
Understanding Generalization

by

Ming Yang Ong

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 26, 2017

Certified by. .
Pablo A. Parrilo

Professor, Department of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Christopher Terman

Chairman, Masters of Engineering Thesis Committee

2

Understanding Generalization

by

Ming Yang Ong

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2017, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

An important goal in machine learning is to understand how to design models that
can generalize. This thesis follows a venerable line of research aimed at understanding
generalization through the lens of stability- the study of how variations on the inputs
of a system can cause its outputs to change. We explore stability and generalization in
two different directions. In the first direction we look at proving stability using a proof
technique provided by Hardt et al [HRS16]. We apply this technique to stochastic
gradient descent with momentum and investigate the resulting stability bounds under
some assumptions. In the second direction, we explore the effectiveness of stability
in obtaining generalization bounds under the violation of some model assumptions.
In particular, we show that stability is insufficient for generalization under domain
adaptation. We introduce a sufficient condition and show that some properties can
imply this condition.

Thesis Supervisor: Pablo A. Parrilo
Title: Professor, Department of Electrical Engineering and Computer Science

3

4

Acknowledgments

Can I begin by confessing that before I started my M’Eng, I’d barely read a single

academic paper? So the learning curve was definitely steep1! Nevertheless I feel I’ve

grown in these two semesters of the M’Eng program figuring out how to navigate

the not always friendly waters of academic research, and also learning about the

interesting and exciting things out there to be learned in the vast beyond. For this

I would like to thank my advisor Pablo who not only offered invaluable comments

and advice regarding my thesis but also taught me the ways of the grad student,

encouraging me to read papers and attend talks. I would also like to thank all my

friends who took the time off their busy schedules to share with me stories of research,

math, and grad student life.

1As we are all machine learning people, let us not get into this debate about what a steep learning
curve actually means

5

6

Contents

1 Introduction 11

2 The General Setting of Learning 13

2.1 Machine Learning as Risk Minimization 13

2.2 Consistency and Generalization . 16

2.3 Stability . 19

3 Proving Stability: Growth Divergence of Iterative Methods 23

3.1 Related work . 23

3.2 Uniform stability of momentum methods 25

3.2.1 Setup and assumptions . 25

3.2.2 Proof sketch . 28

3.2.3 Growth recursion of SGDM 28

3.3 The joint spectral radius . 34

3.3.1 Some experimental results . 36

3.4 Discussion . 39

4 Stability and Domain Adaptation 41

4.1 Motivation . 41

4.2 Preliminaries . 42

4.2.1 A simple mixture model . 44

4.2.2 Measures of robustness . 45

7

4.3 Uniform stability is insufficient for generalization under domain adap-

tation . 49

4.4 Some upper bounds . 51

4.4.1 (𝐾, 𝛾)-robust algorithm . 53

4.4.2 The Wasserstein distance . 54

4.5 Discussion . 54

A Theorems and Proofs 57

A.1 A note on shared randomness . 57

A.2 Huber contamination and variational distance 58

A.3 Kantorovich-Rubinstein duality . 58

8

List of Figures

2-1 A model of supervised learning . 14

2-2 The ambiguous use of the term “generalization” in existing literature . 17

3-1 Behavior of gradient descent on a fixed objective along a ravine with

and without inclusion of a momentum term. In this example, the

objective is a quadratic function 𝑓(𝑥) = 𝑥𝑇𝑄𝑥 where 𝑄 = [0.1, 0; 0, 1]

and the hyperparameters of the descent algorithm are hand tuned with

learning rate 𝛼 = 0.3 and momentum rate 𝛾 = 0.85. 25

3-2 Region of confusion characterized by affine offsets 𝑏𝑖𝑤. If we suppose

𝜌(Σ) < 1, then 𝜌({𝑀𝑖}) < 1. This implies that the stochastic method

converges to a minimum, and so the region of confusion must be zero,

a contradiction. 35

3-3 Some values of sup𝐴∈Σ ||𝐴||𝑇 under some hyperparameter combina-

tions. We generate Σ based on 100 random 10 × 10 PSD matrices

that satisfy 𝜂𝐼 ⪯ 𝑄𝑖 ⪯ 𝜂𝐿𝐼, and choose 𝑇 = 1
𝑛

∑︀𝑛
𝑖=1 𝑀𝑖. The remain-

ing hyperparameters are computed as 𝛼 = 2
(
√
𝜂+

√
𝜂𝐿)2

and 𝛾 =
√
𝜂−√

𝜂𝐿√
𝜂+

√
𝜂𝐿

. 38

3-4 A regression plot of condition number 𝜂𝐿
𝜂

vs sup𝐴∈Σ ||𝐴||𝑇 , and with

𝑇,Σ, 𝛼, 𝛾 generated and computed similar to Figure 3-3. 38

9

10

Chapter 1

Introduction

The decision making systems of today are as data driven as ever, and are deployed

in many wide ranging technologies from medical diagnoses to self driving cars. As

we begin to integrate these technologies into our daily lives, however, the failure of

such systems to make reasonable decisions could result in devastating consequences

such as the loss of human life. When we rely on these systems to help us perform

increasingly ambitious tasks, a central question is how to design systems that can

respond accurately to new situations, given that we can only train them on a finite

number of examples. How do we guarantee the performance of our system on unseen

circumstances? How do we know if our systems can generalize?

Over the years, understanding how to control generalization has become a basic

question in statistical learning theory. To this end, many approaches have been

proposed to achieve this control. One prominent approach is to restrict the capacity

of the hypothesis space, which provides a guarantee on the uniform convergence of

empirical quantities to their mean [Vap98]. In this thesis, we will be concerned with

another method, that is, by controlling the stability of a learning algorithm. Roughly

speaking, stability is a measure of input-output sensitivity of our learning algorithm—

by how much does our model change when we slightly perturb our training set? Our

starting point is a definition of uniform stability introduced by Bousquet and Elisseeff

in 2002 [BE02]. This particular definition has appealed to many researchers because of

its convenient characterization and also data and distribution independence. Within

11

this framework, two natural questions can be asked:

1. How do we prove a learning algorithm satisfies uniform stability?

2. How useful is a uniformly stable algorithm if strict model assumptions are vio-

lated in a minor way?

We investigate these two questions separately, dividing our findings into chapters.

First of all, we begin this thesis in Chapter 2 with a gentle introduction to the problem

of machine learning and empirical risk minimization. We assume the reader has no

prior machine learning knowledge, and so we will formulate our problems of interest

from first principles. In particular, we show how risk, generalization, and consistency

naturally arise in the general setting of learning, how they relate to each other, and

how they can be controlled by the property of stability.

In Chapter 3, we discuss a technique proposed by Hardt et al [HRS16] that can be

used to analyze stability bounds of models that are trained by a stochastic method.

Even though this technique relies on only elementary convex analysis, it can be applied

to a large range of learning algorithms. In particular, we will look at a specific

algorithm: stochastic gradient descent with momentum. We present some results,

but with the downside that the bounds attained from this analysis are meaningful

only under very strict conditions. We show that the stability can potentially be upper

bounded by the joint spectral radius of a class of matrices.

In Chapter 4, we explore some of the limitations of stability as a standard for

achieving our original goal- to guarantee performance under unseen circumstances.

We consider the setting of domain adaptation [BDBCP07], and show that stability

is insufficient for generalization when our training data is drawn from a distribution

that differs slightly from the test distribution. We show that the generalization error

can be decomposed into two terms, the first is the original generalization error, and

the second is some measure of robustness, which can be upper bounded by properties

such as the algorithmic robustness [XM10] or the Wasserstein distance between the

distributions.

12

Chapter 2

The General Setting of Learning

What is machine learning? In some sense, machine learning is the study of systems

that learn how to make decisions from data. When a system makes decisions, it

incurs some kind of risk in relation to its true environment. Within this framework,

thinking about machine learning is equivalent to thinking about the problem of risk

minimization:

2.1 Machine Learning as Risk Minimization

Suppose we want to understand some relationship between observations 𝑥 and 𝑦.

Imagine there being some unknown functional dependency 𝑥 → 𝑦 that represents the

true relationship between these two observations. Then the goal is to construct a

learning machine that attempts to imitate the true relationship by enacting 𝑥 → 𝑦′.

To help the learning machine, we give it access to previous realizations of 𝑥 and 𝑦,

which are referred to as training data. We can formalize this as a model of searching for

functional dependency, introduced by Vapnik [Vap98], comprising three components:

1. A generator component which produces examples 𝑥

2. A supervisor that enacts the true relationship 𝑥 → 𝑦

3. A learning machine whose goal is to imitate the supervisor given training data

{(𝑥𝑖, 𝑦𝑖)}.

13

Figure 2-1: A model of supervised learning

Here, we assume that our training data 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖) ∈ 𝑍 are generated i.i.d.

according to some unknown but fixed probability distribution, and that our learning

machine is given access to a finite training set 𝑆 = {𝑧1, . . . , 𝑧𝑛} of cardinality 𝑛. To

imitate the supervisor, the learning machine is tasked to pick the best function 𝑥 → 𝑦′

out of a set of possible functions parameterized by model parameters 𝑤 ∈ 𝑊 .

What does it mean to pick the “best” function? We assume a given loss function

𝑓 : 𝑊 × 𝑍 → R that provides a measure of how inaccurate our predictions are on a

new example 𝑧 ∈ 𝑍. Define the risk:

𝑅(𝑤) = E𝑧 𝑓(𝑤, 𝑧)

Then our goal is to find the model parameters 𝑤 ∈ 𝑊 that minimizes the risk:

𝑤* = argmin
𝑤∈𝑊

𝑅(𝑤) 𝑅* = 𝑅(𝑤*)

To solve this minimization problem, we apply a learning algorithm. Formally, a

learning algorithm is a function 𝐴 : 𝑍𝑛 → 𝑊 that receives a training data set 𝑆 ∈ 𝑍𝑛

and returns model parameters 𝑤. We sometimes say that 𝐴 learns 𝑤 from 𝑆.

Because our distribution is unknown, the risk often cannot be explicitly calculated,

so we have to estimate it from other quantities. Given training data 𝑆, a simple

estimator is the average of sample losses, known as the empirical risk:

𝑅𝑆(𝑤) =
1

𝑛

∑︁
𝑧𝑖∈𝑆

𝑓(𝑤, 𝑧𝑖)

14

Since the empirical distribution is an approximation of the true distribution, cer-

tainly a method that attempts to minimize the empirical risk is a good place to start.

The problem of finding 𝑤 that minimizes 𝑅𝑆 is known as the problem of empirical

risk minimization (ERM) [Vap98]. We can similarly denote:

𝑤*
𝑆 = argmin

𝑤∈𝑊
𝑅𝑆(𝑤) 𝑅*

𝑆 = 𝑅𝑆(𝑤
*)

ERM is sufficiently general that it is the underlying principle of many popular

machine learning methods such as:

Example 2.1.1 (Regression). In the model of linear regression we can consider pre-

diction functions of the form ℎ𝑤 : 𝑥 → ⟨𝑤, 𝑥⟩. The sum of squares residue can then be

expressed as the empirical risk associated with loss function 𝑓 : 𝑤× 𝑧 → (ℎ𝑤(𝑥)− 𝑦)2

Example 2.1.2 (Support Vector Machines). An SVM is a type of binary classification

model. Prediction functions take the form ℎ𝑤 : 𝑥 → 1⟨𝑤,𝑥⟩>0, and a possible loss

function is 𝑓(𝑤, 𝑧) = 𝑔(𝑦 · ⟨𝑤, 𝑥⟩) where the hinge function 𝑔 is

𝑔(𝑣) =

⎧⎪⎨⎪⎩0 𝑣 > 1

1− 𝑣 𝑣 ≤ 1

And the problem is to minimize 1
𝑛

∑︀𝑛
𝑖=1 𝑓(𝑤, 𝑧𝑖) + ||𝑤||2, where the first term is

the empirical risk and the last term is a regularization parameter.

In fact, ERM is general enough that it even encompasses some unsupervised learn-

ing problems (even though we described ERM in terms of supervised learning earlier

in Figure 2-1):

Example 2.1.3 (𝑘-means clustering). Let 𝑊 be the set of all subsets of R𝑛 of size 𝑘.

Then the 𝑘-means clustering procedure is to find a hypothesis 𝑤 ∈ 𝑊 (corresponding to

𝑘 centroids) that minimizes the risk associated with loss function 𝑓(𝑤, 𝑧) = inf𝑐∈𝑤 ||𝑐−

𝑧||2.

