Sequential Modeling for Mortality Prediction in the ICU

by

Tejas G. Sundaresan

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

© Massachusetts Institute of Technology 2017. All rights reserved.

Certified by.....

Peter Szolovits Professor of Computer Science Thesis Supervisor

Accepted by Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

Sequential Modeling for Mortality Prediction in the ICU

by

Tejas G. Sundaresan

Submitted to the Department of Electrical Engineering and Computer Science on May 26, 2017, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science

Abstract

Severity of illness scores are commonly used in critical care medicine to guide treatment decisions and benchmark the quality of medical care. These scores operate in part by predicting patient mortality in the ICU using physiological variables including lab values, vital signs, and admission information. However, existing evidence suggests that current mortality predictors are less performant on patients who have an especially high risk of mortality in the ICU. This thesis seeks to reconcile this difference by developing a custom high risk mortality predictor for high risk patients in a process termed sequential modeling. Starting with a base set of features derived from the APACHE IV score, this thesis details the engineering of more complex features tailored to the high risk prediction task and development of a logistic regression model trained on the Philips eICU-CRD dataset. This high risk model is shown to be more performant than a baseline severity of illness score, APACHE IV, on the high risk subpopulation. Moreover, a combination of the baseline severity of illness score and the high risk model is shown to be better calibrated and more performant on patients of all risk types. Lastly, I show that this secondary customization approach has useful applications not only in the general population, but in specific patient subpopulations as well. This thesis thus offers a new perspective and strategy for mortality prediction in the ICU, and when taken in context with the increasing digitization of patient medical records, offers a more personalized predictive model in the ICU.

Thesis Supervisor: Peter Szolovits Title: Professor of Computer Science

Acknowledgments

I would like to acknowledge the support and advice from many individuals that made this thesis possible.

I would first like to thank my research advisor, Prof. Peter Szolovits, for his continued support throughout my undergraduate and graduate studies at MIT. Prof. Szolovits has provided me countless points of advice and wisdom throughout my studies in medical informatics over the last couple of years and I am extremely grateful for all the times where he has taught me from his own extensive experiences in the field. I cannot thank him enough for inspiring me to find both a research and career interest within the intersection of healthcare and computer science.

I would also like to thank my collaborators on this research, Rodrigo Deliberato, Stephanie Ko, and Leo Anthony Celi from the MIT Lab for Computational Physiology. I've really enjoyed working with them and have learned a tremendous amount from them over the course of this research. This project would not have been possible without their insights and clinical intuition. Rodrigo and Stephanie also helped contribute written text and figures to the background and methods section of this thesis.

I would also like to thank other members of the MEDG group and the Lab for Computational Physiology at MIT for their time and support. It was a pleasure to work with them on this research and get to know them better over the course of working on this thesis.

I would like to thank my academic advisor, Prof. John Guttag, for his perspective and support throughout my undergraduate and graduate experience. I am extremely grateful for his advice on how to navigate the extensive academic opportunities at MIT.

Lastly, I would like to thank my family, including my mom, my dad, and my brother. I can't appreciate enough their unwavering support throughout my life and the impact they've had in helping me grow over the last 22 years.

Contents

1	Intr	oducti	ion	13			
	1.1	Morta	lity Prediction in the ICU	13			
	1.2	Thesis	o Overview	15			
2	Bac	kgrou	nd	17			
	2.1	Severi	ty of Illness Scores	17			
	2.2	The A	PACHE IV Severity of Illness Score	18			
	2.3	Limita	ations of Current Severity of Illness Scores	19			
	2.4	Seque	ntial Modeling: a multi-stage model of mortality	21			
3	Me	thods a	and Data Overview	23			
	3.1	Philip	s eICU-CRD Data Overview	23			
		3.1.1	Background	23			
		3.1.2	Exploratory Analysis	25			
	3.2	Patien	t Inclusion Criteria	30			
	3.3	Risk Stratification and Mortality Type Selection					
	3.4	APACHE Feature Engineering					
		3.4.1	APS Variables	33			
		3.4.2	APACHE Variables (APACHE Predvar)	38			
		3.4.3	APACHE Diagnosis	38			
	3.5	High-1	risk Feature Engineering	38			
		3.5.1	Demographics	40			
		3.5.2	Admissions	40			
		3.5.3	Laboratory Values	40			
		3.5.4	Vital Signs	44			
		3.5.5	Comorbidities	45			
		3.5.6	Treatment	46			
		3.5.7	Device Usage and Attributes	47			
		3.5.8	Expanding the Analysis to 48h	48			
	3.6	Model	Development	49			

4	Development of the eICU High Risk Classifiers 53		
	4.1	High Risk Threshold-Based Results	53
	4.2	High Risk Calibration	58
	4.3	Feature Inspection	59
		4.3.1 Betas of eICU-24h-HR at 0.10 Threshold	60
		4.3.2 Betas of eICU-48h-HR at 0.10 Threshold	61
5	Dev	velopment of the Sequential Model	63
	5.1	High Risk Threshold-Based Results	63
	5.2	Global Calibration	69
6	Cohort Specific Sequential Modeling		
	6.1	Age > 70 Top 25 Beta Values $\ldots \ldots \ldots$	75
	6.2	Ventday1=1 Top 25 Beta Values	77
	6.3	GCS APS > 5 Top 25 Beta Values $\ldots \ldots \ldots$	78
	6.4	Interpretation of the Logistic Betas	79
7	Conclusion		
	7.1	Summary of Results	82
	7.2	Limitations and Future Work	82
	7.3	The Sequential Modeling Approach in the ICU	83
8	Ref	erences	85
A	Fea	ture Set Features	91

List of Figures

2-1 2-2	Calibration Curve of APACHE IV Classifier on Validation dataset. Image replicated from [8]	20 21
3-1	Distributions of Ages in Study Population, labeled by whether the	
3-2	patient survived the hospital stay ("alive") or did not ("expired") Distribution of APACHE probability estimates across the entire dataset, labeled by whether the patient survived the hospital stay ("alive") or	25
	did not ("expired")	27
3-3	APACHE IV Calibration Curve in the eICU-CRD dataset	27
3-4	APACHE IV ROC Curve in the eICU-CRD dataset for the entire pa-	
	tient population \ldots	28
3-5	APACHE IV ROC Curve in the eICU-CRD dataset for high risk pa-	
3-6	tients (APACHE probability > 50%)	29
	(APACHE probability $< 50\%$).	29
3-7	AUC vs. Risk Threshold in the eICU-CRD Data	32
3-8	Acid Base Conversion Logic	36
3-9	GCS Conversion Logic	37
4-1	High Risk Classifier Performance By High Risk Threshold	55
4-2	ROC Curves at a High Risk Threshold of 0.10	56
4-3	ROC Curves at a High Risk Threshold of 0.50	56
4-4	Calibration Curve for High Risk Classifiers	58
5-1	Sequential Model Performance Across All High Risk Thresholds for Validation Set.	64
5-2	Confusion Matrices for Each Model When Prediction Threshold Set to	
	50% and High Risk Threshold is $10%$	65

5 - 3	Confusion Matrices for Each Model When Prediction Threshold Set to	
	50% and High Risk Threshold is $50%$	66
5-4	ROC Curves for Each Model When High Risk Threshold Set to 10% .	66
5-5	ROC Curves for Each Model When High Risk Threshold Set to 50% .	67
5-6	Calibration Curves for Sequential Predictors When 0.10 Risk Thresh-	
	old is Used	70
5-7	Calibration Curves for Sequential Predictors When 0.50 Risk Thresh-	
	old is Used	70

List of Tables

2.1	Overview of Severity of Illness Scores [10]	18
3.1	Key tables used in the eICU-CRD Dataset [10]	24
3.2	Top 10 Most Common APACHE IV Diagnoses in eICU-CRD	26
3.3	Exclusion Criteria in eICU-CRD used for study	31
3.4	AUC vs. Risk Threshold in the eICU-CRD Data	32
3.5	APACHE APS Variable Conversion Logic	35
3.6	APACHE Non-APS Variable Conversion Logic	38
3.7	Summary of High Risk Features Extracted from Dataset	39
3.8	Default/Normal Ranges and Worst Values for Lab Values	43
3.9	Default Values and Worst Values for Vital Signs	44
3.10	Assignment of Pasthistory paths to Charlson Comorbidities	46
3.11	Assignment of Query Strings to Interventions	47
3.12	Models Developed from the eICU-CRD features in this thesis	50
41	High Risk Models Developed from the eICU-CRD features in this thesis	54
4.2	Hosmer-Lemeshow Test Results for High Risk Calibration	59
4.3	Top 25 Feature Weights for the eICU-24h-HB model when trained on	00
1.0	a risk threshold of 0.10	60
4.4	Top 25 Feature Weights for the eICU-48h-HR model when trained on	00
	a risk threshold of 0.10	62
5.1	High Risk Threshold-Based Results for Models on Validation Set of	
	Entire Patient Population	64
5.2	Hosmer-Lemeshow Test Results for Sequential Models at 0.10 Risk	
	Threshold	71
6.1	Results of Subpopulation Sequential Modeling	74
6.2	Top Beta Values for $Age > 70$ Subpopulation $\ldots \ldots \ldots \ldots \ldots$	75
6.3	Top Beta Values for Ventilated Subpopulation	77
6.4	Top Beta Values for GCS APS > 5 Subpopulation	78

Chapter 1 Introduction

The digitization of medical records over the last decade has enabled the development of more personalized and complex mortality models in the ICU. In this work, I seek to develop a multi-stage risk-based model for mortality prediction and validate it in a modern, multi-center ICU dataset.

1.1 Mortality Prediction in the ICU

The emergence of digital technologies to measure, transmit, store and analyze clinical information has enabled a renaissance in medical care. The modern hospital room is equipped with hundreds of sensors that rapidly measure changes in patient vital signs and send those values to an electronic health record (EHR); meanwhile, physicians and nurses meticulously document their clinical impression and recommendations for their patients, the results of lab tests they ordered via the EHR itself, and past medical history of the patient they learn via patient interviews. The hospital electronically measures overarching metrics about the patient stay and for billing purposes stores such key summary information in the EHR. Thus, these technologies have produced digital representations of episodes of patient care that provide a foundation of knowl-edge to learn from.

A data-driven approach to medical care has taken special root in critical care medicine. The Intensive Care Unit (ICU) is a complex, dynamic, and high-intensity medical environment: A 2011 study found that in a modern ICU, almost 250 ad hoc decisions, defined by the authors as "critical judgments...needed for a specific purpose at a precise moment", are made per day [1]. Often times, these decisions are extremely complex; observational interviews investigated how nurses administered sedatives in the ICU and found that nurses could identify almost 50 attributes and factors related to sedation administration [2]. Because ICU decisions are complex, multidimensional, and highly impactful, datadriven guidelines have been developed for physicians to follow in response to certain situations in the ICU. For example, in an England NHS-based study, a patient population treated with the "sepsis care bundle", a group of highly coordinated interventions spanning lab measurements, fluid introductions, physical treatment, and medication administration, showed a mortality rate more than half as low when compared to a population that did not receive the guideline [3]. Similar guidelines and protocols have been developed for a variety of tasks in the ICU, such as extubation [4], transfusion [5], cardiac arrest [6], and neurologic conditions [7].

At the basis of these protocols and guidelines, however, is an overall estimate of patient health upon arrival in the ICU. For a clinician, knowledge of whether a patient is critically ill could reshape or even disqualify a certain protocol entirely; in other words, such knowledge is essential for the numerous ad hoc decisions made in the ICU on a daily basis. Moreover, an assessment of the health state of a patient is critical in understanding the resources patients may require over their ICU stay and triaging care to certain patients over others. Ultimately, an intuition for patient health state is useful in evaluating medical care itself by examining whether the medical care improved the overall health state of the patient.

A patient's likelihood of mortality captures the notion of patient health state well; patients who are likelier to pass away in the ICU require more immediate attention from physicians and more medical resources. Moreover, mortality likelihood in the ICU can inform the ad hoc decision making by ICU healthcare professionals: patients who have a high risk of death would likely not be treated well with a protocol that does not address their core medical issue immediately. To this end, severity of illness scores such as APACHE IV (Acute Physiology and Chronic Health Evaluation) [8] and SAPS II (Simplified Acute Physiology Score) [9] have historically met the clinical need for an estimate of patient mortality risk early on after admission into the ICU. Both scores use readily available clinical information such as lab test values, vital signs, admitting diagnoses, and comorbidities to forecast the mortality risk of patients via logistic regression.

In this thesis, I seek to develop mortality models that take further advantage of the digitization of medical records and a risk-based approach to modeling. Building off the core features identified in APACHE, I hand-engineer features that leverage the high-resolution, temporal data obtained from in-hospital sensors and EHR systems that are especially useful for predicting mortality in patients who are at especially

high risk for mortality. Moreover, I will combine these mortality prediction techniques used for the high risk population with the canonical APACHE approach to develop a "sequential" multi-stage mortality technique. Lastly, I will then evaluate this "sequential" approach to mortality prediction on the mortality prediction tasks in the general population and specific population cohorts.

1.2 Thesis Overview

My thesis is organized as follows:

- Chapter 2 provides background information on severity of illness scores, examines in detail the APACHE score, and explains the sequential modeling approach.
- Chapter 3 discusses the Philips eICU-CRD dataset analyzed in this thesis and the data processing steps required to develop the mortality prediction algorithms.
- Chapter 4 details the development of a high-risk mortality predictor.
- Chapter 5 assesses the calibration and performance of the sequential modeling approach on the general patient population.
- Chapter 6 examines the performance of the sequential modeling approach on specific patient cohorts.
- Chapter 7 discusses my thesis in the context of the field of risk prediction in the ICU and motivates future directions for this research.

Chapter 2

Background

In this section, I will discuss severity of illness scores involved in mortality prediction, identify the criteria upon which such scores are evaluated, and then provide a hypothesis that a risk-based "sequential" approach to mortality prediction could meet such criteria well.

2.1 Severity of Illness Scores

Severity of illness (SOI) scores seek to numerically quantify how sick a patient is and often do so by estimating the probability of death for a presenting patient.

While there are several types of SOI scores, most scores consist of a numerical value representing a transformation of certain patient attributes to a score, which is then fitted with a logistic regression towards a classification task, such as mortality prediction [10]. A key attribute of a severity of illness score is the data it uses to compute the numerical score itself. Most SOI scores derive their predictions based on the data recorded in the first 24 hours of a patient stay. Afterwards, models are usually developed on a training data set of patients, complete with all attributes used in the model, and then are assessed on two metrics: discrimination and calibration. Discrimination represents the ability of a model to correctly identify patients who will die from those who won't, and is commonly measured by metrics for binary classification, such as AUC (area under the receiver operating characteristic curve). A model must also be well calibrated: the mortality probabilities it returns should be reasonably consistent with the underlying mortality probability distribution [10]. For example, in a well-calibrated model, we would expect 50% of the patients who have a predicted mortality probability around 50% to die in the ICU. A common method of assessing calibration is the Hosmer-Lemeshow test [11], which runs a chi-squared based calculation to test whether the model matches the results expected from perfect calibration.

Name	Data Used for Prediction		
APACHE (Acute physio-	First 24 hours after admission. 12 physiologic vari-		
logic and chronic health	ables, combined with diagnosis, demographic, co-		
evaluation)	morbidities, and ICU type.		
SAPS (Simplified Acute	First 24 hours after admission. 12 physiologic vari-		
Physiology Score)	ables, age, admission type, acute diagnosis.		
SOFA (Sequential Organ	First 24 hours after admission. Severity of illness		
Failure Assessment Score)	based on organ dysfunction in six organ systems.		
MPM (Mortality Probabil-	First 24, 48, 72 hours after admission. Chronic		
ity Models)	conditions, vital signs, acute diagnosis, device vari-		
	ables (ventilation).		

Table 2.1: Overview of Severity of Illness Scores [10]

Table 2.1 provides an overview of well-known severity of illness scores. Section 2.2 provides a detailed overview of one such score, APACHE IV [8].

2.2 The APACHE IV Severity of Illness Score

APACHE IV [8] is the 4th iteration of the Acute Physiology and Chronic Health Evaluation score and was developed in 2006 as a recalibration and improvement upon the APACHE III score model. Using data from about 131,000 ICU admissions sourced from 104 ICUs in 45 U.S. hospitals, the authors developed a mortality model with strong discriminative and calibrated performance. The model had an AUC of 0.88 for the prediction of hospital mortality on the validation population and had a Hosmer-Lemeshow p-value of 0.08 (where p > 0.05 indicates good calibration). In this section, we will go into detail regarding how the APACHE IV model was constructed and evaluated by Zimmerman, et al.

The study used admissions data from 131,000 ICU admissions collected from 2002 and 2003, of which 110,000 were analyzed because they did not meet the following exclusion criteria: admissions with patients who were less than 16 years of age, admissions that last less than 4 hours or more than 365 days, and admissions that were preceded by another ICU stay in the same hospitalization. Secondly, stays that did not include enough information to calculate the APS score, which is detailed next, were also excluded from the study.

For each patient, the authors calculated an integer "acute physiology score" from 0-252 from the following physiological measurements during the first 24 hours of the

admission: pulse rate, mean blood pressure, temperature, respiratory rate, PaO2/FIO2 ratio, hematocrit, white blood cell count, creatinine, urine output, blood urea nitrogen, sodium, albumin, bilirubin, glucose, acid base abnormalities, and neurological abnormalities based on Glasgow Coma Score. Each of these values is assigned a score value based on the most "abnormal" value for each category. For example, if the patient's heart rate is measured at 60 and 120 at different points within the first 24 hours, the value of 120 will be recorded as it deviates the most from the APACHE heart rate midpoint of 75 [13]. A heart rate of 120 adds 7 points to the APS Score [14] and the sum of these score values forms the APS score.

In addition, the APACHE IV score incorporates demographic, past history, and patient stay-related information. For example, it includes a splined age term, chronic health variables (AIDS, cirrhosis, hepatic failure, immunosuppression, lymphoma, leukemia or myeloma, metastatic tumor), length of stay before ICU admission, whether the patient is undergoing emergency surgery, whether the patient is receiving mechanical ventilation, a rescaled version of the Glasgow Coma Scale, and the admission source that preceded the ICU (such as floor, emergency room, other hospital, etc.). Lastly, the APACHE IV score considers the admitting diagnosis for each patient. The authors ascribed one of 430 diseases, injuries, and surgical procedures for each patient admission as the APACHE diagnosis code.

Using these variables as features for a multivariate logistic regression model, the authors demonstrated that the APACHE IV model was well-calibrated (Figure 2) and performed well on the mortality prediction task (AUC=0.88). The calibration curve in Figure 2-1 demonstrates that for all risk deciles, APACHE's predicted mortality rates are concordant with the validation set.

2.3 Limitations of Current Severity of Illness Scores

Severity of illness scores, however, are limited by the skewed nature of the datasets they are trained on. Up to half of intensive care patients in cohorts used to derive such scores are predicted to have a low risk of death (mortality risk <10%) [8, 16-18]. This distribution is visible in Figure 2-1 in the validation set used to evaluate the APACHE IV model.

The over-presence of low risk individuals in the training set used to develop mortality models could result in poorer model calibration. While this miscalibration was not found in the APACHE IV paper, other studies of similar mortality models

Figure 2-1: Calibration Curve of APACHE IV Classifier on Validation dataset. Image replicated from [8].

(models that rely on a similar feature set as that of APACHE IV), have shown impaired goodness-of-fit. In a cohort from the United Kingdom, the mortality ratios (observed:expected) of the low risk group are nearly twice as high compared to the higher risk group, as predicted by APACHE II and SAPS II [17]. Likewise, the MPM model was found to have a mortality ratio of 3.00 in the low risk population compared to 0.92 in the high risk population [18].

The difference in calibrations between low risk and high risk patients suggest that general mortality models might miss cohort-specific information useful in the mortality prediction task [17]. High risk patients are inherently physiologically different from low risk patients and might be modeled more accurately with a set of features that differ from those of SAPS and APACHE IV; for example, lactate levels are closely monitored in septic patients [19], an extremely high-risk condition, but are not globally diagnostic for most patients in the ICU.

Moreover, scores such as APACHE and SAPS utilize simple features that are less dependent on the hospital information systems, but the APACHE IV authors themselves postulated that future prognostic models would likely be more complex and tied more closely to the hospital information technology infrastructure [8]. Because current EHR systems can now process and store periodic measurements from hospital room sensors and record the results of lab tests during a patient stay in real-time, such data streams enable more complex mortality prediction models that can utilize the temporal trends and aggregate statistics in data in a manner especially relevant for high risk patients, who are likely to be monitored the most during their stay. For example, whereas APACHE IV tracks heartrate as an APS variable, a more complex mortality model, as done in [44], could track trends in heart rate over time to, for example, detect compensation or decompensation episodes in severe sepsis.

Thus, this thesis is motivated by evidence that suggests that existing mortality models can be augmented by focusing specifically on developing additional features targeted at predicting mortality in high risk populations. To this end, this thesis centers on evaluating a sequential approach to risk prediction by developing a new risk prediction model only on the high risk subgroup of a large ICU cohort that uses these features.

2.4 Sequential Modeling: a multi-stage model of mortality

The bulk of this thesis evaluates the sequential modeling approach: the idea that mortality prediction could be thought of as a two-stage sequence (Figure 2-2).

- 1. First: use a canonical mortality predictor such as APACHE IV to predict patient mortality probability
- 2. Second: For patients deemed "high risk", then forecast their mortality using a custom high risk classifier using custom engineered features

Figure 2-2: The Sequential Modeling Approach. Low Risk patients utilize the APACHE model, while High-Risk patients utilize a risk-specific mortality model. eICU-24HR and eICU-48HR refer to custom high risk models to be developed in this thesis.

A potential use case of this approach is as follows: a patient arrives in the ICU with an indication for sepsis and an APACHE probability of mortality of 35%. Such a patient is then evaluated with the custom eICU-24HR classifier, which includes features such as heart rate trend detection, where the patient is found to be in decompensated shock (indicated by blood pressure trends). The custom classifier provides a mortality risk estimate of 85%, greatly impacting the expected treatment plan formulated by the physician.

This sequential approach has the potential to provide an improvement upon both the discrimination and calibration of existing mortality models. The addition of high-risk specific features in the custom high risk model would better model conditions such as sepsis and cardiac arrest, and therefore obtain better predictive performance on the patient subpopulations that possess those admitting diagnosis. Moreover, existing APACHE features weights would be re-calibrated for the high risk patients in the custom high risk classifier. For example, in high risk patients, the GCS score could be especially diagnostic as high risk patients are likely to have low GCS scores. The high risk classifier would be able to learn a larger weight for the GCS score itself. Superior performance on high risk patients would further enhance the calibration of the model, fine-tuning risk probability predictions with a high risk subpopulation that is underrepresented in the development of canonical mortality prediction tools.

Further details regarding how the sequential model is evaluated can be found in Section 3.6, the results of which can be found in Chapter 5.

