
Developing Cloud and Shared Data Capabilities to
Support Primary School Students in Creating

Mobile Applications that Affect Their Communities

by

Natalie Lao

S.B., Massachusetts Institute of Technology (2016)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 18, 2017

Certified by. .
Harold Abelson

Class of 1922 Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Leslie Kolodziejski

Chairman, Department Committee on Graduate Theses

2

Developing Cloud and Shared Data Capabilities to Support

Primary School Students in Creating Mobile Applications

that Affect Their Communities

by

Natalie Lao

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2017, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

As technology and society become further intertwined, it is imperative that we de-
mocratize the creation of technology and educate people to be capable of harnessing
the full power of computational thinking. As such, developing meaningful tools and
curricula for incremental learning of computational thinking concepts starting in pri-
mary education is an important endeavor [1]. My work focuses on making Cloud
technology, one of the most powerful new computer science concepts, understandable
and usable by anyone without the need for extensive computer science training.

I used MIT App Inventor, a blocks-based mobile application development tool for
teaching computational thinking to young students, as the platform for my research.
I developed CloudDB, a set of coding blocks for MIT App Inventor that allows users
to store, retrieve, and share various types of data in tag-value pairs on a Redis server
for their mobile applications. I created middle and high school level curricula based
on CloudDB along with assessment tools to evaluate my materials and the extent to
which young students can understand and utilize the concepts around shared data.
Finally, I ran one of those workshops with middle school students in the MIT area.

My findings indicate that teaching shared data as a core computational thinking
concept is entirely feasible to students as young as middle school level. Students are
capable of inferring and extrapolating other use cases and potential problems with the
Cloud, such as storage limits and security concerns. When given the context of solving
a problem in their lives, they are very driven and able to design and create complex
independent mobile application projects using MIT App Inventor and CloudDB.

Thesis Supervisor: Harold Abelson
Title: Class of 1922 Professor of Computer Science and Engineering

3

4

Acknowledgments

I thank members of the MIT App Inventor team for all of their knowledge and support

throughout the past year. I have learned more than can be expressed in this thesis

about the depths of computer science and education from all of you.

Specifically, I thank my advisor Hal Abelson for inspiring me and always pushing

me to seek out the answers to the next question on the horizon; Evan Patton for his

infinite patience throughout my coding struggles; Michael Tissenbaum, Josh Sheldon,

and Karen Lang for their wisdom regarding educational research and working with

children; Andrew McKinney and Jeff Schiller for their technical expertise, especially in

helping me navigate the magical murky waters of network operations; my undergrad-

uate research assistant Graeme Campbell for his crucial programming contribution

with CloudDB security; Xinyue Deng for powering through the thesis writing process

with me; and Marisol Diaz for feeding me and making sure that everything is always

in order.

Finally, my work would not have been possible without the numerous computer

scientists and educators who paved the way beforehand.

5

6

Contents

1 Introduction: Primary school students can use computational think-

ing to create technology that affects their world 15

1.1 Computational thinking has become increasingly prevalent in K-12 ed-

ucation . 16

1.2 MIT App Inventor is a blocks-based programming tool for creating

mobile applications . 20

1.3 The Cloud is a powerful concept that allows people to have worldwide

influence cheaply and quickly . 23

1.4 Relevant Prior Work: Shariables and Cloud data-structures imple-

mented Scratch enabled computational explorations of online data . . 25

1.5 The publish-subscribe messaging pattern allows an intemediary broker

to send messages from publishers to invisible subscribers 27

2 Coding Methodology: CloudDB was implemented using the Redis

API with simplicity as the design goal 29

2.1 Design Requirements: CloudDB must be easy to use and similar to

FirebaseDB . 30

2.2 CloudDB has two properties and fourteen blocks 31

2.3 Simple key-value formatting in the Redis database allows for flexibility

in data sharing . 35

2.4 Atomic operations were written in Lua script 37

2.5 Semantic change to list: Lists stored in CloudDB are passed by value

instead of by reference . 38

7

2.6 Data is encrypted through a SSL proxy server that communicates with

a local Redis server through TCP . 39

2.7 MusicShare: Example of a multi-functional app built using CloudDB 42

3 Teaching Methodology: Curriculum was created for a 6-lesson work-

shop for middle school students 45

3.1 Participants in the workshop had little to no experience with program-

ming . 46

3.2 A lesson plan was created summarizing the schedule, concepts taught,

and data collected . 47

3.3 Data Collected . 53

4 Results: Data from the workshop shows that young students can

quickly understand shared data 55

4.1 Students quickly understood high level ideas and strong role of shared

data in modern society . 56

4.2 Creating a class-wide shared drawing application successfully helped

most students learn CloudDB . 60

4.3 The final project design process indicated increased understanding of

capabilities of shared data and strong interest in creating apps that

influence the community . 63

4.4 Case study of one group’s progression of constructing knowledge about

CloudDB and shared data . 66

4.5 Students were generally enthusiastic and optimistic about creating

apps that would be used by their peers 71

4.6 Post-questionnaires indicated high levels of satisfaction with making

independent, creative apps . 74

4.7 Workshop was generally effective but could have been longer to allow

for more complete final projects . 79

5 Discussion: The Cloud has powerful implications for computational

8

thinking education for young students 81

6 Future Works: Improving security, providing access restrictions to

project data, developing log viewing capabilities, and extensions to

educational research 85

A Lua code for CloudDB atomic list functions 89

B Assent and Consent forms for data release to research 93

B.1 Minor Assent Form . 93

B.2 Parental Consent Form . 96

C Supplemental Workshop Handouts 101

C.1 Pre-questionnaire . 101

C.2 CloudDB Handout . 103

C.3 Draw Together App Design Worksheet 106

C.4 Draw Together Solution and Extension 109

C.5 CloudDB Individual Design Project Worksheet 112

C.6 CloudDB Group Design Project Worksheet 115

C.7 Design Project Peer Feedback Worksheet 119

C.8 Post-questionnaire . 121

9

10

List of Figures

1-1 An MIT App Inventor 2 project is built using both a designer inter-

face and a blocks interface. The designer interface (top) allows users

to drag-and-drop and customize components such as buttons onto a

mockup Android screen. The blocks interface (bottom) provides code

blocks that can be arranged to form basic programs. In this example,

a sound file is played with the button is clicked. 21

1-2 The FirebaseDB component currently available on MIT App Inventor

has four properties set in the designer (left) and 12 blocks for program-

ming. 22

1-3 Like many other Cloud computing services, AWS sales has shown ex-

ponential growth for the past decade [16]. 25

1-4 Programmer interactions for using Cloud variables in Scratch 2.0 [7].

A variable can be set to be a Cloud variable by selecting the Cloud

variable checkbox. A Cloud variable has the same methods/blocks as

a normal variable. 26

2-1 A client running a CloudDB MIT App Inventor application first com-

municates its request to the proxy server through the TLS protocol

which communicates with the local Redis server to handle any requests. 30

2-2 Although both of these blocks operate on the value returned by when

CloudDB.GotValue, all edits are only local. Neither actually modify

the list stored on the CloudDB server. 37

11

2-3 The proxy server at startup has one supervisor process and one outward-

facing acceptor worker process. 40

2-4 A client connects to the proxy service via TLS. The SSL handshake is

performed and the acceptor process instructs the supervisor process to

spawn a client handler process as well as a Redis handler process. . . 41

2-5 The client now sends information to the client handler process, which

forwards it to Redis. The Redis handler listens for responses from Redis

and forwards them back to the client. The acceptor process waits for

other clients to attempt to make new connections to the proxy. 41

2-6 Multiple clients connecting simultaneously to the proxy service, each

with their own individual client handler process and Redis handler

process. 42

2-7 Screenshots and CloudDB code from MusicShare, an example CloudDB

app that lets users create, share, and listen to music. 44

4-1 A student’s response to Pre-questionnaire, In your own words or with

pictures, describe what you think the Cloud is and what it does. Try

not to use the examples from today. 58

4-2 Code from the finished DrawTogether class-wide drawing app 62

4-3 Designer screen and CloudDB code from a two-player fighting game

that was created for a group’s final project 70

4-4 Student presenting final project on social media picture sharing and

best city ranking app . 73

4-5 Student presenting final project on oil spill cleanup game 74

4-6 A student’s response to Post-questionnaire, In your own words or with-

pictures, describe what you think the Cloud is and what it does. Try

not to use the examples from today. 77

6-1 A sample cloud data log in Scratch, which displays when, how, and by

whom a cloud variable was modified [29]. 86

12

List of Tables

2.1 An overview of CloudDB’s two properties and fourteen blocks 35

3.1 Lesson 1 Plan, Introducing MIT App Inventor 48

3.2 Lesson 2 Plan, Introducing the Cloud 50

3.3 Lesson 3 Plan, CloudDB Draw Together Wrapup 51

3.4 Lesson 4 Plan, CloudDB Independent Design Project Workday 1 . . . 52

3.5 Lesson 5 Plan, CloudDB Independent Design Project Workday 2 . . . 53

3.6 Lesson 6 Plan, CloudDB Independent Design Project Final Presentations 53

4.1 Mean and range of responses for Pre-questionnaire Likert scale ques-

tions on a 1-5 scale. 57

4.2 App designs from individual design project worksheets. 65

4.3 Mean and range of responses for Post-questionnaire Likert scale ques-

tions on a 1-5 scale . 75

13

14

Chapter 1

Introduction: Primary school

students can use computational

thinking to create technology that

affects their world

Shared data is a new concept that has vastly changed the technological landscape

over the past decade. It has led to innovations such as Dropbox, Google Docs, and

essentially every modern scalable web service. While this generation of professional

computer scientists often has trouble understanding and designing applications using

Cloud data sharing due to its many operational complexities, I believe that young

students who have grown up surrounded by technology will be able to understand

and contribute to Cloud technology more quickly, easily, and adeptly. The objectives

of this thesis are to learn if it is possible to teach concepts about shared data to

students as young as middle school level and, if so, how to empower them to harness

this technology to solve problems that they encounter in their lives. I believe that

showing young students the significant impact they can have by being creators of

technology instead of just consumers of it is the best way to guide them in sculpting

the increasingly digital future.

15

In this work, I contribute (1) an approach for creating a technical system with

simplicity and usability as its design goals that allows kids to interact with shared

data within reasonable abstraction, (2) a detailed implementation of the working tool,

which is a component called CloudDB within the MIT App Inventor web interface

created using the Redis database, cache and message broker, (3) a set of teaching

materials surrounding CloudDB and MIT App Inventor that aims to help middle

school level students understand and utilize the power of shared data, (4) results of a

workshop conducted around my curriculum, and (5) discussion around what is easy

and difficult for young people to understand and how researchers and educators can

think about letting kids have such a powerful ability.

In this chapter, I present the core technical concepts and previous work done in the

computational thinking space upon which this thesis is built. I present frameworks

for computational thinking, a description of MIT App Inventor as a suitable method

for delivering computational thinking to primary school students, and an argument

for why the Cloud is an essential concept to teach in early education. In chapter two,

I describe the method used in designing and implementing the CloudDB component

within MIT App Inventor using the Redis data structure store. In chapter three, I

describe the design of the workshop curricula used to evaluate the CloudDB compo-

nent and the knowledge that students are able to gain. In chapter four, I present the

results of the workshop I ran for this thesis. In chapter five, I discuss my work in the

context of computational thinking education and the implications it has for different

parties. I conclude this thesis in chapter six by offering some future extensions of and

questions that arose from my work.

1.1 Computational thinking has become increasingly

prevalent in K-12 education

Computational thinking is the method of framing a problem and problem-solving that

arises from the core principles of computing [2]. Aside from its influence on society

16

through computer science, computational thinking has led researchers to create inno-

vative solutions for challenges from sequencing the human genome to microeconomics

[3].

In 2012, Karen Brennan and Mitchel Resnick established a framework for studying

and assessing the development of computational thinking. They proposed a three-

pronged approach to considering computational thinking through: (1) concepts, which

refer to technical programming concepts; (2) practices, or good programming method-

ology; and (3) perspectives, which describe how an individual relates to the techno-

logical world [4]. Brennan and Resnick analyzed their framework in the live Scratch

environment, a blocks-based programming language that enables young students to

create a wide array of stories, animations, and games. They outlined seven categories

for computational thinking concepts: sequences, loops, parallelism, events, condition-

als, operators, and data; four categories for practices: being incremental and iterative,

testing and debugging, reusing and remixing, and abstracting and modularizing; and

three for perspectives: expressing, connecting, and questioning. They also detailed

the difficulties around the assessment of computational thinking, especially in detect-

ing how and if students’ perspectives about themselves or their world have changed.

The curriculum and assessments that I created draw heavily on the ideas pre-

sented by Brennan and Resnick. With consideration to their framework: shared data

is my computational thinking concept; debugging, reflection, meta-cognition, gener-

ating new ideas, and new avenues for exploration are the key computational thinking

practices involved in learning the concept; and understanding shared databases as a

basis for shared applications and feeling empowered to use shared data to create tech-

nology are the computational thinking perspectives. In order to assess the efficacy

of my tool in empowering young people to interact with and use Cloud technology,

I ran a Cloud app creation workshop, during which I collected surveys on attitudes

towards the Cloud and analyzed students’ responses to various design scenarios.

In recent years, computational thinking has gained funding and traction in pri-

mary education internationally due to the emergence of a generation more reliant on

technology than ever before [12]. Researchers and teachers have also shown that it is

17

both possible and valuable to teach students computational thinking at a young age.

Two large surveys of overall computational thinking education that were con-

ducted in the past decade have gained much traction. In Lee, Martin, and collabo-

rators’ 2011 paper detailing a set of NSF-supported STEM programs, it was found

that existing definitions of computational thinking can be applied to K-12 settings

for students from a wide range of technical and socioeconomic backgrounds [2]. To

model and understand the specific values that students took away from computational

thinking lessons, they developed a three-prong framework: (1) Abstraction, applying

concepts from one use case to another; (2) Automation, using a computer to execute

a set of repetitive tasks more efficiently than a human; and (3) Analysis, a reflec-

tive process of the students’ assumptions and implementations. They also posited

that creating cell phone apps has the potential to develop computational thinking in

K-12 students due to the heavy application of all three aspects of their framework

throughout that process.

More recently, Duncan and Bell analyzed a variety of English, Australian, and

CSTA curricula that had been published for primary schools. They established the

main topics covered in all of these curricula and the suitability of the material for first

year to eighth year primary school students. They also emphasized the importance

of teacher development—once teachers understood why computational skills were

important to teach, they were more comfortable and confident with teaching the

material.

