
MIT Open Access Articles

An ROV operated undersea hydraulic hose repair coupling

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Slocum, Alexander, and Luis Gutierrez. “An ROV Operated Undersea Hydraulic Hose 
Repair Coupling.” Precision Engineering, vol. 43, Jan. 2016, pp. 63–70.

As Published: http://dx.doi.org/10.1016/j.precisioneng.2015.06.010

Publisher: Elsevier

Persistent URL: http://hdl.handle.net/1721.1/112982

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/112982
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   1	
  

An ROV Operated Undersea Hydraulic Hose Repair Coupling  

Alexander Slocum 

Massachusetts Institute of Technology 

Luis Gutierrez  

BP Corporation 

ABSTRACT 

     A hydraulic hose repair system is presented that was developed for use at the Deepwater Horizon 
accident site. The system can be deployed with a single ROV with two controllable arms.  One arm holds 
the device and the other arm pushes a severed hose into the device.  Hydraulic pressure is applied from 
the ROV to the device and a hydraulic coupling within the device is crimped into one end of the hose.  
The second hose end to be spliced to the first is pushed into the other side of the device and the second 
half of the coupling is crimped onto the second hose end. The device itself is left in place as part of the 
splice.  The design, on-shore testing, and fabrication of multiple devices ready to deploy at the accident 
site took on the order of a week to complete. They stand ready to be deployed in the case of another deep-
water accident. 

1.  Introduction 

In the immediate aftermath of the blowout, it was clear something went wrong with the intended 
functioning of the Blow Out Preventer (BOP) on the Deepwater Horizon, and an initial underwater 
assessment concluded that there might be damage to the BOP’s hydraulic control modules.   Several 
hydraulic lines were damaged and it was determined that to establish Remotely Operated Vehicle (ROV) 
control of the BOP, several hydraulic hoses would have had to be cut and spliced to bypass the control 
modules and allow for direct actuation of the BOP shear ram.  It was known that it could take an ROV 
operator up to half a day to use available splicing devices to repair a single hose, and thus a 
method/device was needed in a very short time to reduce the time to splice to an hour or less.  The time to 
accomplish the design, testing, and deployment of a new device was “as fast as possible” while in 
parallel, alternate use of the systems that remained in place were tried as a means of toggling the BOP in 
an attempt to stop the flow of oil. 
 
The authors were part of the emergency engineering response team put into place just after the accident, 
and this paper describes the design process the authors used in conjunction with a highly skilled and 
motivated machine shop to rapidly create a new undersea hydraulic hose repair system for the Deepwater 
Horizon BOP that could easily be used with ROVs.  The total time from “Design and build it!” to a 
workable design was 3 days, and a full array of manufactured devices were ready to deploy less than a 
week later.  In the end, the devices were not used on the Deepwater Horizon site because it was 
determined that the BOP rams did deploy, but that they failed to shear through the pipe as intended for 
some reason other than hydraulic system failure [1,2].  However, the hose repair devices created were 
very efficient and have been kept ready should deep-sea hydraulic hose repair ever be needed.  It is the 
intent of this article to document the design process used and the resulting design of the hose repair 
devices so they could be scaled and realized for other hoses, or improved upon for other applications. 
 
2.  Background 
 
A conventional hose-fitting has extending from the threaded base an inner tubular member with external 
circumferential barbs that engage the inner rubber core of a hydraulic hose.  Also extending from the 
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threaded base is a concentric external tubular member with internal circumferential barbs.  The hose 
presses onto the inner member and loosely fits inside the outer member, and then a hydraulic crimping 
tool radially deforms the outer member.  Standard crimping tools are typically 20 cm or more in diameter 
due to the massive structure required to generate the very large radial crimping forces. 
 
For underwater repair of hydraulic hoses using an ROV, it would be desirable if all the ROV had to do 
was slip the repair fitting over the end of the hose, and then crimp the fitting onto the hose with the flip of 
a switch.  The mechanism to accomplish this must be relatively lightweight and simple to use.  The 
system should operate such that one ROV arm holds the hose, and the second ROV arm puts the fitting 
over the hose, and then triggers the engagement of the repair fitting.  The ROV should be able to carry a 
holster with many fittings so it could repair many hoses on one trip to the site.  Alternatively, the fittings 
could be deployed in a separate carrier at depth and the ROV could move to and from the carrier picking 
up one fitting at a time. 
 