Chapter 3

Methods and Data Overview

The mortality models developed in this thesis were trained and validated on the Philips eICU Collaborative Research Dataset (eICU-CRD). This chapter discusses the data processing and modeling required to develop such models. I first provide background information and analysis on the eICU-CRD dataset, formalize the concepts of "high risk" and "low risk" patients within the study, and discuss the exclusion criteria used to identify the training and validation populations. Afterwards, I discuss how APACHE-specific features were processed and how custom high-risk features were constructed from the dataset. Lastly, I describe and motivate each of the logistic regression models trained as part of the study.

3.1 Philips eICU-CRD Data Overview

3.1.1 Background

The Philips eICU Collaborative Research Dataset [21] was released in 2017 by a joint collaboration between MIT and Philips Healthcare. It contains data on over 200,000 ICU stays collected over the last 10 years from over 250 hospitals via the Philips eICU platform [22].

The Philips eICU platform is a telehealth program for the intensive care unit that aims to achieve more efficient and effective ICU care in the US. It features an off-site 24/7 electronic monitoring system of an ICU overseen by medical professionals that enable clinics to provide more continuous care to patients in the ICU. Moreover, it couples this technology offering with several decision support and alerting features, such as a "sepsis alert", helping subscribing clinics offer higher quality medical care. The eICU program has been shown historically to result in an increased chance of survival in the ICU and a shorter length of stay [23].

Concept	Table Name in eICU-CRD	Description	
Demographics	patient	Per-patient information	
Lab Values	lab	Lab values for patients	
Medications	medication	Prescribed medications for patients	
Vital Signs	vitalsperiodic	Periodic vitals: vital signs that are	
		measured regularly in an automated	
		process (every 15 minutes usually)	
Vital Signs	vitalsaperiodic	Aperiodic vitals: vital signs that are	
		measured, usually with	
Diagnoses	pasthistory	List of past medical history in a struc-	
		tured format.	
Devices	respiratorycharting	Mechanical ventilation settings	
Interventions	treatment	Treatment steps for patients, including	
		transfusions	
Fluid	intakeoutput	Tracks fluid inputs and output events	
		for patients. Used to calculate the fluid	
		balance for a patient.	
APACHE score	apacheapsvar	Lists the variables used in the calcula-	
		tion of the APS score in APACHE	
APACHE score	apachepredvar	Lists the variables used in the calcula-	
		tion of the APACHE score that are not	
		APS variables	
APACHE score	apachepatientresults	Provides the APACHE risk probabili-	
		ties for patients from APACHE API	

Table 3.1: Key tables used in the eICU-CRD Dataset [10]

To enable the tele-ICU concept, the Philips eICU program stores high-dimensional and feature-rich data about patients. Every patient admission in the ICU is identified by a "patientunitstayid", which links to various tables containing information labs, vital signs, medication prescriptions, and previous diagnoses. Table 3.1 summarizes key tables used in this analysis.

Sections 3.4 and 3.5 will discuss each of these tables in further detail with respect to how features were extracted from each table for mortality modeling.

Figure 3-1: Distributions of Ages in Study Population, labeled by whether the patient survived the hospital stay ("alive") or did not ("expired").

3.1.2 Exploratory Analysis

The eICU-CRD dataset contained APACHE values for 63,000 patients of which 60,000 contained APACHE IV probability estimates. For these 60,000 patients, the global mortality rate was 9.6% and the average APACHE IV in hospital probability estimate was 12.4%. the APACHE IV probability estimates were sourced from the *predicted-hospitalmortality* field supplied by and precomputed in the dataset by the APACHE API. The average age of all patients was 62.6 years, and there were 32,000 male patients and 27,000 female patients in the dataset. About 13,000 patients underwent mechanical ventilation.

Figure 3-1 shows the age distribution of patients in the dataset. We can notice that no patients below 16 years of age receive an APACHE IV score, consistent with clinical guidelines and indications for the score's use. The plots in this thesis were generated via matplotlib [24] and Google Sheets [25].

Patients in the dataset were ascribed 411 different APACHE diagnoses globally. Table 3.2 summarizes the top-10 most common diagnoses, along with their mortality

Diagnosis Name	Count	Predicted		Actual	Mortality
		APACHE	Mor-	Rate	
		tality Rate			
AMI	3316	6.70%		4.50%	
CVASTROKE	2265	18.90%		13.00%	
S-CABG	2028	4.60%		1.20%	
SEPSISPULM	1792	23.30%		22.40%	
CHF	1615	13.10%		12.60%	
RHYTHATR	1387	8.90%		6.00%	
CARDARREST	1317	60.10%		53.50%	
PNEUMBACT	1256	19.50%		17.00%	
SEPSISUTI	1184	15.20%		14.60%	
UNSTANGINA	1182	2.50%		3.00%	

Table 3.2: Top 10 Most Common APACHE IV Diagnoses in eICU-CRD

rates and average predicted mortality probability sourced from APACHE.

Figure 3-2 depicts the distribution of APACHE in-hospital mortality probability estimates across the entire dataset. From this graph, we can see that our patient population is highly skewed towards low risk patients who receive a low probability estimate from the APACHE score. Figure 3-3 demonstrates the calibration of the dataset's APACHE hospital mortality predictions.

Table 3.2 and Figure 3-3 demonstrate that APACHE IV is not well-calibrated in the eICU-CRD dataset. For most conditions in Table 3.2, APACHE IV overestimates the mortality risk of patients. This trend is also seen in the calibration curve, which is positioned below that of a curve of perfect calibration. This indicates that APACHE's predicted mortality probabilities are larger than those observed in the dataset. Moreover, this difference is especially pronounced in patients who have larger APACHE risk estimate, an attribute of the calibration curve that is consistent with our earlier hypotheses that mortality models tend to be calibrated well to either the low risk or high risk populations, but not both (Section 2.3). At the same time, it is important to note that there are potential confounders that could also result in the overprediction of mortality. Advances in medical practices and technologies to treat especially high risk conditions, such as cardiac arrest and sepsis, made since 2006 could reduce the overall mortality of these conditions; the effect of these novel medical treatments would not be incorporated into the APACHE IV model's weights. Secondly, the eICU platform itself has been shown to improve mortality outcomes; the miscalibration seen above could be a visual representation of this effect.

Figure 3-2: Distribution of APACHE probability estimates across the entire dataset, labeled by whether the patient survived the hospital stay ("alive") or did not ("expired").

Figure 3-3: APACHE IV Calibration Curve in the eICU-CRD dataset

Figure 3-4: APACHE IV ROC Curve in the eICU-CRD dataset for the entire patient population

APACHE IV demonstrates robust global discrimination in eICU-CRD for the task of mortality prediction with an AUC of 0.87, consistent with the APACHE IV paper result of 0.88. The receiver operating characteristic curve is shown in Figure 3-4. However, the discriminative ability of APACHE IV is worse when considering high risk patient populations. For example, APACHE IV has an AUC of 0.66 on the 3600 patients in eICU-CRD who have an APACHE IV predicted mortality risk of greater than 50%. On the comparable low-risk population (patients with a predicted mortality risk of less than 50%), the model performs much better with an AUC of 0.83. The ROC curves for both values are detailed in Figures 3-5 and 3-6.

In summary, initial exploration of the eICU-CRD dataset suggests that the APACHE IV risk prediction model is less calibrated and less discriminative in the high risk patient subpopulation. At the same time, APACHE is globally discriminative and better calibrated on the low risk population, and this difference can be reconciled by the fact that the eICU-CRD patient population is skewed towards lower risk predictions by APACHE; while the performance on the high risk population is poor, the notably smaller number of high risk cases results in a minimal impact on global AUC. These results further motivate the sequential modeling approach, which I hypothesize can improve upon the 0.66 AUC found in the high risk cohort and obtain better discrimination and calibration in the process.

Figure 3-5: APACHE IV ROC Curve in the eICU-CRD dataset for high risk patients (APACHE probability > 50%).

Figure 3-6: APACHE IV ROC Curve in the eICU-CRD dataset for low risk patients (APACHE probability < 50%).

3.2 Patient Inclusion Criteria

To allow the analysis in thesis to closely resemble that of APACHE IV, I structured the exclusion criteria of the study to be concordant with that of APACHE IV. APACHE IV's exclusion criteria were as follows [8]:

- 1. Patients who are less than 16 years of age
- 2. Patient in the ICU as a result of burn injuries
- 3. Patients missing an APS score on day 1
- 4. Patients admitted after transplant operations except for hepatic and renal transplants
- 5. Multiple admissions from the same patient during a hospital stay
- 6. Patients admitted from another ICU during the same hospitalization
- 7. Patients with a length of stay >365 days.

Table 3.3 summarizes the impact of these exclusion criteria on our study population. It also discusses how each exclusion criterion was calculated in eICU. In the case where multiple exclusion criteria were met for a patient, we ascribed the exclusion criteria to a single criterion that matched the patient. In most cases, the exclusion criteria had been applied prior to the collection of APACHE data in the eICU, and therefore did not affect the study population as much as expected. For example, because the APACHE IV score is not indicated for patients under 16 years of age, we had close to zero patients less than 16 years old in the study population. Likewise, a missing APS score would result in a missing mortality prediction, patients with which were excluded in the beginning of the analysis. The resultant study population size was 59,574 patients.

Exclusion Criteria	Number	How Computed in eICU
	of Pa-	
	tients	
	Matched	
Missing APS	2155	acutephysiologyscore missing in
		apachepatient results table
Age	69	age in patient table
Burn	17	Patient apacheadmissiondx contains
		?burn?
LOS > 365 days	4	Patient ICU hospitaldischargeoffset
		>365 days
LOS < 4 hours	4	Patient ICU unitdischargeoffset <4
		hours
Admitted after transplant	13	Patient apacheadmissiondx contains
		?transplant?
Admitted from other ICU	0	Patient demographic table

Table 3.3: Exclusion Criteria in eICU-CRD used for study

3.3 Risk Stratification and Mortality Type Selection

A key question in this study is the definition of "high risk", or in other words, a risk threshold upon which we designate patients to use the custom high risk classifier in the sequential modeling approach. For example, the analysis in section 3.1 identified that at a risk threshold of 0.50 (50% mortality risk or higher), the APACHE IV score has an AUC of 0.66 on the high risk patients, patients with a predicted mortality of greater than the threshold of 0.50. However, one could imagine replicating the analysis at a variety of thresholds to obtain the following table and graph of AUC vs risk threshold, starting at a risk threshold set to the average mortality of the dataset (about 10%).

There are three main factors that affect the risk threshold selection:

- 1. Choosing a risk threshold that is too small would reduce the ability of a custom high-risk model to fit the underlying physiology of the high risk subpopulation well. When taken to the extreme for example, a very low risk threshold would face similar challenges to that of global severity of illness scores in calibration.
- 2. Choosing a risk threshold that is too high could result in a more difficult prediction task with less training data: For example, only 368 of the 60,000 patients

Risk Threshold	AUC for APACHE IV Predictions for Patients Above Risk Threshold
0.1	0.75
0.2	0.72
0.3	0.69
0.4	0.67
0.5	0.66
0.6	0.64
0.7	0.64
0.8	0.64
0.9	0.58

Table 3.4: AUC vs. Risk Threshold in the eICU-CRD Data

Figure 3-7: AUC vs. Risk Threshold in the eICU-CRD Data

in the study population have a predicted mortality probability of 0.9 or higher. It would be very difficult to learn a model from such few data points with the very high dimensional feature sets found in EHRs.

3. Choosing a risk threshold that is too high can impact the overall benefit the model provides in application and global AUC metrics. An improved classifier for only patients with a predicted mortality of greater than 90% would only improve performance on less than 0.5% of patients. The sequential model would in large part serve predictions similar to those of APACHE IV as this difference is minimal.

In this thesis, I will treat the risk threshold as an independent variable within a bounded range of 0.10-0.75. That is, I will experiment with different thresholds between 10% and 75% mortality risk in the evaluation of the custom high risk model and the sequential model to identify the threshold that provides the optimal balance of the three factors discussed above.

3.4 APACHE Feature Engineering

In addition to obtaining the APACHE IV prediction probabilities from the *apachepatientresults* table, we extracted the APACHE IV variables from the eICU dataset for not only the custom high risk classifier, but also several control classifiers discussed in Section 3.6.

3.4.1 APS Variables

The APACHE IV APS variables were sourced from the *apacheapsvar* table. The eICU-CRD dataset stores each APS variable in its raw format (i.e heartrate as 92), and therefore, to replicate the value assignment to each value made by APACHE, I converted each raw value to its APS value using the logic from an APACHE IV calculator [15]. Missing APS values were assumed to be normal and therefore received an APS value of 0.

The intuition behind each conversion is two-fold:

1. The APS value should capture meaningful deviations from normal for a certain lab test or physiological measurement. Deviating slightly from normal should not receive a positive APS value as such deviations are likely due to person-byperson variation in the vital sign rather than a clinical abnormality. 2. The APS value should capture bi-directional abnormality. In the ICU, an elevated or reduced heartrate are both indicative of physiological abnormality, and thus should both have a positive APS value. A linear transformation of the raw vital sign would not provide a positive APS value in both cases.

Table 3.5 summarizes the conversion logic used for each APS variable, which closely follows the APACHE guidelines.

APS Variable	Conversion Logic
Pulse (bpm)	<39: 8
()	40-49: 5
	50-99: 0
	100-109: 1
	110-119: 5
	120-139: 7
	140-134: 13 $155\pm \cdot 17$
MABP - mean arterial blood pressure	<39: 23
(mmHg)	40-59: 15
	60-69: 7
	70-79: 6
	80-99: 0
	100-119: 4
	130-139: 9
	140+: 10
Temperature (C)	<33: 30
	33-33.4: 16
	33.4-33.9: 14
	35.0-35.9. 2
	36-39.9: 0
	40+: 2
Respiratory Rate (rpm)	<6: 17
	6-11: 8
	14-24: 0
	25-34: 0
	35-39: 9
	40-49: 11
PaO2(%)	50+: 18 <50: 14
(,.)	50-70: 5
	70-79: 2
	80+: 0
Hematocrit (%)	<41:3
	49+:3
WBC count (count/nL)	<1.0: 19
	1.0-2.9: 5
	3.0-19.9: 0
	20.0-24.9:1 25.0+:5
Creatinine (mg/dL)	<1.4: 0
	>1.4: 10
Urine Output (mL)	<400: 15
	400-600: 8
	900-1499: 5
	1500-1999: 4
	2000-3999: 0
	4000+: 1
Biood urea nitrogen (mg/dL)	<1/: U 17-10- 2
	20-39: 7
	40-79: 11
	80+: 12
Sodium (mEq/L)	<120: 3
	120-134: Z 135-154: 0
	155+: 4
Albumin (g/dL)	<2.0: 11
	2.0-2.4: 6
	2.5-4.4: 0 4.5 ± 4
Bilirubin (mg/dL)	<2.0: 0
	2.0-2.9: 5
	3.0-4.9: 6
	5.0-7.9: 9
Glucose (mg/dL)	0.0+: 10 <40: 8
Gracose (ing/ dil)	40-59: 9
	60-199: 0
	200-349: 3
Acid Page (pH pCO2)	350+: 4
Glasgow Coma Scale	See below

Table 3.5: APACHE APS Variable Conversion Logic 35

The Acid Base and GCS conversions to APS scores required slightly more involved calculations, summarized in Python code below.

```
def acid base aps(pco2, ph):
 if ph < 7.2 and pco2 < 50:
       return 12
else:
       return 4
if ph < 7.35 and pco2 < 30:
       return 9
if ph < 7.3 and pco2 < 40:
       return 6
if ph < 7.3 and pco2 < 50:
       return 3
if ph < 7.3:
       return Z
if ph < 7.50 and pco2 < 30:
       return 5
if ph < 7.50 and ph >= 7.45 and pco2 >= 30 and pco2 < 35:
       return 0
if ph < 7.45 and ph >= 7.30 and pco2 >= 30 and pco2 < 45:
       return 0
if ph < 7.45 and ph >= 7.30 and pco2 >= 45:
       return 1
if ph < 7.50 and ph >= 7.45 and pco2 >= 35 and pco2 < 45:
       return Z
if ph < 7.50 and ph >= 7.45 and pco2 >= 45:
       return 12
if ph >= 7.50 and pco2 >= 40:
       return 12
if ph >= 7.60 and pco2 <= 25:
       return 0
if ph >= 7.50 and pco2 <= 25:
       return 3
if ph >= 7.50 and pco2 >= 25:
       return 3
 return 0
```

Figure 3-8: Acid Base Conversion Logic
```
def gcs_aps(eyes, motor, verbal):
      if eyes == 1:
            if verbal == 1:
                  if motor == 5 or motor == 6:
                        return 16
                  elif motor == 4 or motor == 3:
                        return 33
                  else:
                        return 48
            else:
                  if motor == 3 or motor == 4:
                        return 24
                  else:
                        return 29
      else:
            if verbal == 5:
                  if motor == 6:
                        return 0
                  else:
                        return 3
            elif verbal == 4:
                  if motor == 6:
                        return 3
                  if motor == 5:
                        return 8
                  else:
                        return 13
            elif verbal == 3 or verbal == 2:
                  if motor == 6:
                        return 10
                  if motor == 5:
                        return 13
                  if motor == 4 or motor == 3:
                        return 24
                  else:
                        return 29
            else:
                  if motor >= 5:
                        return 15
                  if motor >= 3:
                        return 24
                  else:
                        return 29
            return 0
```

Figure 3-9: GCS Conversion Logic

3.4.2 APACHE Variables (APACHE Predvar)

Each of the APACHE prediction variables were extracted from the *apachepredvar* table of the eICU-CRD dataset.

Variable	Extraction Process		
Age	The eICU-CRD table would label patients above		
	the age of 89 with a flag $>$ 89 instead of including		
	their age. I set the age of these patients to 90. Age		
	term not splined as done in APACHE IV.		
Comorbidities	Binary indicator variables present in apachep-		
	redvar for AIDS, hepatic failure, lymphoma,		
	metastatic cancer, leukemia, immunosuppression,		
	diabetes, and cirrhosis.		
Ventilation	Binary indicator variable present in the ventday1		
	field		
Admit Source	Present in predvar table: binarized to a one-hot		
	vector representing the admitsource		
Pre-ICU LOS	Used var03hspxlos field in predvar		
Emergency Surgery	If elective surgery field was 0 and the admitdiag-		
	nosis was surgery related (prefixed with an "S-"),		
	then labeled as 1.		
Thrombolytics	Only set for patients with AMI diagnosis. Binary		
	indicator present in predvar field.		
GCS	From apacheapsvar table.		
UnableGCS	If GCS not present, label as unable to obtain.		

Table 3.6: APACHE Non-APS Variable Conversion Logic

3.4.3 APACHE Diagnosis

Lastly, the diagnoses were extracted from the admit diagnosis field of the apachepredvar table. The diagnoses were then transformed into a one-hot vector of length about 430 that contained a single indicator for the admit diagnosis for the patient.

3.5 High-risk Feature Engineering

While the APACHE IV features were extracted from eICU-CRD for all patients, I also extracted per-patient features from other tables in eICU-CRD to develop the custom high risk classifier. Each of these features were extracted for "high risk"

patients: because the high risk threshold outlined in Section 3.3 was at minimum 0.10, I extracted these features for all patients with an APACHE-predicted mortality risk of 10% or greater. The extracted features are summarized in Table 3.7.

Category	Features Extracted			
Demographics	Age, BMI, height, gender, weight			
Admission data	Source of admission ICU admission diagnosis (based on APACHE)			
Laboratory data (tra-	Blood gases: PaO2, pH, base excess, bicarbonate,			
jectory, mean, worst	Hematology: hematocrit, hemoglobin, lymphocytes,			
value)	neutrophils, platelets, white cell count Electrolytes: cal-			
	cium, chloride, magnesium, phosphate, sodium Bio-			
	chemistry: albumin, amylase, bilirubin, blood urea ni-			
	trogen, B-natriuretic peptide, creatine phosphokinase,			
	creatinine, lactate, lipase, troponin I/T Coagulation:			
	PT/INR, fibrinogen			
Vital Sign data (tra-	Heart rate, temperature, SaO2, Respiratory rate, dias-			
jectory, mean, worst	tolic, systolic, ETCO2 Urine output and Fluid balance,			
value)	Glasgow coma scale			
Comorbidities	All comorbidities necessary for APACHE and CHARL-			
(Yes/No)	SUN [26] score: AIDS, cerebrovascular disease, conges-			
	tive heart failure, chronic kidney disease, connective tis-			
	damage diabetes without and organ damage homiple			
	gia hypertension leukaemia liver disease lymphoma			
	metastatic tumour myocardial infarction peptic ulcer			
	disease, peripheral vascular disease, chronic pulmonary			
	disease, renal disease, tumour without metastasis			
Treatment (Yes/No)	Drugs: antiarrhythmics, antibiotics, lasix, sedatives, va-			
	sopressors Blood products: blood, platelets, cryoprecip-			
	itate, plasma			
Devices (Yes/No, At-	Pacemaker, IABP Ventilation: yes/no, tracheostomy			
tributes: Mean)	size, plateau pressure, PEEP, FIO2, tidal volume, tidal			
	volume/body weight			
Thrombolytics	Only set for patients with AMI diagnosis. Binary indi-			
	cator present in predvar field.			
GCS	From apacheapsvar table.			
UnableGCS	If GCS not present, label as unable to obtain.			

Table 3.7: Summary of High Risk Features Extracted from Dataset

Key: BMI: Body Mass Index; ICU: intensive care unit; APACHE: Acute Physiology and Chronic Health Evaluation; PaO2: partial pressure arterial oxygen; IABP: intraaortic balloon pump; PEEP: positive end expiratory pressure: FIO2: fraction of inspired oxygen; ETCO2: end tidal CO2; COPD: chronic obstructive pulmonary disorder

3.5.1 Demographics

While the age used the analysis was the same as that found used in Section 3.4, I additionally extracted height, gender, and weight from the *patient* table in eICU-CRD. Afterwards, a BMI-like statistic was computed by calculating $weight/(height^2)$ as an additional feature.

3.5.2 Admissions

The admit source and admit diagnosis were the same as that used by APACHE. The only modification was that in the high risk cohort, I only considered 30 common diagnoses instead of all 430 APACHE diagnoses as in the high risk subpopulation, most diagnoses did not have a significant presence in the population.

3.5.3 Laboratory Values

For the high risk classifier, I sought to enhance the feature engineering of lab values in two steps. First, I incorporated additional lab values not previously used in the APACHE score. Secondly, I included several temporal and nonlinear transformations on the lab values themselves.

The additional lab values used in this analysis were: *bicarbonate, chloride, calcium, magnesium, pt inr, hco3, base excess, ionized calcium, lactate, troponin i, troponin t, amylase, lipase, platelets, hemoglobin, phosphate, cpk, bnp, fibrinogen, neutrophil count, lymphocyte count.* I also extracted the raw values from lab tests used as part of the APACHE APS score. These tests were: *sodium, creatinine, bun, wbc, albumin, ph, bilirubin, and hematocrit.*

Each lab value was obtained from the *lab* table in eICU-CRD. Consistent with the APACHE IV approach of only using data from the first 24 hours of the patient stay, all lab results within the first 24 hours of the patient stay (identified by labresultoffset) for each of the lab tests above were extracted from eICU-CRD. Often times, patients would have multiple lab results within this time period for a given test, enabling additional analyses such as temporal trends.

