
MIT Open Access Articles

Max-weight scheduling in networks with heavy-tailed traffic

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Markakis, Mihalis G., Eytan H. Modiano, and John N. Tsitsiklis. "Max-Weight Scheduling 
in Networks with Heavy-Tailed Traffic." INFOCOM, 2012 Proceedings IEEE, 25-30 March, 2012, 
Orlando, FL, IEEE, 2012, pp. 2318–26.

As Published: http://dx.doi.org/10.1109/INFCOM.2012.6195619

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/112965

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/112965
http://creativecommons.org/licenses/by-nc-sa/4.0/


Max-Weight Scheduling in Networks with
Heavy-Tailed Traffic

Mihalis G. Markakis, Eytan H. Modiano, and John N. Tsitsiklis

Abstract—We consider the problem of packet scheduling in a
single-hop network with a mix of heavy-tailed and light-tailed
traffic, and analyze the impact of heavy-tailed traffic on the
performance of Max-Weight scheduling. As a performance metric
we use the delay stability of traffic flows: a traffic flow is delay
stable if its expected steady-state delay is finite, and delay unstable
otherwise. First, we show that a heavy-tailed traffic flow is delay
unstable under any scheduling policy. Then, we focus on the
celebrated Max-Weight scheduling policy, and show that a light-
tailed flow that conflicts with a heavy-tailed flow is also delay
unstable. This is true irrespective of the rate or the tail distribution
of the light-tailed flow, or other scheduling constraints in the
network. Surprisingly, we show that a light-tailed flow can be
delay unstable, even when it does not conflict with heavy-tailed
traffic. Furthermore, delay stability in this case may depend on
the rate of the light-tailed flow. Finally, we turn our attention to
the class of Max-Weight-α scheduling policies; we show that if the
α-parameters are chosen suitably, then the sum of the α-moments
of the steady-state queue lengths is finite. We provide an explicit
upper bound for the latter quantity, from which we derive results
related to the delay stability of traffic flows, and the scaling of
moments of steady-state queue lengths with traffic intensity.

I. INTRODUCTION

We consider a single-hop queueing network with a mix of
heavy-tailed and light-tailed traffic, and study the impact of
heavy-tailed traffic on the performance of Max-Weight schedul-
ing. Single-hop network models have been used extensively
to capture the dynamics and scheduling decisions in real-
world communication networks, such as wireless uplinks and
downlinks, switches, wireless ad hoc networks, sensor net-
works, and call centers. In all these systems, one cannot serve
all queues simultaneously, e.g., due to wireless interference
constraints, giving rise to a scheduling problem. Clearly, the
overall performance of the network depends critically on the
scheduling policy applied.

The focus of this paper is on a well-studied class of schedul-
ing policies, commonly refered to as Max-Weight policies. This
class of policies was introduced in the seminal work of Tassiu-
las and Ephremides [20], and since then numerous studies have
analyzed the performance of such policies in different settings,
e.g., see [8], and the references therein. A remarkable property
of Max-Weight policies is their throughput optimality, i.e.,
their ability to stabilize a queueing network whenever this
is possible, without any information on the arriving traffic.
Moreover, it has been shown that policies from this class
achieve low, or even optimal, average delay for specific network

The authors are with the Laboratory for Information and Decision Systems, at
the Massachusetts Institute of Technology, Cambridge, MA, USA. This work
was supported by NSF Grants CNS-0915988 and CCF-0728554, and ARO
MURI Grant W911NF-08-1-0238.

topologies, when the arriving traffic is light-tailed [7], [13],
[19].1 However, the performance of Max-Weight scheduling in
the presence of heavy-tailed traffic is not well understood.

We are motivated to study networks with heavy-tailed traffic
by significant evidence that traffic in real-world communication
networks exhibits strong correlations and statistical similarity
over different time scales. This observation was first made
by Leland et al. [10] through analysis of Ethernet traffic
traces. Subsequent empirical studies have documented this
phenomenon in other networks, while accompanying theoretical
studies have associated it with arrival processes that have heavy
tails; see [14] for an overview. The impact of heavy tails has
been analyzed extensively in the context of single or multi-
server queues; see the survey papers [1], [3], and the references
therein. However, the related work is rather limited in the
context of queueing networks, e.g., see the paper by Borst et al.
[2], which studies the “Generalized Processor Sharing” policy.

This paper aims to fill a gap in the literature, by analyzing
the performance of Max-Weight scheduling in a single-hop
queueing network with a mix of heavy-tailed and light-tailed
traffic. In particular, we study the delay stability of traffic
flows: a traffic flow is delay stable if its expected steady-
state delay is finite, and delay unstable otherwise. Our previous
work [11] gives some preliminary results in this direction, in a
system with two parallel queues and a single server. Here we
elaborate on the intricate delay stability phenomena that arise
in more complex networks. The main contributions of this
paper include: i) in a single-hop queueing network under the
Max-Weight scheduling policy, we show that any light-tailed
flow that conflicts with a heavy-tailed flow is delay unstable;
ii) surprisingly, we also show that for certain admissible arrival
rates, a light-tailed flow can be delay unstable even if it does
not conflict with heavy-tailed traffic; iii) we analyze the Max-
Weight-α scheduling policy, and show that if the α-parameters
are chosen suitably, then the sum of the α-moments of the
steady-state queue lengths is finite. We use this result to prove
that by proper choice of the α-parameters, all light-tailed
flows are delay stable. Moreover, we show that Max-Weight-α
achieves the optimal scaling of higher moments of steady-state
queue lengths with traffic intensity.

The rest of the paper is organized as follows. Section II
contains a detailed presentation of the model that we analyze,
namely, a single-hop queueing network. It also defines formally
the notions of heavy-tailed and light-tailed traffic, and of delay

1On the other hand, when Max-Weight scheduling is combined with Back-
Pressure routing in the context of multi-hop networks, there is evidence that
delay performance can be poor, see, e.g., the discussion in [4].



