〈ei | Ê(t) |ej 〉 and A(t) = ∑N
i,j=1 〈ei | Â(t) |ej 〉 with re-

duced absorption and emission operators,

Â(t) = trE

{
e−iH t e

−βHE

ZE

eiHEt

}
(14)

and

Ê(t) = trE{eiHt�e(0)e−iHEt }. (15)

These matrices also fulfill the Kubo-Martin-Schwinger-like
relationship elementwise. Most importantly, the relationship
given by Eq. (13) has proven useful for the simplification
of the derivation of multichromophoric spectra [36] and can
in our case be employed for temperature estimation from
spectroscopic data and for the validation of results obtained
from numerical simulations, as shown in Figs. 5 and 6.

In a series of previous papers [10–12], the simulation of the
reduced absorption and emission operators by means of differ-
ent perturbative methods, such as the full cumulant expansion
and hybrid cumulant expansion, as well as numerically exact
methods, such as the stochastic path-integral formalism or
HEOM and its stochastic extension [37], has been discussed
in detail. It turns out that, for general parameters, the sPI
approach [12] manifests itself as a very powerful technique:
it is not restricted to high temperatures or certain forms of the
environmental spectral densities and it is suitable for the strong
system-environment coupling regime. We point out that it
constitutes a simpler method than the stochastic Liouville–von
Neumann equations for density matrices [24] due to the
one-sided form of the evolution of the reduced absorption
and emission operators; see Eqs. (14) and (15). However,
obtaining converged results for long-lasting system dynamics
remains a cumbersome task. For the case of absorption spectra,
this difficulty can be overcome by means of the usual TTM
approach [31]. Here, we extend this result and address the
emission operator with the presented TTM approach for
correlated initial states. We instantiate the proposed method
with a molecular system that exhibits N = 2 excited states
and is described by the system Hamiltonian

HS =
⎛
⎝ε1 v 0

v∗ ε2 0
0 0 0

⎞
⎠ (16)

expressed in the basis (|e1〉 , |e2〉 , |g〉). Consequently, we
consider two independent but identical baths that are coupled
to the excited states. Each of them shall be characterized
by an ohmic spectral density with an exponential cutoff,
J (ω) = ∑

ωki
γ 2

ki
δ(ω − ωki

) = λω
ωc

e−ω/ωc for i = 1,2.
For a diagonal system Hamiltonian, v = 0, the emission

problem can be solved exactly and may be used for the
systematic benchmark of our TTM-sPI approach for correlated
initial conditions that are presented in Fig. 4. Figure 4(a) shows

FIG. 4. Application of the transfer-tensor method for emission
spectra of the exactly solvable model with v = 0 and ε1 = ε2 = ε.
The environmental parameters are given by λ = 0.2ε, ωc = 2ε, and
β = ε−1. Transfer tensors are obtained for a time discretization
defined by �t = 0.1ε−1. (a) Emission spectra are obtained from the
analytic transfer-tensor approach when considering different sample
times τ (yellow dashed, green dot-dashed, and red dotted line) and
from the TTM-sPI approach (black triangles). The analytic exact
spectrum is shown for comparison (blue solid curve). (b) Decay of the
inhomogeneous contribution In using the Frobenius norm |•| (green
squares). Additionally, the decay of the memory kernel corresponding
to the initially uncorrelated object is illustrated by means of the
norm of the analytic transfer tensors (orange down-triangles) and
the corresponding tensors obtained from the stochastic simulation
(blue up-triangles) for comparison. (c) Real part of the emission
correlation function E(t) as obtained from a sPI simulation (purple
solid line) demonstrating the poor convergence for large simulation
times. Black squares indicate the exact solution that can be perfectly
recovered with the presented TTM-sPI approach (red dashed line),
even for long times.

the exact emission spectrum (blue solid line) and the rapid
convergence of TTM towards the exact result with increasing
sample times τ (yellow dashed, green dot-dashed, and red
dotted line), where it is shown that a sample time of τ3 = 3ε−1