For each series of lab data for a given test, we computed three different sets of features:

- 1. A single data point representative of the lab test result
- 2. A set of trendlines identifying changing patterns in the dataset
- 3. A set of indicators that conveyed how "abnormal" a lab score is.

To choose a single data point that captured the lab test result, I either chose the clinically "worst" value or the average value across all results for a lab test within the first 24 hours. For labs not included in the APACHE IV score, I used the "worst" score (either a maximum or minimum based on the lab test, as indicated by a collaborating physician), and for labs that were included in the APACHE IV score, I used the average value of those lab scores, as the "worst" score was already contained within the APACHE APS value for that lab. Table 3.8 includes a discussion of which lab score was used as the "worst" lab score for each lab test.

For each lab test where there were at least 2 separate measurements, I computed 8 different trendline features between the first half and second half of the data. In other words, if there were 2 unique measurements, I would compare the first with the second to generate the trendline. If there were 8 measurements, I would then compare the average of the first four measurements with the average of the last four measurements, thereby reducing the sensitivity of the feature to single lab measurements. Note that often times, I would apply a nonlinear transformation to the trendline slopes in a similar fashion to that of the APS score calculation to capture its effects in either direction (positive or negative). Without this transformation, the linear model could only learn the effects of a single direction of slope, as it has to assign a single sign to the weight associated with the slope itself.

- 1. *Time-scaled-slope*: The time-scaled slope of the lab measurement (measuring the change in lab value per min)
- 2. *Raw-trend-negative*: The negative slope between the first two halves of the set of measurements. If the slope is positive, the value is 0. This feature, when taken in conjunction with raw-trend-positive would enable the model to learn whether the presence of a trend, regardless of whether the trend is positive or negative, is indicative of potential mortality.
- 3. *Raw-trend-positive*: The positive slope between the first two halves of the set of measurements. If the slope is negative, the value is 0.

- 4. *Trend-negative*: Slope of the lab measurement after the lab measurements are normalized by the population average and standard deviation. 0 if positive.
- 5. *Trend-negative-presence*: Binary indicator of whether trend-negative has a negative slope or not.
- 6. *Trend-positive*: Slope of the lab measurement after the lab measurements are normalized by the population average and standard deviation. 0 if negative.
- 7. *Trend-positive-presence*: Binary indicator of whether trend-positive has a positive slope or not
- 8. *From-default*: Slope of the measurements after the measurements are normalized by the "default" lab value for a given lab test. Default lab tests are found in Table 3.8.

To further mimic the APACHE APS scoring process, we compiled a list of "normal" ranges for the lab tests in the analysis and developed a series of indicators of whether the worst or average lab value (the single data point feature obtained for the lab test) was abnormal or not.

- 1. Is-abnormal: Whether the value falls outside the normal range for this test.
- 2. *Is-low*: Whether the value is lower than the lowest value in the normal range for this test.
- 3. *Is-low-by*: By how much the value is lower than the lowest value in the normal range for this test.
- 4. *Is-high*: Whether the value is higher than the higher value in the normal range for this test.
- 5. *Is-high-by*: By how much the value is higher than the highest value in the normal range for this test.

Table 3.8 contains the normal ranges for each of these lab values. These values were sourced from [27-35].

Lastly, missing lab values were substituted with a default lab value and zeroes for all trend and abnormality scores. For example, patients without a platelets measurement were given a value of 300 for the lab test single data point value and 0 for all other values.

Lab Name	Default Value	Normal Range	"Worst" Value
bicarbonate	25 mmol/L	22-29	Min
chloride	100 mmol/L	98-107	Min
calcium	9.5 mg/dL	8.6-10	Min
magnesium	1.9 mg/dL	1.6-2.6	Min
pt_inr	1	0.9-1.2	Max
hco3	25 mmol/L	22-29	Min
base_excess	0 mEq/L	-2-3	Min
lactate	1.0 mmol/L	0.5-2.2	Max
troponin_i	0 ng/L	0-0.1	Max
troponin_t	0 ng/L	0-0.1	Max
amylase	50 U/L	27-131	Max
lipase	50 U/L	23-300	Max
platelets	$300 \ \mathrm{count/mcL}$	130-400	Min
hemoglobin	140 g/L	140-180	Min
phosphate	3 mg/dL	2.7-4.5	Min
cpk	$150 \mathrm{~U/L}$	22-190	Max
bnp	300 pg/mL	100-400	Max
fibrinogen	300 mg/dL	200-400	Min
neutrophil	$5 \operatorname{countx10^3/mm3}$	2-8	Avg
lymphocyte	2 x10^3/uL	1-5	Avg
sodium	140 mEq/L	135-145	Avg
creatinine	0.9 mg/dL	0.7-1.3	Avg
bun	19 mg/dL	7-20	Avg
wbc	9 (count/nL)	4.5-11	Avg
albumin	4.5 g/dL	3.9-5.1	Avg
bilirubin	1.1 mg/dL	0.5-1.5	Avg
ph	7.4	7.35-7.45	Avg
hct	45 %	40-50%	Avg

Table 3.8: Default/Normal Ranges and Worst Values for Lab Values

3.5.4 Vital Signs

Trend related features for vital signs were developed from the following vital signs: heart rate, temperature, SaO2, blood pressure measurements, and respiratory rate, in addition to the vital sign APS scores used in the APACHE APS computation. Secondly, I computed the fluid balance for every patient as an additional feature.

Vital sign trend features followed a similar pattern to the 8 lab-based trend features constructed per lab test and were sourced through two tables, the *vitalsperiodic* and *vitalsaperiodic* tables in eICU-CRD. Vitalsperiodic contained periodic vital sign measurements recorded at 15 minute intervals for the systolic and diastolic blood pressure, sao2, etco2, temperature, heartrate, and respiration rate. Vitalsaperiodic contained irregular measurements of blood pressure that were also used in this study. I labeled blood pressure measurements from vitalsaperiodic with the "noninvasive" tag because they were likely sourced in a noninvasive manner in the clinic itself.

The default values used for each vital sign measurement are summarized in Table 9 below. Unlike in the feature engineering for the lab result data, I did not compute abnormality ranges for vital signs as this information is likely already captured in the APACHE APS computation. The average value was used the "worst" value in each vital sign; each vital sign, especially those periodically measured every 15 minutes, had numerous data points per patient; an averaging of the vital signs results would reduce the sensitivity of the feature towards rare sensor errors.

Vital Sign	Default Value	"Worst Value"
Noninvasive systolic	120 mmHg	Avg
Noninvasive diastolic	$70 \mathrm{~mmHg}$	Avg
Invasive systolic	120 mmHg	Avg
Invasive systolic	70 mmHg	Avg
SaO2	99 %	Avg
ETCO2	40 %	Avg
Temperature	98.5 F	Avg
Heart rate	60 bpm	Avg
Respiratory Rate	20 rpm	Avg

Table 3.9: Default Values and Worst Values for Vital Signs

Fluid balance is a strong prognosticator of overall health [36] and a commonly examined diagnostic in the ICU. Patients who have imbalanced fluid output or input could suffer from electrolyte imbalance or dehydration, which in turn could impair kidney and cardiovascular function, and thus patients who either lose a lot of fluid in the ICU or have reduced urine output or other methods of fluid excretion are at risk. Fluid balance was calculated in the eICU-CRD using the *intakeoutput* table; each entry in the table contributes a "nettotal" to the patients overall fluid level. For each patient, we calculated the fluid balance by computing the cumulative sum of all fluid inputs or outputs within the first 24 hours.

3.5.5 Comorbidities

In addition to the comorbidities considered by the APACHE score, I computed the Charlson Comorbidities [26] for each high risk patient. The Charlson Comorbidity is an index that uses the binary presence or absence of around 20 conditions in patients as a predictor of mortality. Each condition is given an integer point score ranging from 1 to 6, the sum of which provides an estimate of 10-year survival. For example, 5 points on the index provides a 21% estimated 10-year survival whereas 6 points on the index provides a 2% estimated 10-year survival [37].

Each of the Charlson Comorbidities were extracted from the *pasthistory* table in eICU-CRD by examining the pasthistorypath for each condition. The table below summarizes the condition:pasthistorypath mappings used to ascribe each condition to a high risk patient. However, because these pathhistorypaths are not fully structured fields that correspond to the Charlson Comorbidities, there is likely error in ascribing these conditions to patients. Each of these comorbidities corresponded to a single binary indicator feature ascribed to a high risk patient for modeling.

Charlson Comorbidity	Pasthistorypath
Myocardial Infarction	%notes/Progress Notes/Past History/Organ Sys-
	tems/Cardiovascular (R)/Myo $\%$
Congestive Heart Failure	%notes/Progress Notes/Past History/Organ Sys-
	tems/Cardiovascular (R)/Congestive%
Peripheral Vascular Disease	%peripheral%
TIA	%neurologic/tia(s)%
Dementia	%neurologic/dementia%
COPD	%copd%
Connective Tissue Disease	%rheumatic%
Peptic Ulcer Disease	%peptic%
Mild Liver Disease	%cirrhosis/biopsy% %cirrhosis/clinical diagno-
	m sis%
Uncomplicated Diabetes	%diabetes% NOT %renal failure%/ %renal insu%
Diabetes with End Organ	%diabetes% AND %renal failure%/ %renal insu%
Damage	
Renal Disease	%renal failure% / %renal insu%
Hemiplegia	%stroke%
Tumor without Metastasis	% cancer/cancer% % cancer therapy %
Leukemia	%hematologic malignancy/leukemia%' '%hema-
	tologic malignancy/all%' '%hematologic malig-
	nancy/cml%'' '%hematologic malignancy/aml%'
	%hematologic malignancy/cll $%$
Lymphoma	%hematologic malignancy/non-hodgkins lym-
	phoma $\%$ %hematologic malignancy/ hodgkins
	disease%
Severe Liver Disease	$\% cirrhosis/varices\% \ \% cirrhosis/ugi \ bleeding\%$
	% cirrhosis/coma%% cirrhosis/jaundice%% cirrho-
	sis, encephalopathy% %cirrhosis/ascites%
AIDS	%aids%
Metastatic Cancer	%cancer/metastases% $%$ metast $%$

Table 3.10: Assignment of Pasthistorypaths to Charlson Comorbidities

3.5.6 Treatment

Intervention-related features were developed to indicate whether the patient was on certain types of medication or received certain types of blood product related interventions. For each of these features, we extracted a binary indication of whether the patient received a medication or blood transfusion within the first 24 hours of the patient stay, as shown in Table 11. Medication information was extracted from the *medication* table, whereas blood transfusion related information was sourced from the *treatment* table.

Vasopressors	Table Source and Field Name	Query Strings
Sedatives	eicu.medication.drugname	%fentanyl%, %midazolan%,
		%propofol%, %diprivan%
Vasopressors	eicu.medication.drugname	%norepinephrine $%$,
		%vasopressin%, %dobu-
		tamine%, %dopamine%,
		%epinephrine%, %milri-
		$\mathrm{none}\%$
Antiarrhythmic	eicu.medication.drugname	%amiodorone%
Diuretics	eicu.medication.drugname	%lasix%, %furosemide%
Antibiotics	eicu.medication.drugname	%aminoglycoside%,
		%carbapenem%, %clin-
		damycin%, %linezolid%,
		%macrolide%, %metron-
		idazole%, %monobac-
		tam%, %penicillin%,
		%quinolone%, %sulfon-
		amide%, %vancomycin%
Blood trans-	eicu.treatment.treatmentstring	$\% \mathrm{prbc}\%$
fusion		
Platelets	eicu.treatment.treatmentstring	%platelet%
transfusion		
Fresh Frozen	eicu.treatment.treatmentstring	% fresh frozen plasma%
Plasma		
Transfusion		
Cryoprecipitate	eicu.treatment.treatmentstring	%cryoprecipitate%
Transfusion		

 Table 3.11: Assignment of Query Strings to Interventions

3.5.7 Device Usage and Attributes

I extracted multiple features related to the medical devices a patient might be using, including pacemakers, intra-aortic balloon pumps (IABPs), and mechanical ventilation. Because high risk patients tend to undergo mechanical ventilation, I also extracted various device settings related to the ventilator to provide further prognostic information that conveyed, for example, the strength of ventilation provided to the patient.

The use of pacemakers and IABPs were extracted as a binary indicator variable by the treatmentstring field in the treatment table to the following query strings: %implantation of heart pacemaker%, %temporary or external pacemaker%, and %intraaortic balloon pump%.

I extracted the values for each mechanical ventilation setting from the *respirato-rycharting* table by matching the respiratorychartvaluelabel field to the specific setting. Afterwards, I averaged each setting across the entire patient stay for use a feature in the mortality prediction task.

3.5.8 Expanding the Analysis to 48h

While APACHE IV only leverages features obtained within the first 24 hours of an ICU stay, a high-risk focused predictive model could benefit greatly from the additional information gained between hours 24-48 of an ICU stay. Hours 24-48 capture the patient response to initial treatment on the first day, and this response is in many cases not grounded in information accessible in the first 24 hours of an ICU stay. For example, a study of the MPM II model found that the model, when calibrated at 24 hours, showed poor calibration and discrimination at the 48hr and 72hr time points [38].

Thus, in addition to developing a high-risk feature set that uses the first 24 hours of patient data to predict mortality in high risk patients, I additionally developed a similar feature set derived from the first 48 hours of patient data, retaining the same exclusion criteria and feature extraction processes. Key additions to the feature extraction process while obtaining features from the first 48 hours of the patient stay are summarized below:

- 1. *Demographics*: Because the demographics features are not time dependent, the same features used in the 24 hour period were applicable for the 48 hour period.
- 2. Admission data: Because the admission features were extracted only at admission, the same features calculated for the 24 hour period were applicable for the 48 hour period.
- 3. *Laboratory data*: The features extracted for the 24 hour period were replicated for the 24-48 hour period and the global 0-48 hour period. In other words,

"worst" values were additionally chosen for the 24-48 hour period and the global 0-48 hour period. Likewise, trend values were calculated within the 24-48 hour period, and the entire 0-48 hour period.

- 4. *Comorbidities*: Because the Charlson Comorbidities relate to conditions diagnosed prior to the admission itself, the same features used in the 24 hour period were applicable for the 48 hour period.
- 5. *Treatment*: I additionally record the binary presence of a medication or transfusion treatment in the first 48 hours. For example, if a patient receives a sedative in the first 24 hours, then the patients 24hr and 48hr sedative_presence feature will be 1. If a patient receives a sedative at hour 36, the sedative_presence_24h feature will be 0 but the sedative_presence_48h feature will be 1.
- 6. *Devices*: In addition to the 24 hour features calculated for ventilation, the same features will be averaged over the 0-48 hour time period.

To summarize, the 48 hour feature set includes all features calculated in the 24 hour feature set, and has additional features that utilize data in hours 24-48 of the ICU stay. Moreover, both custom feature sets (24 hour and 48 hour) include all the features in the APACHE IV feature set. The 24 hour feature set has 661 features, whereas the 48 hour feature set has 1217 features. The APACHE IV feature set has 462 features.

3.6 Model Development

Using eICU-CRD based feature sets, the extractions of which were detailed in Sections 3.4 and 3.5, I developed several Logistic Regression models as detailed in Table 3.12. This section will discuss each model and motivate the reasons for its construction.

Each model was implemented using L2 Regularized Logistic Regression and was trained on its respective feature set using a 70-30 training / testing split and feature normalization prior to training. Logistic Regression implementation used is that of scikit-learn [20], a well-known Python machine learning library. Models were trained for 100-200 steps using Stochastic Average Gradient Descent. Models were evaluated using AUROC and calibration analysis.

Model	Description		
APACHE	APACHE Probabilities sourced from apachepa-		
	tientresults table		
APACHE-All	APACHE features recalibrated on eICU-CRD pa-		
	tients (retrained weights)		
APACHE-HR	APACHE features recalibrated on high risk eICU-		
	CRD patients (retrained weights)		
eICU-24h-HR	APACHE features and extracted features within		
	the first 24h trained on all high risk patients		
eICU-48h-HR	APACHE features and extracted features within		
	the first 48h trained on all high risk patients		
Combined-24h	A ?Sequential model? where if $pt < 10\%$ risk, then		
	APACHE used, otherwise eICU-24h-HR		
Combined-48h	A ?Sequential model? where if pt $<10\%$ risk, then		
	APACHE used, otherwise eICU-48h-HR		

Table 3.12: Models Developed from the eICU-CRD features in this thesis.

APACHE: APACHE represents the canonical implementation of the APACHE IV prediction model as implemented in the Philips eICU platform. The APACHE predictions are obtained from the apachepatient results table directly and were calculated by the APACHE API *in situ*.

APACHE-All: APACHE-All involves recalibrating the weights of APACHE features on the eICU-CRD dataset. The feature engineering detailed in Section 3.4 follows the APACHE IV feature extraction process closely. While there are some small differences between feature sets (for example, lack of splining of the age term), the feature set of 3.4 is likely very close to what the APACHE API receives when calculating patient mortality risk. However, as discussed in Section 3.1, the Philips eICU dataset demonstrated an over prediction of mortality by the APACHE, resulting in a poorer calibration than found in the APACHE IV paper. APACHE-All is a retrained version of the APACHE features; we would expect this classifier to be better calibrated to the dataset than the canonical APACHE classifier.

APACHE-HR: APACHE-HR was developed by recalibrating the weights of APACHE features on the high risk patients in the eICU-CRD dataset. It is similar to APACHE-All and differs only on the training population (high risk vs. all patients). APACHE-HR will indicate the ability of the APACHE features to fit the high risk population after recalibration.

eICU-24h-HR: eICU-24h-HR is a custom high risk classifier developed using the feature set constructed in Section 3.5. The feature set includes all APACHE features and additionally includes the engineered features used for the high risk population. It is trained exclusively on the high risk population (the same population that APACHE-HR) is trained on. Comparing eICU-24h-HR with the results from APACHE-HR will demonstrate the marginal value of the engineered features in Section 3.5.

Combined-24h: Combined-24h is a "sequential" model that follows the architecture described by Figure 2-2 (Section 2.4). Given an input risk threshold, it uses the APACHE classifier if the patient?s APACHE IV risk prediction is lower than the risk threshold, and uses eICU-24h-HR for high risk patients.

Combined-48h: Combined-48h is a "sequential" model that similarly follows the architecture described by Figure 3 (Section 2.4). Given an input risk threshold, it uses the APACHE classifier if the patient?s APACHE IV risk prediction is lower than the risk threshold, and uses eICU-48h-HR for high risk patients.

The models above enable the study to test the "sequential modeling" hypothesis. Chapter 4 discusses the creation and evaluation of the eICU-24h-HR and eICU-48h-HR model. By comparing its performance with that of the baseline APACHE model and a recalibrated APACHE-HR model, I demonstrate that the additional features developed in Section 3.5 enable eICU-24h-HR and eICU-48h-HR to better fit the high risk population. Next, in Chapter 5, I show that the combined classifiers, Combined-24h and Combined-48h are able to outperform the baseline results from APACHE. Lastly, in Chapter 6, I demonstrate that in specific physiologically significant cohorts of patients, eICU-24h-HR and Combined-24h are able to outperform APACHE predictions in those cohorts.

Chapter 4

Development of the eICU High Risk Classifiers

Both eICU-24h-HR and eICU-48h-HR outperformed APACHE baselines and controls for all high risk thresholds between 0.1 and 0.75. Section 4.1 compares the discriminative abilities for each of the high risk classifiers, while Section 4.2 compares their calibration to the high risk cohort in the dataset. Lastly, in Section 4.3, I examine the feature weights learned in each of the high risk models to suggest why they might perform better in the high risk patient population.

4.1 High Risk Threshold-Based Results

Table 4.1 summarizes the performance (AUC) of the high risk classifiers on the high risk patient cohort as a function of the risk threshold. Each AUC was calculated as the average of three trials (which involved three randomly generated trainingvalidation set splits from the global dataset), the standard deviations of which are in parentheses.

High Risk	Number of	APACHE	APACHE-	eICU-	eICU-
Threshold	Patients in		\mathbf{HR}	24h-HR	48h-HR
	Training Set				
0.1	13821	0.752	0.754	0.813	0.822
		(.005)	(.005)	(.003)	(.003)
0.15	9936	0.727	0.726	0.782	0.807
		(.004)	(.010)	(.008)	(.007)
0.2	7666	0.710	0.722	0.772	0.797
		(.003)	(.010)	(.008)	(.001)
0.25	6053	0.700	0.722	0.767	0.782
		(.009)	(.005)	(.004)	(.001)
0.3	5001	0.686	0.693	0.757	0.781
		(.009)	(.003)	(.010)	(.012)
0.35	4172	0.678	0.695	0.749	0.778
		(.012)	(.021)	(.003)	(.005)
0.4	3521	0.675	0.699	0.753	0.772
		(.014)	(.004)	(.003)	(.015)
0.45	2999	0.653	0.685	0.732	0.759
		(.016)	(.012)	(.008)	(.013)
0.5	2546	0.640	0.691	0.735	0.756
		(.007)	(.010)	(.003)	(.016)
0.55	2145	0.658	0.664	0.741	0.746
		(.031)	(.015)	(.017)	(.006)
0.6	1798	0.639	0.662	0.717	0.730
		(.002)	(.009)	(.020)	(.006)
0.65	1467	0.618	0.648	0.716	0.708
		(.030)	(.014)	(.012)	(.017)
0.7	1193	0.621	0.646	0.668	0.722
		(.016)	(.011)	(.008)	(.024)
0.75	928	0.641	0.616	0.702	0.714
		(.015)	(.011)	(.051)	(.006)

Table 4.1: High Risk Models Developed from the eICU-CRD features in this thesis.

Figure 4-1 depicts this table visually to show dependence of the high risk classifier performance on the high risk threshold as a line graph. Figures 4-2 and 4-3 provide the ROC curves the four classifiers trained on the first 24 hours of patient data in the ICU (APACHE, APACHE-HR, APACHE-All, and eICU-24h-HR) at two separate high risk thresholds, 0.10 and 0.50.

Figure 4-1: High Risk Classifier Performance By High Risk Threshold

Figure 4-2: ROC Curves at a High Risk Threshold of 0.10

Figure 4-3: ROC Curves at a High Risk Threshold of 0.50

Overall, the custom high risk classifiers performed significantly better than their APACHE counterparts. At a 0.10 high risk threshold, eICU-24h-HR has an AUC

of 0.812 and eICU-48h-HR has an AUC of 0.822 compared to AUCs of 0.754, 0.758, and 0.752 from APACHE-HR, APACHE-All, and APACHE respectively. Moreover, this trend continues throughout the tested risk thresholds from 0.10 to 0.75, with eICU-48h-HR slightly outperforming eICU-24h-HR and both custom classifiers outperforming all APACHE baselines. At the same time, Table 4-1 demonstrates increased AUC standard deviations as the risk threshold is increased: this is likely due to much smaller training and testing sizes at higher risk thresholds, making it less reliable to compare model performances at those thresholds.

