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Abstract—We consider the impact of delayed state information
on the performance of centralized wireless scheduling algorithms.
Since state updates must be collected from throughout the net-
work, they are inevitably delayed, and this delay is proportional
to the distance of each respective node to the controller. In this
paper, we analyze the optimal controller placement resulting from
this delayed state information. We propose a dynamic controller
placement framework, in which the controller is relocated using
delayed queue length information at each node, and transmissions
are scheduled based on channel and queue length information.
We characterize the throughput region under such policies, and
find a policy that stabilizes the system for all arrival rates within
the throughput region.

I. INTRODUCTION

In order to schedule transmissions to achieve maximum
throughput, a centralized scheduler must opportunistically
make decisions based on the current state of the time-varying
channels [1]. The channel state of a link can be measured
by its adjacent nodes, who convey this channel state infor-
mation (CSI) across the network to the scheduler. Due to the
transmission and propagation delays over wireless links, the
time required for the scheduler to collect CSI throughout the
network is significant, and in that time the network state may
change relative to the CSI.

There has been extensive work on wireless scheduling, in
which centralized approaches are used to control the network
[1]–[3]. In theory, centralized scheduling, where a single entity
makes a scheduling decision for the entire network, yields high
throughput because it is assumed that current CSI is used to
compute a globally optimal schedule. However, in practice,
the available CSI for centralized scheduling is a delayed view
of the network state. Furthermore, the delay in CSI is often
proportional to the distance of each link to the controller, since
CSI updates must traverse the network.

Several works have considered scheduling with delayed state
information. In [4], the authors consider a system in which CSI
and QLI (Queue Length Information) updates are only reported
once every T time-slots, but the transmitter makes a scheduling
decision every slot, using delayed information. They show that
delays in the CSI reduce the achievable throughput region,
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while delays in QLI do not adversely affect throughput. In
[5], Ying and Shakkottai study throughput optimal scheduling
and routing with delayed CSI and QLI. They show that the
throughput optimal policy activates a max-weight schedule,
where the weight on each link is given by the product of
the delayed queue length and the conditional expected channel
state given the delayed CSI. This work is extended in [6],
where the authors account for the uncertainty in the state
of the network topology as well. Lastly, the work in [7]
characterizes the impact of delayed CSI as a function of the
network topology, when delays are proportional to distance.

In order to implement a centralized scheduling scheme, one
node is assigned the role of a controller, and collects CSI from
the rest of the network. Then, the controller uses this CSI to
select a set of nodes to transmit at each time slot, in order
to maximize throughput while avoiding interference between
neighboring links [7]. However, the information available at
the controller is delayed an amount of time proportional to
the distance of the links from the controller. Since this delay
directly impacts the throughput of the scheduling algorithm,
the placement of the controller affects network performance.

This paper studies the impact of the controller placement
on network performance. To begin, we analyze the static con-
troller placement problem, in which the controller placement is
computed a priori, and remains fixed over time. We formulate
the optimal controller placement problem, and develop a com-
putationally tractable heuristic to locate the controller in large
networks. Next, we propose a dynamic controller placement
framework, in which the location of the controller is changed
over time. This allows for the controller to be moved to a
congested region of the network to increase throughput to this
region and provide stability.

The main contribution of this work is the design and
analysis of a queue-length based dynamic controller placement
algorithm. We prove this algorithm is throughput optimal over
all controller placement policies which do not depend on CSI.
Additionally, we extend this framework to include controller
placement policies which use delayed CSI that is globally avail-
able in the network. We provide extensive simulation results
to quantify the improvement in dynamic controller placement,
and verify the throughput optimality of the proposed policies.

The remainder of this paper is organized as follows. In
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Figure 1: Markov Chain describing the channel state evolution of
each independent channel.

Section II, we provide the network and information models
used in this work. In Section III, we analyze the static controller
placement problem. This is extended to a dynamic controller
placement in Section IV, where we present an optimal con-
troller placement algorithm. Simulation results are shown in
Section V, and conclusions are presented in Section VII.

II. SYSTEM MODEL

Consider a network G(N ,L) consisting of a set of nodes
N and links L. Each link is associated with an independent,
time-varying channel. Let Sl(t) ∈ {OFF,ON} be the state
of the channel at link l at time t. Throughout this paper, we
use Sl(t) ∈ {0, 1} interchangeably. Assume the channel state
evolves over time according to the Markov chain in Figure 1,
with transition probabilities p and q. Throughout this work,
we assume that 1− p− q ≥ 0, corresponding to channels with
“positive memory.” The positive memory property ensures that
a channel that was ON k slots ago is more likely to be ON at
the current time, than a channel that was OFF k slots ago. This
allows the transmitter to make efficient scheduling decisions
using delayed CSI. Let pkij be the k-step transition probability
of the Markov chain, and let π be the steady state probability
that the channel is in the ON state.

lim
k→∞

pk01 = lim
k→∞

pk11 = π =
p

p+ q
. (1)

One of the nodes is assigned to be the controller, and in each
time slot, activates a subset of links for transmission. Assume
a primary interference constraint in which a link activation is
feasible if the activation is a matching, i.e. no two neighboring
links are activated simultaneously. If link l is activated, and
Sl(t) = ON, then a packet is successfully transmitted at that
time slot. On the other hand, if the channel at link l is OFF,
then the transmission fails.

We assume that packets arrive externally to each node i,
destined for neighboring node j, according to an i.i.d. Bernoulli
arrival process Aij(t) of rate λij , and are stored in a queue
at that node to await transmission. We assume that packets
are destined for a neighboring node, but our results easily
extend to the case of multi-hop communication. Let Ql(t)
be the total packet backlog of link l at time t. If a link is
scheduled for transmission, there is a packet to transmit, and
the corresponding channel is ON, then a packet departs the
system from that link.

Let Π be the set of joint controller placement and scheduling
policies. The primary objective of this work is to determine a
policy P ∈ Π to stabilize the system of queues. We proceed

with a number of important definitions that are standard of the
scheduling literature [2].

Definition A link with backlog Ql(t) is stable under policy P
if

lim sup
n→∞

1

n

n−1∑
t=0

E[Ql(t)] <∞ (2)

The complete network is stable if all queues are stable.

Definition The throughput region or stability region Λ is the
closure of the set of all rate vectors λ that can be stably
supported over the network by a policy P ∈ Π.

Definition A policy is said to be throughput optimal if it
stabilizes the system for any arrival rate λ ∈ Λ.

A. Delayed Information Model

In order to determine the subset of links to activate, the
controller obtains CSI from each link in the network, and uses
the CSI to compute a feasible link activation with maximum
expected throughput. Due to the physical distance between
nodes, the propagation delay across each link and the need
to relay transmissions over multiple hops, the CSI updates
received at the controller are delayed an amount of time that
is proportional to the distance between each link and the
controller [7]. In particular, let di(l) be the distance in hops
between node i and link l.1 At time t, each node i has delayed
CSI pertaining to link l from time-slot t−di(l). In other words,
node i has state information Sl(t−di(l)) for link l. In addition
to each node i having delayed CSI, it has delayed queue length
information (QLI) Ql(t − di(l)) for every link. While in an
actual system there is also a delay in distributing the schedule
to the nodes, in our formulation we assume that the extra delay
on the return path can be captured in the channel state process.
(i.e., if the one-way delay is T slots, then the round-trip delay
is 2T slots, and this can be effectively captured by channel
state transition process).

