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Chapter 1

Introduction

Our goal for this project was to design a programming language that can be used as a

pedagogical tool for teaching introductory programming students. Our primary focus

was in making a language with a simple notional machine [1] (for novice programmers)

and powerful extensibility features (for experienced programmers). The language is

aimed at late high school or early undergraduate students.

Some general-purpose languages are also used as introductory languages (Python,

Java, and C++) [2]. These languages are powerful, feature-filled, and contain many

shortcuts for common tasks, which are all benefits that come at the expense of com-

plicated syntax or notional machines, so subsets of these languages are usually taught

in their place. Students often search the web for help in completing assignments, but

the world outside the teaching environment does not limit itself to the same subset

of the language, so students may not be able to grasp the answers they find online,

for example. Or, worse, the answer to their question may end up being a simple call

to a standard library function, which trivializes the entire assignment!

Other languages languages explicitly designed for novices include Logo [3], PLT

Scheme (now known as Racket) [4], and Scratch [5]. These languages are also pow-

erful and feature-filled, but they bear little resemblance to other languages used in

introductory programming courses. These languages may be successful in being easy

for novices to learn, but students may struggle with the transition to a later program-

ming course that uses different language. Within the same programming language
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family, some concepts can be translated with simple syntax transformations or no-

tional machine analogies, but some of these teaching languages implement different

paradigms entirely, so knowledge of one of these languages may not transfer well to

another.

Our approach was to start with a very basic language (in features and syntax)

by default and allow the user to extend the syntax at runtime with automatically

hygienic macros, which cannot accidentally capture identifiers in the larger program.

Macros are generally seen as an advanced programming concept, but part of our

extensibility goal was to be able to introduce the concept of a runtime macro in a

programmer’s first language to enable them to make useful syntactic abstractions.

We wanted students who learned this language to be able to easily move into other

common languages, so the syntax of the base language is similar to Python or Ruby,

and the extensibility features of the interpreter allow the language to borrow syntax

and features from other languages.

In this thesis, we will start by describing the base language syntax and features

(Chapter 2). We then describe the interpreter framework: a custom parser generator

(Chapter 3), the language grammar itself (Chapter 4), and the evaluator (Chapter 5).

We conclude with some commentary of the process and future work (Chapter 6).
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Chapter 2

Base Language

In this chapter, we will describe the features of base language in our interpreter

framework. The features were chosen to minimize complexity when presented to

a novice programmer without excessively limiting the capabilities of the language.

Many of the choices were made following the introductory language design principles

set out by McIver and Conway in [6]. We wanted a minimal set of orthogonal features

that worked the way a non-programmer would expect. We also wanted some features

that would allow novices to move to other languages with few changes to their models

of how these features worked.

In the first section, we will list the primitive features we chose to include in the base

language. Next, we discuss the features we explicitly omitted. Finally, we describe

the extensions to the language in the form of runtime macros and startup settings.

2.1 Primitives

The primitives in the base language include basic value types, the unordered collec-

tion type, functions, and control flow mechanisms. In this section, we describe our

implementation and rationale for each type.
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2.1.1 Data Types

The data types included in our base language are numbers, strings, booleans, the null

value, functions, and unordered collections.

Numbers The base language implements numbers as arbitrary-precision rationals.

We wanted to avoid teaching beginners about numeric representations (for example,

two’s-complement arithmetic or IEE754 floating-point numbers) because students’

prior knowledge of basic arithmetic should transfer into programming. With ratio-

nals as the only numeric type, some arithmetic operations, such as square roots and

logarithms, must either be approximated or represented symbolically. We considered

providing access to a symbolic algebra system like SymPy [7], but we chose against

it in order to avoid complicating the notional machine with “exact” and “inexact”

versions of different calculations. Instead, we approximate any calculation involving

irrationals as a rational number.

Strings The base language implements strings as immutable sequences of charac-

ters. We wanted to avoid problems with null-termination, mutability, and character

encoding in our string implementation, so we implemented strings as their own data

type.

Booleans The base language implements booleans as the singleton values True and

False. We wanted to avoid the question of truthiness, so we implemented booleans

as their own literal type instead of mapping them onto 0 and 1 or introducing the

notion of truthy and falsy values.

Null The base language implements the null type as the singleton value Nothing.

This is equivalent to Python’s None, Ruby’s nil, or JavaScript’s null. There is no

equivalent to JavaScript’s undefined type.

Functions The base language provides a general mechanism for creating anony-

mous functions but not for creating named functions. Many languages conflate the
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concepts of defining a function and giving it a name, so we implemented only anony-

mous functions and allow them to be assigned to variables in the environment in

the same way that all other values are. Functions must take a constant number of

arguments, so they cannot have optional arguments or variadic arguments. Instead

of using an explicit return keyword, functions return the value of the last statement

that was executed in the body of the function.

Unordered Collections The base language implements collections as immutable

key-value stores. We wanted the keys and values to be of any type, including un-

ordered collections themselves. Using a mutable object as a key in a collection intro-

duces the potential for key collisions if that object changes. We avoided the issues

of unexpected key changes by making these collections (and all other primitives data

types) immutable.

2.1.2 Control Flow

The base language includes two forms of control flow: conditional execution and

indefinite loops. Both of these forms are expressions rather than statements so that

they can be used as the final expression of a function body.

Conditional Execution We chose to implement conditional execution in its

ternary form: a condition, a consequent, and an alternative. The consequent is

executed in the case that the condition is satisfied; otherwise, the alternative is ex-

ecuted. A conditional expression evaluates to the value of the executed branch. We

considered this form of conditional to be simpler than other forms, such as a pattern-

matching construct (such as match in Scala) or a construct with multiple conditions

(such as C-style switch or Lisp’s cond).

Indefinite Loops The looping construct we chose to implement was a loop that

repeatedly executes its body undil a condition is no longer satisfied usually referred

to as a “while loop”. We felt that this form most closely matched the indefinite loop
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constructs in other languages. In our loop structure, the condition is executed first,

then the the body is executed if the condition is satisfied, and this process continues

in a loop. The indefinite loop is an expression that evaluates to the value of the last

execution of the body.

2.2 Omissions

We intentionally omitted some common programming language features from the base

language. Notably missing from the list of features in the previous section are variable

assignment and declaration, ordered collections, definite loops, and an object system.

We chose not to implement these features because their syntax and semantics vary

across languages. As part of our extensibility goals, we wanted to give instructors the

freedom to include these features (and any others) at their discretion.

Assignment and Declaration The first problem with implementing assignment

and declaration was the choice of syntax. For conformity with most programming

languages, we would provide syntax that assigns the name x with the value 10 using

x = 10. However, using the equals symbol for assignment is confusing to novices [8],

so some languages use x <- 10, x := 10, or some other syntax. We encountered our

second problem when deciding whether to include declaration as a separate syntax.

In Python, for example, there is no separate declaration syntax, and a variable bind-

ing is created during assignment if a binding does not already exist. If a separate

declaration syntax does exist, there is also the question of whether to make a dis-

tinction between constant and variable bindings. In JavaScript, as another example,

declaring a variable with let or const makes the binding variable or constant, respec-

tively. Rather than include any default syntax or semantics, we chose to implement

the interpreter with enough flexibility to let an instructor decide what to do.

Ordered Collections Most languages use the same syntax for accessing the ele-

ments of ordered and unordered collections. This requires that novices associate the

same syntax with multiple ideas (index of a list and key of a dictionary, for example),
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which can be confusing to a novice. Extending the language to include something

that acts like an ordered collection is possible using macros, which gives the user the

freedom to make choices such as whether index numbers should start at 0 or 1.

Definite Loops Almost all languages with looping constructs include both the

definite and indefinite loop, although the forms of their definite loop differ. Some

languages have a definite loop in which an iterator variable takes on values in some

iterable (Python, Ruby), while others break the loop into a setup, condition, and

update (C, Java, JavaScript). We saw that the indefinite loop could be used to

implement any of these definite loops, so we designed the interpreter to allow a user

to implement this through the extensibility mechanisms.

Objects Object-oriented programming can be a confusing way to introduce novices

to programming concepts. Students learning object-oriented programming are forced

to contend with method resolution and instance state in addition to understanding

functions, variables, loops, and other constructs. Objects are useful abstractions for

experienced programmers, but they complicate the notional machine, and the syntax

and semantics of object systems differ across languages. For these reasons, we chose

not to implement an object system in the base language. However, the extensibility

features of the interpreter make it possible for a user to implement an object system

of their own design.

2.3 Extensions

The power of this language and interpreter framework comes from the extensibility

features. The user can modify the grammar of the language using runtime macros.

In addition, the instructor can modify the interpreter through start-time settings files

and through modifications to the interpreter itself.
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2.3.1 Macros

Our goal for macros in this language was to allow users to extend the syntax of the

language at runtime in order to add syntactic primitives they find useful or avoid

repetition of common program structures in ways that functions were unable to. We

wanted to make this process accessible to an introductory-level programmer, so we

wanted to avoid requiring users to traverse ASTs or modify program text directly when

implementing macros. We considered three existing macro systems: C preprocessor

macros, Lisp runtime macros, and Rust compile-time macros.

The C preprocessor provides two types of macros: object-like and function-like.