To begin the deterministic design process [3,4], an assessment was made of the design challenge by 
considering known at the time functional requirements, design parameters, analysis, references, risks, and 
countermeasures.  The authors based themselves at Industrial Machine Corp. in Houston for ready access 
to skilled machinists used to rapidly producing precision custom parts for the oil industry.  With laptops 
loaded with CAD and analysis software and high speed Internet access, the team set out to get the job 
done. 
  

2.1  Functional Requirements 

The design process started with BP and the ROV operator stating the functional requirements for the hose 
splicer.  Overall, the	
  hose	
  splicing	
  system	
  needed	
  to	
  be	
  relatively	
  lightweight	
  and	
  be	
  powered	
  via	
  the	
  
ROV’s	
  existing	
  hydraulic	
  system	
  while	
  being	
  manipulated	
  with	
  the	
  ROV	
  arms.	
  	
  Ideally	
  the	
  ROV	
  only	
  
has	
  to	
  slip	
  the	
  repair	
  fitting	
  over	
  the	
  severed	
  end	
  of	
  the	
  hose,	
  and	
  then	
  engage	
  the	
  fitting	
  with	
  the	
  
flip	
  of	
  a	
  switch,	
  and	
  then	
  the	
  process	
  is	
  repeated	
  with	
  the	
  second	
  severed	
  hose	
  end	
  inserted	
  into	
  the	
  
fitting.	
  The	
  ROV	
  should	
  be	
  able	
  to	
  carry	
  a	
  holster	
  with	
  many	
  fittings	
  so	
  it	
  could	
  repair	
  many	
  hoses	
  
on	
  one	
  trip.	
  	
  When	
  repairing	
  multiple	
  hoses,	
  the	
  ROV	
  could	
  also	
  pick	
  up	
  additional	
  fittings	
  from	
  a	
  
receptacle	
  located	
  near	
  the	
  location	
  where	
  the	
  repairs	
  were	
  being	
  performed.	
  	
  Other	
  functional	
  
requirements	
  include1:	
  	
  	
  

1. Water depth rating: 1525 m (5,000 ft) below Mean Sea Level (MSL) (minimum). 
a. Nice to have: 3050 m (10,000 ft) below MSL. 
b. Temperature rating: 1 –60 oC (34 – 140 oF). 

2. System to work with three different hydraulic hose sizes: 1/2” (12.7 mm), 1” (25.4 mm) and 1 
1/2” (38.1 mm), highest pressure applied to hose after splicing is 31 MPa (4500 psig). 

3. Power Sources: 
a. ROV manipulator wrist:  

i. Non-regulated torque range: 109 to 163 N-m (80 to 120 ft-lb). 
ii. The ROV pilot cannot dynamically modify the torque being output by the ROV 

manipulator wrist. 
iii. Modifying the hydraulic power supplied to the wrist in order to change the wrist 

torque is not desirable as it will affect all other manipulator functions. 
b. Hydraulic, 2.2 kW (3 HP):  

i. The nominal hydraulic pressure readily available for powering ROV tooling is 21 
MPa (3,000 psig). 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Both	
  SI	
  and	
  imperial	
  units	
  are	
  used	
  here	
  as	
  appropriate	
  as	
  many	
  in	
  the	
  oil	
  industry	
  still	
  use	
  the	
  latter	
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ii. Greater pressure can be supplied with modest system additions: 35 up to 70 MPa 
(5,000 psi up to 10,000 psi). 

4. ROV Manipulator use: 
a. Strong preference for operation by a single ROV manipulator arm holding the device and 

second arm holding the hose.  
b. Two-ROV manipulator operation of the device is acceptable (One ROV using both its 

manipulators), but discouraged as only one of the two manipulators can be equipped with 
a fine control interface. 

5. Weight limits: 
a. For retrievable systems: 68 kg (150 lb) max, for the ROV to carry, operate, and return 

with the device. 
b. For sacrificial components: 14 kg (30 lb) max, to avoid damaging spliced hoses by being 

pulled down by a heavy object. 
 
2.2 Design Parameters 

Conventional hydraulic hose-fittings were considered a starting point for the design; after all they work 
quite well and are readily available.  Parameters associated with their use include: 

• Hose: Rubber core for sealing with layers of rubber and braided metal to resist pressure forces, 
and for gripping by the fitting (by radial deformation). 