III. STATIC CONTROLLER PLACEMENT

In this section, we consider an off-line controller placement,
such that the controller remains fixed over time. We show that
the optimal controller placement depends on the network topol-
ogy as well as the channel transition probabilities. Throughout
this section, we consider a saturated system, in which each
node as an infinite backlog of packets to be transmitted to
each neighbor.

Intuitively, scheduling an ON link at the current time-
slot should take priority over scheduling a link that was
ON at a previous time slot, but may not be ON currently.
Mathematically, this follows from the monotonicity of the k-
step transition probability for the Markov chain in Figure 1.
Thus, the expected throughput depends on the topology of the
network with respect to the controller location, in terms of how
many links are 1 hop away, 2 hops away, etc. and which links
can be activated simultaneously.

1By convention, node i is a distance of 0 hops from its adjacent links.
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A. Static Placement Example
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Figure 2: Barbell Network. Node A and Node C each have a
degree of k + 1.

As a motivational example, consider the topology in Figure
2, and compare the expected sum-throughput attainable by
placing the controller at node A, node B, or node C. When
the controller is placed at node B, the CSI of the two links
adjacent to node B is available without delay, while the
CSI corresponding to the other 2k links are available at a
1 time-slot delay. Intuitively, if one of two interfering links
can be scheduled, and both links are ON, a higher expected
throughput is earned by scheduling the link with the smaller
delay. This intuition leads to a mathematical characterization
of the expected throughput, when the controller is located at
node B.

For simplicity, assume a symmetric Markov channel in
Figure 1, i.e. p = q. The probability that k links are OFF
is given by γ = ( 1

2 )k. To compute the expected throughput as
a function of controller placement, we first condition on the
state of the two links adjacent to node B. Thus, placing the
controller at node B results in an expected throughput of

thptB =
1

4
· 2
(
(1− γ)p1

11 + γp1
01

)
+

1

2

(
1 + (1− γ)p1

11 + γp1
01

)
+

1

4

(
1 + (1− γ2)p1

11 + γ2p1
01

)
. (3)

The above expression follows from conditioning on the state
of the two adjacent links to B. The first term corresponds to
the expected throughput when both links are OFF, in which
ON links adjacent to A or C should be scheduled, the second
corresponds to the case when one is ON and the other is OFF,
in which the ON link should be scheduled, and the last term
corresponds to both links being ON, in which one of the ON
links are scheduled, based on the states of the other links.

On the other hand, when the controller is placed at node A,
the state of the k + 1 neighboring links are available without
delay, the link between B and C is available at a 1 time-slot
delay, and the remaining k links are available at a 2 time-
slot delay. Placing the controller at node A yields the same
expected throughput as placing the controller at node C, due
to the symmetry of the network. The expected throughput from
placing the controller at node A is derived by first conditioning
on the state of the k + 1 links adjacent to node A, and then
conditioning on the state of the link from B to C.

thptA = (1− γ)

[
1 +

1

2
p1

11 +
1

2

(
(1− γ)p2

11 + γp2
01

)]
+ γ

[
1

2

(
1 + (1− γ)p2

11 + γp2
01

)
+

1

2

(1

2
p1

11

+
1

2

(
(1− γ)p2

11 + γp2
01

))]
(4)

As k grows to infinity, it can be seen that for p ≤ 1
4 , it is

optimal to place the controller at node B, and for p ≥ 1
4 it

is optimal to place the controller at either node A or C. This
example highlights some important properties of the controller
placement problem. In particular, it is clear that the optimal
placement depends on the channel transition probabilities.
When p is small, it is advantageous to place the controller
to minimize the CSI delay throughout the network (e.g. node
B in the above example). On the other hand, when p is close
to 1

2 , delayed CSI is no longer useful, hence it is better to
maximize the amount of local CSI at the controller (e.g. nodes
A or C).

B. Optimal Controller Placement

From the previous example, it is clear that the throughput-
maximizing controller placement is a function of the channel
state transition probabilities p and q, as well as the network
topology. Let M be the set of matchings in the network, i.e.,
∀M ∈ M, M is a set of links which can be scheduled
simultaneously without interfering with one another. Under
a throughput maximization objective, the controller schedules
the set of links maximizing the expected sum-rate throughput
with respect to the CSI delays at that node. Consequently, the
controller placement optimization is a max-weight matching,
where the weight on each link is the belief of that link, or the
probability the channel is in the ON state.

c = arg max
r∈N

ES
[

max
M∈M

∑
l∈M

E
[
Sl(t)

∣∣Sl(t− dr(l)) = Sl
]]

(5)

= arg max
r∈N

ES
[

max
M∈M

∑
l∈M

p
dr(l)
Sl,1

]
(6)

In equation (6), pki,j is the k-step transition probability of
the Markov chain in Figure 1. Equation (6) follows since the
channel state satisfies Sl(t) ∈ {0, 1}. Computing a maximum
matching requires solving an integer linear program (ILP) and
it is known to be solvable in O(|L|3)-time [9]. However, com-
puting the optimal controller position in (6) requires computing
the expectation of the maximum matching, which involves
solving the ILP for every state sequence S(t) ∈ {0, 1}|L|.

C. Controller Placement Heuristic

The mathematical formulation for computing the optimal
controller location given in (6) depends on the distance between
nodes, as well as the channel state statistics. However, this
computation has a complexity that grows exponentially with
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the size of the network. Hence, we propose a computation-
ally tractable heuristic for computing the optimal controller
location, which is shown to be near-optimal in terms of the
resulting expected throughput.

In this heuristic each node is assigned a weight based on
its degree. As the memory in the channel process decreases,
the best controller location is the node most likely to have an
ON neighboring link, i.e. the node with the highest degree. To
model this, node n is assigned a weight of (1 − (1 − π)∆n),
where ∆n is the degree of node n, which is equal to the
probability of having an adjacent ON link.

The controller is placed at the location maximizing the
information about the network. Intuitively, the controller should
be “close” to as many highly weighted nodes as possible.
However, “closeness” must reflect the memory in the system.
Thus, we apply a scaling factor, which is a function of the
distance to the controller, given by (1 − p − q)di(n), where
di(n) is used in this context to refer to the distance between
two nodes i and n. This scaling represents the transition rate
of the Markov Chain in Figure 1 as a function of the distance
to the controller. Thus, this scaling factor represents the effect
on expected throughput in having delayed information. Our
heuristic maximizes the weighted sum-distance to each node
as shown in (7). Therefore, the controller is placed according
to:

c = arg max
r

∑
n∈N

(1− p− q)dr(n)(1− (1− π)∆n). (7)

Placing the controller according to (7) preserves the important
properties of the optimal controller placement in (6).

The heuristic in (7) is very similar to the well-known p-
median problem [10], for p = 1. The 1-median problem
seeks to find the node that minimizes the sum distance to
all other nodes. In contrast, the controller placement assigns
weights to nodes and uses a convex function of distance in
this computation. These differences ensure that the controller
is placed at the location that yields high throughput, which
may not be the same as the solution to the 1-median problem.