2

stability. In Section III we motivate the subsequent development
by presenting, informally and through simple examples, the
main results of the paper. In Section IV we analyze the
performance of the celebrated Max-Weight scheduling policy.
Our general results are accompanied by examples, which il-
lustrate their implications in practical network settings. Section
V contains the analysis of the parameterized Max-Weight-α
scheduling policy, and the performance that it achieves in terms
of delay stability. This section also includes results about the
scaling of higher moments of steady-state queue lengths with
traffic intensity. We conclude with a discussion of our findings
and future research directions in Section VI.

II. MODEL AND PROBLEM FORMULATION

We start with a detailed presentation of the queueing model
considered in this paper, together with some necessary defini-
tions and notation.

We denote by <+, Z+, and N the sets of nonnegative reals,
nonnegative integers, and positive integers, respectively. The
cartesian products of M copies of <+ and Z+ are denoted by
<M+ and ZM+ , respectively.

We assume that time is slotted and that arrivals occur at
the end of each time slot. The topology of the network is
captured by a directed graph G = (N , E), where N is the
set of nodes and E is the set of (directed) edges. Our model
involves single-hop traffic flows: data arrives at the source node
of an edge, for transmission to the node at the other end of the
edge, where it exits the network. More formally, let F ∈ N
be the number of traffic flows in the network. A traffic flow
f ∈ {1, . . . , F} consists of a discrete time stochastic arrival
process {Af (t); t ∈ Z+}, a source node s(f), and a destination
node d(f), with s(f), d(f) ∈ N , and (s(f), d(f)) ∈ E . We
assume that each arrival process {Af (t); t ∈ Z+} takes values
in Z+, and is independent and identically distributed (IID)
over time. Furthermore, the arrival processes associated with
different traffic flows are mutually independent. We denote
by λf = E[Af (0)] > 0 the rate of traffic flow f , and by
λ = (λf ; f = 1, . . . , F ) the vector of the rates of all traffic
flows.

Definition 1: (Heavy Tails) A traffic flow f is heavy-tailed
if E[A2

f (0)] =∞, and light-tailed otherwise.

The traffic of flow f is buffered in a dedicated queue at
node s(f) (queue f , henceforth.) Our modeling assumptions
imply that the set of traffic flows can be identified with the
set of edges and the set of queues of the network. The service
discipline within each queue is assumed to be “First Come, First
Served.” The stochastic process {Qf (t); t ∈ Z+} captures the
evolution of the length of queue f . Since our motivation comes
from communication networks, Af (t) will be interpreted as the
number of packets that queue f receives at the end of time slot
t, and Qf (t) as the total number of packets in queue f at the
beginning of time slot t.

In general, not all edges can be activated simultaneously,
e.g., due to interference in wireless networks, or matching

constraints in a switch. Consequently, not all traffic flows can
be served simultaneously. A set of traffic flows that can be
served simultaneously is called a feasible schedule. We denote
by S the set of all feasible schedules, which is assumed to
be an arbitrary subset of the powerset of {1, . . . , F}. For
simplicity, we assume that all attempted transmissions of data
are successful, that all packets have the same size, and that the
transmission rate along any edge is equal to one packet per
time slot. We denote by Sf (t) ∈ {0, 1} the number of packets
that are scheduled for transmission from queue f at time slot t.
Note that this is not necessarily equal to the number of packets
that are transmitted because the queue may be empty. The time-
varying scheduling vector S(t) = (Sf (t); f = 1, . . . , F ) ∈ S
is determined by a scheduling policy.

Using the notation above, the dynamics of queue f take the
form:

Qf (t+ 1) = Qf (t) +Af (t)− Sf (t) · 1{Qf (t)>0},

for all t ∈ Z+, where 1{Qf (t)>0} denotes the indicator function
of the event {Qf (t) > 0}. The lengths of the various queues
at time slot t are captured by the vector Q(t) = (Qf (t); f =
1, . . . , F ). The vector of initial queue lengths Q(0) is assumed
to be an arbitrary element of ZF+ .

In the context of a communication network, a batch of
packets arriving to a queue at any given time slot can be viewed
as a single entity, e.g., as a file that needs to be transmitted.
We define the end-to-end delay of a file of flow f to be the
number of time slots that the file spends in the network, starting
from the time slot right after it arrives at s(f), until the time
slot that its last packet reaches d(f). For k ∈ N , we denote
by Df (k) the end-to-end delay of the kth file of queue f . The
vector D(k) = (Df (k); f = 1, . . . , F ) captures the end-to-end
delay of the kth files of the different traffic flows.

The following definition gives the precise notion of stability
that we use in this paper.

Definition 2: (Stability) The single-hop queueing network
described above is stable under a specific scheduling policy, if
the vector-valued sequences {Q(t); t ∈ Z+} and {D(k); k ∈
N} converge in distribution, and their limiting distributions do
not depend on the initial queue lengths Q(0).

Notice that our definition of stability is slightly different
than the commonly used definition (positive recurrence of
the Markov chain of queue lengths), since it includes the
convergence of the sequence of file delays {D(k); k ∈ N}.
The reason is that in this paper we study properties of the
limiting distribution of {D(k); k ∈ N} and, naturally, we need
to ensure that this limiting distribution exists.

Under a stabilizing scheduling policy, we denote by Q =
(Qf ; f = 1, . . . , F ) and D = (Df ; f = 1, . . . , F ) the
limiting distributions of {Q(t); t ∈ Z+} and {D(k); k ∈ N},
respectively. The dependence of these limiting distributions on
the scheduling policy has been suppressed from the notation,
but will be clear from the context. We refer to Qf as the steady-
state length of queue f . Similarly, we refer to Df as the steady-
state delay of a file of traffic flow f .