Now we have rather surreptitiously claimed that solving ERM is a good way to

approach the learning problem. This claim needs to be supported, so we ask: suppose

15

our learning algorithm returns the solution 𝑤, how close are we to our original goal

of minimizing 𝑅(𝑤)? This is essentially a question of consistency and generalization

which we will discuss in Section 2.2 below.

2.2 Consistency and Generalization

Recall from Section 2.1 that our original goal is to find the minimizer of the risk. Sup-

pose our learning algorithm gives us a model 𝑤. One way to evaluate the performance

of our model is to consider 𝑅(𝑤)−𝑅*. This motivates a notion of consistency:

Definition 2.2.1 (Consistency [SSSSS10]). We say that a learning algorithm 𝒜 that

learns 𝑤 from 𝑆 is consistent with rate 𝜖(𝑛) with respect to a distribution 𝒟 if,

E𝑆∼𝒟𝑛 [𝑅(𝑤)−𝑅*] = 𝜖(𝑛)

If lim𝑛→∞ 𝜖(𝑛) = 0, we say that 𝒜 is consistent. If the convergence holds for all

distributions 𝒟, then we say that 𝒜 is universally consistent. We also say that a

learning problem is learnable if there exists a learning algorithm that is universally

consistent for the problem.

We note that some authors define consistency in terms of a probability bound

[MNPR06]. This doesn’t really matter as we can always translate an expectation

bound 𝐸[|𝑋|] ≤ 𝜖 to a probability guarantee e.g. with Markov’s inequality we have

Pr[𝑋 ≥ 𝜖/𝛿] ≤ 𝛿1.

There are some authors who refer to consistency as generalization [BCN16]. In

some sense, a high probability guarantee that the predictions of our model do not differ

much from the best possible hypothesis is essentially a guarantee on the performance

of our model in the real world.

But a more common way people think about generalization is how different our

model performs on the true distribution compared to the empirical distribution. In-

deed, the difference 𝑅(𝑤) − 𝑅𝑆(𝑤) provides us with a measure of cross validation
1A discussion on this topic can be found in Section 7 of [SSSSS10]

16

performance of our model (in practice, this is often referred to as the “test error mi-

nus training error”). We can think of this generalization as a guarantee of our model’s

performance in the real world given its performance in a training environment.

Both of these characterizations can contribute to our understanding of generaliza-

tion, which is the informal idea that we want our systems to make reasonable decisions

under some uncertainty. Unfortunately this ambiguity results in some confusion as

to what is formally defined as generalization in existing literature, and the term has

ended up referring to several different quantities. Nevertheless, they can fortunately

all be related by one equation. Suppose our algorithm learns 𝑤 from 𝑆, then we can

write the following tautology:

𝑅(𝑤)−𝑅* = [𝑅(𝑤)−𝑅𝑆(𝑤)] + [𝑅𝑆(𝑤)−𝑅𝑆(�̃�)] + [𝑅𝑆(�̃�)−𝑅*] (2.2.0.1)

This decomposition equation is not new [LCR16, BB07]. Regardless this helps us

understand the relationship between the following terms that we will define below:

Term What others have called this What we will call this

𝑅(𝑤) Generalization error [BE02, XM10] Risk

𝑅(𝑤)−𝑅* Generalization error [BCN16] Excess risk

𝑅(𝑤)−𝑅𝑆(𝑤) Generalization error [HRS16, LCR16] Generalization error

Figure 2-2: The ambiguous use of the term “generalization” in existing literature

The remaining terms in Equation 2.2.0.1 can be analyzed depending on our choice

of �̃�. For example, if we choose �̃� to be the ERM solution, then the second term

𝑅𝑆(𝑤)−𝑅𝑆(�̃�) is the optimization error, and the last term 𝑅𝑆(�̃�)−𝑅* can be seen

as the approximation error between ERM and risk minimization. In this framework,

balancing the terms in Equation 2.2.0.1 result in a few tradeoffs. For example, it is

possible to construct a naïve algorithm that has vanishing expected generalization

error, but with no guarantees on the optimization error:

17

Example 2.2.1. Consider the algorithm that returns 𝑤 independently of 𝑆. Then

the expected generalization error is always zero.

Proof. Since 𝐴 is independent of 𝑆, so

E𝑆[𝑅(𝑤)−𝑅𝑆(𝑤)] = E𝑧𝑓(𝑤, 𝑧)− E𝑆[
1

𝑛

𝑛∑︁
𝑖=1

𝑓(𝑤, 𝑧𝑖)]

= E𝑧𝑓(𝑤, 𝑧)−
1

𝑛

𝑛∑︁
𝑖=1

E𝑧𝑖 [𝑓(𝑤, 𝑧𝑖)]

= 0

So we would like to investigate an approach that can explore this tradeoff. One

prominent research direction is the study of notions of capacity of the hypothesis

class, e.g. Rademachar complexity (see references within [ZBH+17]) or VC dimen-

sion [VC71]. When a learning problem has finite VC dimension, then there exists an

algorithm that can provide consistency and generalization guarantees. However, this

condition is pretty strict as it requires assumptions on the entire hypothesis class. It

turns out that this is not necessary, and that a notion of stability on our learning al-

gorithm is sufficient to provide the same guarantees. Using stability without recourse

to notions of capacity like VC dimension is nice as 1) since stability is a property of

a learning algorithm, so proving stability explicitly provides a consistent algorithm,

as opposed to just a certificate of existence, and 2) a learning problem with a sta-

ble algorithm generalizes and can be consistent under some assumptions even if its

hypothesis class has infinite capacity.

We will explore the relationship between stability and generalization in the next

section.

18

2.3 Stability

What is stability? Roughly speaking, an algorithm is stable if its outputs vary only

slightly if we change one element in its training set. We can think of stability as a

property of a learning algorithm that characterizes its sensitivity to its training data.

In many papers that concern stability [BE02, MNPR06, SSSSS10], stability is often

described as the ability of an algorithm to be robust against a few data points which

might deviate grossly from the structure of the bulk of the dataset.

A number of results have shown that stability is sufficient for generalization [BE02]

and also consistency [MNPR06]. We will cover a few of these results in this section.

But first, we need a few definitions. Let us construct a modified training set obtained

from 𝑆:

Definition 2.3.1 (Adjacent datasets). Denote

𝑆(𝑖) = {𝑧1, . . . , 𝑧𝑖−1, 𝑧
′
𝑖, 𝑧𝑖+1, . . . 𝑧𝑛}

to be the training set that is identical to 𝑆 except for the 𝑖𝑡ℎ element 𝑧𝑖 replaced

with 𝑧′𝑖 which is drawn i.i.d. from 𝐷. Then a training set 𝑆 ′ is said to be adjacent to

𝑆 if there exists an 𝑖 and 𝑆(𝑖) such that 𝑆 ′ = 𝑆(𝑖).

Definition 2.3.2 (Uniform stability). A (possibly random) learning algorithm 𝐴 is

𝜖-uniformly stable with respect to a loss function 𝑓 if for all adjacent datasets 𝑆 and

𝑆 ′,

sup
𝑧

E𝐴[𝑓(𝐴(𝑆), 𝑧)− 𝑓(𝐴(𝑆 ′), 𝑧)] ≤ 𝜖

Where the expectation is taken over the internal randomness of 𝐴. When 𝜖 ≤

𝑂(1
𝑛
), we sometimes simply say that 𝐴 is uniformly stable.

This definition allows us to think of stability as some notion of continuity of 𝑓

with respect to 𝑆, induced by 𝐴.

An interesting result is that if a model is obtained from an 𝜖-uniformly stable

algorithm, the empirical risk and the risk are within 𝜖 error in expectation. In other

words, stability implies generalization. This can be shown with the following theorem:

19

Theorem 2.3.1 (Generalization in Expectation2). Let 𝐴 be 𝜖-uniformly stable. Then,

|E𝑆,𝐴[𝑅(𝐴(𝑆))−𝑅𝑆(𝐴(𝑆))]| ≤ 𝜖

Proof. Let 𝑆 = (𝑧1 . . . 𝑧𝑛) and 𝑆(𝑖) be defined as in Definition 2.3.1. We can compute

the expectation of 𝑅𝑆(𝐴(𝑆)):

E𝑆,𝐴[𝑅𝑆(𝐴(𝑆))] =
1

𝑛

𝑛∑︁
𝑖=1

E𝑆,𝐴[𝑓(𝐴(𝑆), 𝑧𝑖)]

=
1

𝑛

𝑛∑︁
𝑖=1

E𝑆,𝐴,𝑧′𝑖
[𝑓(𝐴(𝑆(𝑖)), 𝑧′𝑖)]

= E𝑆,𝐴,𝑧′𝑖
[𝑓(𝐴(𝑆(𝑖)), 𝑧′𝑖)]

with the second equality arising from mathematical substitution— the two quan-

tities are indistinguishable! Putting these together we have:

|E𝑆,𝐴[𝑅(𝐴(𝑆))−𝑅𝑆(𝐴(𝑆))]| = |E𝑆,𝐴,𝑧′𝑖
[𝑓(𝐴(𝑆), 𝑧′𝑖)− 𝑓(𝐴(𝑆(𝑖)), 𝑧′𝑖)]|

≤ | sup
𝑧

E𝑆,𝐴,𝑧′𝑖
[𝑓(𝐴(𝑆), 𝑧)− 𝑓(𝐴(𝑆(𝑖)), 𝑧)]|

≤ sup
𝑆,𝑧′𝑖,𝑧

E𝐴[𝑓(𝐴(𝑆), 𝑧)− 𝑓(𝐴(𝑆(𝑖)), 𝑧)]

≤ 𝜖

Besides generalizing in expectation, several other high probability bounds also ex-

ist [BE02]. Besides generalization, a more surprising result is that when our algorithm

is ERM, uniform stability also implies consistency:

Theorem 2.3.2 (Stability of ERM implies consistency3). Uniform stability is suffi-

cient for universal consistency of ERM.
2Proof adapted from [HRS16]
3Adapted from [MNPR06]

20

Proof. If our learning algorithm is ERM, this means that our algorithm learns 𝑤*
𝑆

from 𝑆. From Theorem 2.3.1, we know that uniform stability implies that

lim
𝑛→∞

E[𝑅(𝑤*
𝑆)] = lim

𝑛→∞
E[𝑅𝑆(𝑤

*
𝑆)]

Then 𝑅(𝑤*) ≤ 𝑅(𝑤*
𝑆) and 𝑅𝑆(𝑤

*
𝑆) ≤ 𝑅𝑆(𝑤

*). Therefore,

𝑅(𝑤*) ≤ lim
𝑛→∞

E[𝑅(𝑤*
𝑆)] = lim

𝑛→∞
E[𝑅𝑆(𝑤

*
𝑆)] ≤ lim

𝑛→∞
E[𝑅𝑆(𝑤

)] = 𝑅(𝑤)

with the last equality arising from the law of large numbers. This results in

lim
𝑛→∞

E[𝑅(𝑤*
𝑆)] = 𝑅*

Theorem 2.3.2 requires our algorithm to be explicitly an ERM, but not all learning

algorithms are of this form (the converse isn’t true either; not all ERM algorithms

are uniformly stable [SSSSS10]). Especially with numerical optimizers and stochastic

methods, an exact minimizer is rarely found. To allow for a more general discussion,

we can also consider the case when 𝑤 is not an exact minimizer of ERM, but within

some 𝜖 region of the exact minimizer.

Corollary 2.3.1 (Stability of almost ERM implies almost consistency4). Suppose an

𝜖𝑠𝑡𝑎𝑏-uniformly stable learning algorithm learns 𝑤 from 𝑆 such that 𝑅𝑆(𝑤) is within

an 𝜖𝑜𝑝𝑡 neighborhood of the optimum 𝑅*
𝑆. Then the algorithm is universally consistent

with rate 𝜖𝑜𝑝𝑡 + 𝜖𝑠𝑡𝑎𝑏.