One key takeaway from this study was that the content of most classes from the

curricula analyzed focused on programming skills and data representation knowledge

instead of developing more intrinsic perspectives, such as empowering students to be

technological creators. The researchers had hoped that computational thinking skills

would be taught indirectly via the learning of computer skills, but found that this was

generally not the case. Duncan and Bell posited that computational thinking needs

to be explicitly taught, which is difficult without first giving students the necessary

technical background knowledge.

Grover and Pea then used MIT App Inventor to conduct a pedagogical study of

18

how to introduce computational thinking concepts in middle schools [14]. Based on

the case studies they analyzed, a pilot curriculum was designed and implemented

with the following goals [13]:

∙ Students are engaged with the content presented and enjoy the classes.

∙ Students become familiar with the basics of programming, rather than just

learning to use a specific programming tool/language.

∙ Students become familiar with the concept of binary number representation.

∙ Students develop some basic Computational Thinking skills.

∙ Students have a personal sense of achievement at the end of the course, have

opportunities to be creative, and have some form of control over their work.

∙ Students are able to share their success outside of the classroom with their

friends and family.

∙ Extension activities are available for those that need it, but the main course

content is suitable for all students.

Through the workshops that they ran, they concluded that there should be a

much heavier emphasis on social interaction in the development of individual mental

processes in computational thinking education. Specifically, there is a need to develop

communicative activities during classes so that students can foster better individual

and group learning. Grover and Pea felt that ideas of classroom discourse should be

brought in from the learning sciences to teach introductory computational concepts.

In concert with computationally rich activities, discussions and reflection sessions

with peers significantly influenced the organic introduction and use of new vocabulary

as well as important foundational computing concepts that learners were previously

unaware of. In the workshop that I ran for my thesis, I included reflection and peer-

to-peer communication activities whenever a new concept was introduced. I also

created a final group design project activity.

19

1.2 MIT App Inventor is a blocks-based program-

ming tool for creating mobile applications

MIT App Inventor is a free and open-source webservice that allows users to create

Android mobile applications through a blocks-based programming language and high

level abstractions (see Figure 1-1). Since its development began in 2009, the primary

goal of MIT App Inventor has been to democratize the creation of mobile applica-

tions by allowing people with little to no programming experience to create highly

functional apps. Through MIT App Inventor, users can build apps that interface

with sensors in their smartphone and the web as a whole, including the smartphone

camera, accelerometer, text messaging, voice calls, external Bluetooth/IoT devices,

and internet connectivity. Due to its low barrier of entry, MIT App Inventor is being

used as the primary teaching tool for many introductory programming classes and

workshops targeting students anywhere from late elementary school to university and

professional level. This web interface is available worldwide, with 5 million users from

195 countries that have created a total of 16.2 million apps [5]. MIT App Inventor’s

accessibility to young students and popularity as an international computer science

teaching tool makes it a great platform for my research on computational thinking

education.

MIT App Inventor currently has one experimental component called FirebaseDB

that allows users to interact with the Cloud [6]. Users can create apps using the

component that store and access a large pool of shared data across multiple devices.

This component relies on the Firebase platform, a cloud data store service provided

by Google to Android application developers. Google has recently indicated that

they are pursuing a change in direction for Firebase and are planning to tightly

integrate the Firebase database service with the Google Play Store, in effect requiring

developers who wish to use the Firebase database to register their applications on the

Play Store. This is incompatible with much of MIT App Inventor’s user base. A large

portion of the user population is primarily focused on education and are generally not

professional developers. These users distribute the applications they write on MIT

20

Figure 1-1: An MIT App Inventor 2 project is built using both a designer interface
and a blocks interface. The designer interface (top) allows users to drag-and-drop and
customize components such as buttons onto a mockup Android screen. The blocks
interface (bottom) provides code blocks that can be arranged to form basic programs.
In this example, a sound file is played with the button is clicked.

21

Figure 1-2: The FirebaseDB component currently available on MIT App Inventor has
four properties set in the designer (left) and 12 blocks for programming.

App Inventor via QR code either through communication with the App Inventor

Companion App or through direct installation of the packaged app onto an Android

device. Neither option is compatible with the future of the Firebase database, so

this method of providing cloud storage capabilities for MIT App Inventor is quickly

reaching its end-of-life.

The FirebaseDB component has four properties, five event blocks, and seven

method blocks (see Figure 1-2). Of its properties, the FirebaseToken and the Fire-

baseURL are usually preset by MIT App Inventor to direct to MIT App Inventor’s

free Firebase account. The user may also change the FirebaseURL to point to their

personal Firebase account. The Persist property deals with whether or not the de-

veloper wants variables to retain their values when the device is off-line or when the

application is closed. If it is checked, values will be uploaded to Firebase the next

time the app is run while connected to the network. The ProjectBucket property

refers to the bucket that this project’s data resides in on the Firebase account.

22

Of the method blocks (which are colored purple), there are four that allow data

modification in Firebase: call FirebaseDB.StoreValue stores the given value under

the given tag; call FirebaseDB.ClearTag removes the tag and its stored value from

Firebase; call FirebaseDB.AppendValue appends a value to the end of a list atomi-

cally; and call FirebaseDB.RemoveFirst returns the first element of a list to the when

FirebaseDB.FirstRemoved event block (yellow) and atomically removes it.

The two getter method blocks ask for data from Firebase: call FirebaseDB.GetTagList

asks for all of the tags corresponding to this project bucket, which triggers the when

FirebaseDB.TagList event block; and call FirebaseDB.GetValue asks for the value

stored under the given tag and and returns it to the when FirebaseDB.GotValue

event block. This method will return the input of the valueIfTagNotThere field if the

tag does not exist.

The when FirebaseDB.DataChanged event block will return the tag and value of

any data that has been changed or added to the project bucket. The when Fire-

baseDB.FirebaseError event block returns any error message that Firebase may send

the application.

The CloudDB component I created to replace FirebaseDB is heavily modeled after

its predecessor. It is important that current FirebaseDB users on MIT App Inventor

are able to quickly and easily transition their FirebaseDB projects over to CloudDB

and to continue creating projects that use shared data without much of a learning

curve. A similar set of blocks will best help achieve this goal.

1.3 The Cloud is a powerful concept that allows peo-

ple to have worldwide influence cheaply and quickly

Cloud computing refers to "the delivery of computing services–servers, storage, databases,

networking, software, analytics, and more–over the Internet" [15]. Through this ser-

vice, networks of servers in various remote locations can be managed to seamlessly

conduct large scale computations or host vast amounts of data. Companies offering

23

Cloud services allow the user to quickly receive the results of their computational

needs without having to worry about how these needs are fulfilled. It is referred to as

"the Cloud" to highlight the idea that in this system, it doesn’t matter where data is

stored or on which machines computations are being carried out–only the abstraction

matters.

Cloud computing is one of the most powerful computer science concepts from the

last few decades regarding mass sharing of data and computational load. There has

been a large boom in popularity for commercial Cloud services in the past decade,

as seen by the exponential growth of the Amazon Web Services (AWS) and Google

Cloud Services (GCS) businesses (see Figure 1-3). As such, an increase in educating

students about the power of the Cloud should follow in schools. However, there is

no move for such a suggestion in the current United States education system or even

in the Computer Science Teachers Association (CSTA) standards. This may be in

part due to the public’s general impression of Cloud computing as a tool that is only

used by the technological elite as opposed to something that can be made accessible

to anyone.

MIT App Inventor is in a good position to show that anyone, even primary school

students, can understand and use the Cloud to build something of relevance to them-

selves and their communities. Through App Inventor’s implementation of a Cloud

computing service with CloudDB, students will not need to do any highly technical

tasks like learn to use AWS/GCS or set up and manage a server. They can truly

view CloudDB as an abstraction. When FirebaseDB was created, there was no large

push to create materials that would show young students how to use the component

in a way appropriate for their age and interests. Additionally, the implementation of

FirebaseDB included features that were useful for further customization of apps but

could’ve been confusing for young children to use; for example, customizing the Fire-

baseToken and FirebaseURL to point to a personal Firebase account, and interfacing

with Google’s Firebase console. The design of the CloudDB component aims to make

its usage as simple as possible with minimal extraneous information. Of course, even

though we are using MIT App Inventor to teach the concepts around shared data

24

Figure 1-3: Like many other Cloud computing services, AWS sales has shown expo-
nential growth for the past decade [16].

and the Cloud, knowledge about the Cloud should be transferrable beyond just the

App Inventor tool. My study will also analyze how well students can understand the

effect and usage of the Cloud in non-mobile scenarios.

1.4 Relevant Prior Work: Shariables and Cloud data-

structures implemented Scratch enabled compu-

tational explorations of online data

There has been little prior work in the area of shared data education for primary school

students with the exception of two data sharing projects for the Scratch programming

language: Shariables and Cloud data-structures. Scratch is a visual, block-based

programming language and environment for children that consists of graphical sprites

on a stage that can be programmed using a set of instructional blocks [8]. As a blocks-

based programming environment, Scratch’s coding interface is similar to that of MIT

25

Figure 1-4: Programmer interactions for using Cloud variables in Scratch 2.0 [7]. A
variable can be set to be a Cloud variable by selecting the Cloud variable checkbox.
A Cloud variable has the same methods/blocks as a normal variable.

App Inventor. However, Scratch projects are meant to be played and viewed on the

Scratch website whereas MIT App Inventor projects are meant for mobile devices.

A normal Scratch variable can be a list, piece of text, or a number. It is only mod-

ifiable by the user of the Scratch project that it exists in and is only shared within

that project. In 2007, Stern implemented Shariables for Scratch, which were vari-

ables stored on a server that could be modified across multiple projects and multiple

users [9]. These Shariables had server-side persistence and had basic access control

features so that the creator of the Shariable could choose whether the Shariable was

open to anyone on Scratch, specific Scratch programmers, or multiple projects by the

same programmer. Stern ran a 6-person study with students to teach Shariables and

found that children were inspired to create personally meaningful projects, including

networked games and personalized chat systems.

In 2013, Dasgupta implemented Cloud data-structures for Scratch 2.0, which ex-

tended scalar variables and lists in Scratch through a boolean property, thereby en-

abling Scratch programmers to store and retrieve data through their projects (see

Figure 1-4) [7]. These Cloud data-structures were both persistent across multiple

execution instances and shared between simultaneous instances. The key difference

between Dasgupta’s work on Cloud data-structures and Stern’s work with Shariables

was that Cloud data-structures are only accessible and writeable from the Scratch

program that originally contained it.

A number of intermediate to advanced members of the Scratch community were

26

invited to participate in a user study for Cloud data-structures. Dasgupta presented

four case studies of projects made by these Scratch programmers: (1) Two 13-year-old

students used Cloud lists to keep a sorted collection of numerical scores, which was

meant to persistently store high-scores in games; (2) A 13-year-old student remixed

sample code from a Scratch 2.0 collaborative drawing project to improve the coordi-

nate storage scheme and add new drawing features; (3) A 17-year-old member of the

community created a survey that would plot users on a political map and show them

everyone else who had taken the survey; (4) A 14-year-old student remixed sample

code from a Scratch 2.0 chat room project to detect when a member of the chat was

idle. From these case studies, Dasgupta found that children gained perspectives on

larger issues such as privacy, safety, and server scale through working with Cloud

data-structures in their personal Scratch projects.

1.5 The publish-subscribe messaging pattern allows

an intemediary broker to send messages from

publishers to invisible subscribers

Before I discuss the technical implementation of the CloudDB component, I present

the communications model that makes it possible. The publish-subscribe (Pub/Sub)

model is a common messaging pattern used in peer-to-peer applications. In Pub/Sub,

the entity sending messages is called the publisher and the entities receiving the pub-

lisher’s messages are referred to as the subscribers. The publisher sends its messages

to a channel or some separate entity, which relays the messages along to relevant sub-

scribers for the publisher. Through this indirect messaging pattern, the publishers

and subscribers do not need to have any knowledge of each other. The intermediary

node acts as a black box for communications [18].

The Pub/Sub model is implemented by Redis, the API used as a database, cache,

and message broker in the CloudDB project. This allows messages from CloudDB

to be sent on various channels. Redis’s implementation is also extremely robust and

27

scalable so that massive numbers of subscribers may listen to the messages broad-

casted by the publisher. This is an essential requirement for CloudDB, as one mobile

application created with MIT App Inventor may be downloaded by large numbers of

mobile devices, each serving as a separate subscriber. Subscribers may choose which

channels to listen to and can also subscribe to messages based on glob-style pattern

matching [19].

28

Chapter 2

Coding Methodology: CloudDB was

implemented using the Redis API

with simplicity as the design goal

The CloudDB component was designed and developed to allow MIT App Inventor

developers to easily set up data sharing for their apps. Through CloudDB, data is cre-

ated, modified, and shared between devices using two properties and fourteen blocks.

The actual database was written using the Redis application programming interface

(API). Redis was chosen because it is a large and well-maintained open-source project

like MIT App Inventor with an expansive selection of features, including easy-to-use

Pub/Sub capabilities [20]. It is also an in-memory data storage, which makes it ex-

ceptionally fast. Specifically, Jedis, a Redis Java driver, was used for compatibility

with the MIT App Inventor codebase.

When a client, in this case a mobile device running a MIT App Inventor application

that uses CloudDB, wishes to make a request to view or change data on CloudDB, it

first communicates with the proxy server through the Transport Layer Security (TLS)

protocol. Once the proxy server validates the request, it sends the request through

the Transmission Control Protocol (TCP) to the Redis server, which is hosted locally

on port 6379. For security purposes, the Redis database only accepts communications

from localhost, which in this case is just the proxy server. The Redis server responds to

29

Figure 2-1: A client running a CloudDB MIT App Inventor application first commu-
nicates its request to the proxy server through the TLS protocol which communicates
with the local Redis server to handle any requests.

the proxy server’s request through TCP. Finally, the proxy server sends the response

back to the client through TLS (see Figure 2-1).

Client-side programming for the CloudDB component was done in Java and Lua

script, Redis configuration directives were used to set up the server, and the Secure

Sockets Layer (SSL) proxy server was written in Elixir/Erlang to encrypt CloudDB

data.

2.1 Design Requirements: CloudDB must be easy to

use and similar to FirebaseDB

I imposed one key requirement in designing the CloudDB component: Since one

of the goals of the MIT App Inventor project is to democratize mobile application

creation technology, CloudDB must be understandable and usable by young students

and generally by anyone without extensive computer science training.

Additionally, since CloudDB was envisioned as a replacement for FirebaseDB, I

also wanted users of the FirebaseDB component in MIT App Inventor to be able to

easily transition to using CloudDB. Thus, I reused many of the same block names

from FirebaseDB and followed the prior naming convention for any new blocks that

I created.

With these considerations in mind, I designed the CloudDB component to include

30

the following features: (1) Data buckets identified by just two text properties, Ac-

countName and ProjectID, (2) A simple key-value pair data storage, modification,

and retrieval scheme that works with a text-based key and a value of any type, (3)

An event listener that returns the tag and new value any time data in the specific

CloudDB project bucket is changed, (4) Atomic pop and append list operations, and

(5) Under-the-hood SSL encryption.

2.2 CloudDB has two properties and fourteen blocks

The CloudDB component has two properties in the MIT App Inventor Designer and

fourteen blocks in the Blocks editor. An overview of the functions of each is given

below (see Table 2.1).

Block Image Function

31

a.

The AccountName and ProjectID

are the only two properties of the

CloudDB component. They are both

Strings and allow the project to ac-

cess the correct set of data in the

CloudDB server. The AccountName

is autofilled to be the email account

associated with the MIT App Inven-

tor developer account. The Projec-

tID is autofilled to be the name of

the current project. Both fields can

be changed by the developer to any

String. For example, if the developer

wishes to access the CloudDB data set

from another user’s project, the Ac-

countName would be changed to the

other developer’s email address and

the ProjectID would be the name of

their project.

b.

Data is initialized and stored in

CloudDB through the StoreValue

block as a key-value pair. The key

is labeled as tag and should be a

String. The value is labeled as value-

ToStore and should be the data be-

ing shared. The valueToStore can

be any datatype currently supported

by MIT App Inventor, including text,

lists, images, or sound files.

32

c.

The GetValue block sends the re-

quest to retrieve a specific value from

CloudDB. There are two inputs: (1)

the tag of the desired data and (2)

valueIfTagNotThere, the value that

should be returned if the desired tag

does not exist in CloudDB.

d.

The GotValue block is the event block

that pairs with the GetValue block.

It is triggered when the server returns

the desired tag and the corresponding

value when CloudDB completes the

GetValue request.

e.

The ClearTag block removes the key

associated with the input tag from the

database, thereby deleting both the

tag and its value.

f.

The DataChanged block is an event

block that is triggered whenever any-

thing is changed in the CloudDB

project. It returns the tag and up-

dated value of any data that was

stored or cleared.

g.

The GetTagList block sends the re-

quest to retrieve a list of all of the

tags in the CloudDB project from the

server.

33

h.

The TagList block is the event block

that pairs with the GetTagList block.

It is triggered when the server re-

turns the list of all tags in the project

bucket once CloudDB completes the

GetTagList request.

i.

The AppendValueToList block allows

items to be atomically appended to

a list. Thus, when multiple devices

attempt to add items to a CloudDB

list at the same time, no items will

be lost or overwritten. The inputs are

the tag associated with the list and

the itemToAdd. If the tag does not

exist or if the tag does not have a list

as its value, an error will be returned.

j.

The RemoveFirstFromList block

sends the request to atomically

remove the first element from a list.

Thus, when multiple devices attempt

to add to or remove items from a

CloudDB list at the same time, no

items will be accidentally lost or

overwritten. The input is the tag of

the list. If the tag does not exist or

if the tag does not have a list as its

value, an error will be returned.

34

k.

The FirstRemoved block is the event

block that pairs with the Remove-

FirstFromList block. It is triggered

when the server successfully removes

the first element from a valid list.

This block returns the value that was

removed when CloudDB completes

the request.

l.

The CloudDBError block is an event

block that is triggered whenever

CloudDB throws an error. It returns

the error message as a String.

m.

The AccountName block is a getter

block for the (String) AccountName

property of the CloudDB project.

n.

The ProjectID block is a getter block

for the (String) ProjectID property of

the CloudDB project.

o.
The CloudDB block is a getter block

for the specific CloudDB instance.

Table 2.1: An overview of CloudDB’s two properties and fourteen blocks

2.3 Simple key-value formatting in the Redis database

allows for flexibility in data sharing

Unlike in the FirebaseDB component, where the default data bucket is tied to the

specific application, the AccountName and ProjectID fields are the only identifiers of

the data bucket being accessed in the Redis server by a CloudDB instance. Every piece

35

of data coming from the CloudDB component in any MIT App Inventor project is

stored in the same Redis database. For a given tag, its corresponding key in Redis is a

String joining together the given AccountName, ProjectID, and tag. The valueToStore

is converted into its JSON representation and stored as a JSON-serialized String in

Redis. Redis’s lightweight Pub/Sub and pattern matching subscription capabilities

allow a CloudDB instance to easily subscribe to relevant messages from the Redis

server.

It is also possible for multiple MIT App Inventor applications to use the same

data bucket, resulting in many possibilities for interesting and complex shared data

projects. For example, multiple people can create different apps that visualize the

same data set in different ways, an app can be created that summarizes several data

buckets, and apps that give specific users limited access to select parts of a large data

project can be customized. Additionally, this easy-to-parse design allows for future

work in creating a console for viewing data and logging.

One detriment to this approach is that all of the data can be easily viewed and

edited by anyone using CloudDB through MIT App Inventor. While FirebaseDB

requires an authentication token so that each project is hardcoded to only be able to

view the one data bucket tied to the current project (with the exception of creating

a personal Firebase account, which is generally only used by advanced developers),

CloudDB allows a developer to view and edit any CloudDB project created by any

MIT App Inventor developer without permission. However, this feature also allows

users to create multiple CloudDB instances in a single project that access multiple

different project buckets simultaneously. We believe that the powerful and flexible

data sharing capabilities that CloudDB currently provides will be extremely valuable

to users. Privacy and security warnings will be given to users of CloudDB prior to

use.

Additionally, the returned variables associated with this key-value implementation

are potentially confusing. Suppose I call CloudDB.StoreValue with tag = mostPopu-

larMajors and valueToStore = ("6", "2", "18"). Later on, I wish to modify the list by

adding an element, "2A", without using the call CloudDB.AppendValueToList block.

36

Figure 2-2: Although both of these blocks operate on the value returned by when
CloudDB.GotValue, all edits are only local. Neither actually modify the list stored
on the CloudDB server.

I first call CloudDB.GetValue with requested tag = mostPopularMajors and receive

a response to the CloudDB.GetValue request through the when CloudDB.GotValue

block. I then attempt to change the value in the when CloudDB.GotValue block by

either directly setting the value that was returned or modifying it within the block

(see Figure 2-2). However, the value returned by when CloudDB.GotValue is a copy

of the actual value and not a pointer to the value itself. Thus, neither method will

actually modify the list stored under the specified tag inside the CloudDB server—

only the local value variable will be modified. Similarly, the tag returned by when

CloudDB.GotValue is also just a copy of the actual tag. While this behavior is con-

sistent with the rest of MIT App Inventor, it might cause some confusion in novice

programmers.

2.4 Atomic operations were written in Lua script

It was fairly easy to set up basic CloudDB functionality, including key-value store and

data changed event notifications, using Jedis’s built-in Pub/Sub features. However,

atomic operations could not be used out-of-the box. The Redis database provides

the LPOP key and LPUSH key value [value ...] commands, which atomically pop

and push an item from or to a list stored in Redis [21]. However, in order to use

these commands through the Jedis Java client, the list inputs needed to be standard

Java lists. As explained previously, MIT App Inventor stores all such data as JSON

Strings, which makes it incompatible with the Redis atomic list protocols.

37

Atomic operations such as list pop and push are fairly important for CloudDB

functionality. Without such features, concurrency issues such as the readers-writers

problem may arise when multiple clients attempt to change the same value [23].

Additionally, because FirebaseDB currently supports atomic list methods, we needed

to support them in CloudDB as well.

In order to define atomic list operations in the context of MIT App Inventor,

Lua scripts were written and evaluated using Redis’s built-in Lua interpreter, EVAL

[22]. Redis guarantees that Lua scripts are executed atomically. No other script or

Redis command will be executed while a Lua script is being executed. Due to these

properties, in order for atomic operations to not bog down the entire system, the

scripts were written in a way that made them quickly executable. Two short Lua

scripts were written, one for the atomic AppendValueToList block and the other for

the atomic RemoveFirstFromList block (see Appendix A).

2.5 Semantic change to list: Lists stored in CloudDB

are passed by value instead of by reference

Lists are the only MIT App Inventor datatypes with mutators, and as such, list

objects are passed by reference [28]. Take a global variable in MIT App Inventor

named list1 with the value ("A", "B", "C"). If another global variable named list2 is

initialized and then set to list1, a reference to list1 is passed to list2. When a change

is made to list2, the value of list1 will also reflect that change.

However, this rule does not apply to lists that are stored in CloudDB. When

CloudDB.StoreValue is called, if the valueToStore is a list, then a copy of the list

is stored instead of a reference to the original list. Taking the above example as an

analogy in CloudDB, suppose CloudDB.StoreValue is called to store tag = list1 and

valueToStore = ("A", "B", "C"). If CloudDB.GetValue is called to retrieve list1, and

the value of list1 is stored as a global variable named list2, any changes to list2 will

not be reflected in list1. When list2 was set to the value of list1, CloudDB passed it

38

a copy of the value instead of a reference to the original list. This semantic change

to the list object in MIT App Inventor is due to basic limitations of databases, which

also occurred in FirebaseDB.

2.6 Data is encrypted through a SSL proxy server

that communicates with a local Redis server through

TCP

Developers and users of CloudDB applications may upload and share personally iden-

tifying or potentially sensitive data. Thus, this component needs to both support

transport level encryption to keep data transfer private and authenticate the Re-

dis server instance to keep data secure. Redis inherently has a very weak security

policy: it offers no transport level security and only provides server administrators

with the option of using a password to authenticate clients communicating with the

Redis server. None of the traffic sent to and from Redis is encrypted, so all of the

data, including the password, can be easily sniffed as it travels over unsecured TCP

connections. In order to increase data security and protect the Redis server from

potential attacks, an SSL proxy server sitting on the same machine as CloudDB’s

Redis instance was built. The proxy accepts requests from the internet via SSL, and

then forwards them via TCP over localhost to Redis. Redis was configured to only

accept requests from localhost, protecting it from potential DDoS or other attacks.

The proxy server was implemented using the Elixir package, which runs on the Erlang

VM.

Erlang-based applications such as the proxy server are composed of processes,

each with their own stack and heap, and which communicate via message passing.

Hundreds of thousands of these lightweight Erlang processes can be spawned on a

single server, which makes this system highly scalable and robust [26]. There are two

types of processors: workers, which perform the computations that the application

needs, and supervisors, which monitor and can restart worker processes [25]. For the

39

Figure 2-3: The proxy server at startup has one supervisor process and one outward-
facing acceptor worker process.

rest of Chapter 2.5, I will present the hierarchical arrangement of processes used in

this application in the form of a supervision tree.

When it is first spun up, the proxy server has only one supervisor process and one

worker process. Specifically, the worker process is a SSL listener process that starts

listening on the specified outward-facing port. It runs an infinite loop and waits for

clients to attempt to connect to the server at its specific port. When a client first

sends a request to CloudDB, it connects to this listener/accepter process via the TLS

protocol (see Figure 2-3).

When the client connects and the SSL handshake is performed, the acceptor es-

tablishes a socket and a new TCP connection to Redis for this client (see Figure

2-4).

Two workers are then spawned for the client request and added to the supervisor’s

list of children. One worker is a reader which reads from the client’s TLS socket, and

the other is a reader which reads from the new Redis socket (see Figure 2-5). The

client-facing process waits for the client to send new requests to forward to Redis

and the Redis-facing process waits for Redis to send a response to forward to the

client. When Redis gives a response, the Redis handler reads a line of TCP from its

read socket and writes that line to its write socket. The Redis handler then relays

the response back to the client through a secure TLS connection. If the client has a

40

Figure 2-4: A client connects to the proxy service via TLS. The SSL handshake is
performed and the acceptor process instructs the supervisor process to spawn a client
handler process as well as a Redis handler process.

Figure 2-5: The client now sends information to the client handler process, which
forwards it to Redis. The Redis handler listens for responses from Redis and forwards
them back to the client. The acceptor process waits for other clients to attempt to
make new connections to the proxy.

41

Figure 2-6: Multiple clients connecting simultaneously to the proxy service, each with
their own individual client handler process and Redis handler process.

new request, the client handler reads a line of TLS from its read socket and writes it

to its write socket to pass to Redis through TCP. When a client is finished and the

connection closes, Elixir automatically sets its associated client and Redis handlers

to die.

The first worker process (the listener/acceptor) continuously listens for new clients

attempting to connect to Redis through its open TLS socket and repeats the proces-

sor spawning process for each new client (see Figure 2-6). This parallelism combined

with Redis’s built-in concurrency allows for multiple devices to seamlessly communi-

cate with CloudDB at once without collision. Every response from Redis is directly

passed to the appropriate client handler and then the correct client. Additionally,

the proxy server employs the one-for-one supervision strategy so that the supervisor

automatically restarts any proxies that unexpectedly crash.

2.7 MusicShare: Example of a multi-functional app

built using CloudDB

CloudDB is able to interface with various MIT App Inventor components to create

complex apps that allow data sharing. One example of an app that used to be

impossible to create in MIT App Inventor without private extensions or significant

42

external programming is the MusicShare app. This app extends a basic piano app

and allows users to play, record, and submit their own songs, as well as listen to songs

that others users of the app have shared (see Figure 2-7).

The first screen of the MusicShare app has a standard piano and music recording

interface. When a user wishes to submit a recording they have made, they enter

a name for their song and click the "Submit Song" button. This triggers the when

SubmitButton.Click block, which calls CloudDB.StoreValue to store the song name as

the tag and the source recording as the value (see Figure 2-7a). CloudDB is able to

recognize media files such as sound, image, or video files. It stores these files as a byte

array and encodes that array as a base64-encoded string. This built-in functionality

was mostly re-used from the bincompfile extension written by Jeff Schiller.

If a user wishes to view and listen to all of the songs that have been submit-

ted to the app, they can click the "Go to Music List" button from the first screen,

which brings them to another screen displaying a ListView of all of the song ti-

tles that have been submitted to the project. The list is first populated using call

CloudDB.GetTagList when the screen is initialized. It is then updated every time

a song has been added or modified through the when CloudDB.DataChanged block.

When a list element is picked, CloudDB.GetValue is called to retrieve the selected

tag. When the get request has been completed through the when CloudDB.GotValue

block, the media file’s byte array is automatically decoded and a MIT App Inventor

Player can directly play the value that was retrieved.

CloudDB infers that RecordingPlayer.Source is a media file.

A programmer would not have been able to build this app using FirebaseDB

because media files, such as sound files, cannot be natively stored through the Fire-

baseDB component.

43

(a) MusicShare’s first screen, which provides a user interface for creating and submitting
music. The only block in this screen that interfaces with CloudDB is when SubmitBut-
ton.Clicked.

(b) MusicShare’s second screen, which lists all of the songs that have been submitted to the
repository. The list is automatically updated live. Tapping on a song automatically plays
it.

Figure 2-7: Screenshots and CloudDB code from MusicShare, an example CloudDB
app that lets users create, share, and listen to music.

44

Chapter 3

Teaching Methodology: Curriculum

was created for a 6-lesson workshop

for middle school students

In order to test the usability of CloudDB for the target audience and find out if middle

school aged students can understand and create meaningful projects with shared data

technology, I designed and ran a workshop for middle school and junior high school

students. Ten students between the ages of 12 to 15 years old participated in the

workshop. They were in grade seven, eight, or nine. The workshop was hosted every

Saturday from 12:05 to 12:55 and lasted from February 18, 2017 to April 1, 2017,

with the exception of March 11, 2017 due to a holiday. The total intervention time

was around 5 hours. Throughout the lessons, students were introduced to the MIT

App Inventor tool, were explicitly taught computational thinking concepts regarding

the Cloud, learned how to use the CloudDB component in MIT App Inventor, and

created independent final projects.

45

3.1 Participants in the workshop had little to no ex-

perience with programming

The workshop was given in the form of a class through HSSP, a semesterly program

ran by the Massachusetts Institute of Technology Educational Studies Program for

community service and outreach in the Boston and Cambrige area [17]. All of the

lesson plans for this workshop were reviewed and approved by professional teachers

from HSSP. Students pay $40 to join the program and can register to lottery for

up to four classes. According to the program guidelines, students are required to

select classes without any outside or parental interference, which encourages them to

pursue their personal interests. From basic information inferable about the general

population of HSSP participants, it is likely that the subjects of my study are more

scientifically-minded and more interested in technology than the average 12 to 15 year

old student.

In the description for the workshop, I emphasized that students should sign up if

they are interested in an opportunity to try novel technology and learn how to build

mobile applications. I indicated that no prior experience with programming, MIT

App Inventor, or mobile development was needed. Over 100 students lotteried for

my class as their first choice, which was very high compared to other classes in the

program, but due to constraints on room size and teaching staff, only ten students

could be selected through the random lottery process. However, it is clear from the

response rate that this topic is both relevant and highly interesting to the target

audience.

Of the students selected for the class, six were male and four were female. Two stu-

dents indicated that they had prior experience in blocks-based programming through

Scratch and one other student indicated very minimal exposure to a text-based pro-

gramming language. The rest of the students indicated that they had no prior pro-

gramming experience. None of the students had previously built an application for

mobile, web, or any other interface. As a part of the MIT Committee on the Use of

Humans as Experimental Subjects procedures, the students and parents/guardians

46

had to sign minor assent and parental consent forms to allow their data to be col-

lected for research and to be filmed (see Appendix B). Students were still encouraged

to take the class if they did not agree to release their data for research, but all ten

students and their parents/guardians signed the forms.

3.2 A lesson plan was created summarizing the sched-

ule, concepts taught, and data collected

The six hour-long lessons were planned for 50-minute time increments to provide a

buffer for late arrivals or unexpected delays. The goal of the first lesson was to teach

the students how to use the MIT App Inventor tool and the lab tablets to create some

basic apps (see Table 3.1).

Time Activity

5 min
Class introductions: Name, grade, why are you taking this class,

any programming experience you have (Scratch, Java...).

5 min

What is App Inventor?

∙ A website that lets you design and make apps (show site).

∙ Have the students go to the App Inventor website.

∙ Have the students open a new tab and navigate to the devel-

opment page.

Make sure everyone has downloaded the App Inventor Companion

app on their mobile devices. Let students create accounts on the

site and figure out how to use it at their own pace.

40 min

Students go through a list of beginner tutorials. Encourage them

to talk to other students in the class if they have questions. When

they are done with the first app, teach them individually how to

download the app through the QR code and APK method.

47

Table 3.1: Lesson 1 Plan, Introducing MIT App Inventor

The goal of the second lesson was to explain the concept of the Cloud to students,

conduct a preliminary survey, and introduce the CloudDB component (see Table 3.2).

Students were also presented with the coding challenge of modifying an App Inventor

drawing app to allow multiple devices to draw on the same picture at the same time

using CloudDB.

Time Activity

5 min

Introduce the concept of the Cloud:

∙ Ask students what they do on their computers and phones.

∙ If they mention anything (email, games with shared high

scores), ask them how they think it works.

Explain the Cloud:

∙ Tell them that the Cloud is basically a bunch of computers all

over the world that talk to each other through the Internet.

This lets them do things together that they couldn’t do alone.

∙ Ask students if they can think of any examples of the Cloud.

48

5 min

Give the Google Docs example:

∙ Problem: You can’t access your Word document on another

computer so you use Google Docs.

∙ In Google Docs, your file is not saved on your own computer

like a Word file would be.

∙ A Google Doc is saved on a computer somewhere else called

the "Cloud," which is pretty much another computer some-

where far away that you can talk to through the internet.

∙ This allows you to open up the same exact doc on any other

computer by constantly talking to the "Cloud" computer. In

fact, multiple people can access your file and edit at once.

∙ If you and your friend are both on the same doc, the Cloud

computer will constantly talk to both computers at the same

time.

∙ The computers will tell the Cloud computer what changes

they want made on the doc, and the Cloud computer will

update any connected computers.

5 min Students fill out the Pre-questionnaire (see Appendix C.1).

15 min

Introduce the CloudDB component in App Inventor with a handout

(see Appendix C.2). Explain that CloudDB allows you to store data

onto a special Cloud computer for your apps.

49

20 min

Present the Draw Together coding challenge:

∙ Give them the partially complete AIA for the app. It is with-

out the CloudDB components and currently just draws and

wipes by itself.

∙ Pair up the students and have them do the Draw Together

Worksheet (see Appendix C.3).

∙ They should make a plan for how the drawing data is shared

between devices.

Table 3.2: Lesson 2 Plan, Introducing the Cloud

In the third lesson, the class went over the solutions to the Draw Together

CloudDB coding challenge and was encouraged to expand on the basic app or try

to make another CloudDB app (see Table 3.3).

Time Activity

10 min

Give students the Draw Together Solutions and Extensions printout

(see Appendix C.4). Ask them to try and understand the solution

and use it to get their code working. If they already finished the

app, ask them to look at the extension that let’s the user paint in

different colors.

5 min
Ask a pair with the best working solution to explain how it works

to the rest of the class.

50

35 min

Pose coding challenges around the Draw Together Extension and

other apps. Students are free to work on them for the rest of the

class with staff guidance:

∙ How would you implement a Draw Together app with multiple

colors?

∙ How would you build a Music Sharing app (given a starter

AIA file)?

∙ How would you make a game with a global high score (given

a starter AIA file)?

Table 3.3: Lesson 3 Plan, CloudDB Draw Together Wrapup

In the fourth lesson, the independent final design project was introduced. Students

brainstormed both individually and in teams to design their final apps and had a bit

of time to begin pair programming (see Table 3.4).

Time Activity

5 min

Introduce the design project.

∙ This project is an opportunity to create a mobile app of your

own design and imagination.

∙ Students will have two classes to make their projects with a

partner and will do a short presentation during the final class.

∙ There are two constraints: (1) The project’s theme will be

the ENVIRONMENT, so the app should have some rela-

tion to that theme, and (2) Everyone’s projects must use the

CloudDB component.

51

10 min
Students complete the Individual Design Worksheet (see Appendix

C.5).

15 min

Have students talk to at least 3 other people in the class about their

ideas. At the end, have students find a partner to do their project

with based on mutual interests (or group of 3 if class has an odd

number). Once students finish pairing up, have each group do the

Group Project Design Worksheet (see Appendix C.6).

∙ Check with every team to make sure they have a reasonable

project plan.

∙ Make sure the projects can be completed in a reasonable time.

5 min

Pair up teams as they finish to do the Design Peer Feedback Work-

sheet (see Appendix C.7). Teams should take turns talking about

their projects and take notes on what their peers say.

15 min

Students begin to pair program their app, starting by trying to

implement the CloudDB portion first. Collect their AIA files at

the end of the class.

Table 3.4: Lesson 4 Plan, CloudDB Independent Design Project Workday 1

Students were given the entire fifth class to work on their final projects (see Table

3.5).

Time Activity

45 min

Students finish pair programming their projects. Remind students

to switch roles every 8 minutes or so if needed. Collect their AIA

files.

5 min

Explain the final project presentations next week. Each team will

need to make a 3-minute Google Slides presentation about their

project with a 1-minute question and answer session after.

52

Table 3.5: Lesson 5 Plan, CloudDB Independent Design Project Workday 2

The goal of the sixth and final lesson was to wrap up the final projects and have

students give presentations (see Table 3.6).

Time Activity

30 min
Allow students to make and practice their presentations, as well as

make any final touches to their apps. Collect AIA files.

15 min Student groups give their final project presentations.

5 min Post-questionnaire (see Appendix C.8).

Table 3.6: Lesson 6 Plan, CloudDB Independent Design Project Final Presentations

3.3 Data Collected

Three types of data were collected during the workshop: written, audiovisual, and

MIT App Inventor project files. The written data collected was in the form of work-

sheets given in class. The worksheets included students’ answers to concept questions

about CloudDB to ensure understanding, plans for how they could potentially use

CloudDB in their apps, their app design process, and peer feedback based on inter-

view questions. All of the worksheets given to the students directly assisted in their

learning and completion of in-class activities except the Pre-questionnaires and the

Post-questionnaires, which were given solely for research purposes. Students were

told that the two questionnaires were entirely anonymous and did not reflect their

work or abilities in any way.

The Pre-questionnaire was given during Lesson 2 of the workshop (see Appendix

B.1). There were four 5-point Likert scale questions gauging how important stu-

dents perceived the Cloud to be and how comfortable they were with the idea of it.

There were four additional free response questions that tried to probe at the details

of students’ understanding of the Cloud’s role in society and their relation to it. This

53

questionnaire was given after the concept of the Cloud was briefly explained to stu-

dents so that it would not be unfairly biased against students who had not heard of

the term before but conceptually understood the ideas surrounding shared data.

The Post-questionnaire was given at the very end of the workshop as the final

activity of Lesson 6 (see Appendix B.8). The four Likert scale questions from the

Pre-questionnaire were repeated to gauge how students’ perception and understanding

changed throughout the course. One more Likert question was added to the Post-

questionnaire specifically probing at how students personally felt about the efficacy of

the workshops in improving their understanding of shared data. The four free response

questions from the Pre-questionnaire were also repeated. Additionally, there were

three new free response questions that specifically focused on students’ experiences

while working on their final design projects.

All of the students had turned in their assent and consent forms by the third

lesson, so we began to film one pair of students using a videocamera. This pair of

students sat in the corner of the room. They were chosen due to the availability

of a power source nearby and the tripod being mostly out of the way in the corner

compared to elsewhere in the limited class space. The camera was pointing from

behind the students so that it could capture the state of their computer monitors. At

the end of the final lesson, when student groups presented their final design projects,

the videocamera was shifted to point at each of the presenting students.

The MIT App Inventor project files (AIAs) were also collected at the end of the

class for the students’ final projects. This file can be opened on the developer website

to view both the Designer and Blocks Editor portions of a specific app. Additionally,

if the teaching staff heard any interesting quotes from the students during class, they

would note them down.

54

Chapter 4

Results: Data from the workshop

shows that young students can

quickly understand shared data

The workshop involved ten students between the ages of 12 and 15. The measurements

taken during the workshop can be parsed to answer two separate research questions:

(1) "To what extent can middle school students understand the Cloud?" and (2) "Can

young people build meaningful technologies using the Cloud that could affect their

communities?"

It is important to note that the number of participants in the study was insufficient

to make definitive conclusions about the CloudDB system or the curriculum. Thus,

we present these results as an exploration to inform future experiments.

In order to help us answer the first question in the context of MIT App Inven-

tor and CloudDB, I analyzed students’ Pre-questionnaire responses, students’ Post-

questionnaire responses, and the adeptness of their technical usage of the CloudDB

component in their final design projects.

Question two was answered by analyzing students’ Post-questionnaires, individual

and group project design worksheets, video of students’ final project presentations,

and the level of completion and quality of these final projects.

Relevant quotes were collected during in-class discussions and students’ free work

55

time that supported both research questions. Students’ Pre-questionnaire and Post-

questionnaire responses were also compared to gather how effective the workshop

intervention was at teaching shared data concepts.

4.1 Students quickly understood high level ideas and

strong role of shared data in modern society

The concept of shared data was first introduced in Lesson 2 through a brief explana-

tion. Only one student said that they had heard of "the Cloud" before the lesson, but

that student could not provide an explanation and did not know what it was. The

specific example of Google Docs was used as a case study to relate the concept to a

popular modern technology that is commonly used. The students seemed to catch on

quickly and did not have any clarifying questions after the concept was introduced.

One student’s comment hinted at young students’ ability to quickly gain a wider per-

spective on how data sharing works in the Internet ecosystem:

"Isn’t this just the Internet? ...Internet servers store data and share and save it."

— Student A

Immediately following the explanation of shared data, students were given Pre-

questionnaires to measure their understanding and attitudes regarding the Cloud.

There were four 5-point Likert scale questions and four free response questions. When

analyzing their responses to the four Likert scale questions, I coded Strongly Agree

as 5 and Strongly Disagree as 1. The mean score and range of scores are displayed

in Table 4.1 below:

Question Mean Range

1. I use the Cloud in my daily life. 4.5 4-5

2. I understand how the Cloud stores and shares data. 4.125 3-5

3. I feel comfortable making apps that use the Cloud. 3.875 2-5

56

4.
I can think of ways that the Cloud can solve problems

in my everyday life.
4.25 3-5

Table 4.1: Mean and range of responses for Pre-questionnaire Likert scale questions
on a 1-5 scale.

Students rated question 1 very high, all agreeing or strongly agreeing, which in-

dicates that they felt that data sharing technology was highly relevant in their daily

lives. This was perhaps influenced by the previous in-class discussion regarding how

Cloud data sharing is used in popular modern technologies such as Google Docs. The

mean score on question 2 was slightly higher than Agree, indicating that students

generally felt like they understood how the Cloud works. Question 3 had the lowest

score and largest range. On average, students were Neutral to Agree on feeling

comfortable making apps that use the Cloud. A lower score is to be expected given

that none of the students had previously created an app with shared data technology.

The larger variation in the responses to question 3 may have also reflected students’

differing comfort levels with using the MIT App Inventor tool after the previous les-

son. Perhaps some students found MIT App Inventor to be easy to use and inferred

that Cloud data sharing in MIT App Inventor would not be too difficult. Students

gave question 4 high scores, saying that they generally agreed with being able to

think of ways that the Cloud could solve problems in their daily lives. This is later

reflected in students’ abilities in thinking up a wide range of potential app ideas that

use CloudDB in the final project phase.

The four free response questions provided deeper insight into students’ levels of

understanding. Question 1, In your own words or with pictures, describe what you

think the Cloud is and what it does. Try not to use the examples from today, had two

levels of answers. Students either described the Cloud as a data storage mechanism or

as a mechanism for storage, sharing, and editing. An answer of the first, simpler type

of response was: "I think Cloud is somewhere store the data or somewhere everyone

put things there." Figure 4-1 illustrates an answer of the second, more complex variety.

57

Figure 4-1: A student’s response to Pre-questionnaire, In your own words or with
pictures, describe what you think the Cloud is and what it does. Try not to use the
examples from today.

The student drew the Cloud almost as an intermediary message broker for several

different devices, which is a crucial part of many implementations of Cloud platforms.

This student also demonstrated understanding that Cloud data can be shared across

different device types. There was one student who left this question blank, indicating

a lack of understanding.

Question 2 of the free response asked: Do you think the Cloud has an important

role in today’s society? Why or why not? All students responded positively. How-

ever, all of their explanations focused on document sharing or online collaboration,

indicating that they were heavily influenced by the in-class example of Google Docs

and may not have understood the full capacity of Cloud data. An answer represen-

tative of the general spirit of the responses was: "Yes! It allows sharing important

documents + work to go more smoothly. Also, it helps connect the world so people

around the globe can all communicate together."

Question 3, What are some problems you see with the Cloud? had an interesting

breadth of responses. Note that issues with and drawbacks of shared data were not

at all discussed during class. A few students responded with no ideas. The others

wrote:

∙ "It uses an external source to store the file." This answer doesn’t explain why

an external storage is problematic, but we can infer that the student thinks this

is bad, perhaps due to common concerns such as security, ease of access, and

speed.

58

∙ "May be too slow." This is a very prevalent problem—speed is one of the top

areas of optimization for Cloud services and products.

∙ "Sometimes when the whole class is looking at the same doc it will kick some

of the [students] out." This response focuses on the Google Doc example of

shared data, but touches on real-life challenges. With too many concurrent

users, Google Docs, which uses the operational transformation algorithm, will

be unable to enforce consistency across all edits due to server overload [24].

While this student did not have knowledge of these technical details, thinking

up this problem case encouraged the student to initiate a conversation with

me after the class. The student was able to think up the generally correct

explanation that "the Cloud computer can’t handle talking to too many people

at once."

∙ "If you don’t have internet (wifi) you wouldn’t be able to share something."

∙ "If the computer ’Cloud’ were to crash or stop working, the data would be lost

& people would not be able to work on it together."

∙ "What if the Cloud overloads or is hacked."

The last three responses are all common issues that Cloud service providers struggle

with. Within just a few minutes of learning what shared data was generally about,

the vast majority of students in the class were able to think critically about data

sharing and the problems that can come with it in the context of today’s Internet

landscape.

Students did not generate novel answers to question 4, How might you use the

Cloud in the future to create something that solves a problem you see in the world?

The few students who did write responses all wrote about applications in collaborative

work and were clearly influenced by the Google Docs example, once again.

The Pre-questionnaire indicated that the vast majority of students were able to

grasp the big ideas around shared data quickly (with just 10 minutes of explanation).

They were generally confident in their understanding and showed some ability to

59

think critically about shared data in the larger context of the Internet. However,

they were unable to think of use cases aside from the example given in class which

shows a lack in depth of understanding and critical thinking.

4.2 Creating a class-wide shared drawing application

successfully helped most students learn CloudDB

Students began using the CloudDB component in their own MIT App Inventor

projects at the end of Lesson 2, when the DrawTogether class-wide app building

activity was introduced (refer to Chapter 3.2). At the beginning of the activity, all

students were sent a premade AIA file that created a working drawing app. The pre-

made app allowed the user to draw on a picture on their own device. Students were

tasked with figuring out how to use CloudDB to modify the app so that everyone in

the class can draw on the same picture at the same time.

The final expected result was for students to use CloudDB.StoreValue and when

CloudDB.DataChanged. Whenever they drew a line, that line would be pushed to

CloudDB as four coordinate values in a list. The when CloudDB.DataChanged block

would be triggered whenever anyone stored anything onto the CloudDB project. The

value returned from that block would represent other users’ new lines and would be

automatically rendered on the local device. A worksheet (see Appendix C.3) served

as a guide for students to think about how to proceed.

Step 2 of the worksheet asks students to consider the properties of CloudDB with

respect to the app they are trying to build: Do the AccountName and ProjectID have

to be the same or can they be different for each app? Why? After several minutes of

free work time, the teacher asked students to volunteer their answers. Three students

responded:

∙ Student B: "Yes, same so everyone can see the same drawing."

∙ Student C: "No, because that’s how the Cloud works." When the teacher asked

for elaboration, the student responded: "Everyone has a different computer that

60

talks to the Cloud computer."

∙ Student D: "Absolutely yes, because if it’s different, then the drawing will be

stored on different Cloud computers."

The correct answer was that all of the apps should have the same AccountName

and ProjectID so that every app can push their changes and pull the changes made

to the drawing by other apps. Student C seemed to have trouble understanding how

the independent clients communicate with the common server through the CloudDB

mechanism. However, after Student D’s explanation, Student C’s understanding was

improved. When asked to explain their realization, the student again used the anal-

ogy of talking to the Cloud computer instead of the data buckets analogy that was

explained in class:

"The AccountName and ProjectID are like the name of the Cloud computer."

— Student C

While this explanation isn’t technically accurate from an implementation point of

view, this level of abstraction was reasonable and appropriate for students’ interaction

with CloudDB. From my observations, it seems that children are often able to explain

complex ideas to their peers more easily than adults. In this particular classroom

setting, when one student understood and explained a concept using kid-friendly

language, it helped others understand it better.

All of the students were able to complete the class-wide DrawTogether app by the

end of Lesson 3, with various levels of teacher assistance. Most students quickly under-

stood that the CloudDB.StoreValue block should be used to push their changes to the

Cloud, but only one student was able to figure out that the when CloudDB.DataChanged

block could be used to constantly listen for changes made by everyone else. Most stu-

dents attempted to use the CloudDB.GetValue blockset instead. Some tried to put

the CloudDB.GetValue command under where the CloudDB.StoreValue is called and

others attempted to tell CloudDB to run the CloudDB.GetValue command every sec-

ond or so (while this is possible with the Timer component, it is not the most elegant

61

Figure 4-2: Code from the finished DrawTogether class-wide drawing app

or the easiest solution to implement).

I feel that this confusion mostly stems from an unfamiliarity with CloudDB blocks

and their functions rather than a general lack of understanding regarding shared data.

After finishing the core DrawTogether app, half of the class was able to implement the

multi-color DrawTogether extension with varying degrees of success. The extension

involved adding an extra element to the lists being stored and retrieved that held the

value of the color that the new line should be drawn in.

While students generally felt like they understood how to use the main functions

in CloudDB through this activity, there were several pain points with respect to

working with data structures. First, students needed to understand how the Canvas

component handles line drawing with four parameters: prevX -> x1, prevY ->

y1, currentX -> x2, currentY -> y2 (see Figure 4-2). Then they needed prior

knowledge of lists in MIT App Inventor so that they could store all of the values

under a single tag to push to CloudDB (again, there are other solutions that are

more complex and less elegant). Finally, they had to use built-in list functions to

extract the elements needed to reconstruct a line.

There was only one introductory lesson prior to this activity when students could

directly explore the MIT App Inventor website. During Lesson 1, students were

encouraged to follow a variety of basic app tutorials of their choosing. Many did

not come into contact with the Canvas or list components during that lesson. In

62

the future, if given more time, it might be good to make sure all of the students

are exposed to creating apps that use Canvas and list prior to this activity so that

students can remain focused on implementing CloudDB functionality instead of trying

to figure out how the other features of the code works. Despite the struggles with

Canvas and list, students were exposed to simple data structures through this activity,

which is valuable for reasoning about abstraction with regard to shared data.

4.3 The final project design process indicated in-

creased understanding of capabilities of shared

data and strong interest in creating apps that

influence the community

The final design project was centered around solving a problem related to the en-

vironment. Students were first asked to individually brainstorm problems that they

were passionate about and draw screenshots of a few mobile app ideas based on their

problem statements. Students were verbally enthusiastic in class about the idea of

designing and creating their own apps, and the topic of the environment seemed to be

something that all of the students cared about. There was an large variety of initial

problems that students wrote out, including pollution, extinction, deforestation, and

oil spills. This led to an interesting spread of app designs, a few of which I present in

Table 4.2 below:

63

Two of three drawings for an app idea that would

allow users worldwide to share pictures of beauty in

nature through CloudDB. This student was inspired

by the problem of littering because "it is harmful for

birds/other animals." Users would be able to upload

their own photos, tag photos by location, and view and

favorite others’ photos. This app idea is similar to the

popular photo sharing social media apps of today.

64

The design for a two-player game that uses CloudDB.

Two devices would communicate with each other

through the Cloud during a fight sequence between a

human and a tiger. This student wanted to combine

three problems that they considered very important: lit-

tering, deforestation, and climate change. At the end of

the game, the players would be shown an educational

message about how deforestation "will cause animals to

die and ruin the earth’s ecosystem" or that "animals are

losing their habitats and humans are responsible."

One of several similar drawings for an initial design of

a simulation app that would show how "oil spills ef-

fect many animals and poison their water, making the

environment non-livable" over time through a scrolling

bar. Due to coming to class late, this student skipped

the step in the worksheet asking them to discuss how

CloudDB can be incorporated into their app ideas with

a partner. However, the student seemed very passionate

about educating others about this environmental prob-

lem.

Table 4.2: App designs from individual design project worksheets.

From the individual design project worksheets, we can see that young students

know a fair amount about a wide range of problems in the world. They are able to

communicate on why they care about those problems and are familiar enough with

technology and mobile capabilities to understand how apps can fit in with solving

these problems. I also felt that students were able to expand their understanding of

the capabilities of CloudDB and data sharing during this activity. By first starting

65

out with problems they want to solve and then discussing with peers and teachers

about how data sharing could be incorporated into apps to solve these problems,

students realized that data sharing is not limited to Google Docs-style collaboration

as most of them indicated in the Pre-questionnaire. Students were able to imagine

broader applications of CloudDB to a wider range of real-life issues by first trying to

solve a problem that they were individually passionate about.

After students completed the individual brainstorming worksheet, they shared

their ideas with at least two other students in the class and formed groups of two

to three based on shared interests for the final group project. Students were given

half of Lesson 4, all of Lesson 5, and half of Lesson 6 to work. Four groups were

formed. Two groups created educational games, one group made a social networking

type app, and one group tried to create a meta collaboration app that would help

multiple people work on an MIT App Inventor project together.

4.4 Case study of one group’s progression of con-

structing knowledge about CloudDB and shared

data

Due to limited videocamera resources and classroom space, only one group near the

corner of the classroom was filmed. This pair of students decided to make a two-player

battle game focusing on deforestation and extinction. Analysis of the students’ discus-

sions provided insight into how their understanding of data sharing, data structures,

and the client-server model was constructed over the course of their work.

First, the students tried to figure out how a player would be assigned to play as

a certain character. They wanted the first player who opens the game to play as the

human and the second player to play as the animal guardian of the forest. However,

after several minutes of discussion, they decided that the process of entering the game

was not as important as the game itself, so they chose to put aside the problem of

implementing the lobby system after they coded the game mechanics.

66

The second decision the group made was with regard to how the game is played.

The pair quickly agreed that, similar to an old-style arcade game, buttons would be

used to attack on both sides. The pair had an interesting debate around whether to

use turn-based versus continuous battle mechanics. Ultimately, the group decided to

implement simultaneous button-mashing gameplay to deal damage and determine the

winner. The conversation that led to this decision was centered around the abilities

of CloudDB. A snippet of their conversation is transcribed below:

Student D: "Um, I was thinking both attack. It’s like turn-based. Because mov-

ing might be a little bit..."

Student E: "Laggy."

Student D: "Yeah it’d be kinda choppy."

This pair clearly understood the problem with lag in data sharing, possibly from

their experience with the DrawTogether app, which they reference later on in the

conversation. They made a key decision regarding their app with that issue in mind,

which demonstrates understanding and critical computational thinking.

The students then set up the non-CloudDB parts of their app, which took a sig-

nificant amount of time. When the group was ready to add CloudDB functionality

to their game, they referenced the code from the DrawTogether activity as well as

another sample CloudDB AIA game to start out:

Student D: "We can Cloud everything just like the paint app."

Student E: "We can use that one for reference as well. Except it’s easier because

we don’t have to have the canvas."

Student D: "Well actually, the key is no matter what we do we have to start with

the exact same code right?"

Student E: "Wait you can open up the app right? And play it correct? And the

background will be the same. All we need to do is stream the damage... Like all we

need to do is stream changes."

67

This group successfully reused and remixed concepts about CloudDB that they

learned during the DrawTogether activity regarding when and what data should be

streamed. They concluded that not all of the game and app data should be sent to

CloudDB—only the changes were necessary—and the changes would be reflected in

the damage variables which are triggered by pressing the attack buttons.

Since the group wanted two players on two different devices to be running the

same app with the same code instead of two apps with different "Tiger" and "Hu-

man" code, they needed to figure out how to store health and attack values for each

player. The pair eventually reached an understanding of how to use two different

global variables for a two-player game on one app, which is a relatively complex idea

often presented at the beginner college computer science level:

Student D: "When attack dot click do... We should make a variable called dam-

age. A global name."

Student E: "We don’t want one global damage, that’ll be for both of them!"

Student D: "Global damage ONE and global damage two."

Student E: "Exactly, that’s what I’m saying. Because then you would be hurting

yourself AND your opponent."

This group also had an interesting conversation over what data should go into

the cloud and what data should only be stored locally. Initially, Student D said

that "We can use one CloudDB for practically anything" and tried to put all of their

app properties in CloudDB instead of just the ones that needed to be shared. They

thought that if they put everything in the Cloud, then that would allow all of the

devices running their app to see the same screen. While trying to code such an app

later on, they quickly realized that storing the static parts of their app in the cloud

causes the code to become more complicated than just leaving those portions locally

on the client. They were able to instinctively learn a little bit about client-side versus

network programming.

68

To end the game, the students realized that they could use a Cloud variable as an

indicator:

Student E: "One thing that’s kind of important is that we need to tell [CloudDB]

that if that value right there gets to zero," <points to health bar value> "it needs to

tell you that you’ve lost or you won."

Student D: "So how do we make it stop once it gets to zero?"

Teacher: "In this if statement you can do an if."

Student 2: "I was gonna say if tag is greater than zero..."

The students correctly modeled CloudDB as an intermediary messenger that could

trigger events (in this case, ending the game) and send that information to two sep-

arate clients, who can process the same data in different ways.

By the end of the class, this group had created a multi-screen app that successfully

decremented HP values of characters over CloudDB when attack buttons were pressed.

The app also showed the players an environmental fact when the game ended. The

students were beginning to build the code required to set up lobby management

functionality but ran out of time. The CloudDB-relevant portions of their Designer

screen and code are shown in Figure 4-3.

While this group constructed quite a lot of knowledge about data structures and

the workings of CloudDB and was able to use MIT App Inventor relatively successfully

to create a mostly functional app within the short amount of time they were given,

I observed one main point of confusion. Both students consistently confused tag and

value, seemingly using the term tag to refer to both parameters. When the students

first began coding with CloudDB, they initially left the value field as an empty String

and just set the tag to the values they wanted to share. While this is a valid way to use

CloudDB when coupled with the when CloudDB.DataChanged block, these students

were trying to use it in such a way that required differentiation. Anytime an attack

button was hit by either player, only the tag would be changed to the appropriate

amount of numerical attack damage being dealt, with no indication of which character

69

(a) Designer layout of the main gameplay screen of the app

(b) Blocks code for communicating with CloudDB to enforce consistency in HP based on
attack damage for two players of the game

Figure 4-3: Designer screen and CloudDB code from a two-player fighting game that
was created for a group’s final project

70

is attacking which. This made it impossible to determine which player lost HP. The

students fixed this issue with the help of the teaching staff but continued to refer to

the value as the tag. It was unclear whether this was due to a continuous lack of

understanding or just using the terms interchangeably.

It is interesting to note that both students were able to create and use global

variables in MIT App Inventor correctly. Perhaps it would improve understanding to

teach students about variables first and then introduce the parallel of CloudDB’s tag

as some variable name and value as some variable’s value.

4.5 Students were generally enthusiastic and opti-

mistic about creating apps that would be used

by their peers

While I only analyzed one group’s app creation process in-depth, all four groups were

very enthusiastic and motivated about their final projects. One group even exchanged

contact information so that they could continue working on their project together after

the workshop. Unfortunately, winter storm Theseus hit the Cambridge area on the

day of the last presentation-focused lesson (April 1, 2017), which prevented half of the

class from coming to MIT. Luckily, at least one person from each group was present,

but only one group had full access to their code. Two other groups had some previous

version of their code and one group had no access to their code—all of their code was

on a missing group member’s MIT App Inventor account and that individual did not

share any backups. In any case, all of the groups gave a short presentation on what

their group made and why:

1. Deforestation Game (see Figure 4-3 in Chapter 4.4)

Student D: "So our idea is focusing on deforestation for kids our age because

it’s more of a video game than an information app."

Student D: "Well deforestation, it’s destroying forests for humans and this

wrecks the forest ecosystem and eventually since the human population keeps

71

increasing, deforestation keeps on growing. And if we keep on deforestating we

eventually run out of trees and our oxygen supply is limited and mass extinc-

tion."

Teacher: "So what do you hope your users will get out of this app?"

Student D: "The consequences of deforestation because we have two charac-

ters, one is an animal protecting the tree and the other is a human trying to cut

it down. If the human cuts it down it says congratulations you win but you run

out of oxygen and the entire human race dies."

Student E: "And maybe have some fun. It doesn’t really make sense but a

player can win and the world goes bang!"

Student D: "That’s actually what’s going to happen. You win! But you de-

stroyed the world!"

Student E: "And they learn you don’t want to do that."

2. MIT App Inventor Project Collaboration Tool

Student F: "Our idea was to create a digital web board where various people

who were connected to the same account could collaborate on one of their ideas.

We didn’t get that much done but we were trying to have one device where you

could edit something and it sends it to the cloud and it displays it on all the

other devices."

3. Social Media/Best Cities in America (see Figure 4-4)

Student G: "We wanted to do kind of like a social media service where you

could post pictures of your city and the app will tell you the best cities in Amer-

ica environmental wise. I had to start over today. We made a list of the best

cities and the worst cities and we wanted to use CloudDB to upload pictures."

Teacher: "So you were going to use CloudDB to store the ratings people had

and aggregate them?"

Student G: "Yeah."

4. Oil Spill Cleanup Game (see Figure 4-5)

72

Figure 4-4: Student presenting final project on social media picture sharing and best
city ranking app

Student H: "Me and my partner made an app about oil spills, but unfortu-

nately she wasn’t here today and all our work was on her email so I just made

a rough sketch of what it’s like. So first you choose a team, team one or team

two. And then you go to instructions to tell you what to do. And then when you

press start it counts three two one and then it goes to the game. And you have

three levels and on the first one you have a certain amount of time to clean up

an oil spill and you can see how fast the other player is cleaning up. On the

other screen like that one is yours and that one is the [other player’s]. There

are three levels and whoever wins two or three wins the whole game."

Many students based their app ideas off of other apps they’ve used. During

the group brainstorming session, students showed each other apps on their personal

mobile phones or tablets to more clearly explain their ideas. Group 3’s app had many

similarities with Instagram combined with a ranking app [27]. Group 1 and 4’s apps

all had components from popular multi-player online or phone games. Group 2 was

inspired by the difficulties they had being unable to work on the same MIT App

Inventor project at the same time and wanted to create a CloudDB-based tool that

could give MIT App Inventor Google Docs-like collaboration features.

73

Figure 4-5: Student presenting final project on oil spill cleanup game

Most of these apps targeted audiences in the same age group as the designers and

also had an educational component. Students were engaged while listening to other

groups’ presentations and were enthusiastic about trying out the apps that their peers

had made.

4.6 Post-questionnaires indicated high levels of satis-

faction with making independent, creative apps

After the final presentations, students were asked to take an anonymous Post-questionnaire

to measure what they took away from the final projects and whether their under-

standing and attitudes regarding the Cloud had evolved at all during the workshop.

First, there was a block of five 5-point Likert scale questions: the first four were

the same as the Likert scale questions in the Pre-questionnaire and the fifth was a

new question measuring students’ thoughts about the workshop. Second, there was

a block of three free response questions about the final project. Finally, there was

a block of four free response questions about the Cloud which were the same as the

free response questions on the Pre-questionnaire. As in the Pre-questionnaire, when

analyzing their responses to the Likert questions, I coded Strongly Agree as 5 and

Strongly Disagree as 1. The mean score and range of scores are displayed in Table

74

4.3 below.

Question Mean Range

1. I use the Cloud in my daily life. 4.5 4-5

2. I understand how the Cloud stores and shares data. 4 4

3. I feel comfortable making apps that use the Cloud. 3.778 3-4

4.
I can think of ways that the Cloud can solve problems

in my everyday life.
4.167 3-5

5.
My understanding of the Cloud improved through these

workshops.
4.5 4-5

Table 4.3: Mean and range of responses for Post-questionnaire Likert scale questions
on a 1-5 scale

The class only had 10 students to begin with, and due to the additional decrease

in attendance caused by snow storm Theseus, the final survey results may not be

accurate in representating the whole class; a single student’s response could easily

skew the whole data set. We can generally see that the responses for the first four

questions did not differ much from that of the Pre-questionnaire, which were already

relatively high. The responses for the final question were also high, in the range of

Strongly Agree to Agree, indicating that the workshop was generally a positive

learning experience.

The first set of three free response questions showed that students unanimously

enjoyed and felt confident about the final project. Question 1 asked: How do you feel

about the app you made? All of the students gave very positive responses, such as "I

think we had a good idea and there was a lot of potential," and "I think it came out

well for the time we had." These responses also generally indicated that students did

not feel like they had enough time to carry out their app vision.

Question 2 of the free response asked: What was hard about developing the app?

One student left this question blank, possibly implying that they didn’t have much

trouble. The pain points that most of the other students mentioned had to do with

75

operating the MIT App Inventor tool. Since students only had two 50-minute lessons

where they could directly interact with the MIT App Inventor website prior to the

final project, it is unsurprising for them to still have difficulties using all of the

components and blocks properly, especially since many of the students needed to

use more complex features of MIT App Inventor to make the apps that they had

imagined. One student said: "I think there was a big learning curve to using the app

inventor." Another student said that "arranging the pictures" was difficult. None of

the students mentioned Cloud concepts as something that was difficult to understand

or code.

Question 3, What were some things you didn’t expect? had an interesting breadth

of responses:

1. "How long some parts might take."

2. "I didn’t expect how much work went into something as simple as a button on

an app."

3. "I didn’t expect how long it would take to implement the app with code."

4. "I expected that App Inventor would be more like Scratch but it wasn’t."

5. "It was so much easier."

6. "That we could use one Cloud block for all our damage."

3 responses (the first, second, and third) indicated that students felt that creating

an app was harder than they thought it would be. 2 responses (the fifth and sixth)

indicated the exact opposite. This dramatic variation in experiences may have been

due to either pre-existing notions about app programming or the difficulty of the final

project app that the student’s group had been trying to make.

The next block of free response questions was a repeat of the shared data knowl-

edge evaluation questions from the Pre-questionnaire. For question 1, In your own

words or with pictures, describe what you think the Cloud is and what it does, all of

the responses were picture-based. In the Pre-questionnaire, most of the responses

76

Figure 4-6: A student’s response to Post-questionnaire, In your own words or with-
pictures, describe what you think the Cloud is and what it does. Try not to use the
examples from today.

had been text-based—only two students answered using pictures. Most of the pic-

tures were similar to Figure 4-1 from the Pre-questionnaire shown in Chapter 4.1.

One interesting variation was that one student drew two mobile devices sending data

back and forth. This picture completely abstracts out the intermediary Cloud server

that we taught during class and likely better reflects how the student’s interaction

with the CloudDB code helped them construct how data sharing is applied.

Question 2 asked: Do you think the Cloud has an important role in today’s so-

ciety? Why or why not? Students unanimously replied with "Yes" like in the Pre-

questionnaire. However, while the majority of the responses in the Pre-questionnaire

mentioned Google Docs-like functionality to explain why shared data is important,

there was a wider variety of explanations in the Post-questionnaire. Two examples of

responses were:

∙ "Yes, it is very helpful for passing data."

∙ "Yes, it is used in various google software and in other electronics."

These responses are much broader than just the application of Google Docs and

indicates that students have a better understanding of the capabilities of shared data

and how it fits in within the larger Internet ecosystem.

Question 3, What are some problems you see with the Cloud? had several different

responses compared to in the Pre-questionnaire. Four particular responses were:

1. "Data can be easily manipulated which can be bad for people who use the cloud

for bad things."

77

2. "Data could be changed in the Cloud."

3. "It is hard to use."

4. "If somebody gets a hold of the original project they could manipulate it."

The first, second, and fourth responses were likely conclusions formed from the

students’ interactions with CloudDB. While not all Cloud data sharing systems are

easily accessible or hackable, many are. CloudDB projects can be accessed by any

MIT App Inventor developer by design. This encourages cross-project and cross-

developer usage of data for projects, and makes creating specific data-facing apps

much easier than with FirebaseDB. However, it is important that students are able

to recognize the security and data management issues that come with this feature.

The first response also implies that the student found working with CloudDB to be

easy, which is a plus for CloudDB’s usability. However, the third response suggested

the opposite.

Question 4, If you were to use Cloud technology in the future to create something

that solves a problem you see in the world what would it be? generated several creative

responses, compared to the total lack of novel responses in the Pre-questionnaire. Two

particularly interesting responses were:

∙ "Using Cloud tech to create a car that will learn driving routes and store them

(basically making a self-driving car that doesn’t need a gps)"

∙ "We could use it to inform people about a problem so they can work together to

solve it."

The first response shows that the student is able to think of shared data not

only in the context of software but also in the context of hardware systems that can

interact with the physical world. The second response demonstrates an interest in

motivating people and helping them organize to solve problems in the world, which

shows that the student is at least somewhat interested in using Cloud technology to

have a positive effect on their community.

78

The Post-questionnaire suggests that the workshop as a whole and the final project

in particular was a positive learning experience for students. Students had more

varied and more complex responses to the same free response questions as the Pre-

questionnaire, which also indicates that this workshop improved their knowledge and

critical thinking skills with regard to the Cloud. They demonstrated that they under-

stood the role of shared data in society in a broader sense (not just as a way to make

Google Docs work) and showed expanded ability in reasoning about shared data both

in the context of networking and in the context of how it can be used to improve the

world.

4.7 Workshop was generally effective but could have

been longer to allow for more complete final projects

As the differences between the Pre- and Post-questionnaires showed, the workshop

was generally an enjoyable and effective way to teach students about shared data.

However, some key suggestions for improvement were collected from the students,

teaching staff, and researchers over the course of this project.

First, students did not have enough time to introduce or familiarize themselves

with MIT App Inventor and its wide array of components. Since CloudDB is a rela-

tively advanced component and is always used in conjunction with other components

in order to manipulate or display the shared data, being familiar with MIT App In-

ventor was almost a pre-requisite. Either students should have much more time to

learn MIT App Inventor’s other components, or advanced MIT App Inventor users

should be chosen for such a workshop in the future.

Second, while students were able to quickly grasp the general idea behind shared

data and CloudDB, they had slightly less success at understanding the detailed work-

ings of CloudDB. The DrawTogether activity helped quite a lot in improving students’

knowledge of how specific blocks are used, but more hands-on examples may have been

helpful. Additionally, as seen from the DrawTogether unit, it may be useful to give

79

students a quick lesson on basic data structures in MIT App Inventor so that they

are able to organize their data through CloudDB.

Finally, the amount of time given for students to complete their final projects

was not nearly enough. While most groups almost had a working minimum viable

version of the app that they had envisioned, it is likely that giving them one or two

extra lessons worth of time would have resulted in complete first drafts of working

apps. However, we also noticed that most of the time students spent building their

apps on MIT App Inventor was focused on the non-CloudDB-related parts, including

aesthetics, game mechanics, and basic interactions. For example, students could not

find the if/then blocks and didn’t know how to navigate across screens. Due to

unfamiliarity with MIT App Inventor, students spent a lot of time trying to code the

rudimentary framework required before the CloudDB component could even be added.

This pain point might be alleviated when running this workshop with advanced MIT

App Inventor users instead of students who had never even seen the tool before.

80

Chapter 5

Discussion: The Cloud has powerful

implications for computational

thinking education for young students

The core vision of this work is to empower young students to become creators of

technology instead of just consumers of it, specifically focusing on helping them create

mobile applications that harness the power of the Cloud. To achieve this, I: (1)

built CloudDB, a data sharing component for MIT App Inventor, a popular blocks-

based mobile application programming tool commonly used in lower education, (2)

designed a six-week workshop to teach mobile application creation using shared data

through the MIT App Inventor tool, and (3) ran this workshop on a cohort of ten

middle school students with minimal prior coding experience. My key findings are

summarized below:

∙ CloudDB is able to securely store, retrieve, and modify data through

a Redis server. It has two properties and fourteen blocks that allow complex

commands such as a when DataChanged listener and atomic list operations on

various data types, including text, list, and media files.

∙ Middle school students can easily pick up how to use the CloudDB

component. All students were able to complete the DrawTogether class-wide

81

drawing app within 50 minutes of learning the basics of CloudDB. While mas-

tery of the component may involve prior knowledge of data structures, experi-

ence with MIT App Inventor, and some extra practice, the CloudDB.StoreValue,

CloudDB.GetValue, and CloudDB.DataChanged blocks were easily understood

and applied as seen through quick and correct usage by MIT App Inventor

amateurs.

∙ Young people are passionate about designing their own technological

solutions to problems they see in the world. When the final design project

was introduced during class (using CloudDB to create an app that is related to

the environment), students displayed immediate enthusiasm. Their worksheets

indicated a breadth of understanding with respect to common environmental

problems, as well as creative app solutions that spoke well to audiences in their

age range. Students were motivated through the project building process and

some even wanted to continue after the workshop was over.

∙ Students were able to build reasonably complex and complete apps

given a short timeframe. With just 100 minutes of coding time, all groups

had developed semi-working apps based off of their initial vision.

We have seen through these workshops that it is fully possible to teach students

as young as middle school aged about shared data at a level of abstraction where they

can apply it to real app development problems. Additionally, young students seem to

be naturally interested in designing and implementing technology that can improve

their communities and lives. Since it is clear that students are able to understand

and use shared data, even with minimal programming experience, it would perhaps

be appropriate to introduce the CloudDB component at the tail end of MIT App

Inventor classes in schools.

Being able to share and manipulate data is a powerful ability for young app

developers. It gives students the potential to create applications that can have a

large reach in connecting devices to people in their communities and all across the

world. Through the Post-questionnaire, we saw that just from working with CloudDB

82

in MIT App Inventor for 150 minutes, students were able to imagine abstract and

creative ways to build new technologies and contribute using shared data, such as

by programming a GPS-less self-driving car or crowdsourcing problem-solving. I

believe that today’s primary school aged students, who have grown up surrounded

by technology and mobile apps, will be able to understand complex concepts such

as shared data much more quickly, and be able to contribute to the world through

technological creation more adeptly.

83

84

Chapter 6

Future Works: Improving security,

providing access restrictions to

project data, developing log viewing

capabilities, and extensions to

educational research

There are many extensions to this work on the technical side of improving CloudDB

and many further questions that can be asked in educational research. First, although

the current level of security in CloudDB ensures that random adversaries on the Inter-

net will have trouble accessing Redis server data, anyone who does use the CloudDB

extension in MIT App Inventor will be able to gain access to any user’s project data.

Currently in CloudDB, all data is stored as key-value pairs. The key consists of

the AccountName property, the ProjectID property, and the tag. As discussed in

Chapter 2.3, any developer can create a project and set the properties of a CloudDB

component to reflect those of a project they wish to view or modify. In the future,

it would be wise to allow developers to have more control over how and with whom

their project data is shared. Such a system would need to enforce access separation

85

Figure 6-1: A sample cloud data log in Scratch, which displays when, how, and by
whom a cloud variable was modified [29].

based on client ID and would require client identity validation. Two potential ways

to implement this feature would be to (1) create a new identity management service

for clients, and (2) take advantage of Redis’s ability to isolate applications’ keyspaces

on a per-user level and a per-application per-user level. Data sharing settings could

be set through interaction with the identity management service, which would permit

collaboration on public data buckets and restrict access to private data buckets.

Second, log viewing capabilities for CloudDB would be useful both as a function

and for conducting research in educating students about Cloud data. I plan to build

a webpage that app developers can use to view their CloudDB data buckets. For

example, the webpage could show the list of tags and values for each of the developer’s

buckets as well as a last changed timestamp and a brief history. A similar feature was

implemented for Scratch Cloud variables by Sayamindu Dasgupta [29]. The feature

was called "Cloud Data History" and displayed public logs showing the time cloud

data was modified, who modified the data, the current value of the data, and the type

of action of the data modification (see Figure 6-1). Through looking at these logs,

Scratch programmers were able to find instances of cheating in the games that they

had created.

86

On the education side, my experience from this workshop indicated that it might

be better to conduct the CloudDB app development study with students who have

already had a decent amount of experience using the MIT App Inventor tool, as

the learning curve for the tool itself is somewhat steep due to the massive number of

components available. If the workshop was offered as an optional extension at the end

of an MIT App Inventor curriculum already taught in schools, students may be able

to develop more complex final projects in a shorter time frame due to accumulated

knowledge about the non-CloudDB components in MIT App Inventor. And obviously,

a larger sample size would lead to more conclusive results.

Additionally, MIT App Inventor is currently working on collaborative program-

ming, which can be used for group projects so that all members have access to the

code and can work concurrently. It might be interesting to run the workshop again us-

ing the new collaboration tools to see how simultaneous programming instead of pair

programming influences the work process and helps students understand concepts.

87

88

Appendix A

Lua code for CloudDB atomic list

functions

89

90

91

92

Appendix B

Assent and Consent forms for data

release to research

B.1 Minor Assent Form

93

ASSENT TO PARTICIPATE IN RESEARCH

Using Cloud Databases in App Inventor

1. The researcher responsible for this study’s name is Natalie Lao, a student at the Massachusetts

Institute of Technology (MIT).

2. We are asking you to take part in a research study because we are trying to learn more about how

to teach programming and a new technology called the “Cloud” to students in a better way, using a
blocks-based coding language.

3. If you agree to be in this study we will ask you to do one or more of the following things:

• Answer written questions about what you’ve learned during the workshops.
• Use a computer program that was designed to make Android mobile apps.
• Build apps and discuss your app-building process with your peers.

• You will also have the option to agree to be video recorded during the workshop.

4. We do not believe that there are any significant risks to you if you participate in the study. We will

make sure that your personal information is not shared with others, and will never use your name
when we talk about this research study.

5. We hope that participating in this study will give you the abilities to make basic mobile apps for

Android, which may be a fun experience.

6. Please talk this over with your parents before you decide whether or not to participate. We will also

ask your parents to give their permission for you to take part in this study. But even if your parents
say “yes” you can still decide not to do this.

7. If you don’t want to be in this study, you don’t have to participate. Remember, being in this study

is up to you and no one will be upset if you don’t want to participate or even if you change your
mind later and want to stop.

8. You can ask any questions that you have about the study now. If you have a question later that you

didn’t think of now, you can call the lead researcher, Natalie Lao, at 617-866-8304, email her at
Natalie@csail.mit.edu, or ask me next time. You can also call the Chairman of the Committee on
the Use of Humans as Experimental Subjects at M.I.T. at 1-617-253 6787 if you feel you have been
treated unfairly.

9. Signing your name at the bottom means that you agree to be in this study. You and your parents

will be given a copy of this form after you have signed it.

ASSENT TO PARTICIPATE IN RESEARCH

Please check the boxes next to the things that you are agreeing to participate in

 The general study, which includes:

Answering written questions about what you’ve learned during the workshops.
Using a computer program that was designed to make Android mobile apps.
Building apps and discuss your app-building process with your peers.

 Being video recorded during the workshop.

 Name of Subject (Student’s Name)

 __ ____________________
 Student’s Signature Date

SIGNATURE OF INVESTIGATOR

In my judgment the subject is voluntarily and knowingly giving informed consent and possesses the
legal capacity to give informed consent to participate in this research study.

 _____________________________ ______________
 Signature of Investigator Date

B.2 Parental Consent Form

96

CONSENT TO PARTICIPATE IN
NON-BIOMEDICAL RESEARCH

Using Cloud Databases in App Inventor

Parent/Guardian of Student Consent Form

Your child is asked to participate in a research study conducted by Natalie Lao from the App
Inventor Laboratory at the Massachusetts Institute of Technology (MIT). Your child was
selected as a possible participant in this study because he/she is between the ages of 11-15 and is
currently a middle school or high school student. You should read the information below, and
ask questions about anything you do not understand, before deciding whether or not your child
should participate.

• PARTICIPATION AND WITHDRAWAL
Your child’s participation in this study is completely voluntary and he/she is free to choose
whether to be in it or not. The choice to participate or not will have no impact on your child’s
grades. If he/she chooses to be in this study, he/she may subsequently withdraw from it at any
time without penalty or consequences of any kind. The investigator may withdraw your child
from this research if circumstances arise which warrant doing so.

• PURPOSE OF THE STUDY
The purpose of this study is to develop and test a new mobile application coding tool, which uses
a blocks-based language to make mobile Android apps that use the Cloud. It is our hope that this
tool will support students interesting in programming and app development.

• PROCEDURES
If your child volunteers to participate in this study, we would ask him/her to do one or more of
the following things:

• Answer written questions about what you’ve learned during the workshops.
• Use a computer program that was designed to make Android mobile apps.
• Build apps and discuss your app-building process with your peers.

Your child will also have the option to agree to be video recorded during the workshop.

The workshops will take place in a location reserved at MIT for either 50 minutes or 2 hours.

• POTENTIAL RISKS AND DISCOMFORTS
We do not foresee any risks, beyond minimal, associated with participation in this study.

• POTENTIAL BENEFITS
We believe that your child could learn how to make basic mobile apps for Android, which may
be a fun experience. However, we cannot promise any direct benefits directly associated with
participation in this study.

If successful, this project will lead to the development and release of a free new coding tool that
interfaces with the Cloud for the MIT App Inventor mobile application development interface.
Our hope is that we can significantly improve student learning and innovation in technology, and

CONSENT TO PARTICIPATE IN
NON-BIOMEDICAL RESEARCH

create fun, effective tools for students to use.

• CONFIDENTIALITY
Any information that is obtained in connection with this study and that can be identified with
your child will remain confidential and will be disclosed only with your permission or as
required by law. Your child’s name and identifying information will not be disclosed to any
other agency or group.

For dissemination purposes such as publications, technical reports and conference presentations,
all names will be given a pseudonym/ID number and other characteristics that may identify your
child will be changed.

All research data will be stored in the researchers’ office at MIT in a locked storage locker
and/or password protected hard drive. Data will only be accessible by authorized personnel.

• IDENTIFICATION OF INVESTIGATORS
If you have any questions or concerns about the research, please feel free to contact Natalie Lao,
the lead researcher for this study. Natalie can be reached at 617-866-8304 or at
natalie@csail.mit.edu.

• EMERGENCY CARE AND COMPENSATION FOR INJURY
If your child feels that they have suffered an injury, which may include emotional trauma, as a
result of participating in this study, please contact the person in charge of the study as soon as
possible.

In the event your child suffers such an injury, M.I.T. may provide itself, or arrange for the
provision of, emergency transport or medical treatment, including emergency treatment and
follow-up care, as needed, or reimbursement for such medical services. M.I.T. does not provide
any other form of compensation for injury. In any case, neither the offer to provide medical
assistance, nor the actual provision of medical services shall be considered an admission of fault
or acceptance of liability. Questions regarding this policy may be directed to MIT’s Insurance
Office, (617) 253-2823. Your insurance carrier may be billed for the cost of emergency transport
or medical treatment, if such services are determined not to be directly related to your child’s
participation in this study.

• RIGHTS OF RESEARCH SUBJECTS
Your child is not waiving any legal claims, rights or remedies because of their participation in
this research study. If you or your child feels that they have been treated unfairly, or you or your
child have questions regarding your child’s rights as a research subject, you may contact the
Chairman of the Committee on the Use of Humans as Experimental Subjects, M.I.T., Room E25-
143B, 77 Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253 6787.

 SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE

CONSENT TO PARTICIPATE IN
NON-BIOMEDICAL RESEARCH

I understand the procedures described above. My questions have been answered to my
satisfaction, and I agree to allow my child to participate in this study. I have been given a copy
of this form.

I consent to allow my child to participate in the following activities (please check boxes next to
activities you will allow)

 The general study, which includes:

Answering written questions about what you’ve learned during the workshops.
Using a computer program that was designed to make Android mobile apps.
Building apps and discuss your app-building process with your peers.

 Being video recorded during the workshop.

 __
 Name of Subject (Student)

 __

Name of Legal Representative (Parent/Guardian)

 _______________________________________ ______________
Signature of Legal Representative (Parent/Guardian) Date

SIGNATURE OF INVESTIGATOR

In my judgment the subject is voluntarily and knowingly giving informed consent and possesses
the legal capacity to give informed consent to participate in this research study.

_______________________________ ______________
Signature of Investigator Date

Sign Here!

100

Appendix C

Supplemental Workshop Handouts

C.1 Pre-questionnaire

101

Survey

 Strongly
agree

Agree Neither agree
nor disagree

Disagree Strongly
disagree

I use the Cloud in my everyday life

I understand how the Cloud stores
and shares data

I feel comfortable making apps that
use the Cloud

I can think of ways that the Cloud
can solve problems in my everyday
life

Free response

In your own words or with pictures, describe what you think the Cloud is and what it does. Try
not to use the examples from today.

Do you think the Cloud has an important role in today’s society? Why or why not?

What are some problems you see with the Cloud?

How might you use the Cloud in the future to create something that solves a problem you see in
the world?

C.2 CloudDB Handout

103

CloudDB MIT App Inventor Components

The AccountName and Project ID that you
want to access on the Cloud computer.

The AccountName should be the email of the
person who owns the data and the ProjectID
should be the name of their project.

When you want to share data with other
people by putting it on the Cloud computer,
use the StoreValue block.

The tag should be a text describing the data
you are sharing (ex: myDrawing). The
valueToStore should be the data you want to
share (ex: text, picture, sound).

When you want to get data from the Cloud
computer, use the GetValue block. Put the tag
of the data you want to get. Fill in the
valueIfTagNotThere with the value you get if
the tag you want is not in the Cloud computer.

After you use the GetValue block, make sure
to include the when GotValue block. This
block will tell you the tag and value of the data
that you requested when you used the
GetValue block once the Cloud computer
sends you that data.

When you want to delete a tag, use the
ClearTag block and tell it which tag to delete.

When anything on the Cloud computer
changes, the DataChanged block will tell you
which tag was changed and the value that it
was changed to.

This happens when you store a tag/value pair
and when you clear a tag.

Use the GetTagList block when you want a list
of all the tags in your project.

After using the GetTagList block, use the
when TagList block to see the list of tags in
your project. The list can be accessed in the
value part of this block.

C.3 Draw Together App Design Worksheet

106

Draw Together App Design

1. We want to make the simple Draw Together app, which lets you and your friends draw in
black and to erase all the markings. Open up the AIA project in App Inventor. It is currently just
a single-player app that is not connected to the Cloud. Play with it and look at the blocks.

2. You will need to use CloudDB to make this app multi-player. If everyone in the class is
building an app to draw together, do the AccountName and ProjectID have to be the same or can
they be different for each app? Why?

3. Make a plan for how you might code this app to share drawing data. How do you think you
can use these blocks? Where should they go? What information do you need to pass to
CloudDB? In what format and how often? Write or draw out your ideas in the space below.
(Hint: Look at the CloudDB handout to figure out what blocks to use)

C.4 Draw Together Solution and Extension

109

Drawing Together App Solution

Hint for Adding Multiple Colors:
This is what should be changed in the Blocks space

C.5 CloudDB Individual Design Project Worksheet

112

CloudDB Individual Design Project Worksheet

You will design and make an app that can be used in the ENVIRONMENT. This worksheet will
help you think about what kind of app you would like to make.

1. Come up with at least 3 problems having to do with the ENVIRONMENT that you are
passionate​ about.

Problem statement Why I care about this problem

2. Share your problem statements with the person next to you. Discuss possible ideas for simple
apps that would use CloudDB/data sharing to solve these issues. Take notes below:

3. On the following page, draw ideas for possible apps you could make that would use the
CloudDB component somehow to solve problems. How would someone use your app?

C.6 CloudDB Group Design Project Worksheet

115

CloudDB Group Design Project Worksheet

Now that you’ve formed a group, your group needs to decide what you want to make! All group
members can use this worksheet to write down ideas, but only one needs to be completed.

1. Take turns discussing the ideas that you came up with individually. When it’s your partner’s
turn, write down specific things s/he talked about that interested you the most:

2. Decide which problem your group wants to tackle for this project. Talk about ideas for what
app you want to make to solve the problem. Keep in mind that you have limited class time to
code, so try to make sure that you can finish your app on time (with help from teachers)!

What is the problem you are trying to solve?​__

__

How will your app solve it/What will your app help people do?​________________________

__

How does your app use the CloudDB component?​___________________________________

__

3. On the back of this page, draw some ideas for what your final app will look like. Try to mark
what buttons users would press to do something and how the app would respond to these user
actions.

4. Now, let’s focus on how you will use and code the CloudDB portion of your app. Think about
what the CloudDB blocks you’ve worked with so far can do and how you can use them for your
project. Fill out the following:

When storing data in CloudDB:

What my ​tag​s​ will look like:__

Why/What they are used for:__

What my ​valuesToStore​ will look like:__

Why/What they are used for:__

When getting data from CloudDB:

What my ​tag​s​ will look like:__

Why/What they are used for:__

What my ​valuesToStore​ will look like:__

Why/What they are used for:__

When data is changed in CloudDB:

My app will do ___ with the ​tag​ and

___ with the ​value​.

C.7 Design Project Peer Feedback Worksheet

119

Design - Peer Feedback Worksheet

First, tell your audience the purpose of your app and what it’s supposed to do. Then, interview
the other group following the 5 questions below and write down all the feedback you receive
(even if you disagree with what they say):

1. According to your understanding, what environmental issue are we trying to solve and who is
the target audience?

2. In your own words, what does the app that we proposed do?

3. What do you like about our app idea? How do you think it is effective in solving our problem?

4. How does the app plan to use CloudDB? Does that use case make sense?

5. What are some parts that you think may not work too well? What could we add or change to
make it better?

After both teams are done with the interviews, go back to your original seats and discuss the
feedback that you received with your partner. What changes will you make to your project
design based on the feedback?

C.8 Post-questionnaire

121

Survey

 Strongly
agree

Agree Neither agree
nor disagree

Disagree Strongly
disagree

I use the Cloud in my everyday life

I understand how the Cloud stores
and shares data

I feel comfortable making apps that
use the Cloud

I can think of ways that the Cloud
can solve problems in my everyday
life

My understanding of the Cloud
improved through these workshops

Free response
How do you feel about the app you made?

What was hard about developing the app?

What were some things you didn’t expect?

In your own words or with pictures, describe what you think the Cloud is and what it does.

Do you think the Cloud has an important role in today’s society? Why or why not?

What are some problems you see with the Cloud?

If you were to use Cloud technology in the future to create something that solves a problem you
see in the world what would it be?

124

Bibliography

[1] Valerie Barr and Chris Stephenson. 2011. Bringing computational thinking

to K-12: what is Involved and what is the role of the computer sci-

ence education community? In ACM Inroads 2, 1 (February 2011), 48-54.

DOI=http://dx.doi.org/10.1145/1929887.1929905

[2] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Er-

ickson, Joyce Malyn-Smith, and Linda Werner. 2011. Computational think-

ing for youth in practice. In ACM Inroads 2, 1 (February 2011), 32-37.

DOI=http://dx.doi.org/10.1145/1929887.1929902

[3] Wing, Jeannette M. "Computational thinking and thinking about computing." In

Philosophical transactions of the royal society of London A: mathematical, physical

and engineering sciences 366.1881 (2008): 3717-3725.

[4] Brennan, K., and Resnick, M. (2012). New frameworks for studying and assess-

ing the development of computational thinking. In Annual American Educational

Research Association Meeting, Vancouver, BC, Canada.

[5] MIT App Inventor. Massachusetts Institute of Technology, 2015. Web. 03 Aug.

2016. <http://appinventor.mit.edu/explore/>.

[6] MIT App Inventor. "Experimental Components - App Inventor for Android." MIT

App Inventor. Massachusetts Institute of Technology, n.d. Web. 03 Aug. 2016.

<http://ai2.appinventor.mit.edu/reference/components/experimental.html#FirebaseDB>.

125

[7] Sayamindu Dasgupta. 2013. From Surveys to Collaborative Art: Enabling Chil-

dren to Program with Online Data. In Proceedings of the 12th International Con-

ference on Interaction Design and Children (IDC ’13). ACM, New York, NY, USA,

28-35. DOI: http://dx.doi.org/10.1145/2485760.2485784

[8] M. Resnick, J. Maloney, A. Monroy-HernÃąndez, N. Rusk, E. Eastmond, K. Bren-

nan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai. Scratch:

programming for all. Communications of the ACM, 52(11):60-67, November 2009.

[9] T. Stern. NetScratch: A networked programming environment for children. Mas-

terâĂŹs thesis, Massachusetts Institute of Technology, 2007.

[10] Bray, Tim. "Identifying App Installations." Android Developers

Blog. N.p., 30 Mar. 2011. Web. 03 Aug. 2016. <http://android-

developers.blogspot.com/2011/03/identifying-app-installations.html>.

[11] Jeannette M. Wing. 2006. Computational thinking. In Commun. ACM 49, 3

(March 2006), 33-35. DOI=http://dx.doi.org/10.1145/1118178.1118215

[12] Grover, S., and R. Pea. "Computational Thinking in K-12: A Review of the

State of the Field." Educational Researcher 42.1 (2013): 38-43. Web.

[13] Duncan, Caitlin, and Tim Bell. "A Pilot Computer Science and Programming

Course for Primary School Students." ACM Digital Library. ACM, 11 Nov. 2015.

Web. 19 Apr. 2017.

[14] Grover, S. and Pea, R. 2013. Using a discourse- intensive pedagogy and android’s

app inventor for introducing computational concepts to middle school students. In

Proceeding of the 44th ACM technical symposium on Computer science education

(2013), 723-728.

[15] Microsoft Corporation. "What Is Cloud Computing? A Beginner’s Guide." Mi-

crosoft Azure. N.p., 2017. Web. 19 Apr. 2017. <https://azure.microsoft.com/en-

us/overview/what-is-cloud-computing/>.

126

[16] Morgan, Timothy Prickett. "How Long Can AWS Keep Climbing Its

Steep Growth Curve?" The Next Platform. N.p., 03 Feb. 2016. Web.

19 Apr. 2017. <https://www.nextplatform.com/2016/02/01/how-long-can-aws-

keep-climbing-its-steep-growth-curve/>.

[17] MIT Educational Studies Program. "HSSP." MIT ESP - HSSP. Mas-

sachusetts Institute of Technology, 26 Apr. 2017. Web. 03 May 2017.

<https://esp.mit.edu/learn/HSSP/index.html>.

[18] Bender, Matthias, Sebastian Michel, Sebastian Parkitny, and Gerhard Weikum.

"A Comparative Study of Pub/Sub Methods in Structured P2P Networks."

Databases, Information Systems, and Peer-to-Peer Computing Lecture Notes in

Computer Science (n.d.): 385-96.

[19] "Redis Pub/Sub." Redis.io. RedisLabs, n.d. Web. 10 May 2017.

<https://redis.io/topics/pubsub>.

[20] "Redis." Redis.io. RedisLabs, n.d. Web. 10 May 2017. <https://redis.io/>.

[21] "Command Reference - Redis." Redis. RedisLabs, n.d. Web. 15 May 2017.

<https://redis.io/commands/>.

[22] "EVAL Script Numkeys Key [key ...] Arg [arg ...]." Redis. RedisLabs, n.d. Web.

15 May 2017. <https://redis.io/commands/eval>.

[23] P. J. Courtois, F. Heymans, D. L. Parnas, "Concurrent control with ’readers’

and ’writers’", Commun. Ass. Comput. Mach., vol. 14, pp. 667-668, Oct. 1971.

[24] Baumann, Tim. "Operational Transformation." Operational Transformation

- OT Explained. Github, n.d. Web. 14 May 2017. <https://operational-

transformation.github.io/>.

[25] "Elixir." Elixir-Lang. Plataformatec, n.d. 01 April 2017. <http://elixir-lang.org>

127

[26] "Supervision Principles." Erlang. Ericsson, n.d.

01 April 2017. <http://erlang.org/documentation/doc-

4.9.1/doc/design_principles/sup_princ.html>

[27] Instagram, Inc. "Instagram on the App Store." App

Store. Apple Inc., 15 May 2017. Web. 16 May 2017.

<https://itunes.apple.com/no/app/instagram/id389801252>.

[28] "Mutators." MIT App Inventor. Massachusetts In-

stitute of Technology, n.d. Web. 20 May 2017.

<http://appinventor.mit.edu/explore/ai2/support/concepts/mutators.html>.

[29] Scratch. "Cloud Data: Cloud Data History." Scratch

Wiki. MIT Media Lab, 23 Apr. 2017. Web. 21 May 2017.

<https://wiki.scratch.mit.edu/wiki/Cloud_Data#Cloud_Data_History>.

128

	Introduction: Primary school students can use computational thinking to create technology that affects their world
	Computational thinking has become increasingly prevalent in K-12 education
	MIT App Inventor is a blocks-based programming tool for creating mobile applications
	The Cloud is a powerful concept that allows people to have worldwide influence cheaply and quickly
	Relevant Prior Work: Shariables and Cloud data-structures implemented Scratch enabled computational explorations of online data
	The publish-subscribe messaging pattern allows an intemediary broker to send messages from publishers to invisible subscribers

	Coding Methodology: CloudDB was implemented using the Redis API with simplicity as the design goal
	Design Requirements: CloudDB must be easy to use and similar to FirebaseDB
	CloudDB has two properties and fourteen blocks
	Simple key-value formatting in the Redis database allows for flexibility in data sharing
	Atomic operations were written in Lua script
	Semantic change to list: Lists stored in CloudDB are passed by value instead of by reference
	Data is encrypted through a SSL proxy server that communicates with a local Redis server through TCP
	MusicShare: Example of a multi-functional app built using CloudDB

	Teaching Methodology: Curriculum was created for a 6-lesson workshop for middle school students
	Participants in the workshop had little to no experience with programming
	A lesson plan was created summarizing the schedule, concepts taught, and data collected
	Data Collected

	Results: Data from the workshop shows that young students can quickly understand shared data
	Students quickly understood high level ideas and strong role of shared data in modern society
	Creating a class-wide shared drawing application successfully helped most students learn CloudDB
	The final project design process indicated increased understanding of capabilities of shared data and strong interest in creating apps that influence the community
	Case study of one group's progression of constructing knowledge about CloudDB and shared data
	Students were generally enthusiastic and optimistic about creating apps that would be used by their peers
	Post-questionnaires indicated high levels of satisfaction with making independent, creative apps
	Workshop was generally effective but could have been longer to allow for more complete final projects

	Discussion: The Cloud has powerful implications for computational thinking education for young students
	Future Works: Improving security, providing access restrictions to project data, developing log viewing capabilities, and extensions to educational research
	Lua code for CloudDB atomic list functions
	Assent and Consent forms for data release to research
	Minor Assent Form
	Parental Consent Form

	Supplemental Workshop Handouts
	Pre-questionnaire
	CloudDB Handout
	Draw Together App Design Worksheet
	Draw Together Solution and Extension
	CloudDB Individual Design Project Worksheet
	CloudDB Group Design Project Worksheet
	Design Project Peer Feedback Worksheet
	Post-questionnaire