All macros are simultaneously expanded at compile time, and each macro is defined

with a name (all uppercase by convention) that indicates to the compiler that macro

expansion should occur. Object-like macros (such as #define PI 3.14) take no pa-

rameters and are generally used for constants. Function-like macros can take parame-

ters (such as #define ADD(x, y) x + y), that are expanded in a call-by-name fash-

ion. The text substitution causes problems with operator precedence (a * ADD(b, c)

becomes a * b + c), which is usually solved by adding more parentheses in the ex-

panded text. There are other problems with expanding complex statements in this

way, although users of these macros have developed conventions for avoiding these

errors1.

Lisp macros have much more flexibility than C macros, and the homogeneous

syntax of Lisp allows them to avoid the issue with operator precedence, as well as

other issues faced by the C preprocessor. Lisp macros are expanded at runtime,

and they are defined as an s-expression prefix and a transformation function from

the source expression to a target expression, usually manipulating the source list

directly. Because Lisp syntax is entirely made of lists, the function creates a list

containing the symbols and values in the target expression. Different Lisp dialects

provide different mechanisms for defining macros, but these are usually convenience

functions around the same basic idea2. Common Lisp has defmacro and Scheme has

1https://stackoverflow.com/questions/1067226/
2https://docs.racket-lang.org/guide/pattern-macros.html
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define-syntax-rule, for example.

Rust macros are similar to C macros in that they are expanded at compile-time,

but they avoid some of their pitfalls (operator precedence and variable shadowing, for

example)3. Rust macros are defined with a name, a syntax pattern, and a description

of the replacement syntax. Metavariables captured in the syntax pattern are tagged

with what kind of syntax they capture (expression, identifier, type, etc.). To use

repetition, the macro is defined with special operators in the pattern ($($x:expr),*),

and the same operator is used in the replacement code ($(println!($($x),*))). A

macro defined this way would capture any number of comma-separated expressions,

and use them as arguments (comma-separated) to the println! function.

In each of these languages, macro usage appears exactly like a function call (except

for object-like C macros, which appear exactly like a variable). Without careful

attention to macro name conventions, it can be difficult to know ahead of time whether

that “function” will be a normal function or a macro.

Our design for the macro system has the following goals:

1. The syntax of macros should not be the same as function calls.

2. Macro expansion should perform substitutions on the syntax tree instead of on

the text.

3. Users should not have to worry about name collisions between macros and the

larger program.

4. Defining a macro should require minimal knowledge of syntax trees.

5. A user should be able to define a macro anywhere in the program.

6. The macro expansions should happen at runtime.

We used the pattern-matching idea from Rust in the form of a mini-language

for defining captured syntax patterns, but we omitted the metavariable syntax-type

annotations in favor of always capturing an entire expression or block. We allow the
3https://doc.rust-lang.org/book/macros.html
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user to decide when to evaluate any captured code with a Lisp-style unquote operator.

This mini-language is described in detail in Section 4.2.

2.3.2 Startup Settings

Some modifications to the language would be difficult or impractical to implement

through macros. For example, the standard mathematical operators would be difficult

to implement as runtime macros due to the necessity of operator precedence. We

could have added more special syntax for defining unary and binary operators, but

we found it easier to specify these language-level changes at interpreter startup. Part

of our goal was to make these modifications easy to define and easy to share. For

example, an instructor may want to provide some operators for one assignment and

a completely different set for another (boolean operators versus set operators, for

example).

Our interpreter design includes the ability to provide a settings file describing

these language modifications at startup. This settings file contains the definition of

any included operators and their precedence levels, some simple feature flags, and a

mechanism for arbitrary changes to the grammar. The relevant fields in the settings

file are described in Chapter 4 and Chapter 5.

2.4 Summary

Our goal for the base language was to implement a minimal set of teachable features,

including common data structures and a function abstraction. Some examples of

programs are included in Appendix B.
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Chapter 3

Parser Generator

Our language and interpreter framework provide a high level of grammatical flexbility

to the student using the language and to the instructor defining the interpreter. Our

requirements for the parser generator were decided by our need to make program-

matic changes to the parser at runtime and during interpreter startup. The runtime

changes to the parser, in turn, required that our parser was able to handle parsing a

program incrementally, waiting for new rules to be defined before parsing the parts

of the program that used them. Our grammar also contains some rules that are not

easily expressed using regular expressions, so the parser also needed to support these

irregular rules.

Runtime changes to the parser are necessary to accomodate runtime macros. As

we execute a program, macro definition statements can be used to define new syntax

rules that will be added to the parser and be available for use immediately. Start time

changes are necessary to accomodate custom operators and other startup settings.

We need more complex rules than regular expressions will allow because of how

we chose to specify identifiers. Our identifiers are any number of non-whitespace

characters that are not reserved words and do not contain any operator symbols.

This rule, especially in the context of runtime-defined keywords, cannot be easily

expressed as a regular expression.

We also need to be able to parse a prefix of the program text because we can-

not depend on knowing all syntax structures before interpretation begins. One of
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the problems with interpreting a non-homogeneous language with runtime macros is

that the rules for parsing later statements may not exist until partway through the

interpretation of the program.

Based on these requirements, we evaluated parser generators based on their affor-

dances for the kinds of grammar flexibility we needed:

1. The parser should support changes at runtime.

2. The parser should support changes at start time.

3. The parser should support parsing a prefix of the program text.

4. The parser should support rules beyond regular expressions.

3.1 Other Parser Generators

We considered four existing parser generators (PLY, PyPEG, Grako, and Arpeggio)

but ultimately decided on a custom parser generator. Most parser generators work

by reading in a specification of the grammar (usually in EBNF or PEG syntax) and

generating code or parse tables that can be used as a parser. The rules that can be

defined are usually restricted to EBNF, PEG, or regular expressions, although some

generators allow for custom rules. These parsers are intended to be used to parse

entire files containing programs (or other text) into one AST.

These parsers lack support for runtime changes because the generated tables are in

an opaque binary format, and the generated code is difficult to extend. It is possible

to work around this limitation, however, by adding new rules and re-generating the

parser.

These parsers also lack support for incremental parses because they assume that

there is a single rule that exists to match the entire program text. This results

in parsers that produce an error if the entire file does not match the rules of the

language. Without a partial parse, the only way to support macros is to require that

all macros be defined before any other kind of statement executes, which turns our

runtime macros into compile-time macros.
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3.2 Custom Parser Generator

We designed our custom parser generator around the features described earlier: al-

lowing changes at both start and runtime, allowing incremental parses, and allowing

arbitrarily-complicated user-defined rules. Our approach was structured around the

using parser combinators to define complex rules, but we retained the ability to de-

fine parser rules without using the combinators. We allow programmatic changes by

defining the grammar using Python and exposing some of its internal data structures

to the other parts of the interpreter. We support incremental parses by allowing

the parser to emit a match without encountering an end-of-file (EOF). In the rest of

this section, we describe the data structures and operation of our parser generator

framework.

3.2.1 Data Structures

Our parser generator is centered around three kinds of objects: Match objects, Parser

functions, and Rule functions. We provide a library of simple primitive rules, rule

combinators, and a means of turning Rules into Parsers.

Match Objects For our parser to support incremental parsing, we needed to know

how much of the program text was matched and the location of that program fragment

in the entire text. We also needed to support incremental AST creation during a parse,

which we implemented as an extra field attached to a match.

This resulted in a Match object with the following attributes:

∙ text: the fragment of the source that was matched

∙ position: the starting position of this match in the source text

∙ data: unrestricted storage that we used for AST creation

Parser Functions A Parser is an infinite Python generator that takes two argu-

ments: the source text and a start position in that text. The generator will initially
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emit Match objects representing the portions of the text that it recognizes starting

at the specified position. To support backtracking in the parser, all possible Matches

will be emitted in the order that they should be considered. When a Parser has ex-

hausted the set of Match objects it can produce, it continues by emitting the infinite

sequence of Nones, at which point we consider the parse to have failed. Successsful

parses are those that emit at least one Match.

Parser Rule Functions A Rule has exactly the same interface as a Parser, except

that it need not be infinite. This allows us to define Rules that only emit success

cases, and we can turn them into proper Parsers by affixing the infinite sequence of

Nones to its generated Matches. This simplifies the grammar by allowing us to omit a

boilerplate while True: yield None at the end of every function in the grammar.

3.2.2 Rule Creation

Our parser generator was implemented as a library for specifying common Rule pat-

terns in this framework. This library provides some functions for creating primitive

rules (which deal with matching specific strings in the text) and some combinator

functions (which deal with matching patterns or combinations of other rules). Each

of these functions takes an optional callback function that is used to initialize the

data field on each emitted Match.

Rule Primitives

We defined two primitive rules: Raw and Regex. These are used when matching simple

strings or patterns in the text.

Raw A Raw rule emits at most one Match representing an exact string match at the

specified position. The required argument when creating a Raw rule is the exact string

to match. The callback function is called on the string that was matched. These rules

are primarily used for keywords, operator symbols, and delimiters.
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Regex A Regex rule emits at most one Match representing the results of using

Python’s re.match on a slice of the source string starting at the specified position.

The required argument when creating a Regex rule is the regular expression to match.

The callback function is called on the Python regular expression match object re-

turned by the regular expression test. These rules are primarily used for numeric

literals, string literals, and whitespace.

Rule Combinators

We defined rule combinators in order to easily specify common patterns in our gram-

mar. These patterns include optional syntax, repeated syntax, and syntax alterna-

tives, among others.

Optional The Optional combinator is used in places where certain syntax is al-

lowed but not required, such as the alternative clause in a conditional. This combi-

nator takes one rule as its required argument and emits either one or two Matches, so

it always succeeds. If the provided rule parses sucessfully, the first object emitted is a

Match representing that match. In this case, the callback function is passed the data

from the original Match. Regardless of whether the rule parses sucessfully, the next

Match emitted represents the match of the empty string, becasue the empty string is

always a possible match for an Optional rule. In this case, the callback function is

passed None.

Choice The Choice combinator is used when alternatives are allowed in syntax

and exactly one of the alternatives should be used, such as having multiple kinds

of numeric literals. This combinator takes a list of rules as its required argument,

representing the possible options in the order that they should be tried. Each option

is tried in order, and all Matches from the parse of one option are emitted before

trying the next option. Choice succeeds when at least one of its options succeeds.

The callback function is passed the data from the Match that is emitted.
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Sequence The Sequence combinator is used when a there are rules should match

in a specified order, such as the tokens required for an assignment statement. This

combinator takes a list of rules as its required argument representing the necessary

rules to match in order.

When parsing a Sequence, we iterate over each of the rules, starting the parse

for each rule from the end of the match from the previous rule. If any rule in the

sequence fails to parse, we backtrack by using the next match for the previous rule

and retrying any later rules from there. The parse fails if backtracking exhausts all

possibilities for the first rule, leaving no possible matches for the sequence. The parse

succeeds when at least one compatible set of matches is found for every rule in the

sequence. The callback function is passed a list containing the data from each Match

in the sequence.

We found that we often needed whitespace in between the rules of our Sequences.

Assuming a whitespace rule ws and some set of interesting rules r1, r2, and

r3, this resulted in messy definitions like Sequence([ws, r1, ws, r2, ws, r3]),

when we would rather define Sequence([r1, r2, r3]) and have the whites-

pace match automatically. Therefore, Sequence takes one optional parameter

called skip_whitespace which specifies the pattern of text to skip, defaulting to

Regex(\s*). If skip_whitespace is truthy, we try to match it before each rule in

the sequence. Any matches from skip_whitespace are omitted when passing the list

of data to the callback function. It is important to note that skip_whitespace must

be able to match the empty string for that whitespace to be considered optional.

Star and Plus The Star and Plus combinators (named for the Kleene star and

plus, respectively) are used when syntax elements can be repeated multiple times.

Star handles the case where the syntax can be repeated zero or more times, while

Plus requires at least one occurrence. Each of these combinators takes a single

rule as its required argument representing the rule to repeatedly match. We assume

that these combinators will be used to match as many repetitions as possible, so the

matches that are emitted starting with the one with the greatest number of repetitions
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and ending with the empty match. The callback function is passed a list containing

the data from each Match, in order, using the empty list for the empty match.

SeparatedStar and SeparatedPlus The SeparatedStar and SeparatedPlus

combinators are used when a repeated syntax element is separated by another syntax

element, such as function arguments separated by commas. SeparatedStar han-

dles the case for zero or more repetitions, while SeparatedPlus requires at least one

occurrence of the repeated element.

These combinators take two rules as their required arguments representing the

main syntax to match and the separator to match. When parsing, we alternate

matching the main rule and the separator rule until no more matches can be made.

These matches are emitted in order from greatest to least repetitions, in the same

way as Star. The callback function is passed a list containing the data from each

Match emitted by the main rule, omitting the data for the separators by default. This

combinator takes two optional arguments: keep_separators (in the case that the

separators should be used in making the AST) and skip_whitespace (which operates

exactly as in Sequence).

Usually, the separator rule matches something uninteresting, such as a comma

or newline, and callback functions are written only for the main matches. However,

knowledge about the separator itself may be required during a parse, such as knowing

whether the separator was a comma or a semicolon within a MATLAB-style matrix

literal, so setting keep_separators to True will retain the separator match data in

the list passed to the callback function.

Like in Sequence, skip_whitespace is used to skip over whitespace between rules.

In this case, skip_whitespace defaults to None, because whitespace is often part of

the separator rule itself.

Single The Single combinator is included for the case where extra processing needs

to be applied to the data of an existing rule’s Match. Usually, that extra processing

would simply be added to the callback function of the associated Rule, but we found
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no simple way to achieve that when generating macro rules (discussed in Section 5.4).

The Single combinator takes one rule as its required argument and emits the same

matches that that rule emits, but with the extra callback function applied to the data

in that Match.

3.3 Summary

All the primitives and combinators in our parser generator library (except for Single)

have equivalents in other parser generators, whether based on EBNF or PEG. How-

ever, standard EBNF or PEG parser generators are very fast. We trade off that

parsing speed for more expressiveness in the kinds of grammars that can be defined.

This allows us to define irregular rules, stateful parsers, and regular Python functions

within our grammar.

Parser generators that output parse tables or generated code are notoriously dif-

ficult to debug. Because our a parser in our framework is just a Python program,

a grammar can be debugged without the need of special tools or knowledge beyond

standard Python techniques. The callback functions are a natural place to perform

logging to determine parser progress or parser state.

Some usage examples are described in Appendix A. In Chapter 4, we use this

parser generator to describe the syntax of our programming language.
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Chapter 4

Grammar

In this chapter, we describe the implementation of a grammar for the base language

using our parser generator framework. Our main goal for the language was to allow it

to be introduced to the novice incrementally, with each new piece of syntax form being

associated with a new programming concept. Our secondary goal was to provide the

novice with tools and knowledge that would transfer to other programming languages,

when possible. Toward this end, we developed the grammar with the following design

philosophy:

1. Provide exactly one syntax for each data structure or control flow form

2. Avoid using the same symbols for different purposes

3. Use keywords instead of symbols to denote the start and end of blocks

4. Use conventions from existing languages where possible

In our framework, a grammar is represented by a Grammar object, a namespace

containing syntax rules and the additional data structures they depend on. These

rules and data structures are exposed to the rest of the interpreter so the interpreter

can make changes to them in response to macros or interpreter settings. The rules

are used to parse program text and create the AST we use to execute the program.
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In Section 4.1, we describe the base language syntax rules themselves. In Sec-

tion 4.3.2 we describe strategies for modifying and extending the the base grammar

to accommodate macros and custom operators.

4.1 Rules

In this section, we discuss the rules defined in the base grammar. The majority of

these rules are defined using the primitives and combinators provided by our cus-

tom parser generator (Chapter 3), although some rules are implemented by Python

generators directly.

Rule definition order is important to a proper implementation of a grammar.

Because a Grammar is created by executing a normal Python program, it is possible

to encounter a NameError by using a Python variable before it has been defined. This

means that co-recursive rules are defined in a way that avoids referencing nonexistent

variables (similar to the palindrome rule in Figure A-2). In this section, we describe

any rules defined in this way as if they were normal rules, for clarity. We also omit

discussion of most callback functions, as they are only used to construct the AST for

later use in the evaluator (Chapter 5).

We begin with a discussion of some special rules and then continue into the four

main sections of the grammar: data structure rules, control flow rules, unary and

binary operator rules, and the macro mini-language.

4.1.1 Special Rules

Our grammar includes some special rules that are often used to define other rules, even

if they are not specific language constructs themselves. These include whitespace,

expressions, statements, and blocks.

One of our goals was to let programmers decide their own indentation and whites-

pace conventions, so we minimized our use of required whitespace. It is possible to

add significant whitespace to the grammar by storing the current indentation level as

part of the parser state. This would further complicate the grammar, and goes against
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our principle of using keywords to delimit blocks, so we chose not to implement it in

the base language.

However, we did enforce the requirement that there could be at most one statement

per line. Multi-statement lines can be very useful, but these cases are rare at the

introductory level. Changing this grammar to use a statement separator (such as a

semicolon) is as simple as changing the separator for the block rule defined later in

this section.

Whitespace For our grammar, we recognized four different kinds of whitespace: re-

quired multi-line whitespace (ws_all), optional multi-line whitespace (ws_all_star),

newlines (newline), and optional single-line whitespace (ws_one_line).

Figure 4-1: Whitespace rules

ws_all = Regex(r’\s+’)
ws_all_star = Regex(r’\s*’)
newline = Regex(r’\n+’)

def ws_one_line(source, position):
for match in parse(ws_all_star, source, position):

ws, *_ = re.split(r’\n’, match.text)
yield Match(ws, position, ws)

The definition of ws_one_line (optional one-line whitespace) is an example of a

rule defined manually as a generator. The ws_one_line rule is used in cases where

we need to skip over whitespace without crossing onto the next line (for example, in

the block rule discussed below).

Expressions and Statements An expression is a combination of values, operators,

and functions that evaluates to a value. Since statements also evaluate to values, the

meaningful difference between an expression and a statement is that an expression

can be used as the value in an assignment but a statement cannot. A macro definition

is the only syntax form in the base language that is a statement but not an expression.
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The available types of expressions and statements are extensible (see Sec-

tion 4.3.2), so the grammar rules for expr and statement must be able to respond

to these extensions. We accomplished this by defining two lists within the grammar

to contain the different expression and statement rules. These lists are referred to as

expr_types and statement_types which contain references to expression rules and

statement rules, respectively. An expr or statement is simply a Choice with the

associated list as the options. To add a new expression or statement type, we add

the rule for that type to the appropriate list, so that any later parse can make use of

that rule.

Blocks A block is comprised of any number of statements separated by newlines.

In the block rule, we skip one-line whitespace between statements and newlines in

order to make indentation (or trailing whitespace) insignificant. newline is used as

a statement separator to require that at least one newline occurs between any two

statements. This can be changed to any other rule (Raw(’;’), for example), to use

that as a statement separator instead.

Figure 4-2: The block rule

block = SeparatedStar(
statement,
newline,
skip_whitespace=ws_one_line,

)

A block is used for the body of any multi-statement structure, such as a function

or a conditional. In order to provide more freedom in programs, we chose to have

conditionals and loops (discussed in Section 4.1.3) accept blocks for their conditions.

4.1.2 Data Rules

The rules described in this section support the primitive data types available in the

base language. Each of these rules is an element in the expr_types list by default.
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Numbers Our grammar supports numbers in either integer or decimal format, so

as to maintain compatibility with other programming languages and ubiquitous math

notation.

Figure 4-3: Number rules

integer = Regex(r’\d+’)
decimal = Regex(r’\d+\.\d+’)
number = Choice([decimal, integer])

Because decimal numbers become rational numbers exactly the same way that

integers do, these rules could have been implemented as a single number rule with

Regex(r’\d+(\.\d+)?’). We chose to use two separate rules to support a possible

change to handling decimals as floating point numbers. An integer match is a prefix

of a decimal match, so the order of options in number is important. The decimal

rule comes before integer in the options list to force an attempt to match decimal

before falling back to integer (in case a decimal point is not found).

Strings We had two goals for string literals: avoiding the need for escaped string

delimiters and avoiding special syntax for multi-line strings. Our design was based

on Perl’s qq operator, although we do not allow string interpolation and we prefer

the quoting operator to be a non-alphabetic character.

String literals begin with a dollar sign (which is otherwise unused by many pro-

gramming languages) and a single non-whitespace character to use as a delimiter. We

consider the string content to be every character in the file until the next occurrence

of the delimiter (unless that delimiter is preceded by a backslash). In addition to

escaping the string delimiter, we allow the usual special character escapes (tab char-

acters, carriage returns, etc.) within the string. We accomplished this with the rule

shown in Figure 4-4.

The named groups are used to determine the string delimiter and string content

in the callback function for this rule. The callback function performs any unescapes

necessary in the content portion of the string.
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Figure 4-4: The string rule

string = Regex(
r’\$(?P<delimiter>\S)’
r’(?P<content>(\\((?P=delimiter)|[bfrntv\\])|[^\\])*?)’
r’(\1)’

)

Literals The base language contains three more literals: the two booleans (True

and False) and the null value (Nothing).

Figure 4-5: The literal rule

literal = Choice([Raw(l) for l in [’True’, ’False’, ’Nothing’]])

Functions Function definition syntax was chosen to closely match function defini-

tion and usage from other programming languages. A function definition consists of

a keyword (in this case, function), a sequence of function parameter names, a block

of code for the body of the function, and the closing delimiter of the function body

(in this case end). This syntax is described by the rule shown in Figure 4-6.

Figure 4-6: The function definition rule

function = Sequence([
Raw(’function’),
Raw(’(’),
SeparatedStar(identifier, Raw(’,’), skip_whitespace=ws_all_star),
Raw(’)’),
block,
Raw(’end’),

])

Our function call syntax is also similar to other languages: a function succeeded by

a parenthesized argument list. The rules defining this syntax are discussed as part of

the general expression parser discussed in Section 4.1.4. An example of both function

definition and function call syntax are described by the rule shown in Figure 4-7.
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Figure 4-7: Function definition and call

show_and_square = function(x)
print(x)
x*x

end
show_and_square(2)

Dictionaries To maintain compatibility with other languages, we chose to imple-

ment our unordered collection with the same syntax as Python’s dictionaries, which

are similar in syntax to JavaScript objects and Go structs. This syntax is described

by the rule shown in Figure 4-8.

Figure 4-8: The dictionary rule

dictionary = Sequence([
Raw(’{’),
SeparatedStar(

Sequence([expr, Raw(’:’), expr]),
Raw(’,’),

),
Raw(’}’),

])

Identifiers To allow maximum freedom in naming variables, any sequence of non-

whitespace characters that is not already reserved is treated as an identifier. An

identifier cannot be the same as a keyword, for example, nor can it contain any unary

or binary operators. This rule could not easily be written using the combinators from

our parser generator library, so we implemented it using a normal Python generator.

Our strategy for the identifer rule was to find the longest sequence of non-

whitespace characters and find the longest prefix of that sequence that does not

contain a reserved substring. We accomplish this by splitting the string on each op-

erator and keeping the longest prefix that contains no operators. Finally, we verify

that this prefix is not a keyword, a literal, or another reseved word.
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Figure 4-9: The identifier rule

def identifier(source, position):
invalid_names = keywords.union(literals).union(reserved_words)
invalid_substrings = reserved_substrings.union(operators)

for match in parse(Regex(r’\S+’), source, position):
name = text
for chars in invalid_substrings:

pattern = re.escape(chars)
name, *_ = re.split(pattern, name)

if name and name not in invalid_names:
yield Match(name, position, Node(’identifier’, name))

The identifier rule has no callback function because it is implemented as a

parser rule directly. The yield line emits a Match with the data field already set as

an instance of Node (the class we use for ASTs).

4.1.3 Control Flow Rules

The rules in this section describe the control flow syntax in the base language. Each

of these structures is considered an expression, so these rules are elements in the

expr_types list.

If Expressions Conditionals (“if expressions”) are similar to conditionals in C-like

languages (“if statements”), with the exception that the condition can be an arbitrary

block instead of just a single expression. As usual, the “else” and associated block are

optional. This syntax is implemented by the rule shown in Figure 4-10.

An example of an if expression is included in ??.

While Expressions Indefinite loops (“while expressions”) are similar to indefinite

loops in C-like languages (“while loops”), with the exception that the condition can

be an arbitrary block instead of just a single expression. This syntax is implemented

by the rule shown in Figure 4-12.

An example of a while expression is included in Figure 4-13.

38



Figure 4-10: The if expression rule

if_expression = Sequence([
Raw(’if’), block,
Raw(’then’), block,
Optional(Sequence([Raw(’else’), block])),
Raw(’end’),

])

Figure 4-11: An if expression

if
x = 1 + 2
x > 3

then
print($’Big number’)

else
print($’Small number’)

end

Figure 4-12: The while expression rule

while_expression = Sequence([
Raw(’while’), block,
Raw(’do’), block,
Raw(’end’),

])

Figure 4-13: A while expression

x = 0
while

x = x + 1
x < 10

do
print(x)

end
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4.1.4 Expression Parsing

As part of our extensibility goal, the grammar supports arbitrary collections of unary

and binary operators. By default, no operators are included, but we describe the

process of adding operators in Section 4.3.2.

Because we cannot know the available operators (or their precedence levels) at

start time, our expression parsing must be very general. Our expression grammar

is based on the precedence climbing algorithm described in [9]. The algorithm han-

dles unary prefix operators and infix binary operators at arbitrary precedence levels.

However, the base language includes expression syntax (function call and dictionary

access) that the algorithm does not support, so we added special cases to the expres-

sion parser to handle them. We could have chosen different syntax, but those forms

of function call and collection access are ubiquitous. Another modified version of the

algorithm (demonstrated at [10]) supports pseudo-infix expressions and could be used

instead.

4.2 Macro Mini-Language

This section describes the mini-language included in the base language that is used for

defining macros. Our goal for the macro mini-language was to allow new syntax to be

defined at runtime in a user-friendly way. A macro definition consists of the following

parts defined in the mini-language: the macro type, the macro name, the macro

syntax, the macro body, and any additional metavariables required for the macro.

We first describe the syntax of macros; we describe some examples in Section 4.2.1.

Macro Type The two types of macros in this language are expression macros

and block macros, which capture expressions and blocks, respectively. Because al-

most everything is an expression, the distinction between these two is small: an

expression macro is added to the expr_types list, but a block macro is added to the

statement_types list. This means that syntax defined as a block macro cannot be

captured by an expression macro.
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Macro Name A macro name is required because we use the name to associate the

syntax and body when making rules and expanding macros. This also allows macros

to be re-defined later in the program. A macro name can be any valid identifier.

Macro Syntax The macro syntax portion of a macro definition describes the syntax

rule for the macro that will be added to the grammar. We wanted these syntax rules

to be accessible to programmers without experience writing parsers, so we chose to use

simple pattern-matching rules that we can easily transform into parser rule functions.

In general, a macro syntax rule is a sequence of patterns, where a pattern can

be a string (which is matched exactly, as a keyword), an identifier (which matches

an expression or block, based on the type of macro), or a repetition (which matches

more complex rules). A repetition consists of three parts: the pattern to repeat, the

cardinality of the repetition, and the separator. The possible cardinalities are * (zero

or more), + (one or more), or ? (zero or one).

Figure 4-14: The macro mini-language rules

repetition = sequence([
raw(’(’),
syntax_pattern,
choice([raw(c) for c in ’*+?’]),
optional(string),
raw(’)’),

])

syntax_pattern = separated_star(choice([
identifier,
string,
repetition,

]), ws_all)

macro_syntax = sequence([
raw(’syntax’),
syntax_pattern,

])
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Macro Body The macro body describes the block that will be evaluated upon

macro expansion. Rather than ask the user to create a syntactically valid string (as

in C-style macros) or tree structure (as in Lisp macros), this macro body is specified

as a single block of program text. This allows the user to easily make function calls,

define variables, or use conditionals and loops within the body of the macro. The body

of the macro must be able to access the blocks or expressions captured by the syntax

pattern, but we wanted to avoid the possible confusion caused by allowing direct

modification of captured ASTs. Our solution to this was to introduce an unquote

operator (named after Lisp’s , operator), which can be used to access the syntax

elements referred to by a metavariable. By default, the unquote operator is @.

Macro Metavariables We recognize a distinction between a variable (which is

a name bound to a value in the program) and a metavariable (which is a name

bound to a variable name in a macro). Metavariables are very much like Lisp’s

symbols, except that Lisp symbols are generally valid identifiers, wheras our generated

metavariables are not. We cannot easily determine which identifiers used in the

macro body are variables or metavariables, so we require the user to specify the

set of additional metavariables. Any identifiers used in the syntax pattern will be

interpreted as metavariables, so it is not necessary to specify those in this set.

Hygiene The main challenge in the macro system was providing a mechanism for

automatic macro hygiene, which makes it easy to prevent a macro from unintention-

ally accessing identifiers in the main program. A macro is expanded using dynamic

scope, so any identifiers it refers to may already exist in the scope in which it is ex-

panded. This problem is not unique to this language. Lisp solves the hygiene problem

by introducing the concept of a symbol and providing a function that can generate a

new symbol that is has not yet been used as an identifier. We thought it would overly

complicate the language to add symbols as a primitive data type, especially without

the benefits of Lisp’s code-as-data representation. Instead, we solved the problem

by automatically generating symbols that cannot collide with variable names and
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requiring that all metavariables be explicitly declared.

4.2.1 Examples

In this section, we discuss some examples of macros.

Unless One of the simplest macros that can be defined is the unless macro (shown

in Figure 4-15), which is the opposite of if: it executes the body only if the condition

is not satisfied. Because it captures arbitrary blocks for both its condition and body,

unless must be defined as a block macro. It requires no additional metavariables

beyond the blocks that it captures, so we can omit that portion of the definition.

The body of the macro transforms the cond and body blocks into the equivalent if

expression by unquoting them (with the @ operator) in the appropriate locations.

Figure 4-15: The unless macro

macro_block unless
syntax $’unless’ cond $’then’ conseq $’end’
transform

if @cond then else @conseq end
end

List Figure 4-16 contains an example of a program that defines the list macro,

with syntax exactly like that of a Python list. This macro assumes that = is used

for assignment and that the < and + operators have been defined. The syntax line

defines a rule that matches any number of comma-separated expressions, and stores

those expressions in the metavariable called values. The body of the macro builds

up a dictionary mapping indices to the values in values, starting from index 0. This

requires two extra metavariables, i and l, to store the current index and partial list,

respectively. At the end of the macro, we evaluate the complete list as the “return

value” of the macro.
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Figure 4-16: A list macro

macro_expr list (i, l)
syntax $’[’ (values * $’,’) $’]’
transform

@l = {}
@i = 0
while @i < size(@values) do

@l = insert(@l, @i, @values[@i])
@i = @i + 1

end
@l

end

L = [$’Hello’, 2]
print($’2 =’, L[1])

4.3 Grammar Modification

There are a number of ways the grammar can be modified. Because the grammar is

a regular Python object, we have the freedom to make modifications to it at runtime

or at interpreter start time. At runtime, we use the evaluator to add macro rules to

the parser. At startup, we use a settings file to add operator definitions and extra

rules for other syntax, such as assignments.

4.3.1 Runtime Modifications

The only runtime modifications available are those performed by runtime macros. A

macro definition causes the interpreter to create new parser rules according to the

syntax pattern and add them to the front of the expr_types or statement_types

list, depending on what type of macro is being defined. This causes the expression

and statement rules to try parsing macros from newest to oldest before falling back

to the expression and statement types defined by the base language.
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4.3.2 Startup Modifications

There are three kinds of modifications to the grammar that can happen at startup:

adding operators, changing the unquote operator symbol, and mutating the Grammar

object after creation.

Operators Operators, as they relate to the grammar, are represented by a symbol,

a precedence, and (in the case of binary operators) an associativity. We store these

properties (along with an evaluation function for the evaluator) in the settings file.

As a convention, operator precedence is defined as an integer, where an operator that

binds more tightly has a higher precedence.

As shown in Figure 4-17, a binary operator definition consists of four parts: the

precedence level, the operator symbol, the associativity, and the evaluation function.

A unary operator is defined in the same way, except that an associativity is not

needed. We assume that all unary operators are prefix operators.

Figure 4-17: Defining operators in the settings file

settings = {
’binary_operations’: [

(2, ’+’, ’left’, lambda l,r: l+r), # binary addition
(2, ’-’, ’left’, lambda l,r: l-r), # binary subtraction
(3, ’*’, ’left’, lambda l,r: l*r), # binary multiplication
(3, ’/’, ’left’, lambda l,r: l/r), # binary division

],
’unary_operations’: [

(1, ’~’, lambda x: not x), # unary not
],

}

Unquote Some users and instructors may prefer to use a symbol other than @

as their unquote operator. A settings file defined as in Figure 4-18 will use a two

caret symbols (ˆˆ) as unquote. This string will automatically be added to the set of

reserved substrings.
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Figure 4-18: Setting the unquote operator in the settings file

settings = {
’unquote_operator’: ’^^’,

}

Mutations The settings file can also define a list of hooks that will be run at the

end of the grammar definition. An example of such a hook is included in the settings

file in Appendix C.

This settings file uses a hook to define the missing syntax rules needed to support

declaration and assignment. It first defines the rules inserts those rules at the begin-

ning of the statement_types list. The special symbols used are then added to the

reserved_substrings set to keep them from being parsed as identifiers.

The possible modifications are not limited to assignment rules. The grammar

hooks are passed the entire grammar object as an argument, so these hooks can be

used to remove rules, reorder precedence in expression or statement types, change the

list of reserved words, add literals, or change anything else about the parser.
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Chapter 5

Evaluator

In this chapter, we describe the structure of the evaluator in our interpreter frame-

work. We discuss the built-in data types, the scoping environment structure, and the

evaluation strategy.

Our primary goal for defining evaluation was to balance the principle of least

surprise with existing programming language conventions. Novice programmers have

little or no experience with concepts like scoping rules or function calls, so we tried to

simplify the rules that govern the evaluation of programs, when possible. However,

there are some cases in which existing terms or conventions are so strong that it would

produce more confusion if we deviated from the norm.

We describe the built-in types and functions in Section 5.1, the environment model

in Section 5.2, and the evaluation strategies in Section 5.3. Most of the built-in types

and functions operate in standard or straightforward ways. The novel portion of the

evaluator is the creation of macro syntax rules, which are described in Section 5.4.

5.1 Built-ins

In this section, we describe the data structures supporting the built-in data types

and the functions used to operate on them. These functions are included in the base

environment of the evaluator, so we refer to them as built-in functions.
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5.1.1 Built-in Data Types

We defined each built-in data type as its own Python class. Each class inherits from

an abstract base class called Root. In this section, we discuss the primitive and

compound types separately.

Primitive Types

The simpler literal values in the base language are implemented as primitive types

in the evaluator. In this section, we discuss the implementation details of these

primitives.

Null and Booleans The base language implements three literals: a null type and

the two booleans. When checking value equality, each of these literals is only equal

to itself. We do not implement “truthy” or “falsy” checks for booleans, so 1 and True

are not considered equal in any context.

Numbers We chose to implement numbers as arbitrary precision rational numbers,

which has already been implemented by Python as the fractions.Fraction class.

Our numeric type (Rational) subclasses Fraction. Novices struggle with the some

of the rounding issues that arise when floating-point operations (the non-assocativity

of addition, for example), so we chose not to implement floating-point numbers.

Strings Our strings (implemented by the String class) store their delimiter in order

to display strings to the user the same way they were defined. The delimiter is only

used for display. String equality and other operations are only concerned with the

content of the string.

Compound Types

The remaining literals are implemented as compound types in the evaluator. In this

section, we discuss the implementation details of these types.
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Dictionaries A Dictionary, as presented to the user, is an immutable key-value

store. The keys of a Dictionary can be arbitrary primitive or compound types

(including the Dictionary type) due to the immutability of all language values.

Dictionaries are considered equal to each other if the frozensets of their key-value

pairs are equal. This allows us to say that two dictionaries are equal if they print

identically.

Functions We defined two classes for functions: BuiltinFunc and NativeFunc.

NativeFunc is used to make user-defined functions, and BuiltinFunc is used to

wrap Python functions so they satisfy the same calling interface as NativeFunc does.

NativeFunc stores its parameter names, the AST for its body, and a reference to

its parent environment. At call time, it checks the number of arguments passed, sets

up the execution environment, runs the function body block, and returns the value

of that block. If too many arguments are passed, an error is raised. All functions are

anonymous, so there is no name to store.

If partial_application is set in the settings file, passing fewer than the required

number of arguments to a NativeFunc performs partial application, producing a new

NativeFunc that takes that many fewer arguments than the original one.

5.1.2 Built-in Functions

The following is a list of all functions included in the base environment of the evalu-

ator:

∙ print(...) is Python’s print function.

∙ length(string) returns the length of the content of a String.

∙ concatenate(string1, string2) returns a String that is the concatenation

of its two input Strings, with string1 as the prefix and string2 as the suffix.

∙ characterAt(string, index) returns a single-character String containing

the character at the specified index in string. This follows common convention
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for indexing and starts at zero.

∙ contains(dictionary, key) exposes Python’s in operator for Dictionary

objects. It returns Boolean(True) when key exists as a key in dictionary.

∙ insert(dictionary, key, value) returns a new Dictionary containing the

same elements as dictionary except with key: value added. If key already

exists in dictionary, the old mapping is replaced with the new one.

∙ remove(dictionary, key) returns a new Dictionary containing the same el-

ements as dictionary except with key (and its associated value) removed. If

key does not exist in dictionary, no error is raised, and the returned value

will be equal to dictionary.

∙ keys(dictionary) returns a Dictionary containing index: key pairs for

dictionary. The indices start at zero, and the keys are in the same order that

display to the user when dictionary is printed.

∙ size(dictionary) returns the number of key-value pairs in dictionary.

∙ as_decimal(number) returns a String whose content is the decimal represen-

tation of number. This is a way of converting the Rationals into their “usual”

decimal notation, primarily intended as a convenient way to display the familiar

representions of transcendental numbers or unfamiliar fractions.

5.2 Environments

The Environment class exists to keep track of stack frames and the parent rela-

tionships between them for variable lookup. A new environment is created each

time a function is called, which gives the language function scope and lexical scope.

Environments keep track of which bindings can be changed.
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An Environment has the following instance attributes:

∙ parent: its parent Environment (or None if this is the base environment)

∙ settings: a reference to the global settings object, which stores the settings

loaded at initialization time

∙ variables: a Python dict mapping names to their values

∙ constants: a Python set of names with constant bindings

Name Resolution We implemented the Environment’s name lookup method as

the __getitem__ magic method so we could use Python’s bracket notation to access

variables. Name resolution continues up the chain of parent Environments until the

name is found in the variables attribute of an Environment. If resolution reaches

the base environment and the name has not been found, a KeyError is raised.

Constant Declaration The declare_constant(name, value) method binds

name to value in the environment and marks name as constant. If the binding already

exists, this raises a RedeclarationError.

Variable Declaration The declare_variable(name, value) method binds name

to value in the environment. If the binding already exists and the setting

redeclaration_is_an_error has been set (or the existing binding is a constant),

this raises a RedeclarationError.

Assignment The assign(name, value) method is used to set the value of an

previously declared binding. If name is bound in this environment, we check that

the binding is not constant and then set the value of that binding. If the binding is

constant, we raise an ConstantAssignmentError.

If the name is not bound in this environment and the setting

declaration_required has not been set, we declare a variable binding with

that name and value in this environment. Otherwise, we assume that a declaration

51



for this name has occurred in the parent environment chain and send the assignment

to this environment’s parent instead. If no Environment in the chain finds a valid

binding to assign, we raise an UndeclaredVariableError.

5.3 Evaluator

The Evaluator class keeps track of the state of the interpreter (macros, operators,

and the grammar) and provides an evaluate method that evaluates ASTs. It also

defines the base environment of the interpreter.

The evaluate(ast, environment) method returns the result of evaluating ast

in the context of environment. In this section, we describe the handling of each AST

node type grouped by purpose.

5.3.1 Standard Nodes

In this section, we describe the evaluation strategies for the standard AST nodes

common to most languages. These evaluate as expected by most experienced pro-

grammers.

Expressions and Statements The expr and statement node types are wrappers

around a single expression or statement, respectively.

Numbers, Strings, and Literals A number, True, False, Nothing, or string

node evaluates to an object of the associated data type (as described in Section 5.1).

Dictionaries A dictionary node contains child nodes representing key-value pairs.

We evaluate each pair (key first, then value) and return a Dictionary containing these

pairs.

An access node (representing a dictionary lookup expression such as d[key])

contains two child nodes: a dictionary and a key. We evaluate the dictionary node and

the key node and then return the corresponding value for that key in the dictionary.
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Operators A binary_operation or unary_operation node contains child nodes

representing the operator symbol and the operands. We look up the evaluation func-

tion associated with the operator, evaluate the operand nodes, apply the evaluation

function to the operand values, and return the result.

Blocks A block node contains a sequence of statement nodes. We evaluate each

statement, in order, and return the value of the last statement evaluated. If the block

is empty, we return Nothing.

Functions A function node represents a function definition and contains the pa-

rameter list and body of the function. We create a NativeFunc with those properties,

setting the function’s parent environment to be the current environment.

A call node (representing a function call such as f(x, y)) contains child nodes

representing a function and an argument list. We evaluate the function node and

each of the argument nodes, in order. We then call the function on the arguments

and return the result.

Variables An identifier node signifies a variable lookup and contains a variable

name. We return the result of looking up that name in the current environment.

An assignment, declare_variable, or declare_constant node contains an

identifier and a value node, so we evaluate the value node and perform the appro-

priate action with the name and value. For the special case in which the identifier

is actually an unquote node and therefore represents a metavariable (see below), we

evaluate the unquote node to get a variable identifier before performing the action.

Control Flow An if node contains nodes for its condition, consequent, and alter-

native blocks. We evaluate the condition node to determine which branch to take,

evaluate the correct branch, and return the results of evaluating that branch.

A while node contains the nodes for its condition and the body. We begin by

evaluating the condition node. If the condition evaluates to True, we continue by

evaluating the body. We then continue from the condition node, looping this process
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until the condition evaluates to False. The overall return value is the value returned

by the last evaluation of the body.

5.3.2 Macro Nodes

In this section, we describe the evaluation strategies for the AST nodes involved in

the macro system.

Macro Definitions The macro_block and macro_expr nodes are used to define

new block macros or expression macros, respectively. Each of these nodes contains

the name of the macro, any metavariables to be declared, the syntax description, and

the macro body. When evaluating a macro node, we create the appropriate parser

rule from the syntax description and add it to the grammar by appending it to the

grammar’s statement_types or expr_types list.

Macro Expansions A macro_expansion node denotes the expansion of a previ-

ously defined macro rule. We look up the macro name in the state of the evaluator,

generate names for each of the metavariables, and update the current environment to

contain the mapping of metavariable names to variable names. We then evaluate the

body of the macro in the current environment and return the result.

Unquote An unquote node indicates the expansion of an expression containing

metavariables. In this case, we evaluate the unquote node to obtain the corresponding

identifier node and then evaluate that identifier node to obtain the associated value.

5.4 Creating Macro Rules

When evaluating a macro_block or macro_expr node, we create a new grammar

rule describing the syntax that this macro should match. We use a function called

make_syntax_rule to accomplish this. The callback functions for these rules are

nontrivial, so we discuss them here.
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5.4.1 Macro Syntax Rules

make_syntax_rule takes four arguments: the syntax rule specification, the node type

to capture, a reference to the whole grammar, and a flag (called multi, for “multiple

match”) that indicates whether the rule is part of a repeated syntax specification. The

data attribute of a Match emitted by this macro rule will contain a Python dictionary

that maps metavariable names to the captured ASTs associated with each. In the

case of repeated syntax, the value in the dictionary will be a list containing each AST

that was captured, in order.

There are four types of syntax patterns that can be matched by the syntax spec-

ification of a macro (described in Section 4.2):

Sequence The syntax pattern for an entire macro is always a Sequence rule whose

terms are the individual syntax patterns. These sub-patterns are created recursively,

using make_syntax_rule.

Metavariable A metavariable rule is denoted by an identifier in the syntax spec-

ification. A metavariable matches one or more expressions or blocks, depending on

whether this is part of a repeated rule and which type of macro is being defined. We

can match an expression or block using the expr or block rule from the grammar,

but we use the Single combinator to add a second callback for post-processing the

captured AST.

Keyword A keyword rule is denoted by a string in the syntax specification. We

create a new Raw rule matching the string exactly, and set its callback to always

return an empty metavariable mapping (to simplify combining them). We also add

this keyword to the set of reserved words in the grammar. This means that it is

possible to make an existing variable name impossible to use by including it as a

macro keyword.

Repeat A repeat rule is denoted by a repetition match in the syntax specifi-

cation. We use the cardinality of the repetition to select among the Optional,
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SeparatedPlus, and SeparatedStar combinators and then make the appropriate

rule using the repeated rule (made with make_syntax_rule) and separator rule (made

with Raw).

5.4.2 Callback Functions

The callback functions for rules created by make_syntax_rule exist to collect

metavariable mappings to captured ASTs. The metavariable and keyword rules de-

fine partial mappings, and the sequence and repeat rules combine them into complete

mappings. The callback function for the entire macro rule converts this mapping into

a combined AST node that can be passed to the evaluate method.

Metavariable The callback function for a metavariable rule takes the captured

AST (an expr or block node) and returns the partial mapping of the metavari-

able name to this node. The multi flag indicates whether this metavariable is

part of a repeated match. In the case that multi is not set, the mapping is

simply {metavariable: AST}. In the case that multi is set, the mapping is

{metavariable: [AST]}, since repeated matchings result in lists of ASTs.