• Fittings: Extending from the threaded base an inner tubular member with external barbs engages 
the inner rubber core of a hydraulic hose to form a seal.  A concentric external tubular member 
with internal barbs loosely fits over the hose and then is crimped in place to resist pressure 
induced axial forces.  

• Crimping tool: A fitting’s outer member is radially deformed by a hydraulic crimping tool that is 
typically 30 cm or more in diameter and 20 cm long due to the massive structure required to 
generate the very large crimping forces.  Such tools also typically completely encircle the hose, 
requiring the hose to be withdrawn from the crimping tool, meaning there must always be a free 
end of the hose. 

o It was not considered viable to crimp threaded fittings onto the end of hose ends and then 
expect the ROV to connect the ends. 

 
As stated in the functional requirements, hydraulic power from the ROV is readily available.  Connecting 
to an electric power source was not an option, and a mechanical linkage (e.g., a screw or lever) activated 
by a ROV’s manipulator had previously been found to be too time consuming and bulky, and in fact took 
typically two ROVs working together. 

2.3 Analysis: 

The hose core is rubber and the hose has layers of steel braid and rubber to give it strength.  Conventional 
hose-fittings form a seal with the hose by creating uniform radial pressure on the hose to engage 
circumferential barbs on the fitting’s inner tubular member over which the hose has been placed. This is 
accomplished by radially crimping the outer cylindrical sleeve onto the hose.  The amount of radial 
deformation might be analytically determined and verified with testing, or more appropriately to rapidly 
achieve an acceptable workable design, the same amount of deformation as is currently attained with 
conventional fittings could be specified for a new fitting. 

2.4 References 

A literature review on existing technology did not reveal any existing splicing tools designed specifically 
to be used by ROVs in deep water.  While high pressure quick connect tools have been used for hydraulic 
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systems across a wide range of industries such as agricultural machinery and construction equipment, 
none have been designed with the given power requirement restrictions of a standard ROV. High-pressure 
couplings usually have a connector interface that is secured to the hose prior to installation.  Therefore, 
during a splicing operation, where the existing damaged hose has to be severed, securing interface 
connectors adds complexity to the system.  Quick connect couplings are more representative of the tool 
required for splicing; however, standard quick connect couplings would fail under the high pressures 
required to activate the shear rams in a BOP. 
 
Published articles on ROV operable hose splicing tools were not found, but several patents were 
identified [5,6,7].  Some devices were created, for example, where the fitting’s outer cylinder was 
replaced with a clamshell device that was closed by the ROV turning a T-handle bolt.  A significant 
problem encountered by the ROV operators is that it was difficult for the ROV to align and push the hose 
onto the inner barb, but this could be addressed by placing a capture cone in front of the barb.  The second 
problem is that it took too much time for the ROV’s manipulator to turn the T handle multiple times to 
squeeze closed the clamshell, but this could be remedied by replacing the threaded clamp with an over 
center linkage.  The third, and most difficult issue was the clamping deformation was not uniformly radial 
and it was reported that leakage occurred and the connection was unreliable. The team concluded that the 
resulting radial pressure on the hose must be relatively uniform as is the case with a standard hydraulic 
fitting crimped in a shop onshore.  Given the tight timeline, this finalized the conviction that the design 
must be based on a standard hydraulic fitting, and an in-situ crimping tool designed around it. 

2.5 Risks and Countermeasures 

One possible failure mode of the system is the disengaging of the splicing unit during operation.  
Therefore, any mechanism designed must be fail-safe, which means it must be self-locking once engaged.  
Any screw threads in the unit must not be back drivable which can be achieved with a fine pitch or using 
spring loaded shot pins to lock linkages in place.  Locking features must be passive and must not require 
the use of fine manipulation motions by the ROV. 

Previous couplings had suffered from the fact that it was difficult for the ROV to push the hose onto a 
barbed central element, such as in a conventional hose-fitting.  A countermeasure would be for any new 
design to use a capture cone into which the hose end would be pushed that would then guide it into/onto 
the fitting. 

3.0 Design development 

A coarse-to-fine approach was used, starting first with considering different strategies (overall approach) 
and then once a strategy was selected based on first order analysis and manufacturing considerations to be 
the most expeditious and effective, detailed concepts could be developed.  Simple bench level tests could 
be used to confirm the design resulting from first order analysis and workability of a concept and then 
detailed designs could be undertaken.  A key was the team individually sketched ideas and then each 
member reviewed each other’s ideas followed by brainstorming, and this helped convergence to be 
efficient and rapid [4]. 