Figure 3 shows the expected throughput for the network of
Figure 2, when the controller is located at node A and node
B, as well as the value of the heuristic objective in (7). These
results show the controller placement in (7) is similar in terms
of throughput to the optimal placement.

In general, the heuristic returns a controller location that
yields throughput close to that of the optimal placement.
Consider the topology in Figure 4, for which the heuristic of (7)
is applied and compared to the optimal controller placement,
shown in Table I. We find that the heuristic controller place-
ment is often the same as the throughput-optimal controller
placement. Furthermore, in instances where the throughput-
optimal location differs from the heuristic location, the con-
troller is placed at a location yielding an average throughput
within 1% of optimal.

Op#mal	
  Placement	
  

(a) Expected Throughput (b) Heuristic Weight

Figure 3: Evaluation of the controller placement heuristic for
the barbell network and various channel transition probabilities
p = q.
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Figure 4: Sample 14 Node network topology

IV. DYNAMIC CONTROLLER PLACEMENT

For a fixed controller location, the links physically close
to the controller obtain a higher throughput than those far
from the controller due to the delay in CSI. By relocating the
controller, the throughput in different regions of the network
can be improved. In this section, we consider policies which
recompute the controller location dynamically in order to
balance the throughput throughout the network. We charac-
terize the throughput region of the controller placement and
scheduling problem above, and propose a throughput optimal
joint controller placement and scheduling policy based on the
information available at each node.

A. Two-Node Example

1 2

d

λ1 λ2

Figure 5: Example 2-node system model. Packets arrive at nodes 1
and 2 for transmission to node d.

In order to illustrate the effect of dynamic controller reloca-
tion, consider the three-node system in Figure 5, where nodes
1 and 2 compete over a shared medium to send packets to
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Strategy Optimal Placement Heuristic Placement % Error
p = 0.05 6 6 0
p = 0.1 6 6 0
p = 0.15 6 6 0
p = 0.2 6 6 0
p = 0.25 6 6 0
p = 0.3 6 6 0
p = 0.35 10 6 .0289
p = 0.4 10 6 .2974
p = 0.45 10 6 .5704
p = 0.5 10 6 .7937

Table I: Results of controller placement problem over the topology
of Figure 4. Optimal placement is computed by solving (6) via
brute force, while heuristic refers to (7). Percent Error refers to the
difference between the optimal and heuristic placements.

destination d. Let λi is the arrival rate of packets at node i
destined for d. Each node has instantaneous CSI pertaining
to its channel at the current time, and 1-step delayed CSI of
the other channel. Let Λ1 be the throughput region when the
controller is fixed at node 1, and let Λ2 be the throughput
region when the controller is fixed at node 2. The throughput
regions Λr are characterized for each controller location r by
the following linear program (LP).

Maximize:
ε

Subject To:

λi + ε ≤
∑

(s1,s2)∈S

P((S1(t− dr), S2(t− dr)) = (s1, s2))

· αi(s1, s2)E[Si(t)|Si(t− dr(i)) = si]

∀i ∈ {1, 2}
M∑
i=1

αi(s1, s2) ≤ 1 ∀s ∈ S

αi(s1, s2) ≥ 0 ∀s ∈ S, i ∈ 1, 2
(8)

In the above LP, αi(s1, s2) represents the fraction of time
link i is scheduled when delayed CSI at the controller is
(s1, s2). To maintain stable queue lengths, the arrival rate to
each queue must be less than the service rate at that queue,
which is determined by the fraction of time the node transmits,
and the expected throughput obtained over that link. For the
case when the controller is at node r, Λr is the set of arrival
rate pairs λ = (λ1, λ2) such that there exists a solution to (8)
satisfying ε > 0. The proof that Λr is in fact the stability region
of the system is found in [5].

The throughput regions Λ1 and Λ2 are plotted in Figure 6
for the case when p = q = 0.1. The throughput region is larger
in the dimension of the controller, as a higher throughput is
obtained at the node for which current CSI is available. The
other node cannot attain the same throughput due to the CSI
delay. Now consider a time-sharing policy, alternating between

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

Throughput region for different controllers: p = 0.1, q = 0.1

h1

h 2

 

 

Perfect CSI
Controller at 2
Controller at 1

Figure 6: Throughput regions for different controller scenarios.
Assume the channel state model satisfies p = 0.1, q = 0.1, and
d1(2) = d2(1) = 1.

placing the controller at node 1 and node 2. The resulting
throughput region Λ is given by the convex hull of Λ1 and
Λ2, which is shown as the dotted black line in Figure 6.
Time-sharing between controller placements allows for higher
throughputs than if the controller is fixed at either node. For
example, the point (λ1, λ2) = ( 3

8 − ε,
3
8 − ε), for ε small, is

not attainable by any fixed controller placement; however, this
throughput point is achieved by an equal time-sharing between
controller locations.

The optimal time sharing between controller placements
depends on the arrival rate and channel transition probabilities.
This information is usually unavailable to the controller, and
the control policy must stabilize the system even if the parame-
ters change. Thus, we propose a dynamic controller placement
and scheduling policy which achieves the full throughput
region Λ using only delayed QLI for controller placement,
and delayed CSI and QLI for scheduling, with no information
pertaining to the arrival rates.

B. Queue Length-based Dynamic Controller Placement

We design our dynamic controller placement policy based on
the same intuition as the static case. As described previously,
one node is assigned the role of the controller. In order to
compute the new controller location in a distributed fashion,
each node must be able to compute the controller location
based only on globally available information. In particular,
we consider algorithms that are based on sufficiently delayed
QLI, and do not consider CSI in deciding where to place
the controller2, since it is known that delayed QLI does not
affect the throughput performance of the system [4]. After the
controller is selected, the controller chooses the transmission
schedule based on the delayed CSI and QLI. Assume that
in every slot, the location of the controller is recomputed.
Practically, it may be desirable to restrict controller relocation
to a longer interval, and this extension is addressed in Section
VI.

2For networks with a large diameter, the common CSI may be too stale
to be used in controller placement; thus, we restrict our attention to policies
which utilize QLI to make controller placement decisions, but not CSI.
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For simplicity, throughout this section we assume that each
link mutually interferes with each other link. The results in
this section can be easily extended to arbitrary interference
models, but doing so complicates the analysis considerably,
without providing additional insight to the problem.

Let Π be the set of policies which make a controller-
placement decision based on QLI and not CSI, and make a
scheduling decision based on the delayed CSI and QLI at
the controller. In this section, we characterize the throughput
region under such policies, and propose the dynamic controller
placement and scheduling (DCPS) policy, which is proven to
stabilize the system for all arrival rates within the throughput
region.

Theorem 1 shows that the throughput region is characterized
by the following LP.