Proof. This is simply a consequence of Equation 2.2.0.1, Theorem 2.3.1 and Theorem

2.3.2. We observe that E[𝑅(𝑤)] = E[𝑅𝑆(𝑤
*
𝑆)] + 𝜖𝑠𝑡𝑎𝑏 and thus:

4Very similar results have been proposed by [MNPR06, SSSSS10]

21

E[𝑅(𝑤)]−𝑅* = E[𝑅𝑆(𝑤
*
𝑆)] + 𝜖𝑠𝑡𝑎𝑏 + 𝜖𝑜𝑝𝑡 −𝑅*

≤ E[𝑅𝑆(𝑤
)] + 𝜖𝑠𝑡𝑎𝑏 + 𝜖𝑜𝑝𝑡 −𝑅

=
1

𝑛

𝑛∑︁
𝑖=1

E𝑧𝑖 [𝑓(𝑤
, 𝑧𝑖)] + 𝜖𝑠𝑡𝑎𝑏 + 𝜖𝑜𝑝𝑡 −𝑅

= 𝑅(𝑤*) + 𝜖𝑠𝑡𝑎𝑏 + 𝜖𝑜𝑝𝑡 −𝑅*

= 𝜖𝑠𝑡𝑎𝑏 + 𝜖𝑜𝑝𝑡

We are now ready to explore a few questions in the coming chapters: how do we

prove an algorithm is uniformly stable? How useful in stability under small violations

of our model assumptions?

22

Chapter 3

Proving Stability: Growth Divergence

of Iterative Methods

Recall that in the previous chapter we observed that a uniformly stable algorithm

implied generalization. However, a definition of uniform stability is not very useful if

we cannot design algorithms that satisfy this condition. Therefore, in this chapter,

we explore some techniques that can be used to design uniformly stable algorithms.

3.1 Related work

Stability and regularization Bousquet and Elisseeff showed that some explicit

regularization techniques such as Hilbert space regularization and Kullback-Leibler

regularization corresponded to models that were uniformly stable [BE02]. More re-

cently, Shalev-Shwartz showed that in general loss functions that were lipschitz and

strongly convex were uniformly stable [SSSSS10] (note that L2 regularization turns

a convex function into a strongly convex one)! These results on stability provide a

fresh and exciting new perspective on the role of regularization in machine learning.

On the same theme of regularization, research has suggested that tuning opti-

mization hyperparameters such as the number of training epoches serve as a form

of implicit regularization that can potentially improve generalization [LCR16]. This

builds on previous work by Hardt et al [HRS16] that showed that one can control

23

uniform stability bounds of models trained with stochastic gradient descent by only

training for a finite number of epoches. In this approach, the algorithm is stochas-

tic gradient descent (SGD) with respect to the loss function as the objective. In this

chapter, we investigate what happens when the optimization algorithm is chosen to be

different from SGD. In particular, the algorithm we investigate is stochastic gradient

descent with momentum (SGDM).

Accelerated methods and momentum Acccelerated gradient descent or mo-

mentum methods have been well studied in the setting of a fixed objective function.

Some popular versions include Nesterov’s accelerated gradient [Nes98] and also the

heavy ball method by Polyak [Pol64]. In this chapter we will work with a variation

on the latter.

One advantage of momentum is that it allows us to escape “shallow” local minima,

and navigate other peculiar features of nonlinear cost functions e.g. when training

neural networks (see [Ber99] and references within). Additionally, a problem that

arises in gradient descent methods is that the basic algorithm has trouble navigating

ravines, i.e. surfaces that are alternately very steep and very flat along the path of

the algorithm. The result is that the iteration vector descends quickly in the first

direction but makes very slow progress in the other. Intuitively, momentum helps

us avoid this weakness by accelerating the iteration vector in the relevant direction.

This advantage can be easily seen from Figure 3-1.

24

Descent trajectory

-10 -5 0 5 10

x
1

-10

-5

0

5

10

x
2

0 20 40 60 80 100

iteration

0

2

4

6

8

10

12

14

d
is

ta
n

c
e

 t
o

 o
ri
g

in

Convergence

without momentum

with momentum

Figure 3-1: Behavior of gradient descent on a fixed objective along a ravine with and

without inclusion of a momentum term. In this example, the objective is a quadratic

function 𝑓(𝑥) = 𝑥𝑇𝑄𝑥 where 𝑄 = [0.1, 0; 0, 1] and the hyperparameters of the descent

algorithm are hand tuned with learning rate 𝛼 = 0.3 and momentum rate 𝛾 = 0.85.

Clearly, momentum methods have some obvious benefits over gradient descent on

a fixed objective. In the stochastic setting however, less is clear [Ber15]. Research has

suggested that momentum methods are less robust to noise, which might affect their

convergence performance in the stochastic setting (see references within [HRS16]).

In either case, the tradeoff between the benefits and weaknesses makes SGDM a

fascinating method to study, and the deep connection between robustness, stability

and generalization motivates our research in this direction.

The rest of this chapter is lined up as follows: in Section 3.2, we derive stability

bounds for models trained with SGDM and note that these bounds depend on the

joint spectral radius of a set of matrices associated with our training set. In Section

3.3, we analyze bounds on the joint spectral radius.

3.2 Uniform stability of momentum methods

3.2.1 Setup and assumptions

Here we finally introduce the algorithm that we will be analyzing in this chapter.

SGDM is an iterative algorithm defined by the following procedure:

25

1. The algorithm is initialized with a starting vector 𝑤0 and no initial momentum,

i.e. 𝑤−1 = 𝑤0.

2. At each step 𝑖 of the algorithm, we select an element 𝑧𝑖 from 𝑆 uniformly at

random1. Then defining 𝑓𝑖 = 𝑓(·, 𝑧𝑖) we update 𝑤𝑖+1 with the following rule:

𝑤𝑖+1 = 𝑤𝑖 − 𝛼∇𝑓𝑖(𝑤𝑖) + 𝛾(𝑤𝑖 − 𝑤𝑖−1) (3.2.1.1)

We assume the algorithm is initialized with no momentum, i.e. 𝑤−1 = 𝑤0.

3. After 𝑡 iterations, the algorithm outputs 𝑤𝑡

We refer to 𝛼 as the learning rate, 𝛾 as the momentum rate, and 𝑡 the epoch or

iteration number of our algorithm. In our analysis, we consider the case where 𝛼, 𝛾

are fixed constants that will be determined later.

Now, up to this point, we haven’t quite mentioned anything about the nature

of the loss functions 𝑓 . For our proof, we require a few assumptions, which we will

formally state below.

Assumption 3.2.1 (Quadratic loss). 𝑓(·, 𝑧) is quadratic. This means that for every

training example 𝑧𝑖, we have

𝑓𝑖 : 𝑤 → 𝑤𝑇𝑄𝑖𝑤 + 𝑏𝑖𝑤

This assumption is a benign one— quadratic functions are commonly used in

convergence analysis in nonlinear programming ([Ber15], page 59). The rationale is

that a twice differentiable cost function behaves like a quadratic cost function in the

neighborhood of a minimum where the Hessian matrix is positive definite.

We observe that with this assumption, ∇𝑓𝑖(𝑤𝑖) = 2𝑄𝑖𝑤𝑖 + 𝑏𝑖, and so we can

explicitly write the recurrence relation in Equation 3.2.1.1 as:
1This is a common assumption in the analysis of stochastic gradient methods in many machine

learning applications [BCN16, LCR16]. Indeed, there are many different ways in which one can pick
𝑧𝑖, for example, by generating a random permutation and picking each 𝑧𝑖 ∈ 𝑆 according to the order
given by the permutation, i.e. in [HRS16].

26

𝑤𝑖+1 = 𝑤𝑖 − 2𝛼𝑄𝑖𝑤𝑖 − 𝛼𝑏𝑖 + 𝛾(𝑤𝑖 − 𝑤𝑖−1)

Which is a linear relationship, i.e.

⎡⎢⎢⎢⎣
𝑤𝑖+1

𝑤𝑖

𝑐𝑖+1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
(1 + 𝛾)𝐼 − 2𝛼𝑄𝑖 −𝛾𝐼 −𝛼𝑏𝑖

𝐼 0 0

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

𝑤𝑖

𝑤𝑖−1

𝑐𝑖

⎤⎥⎥⎥⎦ (3.2.1.2)

w𝑖+1 = 𝑀𝑖w𝑖

Notice that if our initial vector is set with 𝑐0 = 1, then 𝑐𝑖+1 = 𝑐𝑖 = 1 for all 𝑖 ∈ N.

So it suffices to consider optimization over the domain W ⊂ {[𝑎, 𝑏, 1] : 𝑎, 𝑏 ∈ 𝑊}.

Our second assumption is some notion of continuity of our loss function with

respect to our model parameter space.

Definition 3.2.1 (Lipschitz continuity [Nes98]). We say a function 𝑓 is 𝐿-Lipschitz

with respect to || · || if for all points 𝑢 on the domain of 𝑓 we have

|𝑓(𝑢)− 𝑓(𝑣)| ≤ 𝐿||𝑢− 𝑣||

Assumption 3.2.2 (Lipschitz continuity). 𝑓(·, 𝑧) is 𝐿-Lipschitz with respect to the

euclidean norm

A small observation is that quadratic loss functions are not 𝐿-Lipschitz if the

domain W is unbounded. Therefore, in order to work with both of these assumptions

simultaneously it is implied that W is bounded. However, for the rest of the proof we

will simply assume both assumptions hold and work from there.

A final remark is that we will be working with matrix and vector norms extensively

in our proof. So we need to standardize the kind of norms we are working with.

Remark 3.2.1 (Choice of norm). Unless it is otherwise stated, we write || · || to refer

to the operator norm when applied to a matrix and the euclidean norm when applied

to a vector

27

3.2.2 Proof sketch

Here we describe our proof technique inspired by the methods used by Hardt et al for

proving stability of SGD. In a nutshell, we will analyze the growth divergence of the

outputs of two instances of the algorithm run on two data sets that differ in precisely

one location. Recall that to prove stability we want to bound E|𝑓(𝑤, 𝑧) − 𝑓(𝑤′, 𝑧)|.

Observe that if 𝑓(·, 𝑧) is 𝐿-Lipschitz then E|𝑓(𝑤, 𝑧)− 𝑓(𝑤′, 𝑧)| ≤ 𝐿E||𝑤−𝑤′|| for all

𝑤 and 𝑤′. Therefore it suffices to analyze the growth divergence of 𝑤𝑖 and 𝑤′
𝑖 at the

𝑖𝑡ℎ iteration2. Note that we can treat 𝑤𝑖 as the output of a switched linear system in

discrete time. Therefore we can express the growth as the sum of a product of linear

operators, which itself is a linear operator! Bounding the norm of this linear operator

will do the trick. We will analyze these bounds in Section 3.3.

We skipped a small detail, which is that the randomness involved in selecting the

initial conditions of the algorithm and also each linear operator 𝑀𝑖 at each step of the

algorithm, is shared between the two running instances of the algorithm. This means

that at each step of the algorithm, with probability 1− 1
𝑛

our two instances pick the

same 𝑀𝑖, and with probability 1
𝑛
, our two instances pick a different 𝑀𝑖. We refer the

reader to a note on shared randomness in Appendix A.1 if this is confusing, but the

general idea is that this property enables a clever way of factorizing out the linear

operators so that the final expression for the stability bound is simple and elegant.

3.2.3 Growth recursion of SGDM

Suppose we run SGDM on two adjacent sample sets 𝑆 and 𝑆 ′ for 𝑡 steps each. This

corresponds to applying Equation 3.2.1.2 for 𝑡 iterations to w0 and w′
0 respectively.

Furthermore, by our independence assumption and the law of total expectation we

have:

2In Hardt et al, it also sufficed to bound ||𝑤𝑖 − 𝑤′
𝑖|| recursively in expectation as a function of

||𝑤𝑖−1 − 𝑤′
𝑖−1||. Here the analysis differs slightly. For accelerated methods, we can’t bound the

growth like in Hardt et al, as accelerated methods can have unbounded expansiveness.

28

E[w𝑡 −w′
𝑡] = E

[︃(︃
𝑡−1∏︁
𝑖=0

𝑀𝑖

)︃
w0 −

(︃
𝑡−1∏︁
𝑖=0

𝑀 ′
𝑖

)︃
w′

0

]︃

= E

[︃(︃
𝑡−1∏︁
𝑖=0

𝑀𝑖

)︃
− E

[︃
𝑡−1∏︁
𝑖=0

𝑀 ′
𝑖

⃒⃒⃒⃒
𝑀0 . . .𝑀𝑡−1

]︃]︃
E[w0]

= E

[︃(︃
𝑡−1∏︁
𝑖=0

𝑀𝑖

)︃
−

(︃
𝑡−1∏︁
𝑖=0

E[𝑀 ′
𝑖 |𝑀𝑖]

)︃]︃
E[w0]

As we discussed earlier, a key observation is that at each step 𝑖 of the SGDM, the

samples drawn from both sets are the same with probability 1− 1
𝑛
, and different with

probability 1
𝑛
. Note also that whenever the drawings are different, they will always

correspond to the same pair of examples, since 𝑆 and 𝑆 ′ differ by exactly one element.