3.1 Strategies 

The first and most simple strategy considered was to use a conventional fitting and create a mechanism to 
crimp it onto a hose.  Other strategies included finding an adhesive solution or other mechanical locking 
means that only engaged the outside of the hose.  Using an adhesive would require surface preparation 
and operation of the adhesive in an environment never before encountered. In the end, it was decided 
because the system must work, and other companies had already tried and failed to use “novel” systems 
that did not employ a simple conventional coupling, and there was no time for an R&d development 
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process.  Hence it was felt that the best strategy would be to create a system based on a conventional 
hydraulic fitting. 

3.2 Concepts 

The simplest concept would be to use a conventional crimping tool, one per splice and just leave the tool 
in place; however, commercial crimping tools weighed about a hundred pounds and were too big and 
unwieldy for the ROV.  The ROV operator and BP had considered this option and vetoed it, which was 
why the team had been assembled.  However, the operating principle was straightforward: radially crimp 
the fitting’s outer tubular member to deform the hose.  Was it possible that the industrial crimping tool 
was just over designed and for the intended one-shot use maybe it could be much smaller?  This called for 
an estimate of the forces required to crimp, so a first order analysis based on yielding a tube was created 
to measure the forces required.  This took less than an hour, whereas tests would have taken over a day.  
As shown in Table 1, the forces predicted are very large, commensurate with the size of a commercial 
tool, and hence there was little hope of miniaturizing the commercial tool. 

Table 1:  Estimate of radial forces for a conventional fitting crimp

 

Considering the mechanics of a hydraulic hose-fitting, as shown in Figure 1, the function of the outer 
sleeve is to deform the hose structure and thereby engage the steel braiding to form a mechanical lock that 
resists the hydraulic axial forces that try to push the fitting off the hose.  The forces applied to deform 
(crimp) the outer sleeve of the fitting do nothing to actually hold the hose, although once crimped the 
reduced diameter maintains the fitting’s grip on the hose.  Thus by applying the principals of Reciprocity 
(try the opposite) and Maudslay’s Maxims (get rid of anything that is not really doing any good) [8,9], the 
team arrived at the conclusion that the force needed to deform the outer sleeve to engage the hose could 
be lowered by axially slitting the fitting’s outer tubular member.   
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Figure 1:  Outer sleeve of a hose fitting deforming a hydraulic hose so barbs engage, seal, and hold hose 
in place 

To determine if the axial slitting strategy was feasible, a number of fittings were measured that were not 
crimped as well as others crimped to hoses that had been provided as examples, to determine the amount 
of radial compression needed, and then the number and width of slits required for the different hose sizes 
was determined.  It was envisioned that the segments would be compressed by the action of a tapered 
wedge.  Table 2 shows the geometry parameters for the hose coupling system, where it was found that it 
was indeed feasible to create axial slits with a standard milling cutter which would allow the outer sleeve 
to be compressed around the hose while causing the slits to just close. 

Table 2  Hose and fitting geometry to determine axial slit width

 

3.2.1 Proof-of-Concept Experiments 

Once the realization was made that any device to compress a full cylinder would be too big, but that 
segments might be sufficient, the machinist was asked about the feasibility of slicing a conventional hose-
fitting’s outer member and then radially compressing the segments using a collet type system.  The 
machinist said the slices in the fitting could be made, but a conventional collet system from a machine 
tool spindle could not provide the several mm+ radial compression believed to be required.  A quick test 
with the compression that could be achieved via a standard collet and a hose segment pressurized by a 
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hand pump showed it leaked badly.  Hence it was determined that a new type of collet would have to be 
designed with enough radial travel by creating individual brass collet wedges and a tapered bore wedge 
receiver. Figure 2 shows the simple solid model made to illustrate the concept, which was shown to the 
machinist for design review that afternoon. Manufacturability and sanity of the design were confirmed 
and Figure 3 shows part drawings rapidly created so the parts could be made that evening.  The parts were 
ready the next morning. 

 

Figure 2:  Solid model of Wedges crimper concept with proof-of-concept unit 

	
   	
  

Figure 3:  Part drawings for the parts to be made that evening so bench level experiments could be done 
the following day.  