The fact that the custom classifiers, eICU-24h-HR and eICU-48h-HR, are able to perform better than their high-risk APACHE counterparts suggests that the features engineered in Section 3.5 capture meaningful prognosticators of mortality that are overlooked by the current APACHE feature set. Specifically, both custom classifiers perform better than recalibrating APACHE features to the eICU-CRD dataset and also recalibrating APACHE features to high risk patients within the eICU-CRD dataset. Furthermore, the results indicate that even a high risk threshold of 0.10 is enough to warrant secondary customization of the mortality model via a custom high risk classifier with high risk features.

Interestingly, APACHE-HR and APACHE-All performed relatively similarly on the high risk cohort. My earlier hypothesis would have suggested that even retraining (and thereby recalibrating) APACHE-IV on the high risk cohort would improve its performance on the high risk cohort; however, the results demonstrate that any improvement APACHE-HR showed when compared to canonical APACHE IV score was likely due to a recalibration to the Philips eICU-CRD dataset as a whole rather than a recalibration to the physiological nuances of the high risk population. This result also supports that the APACHE feature set does not represent the physiology of a high risk patient completely.

Lastly, the downward trends in each classifier's performance as the risk threshold increases is consistent with the results found in Section 3.1. Each model has hundreds of features to train, but as the risk threshold increases, less data is available for the model to train its features with: for example, at a risk threshold of 0.75, the model is trained with less than 1,000 patients. In addition, high risk patients are "high risk" for a multitude of reasons and conditions, and a larger training set would be able to accommodate all the different risk modes a patient may fall under. A smaller training set would not capture all modes of risk that could be found in the validation set.

4.2 High Risk Calibration

Figure 4-4 depicts the calibration curves for each of the 24hr classifiers evaluated in Section 4.1. Each calibration curve was generated only from patients that met the risk threshold (in this case, had an APACHE mortality risk of greater than 10%), and thus the calibration curves are truncated in the beginning. The APACHE IV, sourced from the APACHE classifier, calibration curve discussed in Section 3.1 is shown in green on the image.

Figure 4-4: Calibration Curve for High Risk Classifiers

A visual inspection of the calibration curves shows that all three curves that were trained on eICU-CRD demonstrate better calibration when compared to the baseline APACHE values sourced from the apachepatientresults table. This is likely the case because each classifier was retrained on the data in eICU-CRD, and was thus able to model potential changes in mortality rates as a result of the eICU platform itself or as a result of the advances in medical care reducing mortality rates for certain conditions. The calibration strengths between APACHE-HR and APACHE-All are likely similar for the same reasons both classifiers performed equally well in the discrimination task discussed in Section 4.1: the differences in the high risk population are not captured as well by the APACHE feature set. It seems that the eICU-24h-HR classifier is the most calibrated of all the mortality models in the Figure 14. For example, in the high risk regions of the calibration curve (where predicted mortality is highest), it lies closest to the "perfect" calibration curve.

These results are further supported by Hosmer-Lemeshow goodness-of-fit tests for each model. Using the hoslem function and the Package *ResourceSelection* [39], we computed the H-L statistics for each model in R, summarized by Table 4.2.

Model	C-Statistic	Degrees of Freedom	P-Value
APACHE-All	141.05	8	<2e-16
APACHE-HR	62.141	8	2.00E-10
APACHE	140.59	8	<2e-16
eICU-24h-HR	53.3	8	9.00E-09

Table 4.2: Hosmer-Lemeshow Test Results for High Risk Calibration

The Hosmer-Lemeshow test seeks to accept the null hypothesis that there is no meaningful difference between a line of perfect calibration and a calibration in question. Thus, calibration curves with a p-value of 0.05 or greater are said to be "wellcalibrated". The p-values themselves are computed from the degrees of freedom and the chi-squared statistic.

The Hosmer-Lemeshow C-Statistic is smallest for the eICU-24h-HR model, which is consistent with our earlier visual analysis that suggests it is better calibrated than the other models. At the same time, all models are shown to be poorly calibrated by the Hosmer-Lemeshow test. Interestingly, the APACHE-HR model has an almost equal C-Statistic, especially when compared to APACHE-All. This is likely due to the fact that a majority of the sample size in the calibration curve is located in the lower risk regions of the curve: thus, although the curves are concordant in higher risk thresholds, the APACHE-HR's relatively proximity to perfect calibration allows it to have a lower C-statistic.

4.3 Feature Inspection

Lastly, I examined the Top 25 largest (in magnitude) beta values associated with features in the eICU-24h-HR and eICU-48h-HR models to provide a potential explanation on why both models are able to better fit the high risk population.

feature	$high_coef$
raw_heartratetime_scaled_slope_24h	-0.4381116749
age	0.4346858815
raw_sao2_trend_neg_24h	-0.2863309715
gcs_aps	0.2749182956
ventday1	0.2439719728
admitsource_1	-0.2423298045
adj_gcs	0.2331826556
raw_sao2_trend_pos_24h	0.2072460171
mv_fio2_24h	0.2044287917
diag_CVASTROKE	0.1972846975
platelets_24h_is_low_by	0.1935466283
raw_heartrate_trend_neg_presence_24h	-0.1872668128
diag_CARDARREST	0.1824073049
diag_ICH	0.1794139669
temperature_aps	0.1759291846
unable_gcs	0.1632902035
raw_heartrateraw_trend_neg_24h	0.1594274995
raw_ph_24h_is_low_by	-0.1560873298
admitsource_4	0.155585972
raw_creatinine_24h_is_high	0.1528072596
pulse_aps	0.148451886
calcium_24h_is_low_by	0.1362912168
vasopressors_bin_24h	0.1360236644
raw_creatinine_24h_is_low_by	0.1356836865
troponin_i_24h_is_high	0.1336640364

4.3.1 Betas of eICU-24h-HR at 0.10 Threshold

Table 4.3: Top 25 Feature Weights for the eICU-24h-HR model when trained on a risk threshold of 0.10

The logistic betas follow an expected pattern. Features like age, gcs_aps, and ventday1 (patient received ventilation treatment on the first day) have large weights within the APACHE score itself and are highly correlated with mortality. Moreover, certain high risk diagnoses such as CARDARREST and CVASTROKE receive highly positive beta values, indicating that they are positively correlated with mortality. Analysis in Section 3.1 demonstrated that both diagnoses had mortality rates within eICU-CRD of 60% and 20% respectively. Admit_source1 has a largely negative beta value: according to the APACHE User Foundations Guide [13], Admit_source1 corresponds to another hospital; patients arriving in the ICU from another hospital, where they could have received care previously, are likely to be in a better health state than those arriving through other sources, such as the floor [40].

Interestingly, a number of eICU-24h-HR specific features receive Top-25 magnitude beta values, and this supports the result that the eICU-24h-HR is able to model highrisk physiological nuances that APACHE is unable to. For example, the largely negative beta assigned raw_heartratetime_scaled_slope_24h might find that decreases in heart rate, such as those seen near in cardiac arrest, are strongly correlated with mortality. The fact that raw_sao2_trend_neg_24h has a largely negative beta value and raw_sao2_trend_pos_24h has a largely positive beta value suggests that an increase in sao2 is correlated with mortality: while this might not be physiologically intuitive, it might be a surrogate for medical procedures like mechanical ventilation, which is correlated with mortality. Accordingly, mv_fio2_24h is a feature that receives a very high beta value.

4.3.2 Betas of eICU-48h-HR at 0.10 Threshold

The overarching patterns in which features are most important in the eICU-48h-HR model follow that of the eICU-24h-HR model closely. For example, many feature importances, such as those of age, gcs, ventilation, admitsource_1, are shared between the two classifiers.

However, the 48 hour features might explain the slightly better performance obtained by the 48h classifier. The feature raw_heartratetime_scaled_slope_48h could find the same decreases in heart rate that are correlated with mortality over a longer time span. In addition, the vasopressors_bin_48h feature, which indicates that the patient had received vasopressors over the first 0-48 hours, are likely indicative of an adverse blood pressure condition in the patient, such as that of septic shock.

feature	high_coef
age	0.4182880361
raw_heartratetime_scaled_slope_24h	-0.4182246687
raw_heartratetime_scaled_slope_48h	-0.3437232557
raw_sao2_trend_neg_24h	-0.3164562885
gcs_aps	0.2547864841
adj_gcs	0.2447833242
raw_sao2_trend_pos_24h	0.2401448675
raw_sao2raw_trend_neg_48h	-0.2198420638
ventday1	0.2138186249
raw_sao2_trend_pos_48h	0.2083905423
platelets_24h_is_low_by	0.1852721765
raw_sao2_trend_neg_48h	-0.1673404568
vasopressors_bin_48h	0.1655460438
unable_gcs	0.165110415
raw_sodium_48h	0.1594565824
diag_CVASTROKE	0.1566705426
admitsource_1	-0.1559160505
diag_ICH	0.1537210176
chloride_48h	-0.1511943901
raw_creatinine_24h_is_high	0.1483552512
pulse_aps	0.1475160821
diag_S-CABG	-0.146697249
troponin_i_24h_is_high	0.1464784967
metastaticcancer	0.1412570285
raw sodium inverse effect 48h	-0.1408620904

Table 4.4: Top 25 Feature Weights for the eICU-48h-HR model when trained on a risk threshold of 0.10.

Chapter 5

Development of the Sequential Model

The Combined-24h and Combined-48h slightly outperformed APACHE baselines on the entire population for some high risk thresholds between 0.1 and 0.75. Section 5.1 compares the discriminative abilities of each model with respect to the APACHE baselines, while Section 5.2 examines the calibration of both models on the validation dataset from eICU-CRD used to evaluate each model.

5.1 High Risk Threshold-Based Results

Table 5.1 summarizes the AUC scores of each classifier on the validation set derived from the entire patient population. As discussed in Section 2.4, the AUC of the Combined-24h model for example, given a high risk threshold T, is calculated by computing the combined AUC of the baseline APACHE values (APACHE model, sourced from APACHE API) and the predicted mortality probabilities obtained from the eICU-24h-HR model on all patients whose baseline APACHE risk probability is greater than T. The AUC values for APACHE and APACHE-All are independent of this high risk threshold as the latter involves only recalibration on the entire dataset, and this independence is seen in Table 5.1. Each AUC was calculated as the average three trials, the standard deviations of which are in parentheses.

Figure 5-1 demonstrates the high risk threshold dependence of each model. Figures 5-2 and 5-3 provide the confusion matrices for each model at a high risk threshold of 0.10 and 0.50 respectively. Each confusion matrix was computed by considering any predicted mortality risk of greater than 0.5 to be a prediction of mortality, and any predicted mortality less than 0.5 to be a prediction of survival. Figures 5-4 and 5-5 contain the ROC curves for each model at those two respective thresholds.

High Risk Threshold	APACHE	APACHE-All	Combined-24h	Combined-48h
0.1			0.880 (.001)	0.882 (.001)
0.15			0.876 (.004)	0.872 (.004)
0.2			0.871 (.006)	0.866 (.004)
0.25			0.869(.004)	0.863 (.001)
0.3			0.865(.002)	0.858(.008)
0.35		0.873 (.001) 0.870 (.001)	0.868 (.001)	0.855(.005)
0.4	0.873 (.001)		0.867(.003)	0.859(.003)
0.45			0.866 (.003)	0.859(.002)
0.5			0.867(.005)	0.859(.002)
0.55			0.857(.003)	0.857(.002)
0.6			0.862 (.004)	0.858(.005)
0.65			0.863 (.002)	0.861 (.003)
0.7			0.867(.004)	0.858(.006)
0.75			0.866(.003)	0.864 (.001)

Table 5.1: High Risk Threshold-Based Results for Models on Validation Set of Entire Patient Population

Combined Model Performance Over Risk Thresholds

Figure 5-1: Sequential Model Performance Across All High Risk Thresholds for Validation Set.

Figure 5-2: Confusion Matrices for Each Model When Prediction Threshold Set to 50% and High Risk Threshold is 10%

Figure 5-3: Confusion Matrices for Each Model When Prediction Threshold Set to 50% and High Risk Threshold is 50%

Figure 5-4: ROC Curves for Each Model When High Risk Threshold Set to 10%

Figure 5-5: ROC Curves for Each Model When High Risk Threshold Set to 50%

Overall, the sequential modeling approach did not perform as well as anticipated in the mortality prediction task and was partially successful in improving upon the results of APACHE. At a high risk threshold of 0.10, both the Combined-24hr and Combined-48hr outperformed the APACHE IV score and APACHE-All, a recalibration of the APACHE IV score on the entire dataset. However, beginning at high risk thresholds above 0.20, both constructed classifiers underperform compared to their APACHE counterparts. Moreover, the additional features found in Combined-48hr, even though they contributed to an improved performance in eICU-48hr-HR model, seemed to have a negligible or somewhat deleterious effect on global classifier performance. Figures 5-4 and 5-5 depict the ROC curves in two contrasting situations. In Figure 5-4, where the high risk thresholds were 0.10, the sequential models (Combined-24h and Combined-48h) outperformed the APACHE based models. Figure 5-5 shows the ROC curves at a high risk threshold of 0.50, where the APACHE models outperformed the sequential models instead.

The confusion matrices shown in Figures 5-2 and 5-3 provide partial evidence for why Combined-24h and Combined-48h have a lower AUC overall despite performing with a higher AUC for high risk patients. In the 0.10 high risk threshold, at a decision point at 0.50, Combined-24h has sensitivity (TP / (TP + FN)) of 656 / (656 + 1120) = 37\% and a specificity (TN / (TN + FP)) of 15858 / (15858 + 235) = 98.5\%. In the 0.50 threshold, however, these values are 26% and 98.8% respectively because

the model incorporates the custom model's underpredicted mortality: with the 0.50 risk threshold, the model is not as able to detect expired patients, and thus, there are fewer false positives and more false negatives. This lower prediction of mortality could stem from the fact that the 50% high risk classifier was only trained on a much smaller number of patients, and this model likely underpredicted mortality within its validation population. This error would penalize the combined model's AUC with more false negatives. At the same time, this suggests that the 50% high risk classifier is calibrated well to the higher risk regions as it tends to avoid overpredicting mortality in high risk patients as done by the base APACHE IV implementation.

The confusion matrices indicate that the 0.10 high risk threshold combined models have an improved false positive and false negative profile, and hence larger AUC, when compared to APACHE and APACHE-All. Suggesting why the 0.10 high risk threshold combined models perform better than those of other risk thresholds is grounded in the three tradeoffs of the high risk threshold selection discussed in Section 3.4 and replicated below:

- 1. Choosing a high risk threshold that is too small would reduce the ability of a custom high-risk model to fit the underlying physiology of the high risk subpopulation well. When taken to the extreme for example, a very low risk threshold would face similar challenges to that of global severity of illness scores in calibration. The performance of the 0.1 high risk threshold eICU-24h-HR when compared to that of APACHE suggests that the 0.1 probability and above cohort is structurally meaningful enough to learn high-risk specific feature relationships.
- 2. Choosing a high risk threshold that is too high could result in a more difficult prediction task with less training data: For example, only 368 of the 60,000 patients in the study population have a predicted mortality probability of 0.9 or higher. It would be very difficult to learn a model from such few data points with the very high dimensional feature sets found in EHRs. The 0.1 high risk threshold results in a training cohort of sufficient size. The 0.5 high risk threshold cohort results in a training set of about 2500 patients. In comparison, the 0.1 high risk threshold cohort results in a training set of more than 13,000 patients, which is extremely useful because of the high-dimensionality of the feature set. The 0.5 high risk threshold model is unable to learn feature relationships that enable reductions in both false negative and false positives as well as the 0.1 risk threshold classifier.
- 3. Choosing a high risk threshold that is too high can impact the overall benefit the model provides in application and global AUC metrics. An improved classifier

for only patients with a predicted mortality of greater than 90% would only improve performance on less than 0.5% of patients. The sequential model would in large part serve predictions similar to those of APACHE IV as this difference is minimal. The 0.1 high risk threshold is large enough such that the improved performance also affects the global AUC across the entire dataset.

Thus, these results suggest that 0.1 is a good candidate for the high risk threshold of the sequential modeling approach.

5.2 Global Calibration

Next, I assessed the calibration of the 0.1 high risk threshold Combined-24h and Combined 48h models in a methodology similar to that contained in Section 4.2. Visualizing the calibration curves of each model and computing the Hosmer-Lemeshow statistic suggests that the Combined models at a high risk threshold of 0.10 are better calibrated than the APACHE and APACHE-All models.

Figure 5-6 contains the calibration curve of each model. As a reference, Figure 5-7 is also provided, which contains the calibration curve of the Combined-24h and Combined-48h models trained on a higher risk threshold, 0.50. Table 5.2 contains the Hosmer-Lemeshow test results for the calibration curves in Figure 5-6.

Figure 5-6: Calibration Curves for Sequential Predictors When 0.10 Risk Threshold is Used

Figure 5-7: Calibration Curves for Sequential Predictors When 0.50 Risk Threshold is Used

Model	C-Statistic	Degrees of Freedom	P-Value
APACHE	141.05	8	<2e-16
APACHE-All	41.419	8	1.74E-06
Combined-24h	30.705	8	0.0001
Combined-48h	44.55	8	4.48E-07

Table 5.2: Hosmer-Lemeshow Test Results for Sequential Models at 0.10 Risk Threshold

The results above strongly support that the Combined-24h and Combined-48h classifiers, when developed using a high risk threshold of 0.10, are better calibrated than the APACHE baseline. Visual inspection of Figure 5-6 shows that the pink Combined-24h line is tied closely to the line of perfect calibration, and this is confirmed by the Hosmer-Lemeshow C-Statistic. While the test p-value itself indicates that there are meaningful deviations from the perfect calibration line, the C-Statistic for the Combined-24h model is the lowest of all models. The Combined-48h has comparable visual and H-L performance to APACHE-All, a recalibrated version of the APACHE features. This was unexpected because the Combined-48h model has significantly better discriminative performance: a potential hypothesis for why this may occur is based on the fact that the differences in both calibration lines from the perfect line occur in the higher risk areas of the curve. While APACHE-All might not have the feature set to capture all the nuances of high risk patients, the Combined-48h might not have enough sample size from those high risk thresholds to learn weights for a feature set of high-dimensionality, and is thus more reliant on patients in lower risk thresholds to help learn the weights for each feature. Lastly, Figure 5-7 demonstrates that the 0.50 high risk threshold Combined models are not well calibrated when compared to APACHE and APACHE-All.
Chapter 6

Cohort Specific Sequential Modeling

While Chapter 5 detailed the evaluation of the Combined-24hr and Combined-48hr models on a validation set developed from the entire eICU-CRD dataset, Chapter 6 discusses the sequential modeling approach applied within specific patient subpopulations. For patient subpopulations, I not only compute the combined model performance, but also examine the beta values for select subpopulations learned by the high risk classifier to generate an intuition for why specific high risk modeling would be useful for the subpopulation.

Table 6.1 summarizes the results from this study for various tested patient subpopulations. AUC values were obtained in triplicate with standard deviations of each AUC value in parenthesis, as done in previous sections. The columns of the table are as follows:

- Criteria: the specific logic applied to each patient to identify whether they are part of the subpopulation or not. For example, "Age > 70" demonstrates a patient subpopulation of all patients in the study that are above 70 years old.
- Total Number: the total number of patients who match the criteria
- High Risk Number: the number of patients who match the criteria and also have a baseline APACHE mortality prediction of greater than 10% (and are thus "high risk")
- APACHE Performance on High Risk Patients: The baseline APACHE AUC on all patients in the subpopulation who are also high risk.
- eICU-24h-HR Performance on High Risk Patients: The eICU-24h-HR (trained only on patients within the subpopulation) AUC on all patients in the subpopulation who are also high risk.

- APACHE Performance on All Patients: The APACHE baseline AUC calculated on all the patients in the validation set, which is comprised of any patient risk level within the subpopulation.
- APACHE-ALL Performance on All Patients: The APACHE-All performance on the same validation set.
- Combined-24hr Performance: The Combined-24hr classifier performance with a high risk threshold of 0.10 on the same validation set.

Criteria	Total	High	APACHI	eICU-	APACHI	APACHE-	Combined-
	No.	\mathbf{Risk}	on High	24h-	on All	ALL on	24hr
		No.	\mathbf{Risk}	HR on		All	
				High			
				Risk			
Age >70	21924	11117	0.731	0.792	0.815	0.815(.005)	0.825 (.004)
			(.006)	(.005)	(.005)		
Ventday1	13353	8208	0.747	0.799	0.835	0.834(.004)	0.846 (.002)
= 1			(.006)	(.003)	(.003)		
GCS_aps	14804	10362	0.776	0.812	0.841	0.841 (.004)	0.848 (.002)
>5			(.007)	(.008)	(.002)		
Pulse_aps	37919	14837	0.761	0.800	0.867	0.868(.002)	0.872 (.001)
>0			(.012)	(.007)	(.002)		

 Table 6.1: Results of Subpopulation Sequential Modeling

6.1 Age > 70 Top 25 Beta Values

feature	$high_coef$
diag_LOWGIBLEED	0.5797079776
amylase_24h	0.4799743024
calcium_24h	0.4652606185
plateletsraw_trend_neg_24h	0.4572197363
base_excessraw_trend_pos_24h	-0.4360061305
diag_S-CABG	0.432407427
calciumraw_trend_neg_24h	0.3772361759
metastaticcancer	0.3487893351
lipaseraw_trend_pos_24h	-0.3073908629
lipasetime_scaled_slope_24h	-0.3065337186
magnesiumtime_scaled_slope_24h	0.3020232832
pao2raw_trend_pos_24h	0.2873012975
troponin_i_24h	0.2788968788
total_troponin_24h	0.263862191
platelets_24h	-0.2620499552
diag_TRAUMHEAD	0.2356818188
lipase_24h	-0.2244354341
diag_CHF	-0.217074506
bicarbonatetime_scaled_slope_24h	-0.2031720306
calciumtime_scaled_slope_24h	0.202695306
hco3time_scaled_slope_24h	0.2021048574
diag_SEPSISPULM	0.1991832502
troponin_traw_trend_neg_24h	0.1974175373
ionized_calciumraw_trend_neg_24h	0.1958337551
raw_wbcraw_trend_neg_24h	0.187619073

Table 6.2: Top Beta Values for Age > 70 Subpopulation

The first subpopulation tested with the sequential modeling approach was that of the elderly population, with age > 70. As age is strongly correlated with mortality and accordingly has a large weight in the APACHE IV score, the elderly population is an especially high-risk cohort. The eICU-24h-HR classifier outperforms the APACHE baseline by 0.06 and the Combined-24h classifier, which uses the eICU-24h-HR high risk model for high risk patients, slightly outperforms the APACHE baseline on the entire subpopulation by 0.01. Interestingly, the beta values learned by the eICU-24h-HR differ from those learned in Section 4.3.1 on the general patient population.

For example, while age was the second highest weight feature in the latter, age as a feature does not appear in the top 25 features for the age-specific high risk classifier. Instead, diagnoses related to or correlated with old age appear with higher weights, such as GI Bleeding [41] and metastatic cancer. Furthermore, the reliance of the model on pancreatic measurements, such as lipase and amylase, suggests that such values are especially diagnostic for the elderly population. However, it is important to note that the elderly subpopulation is still likely a high variance one: there likely exist various different disease conditions and mortality modes within the population, and thus certain feature weights assigned by the model would be very similar to those assigned in the general population.

