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Abstract

Equipment malfunction, logistics errors, and other disturbances in automobile fac-
tories can be very costly for manufacturers, as they often result in assembly line
downtime until the problem is resolved. In this thesis, we examine a new concept for
a Flexible Assembly Layout, enabled by new mobile robot technology, that aims to
decrease the cost of such errors by removing the affected car from the line while the
error is being fixed. In order to compare it to the layout commonly used today, we
develop Discrete Event Simulations, based on data from real factories, for both. The
simulations contain fast heuristic schedulers that adjust their generated schedules in
real time in response to errors. Our comparison shows that, for a representative fac-
tory with representative error frequencies, the Flexible Layout is able to produce cars
in 29.4% less time than the Conventional Layout, thanks to its robustness to errors.
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Chapter 1

Introduction

Markets today require automobile companies to strive for highly customizable prod-

ucts. Assembly lines that include diverse products require sophisticated planning,

as robot and worker agents will have to perform different sets of tasks on different

cars. Although modern assembly lines are efficient, they are often not very robust.

A disturbance caused by equipment malfunction, logistics issues, or worker related

issues can halt the entire line until the problem is resolved.

In this thesis, we develop discrete event simulation models for two automotive

assembly layouts, in order to evaluate them. The first layout we model is the Con-

ventional Layout, in which the cars are placed on a conveyor belt that moves at a

constant speed, while agents on both sides of the belt perform assembly operations

on the cars in front of them. The second layout we model is the Flexible Layout, a

new concept, in which the cars and agents are placed on mobile platforms and move

together through a segment of the line. While this means that the agents have to

be capable of performing a larger variety of tasks, it also lowers the cost of errors

— whether mechanical, logistic, or worker-related — by allowing the affected car to

move to the side and be overtaken by the other cars. When similar errors occur in the

Conventional Layout, the entire line stops until the error is resolved. To compare the

models, we simulate them under various amounts of errors and measure their perfor-

mance. We do this in order to obtain information that will help determine whether

investing in the Flexible Layout concept could be profitable.
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The remainder of this thesis is structured as follows:

Chapter 2 covers prior work in the areas of automobile factory simulation and

scheduling problems. We first review the concept of the digital factory as motivation

for the new factory concept. We present work using Discrete Event Simulation and

motivate the use of this modeling technique for the work conducted in this thesis. We

cover Tercio [1], the scheduling algorithm which inspired the scheduling algorithms

we used in our simulation, and explain why we had to modify it for the problem we

solved. Finally, we review a study on optimal car sequencing for automobile assembly

lines, and discuss how the topic of this thesis differs.

Chapter 3 covers our simulation architecture and scheduling algorithm for the

Conventional Layout. In order to specify a mathematical formulation of the problem,

we define the concepts of task, temporal constraint, car, agent, band, station, cycle

time, error, and schedule. The temporal constraints between tasks that we encounter

in our problem are of three types. First, delay constraints specify a lower bound on the

time difference between one task’s completion and another task’s start of execution.

Second, immediate constraints require that one task begins executing immediately

after another is completed. Third, simultaneous constraints require that two tasks

begin executing at the same time. A band is a section of the assembly line. Each

band has its own conveyor belt. Our simulations model a single band. The band is

separated into equal-length segments called stations. Each station can be occupied

by at most one car at a time and is associated with a set of agents who perform tasks

on the car occupying the station. The cycle time is the time each car spends at each

station if there are no errors in the band and is constant since the stations all have

the same length and the cars all move with the same speed.

The inputs to our problem are the sets of cars, agents, stations, and errors and

the cycle time. Our system’s main outputs are a schedule, which in this case means

an assignment of every task to a set of agents that will execute it and the time at

which they will be executed, and the list of times at which the cars move to the next

station. The schedule must obey the temporal constraints given as input and the

spacial constraints of the layout.
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We present the system we use to solve the problem, which is comprised of two

components, the Pre-Processor and the Simulation-Scheduler. The Pre-Processor

applies some approximations that allow us to solve the otherwise computationally

intractable scheduling problem. Specifically, it views tasks bound by simultaneous

constraints as a single multi-agent task, which assumes that the two tasks bound

by the constraint have the same duration. It also views tasks bound by immediate

constraints as a single longer task, which assumes that the two tasks are executed by

the same agent. We discuss the cases in which these approximations are appropriate.