Figure 4 shows the parts made for the proof-of-concept test, and Figure 5 shows the system being tested 
in a hydraulic press that axially loaded the wedges to radially compress the axially slit coupling onto the 
hose.  A cap was put on the coupling’s threaded end and the other end of the hose, with a conventionally 
crimped coupling, was attached to a hand operated hydraulic pump.  To check for leaks, a white sheet of 
paper was put below the system.  The hydraulic press pressure required to achieve the desired radial 
motion of the segments was measured and the resulting calculated force became the specification for the 
system to be designed. 
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Figure 4:  (L to R) A conventional hose-fitting, a fitting with axial slits and members compressed about a 
hose, a fitting with axial slits over a hose, brass collet wedges with ID equal to fitting OD, Tapered bore 
wedge receiver. 

 

Figure 5:  Testing the concept wedges to determine axial force required to obtain equivalent radial 
compression of fitting and to check for leaks. 

4.  Detailed design of the Hose Splicer 

The overall “Hose Splicer” design is shown in Figure 6.  Guide funnels direct the hose to be spliced over 
the inner barbed tube and inside the axially slit outer sleeve of a conventional hydraulic fitting which is 
threaded into the central region.  Hydraulic fluid is supplied to the coupling port which actuates the 
tapered bore wedge piston that moves forward and causes the brass collet elements to radially compress 
the slit outer sleeve onto the hose and inner barbed tube.  Figure 6 shows a detailed numbered cross 
section and Table 4 lists the elements in the cross section. 
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Figure 6:  Solid model of final design for the “Hose Splicer” an ROV operated hydraulic hose-fitting 
crimper.  The brass guide funnel is attached to the piston that pushed on the collet segments, and when it 
moves fully forward, a spring loaded locking pin maintains its position even if hydraulic pressure is lost.  
On the right the central region has been lengthened to provide a region for grab handles for the ROV or 
top surface technicians. 

 

 

 

Figure 7: Cross section of final design (elements listed in Table 3) 
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Prior to a splicing operation, the brass collet wedges have a shape contoured to loosely fit that of the 
pistons in their initial nominal starting position, with portions of the wedges fitting inside the pistons, and 
the remaining wider portions extending out of the pistons, as shown in Figure 8.  The wedges are 
manufactured by slitting a part with cylindrical inside diameter to match the initial outside diameter of the 
hose-fitting and an outside conical shape to match the inner conical surface of the piston. The wedges’ ID 
initially conform to the hose-fitting’s OD and their outside radii of curvature is smaller than that of the 
piston’s inside conical surface and thus line contact is initially made along the length of the wedge with 
the piston.  In the final position, surface contact is made with the conical surface and surface contact is 
made with the then deformed hose-fitting segments that are deforming and gripping the hose: The axial 
slits in the hose-fitting allow the brass wedges to cause the modified fitting to radial deform the hose, 
thereby locking the hose in place on the hose-fitting’s inner barbed tube.  This creates the same type of 
crimp as obtained with a commercial crimping system. 

Table 3: Hose Splicer elements 

 

The sizing of the elements was enabled by using the axial force measurements from the proof of concept 
tests, which provided the forces on the wedges needed to compress the slit hose-fitting, as input to a 
design spreadsheet.  The spreadsheet was used to drive creation of a solid model from which part 
drawings were made.  Table 4 shows the calculations made to arrive at system dimensions.  316 stainless 
steel was specified for the body as it performs well in salt water and was readily available in the sizes 
required.  Brass was specified for the wedges and the capture funnels which also serve as a rear linear 
bearing to help guide the piston. With the exception of the brass parts, all parts should be made of the 
same metal to avoid galvanic corrosion issues. 

The brass wedges reduce the chance of galling and high friction, but other non-galling metals could be 
used as long as the Anodic Index between the metals comprising the wedges, pistons, body portions, and 
guide funnels is 0.15 or less for permanent subsea installations.  A larger Anodic Index may be tolerated, 
up to 0.45, for temporary or emergency subsea operations [10]. 
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Table 4: System parameter development and analysis based on thin walled pressure vessel analysis 

 

Seals 

Conventional Parker PolyPak™ piston and rod seals were chosen as brand name seals for which generic 
replacement sizes were also readily available, as they had a proven performance record. In particular, they 
allowed for relaxed tolerances; however, the smaller the seal the more compact the design potentially, but 
the less accommodating of radial clearance error.  As part of the tolerance analysis, the hydraulic cylinder 
member deformations due to pressure were also included in the spreadsheet calculations; because in the 
quest to minimize size, wall thickness had to be kept to a minimum.  Even with highly stressed 
components, radial deformations were much less than acceptable machining tolerances (but it was 
important to check!) as shown in Table 4. 