6.2 Ventday1=1 Top 25 Beta Values

feature	high_coef
magnesiumraw_trend_pos_24h	-0.8292389169
pao2_24h	0.7419987901
diag_S-VALVAO	0.6678395967
admitsource_4	0.6628255659
platelets_24h	-0.5847570716
total_troponin_24h	0.4022225269
admitsource_3	0.3904773615
diag_RHYTHATR	0.3882971204
amylaseraw_trend_pos_24h	-0.3600695383
admitsource_1	-0.3585181905
troponin_traw_trend_neg_24h	0.3544459631
$total_troponintime_scaled_slope_24h$	0.3401291838
diag_TRAUMHEAD	0.3399515793
diag_UGIBLEED	-0.3371160185
phosphate_24h	0.3001720339
cirrhosis	0.2881357117
ventday1	0.2863836099
diag_CHF	0.2857412491
hemoglobinraw_trend_neg_24h	0.2780089725
diag_PNEUMBACT	-0.2714051436
diag_ODSEDHYP	-0.2713190882
pt_inr_24h	-0.2570360664
magnesiumraw_trend_neg_24h	0.25633363
pao2raw_trend_pos_24h	0.2505776283
diag_S-CABG	0.2486541176

Table 6.3: Top Beta Values for Ventilated Subpopulation

The ventilated subpopulation, like that of age > 70, is a large and diverse one, and as also seen in the age subpopulation, the Combined-24h model obtains a slightly better discriminative performance in the ventilated subpopulation. Several of the high beta features in the model are associated with either ventilation or medical processes that indicate ventilation. For example, open heart procedures such as diag_SVALVAO (aortic valve replacement) commonly receive elective ventilation [42]. The overall pao2 of the patient within the first 24 hours was also diagnostic, interestingly with higher pao2 levels correlating with mortality: this might be due to the fact that patients who receive stronger ventilation dosages, which thereby increase pao2, are likely at higher risk for mortality. In addition, admitsource_3 and admitsource_4, which correspond to the ER and hospital floor respectively, are positively associated with mortality. This is consistent with a previously conducted study [40]. Lastly, magnesium levels are negatively associated with mortality, suggesting that patients with lower serum magnesium are at risk. This is consistent with another study that found that patients with lower levels of magnesium were more likely to receive ventilation [43].

feature high coef pao2 24h -0.5544354888lymphoma 0.4674164563cpk 24h 0.4589916617 -0.4430483347admitsource 3 diag SEPSISUTI 0.403786319 0.3979028502 admitsource 6 bnp 24h 0.3899335738 pao2raw_trend_neg_24h -0.3789104684ionized calcium 24h 0.3771504977 diag ODSEDHYP 0.3726630308 0.3694230177 age plateletsraw trend pos 24h -0.3645141403base_excessraw_trend_pos_24h -0.3257475175pao2time scaled slope 24h 0.3159328012 diag CARDARREST -0.31080170550.2930995309 admitsource 4 hemoglobin 24h 0.2703031815 hco3raw trend pos 24h -0.2565664934cirrhosis 0.2464028761 diag PNEUMBACT 0.2418052133raw sodiumraw trend neg 24h 0.238730896 raw bun 24h -0.2344270767troponin i 24h 0.2340149184 -0.2318239007plateletstime scaled slope 24h platelets 24h 0.2315938671

6.3 GCS APS > 5 Top 25 Beta Values

Table 6.4: Top Beta Values for GCS APS > 5 Subpopulation

The GCS_aps > 5 subpopulation selects for patients who have some form of medium to severe altered mental status. GCS is a central APS variable that receives a large weight in the APACHE score computation and abnormalities in the GCS score are well-correlated with mortality. As found in the previously analyzed subpopulation, the Combined-24h model performed slightly better than its APACHE analogues. Interestingly, while in the ventilated population the pao2 was positively associated with mortality, in the GCS_aps > 5 subpopulation, the feature is negatively associated with mortality. This could be due to the fact that in the ventilated population, a higher pao2 level is associated with stronger treatment, while in the GCS_aps > 5 subpopulation, a higher pao2 level is more indicative of general patient health and not necessarily ventilation. Secondly, admitsource_6 (admission from the same ICU or Operating Room after surgery) has a higher beta value than previously seen in other subpopulations: this is consistent with the notion that many patients after surgery are unconscious or immobile, and thus would have an elevated GCS_aps score.

6.4 Interpretation of the Logistic Betas

However, it is important to note the impact of feature correlation on the logistic betas. Some of the differences in the beta values assigned to each feature within each subpopulation is likely due to stochasticity in the logistic regression training process. For example, a feature like fio2 (level of oxygenation) is only present if the patient is mechanically ventilated (ventday1), and thus both terms are highly correlated. If the model was looking to use whether a patient was ventilated or not as a feature and it had already learned the weight for ventday1, then the fio2 feature provides no marginal benefit in the prediction task: in the same way, if fio2 was learned first, then ventday1 would not offer any new information. Moreover, the model could learn a partial weight for each feature so that when taken together, both features are able to convey the presence of mechanical ventilation with the weight necessary for the concept in the prediction task. Thus, when examining and analyzing the logistic betas, while it is meaningful to discuss general trends and positive and negative correlations with the end mortality prediction task, the raw values of each feature weight are likely have high variance.

Nevertheless, these results suggest that subpopulations of high risk patients have meaningful structure. The sequential modeling approach, Combined-24h, outperformed APACHE baselines and the APACHE-All control in each subpopulation. Inspection of the logistic betas used in the high risk prediction task demonstrate subpopulation-based weight learning for each model, supporting the notion that the sequential model learns meaningful relationships between certain features and the mortality outcome in a subpopulation-specific manner.

Chapter 7

Conclusion

This thesis detailed the creation of a sequential model for in-hospital mortality prediction in the ICU by developing a two-stage prediction process. First, patients would be designated as high risk or low risk. Second, mortality would be predicted as follows: for low risk patients, patient mortality prediction probabilities are the same as APACHE. For high risk patients, patient mortality prediction probabilities were obtained from a custom high-risk trained classifier called eICU-24h-HR or eICU-48h-HR.

Chapters 4-6 provide evidence to answer key implementation details for how such a two-stage prediction process would work:

- 1. Are the additional features extracted in Section 3.5 able to enhance the model?s discriminative ability for high risk patients?
- 2. What high risk threshold, if any, is best for creating a custom high risk classifier?
- 3. What is the overall impact on *discrimination* of this secondary customization to the APACHE model?
- 4. What is the overall impact on *calibration* of this secondary customization to the APACHE model?
- 5. Is "high risk" vs. "low risk" the only subcohort split that is enhanced by this approach?

Section 7.1 details the results of the thesis in the context of these five questions. Section 7.2 addresses the limitations of the thesis and future work that the thesis motivates. Lastly, Section 7.3 discusses how the results of the thesis could impact physician workflow and risk prediction in the ICU.

7.1 Summary of Results

First, in Chapter 4, two high risk classifiers were developed, eICU-24h-HR and eICU-48h-HR, that both outperformed the APACHE baseline predictor and the recalibrated APACHE-All model. This supports the earlier hypothesis that there are additional features not contained in the APACHE logic that are useful for predicting mortality in high risk patients, some of which are captured by eICU-24h-HR and eICU-48h-HR. The analysis in Chapter 5 helped provide guidance on the implementation of the sequential modeling approach. A risk threshold of 0.10 in the Combined-24h and Combined-48h outperformed the APACHE and APACHE-All predictions, whereas others did not; this helped identify 0.10 as the "optimal" threshold within this study, and this choice was validated by both examining the relative abilities of each classifier to predict mortality in a discriminative and calibrated way. The 0.10 risk threshold Combined-24h classifier was not only moderately more discriminative than APACHE and APACHE-all but seemed also much better calibrated, as indicated by visual inspection of the calibration curve and the Hosmer-Lemeshow test. Lastly, the results in Chapter 6 show that the sequential modeling approach could be successfully applied to subcohorts of the general population in eICU-CRD. Thus, in summary, this thesis supports the hypothesis that a two-stage risk-based cohort method of mortality prediction can enhance both the discrimination and calibration of a mortality model.

7.2 Limitations and Future Work

However, this thesis is limited by two main factors that motivate future work within the field: a limited dataset size and interpretability.

A larger dataset should enable the high risk classifiers, especially those that leverage the high-dimensional 48hr feature set, to obtain better performance. The eICU-CRD contained 60,000 admissions with APACHE related information, but only 3,000 of these admissions had APACHE risk predictions of 0.50 or higher. Accordingly, we saw poorer performance in the custom high risk classifiers when the higher risk threshold was increased. With a larger data set, there could be enough samples even within the high risk thresholds above 0.50, resulting in more robust training for the eICU-24h-HR and eICU-48h-HR models. We could thus expect that the drop off in model performance as the risk threshold increases will be dampened. With this additional dataset, we could also expect less noise in the results in Figures 4-1 and 5-1, which depict the linear trends of model performance over the various risk thresholds. Moreover, we could see the same effects on the calibration curves, which also visually depict this noise. A larger dataset would also enable more nuanced cohort-specific models. The subcohorts in Chapter 6 are somewhat general, each selecting more than 10-15% of the study population. In contrast, a larger dataset could enable much more focused sequential models. Attempts to perform diagnosis based sequential modeling, such as selecting only patients who present with the CARDARREST condition, were unsuccessful in the eICU-CRD dataset due to low sample size. With a larger dataset, however, more parsimonious cohort selection could identify even more subpopulation-specific feature relationships than currently found in Chapter 6.

A second key limitation of this study is the intrepretability of the features learned by each model. The construction of over 1000 features for the high risk prediction task allows the model to capture more nuances of the population but at the same time makes it much harder to understand. For example, there might be little clinical intuition for why a feature such as "platelets_trend_neg_presence24h" might have a higher weight than "platelets_trend_neg_raw_slope48h" in a high risk model and moreover, due to the highly correlated nature of such features and the stochasticity of the training process, the logistic regression introduces randomness to the weights for each feature. Thus, two high risk models that obtain very similar performance characteristics might leverage very different feature subsets of the overall 24 hour and 48 hour feature sets constructed in Section 3.5. When contrasted to APACHE, which uses a limited and less correlated feature set of only easy to intuit variables, the high risk models are thus much more of a black box.

In addition, there exist additional avenues of future work. I did not evaluate high risk classifier performance or sequential model performance on high risk thresholds below 0.10 or above 0.75, but such risk thresholds could also be tested. Second, I could look into adding low-risk specific features to augment those of APACHE, and thus the sequential modeling approach could use, for the low risk population, a custom classifier as well. Lastly, I could look into expanding the feature set more, including interaction terms between various features to find non-linear modes in the ICU, such as the treatment response to a vasopressor for a septic patient.

7.3 The Sequential Modeling Approach in the ICU

The sequential modeling approach offers a new perspective on mortality prediction in the ICU. Traditional severity of illness scores have focused on simpler feature sets that could apply to a wide range of patients. With the increased digitization of the patient medical record and the emergence of TeleICU services like that of Philips eICU, more detailed machine learning models are empowered to provide personalized recommendations on a variety of in-hospital prediction tasks. This suggests that the sequential modeling approach developed in this thesis is feasible in the ICU itself. Physicians could receive the mortality estimate from Combined-24h after 24 hours simultaneously with the APACHE score, and additionally could receive input from Combined-48h at the 48 hour point in the admission. Furthermore, cohort-specific sequential modeling is feasible in today's ICU. For example, if a CARDARREST sequential model shows much greater performance when compared to APACHE, then physicians could request mortality predictions from a CARDARREST-specific Combined-24h model for any patients presenting with cardiac arrest. Thus, the results of thesis have useful applications in the current ICU workflow and could be significantly enhanced with future work.

Chapter 8

References

- Lundgren-Laine H, Kontio E, Perttila J, Korvenranta H, Forsstrom J, Salantera S. Managing daily intensive care activities: An observational study concerning ad hoc decision making of charge nurses and intensivists. Critical Care. 2011;15(4):R188. doi:10.1186/cc10341.
- [2] Aitken, L. M., Marshall, A. P., Elliott, R. and McKinley, S. (2009), Critical care nurses' decision making: sedation assessment and management in intensive care. Journal of Clinical Nursing, 18: 36-45. doi:10.1111/j.1365-2702.2008.02318.x
- [3] Gao F, Melody T, Daniels DF, Giles S, Fox S. The impact of compliance with 6-hour and 24-hour sepsis bundles on hospital mortality in patients with severe sepsis: a prospective observational study. Critical Care. 2005;9(6):R764-R770. doi:10.1186/cc3909.
- [4] Esteban, et al. Extubation Outcome after Spontaneous Breathing Trials with T-Tube or Pressure Support Ventilation. American Journal of Respiratory and Critical Care Medicine. 1996; doi: 10.1164/ajrccm.156.2.9610109.
- [5] Hebert, et al. A Multicenter, Randomized, Controlled Clinical Trial of Transfusion Requirements in Critical Care. N Engl J Med 1999; 340:409-417. doi: 10.1056/NEJM199902113400601.
- [6] Peberdy, et al. Part 9: Post-Cardiac Arrest Care. Circulation. 2010;122:S768-S786, originally published October 17, 2010. Retrieved May 24, 2017 from http://circ.ahajournals.org/content/122/18_suppl_3/S768.
- [7] Acute Stroke Protocol. Boston Medical Center. Retrieved May 24, 2017 from https://www.bmc.org/stroke-and-cerebrovascular-center/medical-professionals/acutestroke-protocol.

- [8] Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today's critically ill patients. Crit Care Med. 2006;34(5):1297-1310.
- [9] Le Gall J, Lemeshow S, Saulnier F. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study. JAMA. 1993;270(24):2957-2963. doi:10.1001/jama.1993.03510240069035
- [10] Rapsang AG, Shyam DC. Scoring systems in the intensive care unit: A compendium. Indian Journal of Critical Care Medicine: Peer-reviewed, Official Publication of Indian Society of Critical Care Medicine. 2014;18(4):220-228. doi:10.4103/0972-5229.130573.
- [11] Hosmer, D. W. and Lemeshow, S. A goodness-of-fit test for the multiple logistic regression model. Communications in Statistics, A10, 1043-1069 (1980).
- [12] Bouch, Christopher and Thompson, Jonathan. Severity scoring systems in the critically ill. Continuing Education in Anaesthesia, Critical Care & Pain (2008). doi:10.1093/bjaceaccp/mkn033.
- [13] Manganaro, L and Stark, M. APACHE Foundations User Guide. Cerner Corporation. (c) 2010.
- [14] Apache IV Calculator. N.p., n.d. Web. Retrieved May 24, 2017 from http://intensivecarenetwork.com/Calculators/Files/Apache4.html.
- [15] APACHE IV Calculator Based on Knaus WA, Wagner DP, Draper EA, Zimmerman JE. The APACHE III prognostic system: risk prediction of hospital mortality for critically ill hospitalized adults. Chest 1991; 100:1619-1636.
- [16] Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach SH, Rapoport J. Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. JAMA. 1993;270(20):2478-2486.
- [17] Beck DH, Smith GB, Taylor BL. The impact of low-risk intensive care unit admissions on mortality probabilities by SAPS II, APACHE II and APACHE III. Anaesthesia. 2002; 57(1):21-26.
- [18] Rowan KM, Kerr JH, Major E, McPherson K, Short A, Vessey MP. Intensive Care Society's Acute Physiology and Chronic Health Evaluation (APACHE II) study in Britain and Ireland: a prospective, multicenter, cohort study comparing two methods for predicting outcome for adult intensive care patients. Crit Care Med. 1994;22(9):1392-1401.

- [19] Lee SM, An WS. New clinical criteria for septic shock: serum lactate level as new emerging vital sign. Journal of Thoracic Disease. 2016;8(7):1388-1390. doi:10.21037/jtd.2016.05.55.
- [20] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
- [21] MIT Lab for Computational Physiology. (n.d.). EICU Collaborative Research Database. Retrieved May 24, 2017 from http://eicu-crd.mit.edu/about/eicu/.
- [22] eICU Program. Philips Healthcare. Retrieved 24 May 2017 from http://www.usa.philips.com/healthcare/product/HCNOCTN503/eicu-programtelehealth-for-the-intensive-care-unit.
- [23] Lilly CM, et al. A Multi-Center Study of ICU Telemedicine Reengineering of Adult Critical Care. CHEST. 2014 Mar 1; 145(3): 500-7
- [24] Hunter, J. D. Matplotlib: A 2D graphics environment. Computing In Science & Engineering 9, pp. 90 - 93. Retrieved May 24, 2017 from https://matplotlib.org/.
- [25] Google Sheets create and edit spreadsheets online, for free. (n.d.). Retrieved May 24, 2017, from https://www.google.com/sheets/about/.
- [26] Charlson, Mary E.; Pompei, Peter; Ales, Kathy L.; MacKenzie, C. Ronald (1987). A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. Journal of Chronic Diseases. 40 (5): 373-83. doi:10.1016/0021-9681(87)90171-8
- [27] Duh, S., and Cook, J. D. (2015, August 15). LABORATORY REFERENCE RANGE VALUES. Retrieved May 23, 2017, from http://www.stedmansonline.com/ webFiles/Dict-Stedmans28/APP17.pdf.
- [28] Mayo Clinic Medical Laboratories. (n.d.). Test ID: TPNT Troponin T, Serum. Retrieved May 24, 2017, from http://www.mayomedicallaboratories.com/testcatalog/Clinical and Interpretive/82428
- [29] Mayo Clinic. (2015, May 08). Low hemoglobin count. Retrieved May 24, 2017, from http://www.mayoclinic.org/symptoms/low-hemoglobin/basics/definition/sym-20050760
- [30] The Myositis Foundation. (2015, January). Blood Tests. Retrieved May 24, 2017, from http://www.myositis.org/learn-about-myositis/diagnosis/bloodtests

- [31] Cleveland Clinic. (2016, October). B-type Natriuretic Peptide (BNP) Blood Test. Retrieved May 24, 2017, from https://my.clevelandclinic.org/health/articles/btype-natriuretic-peptide-bnp-bloodtest
- [32] Medical Definition of Absolute neutrophil count. (n.d.). Retrieved May 24, 2017, from http://www.medicinenet.com/script/main/art.asp?articlekey=20030
- [33] Mayo Clinic Staff. (2016, June 15). Lymphocytosis. Retrieved May 24, 2017, from http://www.mayoclinic.org/symptoms/lymphocytosis/basics/definition/sym-20050660
- [34] Mayo Clinic Staff. (2016, July 02). Blood urea nitrogen (BUN) test. Retrieved May 24, 2017, from http://www.mayoclinic.org/tests-procedures/blood-ureanitrogen/details/results/rsc-20211280
- [35] Chen, Y. (2015, January 27). WBC count. Retrieved May 24, 2017, from https://medlineplus.gov/ency/article/003643.htm
- [36] Scales K, Pilsworth J (2008) The importance of fluid balance in clinical practice. Nursing Standard. 22, 47, 50-57. Date of acceptance: June 12 2008.
- [37] Charlson, M. (n.d.). Charlson Comorbidity Index (CCI). Retrieved May 24, 2017, from https://www.mdcalc.com/charlson-comorbidity-index-cci
- [38] Lemeshow S, et al. Mortality probability models for patients in the intensive care unit for 48 or 72 hours: a prospective, multicenter study. Critical Care Medicine. 1994. Sep;22(9):1351-8.
- [39] Lele, Subhash R., Keim, Jonah L., and Solymos, Peter. (2017, Feb 28) Package ResourceSelection. Retrieved May 24, 2017 from https://cran.r-project.org/ web/packages/ResourceSelection/ResourceSelection.pdf.
- [40] Datta A, Kar A, Ahmed A. Source of ICU admission: does it really matter? Critical Care. 2015;19(Suppl 1):P562. doi:10.1186/cc14642.
- [41] Ghassemi KA, Jensen DM. Lower GI Bleeding: Epidemiology and Management. Current gastroenterology reports. 2013;15(7):10.1007/s11894-013-0333-5.
- [42] Jayalakshmi, T., Punnose, V., Kumar, A.S. et al. Ventilatory support following open heart surgery. Indian J Thorac Cardiovasc Surg (1985) 4: 28. doi:10.1007/BF02664081

- [43] Guo, Su-Er, et al. The Relationship of Magnesium and Phosphorus to Mechanical Ventilation and Mortality in the Chronically Critically Ill. Midwest Nursing Research Society Conference. (2011)
- [44] Hug CW, Szolovits P. ICU Acuity: Real-time Models versus Daily Models. AMIA Annual Symposium Proceedings. 2009;2009:260-264.