The Simulation-Scheduler is a single algorithm that carries out two functions. The

Simulation part models the state of the line. The Scheduler part makes decisions

about when each task should execute. The simulation is a Discrete Event Simulation.

All relevant events are placed in a queue which returns the earliest one. The algorithm

loops until all tasks have been scheduled. In each loop, after the earliest event from

the queue is removed and processed, all cars are moved to the next station if the

conditions are met, and the idle agents are assigned to tasks. Finally, we report the

runtime and memory usage of our algorithm.

Chapter 4 covers our simulation architecture and scheduling algorithm for the

Flexible Layout. In order to specify a mathematical formulation of the problem, we

define the concepts of task, temporal constraint, car, agent, band, makespan, parking

spot, error, log entry, and car-schedule. The temporal constraints are the same as

in the Conventional Layout. Unlike in the Conventional Layout, errors have varying

effects depending on their type. The system’s inputs are the cars, agents, errors, and

some parameters related to the size and shape of the band. The outputs are the

schedules for the completion of tasks on each car and a log that keeps track of all the

significant events in the simulation.

We present the system we use to solve the problem, which is comprised of three

components, the Pre-Processor, the Car-Level Scheduler, and the Band-Level Simulation-

Scheduler. The Pre-Processor serves the same purpose as the one in the Conventional

Layout. The Car-Level Scheduler, given the tasks and temporal constraints of a car

and the agents assigned to it, generates a schedule for the completion of those tasks.

13



The algorithm for generating the schedule is discrete-event-based. It loops until all

tasks have been scheduled. In each loop, it processes the earliest event and then

idle agents are assigned to tasks. If a schedule is becomes infeasible thanks to the

occurrence of an error, a new one is generated that accounts for the error’s effect.

The Band-Level Simulation-Scheduler keeps track of the state of the band, assigns

agents to cars, and calls the Car-Level Scheduler to generate schedules for them. We

use Discrete Event Simulation. The algorithm loops until all cars have left the band.

In each loop, the earliest event is processed, and then idle agents are assigned to

cars. We first explain how the algorithm works in the absence of errors. Next, we

explain the complications added by errors, including how we keep track of parking

and the case in which the line stops moving if a car experiencing a specific type of

error is unable to find parking. Finally, we report the runtime and memory usage of

our algorithm.

Chapter 5 presents the method and results of the empirical evaluation of the two

layouts. We first review the layouts we are comparing and the inputs to the two

respective simulations. Next, we explained how we selected each of the inputs for

our comparison. For the Conventional Layout, the inputs were determined by data

drawn from a real automobile assembly line. For the Flexible Layout, we selected

most of the inputs such that the parameters of the two layouts we were comparing

were similar. An exception to this is band length. We made the Flexible Layout

shorter than the Conventional Layout because we wanted the time agents spent on

the moving platforms to only slightly exceed the time they spent working on tasks for

the cars on the platforms. We provide data on how we selected the length we used in

our comparison to minimize agent idle time.

We ran simulations on both layouts under various amounts of errors to observe

their performance. The tasks and errors used were randomly selected from probability

distributions based on observations of real factories. We reported the total runtime of

all our simulations, which was less than 2 hours. The results show that the Flexible

Layout finishes the same amount of cars 17.1% faster in the case of no errors and

29.4% faster in the case of an average amount of errors, as observed in real factories.
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We provide explanations of these results. The Flexible Layout performs better in the

case of no errors because its scheduling problem is less constrained, since the tasks

are not restricted to a particular station, as they are in the Conventional Layout. The

Flexible Layout responds better to errors because the affected car can park and allow

the rest of the cars to overtake it, whereas in the Conventional Layout, the entire

band stops until the error is resolved.

Chapter 6 presents the conclusions of this thesis and suggestions for future work.