Keyword The callback function for a keyword rule always returns the empty map-

ping, since keyword cannot create a metavariable bindings.

Repeat The callback function for a repeat rule depends on the cardinality of the

repetition. For the zero-or-one cardinality (?, Optional), the callback is either passed

None (indicating no match) or a partial metavariable mapping (from an earlier call-

back function). In the case of None, we return an empty mapping. In the case of a

partial mapping, we return that mapping.

For the one-or-more (+, SeparatedPlus) and zero-or-more (*, SeparatedStar)

cardinalities, the callback function is passed a list of partial mappings. We combine

those into a single mapping by concatenating the lists for repeated metavariable

bindings and overwriting the existing bindings for single metavariable bindings.
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Sequence The callback function for a sequence rule is the same as for a repeat rule.

We combine the partial bindings for each of the terms, handling repeated matches

separately from single matches.

Macro The callback function for the entire macro rule converts the final metavari-

able mapping (from the sequence rule) into a single macro_expansion node. This

node contains two children: the name of the macro, and the macro parameters in a

form that will work with the unquote operator.

We expose the individual ASTs captured by a repeated match in the form of a

special dictionary object (LazyDictionary). Using a normal Dictionary for this pur-

pose, would cause every captured AST to be immediately executed at expansion time,

which gives macros the same semantics as functions. We wanted the user to control

the evaluation of captured ASTs within the body of the macro, so a LazyDictionary

delays the evaluation of its values until they are accessed. It does not cache the results

(so the Lazy prefix is a bit of a misnomer) becasue caching in this way would make

it impossible to evaluate an AST for its side effects more than once.

5.4.3 Example

In this example, we describe the process of interpreting a program that defines the

list macro. The source of this program is in Figure 4-16.

The syntax specification of this macro consists of a keyword, a repeated rule,

and another keyword. When evaluating this definition, the strings ’[’ and ’]’ are

added to the reserved_substrings set in the grammar. The syntax rule added to

the grammar (at the front of the expr_types list) is equivalent to the rule shown in

Figure 5-1. At expansion time, the body of the macro will run in an environment

with the extra variable bindings shown in Figure 5-2.

Figure 5-1: An equivalent syntax rule for list

Sequence([Raw(’[’), SeparatedStar(expr, Raw(’,’)) Raw(’]’)])
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Figure 5-2: Extra variable bindings for list

values: (identifier ’$macrosym_0’)
i: (identifier ’$macrosym_1’)
l: (identifier ’$macrosym_2’)
$macrosym_0: (LazyDictionary

((integer 0) (expr (string ’Hello’ "’")))
((integer 0) (expr (integer 2)))

)
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Chapter 6

Discussion

We conclude this thesis with a discussion of the alternate choices for some of our

design decisions and a list of possible future work.

6.1 Alternate Design Choices

Our original design for the language included three features not present in the final

version:

1. the goto statement, which we eventualy found too difficult to implement prop-

erly in conjunction with other language features

2. feature blocks that could be combined in a way to produce a full interpreter

with those features

3. a mini-language for defining operators within the language itself

6.1.1 Goto

Part of our goal in creating this language was to have novice programmers understand

common programming constructs by implementing them within the language itself.

As part of this goal, our original design did not include any looping constructs at all.

We intended to have users implement their own while and for loops (or do-while
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and for-each) in order to see exactly how control flow operates in each of these loops.

This required having a flow control construct more basic than a loop, and we decided

that we would accomplish this by providing labels and the goto statement.

We were wary of the problems that goto can bring [11]. We wanted to avoid

the possibility of unintentionally jumping out of one function into another, so goto

was only allowed to jump to a label that was defined within the same scope. To

achieve this, we had to be able to determine all the labels in the current scope before

evaluating a function (in case a goto appeared later in the function). However, this

approach did not work outside of functions because of the inability to parse more than

one statement at a time (in the case that a statement was a macro), so we added the

restriction that goto could only jump to a label that had already been “seen” in the

course of evaluation.

This decision made it difficult to implement the evaluator. The state of evaluation

had to include what statement was currently being executed and where in the program

it was. Environments had to store the mappings from labels to program locations,

and each statement was assigned a program location once it was parsed.

Our intended solution to handle macros was to expand the macro body and insert

the resulting block at the location of the macro expansion. This led to the idea that

program locations could not simply be integers (unless we wanted to re-assign every

program location on every macro expansion), so we implemented program locations

as Python tuples. Each statement’s program location represented two things: how

deeply nested into the program its containing block was, and the position at which

it fell within that block. The first statement at the top level in the program had

location (0), and the second had location (1). If the second statement was a function

definition, for example, any statements within that function’s body block would have

locations of (1, 0), (1, 1), and so on. Each layer of nesting would extend the length of

the tuple by one element, assigning the last element to zero for the first statement at

that level. The default Python sort order on tuples happens to order these program

locations correctly ((0) < (1) < (1, 0) < (1, 1) < (2)).
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Conditional execution and goto were implemented as special jump statements that

were inserted into the program as needed. These would cause program evaluation to

immediately restart at a specific program location. We realized that a real call stack

would be necessary to ensure the ability to return out of a function correctly and that

the implementation of the evaluator would be cleaner as a virtual machine instead.

Rather than complicate the language implementation further, we decided to remove

goto from the language and implement while in its place.

6.1.2 Feature Blocks

As part of the extensibility goals of the language, we wanted an instructor (or other

language maintainer) to be able to add features to the language that were more

complex than our macro system would allow. Our original plan was to structure the

interpreter in a way that was inspired by the strategy outlined in [12]. The language

would be broken up into feature sets, and each feature set would require a parser

and evaluator. Each feature set would be implemented by a feature block, and these

blocks could then be composed in different ways to form interpreters for different

languages.

At the time, we were still experimenting with existing parser generators, so we

only implemented the evaluator in this style. Due to the recursive nature of stacked

evaluators and Python’s lack of tail-call optimization, any non-trivial program caused

us to exceed Python’s recursion limit. One choice we had was to implement this in

a language that provided tail call optimization, but we decided to re-structure the

evaluator in a more iterative style in order to support goto (which was still in the

language at that point).

The ability to toggle features eventually returned in the form of the settings file,

but adding entirely new features to the interpreter still requires an understanding of

the other features already present.
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6.1.3 Operator Mini-Language

Our original extensibility features included a mini-language (similar to the macro

mini-language) for defining new operators from within the language itself. The origi-

nal syntax used a keyword operator and required specifying both the string to use as

the operator symbol and the function to use as its evaluator. We used the arity of the

function to determine whether to create a unary or binary operator (or error, in the

case of a higher arity function). This automatic operator arity detection goes against

our learnability goals, so we split the operator keyword into unary_operator and

binary_operator.

In this formulation, each new operator defined was at a lower precedence than

any previously defined operators. This allowed a user to define operators without

knowing the existing precedence hierarchy, at the expense of forcing a specific ordering

of operator definitions. However, this made it impossible to add a new operator to

a pre-existing precedence level or define two new operators at the same precedence

level. We considered an extension to the mini-language in which the precedence level

was included in the operator definition, but chose not to implement it because this

required the user to design an entire precedence hierarchy before defining a collection

of operators.

Operators appear to be a special-case of macros, so it seems possible to use the

macro system to regain this function without its own mini-language. However, this

is only true for prefix operators. In the case of infix and suffix operators, the macro

begins by looking for an expr, which causes infinite left recursion in the parser. Al-

though there are ways of automatically re-writing rules to avoid left recursion [13], we

cannot guarantee this will work for the non-regular rules in our grammar. Ultimately,

we decided that instructors would be better equipped to define custom operators for

the language, so we moved all operator definition into the settings file.
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6.2 Future Work

We note two important improvements to be made on this work. First, there are still

many opportunities to improve the interpreter framework, both in terms of usability

and efficiency. Second, the language design can be improved with feedback from real

programmers at any experience level.

Modules There is currently no notion of modularity among files being executed by

the interpreter. All files are run in the same global environment with no separation

between them, which can cause unexpected problems if variable names are reused

across files. This can be remedied by implementing a module system with a new

import statement.

Temporary Macros One problem with macros is that there is no notion of a

temporary macro. Once a macro has been defined, it exists in the grammar until the

program finishes executing. One way to accomplish this is by adding a new type of

statement that allows for the enabling and disabling of an existing macro. Another

way would be to provide a mechanism for restricting the use of a macro to a certain

scope.

Feature Blocks Now that goto has been removed from the language and the parser

can be modularized, we can return to the original interpreter structure with feature

blocks. Each block can define grammar rules and data structures along with regis-

tering evaluator functions for specific AST node types. This allows for easy addition,

removal, or modifcation of entire language features.

Evaluation Our primary goal was to make a language that was easy for students

to learn, but we have not shown that how this language compares to other languages

in that respect. Future work can include experiments or surveys to determine how

properties of this language affect the rate and quality of learning.
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Appendix A

Sample Grammars

In this appendix, we present some sample grammars that can be defined using our

parser generator library (discussed in Chapter 3).

A.1 EBNF Grammar

As an example, we have included a sketch of the implementation of a parser for EBNF

grammars (Figure A-1). This is not the most concise specification of EBNF, but we

include this form of it to show some common usage patterns.

Letters and digits are recognized by common regular expression patterns, but the

regular expression rules for matching any of a set of special characters that are also

reserved in regular expressions are complicated. Here we make a single Raw string

matcher for each special character and combine them into a Choice rule. Identifiers

cannot contain whitespace, and terminals should include all characters within their

enclosing quotes, so we disable whitespace skipping within those rules. rhs is an

example of a self-recursive rule, so defining it as a simple Choice rule would fail, as

the argument to Choice cannot be evaluated until rhs has been defined. The current

workaround for this is to create a function that then makes a rule (with all names

resolvable by the time it is called) and then yield all results from a parse of that rule.

This specification does not use any callback functions, so all the data attributes

on returned Matches are strings or lists of strings. To check whether a string is
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Figure A-1: An EBNF grammar

from generator import *

letter = Regex(r’[a-zA-Z]’)
digit = Regex(r’\d’)
symbol = Choice([Raw(s) for s in ’’’[]{}()<>’"=|.,;’’’])
character = Choice([letter, digit, symbol, Raw(’_’)])
identifier = Sequence(letter, Star(Choice([letter, digit, Raw(’_’)])),

skip_whitespace=False)
terminal = Choice([

Sequence([Raw("’"), Plus(character), Raw("’")],
skip_whitespace=False),

Sequence([Raw(’"’), Plus(character), Raw(’"’)],
skip_whitespace=False),

])
lhs = identifier

def rhs(source, position):
rule = Choice([

identifier,
terminal,
Sequence([Raw(’[’), rhs, Raw(’]’)]),
Sequence([Raw(’{’), rhs, Raw(’}’)]),
Sequence([Raw(’(’), rhs, Raw(’)’)]),
Sequence([rhs, Raw(’|’), rhs]),
Sequence([rhs, Raw(’,’), rhs]),

])
yield from parse(rule, source, position)

rule = Sequence([lhs, Raw(’=’), rhs, Raw(’;’)])
ebnf = Star(rule)
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recognized by this grammar, we would use the generator library’s parse function and

check whether or not it returned a valid match:

next(parse(ebnf, "x = ’Hello’;", 0)) is not None

A.2 Palindromes

Although arbitrary-length palindromes cannot be matched by traditional regular ex-

pressions, many programming languages (Perl and Ruby, for example) provide ex-

tensions to regular expressions that allow for such a “regular expression” to exist.

Python is not one of these languages, so an external library must be used to ac-

cess that kind of extension. In Figure A-2, we demonstrate a parser rule that would

recognize arbitrary-length palindromes that contain no whitespace.

The implementation of is_palindrome makes this rule extremely slow. It naively

checks for palindromes by verifying that the first and last characters are the same and

then recurses into the middle of the string. This creates a very large call stack, and

creates many slices of the string in memory. However, we include this as an example

of rules that would be difficult (or impossible) to define in other parser generators.

Figure A-2: A palindrome grammar

from generator import *

def is_palindrome(x):
if len(x) < 2: return True
if x[0] == x[-1]: return is_palindrome(x[1:-1])
return False

def palindrome(source, position):
for match in parse(Regex(r’\S*’), source, position):

for i in range(len(match.text), -1, -1):
pal = match.text[:i]
if is_palindrome(pal):

yield Match(pal, position, pal)
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A.3 Stateful Parser

Many parser generators support parser states to simplify the implementation of sep-

arate “modes” of parsing. This parser generator also supports modes as a special case

of general parser state. We include an example of a stateful grammar (Figure A-3)

that only accepts words that have been explicitly marked as acceptable (using the

:word syntax). This example is somewhat contrived; any grammars that truly need

state tend to be too large or complicated to use as an example.

This parser stores its state in the accepted_words list. The callback function for

new_word adds each new word to this list. Each time known_word is used to generate

matches, it creates a new Choice from all the acceptable words at that time.

Figure A-3: A stateful grammar

from generator import *

accepted_words = []

def new_word(source, position):
def callback(data):

_, word = data
accepted_words.append(word)
return data

rule = Sequence([Raw(’:’), Regex(’\S+’, callback=lambda x: x.group())],
callback=callback)

yield from parse(rule, source, position)

def known_word(source, position):
rule = Choice([Raw(word) for word in accepted_words])
yield from parse(rule, source, position)

line = Choice([new_word, known_word])
grammar = SeparatedStar(line, Regex(r’\s*’))
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Appendix B

Example Programs

In this appendix, we present some sample programs in our language. Unless otherwise

stated, these programs assume that the interpreter was started with the settings file

in Appendix C.2.

B.1 Prime

The program in Figure B-1 defines some helper functions, building up to a function

that determines whether a number is prime.

B.2 Switch

The program in Figure B-2 defines a macro that implements a switch statement.

Besides syntax, the differences between this macro a C-like switch statement is that

cases do not “fall through” and the executed case is the last one that matches, rather

than the first.
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Figure B-1: A prime-checking program

not = function(a) if a then False else True end end
neither = function(a,b) if a then False else not(b) end end

modulo = function(num, modulus)
if num >= modulus then

modulo(num-modulus, modulus)
else

num
end

end

divides? = function(m, n)
modulo(m, n) == 0

end

prime? = function(x)
divisor_found = False
if x < 2 then

divisor_found = True
else

i = 2
while neither(i >= x, divisor_found) do

divisor_found = divides?(x, i)
i = i + 1

end
end
not(divisor_found)

end

print(prime?(3))
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Figure B-2: A program using the switch macro

macro_block switch (i, found, idx, value, case)
syntax

$’switch’ value_block ($’case’ cases $’do’ bodies *)
($’default’ default ?) $’end’

transform
@found = False
@i = 0
@value = @value_block
while @i < size(@cases) do

@case = @cases[@i]
if @value == @case then

@idx = @i
@found = True

end
@i = @i + 1

end

if @found then
@bodies[@idx]

else
@default[0]

end
end

x = 10
y = 20

switch x
case 1 do

print($’is one’)
case y do

print($’is y’)
case 10 do

print($’ten!’)
default

print($’none’)
end
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Appendix C

Example Settings

In this appendix, we present some examples of settings files that can be used to

perform modifications to the language at interpreter startup.

C.1 Default Settings

This section describes the default settings of the interpreter.

Figure C-1: The default settings file

DefaultSettings = {
’partial_application’: False,
’constant_function_arguments’: False,
’redeclaration_is_an_error’: True,
’declaration_required’: False,
’canonical_string_delimiter’: None,
’unquote_operator’: ’@’,
’binary_operations’: [],
’unary_operations’: [],
’grammar_post_create’: [],

}

By default, functions cannot be called with be partially applied and the names

bound to their arguments can be reassigned. Re-declaring a name binding results

in an error, regardless of whether it was declared as a constant or a variable, but
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declaration is not required. There is no canonical string delimiter, so strings will

display with the delimiters used when they were defined. The unquote operator is @,

and there are no additional operators defined. There are no additional modifications

to the grammar performed after it is created.

C.2 Basic Settings

This settings file defines one set of missing features (assignment and math operators)

for the base language. These settings are applied by merging them with the default

settings above, concatenating any settings that are lists, and overwriting any settings

that are single values.

from src import generator

from src.util import Node

def add_assignment(grammar):

def assignment(source, position):

matcher = generator.sequence([

generator.choice(grammar.assignable),

generator.raw(’=’),

grammar.expr,

],

skip_whitespace=grammar.ws_one_line,

callback=lambda seq: Node(’assignment’, seq[0], seq[2]),

)

yield from generator.parse(matcher, source, position)

def declare_variable(source, position):

matcher = generator.sequence([

generator.choice(grammar.assignable),

generator.raw(’:=’),
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grammar.expr,

],

skip_whitespace=grammar.ws_one_line,

callback=lambda seq: Node(’declare_variable’, seq[0], seq[2]),

)

yield from generator.parse(matcher, source, position)

def declare_constant(source, position):

matcher = generator.sequence([

generator.choice(grammar.assignable),

generator.raw(’::=’),

grammar.expr,

],

skip_whitespace=grammar.ws_one_line,

callback=lambda seq: Node(’declare_constant’, seq[0], seq[2]),

)

yield from generator.parse(matcher, source, position)

grammar.assignable = [grammar.identifier, grammar.unquote]

grammar.assignment = assignment

grammar.statement_types.insert(0, assignment)

grammar.declare_variable = declare_variable

grammar.statement_types.insert(0, declare_variable)

grammar.declare_constant = declare_constant

grammar.statement_types.insert(0, declare_constant)

grammar.reserved_substrings |= set([’=’, ’:=’, ’::=’])
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settings = {

’binary_operations’: [

(0, ’==’, ’left’, lambda l,r: l==r),

(0, ’!=’, ’left’, lambda l,r: l!=r),

(1, ’>=’, ’left’, lambda l,r: l>=r),

(1, ’<=’, ’left’, lambda l,r: l<=r),

(1, ’>’, ’left’, lambda l,r: l>r),

(1, ’<’, ’left’, lambda l,r: l<r),

(2, ’+’, ’left’, lambda l,r: l+r),

(2, ’-’, ’left’, lambda l,r: l-r),

(3, ’*’, ’left’, lambda l,r: l*r),

(3, ’/’, ’left’, lambda l,r: l/r),

],

’unary_operations’: [

(2, ’-’, lambda x: -x),

],

’grammar_post_create’: [add_assignment],

}
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