So without loss of generality, we can denote 𝑀𝑖 to be the drawing that was the same

and 𝑀 ′′ ̸= 𝑀𝑖 to be the exact drawing that was different.

E

[︃(︃
𝑡−1∏︁
𝑖=0

𝑀𝑖

)︃
−

(︃
𝑡−1∏︁
𝑖=0

E[𝑀 ′
𝑖 |𝑀𝑖]

)︃]︃
= E

[︃
𝑡−1∏︁
𝑖=0

𝑀𝑖 −
𝑡−1∏︁
𝑖=0

(︂
𝑛− 1

𝑛
𝑀𝑖 +

1

𝑛
𝑀 ′′
)︂]︃
(3.2.3.1)

We can also denote 𝑉𝑖 = 𝑀 ′′ −𝑀𝑖 for convenience, then

E[w𝑡 −w′
𝑡] = E

[︃
𝑡−1∏︁
𝑖=0

𝑀𝑖 −
𝑡−1∏︁
𝑖=0

(︂
𝑀𝑖 +

1

𝑛
𝑉𝑖

)︂]︃
E[w0]

Notice that we can expand the second product into a sum of terms:

𝑡−1∏︁
𝑖=0

(︂
𝑀𝑖 +

1

𝑛
𝑉𝑖

)︂
=

𝑡−1∏︁
𝑖=0

𝑀𝑖 +
1

𝑛

𝑡−1∑︁
𝑗=0

(︃
𝑗−1∏︁
𝑖=0

𝑀𝑖

)︃
𝑉𝑗

(︃
𝑡−1∏︁

𝑖=𝑗+1

𝑀𝑖

)︃

+
1

𝑛2

∑︁
0≤𝑗<𝑘≤𝑡−1

(︃
𝑗−1∏︁
𝑖=0

𝑀𝑖

)︃
𝑉𝑗

(︃
𝑘−1∏︁

𝑖=𝑗+1

𝑀𝑖

)︃
𝑉𝑘

(︃
𝑡−1∏︁

𝑖=𝑘+1

𝑀𝑖

)︃
+ . . . (3.2.3.2)

29

Combining these expressions together we obtain

E[w𝑡 −w′
𝑡] = −E

[︃
1

𝑛

𝑡−1∑︁
𝑗=0

(︃
𝑗−1∏︁
𝑖=0

𝑀𝑖

)︃
𝑉𝑗

(︃
𝑡−1∏︁

𝑖=𝑗+1

𝑀𝑖

)︃
+

1

𝑛2
. . .

]︃
E[w0] (3.2.3.3)

Which is a vector expression that characterizes the growth divergence between the

two vectors w𝑡 and w′
𝑡. Notice that there are 2𝑡 − 1 products of matrices which are

each 𝑡 matrices long. This analysis has the rather interesting interpretation that we

can think of SGDM as some unnormalized distribution of 2𝑡−1 possible “paths” taken

by a initial vector. The expected growth is then proportional to the expectation over

the final destinations of these paths.

Now taking norms3 on both sides and applying the triangle inequality we get:

E||w𝑡 −w′
𝑡|| ≤ E

[︃
1

𝑛

𝑡−1∑︁
𝑗=0

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
(︃

𝑗−1∏︁
𝑖=0

𝑀𝑖

)︃
𝑉𝑗

(︃
𝑡−1∏︁

𝑖=𝑗+1

𝑀𝑖

)︃⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒+ 1

𝑛2
. . .

]︃
E||w0|| (3.2.3.4)

So, in order to bound the growth it suffices to bound the expression on the right.

Note that this expression depends on a constructed vector w𝑖 = [𝑤𝑖, 𝑤𝑖−1, 1]
𝑇 , but we

can always express ||w0|| as
√︀
2 · ||𝑤0||2 + 1 when ||w0|| is the euclidean norm and

when we have 𝑤0 = 𝑤−1 i.e. no initial momentum.

Upper bounds

Recall that there is a bijection between training examples 𝑧𝑖 ∈ 𝑆 and operators 𝑀𝑖.

So we can denote Σ to be the set of all 𝑀𝑖, 𝑉𝑖 corresponding to 𝑆. Note that Σ is

data-dependent and finite with cardinality 2𝑛, containing 𝑛 elements 𝑀0 . . .𝑀𝑛 and

𝑛 elements 𝑉0 . . . 𝑉𝑛.

We adopt the following notation from [Jun09] to denote the product of matrices

of length 𝑡:

3Note that the pair of norms chosen in Remark 3.2.1 have been chosen to be consistent

30

Σ𝑡 △
={𝐴0 . . . 𝐴𝑡−1 : 𝐴𝑖 ∈ Σ}

And also to denote the “maximum size” of products of length 𝑡:

𝜌𝑡(Σ, || · ||)
△
= sup

𝐴∈Σ𝑡

||𝐴||
1
𝑡

When it is clear from context we write 𝜌𝑡(Σ) or sometimes simply 𝜌𝑡. Indeed, in

this section we have already established that || · || refers to the operator norm and that

Σ is defined above. Anyway, we observe that we can bound the norm of every product

of matrices in Equation 3.2.3.4 with the supremum of the norm over all products of

matrices drawn from Σ𝑡, e.g.

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
(︃

𝑗−1∏︁
𝑖=0

𝑀𝑖

)︃
𝑉𝑗

(︃
𝑡−1∏︁

𝑖=𝑗+1

𝑀𝑖

)︃⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒ ≤ 𝜌𝑡𝑡

Then we can simplify Equation 3.2.3.4 into:

E||w𝑡 −w′
𝑡|| ≤

(︂
𝜌𝑡𝑡
𝑛

(︂
𝑡

1

)︂
+

𝜌𝑡𝑡
𝑛2

(︂
𝑡

2

)︂
+ . . .

)︂
E||w0||

= 𝜌𝑡𝑡

(︃
𝑡∑︁

𝑘=1

1

𝑛𝑘

(︂
𝑡

𝑘

)︂)︃
· E||w0||

= 𝜌𝑡𝑡((1 +
1

𝑛
)𝑡 − 1) · E||w0|| (3.2.3.5)

Now we are ready to prove the uniform stability of SGDM:

Theorem 3.2.1. SGDM with respect to a loss function 𝑓 that is quadratic and 𝐿-

Lipschitz satisfies uniform stability with rate

𝜖 = 𝐿((1 +
1

𝑛
)𝑡 − 1) · E||w0|| · sup

Σ
𝜌𝑡(Σ)

𝑡

Proof. Firstly, E||w𝑡 − w′
𝑡|| is also an upper bound on growth of 𝑤 in our original

parameter space, i.e.

31

E||𝑤𝑡 − 𝑤′
𝑡|| ≤ E||w𝑡 −w′

𝑡||

So for all 𝑧 ∈ 𝑍,

E|𝑓(𝑤𝑡, 𝑧)− 𝑓(𝑤′
𝑡, 𝑧)| ≤ 𝐿 E||𝑤𝑡 − 𝑤′

𝑡||

≤ 𝐿 E||w𝑡 −w′
𝑡||

≤ 𝐿𝜌𝑡𝑡((1 +
1

𝑛
)𝑡 − 1) · E||w0||

Where the first inequality comes from the Lipschitz continuity of 𝑓 , and the last

inequality comes from Equation 3.2.3.5. Note that since 𝑤𝑡 = 𝐴(𝑆), the above bound

is data-dependent. To obtain uniform stability bounds, we need to take the supremum

over all adjacent datasets 𝑆, 𝑆 ′:

sup
𝑆,𝑆′

E|𝑓(𝐴(𝑆), 𝑧)− 𝑓(𝐴(𝑆 ′), 𝑧)| ≤ 𝐿((1 +
1

𝑛
)𝑡 − 1) · E||w0|| · sup

Σ
𝜌𝑡(Σ)

𝑡

Note that 𝜖 = 𝑂(1
𝑛
), meaning that our generalization bounds converge as our

training sets get larger. Even though this “satisfies the stability condition” so to speak,

it is important to point out that converging bounds are not very meaningful when the

algorithm is essentially a finite series of updates— as the size of the dataset increases,

the probability that we encounter the bad sample vanishes anyway! Generally we

want 𝑛 and 𝑡 to be related in some meaningful way. In practice, large scale machine

learning models are sometimes trained with an online learning procedure that takes

a single pass at the data (this was noted in [LCR16]). With such a procedure, the

size of the training set is equal to the number of SGDM epoches, i.e. 𝑡 = 𝑛.

Corollary 3.2.1. With a single pass of the data, SGDM satisfies uniform stability

with rate

32

𝜖 = 𝐿(𝑒− 1) · E||w0|| · sup
Σ

𝜌𝑡(Σ)
𝑡

Proof. The proof is simply to note that 𝑒 = lim𝑚→∞(1 + 1
𝑚
)𝑚 > (1 + 1

𝑛
)𝑛 for any

𝑛 ∈ N

It remains to find bounds on 𝜌𝑡. Indeed, if 𝜌𝑡 < 1, then we get strong stability

bounds that vanish exponentially with 𝑡. If 𝜌𝑡 > 1, then we get weak stability bounds

that grow exponentially with 𝑡. In light of this behavior we would like to analyze the

asymptotic behavior of 𝜌𝑡(Σ), a quantity known as the joint spectral radius of Σ:

Definition 3.2.2 (The Joint Spectral Radius [RS60]). The joint spectral radius of a

set of matrices Σ is the limit:

𝜌(Σ)
△
= lim

𝑡→∞
𝜌𝑡(Σ, || · ||)

An important result in spectral theory allows us to relate the joint spectral radius

to some other more convenient quantities. Let us denote

𝜌𝑡(Σ)
△
= sup

𝐴∈Σ𝑡

𝜌(𝐴)
1
𝑡 𝜌(Σ) = lim

𝑡→∞
𝜌𝑡(Σ)

Where 𝜌(𝐴) is the spectral radius of a matrix 𝐴, i.e. the maximum modulus of

its eigenvalues. Then it is known that for any bounded set Σ we have the following

theorem:

Theorem 3.2.2 (The Joint Spectral Radius Theorem [Jun09]4). For bounded sets Σ,

we have

𝜌(Σ) = 𝜌(Σ)

From here on we can simply denote the joint spectral radius as 𝜌(Σ) also, due to

the above equality. So our problem is now reduced to finding bounds on 𝜌(Σ).

4[Jun09] attributes this result to Berger and Wang (1992)

33

3.3 The joint spectral radius

In the previous section the stability bounds we obtained depended on 𝜌(Σ). At this

junction, it makes sense to look at the structure of Σ. Recall that Σ was constructed

as the set of linear operators associated with the inhomogeneous quadratic form, i.e.

Σ = {𝑀𝑖} ∪ {𝑉𝑖}, with

𝑀𝑖 =

⎡⎢⎢⎢⎣
(1 + 𝛾)𝐼 − 2𝛼𝑄𝑖 −𝛾𝐼 −𝛼𝑏𝑖

𝐼 0 0

0 0 1

⎤⎥⎥⎥⎦ 𝑉𝑖 =

⎡⎢⎢⎢⎣
2𝛼(𝑄−𝑄𝑖) 0 𝛼(𝑏− 𝑏𝑖)

0 0 0

0 0 0

⎤⎥⎥⎥⎦
For convenience, we can also construct another set of linear operators Σ′ that is

associated with the homogeneous quadratic form, i.e. Σ′ = {𝑀 ′
𝑖} ∪ {𝑉 ′

𝑖 }, with

𝑀 ′
𝑖 =

⎡⎣ (1 + 𝛾)𝐼 − 2𝛼𝑄𝑖 −𝛾𝐼

𝐼 0

⎤⎦ 𝑉 ′
𝑖 =

⎡⎣ 2𝛼(𝑄−𝑄𝑖) 0

0 0

⎤⎦
As it turns out, we can relate 𝜌(Σ) and 𝜌(Σ′) with the following lemma holds:

Lemma 3.3.1. 𝜌(Σ) = max{𝜌(Σ′), 1}.