Appendix A

Feature Set Features

List of All Features Used in APACHE Feature Set

age aids hepaticfailure lymphoma metastaticcancer leukemia immunosuppression cirrhosis ventday1 admitsource_0 admitsource_1 admitsource_2 admitsource_3 admitsource_4 admitsource_5 admitsource 6 admitsource_7 admitsource 8 emergencysurg preiculos diagnosis thrombolvtics unable_gcs adj_gcs pulse_aps mabp_aps temperature_aps resp_aps pao2_aps hematocrit_aps wbc_aps creatinine_aps urine_aps bun_aps sodium_aps albumin_aps bilirubin_aps glucose_aps acid_base_aps gcs_aps diag_AMI diag_SEPSISPULM diag_CHF diag_CVASTROKE diag_DKA diag_S-CABG diag_SEPSISUTI diag_RHYTHATR diag_PNEUMBACT diag_CARDARREST diag_EMPHYSBRON

diag_UNSTANGINA diag_UGIBLEED diag_COMA diag_M-RESOTHER diag_SEIZURES diag_ICH diag_RESPARREST diag_SEPSISUNK diag_LOWGIBLEED diag_ARENFAIL diag_UNKGIBLEED diag_SEPSISGI diag_HYPERTENS diag_RHYTHCON diag_S-CAROTEND diag_PULMEMBOL diag_S-VALVAO diag_ODSEDHYP diag_TRAUMHEAD diag_SEPSISCUT diag_CP-UNK diag_PNEUMOTHER diag_SEPSISOTH diag_ACIDBASE diag_HYPOVOLEM diag_SDH diag_S-CRANNEO diag_S-GIOBSTRX diag_RHYTHVEN diag_M-CAROTHER diag_S-GIPERFOR diag_ODOTHER diag_S-LUNGCA diag_PNEUMASPIR diag_ODSTREET diag_DRUGWITHD diag_S-AAANEUR diag_AIROBSTRX diag_PLEUREFFUS diag_ASTHMA diag_M-NEUROTH diag_OTH_MI diag_ODANALG diag_STABANGINA diag_PANCRITIS diag_NEURONEO diag_ANEMIA diag_ARTHROMBUS diag_S-SPINDECO diag_ARDS diag_SAH/IANEUR

diag_ODALCOH diag_S-CHOLANGI diag_S-LGINTCA diag_S-CABGAOV diag_GIOBSTRX diag_S-SPINFUS diag_TRHEADMULT diag_DVT diag_HYPOGLYCEM diag_M-VASOTHER diag_DHNKA diag_M-GIOTHER diag_CARDIOMYOP diag_CELLULITIS diag_S-TRAUMEXT diag_ODDEPRES diag_HEPENCEPH diag_S-NEUOTHER diag_LUNGCA diag_S-CELLINFX diag_S-FEMPGRAF diag_S-ORTHOTH diag_CARDSHOCK diag_S-GIOTHER diag_S-SDH diag_S-VALVMR diag_S-VALVMI diag_ANAPHYLAX diag_ENCEPHALOP diag_ACUHEPFAIL diag_TRHEADFACE diag_DISAANEUR diag_S-PLEURDIS diag_PNEUMOTHOR diag_M-MENOTHER diag_TRAUMCHEST diag_S-CAROTHER diag_GIPERFORAT diag_RESLUNGDIS diag_PULMONHEM diag_S-SAH/ICA diag_TRHEADEXTR diag_HEMORRHAGE diag_S-GICOMPL diag_S-VASOTHER diag_TRCHESTMUL diag_S-AFEMGRAF diag_TRAUMEXTR diag_TRAUMSPINE diag_TRHEADCHES diag_RENINFX diag_S-GIOTHCA diag_VARICBLEED diag_PERICEFFUS diag_M-GUOTHER diag_TRHEADSPIN diag_ETOHWITHD diag_ATELECTAS diag_S-RESOTHER diag_S-PANCRECA diag_S-TOTALHIP diag_S-GENOTHER diag_ATYPCHSTPA diag_S-LARTRACA diag_OTHERANEUR diag_MENINGITIS diag_S-TAANEUR diag_COAGULOP diag_S-GIVASISC diag_S-ICH diag_S-ENDOTHER diag_S-THROMBWA diag_TRCHESTABD diag_S-TRANSPHE diag_TRSPINMULT diag_SAH/AVMAL diag_S-THOROTH diag_S-NEPHRNEO diag_S-HERNIA diag_S-PERIEFFU diag_PERITOHEM diag_S-DIVERTIC diag_S-CABGREDO diag_S-OTHGRAFT diag_S-RESPINFX diag_TRCHESTEXT diag_S-CONDXMAP diag_S-CRANCOMP diag_S-APPENDIX diag_S-OTHANEUR diag_S-CSECTION diag_PNEUMVIRAL diag_S-VALVAM diag_S-ORASINCA diag_S-KIDTRAN diag_S-TRACHEOT diag_TRAUMABD diag_CHOLANGIT diag_S-HYSTERCA diag_PREHEMMON diag_S-AVMALFOR diag_S-OBESITY diag_S-CABGWOTH diag_S-FRXOTHER diag_S-BURRHOLE diag_S-GIFISTAB diag_S-CABREVAL diag_S-SHUNTS diag_M-MUSOTHER diag_CP-GASTRO diag_M-NMUSOTH diag_S-BRAINBIO diag_S-FEMFGRAF diag_OHYDROCEPH diag_S-THYROID diag_S-CABGMVR diag_S-TRAUMPEL diag_S-AICD diag_S-OBNEPHRO diag_TRAUMFACE diag_S-ESOPHCA diag_S-TRAUMHEA diag_S-AMPUTATN diag_M-TRAUMOTH diag_S-LIVTRAN diag_S-TOTALKNE diag_TRCHESTSPI diag_GIABSCYST diag_S-CRANERVE diag_S-TRAUMABD diag_S-EMBWANES diag_S-SPINNEO diag_S-SPLEEN diag_ENDOCARDIT diag_S-SPINEOTH diag_HEMATOMAS diag_TRABDMULT diag_S-VASCOMPL diag_TREXTRMULT diag_TRFACEMULT diag_RHABDOMYO diag_S-HIATALH diag_INFLAMBOWD diag_THROMBOCYT diag_TRSPINEXTR diag_S-GIABSCYS diag_WEANVENT diag_NEURABSCES diag_S-CYSTNE0 diag_TRAUMPELV diag_RENALOBST diag_S-TAANEUDI diag_S-OTHINFX diag_S-SKINOTH diag_S-TREXTMUL diag_S-HYSTFIB diag_GIVASINSUF diag_S-AAANEUUP diag_S-STOMACCA diag_S-ESOPHOTH

diag_MYASTHENIA diag_S-LUNGBIOP diag_GUILLIANBS diag_S-CHESTMAL diag_DIVERTIC diag_PRIMHYPERT diag_RENALBLEED diag_DRUGTOXIC diag_S-COSMETIC diag_PERITAMPON diag_S-CARDCOMP diag_S-BENTUMOR diag_S-CABGMIV diag_S-TRABMULT diag_SEPSISGYN diag_COLONRECCA diag_S-TRCHABD diag_S-SUPROSCA diag_SLEEPAPNEA diag_ENCEPHALIT diag_S-STEREOPR diag_M-HEMOTHER diag_HYPOTHERM diag_TRPELVMULT diag_PERITONIT diag_CP-MUSCLSK diag_PERICARDIT diag_S-CRANINFX diag_S-TRHEMULT diag_S-CABGDVAL diag_S-DIALGRAF diag_S-AAANEUDI diag_TRSPINFACE diag_S-SKINGRAF diag_NEUTROPEN diag_S-SPINCOMP diag_TRABDEXTR diag_S-NEPHROTH diag_S-THORREDU diag_CP-RESP diag_TRCHESTFAC diag_OTHERGICA diag_SICKLECELL diag_S-LGIBLEED diag_S-THROMWOA diag_S-UGIBLEED diag_CARDCOMP diag_HEMOTHORAX diag_S-PANCREAT diag_PANCYTOPEN diag_S-OBSTROTH diag_TRHEADABD diag_EPIHEMATOM diag_PANCREATCA diag_S-MASTECT diag_POSTPARHEM diag_S-SEIZURE diag_S-SMINTCA diag_S-AILGRAFT diag_TREXTRFACE diag_S-TRABEXTR diag_S-SLEEPAPN diag_TRPELVEXTR diag_S-VENTRIC diag_S-FACIAL diag_S-CSFLEAK diag_S-OOPHOREC diag_HEPRENSYN diag_PRE-ECLAMP diag_S-INFBOWDI diag_RENALNEO diag_PNEUMFUNG diag_S-CVTUMOR diag_S-EPIHEMA diag_S-PERICARD diag_S-CARDASD diag_AML diag_LARYNXCA diag_TRHEADPELV diag_S-TRAUMFAC diag_TRCHESTPEL diag_S-ADRENAL diag_S-VALVTRI diag_S-OBSTRNEO diag_TRABDPELV diag_S-TRCHMULT diag_S-TRCHEXTR diag_S-CABGROTH diag_S-METENOTH diag_S-TRHEEXTR diag_S-PERITON diag_S-TRAUMOTH diag_S-GIBLEOTH diag_S-PELVEXEN diag_S-TRAUMCHE diag_S-TRAUMSPI diag_HYPERSTORM diag_ESOPHAGCA diag_NONHODGLYM diag_SMOKEINHAL diag_BLOODREACT diag_S-TURBPH diag_S-CYSTOTH diag_S-CABGMINI diag_S-GASTROST diag_S-TRHEFACE diag_S-TRPELEXT diag_PNEUMPARAS diag_S-SPINDEV diag_S-PARATHYR diag_HYPERTHERM diag_TRABDSPINE diag_S-EMBWOANE diag_TRPELVSPIN diag_S-REMGRAFT diag_S-TRFACMUL diag_ORALCA diag_HYPOTHYMYX diag_ADDISON diag_S-TREXTFAC diag_S-TRSPIMUL diag_S-ECTOPIC diag_S-THESOPCA diag_ALL diag_S-HEMOTHER diag_S-TRABPELV diag_S-TRHECHES diag_KIDNEYTRAN diag_TRABDFACE diag_S-CARCONG diag_NEARDROWN diag_STOMACHCA diag_S-REPBLAD diag_POISON diag_HEATSTROKE diag_S-SPBPH diag_S-BPFISTUL diag_S-TRPELMUL diag_S-PORTSHUN diag_ALS diag_S-TURCA diag_S-VALVPULM diag_S-VARBLEED diag_S-TRSPIEXT diag_CLL diag_NTCOMA diag_SEPARTHRIT diag_TRACHCA diag_S-TAANEURU diag_S-TRHEABD diag_S-DILWANES diag_PEPULCER diag_S-RENGRAFT diag_S-DILWOANE diag_S-THYPARA diag_S-VENANEUR diag_S-BULLECT diag_S-TRHESPIN diag_S-VENAFILT diag_LIVERTRAN

diag_LEUKOTHER diag_S-VASCANAS diag_CCARDVSD diag_CRANEPALSY diag_S-RUPDVCYS diag_THYROIDNEO diag_CML diag_S-TCHFACE diag_MIXEDCTDIS diag_S-PELVREL diag_ADRENNEO diag_ADRENNEO diag_STRABFACE diag_STRABSPIN diag_S-TRABSPIN diag_S-TRCHSPIN diag_S-LYMPHDIS diag_S-CAPD diag_TRPELVFACE diag_S-VENSHUN diag_S-ORCHIECT diag_S-TRSPIFAC diag_S-TRSPIFAC diag_S-TRCHPELV diag_S-TRCHPELV diag_S-LYMPHDSCLE diag_S-NONHODGL diag_S-NONHODGL diag_S-PERITLAV diag_S-PERITLAV diag_S-PERITLAV diag_S-HODGKINL diag_S-CLERDDERM diag_S-VENACLIP diag_S-VENACLIP diag_S-SYMPATH

List of All Features Used in 48 Hour Feature Set

diag_AMI diag_SEPSISPULM diag_CHF diag_CVASTROKE diag_DKA diag_S-CABG diag_SEPSISUTI diag_RHYTHATR diag_PNEUMBACT diag_CARDARREST diag_EMPHYSBRON diag_UNSTANGINA diag_UGIBLEED diag_COMA diag_M-RESOTHER diag_SEIZURES diag_ICH diag_RESPARREST diag_SEPSISUNK diag_LOWGIBLEED diag_ARENFAIL diag_UNKGIBLEED diag_SEPSISGI diag_HYPERTENS diag_RHYTHCON diag_S-CAROTEND diag_PULMEMBOL diag_S-VALVAO diag_ODSEDHYP diag_TRAUMHEAD age aids hepaticfailure lymphoma metastaticcancer leukemia immunosuppression cirrhosis ventday1 admitsource_0 admitsource_1 admitsource_2 admitsource_3 admitsource_4 admitsource_5 admitsource_6 admitsource_7 admitsource_8 emergencysurg preiculos diagnosis thrombolytics unable_gcs adj_gcs pulse_aps mabp_aps temperature_aps resp_aps pao2_aps hematocrit_aps wbc_aps creatinine_aps urine_aps bun_aps sodium_aps albumin_aps bilirubin_aps glucose_aps acid_base_aps gcs_aps bicarbonate_24h chloride_24h calcium_24h magnesium_24h pt_inr_24h hco3_24h

base excess 24h ionized calcium 24h lactate_24h troponin_i_24h troponin t 24h total_troponin_24h amylase_24h lipase_24h platelets_24h hemoglobin_24h phosphate_24h pao2_24h fio2_24h cpk_24h bnp_24h fibrinogen_24h neutrophil_24h lymphocyte_24h raw_sodium_24h raw_creatinine_24h raw_bun_24h raw_wbc_24h raw_albumin_24h raw_ph_24h raw bilirubin 24h raw_hct_24h bicarbonate 48h chloride 48h calcium 48h magnesium_48h pt_inr_48h hco3 48h base_excess_48h ionized_calcium_48h lactate_48h troponin_i_48h troponin_t_48h total_troponin_48h amylase_48h lipase_48h platelets_48h hemoglobin_48h phosphate_48h pao2_48h -fio2_48h cpk_48h bnp_48h fibrinogen_48h neutrophil_48h lymphocyte_48h raw sodium 48h raw_creatinine_48h raw bun 48h raw wbc 48h raw albumin 48h raw_ph_48h raw bilirubin 48h raw_hct_48h bicarbonatetime_scaled_slope_24h $chloridetime_scaled_slope_24h$ calciumtime_scaled_slope_24h magnesiumtime_scaled_slope_24h pt_inrtime_scaled_slope_24h hco3time_scaled_slope_24h base_excesstime_scaled_slope_24h ionized_calciumtime_scaled_slope_24h $lactatetime_scaled_slope_24h$ troponin_itime_scaled_slope_24h troponin_ttime_scaled_slope_24h total_troponintime_scaled_slope_24h amylasetime_scaled_slope_24h lipasetime_scaled_slope_24h plateletstime_scaled_slope_24h hemoglobintime_scaled_slope_24h phosphatetime_scaled_slope_24h pao2time_scaled_slope_24h

fio2time_scaled_slope_24h cpktime_scaled_slope_24h bnptime_scaled_slope_24h fibrinogentime_scaled_slope_24h neutrophiltime_scaled_slope_24h lymphocytetime_scaled_slope_24h raw sodiumtime scaled slope 24h raw_creatininetime_scaled_slope_24h raw_buntime_scaled_slope_24h raw wbctime scaled slope 24h raw albumintime scaled slope 24h raw_phtime_scaled_slope_24h raw_bilirubintime_scaled_slope_24h raw_hcttime_scaled_slope_24h bicarbonatetime_scaled_slope_48h chloridetime_scaled_slope_48h calciumtime_scaled_slope_48h magnesiumtime_scaled_slope_48h pt_inrtime_scaled_slope_48h hco3time_scaled_slope_48h base_excesstime_scaled_slope_48h ionized_calciumtime_scaled_slope_48h lactatetime_scaled_slope_48h troponin_itime_scaled_slope_48h troponin_ttime_scaled_slope_48h total_troponintime_scaled_slope_48h amylasetime_scaled_slope_48h lipasetime_scaled_slope_48h plateletstime_scaled_slope_48h hemoglobintime_scaled_slope_48h phosphatetime_scaled_slope_48h pao2time_scaled_slope_48h fio2time scaled slope 48h cpktime_scaled_slope_48h bnptime_scaled_slope_48h fibrinogentime scaled slope 48h neutrophiltime_scaled_slope_48h lymphocytetime_scaled_slope_48h raw_sodiumtime_scaled_slope_48h raw_creatininetime_scaled_slope_48h raw_buntime_scaled_slope_48h raw_wbctime_scaled_slope_48h raw_albumintime_scaled_slope_48h raw_phtime_scaled_slope_48h raw_bilirubintime_scaled_slope_48h raw_hcttime_scaled_slope_48h bicarbonateraw_trend_neg_24h chlorideraw_trend_neg_24h calciumraw_trend_neg_24h magnesiumraw_trend_neg_24h pt_inrraw_trend_neg_24h hco3raw_trend_neg_24h base_excessraw_trend_neg_24h ionized_calciumraw_trend_neg_24h lactateraw_trend_neg_24h troponin_iraw_trend_neg_24h troponin_traw_trend_neg_24h total_troponinraw_trend_neg_24h amylaseraw_trend_neg_24h lipaseraw trend neg 24h plateletsraw_trend_neg_24h hemoglobinraw trend neg 24h phosphateraw_trend_neg_24h pao2raw_trend_neg_24h fio2raw_trend_neg_24h cpkraw trend neg 24h bnpraw_trend_neg_24h fibrinogenraw_trend_neg_24h neutrophilraw_trend_neg_24h lymphocyteraw_trend_neg_24h raw_sodiumraw_trend_neg_24h raw_creatinineraw_trend_neg_24h raw_bunraw_trend_neg_24h raw_wbcraw_trend_neg_24h raw_albuminraw_trend_neg_24h raw_phraw_trend_neg_24h raw_bilirubinraw_trend_neg_24h raw_hctraw_trend_neg_24h bicarbonateraw_trend_neg_48h chlorideraw_trend_neg_48h

calciumraw_trend_neg_48h magnesiumraw_trend_neg_48h pt_inrraw_trend_neg_48h hco3raw_trend_neg_48h base_excessraw_trend_neg_48h ionized_calciumraw_trend_neg_48h lactateraw_trend_neg_48h troponin iraw trend neg 48h troponin_traw_trend_neg_48h total_troponinraw_trend_neg_48h amylaseraw_trend_neg_48h lipaseraw_trend_neg_48h plateletsraw_trend_neg_48h hemoglobinraw_trend_neg_48h phosphateraw_trend_neg_48h pao2raw_trend_neg_48h fio2raw_trend_neg_48h cpkraw_trend_neg_48h bnpraw_trend_neg_48h fibrinogenraw_trend_neg_48h neutrophilraw_trend_neg_48h lymphocyteraw_trend_neg_48h raw_sodiumraw_trend_neg_48h raw_creatinineraw_trend_neg_48h raw_bunraw_trend_neg_48h raw_wbcraw_trend_neg_48h raw_albuminraw_trend_neg_48h raw_phraw_trend_neg_48h raw_bilirubinraw_trend_neg_48h raw_hctraw_trend_neg_48h bicarbonateraw_trend_pos_24h chlorideraw_trend_pos_24h calciumraw trend pos 24h magnesiumraw trend pos 24h pt_inrraw_trend_pos_24h hco3raw trend pos 24h base_excessraw_trend_pos_24h ionized_calciumraw_trend_pos_24h lactateraw_trend_pos_24h troponin_iraw_trend_pos_24h troponin_traw_trend_pos_24h total_troponinraw_trend_pos_24h amylaseraw_trend_pos_24h lipaseraw_trend_pos_24h plateletsraw_trend_pos_24h hemoglobinraw_trend_pos_24h phosphateraw_trend_pos_24h pao2raw_trend_pos_24h fio2raw_trend_pos_24h cpkraw_trend_pos_24h bnpraw_trend_pos_24h fibrinogenraw_trend_pos_24h neutrophilraw_trend_pos_24h lymphocyteraw_trend_pos_24h raw_sodiumraw_trend_pos_24h raw_creatinineraw_trend_pos_24h raw_bunraw_trend_pos_24h raw_wbcraw_trend_pos_24h raw_albuminraw_trend_pos_24h raw phraw trend pos 24h raw_bilirubinraw_trend_pos_24h raw hctraw trend pos 24h bicarbonateraw_trend_pos_48h chlorideraw_trend_pos_48h calciumraw_trend_pos_48h magnesiumraw_trend_pos_48h pt_inrraw_trend_pos_48h hco3raw_trend_pos_48h base_excessraw_trend_pos_48h ionized_calciumraw_trend_pos_48h lactateraw_trend_pos_48h troponin_iraw_trend_pos_48h troponin_traw_trend_pos_48h total_troponinraw_trend_pos_48h amylaseraw_trend_pos_48h lipaseraw_trend_pos_48h plateletsraw_trend_pos_48h hemoglobinraw_trend_pos_48h phosphateraw_trend_pos_48h pao2raw_trend_pos_48h

fio2raw_trend_pos_48h cpkraw_trend_pos_48h bnpraw_trend_pos_48h fibrinogenraw_trend_pos_48h neutrophilraw_trend_pos_48h lymphocyteraw_trend_pos_48h raw sodiumraw trend pos 48h raw creatinineraw trend pos 48h raw_bunraw_trend_pos_48h raw wbcraw trend pos 48h raw albuminraw trend pos 48h raw_phraw_trend_pos_48h raw_bilirubinraw_trend_pos_48h raw_hctraw_trend_pos_48h bicarbonate_trend_neg_24h chloride_trend_neg_24h calcium_trend_neg_24h magnesium_trend_neg_24h pt_inr_trend_neg_24h hco3_trend_neg_24h base_excess_trend_neg_24h ionized_calcium_trend_neg_24h lactate_trend_neg_24h troponin_i_trend_neg_24h troponin_t_trend_neg_24h total_troponin_trend_neg_24h amylase_trend_neg_24h lipase_trend_neg_24h platelets_trend_neg_24h hemoglobin_trend_neg_24h phosphate_trend_neg_24h pao2_trend_neg_24h fio2_trend_neg_24h cpk_trend_neg_24h bnp_trend_neg_24h fibrinogen trend neg 24h neutrophil_trend_neg_24h lymphocyte_trend_neg_24h raw_sodium_trend_neg_24h raw_creatinine_trend_neg_24h raw_bun_trend_neg_24h raw_wbc_trend_neg_24h raw_albumin_trend_neg_24h raw_ph_trend_neg_24h raw_bilirubin_trend_neg_24h raw_hct_trend_neg_24h bicarbonate_trend_neg_48h chloride_trend_neg_48h calcium_trend_neg_48h magnesium_trend_neg_48h pt_inr_trend_neg_48h hco3_trend_neg_48h base_excess_trend_neg_48h ionized_calcium_trend_neg_48h lactate_trend_neg_48h troponin_i_trend_neg_48h troponin_t_trend_neg_48h total_troponin_trend_neg_48h amylase_trend_neg_48h lipase trend neg 48h platelets_trend_neg_48h hemoglobin trend neg 48h phosphate_trend_neg_48h pao2_trend_neg_48h fio2_trend_neg_48h cpk_trend_neg_48h bnp_trend_neg_48h fibrinogen_trend_neg_48h neutrophil_trend_neg_48h lymphocyte_trend_neg_48h raw_sodium_trend_neg_48h raw_creatinine_trend_neg_48h raw_bun_trend_neg_48h raw_wbc_trend_neg_48h raw_albumin_trend_neg_48h raw_ph_trend_neg_48h raw_bilirubin_trend_neg_48h raw_hct_trend_neg_48h bicarbonate_trend_neg_presence_24h chloride_trend_neg_presence_24h

calcium_trend_neg_presence_24h magnesium_trend_neg_presence_24h pt_inr_trend_neg_presence_24h hco3_trend_neg_presence_24h base_excess_trend_neg_presence_24h ionized_calcium_trend_neg_presence_24h lactate_trend_neg_presence_24h troponin_i_trend_neg_presence_24h troponin_t_trend_neg_presence_24h total_troponin_trend_neg_presence_24h amylase_trend_neg_presence_24h lipase_trend_neg_presence_24h $platelets_trend_neg_presence_24h$ hemoglobin_trend_neg_presence_24h $phosphate_trend_neg_presence_24h$ pao2_trend_neg_presence_24h fio2_trend_neg_presence_24h cpk_trend_neg_presence_24h bnp_trend_neg_presence_24h fibrinogen_trend_neg_presence_24h neutrophil_trend_neg_presence_24h lymphocyte_trend_neg_presence_24h raw_sodium_trend_neg_presence_24h raw_creatinine_trend_neg_presence_24h raw_bun_trend_neg_presence_24h raw_wbc_trend_neg_presence_24h raw_albumin_trend_neg_presence_24h raw_ph_trend_neg_presence_24h raw_bilirubin_trend_neg_presence_24h raw_hct_trend_neg_presence_24h bicarbonate_trend_neg_presence_48h chloride_trend_neg_presence_48h calcium_trend_neg_presence_48h magnesium_trend_neg_presence_48h pt_inr_trend_neg_presence_48h hco3 trend neg presence 48h base_excess_trend_neg_presence_48h ionized_calcium_trend_neg_presence_48h lactate_trend_neg_presence_48h troponin_i_trend_neg_presence_48h troponin_t_trend_neg_presence_48h total_troponin_trend_neg_presence_48h amylase_trend_neg_presence_48h lipase_trend_neg_presence_48h platelets_trend_neg_presence_48h hemoglobin_trend_neg_presence_48h phosphate_trend_neg_presence_48h pao2_trend_neg_presence_48h fio2_trend_neg_presence_48h cpk_trend_neg_presence_48h bnp_trend_neg_presence_48h fibrinogen_trend_neg_presence_48h neutrophil_trend_neg_presence_48h lymphocyte_trend_neg_presence_48h raw_sodium_trend_neg_presence_48h raw_creatinine_trend_neg_presence_48h raw_bun_trend_neg_presence_48h raw_wbc_trend_neg_presence_48h raw_albumin_trend_neg_presence_48h raw_ph_trend_neg_presence_48h raw_bilirubin_trend_neg_presence_48h raw hct trend neg presence 48h bicarbonate_trend_pos_24h chloride_trend_pos_24h calcium_trend_pos_24h magnesium_trend_pos_24h pt_inr_trend_pos_24h hco3_trend_pos_24h base_excess_trend_pos_24h ionized_calcium_trend_pos_24h lactate_trend_pos_24h troponin_i_trend_pos_24h troponin_t_trend_pos_24h total_troponin_trend_pos_24h amylase_trend_pos_24h lipase_trend_pos_24h platelets_trend_pos_24h hemoglobin_trend_pos_24h phosphate_trend_pos_24h pao2_trend_pos_24h