The results show that the Flexible Layout can yield considerable improvement in

throughput and resilience to errors, but a full cost-benefit analysis should be per-

formed before determining whether an investment in it could be profitable.

15



16



Chapter 2

Prior Work

Fast changing market demands and increasing global competitiveness require modern

factories to be flexible and efficient in order to deliver highly customized products

[2, 3]. Computer software methods, in particular simulation, have enabled the man-

agement of complexity, the speedup of innovation time, and the reduction of manufac-

turing costs [4]. Customized products require sophisticated scheduling to streamline

assembly of varying products on a single line. In this chapter, we present previous

work in the areas of simulation and scheduling, related to assembly lines.

2.1 Simulation

A digital factory is an integrated approach for virtual manufacturing, including cad

and simulation models of machines, equipment, work cells, lines and plants. Kuehn [5]

discusses the components and benefits of the digital factory, which involves modeling,

simulating, and monitoring all stages of the production process using software tools.

Within this concept simulation is a key technology and can be applied in virtual

models on various planning levels and stages to improve the product and process

planning. Software vendors offer software solutions to implement this approach.

Computer simulations can relate either to models based on continuous variables

or to discrete-event descriptions [6]. Continuous-Variable Simulation is best used

to model dynamic systems whose behavior is governed by multiple differential and
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algebraic equations. Discrete Event Simulation is best used to model systems whose

behavior is determined by certain important events. In this thesis, we use Discrete

Event Simulation because the factory assembly line better fits the second description.

Plant, line and process simulation can be performed using Discrete Event Simu-

lation techniques [5], which provide the following benefits:

∙ Exploration of solutions that minimize the investment cost for production lines

while meeting the required production demands

∙ Detection and elimination of problems that otherwise would require cost- and

time-consuming correction measures during production ramp-up

∙ Improved performance of existing production systems by implementing mea-

sures that have been verified in a simulation environment prior to implementa-

tion

Discrete Event Simulation has been applied to the virtual analysis of manufac-

turing systems and has succeeded in reducing times and costs without the need for

physical experimentation [7].

Tecnomatix Plant Simulation by Siemens PLM Software [8] is a comprehensive

discrete-event simulation program. It allows quick and realistic analysis of production

systems leading to optimized performance. It has been used by many automobile

companies to plan better assembly layouts. Mahindra Vehicles has used it to develop

simulations to determine the optimal buffer storage capacity between lines and the

optimal routing from the paint line to the assembly lines [9]. Sichuan BMT Welding

Equipment & Engineering used it to reduce their time-to-market [10]. It has been used

to evaluate, via simulations, two potential variants of optimization of the production

line of an automobile-door manufacturer [11].

Michalos et. al. use simulation models to evaluate factory layouts in which au-

tonomous mobile manipulators and detachable robot grippers allow for reconfigura-

tion on the fly [12]. Fereira et. al. use a discrete event simulation model to study

the effects of varying the buffer sizes between different segments of an automobile

assembly line [13].
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The simulation models in our work give particular emphasis to the following:

∙ fine granularity of tasks — of the order of 5000 for one car — and their schedul-

ing

∙ consideration of operational errors and thorough analysis of their various types

and effects on the assembly line

2.2 Scheduling

The factory we simulate in this thesis produces highly customizable cars. As a result,

the set of assembly operations that must be performed on each car is different. Be-

cause of this, there is not one fixed sequence in which the operations are executed on

each car. Instead, the simulation must also include a scheduling algorithm that de-

cides the agent that each task is performed by and the time at which it is performed.

The schedule generated must obey certain constraints specifying the relative timing

of specific pairs of tasks which is necessary for the correct completion of the tasks.

For example, a screw must be retrieved before it is attached and tightened.

Gombolay et. al. [1] develop Tercio, a centralized task assignment and scheduling

algorithm. Tercio performs agents assignment and task sequencing separately. Its

task sequencer is inspired by real-time processor scheduling techniques and returns

schedules that are satisficing, but also near-optimal for well-structured problems.

Tercio was able to scale better than previous approaches to hybrid task-assignment

and scheduling [14], by solving problems of up to 10 agents and 500 tasks in less than

20 seconds on average.