Proof. Observe that

𝑀𝑖 =

⎡⎢⎢⎢⎣
(1 + 𝛾)𝐼 − 2𝛼𝑄𝑖 −𝛾𝐼 −𝛼𝑏𝑖

𝐼 0 0

0 0 1

⎤⎥⎥⎥⎦ =

⎡⎣ 𝑀 ′
𝑖 𝐶𝑖

0 𝐷𝑖

⎤⎦

𝑉𝑖 =

⎡⎢⎢⎢⎣
2𝛼(𝑄−𝑄𝑖) 0 𝛼(𝑏− 𝑏𝑖)

0 0 0

0 0 0

⎤⎥⎥⎥⎦ =

⎡⎣ 𝑉 ′
𝑖 𝐶𝑖

0 𝐷𝑖

⎤⎦
And consider that for every 𝐵𝑖, 𝐵𝑗 ∈ Σ corresponding to 𝐵′

𝑖, 𝐵
′
𝑗 ∈ Σ′,

𝐵𝑖𝐵𝑗 =

⎡⎣ 𝐵′
𝑖 𝐶𝑖

0 𝐷𝑖

⎤⎦⎡⎣ 𝐵′
𝑗 𝐶𝑗

0 𝐷𝑗

⎤⎦ =

⎡⎣ 𝐵′
𝑖𝐵

′
𝑗 𝐵′

𝑖𝐶𝑗 + 𝐶𝑖𝐷𝑗

0 𝐷𝑖𝐷𝑗

⎤⎦
34

Finally

𝜌(𝐵𝑖𝐵𝑗) = max{𝜌(𝐵′
𝑖𝐵

′
𝑗), 𝜌(𝐷𝑖𝐷𝑗)}

𝜌𝑡(Σ) = max{𝜌𝑡(Σ′), 1}

Taking the limit 𝑡 → ∞ completes the proof.

Since 𝜌(Σ) ≥ 1, so the bad news is that we will never get strong stability bounds.

However, this makes sense as a stochastic method never really converges to a mini-

mum, but instead to a region of confusion [BCN16, Ber15], therefore, we don’t expect

the stability error to vanish. For quadratic loss functions, the region of confusion is

characterized by the affine offsets 𝑏𝑖𝑤.

Figure 3-2: Region of confusion characterized by affine offsets 𝑏𝑖𝑤. If we suppose

𝜌(Σ) < 1, then 𝜌({𝑀𝑖}) < 1. This implies that the stochastic method converges to a

minimum, and so the region of confusion must be zero, a contradiction.

Even though we cannot get strong stability bounds, there is still a silver lining.

By combining Lemma 3.3.1 with Corollary 3.2.1, we note that we can get a constant

stability bound:

Corollary 3.3.1. If 𝜌(Σ′) ≤ 1, then SGDM satisfies uniform stability with rate 𝜖 =

𝐿(𝑒− 1) · E||w0||.

35

Therefore, it is perhaps meaningful to investigate the spectral radius of the set of

operators associated with only the homogeneous quadratic form. For the rest of this

chapter we will thus denote Σ as Σ′, i.e. we will only need to consider Σ that is of

the form:

1. Σ is finite with cardinality 2𝑛

2. Σ contains exactly 𝑛 elements of the form

𝑉𝑖 =

⎡⎣ 2𝛼(𝑄−𝑄𝑖) 0

0 0

⎤⎦
for each 𝑄𝑖 ∈ Q, and 𝑄 corresponds to the element in 𝑆 ′ that differs from 𝑆.

3. The remaining 𝑛 elements of Σ are of the form

𝑀𝑖 =

⎡⎣ (1 + 𝛾)𝐼 − 2𝛼𝑄𝑖 −𝛾𝐼

𝐼 0

⎤⎦
for each 𝑄𝑖 ∈ Q

3.3.1 Some experimental results

Recall that in order to get stability bounds, we needed to find supΣ 𝜌(Σ). In order to

gain some intuition about the behavior of this quantity, it can be helpful to numeri-

cally compute 𝜌(Σ) under some computer generated Σ. This will be the focus of this

section. We will begin our generation with a restricted set of matrices and see what

happens when we relax these restrictions. A starting point is to control the condition

number of 𝑄𝑖 from our quadratic loss function in Assumption 3.2.1:

Assumption 3.3.1. Let 𝑄𝑖 be positive definite with 𝜂𝐼 ⪯ 𝑄𝑖 ⪯ 𝜂𝐿𝐼.

Computing 𝜌(Σ) poses a challenge too, at least, on first glance it does not appear

to be explicitly computable from its definition. Fortunately, we can rely on a theorem

from Rota and Strang [RS60] to help us:

36

Theorem 3.3.1 (The joint spectral radius is the infinum over all norms [RS60]).

𝜌(Σ) = inf
||·||

sup
𝐴∈Σ

||𝐴||

This theorem is surprising and also very powerful, as it implies that to find 𝜌(Σ),

we don’t need to compute long products of matrices anymore, potentially requiring

an exponential number of computations in the size of the dataset. Indeed, since we

are only concerned with finding an upper bound on 𝜌(Σ), it suffices to find a “good

enough” norm. The theorem implies that for any given norm || · ||,

𝜌(Σ) ≤ sup
𝐴∈Σ

||𝐴||

One particular candidate norm is the norm under a similarity transformation:

||𝐴||𝑇
△
= ||𝑇−1𝐴𝑇 ||

Where the norm on the r.h.s. is the operator norm. If we can find a matrix 𝑇 such

that conjugation under 𝑇 simultaneously reduces the operator norm for all elements

𝐴 ∈ Σ, then || · ||𝑇 can be a good norm.

Our results from this endeavor are inconclusive, but we have experimented with

several quantities, and found that taking 𝑇 = 1
𝑛

∑︀𝑛
𝑖=1𝑀𝑖 yields pretty good results

some of the time, depending on our condition number 𝜂𝐿
𝜂

. We present below a table

and also a linear regression plot:

37

𝜂 𝜂𝐿
𝜂𝐿
𝜂

𝛼 𝛾 sup𝐴∈Σ ||𝐴||𝑇
3 4 1.33 0.1436 0.0718 0.4279

5 8 1.6 0.0780 0.1170 0.6311

3 5 1.67 0.1270 0.1270 0.6688

5 9 1.8 0.0729 0.1459 0.8453

1 2 2 0.3431 0.1716 0.9871

5 11 2.2 0.0649 0.1946 1.1116

3 7 2.33 0.1044 0.2087 1.2014

Figure 3-3: Some values of sup𝐴∈Σ ||𝐴||𝑇 under some hyperparameter combinations.

We generate Σ based on 100 random 10 × 10 PSD matrices that satisfy 𝜂𝐼 ⪯ 𝑄𝑖 ⪯

𝜂𝐿𝐼, and choose 𝑇 = 1
𝑛

∑︀𝑛
𝑖=1𝑀𝑖. The remaining hyperparameters are computed as

𝛼 = 2
(
√
𝜂+

√
𝜂𝐿)2

and 𝛾 =
√
𝜂−√

𝜂𝐿√
𝜂+

√
𝜂𝐿

.

1 1.5 2 2.5

Condition number
L
 /

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s
u

p
 |
|A

|| T

Figure 3-4: A regression plot of condition number 𝜂𝐿
𝜂

vs sup𝐴∈Σ ||𝐴||𝑇 , and with

𝑇,Σ, 𝛼, 𝛾 generated and computed similar to Figure 3-3.

These plots give us some intuition as to the behavior of SGDM in the limit. Since

we know sup𝐴∈Σ ||𝐴||𝑇 ≥ 𝜌(Σ) = lim𝑡→∞ 𝜌𝑡(Σ), so this also gives us some idea of the

maximum growth of two instances of SGDM run on specifically generated adjacent

38

datasets, under certain hyperparameter combinations. From Equation 3.2.3.5 we can

see that we can get good bounds on the growth when lim𝑡→∞ 𝜌𝑡(Σ) < 1.

Unfortunately beyond these plots we don’t have a very interesting theory to sup-

port our experimental results. Furthermore uniform stability bounds require taking

the supremum over all adjacent datasets, but the plots that we have in Figure 3-4 are

data-dependent, i.e. they depend on the generation of Σ.

3.4 Discussion

Let us recap some of the results in this chapter. We obtained an expression for the

growth divergence of SGDM, which in the limit can be upper bounded by the joint

spectral radius. We then showed that it sufficed to consider only the homogeneous

quadratic form to analyze the joint spectral radius. Finally, we ran some experiments

to compute the joint spectral radius for computer generated Σ.

One of the interesting implications of our results is that the stability bounds

appear to be independent of the magnitude of the affine offsets. So even though there

might be a very large region of confusion, the stability bounds can still be tight. In

fact, Corollary 3.3.1 tells us that for well conditioned problems, the stability bounds

that we obtained only depend on the Lipschitz continuity of the loss function and the

initial starting point in the algorithm.

Secondly, in the larger picture, our work represents some progress in a nascent

research direction of trying to obtain generalization bounds by analyzing the behavior

of an algorithm, departing from previous work that simply analyzes the solution of

an optimization problem. By comparing the results of SGDM that we obtain with

the results of SGD from [HRS16], it is evident that different optimization methods

can yield very different generalization bounds. This demonstrates potential benefit

of this method of algorithmic analysis, as some algorithms can generalize better than

others.

This leads to a couple of interesting questions and directions to pursue in future

work:

39

1. Is it possible to find a class of algorithms such that all other classes of algorithms

cannot generalize better than it? We note that this bears some similarity to the

concept of admissibility in statistics. Though in statistics, it is much easier to

analyze this because one can explicitly calculate the risk.

2. One thing that we did not discuss is the convergence rate of our methods. One

of the appeals of SGDM is that it appears to converge much faster than SGD.

So it is of theoretical and practical interest that we can design methods that

can converge quickly and also generalize well.

40

Chapter 4

Stability and Domain Adaptation

4.1 Motivation

Stability is a limited measure of robustness Recall that in Section 2.3 we

characterized stability as a measure of robustness to changes in data. This worked

well under the assumption that training samples are drawn from the same distribution

that is used to evaluate the risk. In many applications however we often want to think

of generalization as the ability of our machine learning models to adapt to the real

world, which may be different from the training environment. Can stability still

provide generalization guarantees under this change of assumptions?

A recent experimental result by Zhang et al. [ZBH+17] showed that by partially

corrupting some of the labels in training data, a neural network exhibits poor gener-

alization ability. They contaminated a fraction of training labels by replacing them

with labels picked uniformly at random from the label class (notably different from

resampling from the true distribution), and observed poor testing error. It was con-

cluded that a new theory of generalization was needed to account for the setting

where the training distribution is affected by data contamination.

Previous work has examined the question of contamination from various angles as

early as in 1960s. In the field of robust estimation, Huber studied a contamination

model [Hub64] in which with some known probability, samples from training data are

replaced from a contaminating distribution. Over the years, many methods have been

41

developed to successfully estimate parameters of a distribution under contamination.

As a simple example, it is known that for gaussian distributions the median is a

robust approximation for the true mean even though the dataset contains a fraction

of outliers that deviate grossly from the bulk of the dataset. These methods work well

in estimation theory, but less is clear in the context of learning where we are instead

concerned with finding a hypothesis that can approximate an unknown distribution.

In learning theory, this setting arises in the study of domain adaptation, where one

assumes the model learns from a source domain and its performance is evaluated on

a target domain. Ben-David et al. [BDBCP07] investigated the target generalization

performance of a specific classifier trained on a source domain, and obtained bounds

using a capacity argument that depended on the variational distance between the

distributions of the two domains.

So there appears to be a disconnect between the way generalization is treated

in estimation theory compared to learning theory. Notably, results in estimation

theory have been able to produce methods that can work well under adversarial

contamination whereas the generalization bounds obtained in learning theory depend

on some notion of distance between the source and target domains. Furthermore, the

fact that uniform stability is often touted as a distribution independent property that

can guarantee generalization seems to suggest that there might be something worth

looking at in this direction. So the goal of this chapter is to explore the setting of

domain adaptation through the lens of stability.

4.2 Preliminaries

As a starting point for a better notion of generalization we consider the case where

the training distribution 𝑃 differs from the true distribution 𝐷. Let 𝑆 = {𝑧1 . . . 𝑧𝑛}

be a training set of 𝑧𝑖 drawn i.i.d. from 𝑃 , and 𝐴 a learning algorithm1, then we can

define the generalization error:

1In this chapter, the randomization of 𝐴 is unimportant, so we drop the expectation over 𝐴 that
we used in Section 2.2 and assume 𝐴 is a deterministic algorithm. The analysis is unaffected.