fio2_trend_pos_24h cpk_trend_pos_24h bnp_trend_pos_24h fibrinogen_trend_pos_24h neutrophil_trend_pos_24h lymphocyte_trend_pos_24h raw_sodium_trend_pos_24h raw_creatinine_trend_pos_24h raw_bun_trend_pos_24h raw_wbc_trend_pos_24h raw_albumin_trend_pos_24h raw_ph_trend_pos_24h raw_bilirubin_trend_pos_24h raw_hct_trend_pos_24h bicarbonate_trend_pos_48h chloride_trend_pos_48h calcium_trend_pos_48h magnesium_trend_pos_48h pt_inr_trend_pos_48h hco3_trend_pos_48h base_excess_trend_pos_48h ionized_calcium_trend_pos_48h lactate_trend_pos_48h troponin_i_trend_pos_48h troponin_t_trend_pos_48h total_troponin_trend_pos_48h amylase_trend_pos_48h lipase_trend_pos_48h platelets_trend_pos_48h hemoglobin_trend_pos_48h phosphate_trend_pos_48h pao2_trend_pos_48h fio2_trend_pos_48h cpk trend pos 48h bnp_trend_pos_48h fibrinogen_trend_pos_48h neutrophil_trend_pos_48h lymphocyte_trend_pos_48h raw_sodium_trend_pos_48h raw_creatinine_trend_pos_48h raw_bun_trend_pos_48h raw_wbc_trend_pos_48h raw_albumin_trend_pos_48h raw_ph_trend_pos_48h raw_bilirubin_trend_pos_48h raw_hct_trend_pos_48h bicarbonate_trend_pos_presence_24h chloride_trend_pos_presence_24h calcium_trend_pos_presence_24h magnesium_trend_pos_presence_24h pt_inr_trend_pos_presence_24h hco3_trend_pos_presence_24h base_excess_trend_pos_presence_24h ionized_calcium_trend_pos_presence_24h lactate_trend_pos_presence_24h troponin_i_trend_pos_presence_24h troponin_t_trend_pos_presence_24h total_troponin_trend_pos_presence_24h amylase_trend_pos_presence_24h lipase_trend_pos_presence_24h platelets_trend_pos_presence_24h hemoglobin trend pos presence 24h phosphate_trend_pos_presence_24h pao2_trend_pos_presence_24h fio2_trend_pos_presence_24h cpk_trend_pos_presence_24h bnp_trend_pos_presence_24h fibrinogen_trend_pos_presence_24h neutrophil_trend_pos_presence_24h lymphocyte_trend_pos_presence_24h raw_sodium_trend_pos_presence_24h raw_creatinine_trend_pos_presence_24h raw_bun_trend_pos_presence_24h raw_wbc_trend_pos_presence_24h raw_albumin_trend_pos_presence_24h raw_ph_trend_pos_presence_24h raw_bilirubin_trend_pos_presence_24h raw_hct_trend_pos_presence_24h bicarbonate_trend_pos_presence_48h chloride_trend_pos_presence_48h

calcium_trend_pos_presence_48h magnesium_trend_pos_presence_48h pt_inr_trend_pos_presence_48h hco3_trend_pos_presence_48h base_excess_trend_pos_presence_48h ionized_calcium_trend_pos_presence_48h lactate trend pos presence 48h troponin_i_trend_pos_presence_48h troponin_t_trend_pos_presence_48h total_troponin_trend_pos_presence_48h amylase_trend_pos_presence_48h lipase_trend_pos_presence_48h platelets_trend_pos_presence_48h hemoglobin_trend_pos_presence_48h $phosphate_trend_pos_presence_48h$ pao2_trend_pos_presence_48h fio2_trend_pos_presence_48h cpk_trend_pos_presence_48h bnp_trend_pos_presence_48h fibrinogen_trend_pos_presence_48h neutrophil_trend_pos_presence_48h lymphocyte_trend_pos_presence_48h raw_sodium_trend_pos_presence_48h raw_creatinine_trend_pos_presence_48h raw_bun_trend_pos_presence_48h raw_wbc_trend_pos_presence_48h raw_albumin_trend_pos_presence_48h raw_ph_trend_pos_presence_48h raw_bilirubin_trend_pos_presence_48h raw_hct_trend_pos_presence_48h bicarbonate_inverse_effect_24h chloride_inverse_effect_24h calcium inverse effect 24h magnesium inverse effect 24h pt_inr_inverse_effect_24h hco3 inverse effect 24h base_excess_inverse_effect_24h ionized_calcium_inverse_effect_24h lactate_inverse_effect_24h troponin_i_inverse_effect_24h troponin_t_inverse_effect_24h total_troponin_inverse_effect_24h amylase_inverse_effect_24h lipase_inverse_effect_24h platelets_inverse_effect_24h hemoglobin_inverse_effect_24h phosphate_inverse_effect_24h pao2_inverse_effect_24h fio2_inverse_effect_24h cpk_inverse_effect_24h bnp_inverse_effect_24h fibrinogen_inverse_effect_24h neutrophil_inverse_effect_24h lymphocyte_inverse_effect_24h raw_sodium_inverse_effect_24h raw_creatinine_inverse_effect_24h raw_bun_inverse_effect_24h raw_wbc_inverse_effect_24h raw_albumin_inverse_effect_24h raw ph inverse effect 24h raw_bilirubin_inverse_effect_24h raw hct inverse effect 24h bicarbonate inverse effect 48h chloride inverse effect 48h calcium_inverse_effect_48h magnesium inverse effect 48h pt_inr_inverse_effect_48h hco3_inverse_effect_48h base_excess_inverse_effect_48h ionized_calcium_inverse_effect_48h lactate_inverse_effect_48h troponin_i_inverse_effect_48h troponin_t_inverse_effect_48h total_troponin_inverse_effect_48h amylase_inverse_effect_48h lipase_inverse_effect_48h platelets_inverse_effect_48h hemoglobin_inverse_effect_48h phosphate_inverse_effect_48h pao2_inverse_effect_48h

fio2_inverse_effect_48h cpk_inverse_effect_48h bnp_inverse_effect_48h fibrinogen_inverse_effect_48h neutrophil_inverse_effect_48h lymphocyte_inverse_effect_48h raw sodium inverse effect 48h raw creatinine inverse effect 48h raw_bun_inverse_effect_48h raw wbc inverse effect 48h raw albumin inverse effect 48h raw_ph_inverse_effect_48h raw_bilirubin_inverse_effect_48h raw_hct_inverse_effect_48h bicarbonate_24h_is_abnormal chloride_24h_is_abnormal calcium_24h_is_abnormal magnesium_24h_is_abnormal pt_inr_24h_is_abnormal hco3 24h is abnormal base_excess_24h_is_abnormal ionized_calcium_24h_is_abnormal lactate_24h_is_abnormal troponin_i_24h_is_abnormal troponin_t_24h_is_abnormal total_troponin_24h_is_abnormal amylase_24h_is_abnormal lipase_24h_is_abnormal platelets_24h_is_abnormal hemoglobin_24h_is_abnormal phosphate_24h_is_abnormal pao2_24h_is_abnormal fio2_24h_is_abnormal cpk 24h is abnormal bnp_24h_is_abnormal fibrinogen 24h is abnormal neutrophil 24h is abnormal lymphocyte_24h_is_abnormal raw_sodium_24h_is_abnormal raw creatinine 24h is abnormal raw_bun_24h_is_abnormal raw_wbc_24h_is_abnormal raw_albumin_24h_is_abnormal raw_ph_24h_is_abnormal raw_bilirubin_24h_is_abnormal raw hct 24h is abnormal bicarbonate_48h_is_abnormal chloride_48h_is_abnormal calcium_48h_is_abnormal magnesium_48h_is_abnormal pt_inr_48h_is_abnormal hco3_48h_is_abnormal base_excess_48h_is_abnormal ionized_calcium_48h_is_abnormal lactate_48h_is_abnormal troponin_i_48h_is_abnormal troponin_t_48h_is_abnormal total_troponin_48h_is_abnormal amylase_48h_is_abnormal lipase 48h is abnormal platelets_48h_is_abnormal hemoglobin 48h is abnormal phosphate 48h is abnormal pao2_48h_is_abnormal fio2_48h_is_abnormal cpk 48h is abnormal bnp_48h_is_abnormal fibrinogen_48h_is_abnormal neutrophil_48h_is_abnormal lymphocyte_48h_is_abnormal raw_sodium_48h_is_abnormal raw_creatinine_48h_is_abnormal raw_bun_48h_is_abnormal raw_wbc_48h_is_abnormal raw_albumin_48h_is_abnormal raw_ph_48h_is_abnormal raw_bilirubin_48h_is_abnormal raw_hct_48h_is_abnormal bicarbonate_24h_is_low chloride_24h_is_low

calcium_24h_is_low magnesium_24h_is_low pt_inr_24h_is_low hco3_24h_is_low base_excess_24h_is_low ionized_calcium_24h_is_low lactate_24h_is_low troponin i 24h is low troponin_t_24h_is_low total troponin 24h is low amvlase 24h is low lipase_24h_is_low platelets_24h_is_low hemoglobin 24h is low phosphate_24h_is_low pao2_24h_is_low fio2 24h is low cpk_24h_is_low bnp_24h_is_low fibrinogen_24h_is_low neutrophil_24h_is_low lymphocyte_24h_is_low raw_sodium_24h_is_low raw_creatinine_24h_is_low raw_bun_24h_is_low raw_wbc_24h_is_low raw_albumin_24h_is_low raw_ph_24h_is_low raw_bilirubin_24h_is_low raw_hct_24h_is_low bicarbonate_48h_is_low chloride_48h_is_low calcium_48h_is_low magnesium 48h is low pt_inr_48h_is_low hco3 48h is low base excess 48h is low ionized calcium 48h is low lactate_48h_is_low troponin i 48h is low troponin_t_48h_is_low total_troponin_48h_is_low amvlase 48h is low lipase 48h is low platelets_48h_is_low hemoglobin_48h_is_low phosphate_48h_is_low pao2_48h_is_low fio2_48h_is_low cpk_48h_is_low bnp_48h_is_low fibrinogen_48h_is_low neutrophil_48h_is_low lymphocyte_48h_is_low raw_sodium_48h_is_low raw_creatinine_48h_is_low raw_bun_48h_is_low raw_wbc_48h_is_low raw_albumin_48h_is_low raw ph 48h is low raw_bilirubin_48h_is_low raw hct 48h is low bicarbonate 24h is low by chloride_24h_is_low_by calcium_24h_is_low_by magnesium_24h_is_low_by pt_inr_24h_is_low_by hco3_24h_is_low_by base_excess_24h_is_low_by ionized_calcium_24h_is_low_by lactate_24h_is_low_by troponin_i_24h_is_low_by troponin_t_24h_is_low_by total_troponin_24h_is_low_by amylase_24h_is_low_by lipase_24h_is_low_by platelets_24h_is_low_by hemoglobin_24h_is_low_by phosphate_24h_is_low_by pao2_24h_is_low_by

fio2_24h_is_low_by cpk_24h_is_low_by bnp_24h_is_low_by fibrinogen_24h_is_low_by neutrophil_24h_is_low_by lymphocyte_24h_is_low_by raw_sodium_24h_is_low_by raw_creatinine_24h_is_low_by raw_bun_24h_is_low_by raw wbc 24h is low by raw albumin 24h is low by raw_ph_24h_is_low_by raw_bilirubin_24h_is_low_by raw_hct_24h_is_low_by bicarbonate_48h_is_low_by chloride_48h_is_low_by calcium_48h_is_low_by magnesium_48h_is_low_by pt_inr_48h_is_low_by hco3_48h_is_low_by base_excess_48h_is_low_by ionized_calcium_48h_is_low_by lactate_48h_is_low_by troponin_i_48h_is_low_by troponin_t_48h_is_low_by total_troponin_48h_is_low_by amylase_48h_is_low_by lipase_48h_is_low_by platelets_48h_is_low_by hemoglobin_48h_is_low_by phosphate_48h_is_low_by pao2_48h_is_low_by fio2_48h_is_low_by cpk 48h is low by bnp_48h_is_low_by fibrinogen 48h is low by neutrophil_48h_is_low_by lymphocyte_48h_is_low_by raw_sodium_48h_is_low_by raw_creatinine_48h_is_low_by raw_bun_48h_is_low_by raw_wbc_48h_is_low_by raw_albumin_48h_is_low_by raw_ph_48h_is_low_by raw_bilirubin_48h_is_low_by raw_hct_48h_is_low_by bicarbonate_24h_is_high chloride_24h_is_high calcium_24h_is_high magnesium_24h_is_high pt_inr_24h_is_high hco3_24h_is_high base_excess_24h_is_high ionized_calcium_24h_is_high lactate_24h_is_high troponin_i_24h_is_high troponin_t_24h_is_high total_troponin_24h_is_high amylase_24h_is_high lipase 24h is high platelets_24h_is_high hemoglobin_24h_is_high phosphate_24h_is_high pao2_24h_is_high fio2_24h_is_high cpk 24h is high bnp_24h_is_high fibrinogen_24h_is_high neutrophil_24h_is_high lymphocyte_24h_is_high raw_sodium_24h_is_high raw_creatinine_24h_is_high raw_bun_24h_is_high raw_wbc_24h_is_high raw_albumin_24h_is_high raw_ph_24h_is_high raw_bilirubin_24h_is_high raw_hct_24h_is_high bicarbonate_48h_is_high chloride_48h_is_high

calcium_48h_is_high magnesium_48h_is_high pt_inr_48h_is_high hco3_48h_is_high base_excess_48h_is_high ionized_calcium_48h_is_high lactate_48h_is_high troponin i 48h is high troponin_t_48h_is_high total_troponin_48h_is_high amylase_48h_is_high lipase_48h_is_high platelets_48h_is_high hemoglobin_48h_is_high phosphate_48h_is_high pao2_48h_is_high fio2_48h_is_high cpk_48h_is_high bnp_48h_is_high fibrinogen_48h_is_high neutrophil_48h_is_high lymphocyte_48h_is_high raw_sodium_48h_is_high raw_creatinine_48h_is_high raw_bun_48h_is_high raw_wbc_48h_is_high raw_albumin_48h_is_high raw_ph_48h_is_high raw_bilirubin_48h_is_high raw_hct_48h_is_high bicarbonate_24h_is_high_by chloride_24h_is_high_by calcium 24h is high by magnesium_24h_is_high_by pt_inr_24h_is_high_by hco3 24h is high by base_excess_24h_is_high_by ionized_calcium_24h_is_high_by lactate_24h_is_high_by troponin_i_24h_is_high_by troponin_t_24h_is_high_by total_troponin_24h_is_high_by amylase_24h_is_high_by lipase_24h_is_high_by platelets_24h_is_high_by hemoglobin_24h_is_high_by phosphate_24h_is_high_by pao2_24h_is_high_by fio2_24h_is_high_by cpk_24h_is_high_by bnp_24h_is_high_by fibrinogen_24h_is_high_by neutrophil_24h_is_high_by lymphocyte_24h_is_high_by raw_sodium_24h_is_high_by raw_creatinine_24h_is_high_by raw_bun_24h_is_high_by raw_wbc_24h_is_high_by raw_albumin_24h_is_high_by raw ph 24h is high by raw_bilirubin_24h_is_high_by raw_hct_24h_is_high_by bicarbonate_48h_is_high_by chloride_48h_is_high_by calcium_48h_is_high_by magnesium_48h_is_high_by pt_inr_48h_is_high_by hco3_48h_is_high_by base_excess_48h_is_high_by ionized_calcium_48h_is_high_by lactate_48h_is_high_by troponin_i_48h_is_high_by troponin_t_48h_is_high_by total_troponin_48h_is_high_by amylase_48h_is_high_by lipase_48h_is_high_by platelets_48h_is_high_by hemoglobin_48h_is_high_by phosphate_48h_is_high_by pao2_48h_is_high_by

fio2_48h_is_high_by cpk_48h_is_high_by bnp_48h_is_high_by fibrinogen_48h_is_high_by neutrophil_48h_is_high_by lymphocyte_48h_is_high_by raw sodium 48h is high by raw_creatinine_48h_is_high_by raw_bun_48h_is_high_by raw wbc 48h is high by raw_albumin_48h_is_high_by raw_ph_48h_is_high_by raw_bilirubin_48h_is_high_by raw_hct_48h_is_high_by charlson mi charlson_chf charlson_peri charlson_cvd charlson_dementia charlson_pul_dis charlson_connective charlson_peptic charlson_mild_liver charlson_diabetes_no_dam charlson_hemiplegia charlson_renal_disease charlson_diabetes_dam charlson_diabetes_dam.1 charlson_tumor_no_meta charlson_leukemia charlson_lymphoma charlson_liv_disease charlson metastatic tumor charlson aids sedatives_bin_24h vasopressors bin 24h antiarrvthmics bin 24h lasixs bin 24h antibiotics_bin_24h sedatives bin 48h vasopressors_bin_48h antiarrythmics_bin_48h lasixs_bin_48h antibiotics_bin_48h transfusion_24h transfusion_plasma_24h transfusion_cryo_24h transfusion_blood_24h transfusion_platelets_24h transfusion_48h transfusion_plasma_48h transfusion_cryo_48h transfusion_blood_48h transfusion_platelets_48h fluid_balance_24h fluid_balance_48h gender height weight bmi Med-Surg ICU MICU Cardiac ICU STCU CCU-CTICU Neuro ICU CTICU Trauma ICU Floating (Universal) License ICU CSTCU Mixed Acuity mv_fio2 24h mv_fio2_48h mv_plateau_pressure_24h mv_plateau_pressure_48h mv_peep_24h mv_peep_48h mv_tidal_volume_24h mv_tidal_volume_48h mv_tv_kg_24h

mv_tv_kg_48h is_mv_24h is_mv_48h noninvasive_systolictime_scaled_slope_24h noninvasive_diastolictime_scaled_slope_24h noninvasive_systolictime_scaled_slope_48h noninvasive diastolictime scaled slope 48h noninvasive_systolicraw_trend_neg_24h noninvasive_diastolicraw_trend_neg_24h noninvasive systolicraw trend neg 48h noninvasive_diastolicraw_trend_neg_48h noninvasive_systolicraw_trend_pos_24h noninvasive_diastolicraw_trend_pos_24h noninvasive_systolicraw_trend_pos_48h noninvasive_diastolicraw_trend_pos_48h noninvasive_systolic_trend_neg_24h noninvasive_diastolic_trend_neg_24h noninvasive_systolic_trend_neg_48h noninvasive_diastolic_trend_neg_48h noninvasive_systolic_trend_neg_presence_24h noninvasive_diastolic_trend_neg_presence_24h noninvasive_systolic_trend_neg_presence_48h noninvasive_diastolic_trend_neg_presence_48h noninvasive_systolic_trend_pos_24h noninvasive_diastolic_trend_pos_24h noninvasive_systolic_trend_pos_48h noninvasive_diastolic_trend_pos_48h noninvasive_systolic_trend_pos_presence_24h noninvasive_diastolic_trend_pos_presence_24h noninvasive_systolic_trend_pos_presence_48h noninvasive_diastolic_trend_pos_presence_48h noninvasive_systolic_inverse_effect_24h noninvasive diastolic inverse effect 24h noninvasive systolic inverse effect 48h noninvasive_diastolic_inverse_effect_48h noninvasive systolic 24h noninvasive diastolic 24h noninvasive_systolic_48h noninvasive_diastolic_48h invasivesystolictime scaled slope 24h invasivediastolictime_scaled_slope_24h raw_sao2time_scaled_slope_24h etco2time_scaled_slope_24h $raw_temperaturetime_scaled_slope_24h$ raw_heartratetime_scaled_slope_24h raw_respratetime_scaled_slope_24h invasivesystolictime_scaled_slope_48h invasivediastolictime_scaled_slope_48h raw_sao2time_scaled_slope_48h etco2time_scaled_slope_48h raw_temperaturetime_scaled_slope_48h raw_heartratetime_scaled_slope_48h raw_respratetime_scaled_slope_48h invasivesystolicraw_trend_neg_24h invasivediastolicraw_trend_neg_24h raw_sao2raw_trend_neg_24h etco2raw_trend_neg_24h raw_temperatureraw_trend_neg_24h raw_heartrateraw_trend_neg_24h raw resprateraw trend neg 24h invasivesystolicraw_trend_neg_48h invasivediastolicraw_trend_neg_48h raw sao2raw trend neg 48h etco2raw_trend_neg_48h raw_temperatureraw_trend_neg_48h raw heartrateraw trend neg 48h raw_resprateraw_trend_neg_48h invasivesystolicraw_trend_pos_24h ${\tt invasivediastolicraw_trend_pos_24h}$ raw_sao2raw_trend_pos_24h etco2raw_trend_pos_24h raw_temperatureraw_trend_pos_24h raw_heartrateraw_trend_pos_24h raw_resprateraw_trend_pos_24h invasivesystolicraw_trend_pos_48h invasivediastolicraw_trend_pos_48h raw_sao2raw_trend_pos_48h etco2raw_trend_pos_48h raw_temperatureraw_trend_pos_48h raw_heartrateraw_trend_pos_48h

raw_resprateraw_trend_pos_48h invasivesystolic_trend_neg_24h invasivediastolic_trend_neg_24h raw_sao2_trend_neg_24h etco2_trend_neg_24h raw_temperature_trend_neg_24h raw_heartrate_trend_neg_24h raw_resprate_trend_neg_24h invasivesystolic_trend_neg_48h invasivediastolic_trend_neg_48h raw_sao2_trend_neg_48h etco2_trend_neg_48h raw_temperature_trend_neg_48h raw_heartrate_trend_neg_48h raw_resprate_trend_neg_48h invasivesystolic_trend_neg_presence_24h invasivediastolic_trend_neg_presence_24h raw_sao2_trend_neg_presence_24h etco2_trend_neg_presence_24h raw_temperature_trend_neg_presence_24h raw_heartrate_trend_neg_presence_24h raw_resprate_trend_neg_presence_24h invasivesystolic_trend_neg_presence_48h invasivediastolic_trend_neg_presence_48h raw_sao2_trend_neg_presence_48h etco2_trend_neg_presence_48h raw_temperature_trend_neg_presence_48h raw_heartrate_trend_neg_presence_48h raw_resprate_trend_neg_presence_48h invasivesystolic_trend_pos_24h invasivediastolic_trend_pos_24h raw_sao2_trend_pos_24h etco2_trend_pos_24h raw_temperature_trend_pos_24h raw_heartrate_trend_pos_24h raw resprate trend pos 24h invasivesystolic_trend_pos_48h invasivediastolic_trend_pos_48h raw_sao2_trend_pos_48h etco2_trend_pos_48h raw_temperature_trend_pos_48h raw_heartrate_trend_pos_48h raw_resprate_trend_pos_48h

invasivesystolic_trend_pos_presence_24h invasivediastolic_trend_pos_presence_24h raw_sao2_trend_pos_presence_24h etco2_trend_pos_presence_24h raw_temperature_trend_pos_presence_24h raw_heartrate_trend_pos_presence_24h raw resprate trend pos presence 24h invasivesystolic_trend_pos_presence_48h invasivediastolic_trend_pos_presence_48h raw_sao2_trend_pos_presence_48h etco2_trend_pos_presence_48h raw_temperature_trend_pos_presence_48h raw_heartrate_trend_pos_presence_48h ${\tt raw_resprate_trend_pos_presence_48h}$ invasivesystolic_inverse_effect_24h invasivediastolic_inverse_effect_24h raw_sao2_inverse_effect_24h etco2_inverse_effect_24h raw_temperature_inverse_effect_24h raw_heartrate_inverse_effect_24h raw_resprate_inverse_effect_24h invasivesystolic_inverse_effect_48h invasivediastolic_inverse_effect_48h raw_sao2_inverse_effect_48h etco2_inverse_effect_48h raw_temperature_inverse_effect_48h raw_heartrate_inverse_effect_48h raw_resprate_inverse_effect_48h invasivesystolic_24h invasivediastolic_24h raw_sao2_24h etco2_24h raw_temperature_24h raw heartrate 24h raw_resprate_24h invasivesvstolic 48h invasivediastolic_48h raw sao2 48h etco2_48h raw_temperature_48h raw_heartrate_48h raw_resprate_48h