Max. ε

S.t.: λi + ε ≤∑
s∈S

PS(s)

M∑
r=1

βrα
r
i (s)E

[
Si(t)

∣∣Si(t− dr(i)) = si]

∀i ∈ {1, . . . ,M}
M∑
i=1

αri (s) ≤ 1 ∀s ∈ S

M∑
r=1

βr ≤ 1

αri (s) ≥ 0, βr ≥ 0 ∀s ∈ S, i, r ∈ 1, . . . ,M
(9)

This LP is an extension of the LP given in (8) to M nodes,
with the addition of a time-sharing between controller loca-
tions. The optimization variables βr and αri (s) correspond to
controller placement and link scheduling policies respectively.
The variables βr represent the fraction of the time that node
r is elected to be a controller, and αri (s) is the fraction of
time that controller r schedules node i when the controller
observes a delayed CSI of S(t− dr) = s. Note that PS(s) is
the stationary probability of the Markov chain in Figure 1. The
throughput region Λ, is the set of all non-negative arrival rate
vectors λ such that there exists a feasible solution to (9) for
which ε ≥ 0. This implies that there exists a stationary policy
such that the effective service rate at each queue is greater than
the arrival rate to that queue.

Theorem 1 (Throughput/Stability Region). For any non-
negative arrival rate vector λ, the system can be stabilized
by some policy P ∈ Π if and only if λ ∈ Λ, as given by (9).

Necessity is shown in Lemma 1, and sufficiency is shown in
Theorem 2 by proposing a throughput optimal joint scheduling
and controller placement algorithm, and proving that for all
λ ∈ Λ, that policy stabilizes the system.

Lemma 1. Suppose there exists a policy P ∈ Π that stabilizes
the network for all λ ∈ Λ. Then, there exists a βr and αri (s)
such that (9) has a solution with ε ≥ 0.

The proof of Lemma 1 is given in the Appendix. Lemma
1 shows that for all λ ∈ Λ, there exists a stationary policy
ΠSTAT ∈ Π that stabilizes the system, which places the
controller at node r with probability βr, and schedules node
i to transmit when the delayed CSI at controller r is S with
probability αri (s) in (9).

Next, we propose the dynamic controller placement and
scheduling (DCPS) policy, and show that this policy stabilizes
the network whenever the arrival rate vector is interior to
the capacity region Λ. This proves the sufficient condition of
Theorem 1.

Algorithm 1 Dynamic controller placement and scheduling
(DCPS) policy

1: Choose a controller by solving the following optimization
as a function of the delayed queue backlogs Qi(t− τQ).

r∗ =

arg max
r

(∑
s∈S

PS(S(t− dr) = s) max
i
Qi(t− τQ)p

dr(i)
si,1

)
(10)

where PS(s) is the steady state probability of the channel-
state process.

2: Controller observes delayed CSI: S(t − dr∗(i)) = s for
each i.

3: Controller schedules the following queue to transmit.

i∗ = arg max
i

Qi(t− τQ)p
dr∗ (i)
si,1

(11)

Algorithm 1 computes a controller location as a function of
τQ, the delay to QLI. τQ is taken to be large enough that all
nodes have access to Q(t− τQ) and can therefore calculate r∗

without requiring additional communication. Then, the selected
controller computes a max weight schedule based on delayed
CSI and QLI.

Theorem 2. Let TSS(ε) be a large constant defined for some
ε > 0, such that∣∣∣∣P(S(t) = s

∣∣S(t− TSS(ε))
)
−P

(
S(t) = s

)∣∣∣∣ ≤ ε

2|S|
(12)

For any arrival rate λ, and ε > 0 satisfying λ + ε1 ∈ Λ, the
DCPS policy stabilizes the system if τQ ≥ dmax + TSS(ε).

Under policy DCPS, the controller is placed at the node
maximizing the expected max weight schedule, over all pos-
sible states. Then, the controller observes the delayed CSI
and schedules the max-weight schedule for transmission as
in [2] and [5]. Moving the controller to nodes with high
backlog increases the throughput at those nodes, keeping the
system stable. The proof of Theorem 2 follows by defining
the Lyapunov drift, and showing that as the system backlogs
grow large, the Lyapunov drift in becomes negative, implying
system stability [2]. In particular, we consider the Lyapunov
drift over a T -slot window, where T is large enough that the

6



Figure 7: Example star network topology where each node
measures its own channel state instantaneously, and has d-step
delayed CSI of each other node.

system reaches its steady state distribution. The proof is given
in the supplemental material.

The throughput optimal controller placement uses delayed
QLI Q(t− τQ). The delay τQ must be sufficiently large such
that Q(t − τQ) is available at every node, i.e. τQ ≥ dmax.
Moreover, we require that τQ ≥ dmax + TSS(ε), where TSS(ε)
is the same order as the time required for the channel state
process to approach its steady state distribution (i.e. the mixing
time of the Markov process). Note that in making placement
decisions, even though more recent QLI is available, an older
version of the QLI is needed for throughput optimality. This
counter-intuitive result stems from the observation that longer
queues are correlated with bad channel states, thus, placing
the controller at nodes with longer queues would bias the
placement toward nodes with bad channel state. By using
delayed QLI, the channel state is decoupled from the queue-
length process.

The throughput optimal controller placement given by The-
orem 2 takes on a simpler form for specific topologies. In
particular, consider the hub topology in Figure 7.

Corollary 1. Consider a system of M nodes, where only
one can transmit at each time. Assume the controller has full
knowledge of its own channel state and d-slot delayed CSI for
each other channel, as in Figure 7. At time t, the DCPS policy
places the controller at the node with the largest backlog at
time t− τQ.

r∗ = arg max
r

Qr(t− τQ) (13)

Corollary 1 follows due to the symmetry of the system. The
complete proof is given in the Appendix. For the topology in
Figure 7, the throughput optimal controller placement policy
is simply to place the controller at the node with the longest
backlog. Note the queue lengths in the above corollary must
still be delayed according to Theorem 2.

C. Controller Placement With Delayed CSI

In the previous section, the throughput optimal joint con-
troller placement and scheduling policy is presented with the
restriction that only delayed QLI is used for controller place-
ment. The motivation behind this restriction is that delayed QLI
can be available at each node, allowing the controller location
to be computed without further communication between nodes.

In this vein, the channel state of each node dmax slots in the
past can also be globally available, since dmax is the largest
CSI delay in the network. If the network has a small diameter,
or a high degree of memory, the additional CSI has significant
impact on performance. In this section, we characterize the
throughput region under controller placement policies using
both delayed QLI and CSI, and propose an extension to the
DCPS policy which stabilizes the system for all arrival rates
within this stability region.

Let ΠCS be the set of policies which use delayed QLI
and globally delayed CSI for controller placement. The new
throughput region is characterized by the following LP.