There are four main reasons why we developed our own scheduling algorithms

to use in our simulation, instead of using Tercio. First, some tasks of the cars we

model are bound by simultaneous temporal constraints, meaning that they must

execute at the same time. Tercio can produce schedules that obey delay and deadline

constraints, but it does not handle simultaneous constraints. Second, the only type of

deadline constraints found between pairs of tasks in the cars we model are immediate
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constraints, meaning that one task must execute immediately after the other task.

Accommodating such constraints is simpler computationally than accommodating

deadline constraints, which are a generalization of immediate constraints. Thus, by

creating specialized scheduling algorithms that only work for the immediate subset

of deadline constraints, we can achieve faster runtimes. Third, there are certain

aspects in the structure of the scheduling problems we want to solve that would be

inconvenient to incorporate into Tercio, as it was not designed specifically for these

problems. For example, in the Conventional Assembly Layout, cars stay at each

station for the same amount of time, even if their tasks for a station are completed

earlier. Fourth, due to the size of scheduling problems we want to solve, we are

forced to make a different tradeoff between computational complexity and quality of

schedules produced. While Tercio scales well for problems of 500 tasks, the problems

we had to solve were of the order of 1 million tasks. Also, the quality of the schedules

is not as important to us, since our ultimate goal is to emulate a scheduler to compare

factory layouts, not to develop a close-to-optimal scheduling algorithm.

Mazur et. al. [15, 16] solve the problem of finding an optimal sequence of cars

to maximize assembly line throughput. Their problem differs from ours in a few

significant ways. First, for us, the sequence of cars is a given and fixed, while for

them it is the variable they are solving for. Second, their model considers the total

makespan of each car’s tasks at a station, while our model has finer granularity,

considering each task separately, and scheduling it individually. Third, their model

does not include unforeseen disturbances that can occur during production, while

ours does.
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Chapter 3

Conventional Automotive Assembly

Layout

3.1 Overview

Figure 3-1: BMW Plant in Spartanburg, SC

21



The most widely used automotive assembly layout is usually attributed to Henry

Ford, who installed a conveyor belt that enabled mass production of the Model T [17].

Figure 3-1 shows a picture from inside a state-of-the-art factory.

In its modern form, the layout consists of multiple linear sections, each containing

their own belt, separated by buffer zones [18]. These sections are called bands and

each one corresponds to a different stage in the assembly process. Figure 3-2 shows

an illustration of a segment of a band. Human or robot agents, situated on both sides

of the belt, perform assembly operations on car as they pass in front of them. We will

be simulating assembly lines for highly customizable cars, each requiring a unique

set of tasks. Because of this, agents may have to perform different tasks on different

cars. For agents to know what tasks they need to perform in the limited time that

the car is in front of them, they are given a schedule. In fact, the entire sequence of

cars to be produced in a day is determined a few days before. This allows for the

correct parts to be available and for a schedule for the entire assembly process to be

generated [19, 20].

Station 𝑘+1 Station 𝑘+2 Station 𝑘+3

Agent

AgentBelt

Figure 3-2: Conventional Automotive Assembly Layout

While this assembly process is efficient, it suffers greatly when something goes

wrong. If an agent cannot complete its tasks on a car before the car moves on, the

agent must stop the movement of the entire band until it can finish them. Whether

the cause of the disturbance is worker-related, machinery-related, resource-related,
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or something else, the effect on the band is the same. All cars stop moving and all

agents that have finished their tasks remain idle. An error lasting long enough can

cause a loss of productivity outside the band as well. Specifically, bands behind the

one the error occurred on will experience blocking, meaning that they will not be

able to continue moving because the cars they output have nowhere to go. On the

other hand, bands ahead of the one the error occurred on will experience starvation,

as they will process all the cars available to them, and will then have to remain idle.

These effects on other bands can be somewhat alleviated by introducing buffer zones

between bands, such that each band can output a few more cars before it blocks or

process a few more cars before it starves. Buffer zones, however, still don’t deal with

errors that take a long time to fix nor do they address the lack of productivity on the

band experiencing the error. The concept for a factory layout that aims to minimize

the cost of errors will be introduced in the next chapter.