List of All Features Used in 24 Hour Feature Set

diag_AMI diag_SEPSISPULM diag_CHF diag_CVASTROKE diag_DKA diag_S-CABG diag_SEPSISUTI diag_RHYTHATR diag_PNEUMBACT diag_CARDARREST diag_EMPHYSBRON diag_UNSTANGINA diag_UGIBLEED diag_COMA diag_M-RESOTHER diag_SEIZURES diag_ICH diag_RESPARREST diag_SEPSISUNK diag_LOWGIBLEED diag_ARENFAIL diag_UNKGIBLEED diag_SEPSISGI diag_HYPERTENS diag_RHYTHCON diag_S-CAROTEND diag_PULMEMBOL diag_S-VALVAO diag_ODSEDHYP diag_TRAUMHEAD age aids hepaticfailure lymphoma metastaticcancer leukemia immunosuppression cirrhosis ventday1 admitsource_0 admitsource_1 admitsource 2 admitsource_3 admitsource_4 admitsource_5 admitsource_6 admitsource_7 admitsource_8 emergencysurg preiculos diagnosis thrombolytics unable_gcs adj_gcs pulse_aps mabp_aps temperature_aps resp_aps pao2_aps hematocrit_aps wbc_aps creatinine_aps urine_aps bun_aps sodium_aps albumin_aps bilirubin_aps glucose_aps acid_base_aps gcs_aps bicarbonate_24h chloride_24h calcium_24h magnesium_24h pt_inr_24h hco3_24h

base excess 24h ionized calcium 24h lactate 24h troponin_i_24h troponin t 24h total_troponin_24h amylase_24h lipase_24h platelets_24h hemoglobin_24h phosphate_24h pao2_24h fio2_24h cpk_24h bnp_24h fibrinogen_24h neutrophil_24h lymphocyte_24h raw_sodium_24h raw_creatinine_24h raw_bun_24h raw_wbc_24h raw_albumin_24h raw_ph_24h raw bilirubin 24h raw_hct_24h bicarbonatetime_scaled_slope_24h chloridetime_scaled_slope_24h calciumtime scaled slope 24h magnesiumtime_scaled_slope_24h pt_inrtime_scaled_slope_24h $hco3time_scaled_slope_24h$ base_excesstime_scaled_slope_24h ionized_calciumtime_scaled_slope_24h lactatetime_scaled_slope_24h troponin_itime_scaled_slope_24h troponin_ttime_scaled_slope_24h total_troponintime_scaled_slope_24h amylasetime_scaled_slope_24h lipasetime_scaled_slope_24h plateletstime_scaled_slope_24h hemoglobintime_scaled_slope_24h phosphatetime_scaled_slope_24h pao2time_scaled_slope_24h fio2time_scaled_slope_24h cpktime_scaled_slope_24h bnptime_scaled_slope_24h fibrinogentime_scaled_slope_24h neutrophiltime_scaled_slope_24h lymphocytetime_scaled_slope_24h raw sodiumtime scaled slope 24h raw_creatininetime_scaled_slope_24h raw_buntime_scaled_slope_24h raw_wbctime_scaled_slope_24h raw albumintime scaled slope 24h raw_phtime_scaled_slope_24h raw_bilirubintime_scaled_slope_24h raw_hcttime_scaled_slope_24h bicarbonateraw_trend_neg_24h chlorideraw_trend_neg_24h calciumraw_trend_neg_24h magnesiumraw_trend_neg_24h pt_inrraw_trend_neg_24h hco3raw_trend_neg_24h base_excessraw_trend_neg_24h ionized_calciumraw_trend_neg_24h lactateraw_trend_neg_24h troponin_iraw_trend_neg_24h troponin_traw_trend_neg_24h total_troponinraw_trend_neg_24h amylaseraw_trend_neg_24h lipaseraw_trend_neg_24h plateletsraw_trend_neg_24h hemoglobinraw_trend_neg_24h phosphateraw_trend_neg_24h pao2raw_trend_neg_24h

fio2raw_trend_neg_24h cpkraw_trend_neg_24h bnpraw_trend_neg_24h fibrinogenraw_trend_neg_24h neutrophilraw_trend_neg_24h lymphocyteraw_trend_neg_24h raw_sodiumraw_trend_neg_24h raw_creatinineraw_trend_neg_24h raw_bunraw_trend_neg_24h raw wbcraw trend neg 24h raw_albuminraw_trend_neg_24h raw_phraw_trend_neg_24h raw_bilirubinraw_trend_neg_24h raw_hctraw_trend_neg_24h bicarbonateraw_trend_pos_24h chlorideraw_trend_pos_24h calciumraw_trend_pos_24h magnesiumraw_trend_pos_24h pt_inrraw_trend_pos_24h hco3raw_trend_pos_24h base_excessraw_trend_pos_24h ionized_calciumraw_trend_pos_24h lactateraw_trend_pos_24h troponin_iraw_trend_pos_24h troponin_traw_trend_pos_24h total_troponinraw_trend_pos_24h amylaseraw_trend_pos_24h lipaseraw_trend_pos_24h plateletsraw_trend_pos_24h hemoglobinraw_trend_pos_24h phosphateraw_trend_pos_24h pao2raw_trend_pos_24h fio2raw trend pos 24h cpkraw_trend_pos_24h bnpraw_trend_pos_24h fibrinogenraw trend pos 24h neutrophilraw_trend_pos_24h lymphocyteraw_trend_pos_24h raw_sodiumraw_trend_pos_24h raw_creatinineraw_trend_pos_24h raw_bunraw_trend_pos_24h raw_wbcraw_trend_pos_24h raw_albuminraw_trend_pos_24h raw_phraw_trend_pos_24h raw_bilirubinraw_trend_pos_24h raw_hctraw_trend_pos_24h bicarbonate_trend_neg_24h chloride_trend_neg_24h calcium_trend_neg_24h magnesium_trend_neg_24h pt_inr_trend_neg_24h hco3_trend_neg_24h base_excess_trend_neg_24h ionized_calcium_trend_neg_24h lactate_trend_neg_24h troponin_i_trend_neg_24h troponin_t_trend_neg_24h total_troponin_trend_neg_24h amylase_trend_neg_24h lipase trend neg 24h platelets_trend_neg_24h hemoglobin trend neg 24h phosphate_trend_neg_24h pao2_trend_neg_24h fio2_trend_neg_24h cpk_trend_neg_24h bnp_trend_neg_24h fibrinogen_trend_neg_24h neutrophil_trend_neg_24h lymphocyte_trend_neg_24h raw_sodium_trend_neg_24h raw_creatinine_trend_neg_24h raw_bun_trend_neg_24h raw_wbc_trend_neg_24h raw_albumin_trend_neg_24h raw_ph_trend_neg_24h raw_bilirubin_trend_neg_24h raw_hct_trend_neg_24h bicarbonate_trend_neg_presence_24h chloride_trend_neg_presence_24h

calcium_trend_neg_presence_24h magnesium_trend_neg_presence_24h pt_inr_trend_neg_presence_24h hco3_trend_neg_presence_24h base_excess_trend_neg_presence_24h ionized_calcium_trend_neg_presence_24h lactate_trend_neg_presence_24h troponin_i_trend_neg_presence_24h troponin_t_trend_neg_presence_24h total_troponin_trend_neg_presence_24h amylase_trend_neg_presence_24h lipase_trend_neg_presence_24h platelets_trend_neg_presence_24h hemoglobin_trend_neg_presence_24h $phosphate_trend_neg_presence_24h$ pao2_trend_neg_presence_24h fio2_trend_neg_presence_24h cpk_trend_neg_presence_24h bnp_trend_neg_presence_24h fibrinogen_trend_neg_presence_24h neutrophil_trend_neg_presence_24h lymphocyte_trend_neg_presence_24h raw_sodium_trend_neg_presence_24h raw_creatinine_trend_neg_presence_24h raw_bun_trend_neg_presence_24h raw_wbc_trend_neg_presence_24h raw_albumin_trend_neg_presence_24h raw_ph_trend_neg_presence_24h raw_bilirubin_trend_neg_presence_24h raw_hct_trend_neg_presence_24h bicarbonate_trend_pos_24h chloride_trend_pos_24h calcium_trend_pos_24h magnesium trend pos 24h pt_inr_trend_pos_24h hco3 trend pos 24h base_excess_trend_pos_24h ionized_calcium_trend_pos_24h lactate_trend_pos_24h troponin_i_trend_pos_24h troponin_t_trend_pos_24h total_troponin_trend_pos_24h amylase_trend_pos_24h lipase_trend_pos_24h platelets_trend_pos_24h hemoglobin_trend_pos_24h phosphate_trend_pos_24h pao2_trend_pos_24h fio2_trend_pos_24h cpk_trend_pos_24h bnp_trend_pos_24h fibrinogen_trend_pos_24h neutrophil_trend_pos_24h lymphocyte_trend_pos_24h raw_sodium_trend_pos_24h raw_creatinine_trend_pos_24h raw_bun_trend_pos_24h raw_wbc_trend_pos_24h raw_albumin_trend_pos_24h raw ph trend pos 24h raw_bilirubin_trend_pos_24h raw hct trend pos 24h bicarbonate_trend_pos_presence_24h chloride_trend_pos_presence_24h $calcium_trend_pos_presence_24h$ magnesium_trend_pos_presence_24h ${\tt pt_inr_trend_pos_presence_24h}$ hco3_trend_pos_presence_24h base_excess_trend_pos_presence_24h ionized_calcium_trend_pos_presence_24h lactate_trend_pos_presence_24h troponin_i_trend_pos_presence_24h troponin_t_trend_pos_presence_24h total_troponin_trend_pos_presence_24h amylase_trend_pos_presence_24h lipase_trend_pos_presence_24h platelets_trend_pos_presence_24h hemoglobin_trend_pos_presence_24h phosphate_trend_pos_presence_24h pao2_trend_pos_presence_24h

fio2_trend_pos_presence_24h cpk_trend_pos_presence_24h bnp_trend_pos_presence_24h fibrinogen_trend_pos_presence_24h neutrophil_trend_pos_presence_24h lymphocyte_trend_pos_presence_24h raw sodium trend pos presence 24h raw_creatinine_trend_pos_presence_24h raw_bun_trend_pos_presence_24h raw_wbc_trend_pos_presence_24h raw_albumin_trend_pos_presence_24h raw_ph_trend_pos_presence_24h raw_bilirubin_trend_pos_presence_24h raw_hct_trend_pos_presence_24h bicarbonate_inverse_effect_24h chloride_inverse_effect_24h calcium_inverse_effect_24h magnesium_inverse_effect_24h pt_inr_inverse_effect_24h hco3_inverse_effect_24h base_excess_inverse_effect_24h ionized_calcium_inverse_effect_24h lactate_inverse_effect_24h troponin_i_inverse_effect_24h troponin_t_inverse_effect_24h total_troponin_inverse_effect_24h amylase_inverse_effect_24h lipase_inverse_effect_24h platelets_inverse_effect_24h hemoglobin_inverse_effect_24h phosphate_inverse_effect_24h pao2_inverse_effect_24h fio2_inverse_effect_24h cpk inverse effect 24h bnp_inverse_effect_24h fibrinogen inverse effect 24h neutrophil_inverse_effect_24h lymphocyte_inverse_effect_24h raw_sodium_inverse_effect_24h raw creatinine inverse effect 24h raw_bun_inverse_effect_24h raw_wbc_inverse_effect_24h raw_albumin_inverse_effect_24h raw_ph_inverse_effect_24h raw_bilirubin_inverse_effect_24h raw_hct_inverse_effect_24h bicarbonate_24h_is_abnormal chloride_24h_is_abnormal calcium_24h_is_abnormal magnesium_24h_is_abnormal pt_inr_24h_is_abnormal hco3_24h_is_abnormal base_excess_24h_is_abnormal ionized_calcium_24h_is_abnormal lactate_24h_is_abnormal troponin_i_24h_is_abnormal troponin_t_24h_is_abnormal total_troponin_24h_is_abnormal amylase_24h_is_abnormal lipase 24h is abnormal platelets_24h_is_abnormal hemoglobin_24h_is_abnormal phosphate 24h is abnormal pao2_24h_is_abnormal fio2_24h_is_abnormal cpk 24h is abnormal bnp_24h_is_abnormal fibrinogen_24h_is_abnormal neutrophil_24h_is_abnormal lymphocyte_24h_is_abnormal raw_sodium_24h_is_abnormal raw_creatinine_24h_is_abnormal raw_bun_24h_is_abnormal raw_wbc_24h_is_abnormal raw_albumin_24h_is_abnormal raw_ph_24h_is_abnormal raw_bilirubin_24h_is_abnormal raw_hct_24h_is_abnormal bicarbonate_24h_is_low chloride_24h_is_low

calcium_24h_is_low magnesium_24h_is_low pt_inr_24h_is_low hco3_24h_is_low base_excess_24h_is_low ionized_calcium_24h_is_low lactate_24h_is_low troponin i 24h is low troponin_t_24h_is_low total troponin 24h is low amvlase 24h is low lipase_24h_is_low platelets_24h_is_low hemoglobin 24h is low phosphate_24h_is_low pao2_24h_is_low fio2 24h is low cpk_24h_is_low bnp_24h_is_low fibrinogen_24h_is_low neutrophil_24h_is_low lymphocyte_24h_is_low raw_sodium_24h_is_low raw_creatinine_24h_is_low raw_bun_24h_is_low raw_wbc_24h_is_low raw_albumin_24h_is_low raw_ph_24h_is_low raw_bilirubin_24h_is_low raw_hct_24h_is_low bicarbonate_24h_is_low_by chloride_24h_is_low_by calcium_24h_is_low_by magnesium 24h is low by pt_inr_24h_is_low_by hco3 24h is low by base_excess_24h_is_low_by ionized_calcium_24h_is_low_by lactate_24h_is_low_by troponin_i_24h_is_low_by troponin_t_24h_is_low_by total_troponin_24h_is_low_by amylase_24h_is_low_by lipase_24h_is_low_by platelets_24h_is_low_by hemoglobin_24h_is_low_by phosphate_24h_is_low_by pao2_24h_is_low_by fio2_24h_is_low_by cpk_24h_is_low_by bnp_24h_is_low_by fibrinogen_24h_is_low_by neutrophil_24h_is_low_by lymphocyte_24h_is_low_by raw_sodium_24h_is_low_by raw_creatinine_24h_is_low_by raw_bun_24h_is_low_by raw_wbc_24h_is_low_by raw_albumin_24h_is_low_by raw ph 24h is low by raw_bilirubin_24h_is_low_by raw hct 24h is low by bicarbonate_24h_is_high chloride_24h_is_high calcium_24h_is_high magnesium 24h is high pt_inr_24h_is_high hco3_24h_is_high base_excess_24h_is_high ionized_calcium_24h_is_high lactate_24h_is_high troponin_i_24h_is_high troponin_t_24h_is_high total_troponin_24h_is_high amylase_24h_is_high lipase_24h_is_high platelets_24h_is_high hemoglobin_24h_is_high phosphate_24h_is_high pao2_24h_is_high

105

fio2_24h_is_high cpk_24h_is_high bnp_24h_is_high fibrinogen_24h_is_high neutrophil_24h_is_high lymphocyte_24h_is_high raw_sodium_24h_is_high raw_creatinine_24h_is_high raw_bun_24h_is_high raw wbc 24h is high raw_albumin_24h_is_high raw_ph_24h_is_high raw_bilirubin_24h_is_high raw_hct_24h_is_high bicarbonate_24h_is_high_by chloride_24h_is_high_by calcium_24h_is_high_by magnesium_24h_is_high_by pt_inr_24h_is_high_by hco3_24h_is_high_by base_excess_24h_is_high_by ionized_calcium_24h_is_high_by lactate_24h_is_high_by troponin_i_24h_is_high_by troponin_t_24h_is_high_by total_troponin_24h_is_high_by amylase_24h_is_high_by lipase_24h_is_high_by platelets_24h_is_high_by hemoglobin_24h_is_high_by phosphate_24h_is_high_by pao2_24h_is_high_by fio2 24h is high by cpk 24h is high by bnp_24h_is_high_by fibrinogen 24h is high by neutrophil_24h_is_high_by lymphocyte_24h_is_high_by raw_sodium_24h_is_high_by raw_creatinine_24h_is_high_by raw_bun_24h_is_high_by raw_wbc_24h_is_high_by raw_albumin_24h_is_high_by raw_ph_24h_is_high_by raw_bilirubin_24h_is_high_by raw_hct_24h_is_high_by charlson_mi charlson_chf charlson_peri charlson_mi.1 charlson_chf.1 charlson_peri.1 charlson_cvd charlson_dementia charlson_pul_dis charlson_connective charlson peptic charlson_mild_liver charlson_diabetes_no_dam charlson hemiplegia charlson_renal_disease charlson diabetes dam charlson diabetes dam.1 charlson_tumor_no_meta charlson_leukemia charlson lymphoma charlson_liv_disease charlson_metastatic_tumor charlson aids sedatives bin 24h vasopressors_bin_24h antiarrythmics_bin_24h lasixs_bin_24h antibiotics_bin_24h transfusion_24h transfusion_plasma_24h transfusion_cryo_24h transfusion_blood_24h transfusion_platelets_24h fluid_balance_24h

gender height weight bmi Med-Surg ICU MICU Cardiac ICU SICU CCU-CTICU Neuro ICU CTICU Trauma ICU Floating (Universal) License ICU CSTCU Mixed Acuity mv_fio2_24h mv_plateau_pressure_24h mv_peep_24h mv_tidal_volume_24h mv_tv_kg_24h is_mv_24h noninvasive_systolictime_scaled_slope_24h noninvasive_diastolictime_scaled_slope_24h noninvasive_systolicraw_trend_neg_24h noninvasive_diastolicraw_trend_neg_24h noninvasive_systolicraw_trend_pos_24h noninvasive_diastolicraw_trend_pos_24h noninvasive_systolic_trend_neg_24h noninvasive_diastolic_trend_neg_24h noninvasive_systolic_trend_neg_presence_24h noninvasive_diastolic_trend_neg_presence_24h noninvasive_systolic_trend_pos_24h noninvasive diastolic trend pos 24h noninvasive systolic trend pos presence 24h noninvasive_diastolic_trend_pos_presence_24h noninvasive systolic inverse effect 24h noninvasive_diastolic_inverse_effect_24h noninvasive_systolic_24h noninvasive_diastolic_24h invasivesystolictime_scaled_slope_24h invasivediastolictime_scaled_slope_24h raw_sao2time_scaled_slope_24h etco2time_scaled_slope_24h $raw_temperaturetime_scaled_slope_24h$ raw_heartratetime_scaled_slope_24h raw_respratetime_scaled_slope_24h invasivesystolicraw_trend_neg_24h invasivediastolicraw_trend_neg_24h raw_sao2raw_trend_neg_24h etco2raw_trend_neg_24h raw_temperatureraw_trend_neg_24h raw_heartrateraw_trend_neg_24h raw_resprateraw_trend_neg_24h invasivesystolicraw_trend_pos_24h invasivediastolicraw_trend_pos_24h raw_sao2raw_trend_pos_24h etco2raw_trend_pos_24h raw_temperatureraw_trend_pos_24h raw_heartrateraw_trend_pos_24h raw resprateraw trend pos 24h invasivesystolic_trend_neg_24h invasivediastolic_trend_neg_24h raw sao2 trend neg 24h etco2_trend_neg_24h raw_temperature_trend_neg_24h raw_heartrate_trend_neg_24h raw_resprate_trend_neg_24h invasivesystolic_trend_neg_presence_24h ${\tt invasivediastolic_trend_neg_presence_24h}$ raw_sao2_trend_neg_presence_24h etco2_trend_neg_presence_24h raw_temperature_trend_neg_presence_24h raw_heartrate_trend_neg_presence_24h raw_resprate_trend_neg_presence_24h invasivesystolic_trend_pos_24h invasivediastolic_trend_pos_24h raw_sao2_trend_pos_24h etco2_trend_pos_24h raw_temperature_trend_pos_24h raw_heartrate_trend_pos_24h

raw_resprate_trend_pos_24h invasivesystolic_trend_pos_presence_24h invasivediastolic_trend_pos_presence_24h raw_sao2_trend_pos_presence_24h raw_temperature_trend_pos_presence_24h raw_nesprate_trend_pos_presence_24h invasivesystolic_inverse_effect_24h invasivediastolic_inverse_effect_24h raw_sao2_inverse_effect_24h etco2_inverse_effect_24h
raw_temperature_inverse_effect_24h
raw_heartrate_inverse_effect_24h
invasivesystolic_24h
invasivediastolic_24h
raw_sao2_24h
etco2_24h
raw_temperature_24h
raw_heartrate_24h
raw_resprate_24h