Maximize: ε

Subject To:

λi + ε ≤ Es

[ M∑
r=1

βr(s)

·
∑
s′∈S

P(S(t− dr(i) = s′)|S(t− dmax) = s)αri (s
′)p

dr(i)

s′i,1

]
∀i ∈ {1, . . . ,M}

M∑
i=1

αri (s
′) ≤ 1, αri (s) ≥ 0 ∀s ∈ S

M∑
r=1

βr(s) ≤ 1, βr(s) ≥ 0 ∀s ∈ S

(14)

The above LP is an extension of (9) allowing βr to be a
function of S(t− dmax). The optimization variables βr(s) and
αri (s

′) correspond to controller placement and link scheduling
policies respectively. Note that pdr(i)

si,1
is the k-step transition

probability (where k = dr(i)) of the Markov channel state
(Figure 1). The throughput region, ΛCS , is the set of all non-
negative arrival rate vectors λ such that there exists a feasible
solution to (9) for which ε ≥ 0. Note, ΛCS is the set of arrival
rate vectors such that some policy P ′ ∈ ΠCS can stabilize the
system (policies using both QLI and CSI). This is in contrast
to Λ of Section IV-B, in which the arrival rate vectors must
be stabilized by a policy P ∈ Π (policies in which controller
placement only uses QLI). Further, since any policy P ∈ Π
also belongs to the policy space ΠCS (a controller placement
policy that has access to CSI, but ignores it), we can conclude
that the stability regions satisfy Λ ⊂ ΛCS .

Theorem 3 (Throughput/Stability Region). For any non-
negative arrival rate vector λ, the system is stabilized by some
policy P ∈ ΠCS if and only if λ ∈ ΛCS .

Necessity is shown in Lemma 2 and sufficiency is shown in
Theorem 4 by proposing a throughput optimal joint scheduling
and controller placement algorithm, and proving that for all
λ ∈ ΛCS , that policy stabilizes the system.

Lemma 2. Suppose there exists a policy P ∈ ΠCS that
stabilizes the system. Then, there exists variables βr(s) and
αri (s

′) such that (9) has a solution with ε ≥ 0.

The proof of Lemma 2 follows the same procedure as that of
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Lemma 1. Lemma 2 shows that for all λ ∈ ΛCS , there exists
a stationary policy ΠSTAT ∈ ΠCS that stabilizes the system, by
placing the controller at r when the maximally delayed CSI is
s with probability βr(s), and schedules i to transmit when the
delayed CSI at controller r is S′ with probability αri (s

′) as in
(14).

The DCPS policy of Theorem 2 is extended in Algorithm
2 to utilize globally delayed CSI as well as delayed QLI
for controller placement, such that the extended policy is
throughput optimal. This proves the sufficient condition of
Theorem 3. Algorithm 2 is similar to algorithm 1, except that
all nodes also have access to delayed CSI S(t− dmax), so this
is incorporated into the controller location algorithm.

Algorithm 2 Dynamic controller placement and scheduling
with CSI (DCPS-CSI) policy

1: Choose a controller by solving the following optimization
as a function of the delayed queue backlogs Qi(t − τQ)
and delayed CSI S(t− dmax).

r∗ = arg max
r

∑
s∈S

P
(
S(t− dr(i)) = s

∣∣S(t− dmax)
)

·max
i
Qi(t− τQ)p

dr(i)
si,1

(15)

where PS(s) is the steady state probability of the channel-
state process.

2: Controller observes delayed CSI: S(t− dr∗(i)) = s
3: Controller schedules the following queue to transmit.

i∗ = arg max
i

Qi(t− τQ)p
dr∗ (i)
si,1

(16)

Theorem 4. The DCPS-CSI policy in (15) and (16) is through-
put optimal if τQ > dmax.

The proof of Theorem 4 follows according to the steps
of the proof of Theorem 2 with modifications made to the
conditioning throughout the proof.

Under policy DCPS-CSI, the controller is placed at the node
maximizing the expected max-weight schedule, over all pos-
sible states, where this expectation is conditioned on globally
available delayed CSI. Then the controller observes the delayed
CSI and schedules the max-weight activation for transmission
as in [2] and [5]. Note that for controller placement policy
which only uses QLI, a very large delay is required for the
DCPS policy, as the channel state must be independent from
the queue length at that time. On the other hand, when the
controller placement policy also depends on the delayed CSI
S(t − dmax), the queue length delay only needs to be larger
than dmax, as is the case with policy DCPS-CSI. This follows
because the CSI takes away the dependence of the channel
state on the delayed QLI.

While the DCPS-CSI policy provides the optimal con-
troller placement and scheduling decisions, the computation
in Algorithm 2 is computationally intensive, similar to other
work in the max-weight scheduling literature. The heuristics

in Section III, along with typical heuristics for throughput
optimal scheduling, can be combined to generate compu-
tationally tractable approaches for controller placement and
scheduling. On one hand, when the queue lengths are similar,
the optimal location is that of the static controller location
formulation. This depends on the shape of the topology, and
the channel transition probabilities. On the other hand, when
the queue lengths are very uneven, or when the topology is
such that the information delays are the same across the net-
work, then the queue length will dictate the optimal controller
placement. Controller placement heuristics should weigh both
queue lengths, as well as the network parameters in order to
determine the best controller location.

V. SIMULATION RESULTS

To begin, we simulate a 6-node network with a topology
given in Figure 7, and Bernoulli arrival processes of different
rates. Assume the controller has instantaneous CSI for its
channel, and homogeneously delayed (2 slots) CSI of each
other channel. For each symmetric arrival rate vector λ, we
simulate the evolution of the system over 100,000 time slots,
and compute the average system backlog over those time slots.
The results are plotted in Figure 8. Clearly, for small arrival
rates, the average queue length remains very small. As the
arrival rates increase towards the boundary of the stability
region, the average system backlog starts to slightly increase.
When the arrival rate grows beyond the stability region, the
average queue length increases greatly, since packets arrive
faster than they can be served in the system, implying that the
system is unstable in this region.

Figure 8 compares several controller placement policies: a
fixed controller, as in Section III, a policy that chooses a
controller at each time uniformly at random, which is optimal
when the arrival rate is the same to each node as it represents
the correct stationary policy to stabilize the system, the DCPS
policy using delayed QLI for controller placement, and the
DCPS policy using delayed QLI and CSI.

Figure 9 repeats the above experiment for a channel that
is more likely to be ON than OFF, specifically, for p = 0.4,
and q = 0.1. In this Simulation, we compare a fixed controller
policy, a policy that chooses a controller at each time uniformly
at random, the DCPS policy using delayed QLI for controller
placement, and the Longest Delayed Queue (LDQ) policy. The
LDQ policy is taken from (13) and places the controller at the
node with the longest delayed QLI. In this case, we see that the
DCPS offers a much higher throughput than the other policies.
This also highlights the effect that the channel statistics have
on the optimal policy, over the LDQ policy.

In Figure 8a, the DCPS policy uses 2-step delayed QLI
to place the controller. In this case, the DCPS policy fails
to stabilize the system for the same set of arrival rates as
the time-sharing policy, implying that the DCPS policy is not
throughput optimal. However, in Figure 8b, the delay on the
QLI is increased to 100 time-slots. In this scenario, the DCPS
policy does stabilize the system for all symmetric arrival rates
in the stability region, demonstrating the fact that significantly
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(a) 2-Step Delayed QLI

(b) 100-Step Delayed QLI

Figure 8: Simulation results for different controller placement
policies, with channel model parameters p = 0.1, q = 0.1.