3

The stability of the queueing network depends on the rates of
the various traffic flows relative to the transmission rates of the
edges and the scheduling constraints. This relation is captured
by the stability region of the network.

Definition 3: (Stability Region) [20] The stability region of
the single-hop queueing network described above, denoted by
Λ, is the set of rate vectors:{
λ ∈ <F+

∣∣∣ ∃ ζs ∈ <+, s ∈ S : λ ≤
∑
s∈S

ζs · s,
∑
s∈S

ζs < 1
}
.

In other words, a rate vector λ belongs to Λ if there exists a
convex combination of feasible schedules that covers the rates
of all traffic flows. If a rate vector is in the stability region
of the network, then the traffic corresponding to this vector is
called admissible, and there exists a scheduling policy under
which the network is stable.

Definition 4: (Traffic Intensity) The traffic intensity of a
rate vector λ ∈ Λ is a real number in [0,1) defined as:

ρ(λ) = inf
{∑
s∈S

ζs

∣∣∣ λ ≤∑
s∈S

ζs · s, ζs ∈ <+, ∀s ∈ S
}
.

Clearly, arriving traffic with rate vector λ is admissible if
and only if ρ(λ) < 1. Throughout the paper we assume that
the arriving traffic is admissible.

Let us now define the property that we use to evaluate the
performance of scheduling policies, namely, the delay stability
of a traffic flow.

Definition 5: (Delay Stability) A traffic flow f is delay sta-
ble under a specific scheduling policy if the queueing network
is stable under that policy and E[Df ] < ∞; otherwise, the
traffic flow f is delay unstable.

We restrict our attention to scheduling policies that are
regenerative, i.e., policies under which the evolution of the
network is a (possibly delayed) aperiodic and positive recurrent
regenerative process. In other words, under a regenerative
scheduling policy, the network starts afresh probabilistically
at certain time slots (stopping times), and the expected time
between consecutive regenerations is finite. We note that for
admissible rate vectors, all policies considered in this paper
are regenerative. Moreover, the network is stable (in the sense
of Definition 2) under any regenerative policy.

Theorem 1: (Delay Instability of Heavy Tails) Consider
the single-hop queueing network described above under a
regenerative scheduling policy. Every heavy-tailed traffic flow
is delay unstable.

Proof: (Sketch) The result follows easily from the
Pollaczek-Khinchine formula for the expected delay in a
M/G/1 queue, and a stochastic comparison argument. The
main idea is that in a heavy-tailed traffic flow, the probability
that a very big file arrives to the respective queue is relatively
high. Combined with the “First Come, First Served” discipline
within the queue, this implies that a large number of files,

arriving after the big one, experience very large delays. This
is true even if the queue gets served whenever it is nonempty,
namely, if the queue is given preemptive priority. Consequently,
under any scheduling policy, there is relatively high probability
that a large number of files experiences very large delays. This
then implies that a heavy-tailed traffic flow is delay unstable.
For a formal proof see [12].

Since there is little we can do about the delay stability of
heavy-tailed flows, we turn our attention to light-tailed traffic.
The Pollaczek-Khinchine formula for the expected delay in a
M/G/1 queue implies that the intrinsic burstiness of light-
tailed traffic is not sufficient to cause delay instability. However,
scheduling in a queueing network couples the statistics of
different traffic flows. We will see that this coupling can cause
light-tailed flows to become delay unstable, giving rise to a
form of propagation of delay instability.

III. OVERVIEW OF MAIN RESULTS

In this section we introduce, informally and through simple
examples, the main results of the paper and the basic intuition
behind them.

Let us start with the queueing system of Figure 1, which
consists of two parallel queues and a single server. Traffic
flow 1 is assumed to be heavy-tailed, whereas traffic flow 2 is
light-tailed. Service is allocated according to the Max-Weight
scheduling policy, which is equivalent to “Serve the Longest
Queue” in this simple setting. Theorem 1 implies that traffic
flow 1 is delay unstable. Our findings imply that traffic flow
2 is also delay unstable, even though it is light-tailed. The
intuition behind this result is that queue 1 is occasionally very
long (infinite, in steady-state expectation) because of its heavy-
tailed arrivals. When this happens, and under the Max-Weight
policy, queue 2 has to build up to a similar length in order
to receive service. A very long queue then implies very large
delays for the files of that queue under “First Come, First
Served,” which leads to delay instability.

Fig. 1. Delay instability in parallel queues with heavy-tailed traffic.

Systems of parallel queues have been analyzed extensively
in the literature. One of the main reasons is that their simple
dynamics often lead to elegant analysis and clean results.
However, real-world communication networks are much more
complex. In this paper we go beyond parallel queues and
analyze queueing networks with more complicated structure.
A simple example is the queueing network of Figure 2, where
traffic flow 1 is assumed to be heavy-tailed, whereas traffic
flows 2 and 3 are light-tailed. The server can serve either queue



4

1 alone, or queues 2 and 3 simultaneously. This example could
represent a wireless network with interference constraints. In
this setting the Max-Weight policy compares the length of
queue 1 to the sum of the lengths of queues 2 and 3, and
serves the “heavier” schedule.

Fig. 2. Propagation of delay instability: conflicting with heavy-tailed traffic.

The intuition from the previous example suggests that at least
one of the queues 2 and 3 has to build up to the order of
magnitude of queue 1, in order for these two queues to receive
service. In other words, we expect that at least one of the
traffic flows 2 and 3 will be delay unstable under Max-Weight.
Our findings imply that, in fact, both traffic flows are delay
unstable. The main idea behind this result is the following:
with positive probability, the arrival processes to queues 2 and 3
exhibit their “average” behavior. In that case, the corresponding
queues build up slowly and together, which implies that when
they claim the server they have both built up to the order of
magnitude of queue 1.

The simple networks of Figures 1 and 2 illustrate special
cases of a general result: every light-tailed flow that conflicts
with a heavy-tailed flow is delay unstable. For more details see
Theorem 2 in Section IV.A.

Fig. 3. Propagation of delay instability: concurring with heavy-tailed traffic.

Going one step further, consider the queueing network of
Figure 3. Traffic flow 1 is assumed to be heavy-tailed, whereas
traffic flows 2 and 3 are light-tailed. The server can serve either
queues 1 and 2 simultaneously, or queue 3 alone. In this setting
the Max-Weight policy compares the length of queue 3 to the
sum of the lengths of queues 1 and 2, and serves the “heavier”
schedule. The intuition from the previous examples suggests
that traffic flow 3 is delay unstable, but the real question is the
delay stability of traffic flow 2. One would expect that this flow

is delay stable: it is light-tailed itself, and is served together
with a heavy-tailed flow, which should result in more service
opportunities under Max-Weight. Surprisingly though, we show
that there exist arrival rates within the stability region of
this network, such that traffic flow 2 is delay unstable. The
key observation here is that even though traffic flow 2 does
not conflict with heavy-tailed traffic, it does conflict with traffic
flow 3, which is delay unstable because it conflicts with heavy-
tailed traffic. For more details see Propositions 1, 3, and 4 in
Sections IV.B and IV.C.

The examples above suggest that in queueing networks
with heavy-tailed traffic, delay instability not only appears but
propagates through the network under the Max-Weight policy.
Seeking a remedy to this situation, we turn to the more general
Max-Weight-α scheduling policy. This policy assigns a positive
α-parameter to each traffic flow, and instead of using the lengths
to calculate the weight of a schedule and serving the heavier
one, it uses the respective α powers of the different queue
lengths. Our findings imply that in the network of Figure 1,
we can guarantee that traffic flow 2 is delay stable, provided
the α-parameter for traffic flow 1 is sufficiently small. In
other words, we prevent the propagation of delay instability.
This is a special case of a general result: if the α-parameters
of the Max-Weight-α policy are chosen suitably, then the sum
of the α-moments of the steady-state queue lengths is finite.
For more details see Theorem 3 in Section V.A.

IV. MAX-WEIGHT SCHEDULING

In this section we evaluate the performance of the Max-
Weight scheduling policy, with respect to the delay stability of
traffic flows. Informally speaking, the “weight” of a feasible
schedule is the sum of the lengths of all queues included
in it. As its name suggests, the Max-Weight policy activates
a feasible schedule with the maximum weight at any given
time slot. More formally, under the Max-Weight policy, the
scheduling vector S(t) belongs to the set:

S(t) ∈ arg max
(Sf )∈S

{ F∑
f=1

Qf (t) · Sf
}
.

If this set includes multiple feasible schedules, then one of
them is chosen uniformly at random. The following lemma
states that the network is stable under the Max-Weight policy.
Essentially, this result is well-known, e.g., for light-tailed traf-
fic, see [20]; for more general arrivals, see [19]. A subtle point
is that in this paper we adopt a somewhat different definition for
stability. So, we have to ensure that, apart from the sequences
of queue lengths, the sequences of file delays converge as well.

Lemma 1: (Stability under Max-Weight) The single-hop
queueing network described in Section II is stable under the
Max-Weight scheduling policy.

Proof: Consider the single-hop queueing network of Sec-
tion II under the Max-Weight scheduling policy. It can be veri-
fied that the sequence {Q(t); t ∈ Z+} is a time-homogeneous,



5

irreducible, and aperiodic Markov chain on the countable state-
space ZF+ . Proposition 2 of [19] implies that this Markov chain
is also positive recurrent. Hence, {Q(t); t ∈ Z+} converges
in distribution, and its limiting distribution does not depend
on Q(0). Based on this, it can be verified that the sequence
{D(k); k ∈ N} is a (possibly delayed) aperiodic and positive
recurrent regenerative process. Therefore, it also converges in
distribution, and its limiting distribution does not depend on
Q(0); see [18].

A. Conflicting with Heavy-Tailed Flows

Next, we state one of the main results of the paper, which
generalizes our observations from the simple networks of
Figures 1 and 2. Before we give the result, though, let us define
precisely the notion of conflict between traffic flows.

Definition 6: The traffic flow f conflicts with f ′, and vice
versa, if there exists no feasible schedule in S that includes
both f and f ′.

Theorem 2: (Conflicting with Heavy Tails) Consider the
single-hop queueing network described in Section II under
the Max-Weight scheduling policy. Every light-tailed flow that
conflicts with a heavy-tailed flow is delay unstable.

Proof: (Sketch) Let h and l be a heavy-tailed and a light-
tailed traffic flow, respectively, and suppose that l conflicts with
h. Queue h is occasionally very long (infinite, in steady-state
expectation), due to the heavy-tailed nature of the traffic that
it receives. In order for queue l to get served, the weight of
at least one feasible schedule that includes l has to build up
to the order of magnitude of queue h. However, with positive
probability, the arrival processes of all feasible schedules that
include l exhibit their “average” behavior. In that case, queue
l builds up at a roughly constant rate, for a time period of the
order of magnitude of queue h. This implies that traffic flow l
is delay unstable. For a formal proof see Appendix 1.

We emphasize the generality of this result. Namely, a light-
tailed flow that conflicts with heavy-tailed traffic is delay
unstable, irrespective of: i) its rate; ii) the tail asymptotics of
its underlying distribution; iii) whether it is scheduled alone or
with other traffic flows. Hence, we view Theorem 2 as capturing
a universal phenomenon of instability propagation

B. Non-Conflicting with Heavy-Tailed Flows

So far we have shown that: i) a heavy-tailed traffic flow
is delay unstable under any regenerative scheduling policy;
and ii) any traffic flow that conflicts with a heavy-tailed flow
is delay unstable under the Max-Weight scheduling policy. It
seems reasonable, however, that a light-tailed flow that does
not conflict with heavy-tailed traffic should be delay stable.
Unfortunately, this is not always the case. We demonstrate this
by means of simple examples.