In this chapter, we will develop a simulation and scheduling algorithm for one

band in this factory layout. The simulation will keep track of the state of the band,

while the scheduler makes the decisions that an online1 scheduler would have to make

in real time. This will allow us to compare the new concept to it and help determine

whether it would be worthwhile.

3.2 Definitions

Task 𝑤 < 𝑐𝑤, 𝑑𝑤, 𝑠𝑤, 𝐴𝑤, 𝑡𝑠𝑤, 𝑡𝑒𝑤 >

The process of car assembly is broken down into small steps that we call tasks. In

our model, the amount of time a task takes to complete is an attribute of the task

and not dependent on the time at which the task is executed or the set of agents

executing it. In this factory layout, the agent or set of agents that perform each task

is predetermined. We define the set of all tasks 𝑊 . A task 𝑤 ∈ 𝑊 is characterized

1An online scheduler has to develop quickly and adjust a schedule in response to events that it
could not have predicted as the schedule is deployed. This is in contrast to an offline scheduler that
has more time to develop a schedule before the schedule is actually deployed.
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by the following traits:

∙ the car 𝑐𝑤 for which it needs to be executed

∙ the duration 𝑑𝑤 that it takes to complete

∙ the station 𝑠𝑤 at which it needs to be executed

∙ the set 𝐴𝑤 of agents that are required to execute it. All agents in 𝐴𝑤 must be

from the station 𝑠𝑤.

∙ the time 𝑡𝑠𝑤 at which it begins being executed. Note that 𝑡𝑠𝑤 is unspecified

until the task is scheduled.

∙ the time 𝑡𝑒𝑤 at which it is finished. Note that 𝑡𝑒𝑤 is unspecified until the task

is scheduled. When 𝑡𝑠𝑤 has been specified, 𝑡𝑒𝑤 is given by

𝑡𝑒𝑤 = 𝑡𝑠𝑤 + 𝑑𝑤.

Temporal Constraint 𝛿𝑙𝑖𝑗 ≤ 𝑡𝑗 − 𝑡𝑖 ≤ 𝛿𝑢𝑖𝑗

For some pairs of tasks, the times at which they are executed need to have a specific

relation. We call this relation a temporal constraint between the two tasks. The

temporal constraints we will be dealing with in our model are Simple Temporal Con-

straints (STC), which means that they are of the form 𝑡𝑗 − 𝑡𝑖 ≤ 𝛿 for two timepoints

𝑡𝑖, 𝑡𝑗 [21]. We encounter them in pairs of the form 𝑡𝑗− 𝑡𝑖 ≤ 𝛿𝑗𝑖 and 𝑡𝑖− 𝑡𝑗 ≤ 𝛿𝑖𝑗, where

𝛿𝑖𝑗 ≤ 0 ≤ 𝛿𝑗𝑖. Together these constraints specify an upper bound 𝛿𝑢𝑖𝑗
= 𝛿𝑗𝑖 and a

lower bound 𝛿𝑙𝑖𝑗 = −𝛿𝑖𝑗 for the time difference between 𝑡𝑖 and 𝑡𝑗. In this chapter and

the next, when we mention Temporal Constraints, we are referring to pairs of STC’s

of this form, which we write as:

𝛿𝑙𝑖𝑗 ≤ 𝑡𝑗 − 𝑡𝑖 ≤ 𝛿𝑢𝑖𝑗
.

We define the set of these Temporal Constraints 𝐷. In our model, which is based

on a real factory, there are three types of simple temporal constraints. For two tasks
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𝐴 and 𝐵 with start times 𝑡𝑠𝐴 and 𝑡𝑠𝐵 and end times 𝑡𝑒𝐴 and 𝑡𝑒𝐵 respectively, the

types of ways in which 𝐵 could be constrained by 𝐴 are the following:

Delay constraint: 𝐵 must be executed after 𝐴 has finished and the time between

𝐴 finishing and 𝐵 starting must be lower bounded by the delay. In terms of

STC notation, these constraints are of the form 𝑑 ≤ 𝑡𝑠𝐵 − 𝑡𝑒𝐴 ≤ ∞ or just

𝑡𝑠𝐵 ≥ 𝑡𝑒𝐴 + 𝑑, where 𝑑 is the delay. Our ability to schedule 𝐵 depends on the

completion of 𝐴, so we call 𝐴 the releasing task and 𝐵 the constrained task.