Figure 9: Simulation results for different controller placement
policies, with channel model parameters p = 0.4, q = 0.1.

delayed queue-length information is required for throughput
optimality. In contrast, note that when the CSI is also used
for controller placement, the throughput does not benefit from
additional delay in the QLI. In this example, dynamically
changing the controller location using QLI provides a 7%
increase in capacity region over the static controller placement,
while using both QLI and CSI results in around an additional
6% improvement.

Figure 10 illustrates the effect of the delay in QLI on the
stability of the system. This figure presents four different values

Figure 10: Effect of QLI-delay on system stability, for p =
q = 0.1. Each curve corresponds to a different value of τQ.

for τQ, the delay in the QLI used by the controller placement
policy. As can be seen from the figure, the stability region
increases with τQ. As τQ increases, the improvements to the
stability region become smaller, as the stability region of the
policy approaches the full stability region. In this example,
using sufficiently delayed QLI yields a 16% increase in the
stability region of the system over the policy which uses current
QLI. However, if delay is a concern, less delayed QLI can be
used to recover most of the throughput region.

3

2 4

0 1 5 6

Figure 11: Two-level binary tree topology.

Figure 12: Average queue length versus symmetric arrival rate
for tree network in Figure 11.

Next, we simulate the controller placement algorithm over
the network in Figure 11, to compare the dynamic controller
placement with the static controller placement in Section III.
Figure 12 analyzes the stability of the system over different
controller placement policies. The black solid curve represents
the DCPS policy, with QLI delay τQ = 150. This policy is
compared with the policy that randomly selects the controller
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(a) Symmetric arrival rate λ =
0.2.
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(b) Symmetric arrival rate λ =
0.25.

Figure 13: Fraction of time each node is selected as the
controller under DCPS for the topology in Figure 11. Blue
bars correspond to system with p = q = 0.1, and red bars
correspond to system with p = q = 0.3.

and the policy that places the controller at node 3. These results
show that relocating the controller according to the DCPS
policy gives improvements over both the static placement, and
a equal time-sharing between controller locations.

Figure 13 shows the fraction of time each node is selected
as the controller under the DCPS policy for the binary-tree
topology of Figure 11. For small transition probabilities (e.g.
p = q = 0.1), the central node 3 is chosen as the controller
most frequently. When the transition probabilities increase (e.g.
p = q = 0.3), then more time is spent with nodes 2 and 4 as
controllers. This corresponds to the insight gained from the
solution to the static controller placement shown in Section
III.

To better model practical scenarios, we simulate the effect
of dynamic controller relocation on larger topologies with a
variety of interference patterns. First, consider the topology in
Figure 11. We simulate the controller placement and scheduling
framework over this topology under both a one-hop and two
hop interference constraint, where k-hop interference is defined
as a constraint that no two nodes within k hops of each other
can transmit simultaneously. Figure 15 shows a comparison of
average queue length (from which we can derive delay) for a
fixed controller policy, equal time sharing policy, LDQ policy,
and DSCP policy. These results show that the QLI-based
policies outperform the other controller placement policies
in terms of throughput region. We note that for interference
constraints where many links can be scheduled simultaneously,
the location of the controller has a smaller effect on throughput,
and relocating the controller dynamically is less important than
in the high-interference regime. Similar results can be seen for
the larger tree topology in Figure 14, as shown in Figure 16.
For the large topology, the DSCP policy requires a significant
computation time, so the LDQ policy is used to illustrate the
effect of QLI-dependent controller placement. We expect the
LDQ and DSCP policies to achieve similar performance based
on the experiments on the topology in Figure 11.

Lastly, we study the distribution of the controller location
through the simulation for these topologies. Consider the topol-
ogy in Figure 14. When running the LDQ controller placement
policy, we measure the frequency that each node is selected
as the controller, shown in Figure 17. Each figure consists

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

Figure 14: 4-Level Binary Tree Topology

(a) One-hop Interference. p = 0.1, q = 0.4

(b) Two-hop Interference. p = q = 0.3

Figure 15: Average queue length versus symmetric arrival rate
for tree network in Figure 11 under various interference patters.

of a separate histogram for arrival rates λ = 0.1, 0.2, 0, 3,
and 0.4 to show the effect of increased arrival rate on the
controller placement. We assume one-hop interference, and run
the experiment for a slowly varying channel, p = q = 0.05,
and a quickly varying channel, p = q = 0.3. Figure 17 shows
that the controller is placed primarily at the most central nodes
in the topology. When the arrival rate is small, the controller
moves to the leaf nodes as well, where as this is suboptimal for
larger arrival rate vectors. Moreover, when the channel has less
memory, the controller is frequently placed further away from
the topological center of the graph, and when there is a high
degree of memory, the controller is more frequently located in
the center of the topology. This echoes the results in the static
controller placement analysis.

VI. INFREQUENT CONTROLLER RELOCATION

Throughout this paper, we assume that a new controller
placement occurs at every time slot. This can be done by
ensuring that the controller placement algorithm depends only
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(a) One-hop interference

(b) Two-hop interference.

Figure 16: Average queue length versus symmetric arrival rate
for tree network in Figure 14 under various interference patters.

(a) p = q = 0.05
(b) p = q = 0.3

Figure 17: Controller Placement Distribution under the LDQ
policy for the tree topology in 14, under one-hop interference.

on information that is available to each node in the network.
Thus, there is no additional communication overhead required
to compute the controller placement. Thus, as all nodes use the
same policy, they will arrive at the same decision. However,
there may be an additional cost associated with relocating the
controller due to the computation required, and relocating the
controller at every time-slot may not be practical. Therefore, in
this section, we consider the case in which the controller place-
ment occurs less often. Note that while infrequent controller
placement may reduce the cost associated with relocation, there
is an increased occurrence of the underlying unfairness caused
by the delayed arrival of network state information to the fixed

controller, as discussed in Section IV.
Consider the controller placement problem, in which the

controller is relocated every N time slots. As discussed in
Section IV, the throughput region is not affected by infrequent
controller placement. Lemma 1 shows that any arrival rate
λ ∈ Λ corresponds to a stationary policy which stabilizes the
system. The throughput region Λ is formed by a time-sharing
between controller placements. Consequently, the frequency of
changing the controller placement does not affect throughput,
but rather the overall fraction of time spent in each controller
location.

The DCPS policy of Section IV extends directly to the case
of infrequent controller placement as follows.

Algorithm 3 DCPS with infrequent controller placement
(DCPS-N) policy

1: At each time t = k ∗N , choose a controller by solving the
following optimization as a function of the delayed queue
backlogs Qi(kN − τQ).

r∗ = arg max
r

(∑
s∈S

PS(s) max
i
Qi(kN − τQ)p

dr(i)
si,1

)
(17)

where PS(s) is the steady state probability of the channel-
state process.

2: At subsequent time slots t = kN + j, the controller
observes CSI S(kN + j − dr∗(i)) = s.

3: Controller schedules the following queue to transmit.

i∗ = arg max
i

Qi(kN − τQ)p
dr∗ (i)
si,1

(18)

Theorem 5. For any arrival rate λ, and ε > 0 satisfying
λ+ ε1 ∈ Λ, the DCPS-N policy stabilizes the system if τQ ≥
dmax + TSS(ε) for TSS(ε) defined in (12).

The DPCS-N policy differs from the DCPS policy in that
controller placement decisions are only made in time slots
which are multiples of N , but the controller placement cal-
culation is the same as in DCPS. The scheduling portion of
DCPS-N uses the delayed QLI with respect to the time at which
the controller was placed, rather than the current time slot.
This additional delay in QLI does not affect the throughput
optimality of the policy. The proof of Theorem 5 follows
similarly to the proof of Theorem 2, except using a T -slot
drift argument at every time slot t = kN rather than every
time slot.

VII. CONCLUSION

We studied the impact of controller location on achievable
throughput in wireless networks. First, we formulated the static
controller placement problem whereby a controller location
is chosen a-priori with the objective of maximizing network
throughput. Then, we consider dynamically placing controllers,
using QLI to relocate the controller to heavily congested
areas of the network based on queue-backlog information. We
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characterize the throughput region under dynamic controller
placement, and propose a throughput optimal joint controller
placement and scheduling policy. This policy uses significantly
delayed QLI to place the controllers, and the CSI available at
the controller to schedule links. These results were extended
to controller placement policies which use both delayed CSI
and delayed QLI. Using CSI in controller placement improves
the throughput region, as well as eliminates the requirement
for using highly delayed QLI.

An interesting observation is that when the controller place-
ment depends only on delayed QLI, the throughput optimal
policy uses a delayed version of the QLI, even if more recent
QLI is available. This is due to the fact that QLI correlated
with channel states, especially when there is a high degree of
memory in the system. A related result was observed in [11] in
the context of scheduling with hidden channel state information
where, it was observed that the optimal scheduling decision
uses highly delayed QLI to maximize throughput.

VIII. APPENDIX

A. Proof of Lemma 1

Lemma: 1 Suppose there exists a policy P ∈ Π that stabilizes
the network for all λ ∈ Λ. Then, there exists a βr and αri (s)
such that (9) has a solution with ε∗ ≥ 0.

Proof: Suppose the system is stabilized with some con-
trol policy P , consisting of functions βr(t), which chooses
a controller independent of channel state, and αri (t) which
chooses a link activation based on delayed CSI at the controller.
Without loss of generality, let βr(t) be an indicator function
signaling whether node r is the controller at time t, and let
αi(t) be an indicator signaling whether link i is scheduled for
transmission at time t. Under any such scheme, the following
relationship holds between arrivals, departures, and backlogs
for each queue:

t∑
τ=1

Ai(τ) ≤ Qi(t) +

t∑
τ=1

µi(βr(τ), αri (τ)), (19)

where µi is the service rate of the ith queue as a function of
the control decisions. Expanding µi in terms of the decision
variables βr(t) and αri (t) yields

t∑
τ=1

Ai(τ) ≤ Qi(t)+
t∑

τ=1

M∑
r=1

βr(τ)αri (τ)E[Si(τ)|Si(τ−dr(i))].

(20)
Let Tr be the subintervals of [1, t] over which r is the
controller. Further, let T rS be the subintervals of Tr such that
the controller r observes delayed CSI S(t − dr(i)) = S. Let
|Tr| and |T rS | be the aggregate length of these intervals. Since
the arrival and the channel state processes are ergodic, and
the number of channel states and queues is finite, there exists
a time t1 such that for all t ≥ t1, the empirical average
arrival rates and state occupancy fractions are within ε of their

expectations.

1

t

t∑
τ=1

Ai(τ) ≥ λi − ε (21)

1

|Tr|
|T rS| ≤ P(Si(t) = S|r) + ε = P(Si(t) = S) + ε (22)

The above equations hold with probability 1 from the strong
law of large numbers [12].Furthermore, since the system is
stable under the policy P , [2] shows that there exists a V such
that for an arbitrarily large t,

P

( M∑
i=1

Qi(t) ≤ V
)
≥ 1

2
. (23)

Thus, let t be a large time index such that t ≥ t1 and V
t ≤ ε.

If
∑M
i=1Qi(t) ≤ V , the inequality in (20) can be rewritten by

dividing by t.
t∑

τ=1

Ai(τ)

t
≤ V

t
+

1

t

t∑
τ=1

M∑
r=1

βr(τ)αi(τ)E[Si(τ)|Si(t− dr(τ))].

(24)

λi − ε ≤ ε+
M∑
r=1

1

t

t∑
τ=1

βr(τ)αi(τ)E[Si(τ)|Si(t− dr(τ))].

(25)

The lower bound in (25) follows from (21). Since βr(τ) = 1
if and only if τ ∈ Tr, the inequality in (25) is equivalent to

λi ≤ 2ε+

M∑
r=1

1

t

∑
τ∈Tr

αi(τ)E[Si(τ)|Si(τ − dr(i))] (26)

= 2ε+

M∑
r=1

|Tr|
t

1

|Tr|
∑
τ∈Tr

αi(τ)E[Si(τ)|Si(τ − dr(i))]

(27)

= 2ε+

M∑
r=1

βr
1

|Tr|
∑
τ∈Tr

αi(τ)E[Si(τ)|Si(τ − dr(i))] (28)

The last equation follows from defining

βr ,
|Tr|
t
, (29)

the empirical fraction of time that r is the controller. Now,
break the summation over Tr into separate summations over the
sub-intervals T rS for each observed S. Note that E[Si(τ)|Si(τ−
dr(i))] is the k-step transition probability of the Markov chain
in Figure 1 for k = dr(i).

λi ≤ 2ε+

M∑
r=1

βr
∑
S∈S

1

|Tr|
∑
τ∈T r

S

αi(τ)p
dr(i)
Si,1

(30)

= 2ε+

M∑
r=1

βr
∑
S∈S

|T rS |
|Tr|

1

|T rS |
∑
τ∈T r

S

αi(τ)p
dr(i)
Si,1

(31)

= 2ε+

M∑
r=1

βr
∑
S∈S

|T rS |
|Tr|

αri (S)p
dr(i)
Si,1

(32)
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≤
M∑
r=1

βr
∑
S∈S

P(Si(t) = S)αri (S)p
dr(i)
Si,1

+ ε(2 + |S|) (33)

where (32) follows from defining the fraction of time that link
i is scheduled given r and S as

αri (S) ,
1

|T rS |
∑
τ∈T r

S

αi(τ), (34)

and (33) follows from (22) and the fact that controller place-
ment is independent of channel state. Because the control
functions satisfy

∑
r βr(t) ≤ 1 and

∑
i αi(t) ≤ 1, it follows

that βr and αri satisfy those same constraints. Furthermore, the
fraction of time node r is the controller, βr, is independent of
the CSI.

The above inequality assumes
∑M
i=1Qi(t) ≤ V , which

holds with probability greater than 1
2 by (23). Hence, there

exists a set of stationary control decisions βr and αir satisfying
the necessary constraints such that (33) holds for all i. If there
did not exist such a stationary policy, than this inequality would
hold with probability 0. Therefore, λ is arbitrarily close to a
point in the region Λ, implying the constraints imposed by Λ
are necessary for stability.