is sufficient to recover the exact result. The increase in the
sample time gradually broadens the spectrum and its maxima
is shifted to lower frequencies. This trend is representative of
an effective increase of the system-environmental coupling as
a larger portion of the memory kernel is represented by the
transfer tensors. This view is supported by Fig. 4(b), which
shows the decay of the transfer tensors (yellow triangles). It
also shows the rapid decay of the effect of initial correlations
(green squares) of approximately two orders of magnitude
by the time τ3. Figure 4(c) illustrates the difficulty to access
long-time propagation of the emission correlation function by
means of a sPI simulation (purple solid line), whereas transfer
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FIG. 5. (a) Absorption (colored dashed and dotted curves) and
emission (black solid curves) spectra for three different temperatures
are obtained by means of the TTM-sPI approach considering ε1 = 2ε,
ε2 = 1ε, and v = 0.5ε. The same bath parameters for all three
temperatures are given by λ = 0.1ε and ωc = 2ε. For visibility, the
spectra corresponding to β = 0.5ε−1 (β = 0.25ε−1) are vertically
offset by 25 (40). (b) Temperature estimation from the natural
logarithm of the ratio between simulated absorption and emission
spectra according to Eq. (13). The slopes have been fitted to the
simulated data by means of a least-squares method, yielding β =
1.016ε−1, β = 0.504ε−1, and β = 0.251ε−1. Only every 10th data
point (black triangles) is shown for the purpose of a clear presentation.

tensors learned from a short-time sPI simulation suffice to
accurately propagate to long times (red dashed line).

The symmetry relation between absorption and emission
spectra given by Eq. (13) allows for thermometry based on
spectroscopic data and also for the validation of the results
stemming from numerical simulations such as our joint TTM-
sPI approach. By means of this relation, the environmental
temperature as well as the ratio of the partition functions
Z/ZE = tr{e−βH }/tr{e−βHE } can be immediately recovered
from the corresponding spectra, as illustrated in Fig. 5.
Therein, we consider the Hamiltonian

HS = ε

⎛
⎝ 2 0.5 0

0.5 1 0
0 0 0

⎞
⎠. (17)

In Fig. 5(a), emission and absorption spectra are shown
for three different temperatures: β−1 = ε (low), β−1 = 2ε

(intermediate), and β−1 = 4ε (high). All of the presented
emission (black solid lines) and absorption (colored dashed
and dotted lines) spectra show peaks at frequencies that can
be roughly identified with the two eigenvalues of the system
Hamiltonian given by 2.207ε and 0.793ε, which can be best
recognized in the low-temperature example. The intermediate-
and high-temperature cases exhibit an enhanced occupation
of energetically higher environmental states, which supports
transitions between ground and the excited states, and vice
versa, on a wider energetic range. This results in a general
broadening of the spectra. Additionally, one finds that for
the low-temperature example, the two emission peaks show
roughly the same height, whereas for increasing temperatures,
one observes an increasing imbalance in favor of the peak
associated to the higher energy. Figure 5(b) shows that
successful estimation of the temperature from the simulated

FIG. 6. (a) Emission spectra for different system-environment
couplings, simulated by means of the TTM-sPI approach when
accounting for (solid curves) or neglecting (dashed curves) the
effect of initial correlations. The system Hamiltonian is given by
ε1 = 2ε, ε2 = ε, and v = 0.5ε. The same bath parameters for all
three values of λ are given by β = ε−1 and ωc = 2ε. The spectra
corresponding to λ = 0.2ε (λ = 0.4ε) are vertically offset by 0.3ε

(0.6ε). (b) Temperature estimation from the natural logarithm of
the ratio between the simulated absorption and emission spectra
(when accounting for initial correlations) according to Eq. (13).
The slopes have been fitted to the simulated data (triangles) by
means of a least-squares method, yielding β = 0.994ε−1 (λ = 0.05ε),
β = 0.997ε−1 (λ = 0.2ε), and β = 0.968ε−1 (λ = 0.4ε). Only every
14th data point is shown for the purpose of a clear presentation.
The data points corresponding to λ = 0.2ε (λ = 0.4ε) are vertically
offset by 2 (4). Dashed lines are obtained when considering emission
spectra that have been obtained by neglecting the effect of initial
correlations. It can be seen that temperature cannot be recovered
from these approximated emission spectra.

data is possible when initial correlations are taken into
account.

The presented TTM approach for correlated initial con-
ditions allows for detailed studies of the importance of
initial correlations for emission spectra by means of the
possibility of accounting fully or partially, or even neglecting,
the corresponding effects. In practice, this can be achieved
by truncating the length of the initial sample of the exact
(initially correlated) evolution of Ê(t) that is used. This is
shown in Fig. 6(a), where approximate emission spectra are
presented which are obtained from a simulation that neglects
the effect of initial correlations by means of a propagation
of a sample of Ê(t) that only has length one. For weak
system-environment couplings, one expects the effect of initial
correlations to be negligible and this is indeed the case for
λ = 0.05ε, for which the approximate emission spectrum
(black dashed line) provides a qualitatively good estimate for
the exact emission spectrum (red solid line). However, with
increasing system-environmental coupling strength, the effect
of initial correlations becomes more relevant for the reduced
emission operator and the approximate spectra fail to estimate
the exact result. More importantly, we stress that even for the
weak-coupling case (λ = 0.05ε), the temperature cannot be
faithfully recovered from the approximate spectrum, as shown
in Fig. 6(b). Temperature estimation from the simulated spectra
crucially requires one to account for initial correlations of the
reduced emission operator Ê(t).
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FIG. 7. Demonstration of spectral signatures of dark states
considering ωc = 10ε and λ = 0.1ε and Hamiltonian (20). The
location of the peaks approaches the eigenenergies of Hamiltonian
(19), whereas the dip approaches, for low temperatures, the energetic
value of the bare bright state |+〉 at ω � 2ε.