5.  Production 

Figure 8 shows an assembled Hose Splicer and Figure 9 shows proof testing.  The decision was made to 
manufacture 16 Hose splicers for a ½” hose size, Figure 10, and they were to be ready within a week to be 
deployed to the Deepwater Horizon site to complete hydraulic hose repairs at the BOP.   
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Figure 8:  Manufactured parts and assembly 

 

Figure 9:  Production Hose Splicer unit under pressure testing 
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Figure 10: Assembled Hose Splicer systems readied for final assembly (handle and spring pin attach)  

6.  Operation of the Hose Splicer and Verification of Functional Requirements 

In a splicing operation, an ROV grabs a hose and stabs its end into the guide funnel (36) and moves it 
forward until it is pushed over the hose-fitting’s inner barbed tube. The ROV then can let go of the hose 
and then use its now free arm to insert a conventional hot-stab into the coupling’s port (54) to provide 
hydraulic fluid to the cylinder chamber (55) which moves the piston forward against the brass wedges and 
thus compresses the slit hose-fitting.  The sequence of events is as follows:  

1. The final Hose Splicer is already pre-plumbed to a dual port API 17H hot-stab (Figure 11). Elbow 
fittings are used to connect the hydraulic hose to the hot-stab. 

2. ROV gets one Hose Splicer from the basket and connects it via the hot-stab so the Hose Splicer 
can be powered hydraulically. 

3. After making a clean cut on the hose end using a standard subsea cutting tool (grinder), the ROV 
inserts the end of hose into the capture cone (funnel) on the Hose Splicer and continues pushing it 
in until the hose engages the modified fitting inside. 

4. The ROV energizes the Hose Splicer’s piston by providing hydraulic power through one of the 
two ports in the hot-stab.  The piston drives the wedges forward compressing the fitting’s slit 
outer sleeve to radially compress and engage the hose.  A spring pin falls into place locking the 
piston in position so the wedges cannot relax after the hydraulic pressure is released. 

5. The process is repeated using the other end of the Hose Splicer to engage a second hose end. 
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Figure 11:  Hose Splicer and Hot-stab hydraulic fittings used by the ROV. 

If	
  the	
  wedges	
  are	
  kept	
  in	
  place	
  after	
  the	
  deformation,	
  the	
  hose	
  will	
  also	
  remain	
  locked	
  in	
  place	
  on	
  
the	
  barbed	
  fitting	
  and	
  a	
  tight	
  hydraulic	
  connection	
  without	
  leaks	
  will	
  be	
  obtained	
  even	
  under	
  high	
  
pressure	
  (e.g.,	
  10,000	
  psi,	
  or	
  whatever	
  the	
  hose	
  and	
  fittings	
  are	
  normally	
  rated	
  at).	
  	
  Hence	
  after	
  the	
  
initial	
  splicing	
  operation,	
  even	
  if	
  the	
  wedge	
  angle	
  is	
  not	
  sufficiently	
  self-­‐locking,	
  the	
  pistons	
  have	
  
moved	
  far	
  enough	
  for	
  locking	
  pins	
  to	
  snap	
  into	
  place	
  in	
  the	
  piston	
  grooves	
  (62)	
  so	
  the	
  hot-­‐stab’s	
  
hydraulic	
  fluid	
  pressure	
  can	
  be	
  removed.	
  	
  With	
  this	
  method	
  the	
  only	
  subsea	
  operations	
  required	
  to	
  
be	
  performed	
  by	
  an	
  ROV	
  operator	
  are	
  the	
  severing	
  of	
  hoses	
  to	
  produce	
  clean	
  cut	
  ends,	
  the	
  stabbing	
  
and	
  connecting	
  of	
  hose	
  ends	
  into	
  the	
  splicing	
  device	
  and	
  the	
  hot-­‐stabbing	
  of	
  hydraulic	
  connections.	
  	
  
All	
  the	
  stabbing	
  operations	
  utilize	
  wide	
  capture	
  funnels	
  and	
  thus	
  are	
  easily	
  done	
  by	
  ROV	
  operators.	
  

In	
  summary,	
  the	
  first	
  functional	
  requirement	
  for	
  ability	
  to	
  operate	
  at	
  depth	
  and	
  temperature	
  were	
  
not	
  tested,	
  and	
  although	
  no	
  unusual	
  elements	
  or	
  materials	
  were	
  used	
  that	
  are	
  not	
  typically	
  used	
  in	
  
deep	
  water	
  hydraulic	
  systems,	
  deep	
  water	
  testing	
  should	
  be	
  before	
  deployment	
  to	
  an	
  emergency	
  
site.	
  	
  The	
  second	
  and	
  third	
  functional	
  requirements	
  were	
  met	
  by	
  testing	
  on	
  land	
  with	
  ROV	
  hydraulic	
  
systems,	
  and	
  the	
  balanced	
  design	
  is	
  such	
  that	
  the	
  loads	
  on	
  the	
  ROV	
  wrist	
  do	
  not	
  come	
  close	
  to	
  the	
  
load	
  limits.	
  	
  The	
  fourth	
  functional	
  requirement	
  was	
  cleanly	
  met	
  with	
  the	
  design.	
  	
  The	
  fifth	
  functional	
  
requirement	
  for	
  device	
  weight	
  was	
  mostly	
  met	
  as	
  shown	
  in	
  Table	
  5.	
  	
  The	
  assessment	
  by	
  the	
  ROV	
  
operators	
  was	
  the	
  design	
  was	
  easy	
  enough	
  to	
  manipulate	
  and	
  that	
  the	
  larger	
  size	
  hoses	
  could	
  
support	
  the	
  weight,	
  so	
  stainless	
  steel	
  and	
  brass	
  would	
  be	
  used	
  for	
  a	
  limited	
  production	
  run.	
  	
  Longer	
  
term	
  more	
  testing	
  would	
  be	
  needed	
  to	
  determine	
  if	
  a	
  titanium	
  based	
  design	
  is	
  called	
  for	
  which	
  
could	
  realize	
  a	
  50%	
  weight	
  reduction.	
  	
  Furthermore,	
  if	
  a	
  larger	
  production	
  design	
  was	
  to	
  be	
  
pursued,	
  because	
  there	
  was	
  a	
  significant	
  safety	
  factor	
  in	
  the	
  design,	
  it	
  is	
  likely	
  component	
  sizes	
  
could	
  be	
  reduced	
  potentially	
  by	
  about	
  90%,	
  but	
  this	
  would	
  have	
  to	
  be	
  verified	
  with	
  more	
  extensive	
  
analysis	
  and	
  testing.	
  

Table 5: Hose splicer weights for the as-built systems 
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7.  Conclusions and Recommendations 

During	
  the	
  week	
  it	
  took	
  to	
  develop	
  and	
  manufacture	
  the	
  Hose	
  Splicers,	
  it	
  was	
  determined	
  by	
  the	
  
response	
  team	
  that	
  the	
  Deepwater	
  Horizon	
  rams	
  did	
  indeed	
  deploy	
  before	
  the	
  hoses	
  were	
  severed,	
  
but	
  the	
  rams	
  were	
  not	
  able	
  to	
  shear	
  the	
  drill	
  pipe,	
  most	
  likely	
  because	
  a	
  joint	
  section	
  was	
  at	
  the	
  
point	
  of	
  ram	
  deployment.	
  	
  Hence	
  the	
  Hose	
  Splicers	
  were	
  not	
  deployed.	
  	
  However,	
  they	
  remain	
  ready	
  
for	
  use,	
  and	
  the	
  design	
  herein	
  documented	
  enables	
  them	
  to	
  be	
  scaled	
  for	
  other	
  hose	
  sizes	
  should	
  the	
  
need	
  arise	
  [11].	
  

Accordingly,	
  it	
  is	
  recommended	
  that	
  the	
  units	
  be	
  extensively	
  tested	
  using	
  an	
  ROV	
  in	
  an	
  underwater	
  
training	
  environment,	
  and	
  then	
  production	
  quantities	
  (several	
  dozen)	
  units	
  for	
  various	
  hose	
  sizes	
  
be	
  made	
  and	
  kept	
  ready	
  should	
  the	
  need	
  arise	
  for	
  their	
  use. 
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