Corollary 1: Consider a system of M nodes, where only
one can transmit at each time. Assume the controller has full
knowledge of its own channel state and d-slot delayed CSI for
each other channel, as in Figure 7. At time t, the DCPS policy
places the controller at the node with the largest backlog at
time t− τQ.

r∗ = arg max
r

Qr(t− τQ) (35)

Proof: Recall the optimal policy at each time is the
DCPS policy in Theorem 2, where the controller is chosen
to maximize the expected maximum weight schedule. Let
Q(1), . . . , Q(M) be the ordering of delayed queue lengths
Q(t − τQ), such that Q(1) ≥ Q(2) . . . ≥ Q(M). Consider
placing the controller at the node corresponding to Q(1). Let
k2 be the largest index i such that Q(i)pd11 ≥ Q(2)pd01. The
expected max-weight is a random variable, which takes values
determined by the CSI. Let MWi be the weight of the schedule
activated by a controller at the ith largest queue. The expected
max weight of a controller at Q(1) is given by

E[MW1] = Q(1)π+

k2∑
i=2

Q(i)π(1−π)i−1pd11+Q(2)pd01(1−π)k2

(36)
Equation (36) is derived as follows. Since Q(1) is the largest
queue, if that channel is ON the max-weight policy transmits
from Q(1). If that channel is OFF, then the belief of that
channel is zero, and it will not be used. Transmitting from
Q(j) is optimal only if Q(i) is OFF for all j > i, since Q(i)

are sorted in decreasing order. By the definition of k2, for
j > k2, Q(j)pd11 < Q(2)pd01, so it is optimal to schedule Q(2)

when Q(i) is OFF for all i ≤ k2.
Now consider placing the controller at the node correspond-

ing to queue Q(j), for j ≥ 2. Let k1 be the largest index such
that Q(k1)pd11 ≥ Q(1)pd01. Similarly, define k′j to be the largest

index such that Q(k′j)pd11 ≥ Q(j). The expected max weight is
computed for two cases, depending on the relationship between
k1 and k′j .

First, consider the case where Q(j) ≤ Q(1)pd01, i.e. k1 ≤ k′j .
In this case, it is never optimal to transmit over the channel
corresponding to Q(j), regardless of its delayed CSI. The
expected max-weight is given by

E[MWj ] = πpd11

k1∑
i=1

Q(i)(1−π)i−1 +pd01Q
(1)(1−π)k1 (37)

Compare the expected max weight between the controller at
Q(1) and Q(j).

E[MW1 −MWj ] =

Q(1)π +

k2∑
i=2

Q(i)π(1− π)i−1pd11 +Q(2)pd01(1− π)k2

−Q(1)πpd11 −
k1∑
i=2

Q(i)(1− π)i−1πpd11 −Q(k1)(1− π)k1pd01

(38)

= Q(1)π(1− pd11) + pd11

k2∑
i=k1+1

Q(i)π(1− π)i−1

+Q(2)pd01(1− π)k2 −Q(1)(1− π)k1pd01 (39)

≥ Q(1)πpd10 −Q(1)(1− π)k1pd01 +Q(2)pd01(1− π)k2 (40)

= Q(1)πpd10 −Q(1)π(1− π)k1−1pd10 +Q(2)pd01(1− π)k2

(41)

≥ Q(1)πpd10

(
1− (1− π)k1−1

)
+Q(2)pd01(1− π)k2 ≥ 0

(42)

where (40) follows from Q(i) ≥ 0, and (41) follows from the
identity πpd10 = (1− π)pd01.

Now consider the case where Q(j) ≥ Q(1)pd01. In this case,
there exists a state such that it is optimal to transmit over Q(j).
The max-weight expression is given by

E[MWj ] = πpd11

k′j∑
i=1

Q(i)(1− π)i−1 +Q(j)π(1− π)k
′
j

+ πpd11

k1∑
i=kj+1

Q(i)(1− π)i + pd01Q
(1)(1− π)k1+1

(43)

Comparing the expected max weight between the controller at
Q(1) and Q(j).

E[MW1 −MWj ]

= Q(1)π +

k2∑
i=2

Q(i)π(1− π)i−1pd11 +Q(2)pd01(1− π)k2

−Q(1)πpd11 − πpd11

k′j∑
i=2

Q(i)(1− π)i−1 −Q(j)π(1− π)k
′
j
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− πpd11

k1∑
i=k′j+1

Q(i)(1− π)i − pd01Q
(1)(1− π)k1+1 (44)

= Q(1)πpd10 −Q(j)π(1− π)k
′
jpd10

+ πpd11

k1∑
i=k′j+1

Q(i)π(1− π)i + pd11

k2∑
i=k1+1

Q(i)π(1− π)i−1

+Q(2)pd01(1− π)k2 −Q(1)(1− π)k1+1pd01 (45)

Equation (45) follows from combining like terms, and breaking
up the summation over the interval i = [2, k2] into three
intervals: [2, k′j ], [k′j + 1, k1], and [k1 + 1, k2], as well as
an additional term for Q(j). The summations are bounded as
follows

πpd11

k1∑
i=k′j+1

Q(i)π(1− π)i−1 + pd11

k2∑
i=k1+1

Q(i)π(1− π)i−1

≥ πQ(1)pd01

k1∑
i=k′j+1

π(1− π)i−1 +Q(2)pd01

k2∑
i=k1+1

π(1− π)i−1

(46)

= πQ(1)pd01

(
(1− π)k

′
j − (1− π)k1

)
+Q(2)pd01

(
(1− π)k1 − (1− π)k2

)
(47)

The inequality in (47) follows from the fact that Q(1)pd01 ≤
Q(i)pd11 for i ≤ k1, and Q(2)pd01 ≤ Q(i)pd11 for i ≤ k2.
Plugging this into equation (45)

E[MW1 −MWj ]

≥ Q(1)πpd10 −Q(j)π(1− π)k
′
jpd10 +Q(2)pd01(1− π)k2

−Q(1)(1− π)k1+1pd01 + πQ(1)pd01
(
(1− π)k

′
j − (1− π)k1

)
+Q(2)pd01

(
(1− π)k1 − (1− π)k2

)
≥ Q(1)πpd10 −Q(j)π(1− π)k

′
jpd10 −Q(1)(1− π)k1+1pd01

+Q(2)pd01(1− π)k1 (48)

≥ Q(1)πpd10(1− (1− π)k1)

−Q(j)π(1− π)k
′
jpd10 +Q(2)πpd10(1− π)k1−1 (49)

≥ Q(2)πpd10(1− (1− π)k1)

−Q(2)π(1− π)k
′
jpd10 +Q(2)πpd10(1− π)k1−1 (50)

= Q(2)πpd10
[
1− (1− π)k1 − (1− π)k

′
j + (1− π)k1−1] ≥ 0

(51)

The inequality in (48) follows from k′j ≥ k1, and canceling out
Q(2) terms, (49) follows from the identity πpd10 = (1− π)pd01,
and (50) holds since Q(1) ≥ Q(2) ≥ Q(j). Therefore, for all
j ≥ 2, placing the controller at the node corresponding to Q(j)

results in a lower expected max weight than placing at the node
corresponding to the longest queue. Thus, placing the controller
at the longest queue is the optimal controller placement policy.
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