Let us come back to the queueing network of Figure 3.
The feasible schedules of this network are {1, 2} and {3},
and all queues are served at unit rate, whenever the respective

schedules are activated. The rate vector λ = (λ1, λ2, λ3)
is assumed admissible. The following proposition shows that
traffic flow 2 is delay unstable if its rate is sufficiently high.

Proposition 1: (Non-Conflicting with Heavy Tails) Con-
sider the single-hop queueing network of Figure 3 under
the Max-Weight scheduling policy. If the arriving traffic is
admissible and the rates satisfy λ2 > (1 + λ1 − λ3)/2, then
traffic flow 2 is delay unstable.

Proof: (Sketch) Let us first give the intuition for the special
case, where λ1 = λ3. Consider sample paths for which a
very large file arrives to queue 1; this is a relatively likely
event, since traffic flow 1 is heavy-tailed. Queue 3 will build
up to the order of magnitude of the large file in queue 1
in order to receive service. Starting from the time slot that
their weights become equal, the Max-Weight policy will be
draining the weights of the two schedules at the same rate. The
period of time until they empty is of the order of magnitude
of the large file in queue 1. Now assume that queue 2 stays
small throughout this period. If the traffic flows 1 and 3
exhibit their “average” behavior, then each feasible schedule
will be activated approximately once every two time slots, since
λ1 = λ3. However, if λ2 > 1/2, queue 2 will build up to the
order of magnitude of the large file in queue 1, which is a
contradiction.

The intuition for the more general case is based on the
following “fluid argument”: assume that the arrivals at each
queue f ∈ {1, 2, 3} are a fluid with rate λf . The departures
from queue f during periods when all queues are nonempty
are also assumed to be a fluid with rate µf . The Max-Weight
policy has the property of draining the weights of the two
feasible schedules at the same rate. Hence, when all queues are
nonempty, the departure rates are the solution to the following
linear system:

λ1 + λ2 − µ1 − µ2 = λ3 − µ3

µ1 + µ3 = 1

µ1 = µ2.

The last two equations follow from the facts that Max-Weight
is a work-conserving policy, and that queues 1 and 2 are served
simultaneously. If the rate at which fluid arrives to queue 2 is
greater than the rate at which it departs, i.e.,

λ2 > µ2 =
1 + λ1 + λ2 − λ3

3
,

or, equivalently,

λ2 >
1 + λ1 − λ3

2
,

then queue 2 builds up over long periods of time, which causes
the delay instability of flow 2. A formal proof essentially shows
that this fluid model is a faithful approximation of the actual
stochastic system (with nonvanishing probability), whenever
queue 1 receives a large file; see [12].

Proposition 1, as well as Propositions 3 and 4 of the
next section, capture a “rate-dependent phenomenon” for the



6

propagation of delay instability.
We conjecture that a converse to Proposition 1 also holds;

namely, that queue 2 is delay stable if the arriving traffic is
admissible and λ2 < (1 + λ1 − λ3)/2.

C. Practical Examples and Implications

We illustrate the implications of the results presented so far
in the context of specific network topologies, often used to
model real-world communication networks.

Example 1: (Parallel Queues) Consider the network of
Figure 4, consisting of n parallel queues and a single server.
Networks of parallel queues are often used to model wireless
uplinks, downlinks, and call centers. Traffic flow 1 is assumed
to be heavy-tailed, whereas the other traffic flows are light-
tailed. The scheduling constraints of parallel queues require
that no two queues can be served simultaneously. The server
is allocated according to the Max-Weight scheduling policy,
which in this setting is equivalent to “Serve the Longest Queue.”

Fig. 4. Delay instability in parallel queues under Max-Weight scheduling: if
traffic flow 1 is heavy tailed (black), then all traffic flows are delay unstable
(gray.)

Proposition 2: Consider the system of parallel queues de-
picted in Figure 4, under the Max-Weight scheduling policy.
If traffic flow 1 is heavy-tailed, then all traffic flows are delay
unstable.

Proof: The result follows easily from Theorems 1 and 2.

Example 2: (Input-Queued Switch) Consider the 2 ×
2 input-queued switch depicted in Figure 5. Input-queued
switches are often used to model internet routers. Traffic flow
(1,1) is assumed to be heavy-tailed, whereas all other flows
are light-tailed. The scheduling constraints of an input-queued
switch require that every feasible schedule has to be a matching
between the sets of input and output ports. Thus, the feasible
schedules of the network are {(1, 1), (2, 2)} and {(1, 2), (2, 1)}.
In this setting the Max-Weight scheduling policy activates a
matching with the maximum weight.

Proposition 3: Consider the 2 × 2 input-queued switch
depicted in Figure 5, under the Max-Weight scheduling policy.
If traffic flow (1,1) is heavy-tailed, then traffic flows (1,1),

Fig. 5. Delay instability in a data switch under Max-Weight scheduling: if
traffic flow (1,1) is heavy tailed (black), then traffic flows (1,2) and (2,1) are
delay unstable (gray.) Traffic flow (2,2) is also delay unstable, if its rate is
sufficiently high.

(1,2), and (2,1) are all delay unstable. If, additionally, λ22 >
(2 + λ11 − λ12 − λ21)/3, then traffic flow (2,2) is also delay
unstable.

Proof: The first part of the result follows from Theorems
1 and 2. The second part is proved similarly to Proposition 1;
see [12].

Example 3: (Wireless Ring) Consider the wireless ring
network of Figure 6. The network consists of 6 nodes, each
of which receives traffic that it transmits to its neighboring
node in the clockwise direction. Traffic flow 1 is assumed to
be heavy-tailed, whereas all other flows are light-tailed. Due
to wireless interference, if a link of the network is activated,
then the links within two-hop distance must be inactive; this
is the so-called two-hop interference model. Thus, the feasible
schedules of the network are {1, 4}, {2, 5}, and {3, 6}.

Fig. 6. Delay instability in a wireless ring network under Max-Weight
scheduling: if traffic flow 1 is heavy tailed (black), then traffic flows 2, 3,
5, and 6 are delay unstable (gray.) Traffic flow 4 is also delay unstable, if its
rate is sufficiently high.

Proposition 4: Consider the wireless ring network depicted
in Figure 6, under the Max-Weight scheduling policy. If traffic
flow 1 is heavy-tailed, then traffic flows 1, 2, 3, 5, and 6 are
all delay unstable. If, additionally, λ4 > (2 + 2λ1 − λ2 − λ3 −
λ5 − λ6)/4, then traffic flow 4 is also delay unstable.

Proof: The first part of the result follows from Theorems
1 and 2. The second part is proved similarly to Proposition 1;
see [12].



7

V. MAX-WEIGHT-α SCHEDULING

The results of the previous section suggest that Max-Weight
scheduling performs poorly in the presence of heavy-tailed
traffic. The reason is that by treating heavy-tailed and light-
tailed flows equally, there are very long stretches of time during
which heavy-tailed traffic dominates the service. This leads
some light-tailed flows to experience very large delays and,
eventually, to become delay unstable. Intuitively, by discrimi-
nating against heavy-tailed flows one should be able to improve
the overall performance of the network, namely to mitigate the
propagation of delay instability. One way to do this is by giving
preemptive priority to the light-tailed flows. However, priority-
based scheduling policies are undesirable because of fairness
considerations, and also because they can be unstable in many
network settings, e.g., see [9], [15].

Instead, we focus on the Max-Weight-α scheduling policy:
given constants αf > 0, for all f ∈ {1, . . . , F}, the scheduling
vector S(t) belongs to the set:

S(t) ∈ arg max
(Sf )∈S

{ F∑
f=1

Q
αf

f (t) · Sf
}
.

If this set includes multiple feasible schedules, one of them
is chosen uniformly at random. By choosing smaller values of
the α-parameters for heavy-tailed flows and larger values for
light-tailed flows, we give a form of partial priority to light-
tailed traffic.

A. The Main Result

Let us start with a preview of the main result of this section:
if the α-parameters of the Max-Weight-α policy are chosen
such that E[A

αf+1
f (0)] <∞, for all f ∈ {1, . . . , F}, then the

network is stable and the steady-state queue lengths satisfy:

E[Q
αf

f ] <∞, ∀f ∈ {1, . . . , F}.

An earlier work by Eryilmaz et al. has given a similar result
for the case of parallel queues with a single server; see Theorem
1 of [5]. In this paper we extend their result to a general single-
hop network setting. Moreover, we provide an explicit upper
bound on the sum of the α-moments of the steady-state queue
lengths. Before we do that we need the following definition.

Definition 7: (Covering Number of Feasible Schedules)
The covering number k∗ of the set of feasible schedules
is defined as the smallest number k for which there exist
s1, . . . , sk ∈ S with

⋃k
i=1 s

i = {1, . . . , F}.

Notice that the quantity k∗ is a structural property of the
queueing network, and is not related to the scheduling policy
or the statistics of the arriving traffic: it is the minimum number
of time slots required to serve at least one packet from each
flow.

Theorem 3: (Max-Weight-α Scheduling) Consider the
single-hop queueing network described in Section II under
the Max-Weight-α scheduling policy. Let the intensity of the
arriving traffic be ρ < 1. If E[A

αf+1
f (0)] < ∞, for all

f ∈ {1, . . . , F}, then the queueing network is stable and the
steady-state queue lengths satisfy:

F∑
f=1

E[Q
αf

f ] ≤
F∑
f=1

H
(
ρ, k∗, αf , E[A

αf+1
f (0)]

)
,

where

H
(
ρ, k∗, αf ,E[A

αf+1
f (0)]

)
=


2k∗

1−ρ ·
(
E[A

αf+1
f (0)] + 1

)
, αf ≤ 1,(

2k∗

1−ρ

)αf

·Kαf + 2k∗

1−ρ ·K, αf > 1,

and K = 2αf−1 · αf ·
(
E[A

αf+1
f (0)] + 1

)
.

Proof: The proof is based on drift analysis of the Lyapunov
function

V (Q(t)) =

F∑
f=1

1

αf + 1
·Qαf+1

f (t),

and use of the Foster-Lyapunov stability criterion and moment
bound. For a formal proof see [12].

B. Traffic Burstiness and Delay Stability

A first corollary of Theorem 3 relates to the delay stability
of light-tailed flows.

Corollary 1: (Delay Stability under Max-Weight-α) Con-
sider the single-hop queueing network described in Section II
under the Max-Weight-α scheduling policy. If the α-parameters
of all light-tailed flows are equal to 1, and the α-parameters of
heavy-tailed flows are sufficiently small, then all light-tailed
flows are delay stable.

Proof: With the particular choice of α-parameters, Theo-
rem 3 guarantees that the expected steady-state queue length
of all light-tailed flows is finite. Little’s Law and a stochastic
comparison argument relate this result to delay stability.

Combining this with Theorem 1, we conclude that when its
α-parameters are chosen suitably, the Max-Weight-α policy
delay-stabilizes a traffic flow, whenever this is possible.

Max-Weight-α turns out to perform well in terms of an-
other criterion too. Theorem 3 implies that by choosing the
α-parameters such that E[A

αf+1
f (0)] < ∞, for all f ∈

{1, . . . , F}, the steady-state queue length moment E[Q
αf

f ] is
finite, for all f ∈ {1, . . . , F}. The following result suggests that
this is the best we can do under any regenerative scheduling
policy.

Theorem 4: Consider the single-hop queueing network
described in Section II under a regenerative scheduling policy.
Then,

E[Ac+1
f (0)] =∞ =⇒ E[Qcf ] =∞, ∀f ∈ {1, . . . , F}.

Proof: This result is well-known in the context of a M/G/1
queue, e.g., see Section 3.2 of [3]. It can be proved similarly
to Theorem 1.



8

Thus, when its α-parameters are chosen suitably, the Max-
Weight-α policy guarantees the finiteness of the highest
possible moments of steady-state queue lengths.

C. Scaling with Traffic Intensity

Although this paper focuses on heavy-tailed traffic and its
consequences, some implications of Theorem 3 are of general
interest. In this section we assume that all traffic flows in
the network are light-tailed, and analyze how the sum of the
α-moments of steady-state queue lengths scales with traffic
intensity.

Corollary 2: (Scaling with Traffic Intensity) Let us fix a
single-hop queueing network and constants α ≥ 1 and B > 0.
The Max-Weight-α scheduling policy is applied with αf = α,
for all f ∈ {1, . . . , F}. Assume that the traffic arriving to the
network is admissible, and that the (α + 1)-moments of all
traffic flows are bounded from above by B. Then,

F∑
f=1

E[Qαf ] ≤ M(k∗, α,B)

(1− ρ)α
,

where M(k∗, α,B) is a constant that depends only on k∗, α,
and B. Moreover, under any stabilizing scheduling policy,

F∑
f=1

E[Qαf ] ≥ M ′(α)

(1− ρ)α
,

where M ′(α) is a constant that depends only on α.
Proof: The first part of the result follows directly from

Theorem 3. The second part follows from Theorem 2.1 in [17]
and Jensen’s inequality. For a formal proof see [12].

Similar scaling results appear in queueing theory, mostly in
the context of single-server queues. More recently, results of
this flavor have been shown for particular queueing networks,
such as input-queued switches [16], [17]. All the related work,
though, concerns the scaling of first moments. Corollary 2 gives
the precise scaling of higher order steady-state queue length
moments with traffic intensity, and shows that Max-Weight-α
achieves the optimal scaling.

VI. DISCUSSION

The main conclusion of this paper is that the celebrated Max-
Weight scheduling policy performs poorly in the presence of
heavy-tailed traffic. More specifically, our findings show that
the phenomenon of delay instability not only arises, but can
propagate to a significant part of the network. This is somewhat
surprising, since Max-Weight is known to perform very well
in the presence of light-tailed traffic, at least in single-hop
queueing networks.

Another important conclusion is that the Max-Weight-α
scheduling policy can be used to alleviate the effects of heavy-
tailed traffic, and is even order optimal, if its α-parameters are
chosen suitably. However, for Max-Weight-α to perform well,
some knowledge of higher order statistics of the traffic flows is

required. If the α-parameters are not chosen appropriately, then
in light of Theorem 4, this policy may also perform poorly.

Note that our rate-dependent delay instability results (Propo-
sitions 1, 3, and 4) concern very simple queueing systems.
Despite their simplicity, the proofs of these results are long,
technical, and, in some sense, “tailored” to the specific structure
of these systems. An interesting direction for future research
is a systematic methodology for determining which flows are
delay stable, which flows are delay unstable, and over which
parts of the stability region.

REFERENCES

[1] S. Borst, O. Boxma, R. Nunez-Queija, B. Zwart (2003). The impact of
the service discipline on delay asymptotics. Performance Evaluation, 54,
175-206.

[2] S. Borst, M. Mandjes, M. van Uitert (2003). Generalized processor
sharing with light-tailed and heavy-tailed input. IEEE/ACM Transactions
on Networking, 11, 821-834.

[3] O. Boxma, B. Zwart (2007). Tails in scheduling. Performance Evaluation
Review, 34, 13-20.

[4] L. Bui, R. Srikant, A. Stolyar (2009). Novel architectures and algorithms
for delay reduction in back-pressure scheduling and routing. In: Proc.
Infocom 2009.

[5] A. Eryilmaz, R. Srikant, J. Perkins (2005). Stable scheduling policies for
fading wireless channels. IEEE/ACM Transactions on Networking, 13,
411-424.

[6] R. Gallager (1996). Discrete stochastic processes. Kluwer Academic.
[7] A. Ganti, E. Modiano, J. Tsitsiklis (2007). Optimal transmission schedul-

ing in symmetric communication models with intermittent connectivity.
IEEE Transactions on Information Theory, 53, 998-1008.

[8] L. Georgiadis, M. Neely, L. Tassiulas (2006). Resource allocation and
cross-layer control in wireless nertworks. Foundations and Trends in
Networking, 1, 1-144.

[9] P. R. Kumar, T. Seidman (1990). Dynamic instabilities and stabilization
methods in distributed real-time scheduling of manufacturing systems.
IEEE Transactions on Automatic Control, 35, 289-298.

[10] W. Leland, M. Taqqu, W. Willinger, D. Wilson (1994). On the self-similar
nature of ethernet traffic. IEEE/ACM Transactions on Networking, 2, 1-
15.

[11] M. Markakis, E. Modiano, J. Tsitsiklis (2009). Scheduling policies for
single-hop networks with heavy-tailed traffic. In: Proc. Allerton 2009.

[12] M. Markakis, E. Modiano, J. Tsitsiklis (2011). Max-Weight scheduling
in queueing networks with heavy-tailed traffic. In: arXiv e-prints, July
2011.

[13] M. Neely (2008). Order optimal delay for opportunistic scheduling in
multi-user wireless uplinks and downlinks. IEEE/ACM Transactions on
Networking, 16, 1188-1199.

[14] K. Park, W. Willinger (2000). Self-similar network traffic: an overview.
In: Self-Similar Network Traffic and Performance Evaluation, K. Park
and W. Willinger, editors, Wiley Inc.

[15] A. Rybko, A. Stolyar (1992). Ergodicity of stochastic processes describing
the operation of open queueing networks. Probl. Peredachi Inf., 3, 3-26.

[16] D. Shah, J. Tsitsiklis, Y. Zhong (2011). Optimal scaling of average queue
sizes in an input-queued switch: an open problem. Queueing Systems, 68,
375-384.

[17] D. Shah, D. Wischik (2008). Lower bound and optimality in switched
networks. In: Proc. Allerton 2008.

[18] K. Sigman, R. Wolff (1993). A review of regenerative processes. SIAM
Review, 35, 269-288.

[19] A. Stolyar (2004). Maxweight scheduling in a generalized switch: state
space collapse and workload minimization in heavy traffic. The Annals
of Applied Probability, 14, 1-53.

[20] L. Tassiulas, A. Ephremides (1992). Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transactions on Automatic Control, 37,
1936-1948.

[21] D. Williams (1991). Probability with Martingales. Cambridge University
Press.



9

APPENDIX 1 - PROOF OF THEOREM 2

Consider a heavy-tailed traffic flow h, and a light-tailed flow
l that conflicts with h. We will show that for admissible traffic
flow rates and under the Max-Weight scheduling policy, E[Ql]
is infinite. Then, Little’s Law and a stochastic comparison
argument will imply that traffic flow l is delay unstable.

The time slots that initiate busy periods of the network
constitute renewal times. Denote by Xi the length of the ith

renewal period. The random variables {Xi; i ∈ N} can be
viewed as IID copies of some nonnegative random variable X
with finite first moment. This is because the network is stable
under the Max-Weight policy and the empty state is accessible
from all states, hence recurrent.

We define an instantaneous reward on this renewal process:

RM (t) = min{Ql(t),M}, ∀t ∈ Z+,

where M is a positive integer.
Without loss of generality, assume that a renewal period of

the network starts at time slot 0. Consider the set of sample
paths where, at time slot 0, queue h receives a file with size B
packets, and all other queues receive no traffic; we denote this
set of sample paths by H(B). Since the arrival processes of
different traffic flows are mutually independent, P (H(B)) =
P (Ah(0) = B) ·

∏
g 6=h P (Ag(0) = 0). For sample paths in

H(B), denote by TB the first time slot when the length of
queue h becomes less than or equal to the sum of the lengths
of all other queues:

TB = min
{
t > 0

∣∣∣ ∑
g 6=h

Qg(t) ≥ Qh(t)
}
· 1H(B).

Under the Max-Weight scheduling policy, queue l receives no
service until time slot TB . Moreover, queue h is served at unit
rate. So, for sample paths in H(B),

B − (TB − 1) ≤ Qh(TB) ≤
∑
g 6=h

Qg(TB) =
∑
g 6=h

TB−1∑
t=1

Ag(t).

A direct consequence of the Strong Law of Large Numbers
is the existence of positive constants ε and δ, such that the set
of sample paths

∆ =
{∣∣∣ t∑

τ=1

Ag(τ)− λg
∣∣∣ ≤ ε · t+ δ, ∀t ∈ N, ∀g 6= h

}
,

has positive probability. We denote by H̃(B) the set of sample
paths ∆ ∩H(B). Due to the IID nature of the arriving traffic,
P (H̃(B)) = P (∆) ·P (H(B)). For sample paths in H̃(B), we
have

TB − 1 ≥ B − (F − 1) · δ∑
g 6=h(λg + ε) + 1

.

Moreover,

Ql(TB) =

TB−1∑
t=1

Al(t) ≥ (λl − ε) · (TB − 1)− δ.

Consequently, there exist positive constants c and B0 such that

for every B ≥ B0 and any sample path in H̃(B), we have

Ql(TB) ≥ cB.

Since at most one packet from queue l can be served at
each time slot, the length of queue l is at least cB/2 packets
over a time period of length at least cB/2 time slots. Hence,
the aggregate reward RMagg , i.e., the reward accumulated over
a renewal period, satisfies the lower bound

RMagg ·1{B≥B0}·1H̃(B) ≥ min
{(cB

2

)2
,M2

}
·1{B≥B0}·1H̃(B).

Then, the expected aggregate reward satisfies

E[RMagg] ≥
∞∑
B=1

E[RMagg · 1{B≥B0} · 1H̃(B)]

≥ P (∆) ·
∏
g 6=h

P (Ag(0) = 0)

·
∞∑
B=1

min
{(cB

2

)2
,M2

}
· 1{B≥B0} · P (Ah(0) = B).

So, there exists a positive constant c′, such that

c′ ·E
[

min
{(cAh(0)

2

)2
,M2

}
·1{Ah(0)≥B0}

]
≤ E[RMagg]. (1)

We have argued that inter-renewal periods have finite ex-
pectation, and, clearly, the expected aggregate reward is finite.
Then, the Renewal Reward theorem (e.g., see Section 3.4 of
[6]) implies that

E[RMagg]

E[X]
= lim
T→∞

1

T

T−1∑
t=0

RM (t), w.p.1. (2)

The fact that the reward is a bounded function of an ergodic
Markov chain implies that

lim
T→∞

1

T

T−1∑
t=0

RM (t) = E[min{Ql,M}], w.p.1. (3)

Eqs. (1)-(3) give

c′

E[X]
· E
[

min
{(cAh(0)

2

)2
,M2

}
·1{Ah(0)≥B0}

]
≤ E[min{Ql,M}].

Taking the limit as M goes to infinity on both sides, and using
the Monotone Convergence theorem (e.g., see Section 5.3 of
[21]), we have that

c′ · c2

4E[X]
· E[A2

h(0) · 1{Ah(0)≥B0}] ≤ E[Ql].

Finally, the fact that h is a heavy-tailed traffic flow implies that
E[Ql] is infinite.