42

𝜖𝑔𝑒𝑛
△
=𝑅(𝐴(𝑆))−𝑅𝑆(𝐴(𝑆))

with

𝑅(𝑤)
△
=E𝑧∼𝐷𝑓(𝑤, 𝑧)

and 𝑅𝑆 remains unchanged as the average of sample losses

𝑅𝑆(𝑤)
△
=

1

𝑛

𝑛∑︁
𝑖=1

𝑓(𝑤, 𝑧𝑖)

Since 𝜖𝑔𝑒𝑛 is defined with respect to 𝑃 and 𝐷, so we can also explicitly write

𝜖𝑔𝑒𝑛(𝑃,𝐷) when it is not already clear from context. Note that when 𝑃 = 𝐷, then

we are back to the original generalization error defined in section 2.2, which we will

denote as 𝜖𝑔𝑒𝑛(𝑃, 𝑃) in this section. Now, we can write 𝜖𝑔𝑒𝑛 as a sum of terms:

𝜖𝑔𝑒𝑛 = 𝑅(𝐴(𝑆))−𝑅𝑆(𝐴(𝑆))

= 𝑓(𝐴(𝑆), 𝑧)−𝑅𝑆(𝐴(𝑆)) + E𝑧∼𝐷𝑓(𝐴(𝑆), 𝑧)− E𝑧∼𝑃𝑓(𝐴(𝑆), 𝑧)

= 𝜖𝑔𝑒𝑛(𝑃, 𝑃) + E𝑧∼𝐷𝑓(𝐴(𝑆), 𝑧)− E𝑧∼𝑃𝑓(𝐴(𝑆), 𝑧)

The first term is the original generalization error and the second term represents

the sensitivity of the loss function to changes in the probability distribution. It is

useful to define:

𝜖𝑟𝑜𝑏
△
=E𝑧∼𝐷𝑓(𝐴(𝑆), 𝑧)− E𝑧∼𝑃𝑓(𝐴(𝑆), 𝑧)

Which we will refer to as the robustness error with respect to 𝑃 and 𝐷. Same as

before, we can also write 𝜖𝑟𝑜𝑏(𝑃,𝐷) or 𝜖𝑟𝑜𝑏 depending on context. This enables us to

write

𝜖𝑔𝑒𝑛(𝑃,𝐷) = 𝜖𝑔𝑒𝑛(𝑃, 𝑃) + 𝜖𝑟𝑜𝑏(𝑃,𝐷) (4.2.0.1)

43

This decomposition will simplify our analysis later.

4.2.1 A simple mixture model

Clearly 𝜖𝑔𝑒𝑛 is not very interesting if 𝑃 and 𝐷 are allowed to be arbitrary distributions,

as 𝜖𝑟𝑜𝑏 can take on arbitrary values on the range of 𝑓(𝑤, ·). So instead we can expect

that 𝜖𝑔𝑒𝑛 depends on the similarity between 𝑃 and 𝐷, and we can define a distance

measure between 𝑃 and 𝐷 (this does not need to be a distance in the topological

sense) and consider 𝑃,𝐷 that are close to each other. Several distance measures have

been investigated in the field of domain adaptation, such as the variational distance,

𝒜-distance [BDBCP07], and discrepancy distance [MMR09], but in this section we

consider Huber’s contamination model, which we briefly introduced in Section 4.1.

This can be formalized as the following mixture model

𝑃 = (1− 𝛿)𝐷 + 𝛿𝑄 (4.2.1.1)

Where 𝑃 is our training distribution, 𝐷 is our true distribution, and 𝑄 is picked

to be some contaminating distribution (for example, in [ZBH+17], 𝑄 is uniformly

random noise). Note that this implies bounded variational distance (see A.2). The

mixture model not only has a good interpretation, but also provides a convenient

expression of the generalization error in terms of 𝛿. Observe that when drawing our

training examples 𝑧 ∼ 𝑃 , we are sampling with probability 1 − 𝛿 from 𝐷, and with

probability 𝛿 from 𝑄. Let the probability density functions of 𝑃,𝐷,𝑄 be 𝑝𝑃 , 𝑝𝐷, 𝑝𝑄

respectively, then the robustness error 𝜖𝑟𝑜𝑏(𝑃,𝐷) can be written as:

44

𝜖𝑟𝑜𝑏(𝑃,𝐷) = E𝑧∼𝐷𝑓(𝑤, 𝑧)− E𝑧∼𝑃𝑓(𝑤, 𝑧)

=

∫︁
𝑧∈𝑍

𝑓(𝑤, 𝑧)𝑝𝐷(𝑧)𝑑𝑧 −
∫︁
𝑧∈𝑍

𝑓(𝑤, 𝑧)𝑝𝑃 (𝑧)𝑑𝑧

=

∫︁
𝑧∈𝑍

𝑓(𝑤, 𝑧)𝑝𝐷(𝑧)𝑑𝑧 −
∫︁
𝑧∈𝑍

𝑓(𝑤, 𝑧)[(1− 𝛿)𝑝𝐷(𝑧) + 𝛿𝑝𝑄(𝑧)]𝑑𝑧

= 𝛿 ·
[︂∫︁

𝑧∈𝑍
𝑓(𝑤, 𝑧)𝑝𝐷(𝑧)𝑑𝑧 −

∫︁
𝑧∈𝑍

𝑓(𝑤, 𝑧)𝑝𝑄(𝑧)𝑑𝑧

]︂
= 𝛿 · [E𝑧∼𝐷𝑓(𝑤, 𝑧)− E𝑧∼𝑄𝑓(𝑤, 𝑧)]

= 𝛿 · 𝜖𝑟𝑜𝑏(𝑄,𝐷)

Putting this into Equation 4.2.0.1, the generalization error can be also expressed

as

𝜖𝑔𝑒𝑛(𝑃,𝐷) = 𝜖𝑔𝑒𝑛(𝑃, 𝑃) + 𝛿 · 𝜖𝑟𝑜𝑏(𝑄,𝐷) (4.2.1.2)

For the rest of this chapter, we will investigate generalization under contamination

in the sense described above. How do we guarantee that our model is robust to

contamination?

4.2.2 Measures of robustness

If generalization is the property that the results of a method are influenced slightly

by small changes in the data, then robustness is the property that the results of

a method are influenced slightly by small deviations from the assumed model. To

begin characterizing robustness, a good starting point is to find bounds on the gen-

eralization performance of our algorithm with respect to contamination. Note that

with the distance measure from Equation 4.2.1.1 we can define a 𝛿-contamination

neighborhood:

𝑁𝛿(𝐷) = {(1− 𝛿)𝐷 + 𝛿𝑄 : 𝑄 is any distribution}

45

We can also define is the worst possible generalization over all distributions in the

𝛿-contamination neighborhood of 𝐷:

𝐸(𝛿)
△
= sup

𝑃∈𝑁𝛿(𝐷)

𝜖𝑔𝑒𝑛

Which we refer to 𝐸(𝛿) as the 𝛿-robust generalization error associated with al-

gorithm 𝐴. Then one natural way to characterize the robustness of an algorithm in

relation to 𝐸(𝛿) is a notion of breakdown:

Definition 4.2.1 (Finite-sample breakdown point [Hub81]). The finite-sample break-

down point of a learning algorithm is the smallest 𝐾 such that for every 𝛿 > 𝐾 the

𝛿-robust generalization error is unbounded.

We have used this terminology somewhat irresponsibly as the original use case of

finite-sample breakdown point is in estimation theory and is a property describing

estimators. However, we feel this conveys a similar intuition when describing the

behavior of our learning algorithm with respect to its generalization performance.

Note that unboundedness depends trivially on certain aspects of the problem

instance, such as the loss function 𝑓 . For example, if we have bounded 𝑓 then every

algorithm will never breakdown (i.e. have a finite-sample breakdown point of 1).

To avoid these kinds of trivial examples, we need a more descriptive property. As

a starting point, we can define �̂�, the worst 𝛿-robust generalization error over all

possible learning algorithms:

�̂�(𝛿)
△
=sup

𝐴
𝐸(𝛿)

Which we can also write as �̂� when it is clear from context. In the context of the

mixture model we think it is natural to introduce a new definition of breakdown:

Definition 4.2.2 (Contamination breakdown point). The contamination breakdown

point of a learning algorithm is the smallest 𝐾 such that for every 𝛿 > 𝐾 the 𝛿-robust

generalization error is at least 𝛿 · �̂�.

46

We can intuitively think about this new breakdown as defining some linear thresh-

old of badness and finding the smallest contamination that admits an instance that

crosses that threshold. Under Huber’s contamination model, the contamination

breakdown point also admits a natural interpretation: the contamination breakdown

point is where the algorithm starts to behave in a way that it completely ignores

the robustness error (i.e. no better than assuming 𝑃 = 𝐷 in the worst case). This

relationship can be seen from Equation 4.2.1.2.

A short note on some previous work

Before we proceed with our proofs we would like to remark that, similar to gener-

alization, the term “robustness” does not refer to an agreed upon formal concept or

quantity. This creates a semantic problem as the terms “generalization” and “robust-

ness” conveys similar meaning in common language to a general audience. There is

indeed a body of literature that is dedicated to investigating measures of robustness

that bear resemblance to the work we reviewed in Sections 2.2 and 2.3. For complete-

ness, let us introduce a few of the tools used to explore robustness in this context:

the influence function, proposed by Hampel, and the sensitivity curve, proposed by

Tukey. Both of these definitions can be found standard references like Huber [Hub81].

Definition 4.2.3 (Influence function [Hub81]). The influence function of 𝑇 at a point

𝑧 for a distribution 𝐷 is the special Gâteaux derivative (if it exists)

𝐼𝐹 (𝑧;𝑇,𝐷) = lim
𝜖→0

𝑇 ((1− 𝜖)𝐷 + 𝜖Δ𝑧)− 𝑇 (𝐷)

𝜖

where Δ𝑧 is the Dirac distribution at the point 𝑧 such that Δ𝑧(𝑧) = 1.

It is easy to see that the following definition of sensitivity curve is some kind of

discretization of the influence function:

Definition 4.2.4 (Sensitivity curve [Hub81]). The sensitivity curve of 𝑇 at a point

𝑧 given a data set 𝑆 = {𝑧1, . . . , 𝑧𝑛} is defined by:

𝑆𝐶(𝑧, 𝑇) = 𝑛(𝑇 (𝑆 ∪ {𝑧})− 𝑇 (𝑆))

47

Now, we haven’t yet defined 𝑇 . In the context of estimation theory, 𝑇 is a map

that assigns every distribution 𝐷 an estimator 𝑇 (𝐷). Previous work by Christmann

and Steinwart has extended this to learning theory in which 𝑇 is a map from the space

of distributions to a Banach space of prediction functions [CS04]. In our notation,

𝑇 is simply our learning algorithm 𝐴 that maps training sets 𝑆 to parameters in

𝑊 . Then the robustness guarantees are provided by proving boundedness of the

sensitivity curve or influence function over the domain 𝑧 ∈ 𝑍. Below we show that

this kind of guarantee is essentially a stability argument.

Theorem 4.2.1 (Sensitivity implies stability). Let 𝑓 be a loss function with 𝑓(·, 𝑧)

is 𝐿-Lipschitz in 𝑊 for all 𝑧 ∈ 𝑍. Suppose sup𝑧∈𝑍 ||𝑆𝐶(𝑧, 𝐴)|| ≤ 𝜖𝑠𝑐, then 𝐴 is

uniformly stable with rate 2𝐿
𝑛−1

𝜖𝑠𝑐.

Proof. Let 𝑆 have cardinality 𝑘. Firstly, observe that

sup
𝑧,𝑧′

||𝑘(𝐴(𝑆 ∪ {𝑧})− 𝐴(𝑆 ∪ {𝑧′})|| = sup
𝑧,𝑧′

||𝑘(𝐴(𝑆 ∪ {𝑧})− 𝐴(𝑆) + 𝐴(𝑆)− 𝐴(𝑆 ∪ {𝑧′})||

≤ sup
𝑧

||𝑘(𝐴(𝑆 ∪ {𝑧})− 𝐴(𝑆))||+ sup
𝑧′

||𝑘(𝐴(𝑆 ∪ {𝑧′})− 𝐴(𝑆))||

≤ 2𝜖𝑠𝑐

So for all adjacent datasets 𝑆, 𝑆 ′ of cardinality 𝑛 = 𝑘 + 1, we have

||𝐴(𝑆)− 𝐴(𝑆 ′)|| ≤ 2

𝑛− 1
𝜖𝑠𝑐

Finally, the Lipschitz condition tells us that for all 𝑧 ∈ 𝑍,

𝑓(𝐴(𝑆), 𝑧)− 𝑓(𝐴(𝑆 ′), 𝑧) ≤ 2𝐿

𝑛− 1
𝜖𝑠𝑐

Since the influence function is simply a continuous analog of the sensitivity curve,

so a similar result holds in the other case.

48

4.3 Uniform stability is insufficient for generaliza-

tion under domain adaptation

Recall from Theorem 2.3.1 that under the traditional learning model where 𝑃 = 𝐷,

uniform stability implied tight bounds on 𝐸(𝛿). Then a natural question to ask is:

when 𝑃 ̸= 𝐷, is uniform stability a sufficient condition to do the same? In this section,

we claim that the answer is no, according to the measures of robustness provided in

Section 4.2.2. We will provide counterexamples, but first, a lemma:

Lemma 4.3.1. Fix loss function 𝑓 and distributions 𝐷,𝑄 and let 𝑃 = (1−𝛿)𝐷+𝛿𝑄.

There exists a uniformly stable algorithm 𝐴 such that the generalization error is equal

to 𝛿 · sup𝑤[E𝑧∼𝐷𝑓(𝑤, 𝑧)− E𝑧∼𝑄𝑓(𝑤, 𝑧)]

Proof. Note that any algorithm 𝐴 that is independent of 𝑆 is uniformly stable with

respect to any loss function:

sup
𝑧
[𝑓(𝐴(𝑆), 𝑧)− 𝑓(𝐴(𝑆 ′), 𝑧)] = sup

𝑧
[𝑓(𝑤, 𝑧)− 𝑓(𝑤, 𝑧)]

= 0

By Theorem 2.3.1 this implies that 𝜖𝑔𝑒𝑛(𝑃, 𝑃) = 0. In particular, fix distributions

𝐷 and 𝑄 for our problem instance, and pick the algorithm 𝐴 that always outputs 𝑤* =

argmax𝑤 [E𝑧∼𝐷𝑓(𝑤, 𝑧)− E𝑧∼𝑄𝑓(𝑤, 𝑧)], which we note is independent of 𝑆. Then from

Equation 4.2.1.2,

𝜖𝑔𝑒𝑛(𝑃,𝐷) = 𝛿 · 𝜖𝑟𝑜𝑏(𝑄,𝐷)

= 𝛿 · [E𝑧∼𝐷𝑓(𝐴(𝑆), 𝑧)− E𝑧∼𝑄𝑓(𝐴(𝑆), 𝑧)]

= 𝛿 · sup
𝑤

[E𝑧∼𝐷𝑓(𝑤, 𝑧)− E𝑧∼𝑄𝑓(𝑤, 𝑧)]

49

Theorem 4.3.1. There exists some 𝑓,𝐷 and a corresponding uniformly stable algo-

rithm 𝐴 with a finite-sample breakdown point of 0.

Proof. Picking 𝑓,𝐷 adversarially and applying Lemma 4.3.1:

sup
𝑓,𝐷

𝐸(𝛿) = sup
𝑓,𝐷,𝑄

𝜖𝑔𝑒𝑛

= 𝛿 · sup
𝑓,𝐷,𝑄

sup
𝑤

[E𝑧∼𝐷𝑓(𝑤, 𝑧)− E𝑧∼𝑄𝑓(𝑤, 𝑧)]

= 𝛿 · sup
𝑤

sup
𝑓,𝐷,𝑄

[E𝑧∼𝐷𝑓(𝑤, 𝑧)− E𝑧∼𝑄𝑓(𝑤, 𝑧)]

≥ 𝛿 · sup
𝑤,𝑓

(sup
𝑥

𝑓(𝑤, 𝑥)− inf
𝑦
𝑓(𝑤, 𝑦))

With the last inequality arising from picking candidate distributions 𝐷,𝑄 that

output the sup and inf respectively with probability 1. Since these are candidate

distributions, so the sup is always larger. Furthermore, since 𝐴 is uniformly stable

with respect to any loss function, so we can just pick a loss function such that the

r.h.s. is unbounded. For example, 𝑓 that is the mean squared error satisfies this

condition.

The theorem above shows that there exists a uniformly stable algorithm with

unbounded generalization error, so clearly uniform stability is an insufficient condition

for generalization when the training and the true distributions differ.

Our proof relied on picking adversarial distributions and loss functions. In many

settings however, the true distribution is often fixed and the loss function already

given, and we are only allowed to choose our algorithm. In this situation, to evaluate

generalization, we can compare our generalization bounds to �̂�, using the robustness

measure in Definition 4.2.2

Corollary 4.3.1. Suppose we are given a fixed 𝑓 and distribution 𝐷. Then there

exists a uniformly stable algorithm 𝐴 such that the contamination breakdown point is

0.

50

Proof. Recall from the definition of �̂�:

�̂�(𝛿) = sup
𝑄,𝐴

[𝑅(𝐴(𝑆))−𝑅𝑆(𝐴(𝑆))]

= sup
𝑤

(︃
E𝑧∼𝐷𝑓(𝑤, 𝑧)−

1

𝑛

∑︁
𝑦∈𝑆

𝑓(𝑤, 𝑦)

)︃

≤ sup
𝑤

(︂
E𝑧∼𝐷𝑓(𝑤, 𝑧)− inf

𝑦
𝑓(𝑤, 𝑦)

)︂

From Lemma 4.3.1,

𝐸(𝛿) = 𝛿 · sup
𝑄

sup
𝑤

[E𝑧∼𝐷𝑓(𝑤, 𝑧)− E𝑧∼𝑄𝑓(𝑤, 𝑧)]

= 𝛿 · sup
𝑤

sup
𝑄

[E𝑧∼𝐷𝑓(𝑤, 𝑧)− E𝑧∼𝑄𝑓(𝑤, 𝑧)]

≥ 𝛿 · sup
𝑤

(︂
E𝑧∼𝐷𝑓(𝑤, 𝑧)− inf

𝑦
𝑓(𝑤, 𝑦)

)︂
≥ 𝛿 · �̂�(𝛿)

Corollary 4.3.1 tells us the breakdown point is 0, which implies that there is really

nothing about uniform stability that can guarantee control over the robustness; any

algorithm that assumes 𝑃 = 𝐷 will work just as well in the worst case.

The results in this section are surprising as we have noted earlier in Theorem 4.2.1

that standard notions of robustness imply uniform stability, but Corollary 4.3.1 tells

us that this is insufficient to characterize robustness under a simple mixture model.

4.4 Some upper bounds

To recap, in the previous section we found lower bounds on E(𝛿) to show uniform

stability was insufficient for generalization. In this section, we will find upper bounds

on E(𝛿). First, we can upper bound the generalization error in Equation 4.2.0.1 using

51

the stability argument in Theorem 2.3.1. Let 𝜖𝑠𝑡𝑎𝑏 be the stability error. Observe that

we can write 𝐸(𝛿) as

𝐸(𝛿) = sup
𝑃∈𝑁𝛿(𝐷)

[𝜖𝑔𝑒𝑛(𝑃, 𝑃) + 𝜖𝑟𝑜𝑏(𝑃,𝐷)]

≤ sup
𝑃

𝜖𝑔𝑒𝑛(𝑃, 𝑃) + sup
𝑃∈𝑁𝛿(𝐷)

𝜖𝑟𝑜𝑏(𝑃,𝐷)

≤ 𝜖𝑠𝑡𝑎𝑏 + sup
𝑃∈𝑁𝛿(𝐷)

𝜖𝑟𝑜𝑏(𝑃,𝐷)

= 𝜖𝑠𝑡𝑎𝑏 + 𝛿 · sup
𝑄

𝜖𝑟𝑜𝑏(𝑄,𝐷) (4.4.0.1)

We note that this bound is pretty tight in the ERM setting, as the generalization

error is always positive:

Remark 4.4.1. When our learning algorithm is ERM, our expected generalization

error is always positive

Proof. Let 𝑤*
𝑆 be the minimizer of 𝑅𝑆. It suffices to prove that E𝑆[𝑅𝑆(𝑤

*
𝑆)] ≤

E𝑆[𝑅(𝑤*
𝑆)].

E𝑆[𝑅𝑆(𝑤
*
𝑆)] = E𝑆

[︃
inf
𝑤

1

𝑛

𝑛∑︁
𝑖=1

𝑓(𝑤, 𝑧𝑖)

]︃

≤ inf
𝑤

E𝑆

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓(𝑤, 𝑧𝑖)

]︃
= inf

𝑤
𝑅(𝑤)

≤ E𝑆[𝑅(𝑤*
𝑆)]

Remark 4.4.2. When our learning algorithm is a uniformly stable ERM algorithm,

the bound in Equation 4.4.0.1 is tight in the limit.

Proof. Firstly Remark 4.4.1 tells us that ERM implies 𝜖𝑔𝑒𝑛(𝑃, 𝑃) > 0. Furthermore,

a uniformly stable algorithm implies 𝜖𝑠𝑡𝑎𝑏 exists. Finally, sup𝑃∈𝑁𝛿(𝐷) 𝜖𝑟𝑜𝑏(𝑃,𝐷) =

52

𝛿 · sup𝑄 𝜖𝑟𝑜𝑏(𝑄,𝐷), so when combined with the above,

𝛿 · sup
𝑄

𝜖𝑟𝑜𝑏(𝑄,𝐷) ≤ 𝐸(𝛿) ≤ 𝜖𝑠𝑡𝑎𝑏 + 𝛿 · sup
𝑄

𝜖𝑟𝑜𝑏(𝑄,𝐷)

So it suffices to find a good bound for sup𝑄 𝜖𝑟𝑜𝑏(𝑄,𝐷).

4.4.1 (𝐾, 𝛾)-robust algorithm

One way to bound the robustness error is to consider the definition of (𝐾, 𝛾(𝑆))-

robustness from [XM10].

Definition 4.4.1 (Robust algorithm [XM10]). An algorithm 𝐴 is (𝐾, 𝛾(𝑆))-robust if

𝑍 can be partitioned into 𝐾 disjoint sets, denoted by {𝐶𝑖}𝐾𝑖=1 , such that for all 𝑠 ∈ 𝑆,

𝑠, 𝑧 ∈ 𝐶𝑖 =⇒ |𝑓(𝐴(𝑆), 𝑠)− 𝑓(𝐴(𝑆), 𝑧)| ≤ 𝛾(𝑆)

Remark 4.4.3. If 𝐴 is (1, 𝛾(𝑆))-robust, then sup𝑄 𝜖𝑟𝑜𝑏(𝑄,𝐷) ≤ 𝛾(𝑆).

Proof. From the definition of 𝜖𝑟𝑜𝑏 and taking the sup,

sup
𝑄

𝜖𝑟𝑜𝑏(𝑄,𝐷) = sup
𝑄

E𝑧∼𝐷𝑓(𝐴(𝑆), 𝑧)− E𝑧∼𝑄𝑓(𝐴(𝑆), 𝑧)

≤ sup
𝑠,𝑧∈𝑍

|𝑓(𝐴(𝑆), 𝑠)− 𝑓(𝐴(𝑆), 𝑧)|

≤ 𝛾(𝑆)

Note that a (𝐾, 𝛾(𝑆))-robust algorithm with 𝐾 = 1 is somewhat of a strict re-

quirement. However, this is necessary; 𝑄 is chosen adversarially, so it can be picked

to output any 𝑧 on the support. The strict requirement means that this bound is

likely to be loose, and that it will also be difficult to find algorithms that satisfy this

robustness criterion meaningfully. Finally, this measure is also data dependent; it is

53

unclear how 𝛾(𝑆) evolves as |𝑆| → ∞, so we don’t know if our upper bound will be

tight in the limit.

4.4.2 The Wasserstein distance

Suppose 𝑓(𝐴(𝑆), ·) is 𝐿-Lipschitz. Then the robustness error 𝜖𝑟𝑜𝑏(𝑄,𝐷) can be up-

per bounded by the Wasserstein distance between 𝐷 and 𝑄 using the Kantorovich-

Rubinstein duality theorem2. The idea is that the robustness error so happens to be

a feasible solution to the dual form of the Wasserstein:

𝜖𝑟𝑜𝑏(𝑄,𝐷) = E𝑧∼𝐷𝑓(𝐴(𝑆), 𝑧)− E𝑧∼𝑄𝑓(𝐴(𝑆), 𝑧)

≤ 𝐿 sup
𝑔 is 1-Lipschitz

E𝑧∼𝐷𝑔(𝑧)− E𝑧∼𝑄𝑔(𝑧) "dual Wasserstein OPT"

= 𝐿 inf
𝛾∈Π(𝐷,𝑄)

E(𝑥,𝑦)∼𝛾||𝑥− 𝑦|| "primal Wasserstein OPT"

Where Π(𝐷,𝑄) is the set of all joint distributions 𝛾(𝑥, 𝑦) whose marginal distribu-

tions are 𝐷 and 𝑄 respectively. The Wasserstein distance is also known as the Earth

Mover’s distance and thus has the natural interpretation that 𝛾(𝑥, 𝑦) is the amount

of work required to transport “mass” from 𝑥 to 𝑦 in order to turn 𝐷 into 𝑄.

This interpretation allows us to see that the generalization error can be bounded

by the sum of two terms: the stability error and some distance measure between the

contaminating distribution and the true distribution, and is thus expressed in a way

that bears similarity to the distribution dependent bounds obtained in previous work.

4.5 Discussion

Our analysis shows that the generalization error under domain adaptation can be

decomposed into two terms, the first is the original generalization error, and the

2I first learned about the Wasserstein distance reading the Wasserstein GAN paper by Arjovsky
et al. [ACB17]. For a complete reference, please refer to [Vil09], but we shall also include a proof of
the duality theorem in Appendix A.3 for completeness.

54

second is the robustness error. While stability can bound the former, we would need

a stronger property that can guarantee that both terms are small. Through the lens

of stability, this chapter explores the failure of certain machine learning algorithms

to generalize, and we hope that our work can motivate future research to design

algorithms that are robust under a more natural interpretation of uncertainty.

Finally, we hope that future work will be able to explore a few questions more

fully. Recall that in Section 2.3 we noted that uniform stability was a distribution

independent property that corresponded to models that yielded a small generaliza-

tion error. However, all the generalization bounds we obtained in this chapter are

distribution dependent. So, an important question is, is it possible to find a distribu-

tion independent property that can bound the robustness error, such that practical

algorithms can be designed around them? If not, can we prove otherwise?

55

56

Appendix A

Theorems and Proofs

A.1 A note on shared randomness

Recall that from Equation 3.2.3.1 we wanted to find an expression for E[w𝑡 − w′
𝑡]

from running SGDM on two adjacent sample sets 𝑆 and 𝑆 ′. Let us define a random

sequence ⟨𝜎⟩ = {𝜎0 . . . 𝜎𝑡 : 𝜎𝑖 ∈ {1 . . . 𝑛}}. Then SGDM corresponds to, at each step

𝑖, sampling 𝜎𝑖 and applying 𝑀 : 𝑆[𝜎𝑖] → 𝑀𝑖. Since 𝜎𝑖 is a uniform random variable,

so

𝑃 (𝑀𝑖 = 𝑀 ′
𝑖) = 𝑃 (𝑆[𝜎𝑖] = 𝑆 ′[𝜎𝑖]) = 1− 1

𝑛

Then by our independence assumption and the law of total expectation we can

write

E

[︃
𝑡−1∏︁
𝑖=0

𝑀𝑖 −
𝑡−1∏︁
𝑖=0

𝑀 ′
𝑖

]︃
= E

[︃
𝑡−1∏︁
𝑖=0

𝑀𝑖 −
𝑡−1∏︁
𝑖=0

E[𝑀 ′
𝑖 |𝑀𝑖]

]︃

= E

[︃
𝑡−1∏︁
𝑖=0

𝑀𝑖 −
𝑡−1∏︁
𝑖=0

(︁
𝑃 (𝑀𝑖 = 𝑀 ′

𝑖)𝑀𝑖 + 𝑃 (𝑀𝑖 ̸= 𝑀 ′
𝑖)𝑀

′′
)︁]︃

= E

[︃
𝑡−1∏︁
𝑖=0

𝑀𝑖 −
𝑡−1∏︁
𝑖=0

(︂
𝑛− 1

𝑛
𝑀𝑖 +

1

𝑛
𝑀 ′′
)︂]︃

Where 𝑀 ′′ corresponds to the precise element in 𝑆 ′ that differs from 𝑆. Renaming

57

𝑀 ′′ −𝑀𝑖 as 𝑉𝑖 we can evaluate the r.h.s. as:

E

[︃
𝑡−1∏︁
𝑖=0

𝑀𝑖 −
𝑡−1∏︁
𝑖=0

(︂
𝑀𝑖 +

1

𝑛
𝑉𝑖

)︂]︃

A.2 Huber contamination and variational distance

Definition A.2.1 (Variational distance [BDBCP07]). Let 𝒵 be the set of measurable

subsets under 𝑍, then the 𝐿1 or variational distance of 𝑃 and 𝐷 is defined as

𝑑𝐿1(𝑃,𝐷) = 2 sup
𝐵∈𝒵

|𝑝𝑃 (𝐵)− 𝑝𝐷(𝐵)|

Claim A.2.1 (Contamination implies bounded variational distance). If 𝑃 = (1 −

𝛿)𝐷 + 𝛿𝑄, then 𝑑𝐿1(𝑃,𝐷) ≤ 2𝛿.

Proof. Let the probability density functions of 𝑃,𝐷,𝑄 be 𝑝𝑃 , 𝑝𝐷, 𝑝𝑄 respectively.

From the definition of variational distance,

𝑑𝐿1(𝑃,𝐷) = 2 sup
𝐵∈𝒵

|𝑝𝑃 (𝐵)− 𝑝𝐷(𝐵)|

= 2 sup
𝐵∈𝒵

|(1− 𝛿)𝑝𝐷(𝐵) + 𝛿𝑝𝑄(𝐵)− 𝑝𝐷(𝐵)|

= 2𝛿 sup
𝐵∈𝒵

|𝑝𝑄(𝐵)− 𝑝𝐷(𝐵)|

≤ 2𝛿

A.3 Kantorovich-Rubinstein duality

The primal form of the Wasserstein distance between discrete distributions 𝐷 and 𝑄

is written as

inf
𝛾∈Π(𝐷,𝑄)

E(𝑥,𝑦)∼𝛾||𝑥− 𝑦||

58

Where Π(𝐷,𝑄) is the set of all joint distributions 𝛾(𝑥, 𝑦) whose marginal distri-

butions are 𝐷 and 𝑄 respectively. This can also written as a linear program:

minimize
∑︁
𝑖

∑︁
𝑗

𝛾(𝑥𝑖, 𝑥𝑗)||𝑥𝑖 − 𝑥𝑗||

subject to
∑︁
𝑗

𝛾(𝑥𝑖, 𝑥𝑗) = 𝑝𝐷(𝑥𝑖)

∑︁
𝑖

𝛾(𝑥𝑖, 𝑥𝑗) = 𝑝𝑄(𝑥𝑗)

𝛾(𝑥𝑖, 𝑥𝑗) ≥ 0 ∀𝑖, 𝑗

Then the dual is:

maximize
∑︁
𝑖

𝑓(𝑥𝑖)𝑝𝐷(𝑥𝑖) +
∑︁
𝑗

𝑔(𝑥𝑗)𝑝𝑄(𝑥𝑗)

subject to 𝑓(𝑥𝑖) + 𝑔(𝑥𝑗) ≤ ||𝑥𝑖 − 𝑥𝑗||

𝑓(𝑥𝑖) ≥ 0 ∀𝑖

𝑔(𝑥𝑖) ≥ 0 ∀𝑖

When 𝑥𝑖 = 𝑥𝑗, then ||𝑥𝑖−𝑥𝑗|| = 0. Therefore 𝑓(𝑥𝑖)+𝑔(𝑥𝑖) ≤ 0. Furthermore, since

𝑓, 𝑔, 𝑝𝐷, 𝑝𝑄 are positive, so the objective function is better when 𝑓(𝑥𝑖) + 𝑔(𝑥𝑖) = 0 vs

when 𝑓(𝑥𝑖) + 𝑔(𝑥𝑖) < 0. So we can consider the equality case, and so 𝑓 = −𝑔 ev-

erywhere on the domain. Then our optimization problem becomes the maximization

of

∑︁
𝑖

𝑓(𝑥𝑖)𝑝𝐷(𝑥𝑖)−
∑︁
𝑗

𝑓(𝑥𝑗)𝑝𝑄(𝑥𝑗) = E𝑧∼𝐷𝑓(𝑧)− E𝑧∼𝑄𝑓(𝑧)

Subject to 𝑓(𝑥𝑖)− 𝑓(𝑥𝑗) ≤ ||𝑥𝑖 − 𝑥𝑗|| i.e. 𝑓 is 1-Lipschitz. This gives us the dual

form we saw in Section 4.4.2. An analog exists for continuous distributions 𝐷 and 𝑄

with essentially the same result [Vil09].

59

60

Bibliography

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan.
In arXiv:1701.07875v2, 2017.

[BB07] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning.
Proceedings of the 20th International Conference on Neural Information
Processing Systems, pages 161–168, 2007.

[BCN16] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods
for large-scale machine learning. In arXiv:1606.04838, 2016.

[BDBCP07] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira.
Analysis of representations for domain adaptaion. Advances in Neural
Information Processing Systems, 19, 2007.

[BE02] Olivier Bousquet and André Elisseeff. Stability and generalization. Jour-
nal of Machine Learning Research, 2:499–526, 2002.

[Ber99] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, second
edition, 1999.

[Ber15] Dimitri P. Bertsekas. Convex Optimization Algorithms. Athena Scien-
tific, 2015.

[CS04] Andreas Christmann and Ingo Steinwart. On robustness properties of
convex risk minimization methods for pattern recognition. Journal of
Machine Learning Research, 5:1007–1034, 2004.

[HRS16] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, general-
ize better: Stability of stochastic gradient descent. In arXiv:1509.01240,
2016.

[Hub64] Peter J. Huber. Robust estimation of a location parameter. The Annals
of Mathematical Statistics, 35(1):73–101, 1964.

[Hub81] Peter J. Huber. Robust Statistics. John Wiley and Sons, Inc, (2009
reprint) 2nd edition, 1981.

[Jun09] Raphaël Jungers. The Joint Spectral Radius, Theory and Applications.
Springer, 2009.

61

[LCR16] Junhong Lin, Raffaello Camoriano, and Lorenzo Rosasco. Generaliza-
tion properties and implicit regularization for multiple passes sgm. In
arXiv:1605.08375, 2016.

[MMR09] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain
adaptation: Learning bounds and algorithms. In Proceedings of The
22nd Annual Conference on Learning Theory, 2009.

[MNPR06] Sayan Mukherjee, Partha Niyogi, Tomaso Poggio, and Ryan Rifkin.
Learning theory: stability is sufficient for generalization and necessary
and sufficient for consistency of empirical risk minimization. Advances
in Computational Mathematics, 25:161–193, 2006.

[Nes98] Yurii Nesterov. Introductory Lectures on Convex Programming, volume
1: Basic Course. 1998.

[Pol64] Boris T. Polyak. Some methods of speeding up the convergence of it-
eration methods. USSR Computational Mathematics and Mathematical
Physics, 4:1–17, 1964.

[RS60] Gian-Carlo Rota and Gilbert Strang. A note on the joint spectral radius.
Proceedings of the Netherlands Academy, 22:379–381, 1960.

[SSSSS10] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridha-
ran. Learnability, stability and uniform convergence. Journal of Machine
Learning Research, 11:2635–2670, 2010.

[Vap98] Vladimir N. Vapnik. Statistical Learning Theory. John Wiley and Sons,
Inc, 1998.

[VC71] Vladimir N. Vapnik and Alexey Y. Chervonenkis. On the uniform con-
vergence of relative frequencies of events to their probabilities. Theory
of Probability and its Applications, 16(2):264âĂŞ280, 1971.

[Vil09] Cédric Villani. Optimal Transport: Old and New. Springer, 2009.

[XM10] Huan Xu and Shie Mannor. Robustness and generalization. In
arXiv:1005.2243, 2010.

[ZBH+17] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization.
5th International Conference on Learning Representations, 2017.

62

	Introduction
	The General Setting of Learning
	Machine Learning as Risk Minimization
	Consistency and Generalization
	Stability

	Proving Stability: Growth Divergence of Iterative Methods
	Related work
	Uniform stability of momentum methods
	Setup and assumptions
	Proof sketch
	Growth recursion of SGDM

	The joint spectral radius
	Some experimental results

	Discussion

	Stability and Domain Adaptation
	Motivation
	Preliminaries
	A simple mixture model
	Measures of robustness

	Uniform stability is insufficient for generalization under domain adaptation
	Some upper bounds
	(K,g)-robust algorithm
	The Wasserstein distance

	Discussion

	Theorems and Proofs
	A note on shared randomness
	Huber contamination and variational distance
	Kantorovich-Rubinstein duality