V. APPLICATION: SPECTRAL SIGNATURES OF
ELECTROMAGNETICALLY INDUCED TRANSPARENCY

We finally employ the joint TTM-sPI approach for the
investigation of spectral signatures of electromagnetically in-
duced transparency. Electromagnetically induced transparency
is the phenomenon of vanishing absorption or emission due
to the coupling of the dissipative manifold to a discrete state,
and has found extensive application in the enhancement of
laser-cooling schemes for trapped ions [38]. It appears in a
so-called λ configuration, where an excited state |e〉 is coupled
in Raman resonance with two ground states |g1〉 and |g2〉
forming the following system Hamiltonian:

HS = ε |e〉 〈e| +
2∑

i=1

(vi |e〉 〈gi | + H.c.). (18)

For the case v1 = v2, the basis of the dark state |−〉 =
1√
2
(|g1〉 − |g2〉) and bright state |+〉 = 1√

2
(|g1〉 + |g2〉) allows

us to represent Hamiltonian (19) in the form of Eq. (16). We
will investigate the specific case

HS = ε

⎛
⎝6 1 0

1 2 0
0 0 0

⎞
⎠, (19)

where the matrix is represented in the (|e〉 , |+〉 , |−〉) basis.
This three-level system is coupled to the collective po-

sition X = ∑
k γk(ak + a

†
k) of a bosonic environment HE =∑

k ωka
†
kak in dipolar form, such that the total Hamiltonian of

the considered setup reads

H = HS +
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠X + HE. (20)

The coupling to the individual environmental modes shall
be parametrized by an ohmic spectral density with an ex-
ponential cutoff, J (ω) = ∑

ωk
γ 2

k δ(ω − ωk) = λω
ωc

e−ω/ωc . We
focus on the corresponding emission and absorption spectra
for the dipole operator definition μ′ = (|e〉 〈+| + H.c.) that

show signatures of electromagnetically induced transparency.
Absorption spectra are shown in Fig. 7 when considering three
different temperatures of the environment. The characteristic
dip indicating the presence of a dark state at ω � 2ε becomes
most obvious for low temperatures of the environment.
However, even for the highest considered temperature β =
0.3ε−1, the characteristic suppression can be observed within
the corresponding emission spectrum.

We note that the presented TTM-sPI approach is especially
well suited for studies of the parameter regime considered in
Fig. 7. This is because of the long-lasting system dynamics due
to the weak system-environmental coupling and the low tem-
peratures. The considered parameter regime could otherwise
not be treated with the usual stochastic path-integral method.

VI. SUMMARY

Successful TTM-sPI and TTM-HEOM approaches for the
simulation of open quantum systems subject to correlated
initial conditions have been presented in this paper. The TTM
approach for correlated initial conditions is especially useful
for settings that feature low temperatures or intermediate
system-environment couplings, such that the reduced open
system state of interest evolves on a time scale that is
large compared to the characteristic correlation time of the
environment.

We note that originally, TTM has been introduced for open
systems that are subject to uncorrelated initial conditions. For
the class of correlated initial conditions considered in this
paper, it is still possible to apply TTM without any significant
overhead. Recently, it has been pointed out that the formalism
can, in principle, be extended in order to include correlated
initial states by expressing them as a linear combination of
a maximum of d2 system-environment product terms [39],
where d denotes the open system Hilbert-space dimension. For
each of the terms, the original TTM can be applied individually,
leading to a set of d2 transfer tensors that propagate the
individual terms. Nevertheless, a practical implementation
of the concept remains pending and the required overhead
involving the derivation and application of d2 transfer tensors
could render it a challenging task. The TTM approach for
correlated initial conditions presented in this paper requires a
single set of tensors only.

Considering absorption and emission spectra of multichro-
mophoric systems, we have shown that the symmetry relation
[Eq. (13)] allows for successful temperature estimation from
simulated spectroscopic data. In this context, it turned out to
be crucial to account for initial correlations of the reduced
emission operator—even in the weak system-environment
coupling regime.

Finally, the joint TTM-sPI approach enables the exploration
of spectral signatures of electromagnetically induced trans-
parency within obtained absorption and emission spectra in
hardly accessible regimes.
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