Immediate constraint: 𝐵 must begin executing immediately after 𝐴 has finished.

In terms of STC notation, these constraints are of the form 0 ≤ 𝑡𝑠𝐵 − 𝑡𝑒𝐴 ≤ 0

or just 𝑡𝑠𝐵 = 𝑡𝑒𝐴.

Simultaneous constraint: 𝐵 must begin executing at the same time as 𝐴. In terms

of STC notation, these constraints are of the form 0 ≤ 𝑡𝑠𝐵 − 𝑡𝑠𝐴 ≤ 0 or just

𝑡𝑠𝐵 = 𝑡𝑠𝐴.

Car 𝑐 < 𝑛𝑐,𝑊𝑐, 𝐷𝑐 >

We define the set of all cars 𝐶. A car 𝑐 ∈ 𝐶 is characterized by the following traits:

∙ the unique number 𝑛𝑐 that describes its order in the sequence of all cars

∙ the set of tasks 𝑊𝑐 that need to be performed on it

∙ the set of temporal constraints 𝐷𝑐 between its tasks

Agent 𝑎 < 𝑠𝑎, 𝑖𝑎 >

Agents are the units that perform the tasks. Whether they are human workers or

robots doesn’t matter in our simulation. In this layout, agents are fixed to a specific

station in the band and can only perform some types of tasks. This is why tasks must

specify which agents are required to execute them. We define the set of all agents

𝐴. An agent 𝑎 ∈ 𝐴 is characterized by the station 𝑠𝑎 that its location in the band

corresponds to and a unique identifier 𝑖𝑎 to distinguish it from other agents in 𝑠𝑎.
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Band

The assembly line is separated into linear sections which we call bands. Each band

performs different kinds of tasks according to what agents, tools, and resources it has

available. We will simulate the events that occur on a single band. In this layout, the

band consists of a moving belt with agents stationed at both sides. Cars are placed

on the belt and move in front of the agents, who perform tasks on the car in front of

them. During normal operation, the belt moves at a constant speed 𝑣.

Station 𝑠

In our model, we separate the band into sections of equal length 𝑙 we call stations.

A station represents the portion of the band on which a set of agents2 operates. At

most one car can occupy each station at a time.

Cycle Time 𝑡𝑐

Since the speed of the cars in a band is constant during normal operation and the

length of all the stations is the same, the amount of time each car spends at each

station is constant. We call this the cycle time 𝑡𝑐 and it is given by 𝑡𝑐 = 𝑙/𝑣. During

normal operation, each car moves to the next station every 𝑡𝑐.

Error 𝑒 < 𝑐𝑒, 𝑡𝑠𝑒, 𝑑𝑒, 𝑡𝑒𝑒, 𝑜𝑒 >

Any event that can cause the band to stop moving is an error. Though there can be

many different causes for an error3, they all have the same effect on the band, so we

do not distinguish between them in our model. If an error is resolved by the time the

cycle time is completed, then it has no effect on the band. If an error does not resolve

in time, cars remain at their current stations and the band does not move forward

until the error is resolved. In our model, for the sake of simplicity, each car can only

2typically consisting of two agents, one on each side of the band
3The cause of an error can be worker-related, machinery-related, logistics-related, or information-

system-related, among others.
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experience one error at a time4. We define the set of all errors 𝐸. An error 𝑒 ∈ 𝐸 is

characterized by the following traits:

∙ the car 𝑐𝑒 it occurs on

∙ the time 𝑡𝑠𝑒 at which it occurs. Note that 𝑡𝑠𝑒 is initially unspecified and is

determined by our simulation.

∙ the duration 𝑑𝑒 it takes to resolve. The countdown for resolution starts imme-

diately when the error occurs.

∙ the time 𝑡𝑒𝑒 at which the error is resolved. