
MIT Open Access Articles

Nearly Linear-Time Model-Based Compressive Sensing

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Hegde, Chinmay, et al. “Nearly Linear-Time Model-Based Compressive Sensing.”
Automata, Languages, and Programming, edited by Javier Esparza et al., vol. 8572, Springer
Berlin Heidelberg, 2014, pp. 588–99.

As Published: http://dx.doi.org/10.1007/978-3-662-43948-7_49

Publisher: Springer Berlin Heidelberg

Persistent URL: http://hdl.handle.net/1721.1/113095

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/113095
http://creativecommons.org/licenses/by-nc-sa/4.0/

Nearly Linear-Time
Model-Based Compressive Sensing

Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt

Massachusetts Institute of Technology, Cambridge MA 02139, USA

Abstract. Compressive sensing is a method for recording a k-sparse
signal x ∈ Rn with (possibly noisy) linear measurements of the form
y = Ax, where A ∈ Rm×n describes the measurement process. Seminal
results in compressive sensing show that it is possible to recover the
signal x from m = O(k log n

k
) measurements and that this is tight. The

model-based compressive sensing framework overcomes this lower bound
and reduces the number of measurements further to m = O(k). This
improvement is achieved by limiting the supports of x to a structured
sparsity model, which is a subset of all

(
n
k

)
possible k-sparse supports.

This approach has led to measurement-efficient recovery schemes for a
variety of signal models, including tree-sparsity and block-sparsity.
While model-based compressive sensing succeeds in reducing the num-
ber of measurements, the framework entails a computationally expensive
recovery process. In particular, two main barriers arise: (i) Existing re-
covery algorithms involve several projections into the structured sparsity
model. For several sparsity models (such as tree-sparsity), the best known
model-projection algorithms run in time Ω(kn), which can be too slow
for large k. (ii) Existing recovery algorithms involve several matrix-vector
multiplications with the measurement matrix A. Unfortunately, the only
known measurement matrices suitable for model-based compressive sens-
ing require O(nk) time for a single multiplication, which can be (again)
too slow for large k.
In this paper, we remove both aforementioned barriers for two popular
sparsity models and reduce the complexity of recovery to nearly linear
time. Our main algorithmic result concerns the tree-sparsity model, for
which we solve the model-projection problem in O(n logn + k log2 n)
time. We also construct a measurement matrix for model-based com-
pressive sensing with matrix-vector multiplication in O(n logn) time for
k ≤ n1/2−µ, µ > 0. As an added bonus, the same matrix construction
can also be used to give a fast recovery scheme for the block-sparsity
model.

Keywords: Model-based compressive sensing, model-projection, tree-
sparsity, restricted isometry property, compressive sensing.

This work was supported by grants from the MITEI-Shell program, the MADALGO
center, and the Packard Foundation. A full version of this paper (including the ap-
pendix) is available at http://people.csail.mit.edu/ludwigs/papers/icalp14_
fastmodelcs.pdf.

http://people.csail.mit.edu/ludwigs/papers/icalp14_fastmodelcs.pdf
http://people.csail.mit.edu/ludwigs/papers/icalp14_fastmodelcs.pdf

2

1 Introduction

Compressive sensing is a method for recording a signal while taking only a small
number of measurements. In particular, recording with linear measurements has
attracted significant attention over the last decade [CRT06a,Don06,FR13]. In
this setup, we are interested in recovering a vector x ∈ Rn (the signal) from
measurements of the form y = Ax, where A is an m × n matrix and y ∈ Rm.
Usually, the setup also encompasses measurements corrupted by a noise vector e
(i.e., y = Ax+e), in which case we are interested in recovering a good approxima-
tion to x. The main questions in compressive sensing deal with the conditions
on A and x that enable efficient, stable recovery from only m � n measure-
ments. Compressive sensing has found applications in a wide variety of signal
acquisition settings (e.g., MRI [LDP07]) and the underlying problem of sparse
recovery has connections to several other fields such as data stream algorithms
[Mut05,GI10] and Fourier sampling [HIKP12].

Seminal results in compressive sensing show that it is possible to recover a
k-sparse signal x (containing at most k non-zeros) from m = O(k log n/k) linear
measurements, as long as the measurement matrix A is chosen to satisfy the
restricted isometry property (RIP) [CRT06b]. Moreover, the recovery step can be
performed in polynomial time using several algorithms such as `1-minimization
or CoSaMP [CRT06b,NT09]. While the bound on the number of measurements
m is asymptotically tight in the noisy k-sparse setting [DBIPW10,FPRU10],
there are ways to overcome this barrier and improve the “compression rate” even
further. One such approach for reducing the number of measurements is model-
based compressive sensing [BCDH10]. In this framework, we make additional
assumptions about the support of the signal x. Instead of considering all k-
sparse signals, we limit our attention to a smaller family of k-sparse supports,
which we call a structured sparsity model Mk. Research in signal processing has
shown that this often is a useful way to capture additional structure in the
signals of interest. For example, for some classes of time-domain signals x, the
large coefficients in x tend to occur consecutively as clusters. For several sparsity
models, it is possible to show measurement bounds of m = O(k). Note that this
improvement is not only of theoretical interest: for large values of n, removing
the logarithmic factor in m can decrease the measurement complexity by up to
an order of magnitude in practice.

While model-based compressive sensing succeeds in reducing the number of
measurements, the current framework also entails a computationally more ex-
pensive recovery process. In particular, two main barriers limit the recovery per-
formance of model-based compressive sensing compared to “standard” k-sparse
compressive sensing:
1. Recovery algorithms for model-based compressive sensing rely on the avail-

ability of a model-projection algorithm. Given an arbitrary signal x, a model-
projection algorithm returns the best approximation of x in the sparsity
model Mk. Unfortunately, for many sparsity models, the running time of the
best known model-projection algorithm is Ω(nk).

3

2. For standard compressive sensing, researchers have identified several classes
of measurement matrices A that satisfy the RIP and allow fast matrix-vector
multiplication in timeO(n log n); see [NPW14] and references therein. In con-
trast, matrices known to satisfy the model-equivalent of the RIP only admit
slow multiplication in time O(nm) [BCDH10]. Since known recovery algo-
rithms for model-based compressive sensing perform several matrix-vector
multiplications, this can become a bottleneck in the overall time complexity.
One approach to overcome this barrier is to use sparse matrices that satisfy
the `1-variant of the RIP. However, recent work shows that this implies a
lower bound of m = Ω(k log n

k / log log n
k) for the tree-sparsity model [IR13].

In this paper, we remove both aforementioned barriers for two popular sparsity
models and bring the recovery performance of these models down to nearly
linear time. Our central results concern the tree-sparsity model. In this model,
the coefficients of the signal x are arranged as a complete d-ary tree. The model
then requires that the support of x forms a connected subtree containing the
root node. The tree-sparsity model captures structure in the wavelet-domain
representation of natural images; see [Bar99] and [HIS14c] for more details.

As a bonus, our techniques also imply a fast recovery scheme for the block-
sparsity model. In the block-sparsity model, the signal is divided into a fixed
number of blocks, and valid supports can be described as the union of a small
number of such blocks. The block-sparsity model captures signal structure in
settings where the nonzeros form a small number of clusters.

Our contributions This paper contains two results:
1. Our main technical contribution is a fast model-projection for the tree-

sparsity model with time complexity O(n log n + k log2 n). Our formal re-
covery guarantees complement recent empirical results in [HIS14c].

2. Building on [NPW14], we construct a measurement matrix which satisfies the
model-RIP and enables multiplication in O(n log n + k2 log n log2(k log n))
time for general k. For k ≤ n1/2−µ, µ > 0, the multiplication time is
O(n log n). Moreover, our matrix has the same bound on the number of
measurements as existing, slow model-RIP matrices: m = O(k + log|Mk|).

Together with existing results [BCDH10,HIS14b], our contributions enable us to
state recovery guarantees of the following form: Let x be a signal in the tree-
sparsity model with sparsity parameter k and let A be our new measurement
matrix withm = O(k) rows. The measurements are given by y = Ax+e for arbi-
trary noise e. Then we can recover an x̂ such that ‖x− x̂‖2 ≤ C‖e‖2 . Moreover,
we can perform the recovery in time O((n log n+k2 log n log2(k log n)) log

‖x‖2
‖e‖2

).
Note that this compares favorably with the time complexity of the original
model-based compressive sensing framework [BCDH10]: O(nk log

‖x‖2
‖e‖2

). Table
1 compares our results to previous recovery schemes for the tree-sparsity model.
Our recovery guarantees for the block-sparsity model are analogous.

Ideally, a model-RIP matrix with m = O(k + log|Mk|) rows would offer a
multiplication time of O(n log n) for all values of k. However, we conjecture that
such a result is connected to progress on the measurement bound for subsampled

4

Paper Measurement
bound

Recovery
time

Matrix-vector
multiplication time

Recovery
guarantee

[BCDH10] O(k) O(nk) O(nk) `2

[IR13] O
(
k logn

log logn

)
exponential O(n logn) `1

[BBC14] O
(
k logn

log logn

)
O(nk) O(n logn) `1

This paper O(k) O(n logn) O(n logn) `2

Table 1. Comparison of our results with previous recovery schemes for the tree-sparsity
model. In order to simplify the presentation, all stated bounds are for the regime of
k ≤ n1/2−µ with µ > 0. We also omit a factor of log ‖x‖2‖e‖2

from all recovery times. An
`p-recovery guarantee is of the form ‖x− x̂‖p ≤ C‖e‖p, where x is the original signal,
x̂ is the recovery result, e is the measurement noise, and C is a fixed constant.

Fourier matrices in k-sparse compressive sensing. This is considered a challenging
open problem in the field.

Our techniques We achieve the aforementioned results with the following tools:
1. In order to project into the tree-sparsity model, we use the recent framework

for approximation-tolerant model-based compressive sensing [HIS14b], which
was originally introduced for another sparsity model. Following this frame-
work, instead of providing a single exact model-projection algorithm, we give
two approximate algorithms: one for the minimization and one for the max-
imization version of the problem. The first algorithm builds a solution by
combining several small subtrees which are cheap to find. The second algo-
rithm works with a Lagrangian relaxation and constructs the corresponding
Pareto curve with a sweep line approach.

2. We construct our measurement matrix by combining a fast standard-RIP
matrix for initial dimensionality reduction with a standard model-RIP ma-
trix for achieving a small number of measurements.

Related work There is a large body of work on matrices satisfying the RIP for
general k-sparse vectors (e.g. see [RV08,BDDW08,GI10,CGV13] and references
therein). For matrices with fast matrix-vector multiplication in O(n log n) time,
the best known measurement bound is m = O(k log n log2(k log n)) [NPW14].
For k ≤ n1/2−µ and µ > 0, there exist fast matrices with m = O(k log n) [AR13].
Note that in this regime, O(k log n) = O(k log n

k).
For the model-RIP, the only known matrices with m = O(k + log|Mk|) are

dense matrices with i.i.d. subgaussian entries [BCDH10]. Vector-matrix multipli-
cation with such matrices requires O(mn) time. While `1-model-RIP matrices
support faster multiplication, they also entail a measurement lower bound of
m = Ω(k log n

k / log log n
k) for the tree-sparsity model [IR13].

The problem of projecting into the tree-sparsity model has received a fair
amount of attention in the literature over the last two decades. Researchers have
proposed several algorithms such as the condensing sort-and-select algorithm
(CSSA) [BJ94], complexity-penalized residual sum-of-squares (CPRSS) [Don97],
and optimal pruning [BB94]. However, all of these algorithms either run in time

5

Ω(n2) or fail to provide projection guarantees for general input signals. A recent
paper describes a dynamic programming algorithm for exact projections running
in time O(nk) [CT13]. Combining this algorithm with the `1-model-RIP matrices
mentioned above, another recent paper provides a compressive sensing recovery
scheme in the `1-setting [BBC14]. As a result, the measurement complexity is
constrained by the aforementioned lower bound and the recovery time is Ω(nk).

In related work, an algorithm for approximate projections into the tree-
sparsity model has been proposed [HIS14c]. Unfortunately, this algorithm only
has a weakly polynomial running time depending on the largest and smallest
nonzero absolute values in the input. Moreover, it solves only the minimization
variant of the problem, which is not sufficient to establish a compressive sensing
recovery result. Instead, the authors demonstrate the validity of their approach
via several numerical experiments. Our results here complement these findings
with formal guarantees. We note that our minimization algorithm is related to
the algorithm in [HIS14c] but achieves a strongly polynomial running time.

2 Preliminaries
Structured sparsity A signal x ∈ Rn is k-sparse if at most k of its coefficients
are nonzero. The support of x, denoted by supp(x) ⊆ [n], contains the indices
corresponding to the nonzero entries in x.

Suppose that we posses some additional information about the support of our
signals of interest. One way to model this information is as follows [BCDH10]:
denote the set of allowed supports with Mk = {Ω1, Ω2, . . . , ΩL}, where Ωi ⊆ [n]
and |Ωi| = k. Often it is useful to work with the closure of Mk under taking
subsets, which we denote with M+

k = {Ω ⊆ [n] | Ω ⊆ S for some S ∈ Mk}.
Then, we define a structured sparsity model, Mk ⊆ Rn, as the set of vectors
such that Mk = {x ∈ Rn | supp(x) ∈ M+

k }. The number of allowed supports
L = |Mk| is called the “size” of the modelMk; typically |Mk| �

(
n
k

)
.

Our central focus in this paper is the tree-sparsity model [BCDH10]. Let n
be such that the coefficients of a signal x ∈ Rn can be arranged as the nodes of a
perfect d-ary tree rooted at node 1.1 Then, the tree-sparsity model comprises the
set of k-sparse signals whose nonzero coefficients form a connected subtree rooted
at node 1. More formally, let T be the set of supports forming a connected subtree
and let Ti be the set of supports forming a connected subtree rooted at node i.
Then the tree-sparsity model is defined asMk = {Ω ⊆ [n] |Ω ∈ T1 and |Ω| = k}.
The size of this model is bounded by |Mk| ≤ (2e)k/(k + 1) [BCDH10]. For a
subtree Ω with root r, we use root-path(Ω) to denote the set of nodes on the
path from r to node 1 (the root of the entire tree).

Model projections For a sparsity modelMk, we define the problem of model-
projection as follows: given x ∈ Rn, find a x∗ ∈ Mk such that ‖x− x∗‖p is
minimized for a norm parameter p ≥ 1. In general, this problem can be hard

1 Our algorithms can easily be extended to handle complete d-ary trees and hence
work for the general tree-sparsity model with arbitrary dimension n. For simplicity,
we state our algorithms here for the special case of perfect d-ary trees.

6

sinceMk is typically non-convex. Moreover, the original model-based compres-
sive sensing framework in [BCDH10] requires the minimization to be exact.
An alternative is the approximation-tolerant model-based compressive sensing
framework [HIS14b]. Instead of a single exact model-projection algorithm, the
framework requires two approximate model-projection algorithms with two dif-
ferent notions of approximation:
– A head approximation algorithm H(x, k) that satisfies the following guaran-

tee: Let Ω̂ = H(x, k). Then Ω̂ ∈ M+
c1k

and ‖xΩ̂‖p ≥ c2 maxΩ∈Mk‖xΩ‖p for
some constants c1 ≥ 1 and c2 ≤ 1.

– A tail approximation algorithm T (x, k) that satisfies the following guarantee:
Let Ω̂ = T (x, k). Then Ω̂ ∈ M+

c1k
and ‖x − xΩ̂‖p ≤ c2 minΩ∈Mk‖x− xΩ‖p

for some constants c1 ≥ 1 and c2 ≥ 1.
Using such approximate model-projection algorithms, the framework of [HIS14b]
provides the same asymptotic recovery guarantees as those achieved with an
exact model-projection.

Measurement matrices Many recovery algorithms for compressive sensing
assume that the measurement matrix satisfies the restricted isometry property
(RIP). A matrix A ∈ Rm×n has the (δ, k)-RIP if the following inequalities hold
for all k-sparse vectors x ∈ Rn:

(1− δ)‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1 + δ)‖x‖22 . (1)

There exist measurement matrices satisfying the RIP with only m = O(k log n
k)

rows [BDDW08]. A matrix A ∈ Rm×n has the (δ, k)-model-RIP for model Mk

if (1) holds for all x ∈Mk. There exist matrices satisfying the model-RIP with
only m = O(k + log|Mk|) rows [BCDH10].

Recovery algorithm We briefly summarize the approximate model-iterative
hard thresholding (AM-IHT) algorithm for signal recovery using approximate
model projections. For a full explanation, see [HIS14b] and references therein.
Let y = Ax+e, where e is the measurement noise vector. Then, one can recover a
signal estimate x̂ satisfying ‖x− x̂‖2 ≤ C‖e‖2 by applying the following update
rule, inspired by the well-known iterative hard thresholding (IHT) [BD09]:

x(i+1) ← T (x(i) +H(AT (y −Ax(i)))) . (2)

It is possible to show that O(log
‖x‖2
‖e‖2

) iterations suffice for guaranteed recovery.
Therefore, the overall time complexity of AM-IHT is governed by the running
times of H(·), T (·), and the cost of matrix-vector multiplication with A and AT .

3 Head approximation for the tree-sparsity model

We propose a head approximation algorithm for the tree-sparsity model. In order
to simplify the analysis, we will assume that k ≥ dlogd ne. Note that we can
always reduce the input to this case by removing layers of the tree with depth
greater than k. Our approach is based on the following structural result about
decompositions of d-ary trees, which we prove in Appendix A.

7

Algorithm 1 (HeadApprox) Head approximation for the tree-sparsity model
1: function HeadApprox(x, k, d, p, α)
2: Run ETP on x with sparsity parameter k′ = dα.
3: x(1) ← x
4: for i← 1, . . . ,

⌈
k
α

⌉
do

5: Ω̂i ← argmax
Ω∈T, |Ω|=dα

‖x(i)Ω ‖p

6: x(i+1) ← x(i), x
(i+1)

Ω̂i
← 0

7: for j ∈ Ω̂i ∪ root-path(Ω̂i) (in bottom-up order) do
8: Update the DP table for node j up to sparsity k′ = dα.

9: return Ω̂ ←
d kαe⋃
i=1

Ω̂i ∪ root-path(Ω̂i)

Lemma 1. Let T be a d-ary tree with |T | = k. Moreover, let α ∈ N, α ≥ 1. Then
T can be decomposed into a set of disjoint, connected subtrees S = {T1, . . . , Tβ}
such that |Ti| ≤ dα for all i ∈ [β] and β = |S| ≤

⌈
k
α

⌉
.

In addition to the tree decomposition, our head-approximation algorithm
builds on the exact tree projection algorithm (ETP) introduced in [CT13]. The
algorithm finds the best tree-sparse approximation for a given signal via dynamic
programming (DP) in O(nkd) time.2 We run ETP with a small sparsity value
k′ < k in order to find optimal subtrees of size k′. We then assemble several
such subtrees into a solution with a provable approximation guarantee. We use
the fact that ETP calculates the DP table entries in the following way: if the
DP tables corresponding to the children of node i are correct, the DP table for
node i can be computed in O(k′2) time. The time complexity follows from the
structure of the DP tables: for every node and l ≤ k′, we store the value of the
best subtree achievable at that node with sparsity exactly l. We can now state
our head-approximation algorithm (Alg. 1) and the corresponding guarantees.

Theorem 1. Let x ∈ Rn be the coefficients corresponding to a d-ary tree rooted
at node 1. Also, let p ≥ 1 and α ≥ 1. Then HeadApprox(x, k, d, p, α) returns a
support Ω̂ satisfying

∥∥xΩ̂∥∥p ≥ (14)1/p maxΩ∈Mk‖xΩ‖p. Moreover, Ω̂ ∈ M+
γ with

γ =
⌈
k
α

⌉
(dα+ dlogd ne).

Proof. Let Ω∗ ∈ Mk be an optimal support, i.e., ‖xΩ∗‖p = maxΩ∈Mk‖xΩ‖p.
Using Lemma 1, there is a decomposition of Ω∗ into disjoint sets Ω∗1 , . . . , Ω∗β
such that Ω∗i ∈ T, |Ω∗i | ≤ dα and β ≤

⌈
k
α

⌉
. The contribution of Ω∗i to the

overall solution is ‖xΩ∗i ‖
p
p. Now, compare the contributions of our subtrees Ω̂i

to these quantities. When finding Ω̂i for i ∈ [β], one of the following two cases
holds:
1. ‖x(i)Ω∗i ‖

p
p ≥

1
2‖xΩ∗i ‖

p
p. Since Ω

∗
i is a candidate in the search for Ω̂i in line 5,

we have ‖x(i)
Ω̂i
‖pp ≥ ‖x

(i)
Ω∗i
‖pp ≥

1
2‖xΩ∗i ‖

p
p.

2 While ETP as stated in [CT13] works for p = 2 only, the algorithm can easily be
extended to arbitrary norm parameters p.

8

2. ‖x(i)Ω∗i ‖
p
p <

1
2‖xΩ∗i ‖

p
p. Therefore, Ω̂1, . . . , Ω̂i−1 have already covered at least

half of the contribution of Ω∗i . Formally, let Ci = Ω∗i ∩
⋃i−1
j=1 Ω̂j . Then

‖xCi‖
p
p ≥

1
2‖xΩ∗i ‖

p
p.

Let A = {i ∈ [β] | case 1 holds for Ω̂i} and B = {i ∈ [β] | case 2 holds for Ω̂i}.
For the set A we have

‖xΩ̂‖
p
p =

d kαe∑
i=1

‖x(i)
Ω̂i
‖pp ≥

∑
i∈A
‖x(i)

Ω̂i
‖pp +

∑
i∈B
‖x(i)

Ω̂i
‖pp ≥ 1

2

∑
i∈A
‖xΩ∗i ‖

p
p . (3)

Now, consider the set B. Since the Ω∗i are disjoint, so are the Ci. Moreover,
Ci ⊆ Ω̂ and therefore

‖xΩ̂‖
p
p ≥

β∑
i=1

‖xCi‖
p
p ≥

∑
i∈B
‖xCi‖

p
p ≥ 1

2

∑
i∈B
‖xΩ∗i ‖

p
p . (4)

Combining (3) and (4), we get

2‖xΩ̂‖
p
p ≥ 1

2

∑
i∈A
‖xΩ∗i ‖

p
p +

1

2

∑
i∈B
‖xΩ∗i ‖

p
p ≥ 1

2
‖xΩ∗‖pp .

Raising both sides to power 1/p gives the guarantee in the theorem. For the
sparsity bound, note that |Ω̂i| ≤ dα and |root-path(Ω̂i)| ≤ dlogd ne. Since we
take the union over

⌈
k
α

⌉
such sets, the theorem follows. ut

We defer the runtime analysis to Appendix A (Theorem 4) and state the
final result here. Its proof is a direct consequence of Theorems 1 and 4.

Corollary 1. Let α = dlogd ne. Then HeadApprox(x, k, d, p, α) returns a sup-
port Ω̂ ∈ M+

k(2d+2) satisfying
∥∥xΩ̂∥∥p ≥ (14)1/p maxΩ∈Mk‖xΩ‖p . Moreover, the

algorithm runs in time O(n log n+ k log2 n) for fixed d.

4 Tail approximation for the tree-sparsity model
Next, we propose a tail approximation algorithm. We consider the Lagrangian
relaxation arg minΩ∈T1

‖x− xΩ‖pp + λ|Ω|, where the parameter λ controls the
trade-off between the approximation error and the sparsity of the identified sup-
port. The algorithm in [HIS14c] proceeds by performing a binary search over λ
in order to explore the Pareto curve of this trade-off. Unfortunately, the running
time of this algorithm is only weakly polynomial because it depends on both
xmax = maxi∈[n]|xi| and xmin = mini∈[n],|xi|>0|xi|. Below, we develop an algo-
rithm that exploits the structure of the Pareto curve in more detail and runs in
strongly polynomial time O(n log n). In fact, our new algorithm constructs the
shape of the entire Pareto curve and not only a single trade-off.

The Lagrangian relaxation is equivalent to arg maxΩ∈T1
‖xΩ‖pp−λ|Ω|. Hence,

we can rewrite this problem as arg maxΩ∈T1

∑
i∈Ω yi, where yi = |xi|p − λ. So

for a given value of λ, the goal is to find a subtree Ω rooted at node 1 which
maximizes the sum of weights yi associated with the nodes in Ω.

9

In the following, we analyze how the solution to this problem changes as a
function of λ and use this structure in our tail-approximation algorithm. On a
high level, the optimal contribution of a node i is positive and decreasing up to
a certain value of λ = γi, after which the contribution stays 0. So for λ < γi,
a subtree rooted at node i can contribute positively to an overall solution. For
λ ≥ γi, we can ignore the subtree rooted at node i.

4.1 Properties of the Pareto curve
Let bi(λ) denote the maximum value achievable with a subtree rooted at i:

bi(λ) = max
Ω∈Ti
‖xΩ‖pp − λ|Ω| .

Our algorithm relies on two main insights: (i) bi(λ) is a piecewise linear function
with at most n non-differentiable points (or “corners”), which correspond to the
values of λ at which the optimal support changes. (ii) Starting with λ = 0, bi(λ)
is strictly decreasing up to a certain value of λ, after which bi(λ) = 0. Formally,
we can state the properties of the Pareto curve as follows.

Lemma 2. bi(λ) is piecewise linear. There is a value γi such that bi(λ) = 0 for
λ ≥ γi and bi(λ) is strictly decreasing for λ ≤ γi. The corners of bi(λ) are the
points Di = {γi} ∪ {γ ∈

⋃
j∈children(i)Dj | γ < γi}.

Proof. A simple inductive argument shows that bi(λ) can be recursively defined
as

bi(λ) = max(0, |xi|p − λ+
∑

j∈children(i)

bj(λ)) .

Note that the theorem holds for the leaves of the tree. By induction over the
tree, we also get the desired properties for all nodes in the tree. We are using the
fact that piecewise linear functions and strictly decreasing functions are closed
under addition. Moreover, the corners of a sum of piecewise linear functions are
contained in the union of the corners of the individual functions. ut

Our algorithm does not compute the bi(λ) directly but instead keeps track
of the following two quantities si(λ) and ci(λ). For a given value of λ, si(λ)
denotes the sum achieved by the best subtree rooted at node i. Similarly, ci(λ)
denotes the cardinality of the best subtree rooted at node i. These two quantities
are easier to maintain algorithmically because they are piecewise constant. The
proof of the next lemma follows directly from Lemma 2 and a similar inductive
argument. Appendix B.1 contains further properties of the Pareto curve with
accompanying proofs.

Lemma 3. Let

si(λ) = |xi|p +
∑

j∈children(i)
bj(λ)>0

sj(λ) and ci(λ) = 1 +
∑

j∈children(i)
bj(λ)>0

cj(λ) .

Then si(λ) and ci(λ) are piecewise constant and monotonically decreasing. The
discontinuities of si(λ) and ci(λ) are Di (see Lemma 2). At a discontinuity
γ ∈ Di we have limδ→0+ si(γ + δ) = si(γ) and limδ→0+ ci(γ + δ) = ci(γ).

10

Algorithm 2 (FindPareto) Constructing the Pareto curve
1: function FindPareto(x, p)
2: for i← 1, . . . , n do . Initialization
3: si ← |xi|p, ci ← 1, activei ← false
4: λ̂0 ← +∞
5: r1 ← c1
6: for i = 1, . . . , n do . Iterate over the discontinuities
7: j ← argmax

l∈[n], activel=false

sl
cl

. Find the next discontinuity

8: λ̂i ← sj
cj

9: activej ← true
10: a← j
11: while a 6= 1 do . Update the affected nodes
12: a← parent(a)
13: sa ← |xa|p
14: ca ← 1
15: for l ∈ children(a) with activel = true do
16: sa ← sa + sl
17: ca ← ca + cl
18: ri+1 ← c1

19: λ̂n+1 ← 0
20: return (λ̂, r)

4.2 Constructing the Pareto curve
We now use the quantities introduced above in order to traverse the Pareto
curve. We start with λ = +∞, for which the values of the si(λ) and ci(λ) are
easy to determine. Then, we iterate the following two steps (see Algorithm 2):
(i) Use the current values of the si(λ) and ci(λ) to find the next discontinuity.
(ii) Update the si(λ) and ci(λ) based on the change in the optimal support. In
order to simplify the analysis, we assume that the discontinuities γi are distinct.

Theorem 5 (Appendix B.2) establishes a connection between the variables sj
and cj in FindPareto and the functions sj(λ) and cj(λ). Using this connection,
we can now show that the algorithm returns the shape of the Pareto curve.

Theorem 2. Let p ≥ 1 and x ∈ Rn and let λ̂ and r be the vectors returned by
FindPareto(x, p). Moreover, let λ > 0 such that λ̂i−1 > λ ≥ λ̂i. Then we have
ri = |Ω∗λ| where

Ω∗λ = arg max
Ω∈T1, 1∈Ω

bj(λ)>0 for j∈Ω\{1}

‖xΩ‖pp − λ|Ω| .

Proof. By the definition of FindPath and Theorem 5, we have ri = c1(λ) for
λ̂i−1 > λ ≥ λ̂i. The theorem then follows from Lemma 4 (Appendix B.1). ut

Moreover, FindPareto can be implemented to run in O(n log n) time using
a priority queue; see Theorem 6 in Appendix B.2 for a formal runtime analysis.

Given the shape of the Pareto curve, we can traverse it to find a suitable
trade-off parameter λ̂ that achieves a constant-factor tail approximation. The
main idea of this last claim is similar to the algorithm in [HIS14c]; we state the
final guarantee with proof and pseudo code in Appendix B.3.

11

5 Compressive Sensing Recovery
We have developed constant factor head and tail approximation algorithms for
the tree-sparsity model, both of which run in near-linear time O(n log n). There-
fore, we can invoke AM-IHT (Eq. (2)) to achieve an algorithm for recovering
tree-sparse signals from (noisy) linear measurements.3 In Appendix C, we de-
scribe a new construction of a matrix A ∈ Rm×n that satisfies the model-RIP
for the tree-sparsity modelMk and in addition supports fast matrix-vector mul-
tiplication. Combining these ingredients, we obtain:

Theorem 3. Let A ∈ Rm×n be a model-RIP matrix as constructed in the proof
of Theorem 8. Let x ∈ Rn be a signal with x ∈ Mk and let y = Ax + e be
the noisy measurements. Then, there exists an algorithm to recover a signal
estimate x̂ ∈Mck from y such that ‖x− x̂‖2 ≤ C‖e‖2 for some constants c > 1,
C > 0. The algorithm runs in O((n log n + k2 log n log2(k log n)) log

‖x‖2
‖e‖2

) time
for general k, and in O(n log n) time for the range k ≤ n1/2−µ with µ > 0.

While we have stated our results for the tree-sparsity model, a completely
analogous construction of A with optimal parameters is possible in the context
of the block-sparsity model of [BCDH10]. In particular, since the block-sparse
projection can be computed exactly in linear time, this construction yields near-
linear time recovery of block-sparse signals. We omit a detailed derivation.

References

AR13. N. Ailon and H. Rauhut. Fast and RIP-optimal transforms. Preprint,
2013. http://arxiv.org/abs/1301.0878.

Bar99. R. Baraniuk. Optimal tree approximation with wavelets. In SPIE Wavelet
Applications in Signal and Image Processing, 1999.

BB94. M. Bohanec and I. Bratko. Trading accuracy for simplicity in decision
trees. Machine Learning, 1994.

BBC14. B. Bah, L. Baldassarre, and V. Cevher. Model-based sketching and re-
covery with expanders. In Symposium on Discrete Algorithms (SODA),
2014.

BCDH10. R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde. Model-based compres-
sive sensing. IEEE Trans. Inform. Theory, 2010.

BD09. T. Blumensath and M. Davies. Iterative hard thresholding for compressed
sensing. Appl. Comput. Harmon. Anal., 2009.

BDDW08. R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof
of the restricted isometry property for random matrices. Constructive
Approximation, 2008.

BJ94. R. Baraniuk and D. Jones. A signal-dependent time-frequency represen-
tation: Fast algorithm for optimal kernel design. IEEE Trans. Sig. Proc.,
1994.

3 To be precise, the AM-IHT algorithm proposed in [HIS14b] imposes additional re-
strictions on the approximation factors of the head and tail algorithms. However, it
is possible to modify AM-IHT to work with arbitrary constant factors. See [HIS14a],
which is the journal version of [HIS14b].

http://arxiv.org/abs/1301.0878

12

CGV13. M. Cheraghchi, V. Guruswami, and A. Velingker. Restricted isometry of
Fourier matrices and list decodability of random linear codes. In Sympo-
sium on Discrete Algorithms (SODA), 2013.

CRT06a. E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information. IEEE
Trans. Inform. Theory, 2006.

CRT06b. E. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete
and inaccurate measurements. Comm. Pure Appl. Math., 2006.

CT13. C. Cartis and A. Thompson. An exact tree projection algorithm for
wavelets. IEEE Signal Process. Lett., 2013.

DBIPW10. K. Do Ba, P. Indyk, E. Price, and D. Woodruff. Lower bounds for sparse
recovery. In Symposium on Discrete Algorithms (SODA), 2010.

Don97. D. Donoho. CART and best-ortho-basis: a connection. Annals of Statistics,
1997.

Don06. D. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 2006.
FPRU10. S. Foucart, A. Pajor, H. Rauhut, and T. Ullrich. The Gelfand widths of

`p-balls for 0 ≤ p ≤ 1. Journal of Complexity, 2010.
FR13. S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive

Sensing. Springer, 2013.
GI10. A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proc.

IEEE, 2010.
HIKP12. H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nearly optimal sparse

Fourier transform. In Symposium on Theory of Computing, 2012.
HIS14a. C. Hegde, P. Indyk, and L. Schmidt. Approximation algorithms for model-

based compressive sensing. Preprint, available at http://people.csail.
mit.edu/ludwigs/papers/approxmodels.pdf, 2014.

HIS14b. C. Hegde, P. Indyk, and L. Schmidt. Approximation-tolerant model-based
compressive sensing. In Symposium on Discrete Algorithms (SODA), 2014.

HIS14c. C. Hegde, P. Indyk, and L. Schmidt. A fast approximation algorithm for
tree-sparse recovery. In International Symposium on Information Theory
(ISIT), 2014.

IR13. P. Indyk and I. Razenshteyn. On model-based RIP-1 matrices. In Inter-
national Colloquium on Automata, Languages, and Programming, 2013.

LDP07. M. Lustig, D. Donoho, and J. Pauly. Sparse MRI: The application of com-
pressed sensing for rapid MR imaging. Magnetic Resonance in Medicine,
2007.

Mut05. S. Muthukrishnan. Data streams: Algorithms and applications. Founda-
tions and Trends in Theoretical Computer Science, 2005.

NPW14. J. Nelson, E. Price, and M. Wootters. New constructions of RIP matri-
ces with fast multiplication and fewer rows. In Symposium on Discrete
Algorithms (SODA), 2014.

NT09. D. Needell and J. Tropp. CoSaMP: Iterative signal recovery from incom-
plete and inaccurate samples. Appl. Comput. Harmon. Anal., 2009.

RSV08. H. Rauhut, K. Schnass, and P. Vandergheynst. Compressed sensing and
redundant dictionaries. IEEE Trans. Inform. Theory, 2008.

RV08. M. Rudelson and R. Vershynin. On sparse reconstruction from Fourier
and Gaussian measurements. Comm. Pure Appl. Math., 2008.

http://people.csail.mit.edu/ludwigs/papers/approxmodels.pdf
http://people.csail.mit.edu/ludwigs/papers/approxmodels.pdf

13

A Head approximation for the tree-sparsity model

Lemma 1. Let T be a d-ary tree with |T | = k. Moreover, let α ∈ N, α ≥ 1. Then
T can be decomposed into a set of disjoint, connected subtrees S = {T1, . . . , Tβ}
such that |Ti| ≤ dα for all i ∈ [β] and β = |S| ≤

⌈
k
α

⌉
.

Proof. We first show that given a d-ary tree U with at least dα + 1 nodes, we
can find a subtree U ′ with α ≤ |U ′| ≤ dα. Consider the following algorithm
FindTree:
1: function FindTree(U)
2: Let U ′ be the subtree of U maximizing |U ′|.
3: if |U ′| ≤ dα then
4: return U ′

5: else
6: return FindTree(U ′)

First, note that |U ′| ≥ α because of the pigeonhole principle and |U | ≥ dα+1.
Moreover, the size of U decreases with each recursive invocation. Since T is a
finite tree, FindTree eventually terminates. When it does, the algorithm returns
a subtree U ′ with α ≤ |U ′| ≤ dα.

We use FindTree repeatedly on T in order to build a decomposition S with
the desired properties. After identifying a subtree U ′, we remove it from T and
find the next subtree in the remaining tree until at most dα nodes are left. We
use this remaining subtree as the final subtree in S.

By construction, S is a set of disjoint, connected subtrees. Moreover, the
remaining subtree and each subtree returned by FindTree satisfy |Ti| ≤ dα.
Finally, the decomposition contains at most

⌈
k
α

⌉
subtrees because every subtree

we remove from T has at least α nodes. ut

Theorem 4. HeadApprox(x, k, d, p, α) has a running time of

O(nd2α+
k

α
(dα+ log n)(d2α2 + log n)) .

Proof. Since we invoke ETP with k′ = dα, the initial call to ETP takes O(nd2α)
time. We can implement the arg max in line 5 with a binary heap containing
the DP table entries for all nodes and sparsity dα. Therefore, this step takes
O(log n) time per iteration of the outer loop.

The cost of the outer loop is dominated by the updates performed in line 8.
For each node in Ω̂i ∪ root-path(Ω̂i), we have to update its DP table (O(d2α2)

time) and then its entry in the binary heap (O(log n) time). Since |Ω̂i| ≤ dα and
|root-path(Ω̂i)| ≤ dlogd ne, the total cost over all iterations of the outer loop is
O(kα (dα+ log n)(d2α2 + log n)). Combining this with the cost of ETP gives the
running time bound in the theorem. ut

14

B Tail approximation for the tree-sparsity model

B.1 Properties of the Pareto curve

The following is an alternative characterization of si(λ) and ci(λ). The proof
follows by an induction over the tree.

Lemma 4. Let
Ωλ = arg max

Ω∈Ti, Ω 6={}
bj(λ)>0 for j∈Ω\{i}

‖xΩ‖pp − λ|Ω| .

Then

si(λ) = ‖xΩλ‖
p
p and

ci(λ) = |Ωλ| .

We now establish a link between si(λ), ci(λ) and bi(λ).

Lemma 5. Let fi(λ) = si(λ)−λci(λ). Then for λ > γi, we have fi(λ) < 0. For
λ ≤ γi, we have fi(λ) = bi(λ).

Proof. We use the characterization of si(λ) and ci(λ) stated in Lemma 4. For
λ < γi, we have i ∈ arg maxΩ∈Ti‖xΩ‖

p
p − λ|Ω| and hence

fi(λ) = si(λ)− λci(λ)

= ‖xΩλ‖
p
p − λ|Ωλ|

= max
Ω∈Ti
‖xΩ‖pp − λ|Ω|

= bi(λ)

Since fi(γi) = 0, we get fi(λ) = bi(λ) for λ ≤ γi.
Note that for λ > γi, we have arg maxΩ∈Ti‖xΩ‖

p
p − λ|Ω| = {}, and {} is the

unique maximizer. Since i ∈ Ωλ for all values of λ, we get fi(λ) < bi(λ) = 0 for
λ > γi. ut

The following lemma shows that for a given value of λ, we can find the next
smallest discontinuity in si(λ) and ci(λ) based solely on the current values of
si(λ) and ci(λ). This is an important ingredient in our algorithm because it
allows us to build the Pareto curve incrementally.

Lemma 6. Let λ ≥ 0 with λ 6= γi for i ∈ [n] and let

a = arg max
i∈[n], bi(λ)=0

si(λ)

ci(λ)
.

Then
γa = max

i∈[n], γi≤λ
γi .

15

Proof. Since ba(λ) = 0, we have γa ≤ λ and hence γa ≤ maxi∈[n], γi≤λ γi.
For contradiction, assume that there is a λ ≥ γj > γa and let γj be the largest

such γj . From Lemmas 5 and 2, we have sj(γj)− γjcj(γj) = fj(γj) = bj(γj) = 0

and hence sj(γj)
cj(γj)

= γj . Since sj and cj are constant in [γj , λ], we have

γj =
sj(λ)

cj(λ)
≤ sa(λ)

ca(λ)
. (5)

We have γj > γa and hence sa(γj) − γjca(γj) = fa(γj) < 0. Thus, γj >
sa(γj)
ca(γj)

. Since sa and ca are constant in [γj , λ], we have γj >
sa(λ)
ca(λ)

, which is a
contradiction to (5). ut

Let γ1 and γ2 be two adjacent discontinuities in si(λ) and ci(λ) with γ1 < γ2.
Note that Ωλ is constant for γ1 ≤ λ < γ2 but Ωγ2 6= Ωγ1 . As our last lemma, we
show that Ωγ1 is still an optimal solution for λ = γ2.

Lemma 7. Let λ′ > 0 and let

lim
δ→0+

si(λ
′ − δ) = u

lim
δ→0+

ci(λ
′ − δ) = v .

Then u− λ′v = fi(λ
′).

Proof. First, we show that fi(λ) is continuous. Let

b′i(λ) = |xi|p − λ+
∑

j∈children(i)
bj(λ)>0

b′j(λ) .

By definition, we have b′i(λ) = si(λ) − λci(λ) = fi(λ). Moreover, an inductive
argument similar to the one used for bi(λ) in Lemma 2 shows that b′i(λ) is
piecewise linear and continuous. Therefore, fi(λ) is also continuous.

Since si(λ) and ci(λ) have only finitely many discontinuities, there is an
λ′′ < λ′ such that for λ′′ < λ < λ′ we have si(λ) = u and ci(λ) = v. Therefore,
we also have fi(λ) = si(λ)− λci(λ) = u− λv. Moreover, fi(λ) is continuous, so
fi(λ

′) = limδ→0 fi(λ
′ − δ) = u− λ′v. ut

B.2 Finding the Pareto curve

Theorem 5. Let s(i)l , c(i)l , active(i)l , and j(i) be the values of sl, cl, activel, and
j after line 8 in iteration i of FindPareto. Then λ̂i = max γl, where l ∈ [n]

and γl < λ̂i−1. Also, λ̂i = γj(i) . For λ̂i−1 > λ ≥ λ̂i, we have s
(i)
l = sl(λ)

and c
(i)
l = cl(λ). Furthermore, activel = true if bl(λ) > 0 and activel = false

otherwise.

Proof. We prove the theorem by induction over i. For i = 1, the statement of the
theorem follows directly from the initialization of the variables in FindPareto.

16

Now assume that the theorem holds for a given i > 1. We need to show that
the theorem also holds for i+ 1.

Since λ̂i = γj(i) , we have bj(i)(λ) > 0 for λ < λ̂i and hence the update to
activej(i) is correct.

The inner update loop (lines 11 to 17) corresponds directly to the definition
of si(λ) and ci(λ), respectively. Hence we have

s
(i+1)
l = lim

δ→0+
sl(λ̂i − δ)

c
(i+1)
l = lim

δ→0+
cl(λ̂i − δ) .

Note that we only have to update the nodes on the path from j(i) to the root
because the other nodes are not affected by the discontinuity γj(i) .

sl(λ) and cl(λ) are constant up to the next discontinuity given by

γ′ = max
l∈[n]
γl<λ̂i

γl .

Let λ′ = λ̂i+γ
′

2 . Applying Lemma 6 with λ = λ′ to line 7 of FindPareto shows
that γ′ = λ̂i+1 and λ̂i+1 = γj(i+1) . ut

Theorem 6. Let p ≥ 1 and let x ∈ Rn be the coefficients of a perfect d-ary tree.
Then FindPareto(x, p) runs in time O(n log n) for constant d.

Proof. Since we have a perfect d-ary tree, the depth of any node is bounded by
O(log n). Hence the work of the inner update loop (lines 11 to 17) is bounded
by O(log n) for a single iteration of the outer loop.

We implement the arg max in line 7 with a Fibonacci heap containing the
nodes j with activej = false. Hence the cost of the arg max is O(log n) and the
cost of the inner update loop remains O(log n), now in amortized time.

As a result, the total time complexity of all n iterations is O(n log n). ut

B.3 Tail approximation algorithm

Given the shape of the Pareto curve, we want to find the best solution achievable
with our extended sparsity budget ck. We implement this search with a single
scan over the λ̂i, starting at λ̂n so that λ is increasing and the corresponding
sparsity ri decreasing. Algorithm 3 contains the pseudo code for this approach.

We first show that FindSolution allows us to reconstruct the support cor-
responding to a λ̂i and ri.

Lemma 8. Let x ∈ Rn be the coefficients corresponding to a d-ary tree and let
p ≥ 1. Then FindSolution(x, λ̂i, p) returns a support Ω̂ ∈ T1 satisfying∥∥x− xΩ̂∥∥pp + λ|Ω̂| = min

Ω∈T1

Ω 6={}

‖x− xΩ‖pp + λ|Ω|

‖xΩ̂‖
p
p = s1(λ)

|Ω̂| = c1(λ) = ri

17

Algorithm 3 (TailApprox) Tail approximation for the tree sparsity model
1: function TailApprox(x, k, c, p)
2: (λ̂, r)← FindPareto(x, p)
3: for i← n, . . . , 1 do
4: if ri ≤ ck then
5: return FindSolution(x, λ̂i, p)

6: function FindSolution(x, λ, p)
7: CalculateB(1, x, λ, p)

8: return Ω̂ ← FindSupport(1)

9: function CalculateB(i, x, λ, p)
10: b̂i ← |xi|p − λ
11: for j ∈ children(i) do
12: CalculateB(j, x, λ, p)

13: b̂i ← b̂i + b̂j

14: b̂i ← max(0, b̂i)

15: function FindSupport(i)
16: Ωi ← {i}
17: for j ∈ children(i) do
18: if b̂j > 0 then
19: Ωi ← Ωi ∪ FindSuppport(j)
20: return Ωi

for λ̂i−1 > λ ≥ λ̂i. Moreover, FindTree runs in linear time.

Proof. After the call to CalculateB, we have b̂j = bj(λi) for j ∈ [n] (see
Lemma 2). Note that FindSupport follows the definition of sj(λ) and cj(λ).
Using Lemma 4, we get

Ω̂ = arg max
Ω∈T1, Ω 6={}

bj(λ)>0 for j∈Ω\{1}

‖xΩ‖pp − λ|Ω|

for λ̂i−1 > λ ≥ λ̂i. Lemma 4 also implies ‖xΩ̂‖
p
p = s1(λ) and |Ω̂| = c1(λ).

Applying Theorem 2 then gives |Ω̂| = ri.
Negating the above objective function and using ‖x−xΩ‖pp = ‖x‖pp−‖xΩ‖

p
p,

we get
Ω̂ = arg min

Ω∈T1, Ω 6={}
bj(λ)>0 for j∈Ω\{1}

‖x− xΩ‖pp + λ|Ω| .

Finally, FindSolution makes a constant number of passes over the tree and
consequently runs in time O(n). ut

We now prove the main result for the tail approximation algorithm.

18

Theorem 7. Let x ∈ Rn be the coefficients corresponding to a d-ary tree rooted
at node 1. Moreover, let k ≥ 1, c > 1 and p ≥ 1. Then TailApprox(x, k, c, p)

returns a support Ω̂ ∈M+
ck satisfying∥∥x− xΩ̂∥∥p ≤ (1 +

1

c− 1

)1/p

min
Ω∈Mk

‖x− xΩ‖p .

Furthermore, TailApprox runs in time O(n log n).

Proof. First, note that TailApprox always returns because ck ≥ 1 = r1. More-
over, the algorithm only returns if ri ≤ ck, so Ω̂ ∈M+

ck (Lemma 8).
We consider two cases based on |Ω̂|. If |Ω̂| ≥ k, Lemma 8 implies∥∥x− xΩ̂∥∥pp + λ̂i|Ω̂| = min

Ω∈T1

Ω 6={}

‖x− xΩ‖pp + λ̂i|Ω|

≤ min
Ω∈Mk

‖x− xΩ‖pp + λ̂i|Ω| ,

where the last line uses k ≥ 1. Since λ̂i ≥ 0 and |Ω̂| ≥ k = |Ω| for Ω ∈ Mk, we
have ∥∥x− xΩ̂∥∥p ≤ min

Ω∈Mk
‖x− xΩ‖p .

For the case of |Ω̂|, let i be the final value of the loop counter in TailApprox.
In order to establish an approximation guarantee for Ω̂, we consider the support
Ω′ corresponding to ri+1. By Theorem 2, this is

Ω′ = arg max
Ω∈T1, Ω 6={}

bj(λ)>0 for j∈Ω\{1}

‖xΩ‖pp − λ|Ω|

for λ̂i > λ ≥ λ̂i+1. Since the loop in TailApprox continued beyond ri+1, we
have |Ω′| = ri+1 > ck.

Note that s1(λ̂i) = ‖xΩ̂‖
p
p and c1(λ̂i) = |Ω̂| (Lemma 8). Moreover, we have

lim
δ→0+

s1(λ̂i − δ) = ‖xΩ′‖pp

lim
δ→0+

c1(λ̂i − δ) = |xΩ′ | .

Using Lemma 7 we get

‖xΩ′‖pp − λ̂i|Ω
′| = f1(λ̂i)

= s1(λ̂i)− λ̂ic1(λ̂i)

= ‖xΩ̂‖
p
p − λ̂i|Ω̂| .

Equivalently, we have

‖x− xΩ′‖pp + λ̂i|Ω′| =
∥∥x− xΩ̂∥∥pp + λ̂i|Ω̂|

= min
Ω∈T1

Ω 6={}

‖x− xΩ‖pp + λ̂i|Ω| , (6)

19

where the second line follows from Lemma 8. Now let Ω∗ ∈ Mk be a support
with ‖x− xΩ∗‖p = minΩ∈Mk‖x− xΩ‖p. Since k ≥ 1, we have

min
Ω∈T1

Ω 6={}

‖x− xΩ‖pp + λ̂i|Ω| ≤ ‖x− xΩ∗‖pp + λ̂i|Ω∗| . (7)

Combining equations (6) and (7), we get

‖x− xΩ′‖pp + λ̂i|Ω′| ≤ ‖x− xΩ∗‖pp + λ̂i|Ω∗|

λ̂i(|Ω′| − |Ω∗|) ≤ ‖x− xΩ∗‖pp − ‖x− xΩ′‖
p
p

λ̂i(ck − k) ≤ ‖x− xΩ∗‖pp

λ̂i ≤
‖x− xΩ∗‖pp
k(c− 1)

.

We combine equations (6) and (7) again, this time for Ω̂. Moreover, we use
our new bound on λ̂i.∥∥x− xΩ̂∥∥pp + λ̂i|Ω̂| ≤ ‖x− xΩ∗‖pp + λ̂i|Ω∗|∥∥x− xΩ̂∥∥pp ≤ ‖x− xΩ∗‖pp + λ̂ik

≤ ‖x− xΩ∗‖pp +
‖x− xΩ∗‖pp

c− 1

≤ ‖x− xΩ∗‖pp

(
1 +

1

c− 1

)
.

Taking the p-th root on both sides gives the guarantee in the theorem.
The running time bound for TailApprox follows directly from the time

complexity of FindPareto and FindSolution. ut

C Construction of a fast model-RIP matrix

Following the techniques of [NPW14], we demonstrate an easy construction of
a matrix that supports fast matrix-vector multiplication, as well as satisfies the
model-RIP for the tree-sparsity model. In particular, we prove the following
theorem.

Theorem 8. There exists a randomized construction of A ∈ Rm×n, with op-
timal parameters m = O(k), that satisfies the model-RIP for the tree-sparsity
model Mk. Moreover, A supports matrix-vector multiplication with complexity
O(n log n+k2 log n log2(k log n)) for any k ≤ n. For the regime k ≤ n1/2−µ, this
complexity can be refined to O(n log n).

Proof. We follow a two step-approach to construct A. First, from the results
of Rudelson and Vershynin [RV08] as well as the more recent works of [CGV13]
and [NPW14], it is known that with high probability, one can construct matrices
F ∈ Rq×n with q = O(k polylog n) that satisfy the RIP over all sparse vectors
in Rn. To the best of our knowledge, the sharpest bounds are achieved by the

20

matrix constructions described in [NPW14], which satisfy the RIP with q =
O(k log n log2(k log n)). Their proposed F is of the form SH, where H ∈ Rn×n is
a Fourier matrix and S is a sparse matrix with random ±1 elements as nonzeros.

For smaller values of k (in particular, for k ≤ n1/2−µ for any µ > 0), an
elegant (randomized) approach to construct such an F is described in [AR13].
Specifically, a suitable F can be obtained by concatenating independently cho-
sen linear transformations of the form DH (where H ∈ Rn×n is a Fourier or
Hadamard matrix and D ∈ Rn×n is a diagonal matrix with random ±1 elements
along the diagonal), followed by left multiplication with any row-orthonormal
matrix (such as a row-selection matrix) of size q × n, where q = O(k log n).

In either case, F provides a stable embedding of the set of all k-sparse signals
into Rq with high probability. In other words, given any subset of indices Λ ⊂ [n]
with cardinality k, the following relation holds for all vectors x supported on Λ:

(1− δF)‖x‖22 ≤ ‖Fx‖
2
2 ≤ (1 + δF)‖x‖22

for some small constant δF .
Next, consider a random matrix G ∈ Rm×q that satisfies the following

concentration-of-measure property: for any v ∈ Rq, the following holds:

P(|‖Gv‖22 − ‖v‖
2
2| ≥ ε‖v‖

2
2) ≤ 2e−c

n
2 ε

2

, ∀ ε ∈ (0, 1/3) . (8)

Again, it is known that a matrix G = 1√
m
Ḡ, with the elements of Ḡ ∈ Rm×q

drawn from a standard normal distribution, satisfy (8). Now, choose any index
set Λ ∈ Mk belonging to the tree-sparsity model, and a small constant δG > 0.
From Lemma 2.1 of [RSV08], the following property holds for all x supported
on Λ: if δ := δF + δG + δF δG, then

(1− δ)‖x‖22 ≤ ‖GFx‖
2
2 ≤ (1 + δ)‖x‖22

with probability exceeding

1− 2

(
1 +

12

δG

)k
e−

c
9 δ

2
Gm .

In other words, for signals with a given support set Λ ∈Mk, the probability that

GF fails to have a isometry constant δ is no greater than 2
(

1 + 12
δG

)k
e−

c
9 δ

2
Gm.

The total number of supports Λ in the tree-sparsity model can be upper bounded
by (2e)k/(k+1) [BCDH10]. Therefore, performing a union bound over all possible
Λ, the probablity that GF fails to have an isometry constant δ over the model
Mk is upper bounded by

2
(2e)k

k + 1

(
1 +

12

δG

)k
e−

c
9 δ

2
Gm . (9)

Choosing m = O(k) and δG sufficiently small, (9) can be made exponentially
small. Therefore, with high probability, A = G · F satisfies the RIP over all
signals belonging to the model Mk, with m = O(k) and a sufficiently small
constant δ.

Multiplication of F with any vector x ∈ Rn incurs O(n log n) complexity,
while multiplication of G with Fx incurs a complexity of O(k × q). Therefore,

21

the overall complexity scales asO(n log n+kq). Substituting for the best available
choices of F for different ranges of k, we obtain the stated result. ut

	Nearly Linear-Time Model-Based Compressive Sensing

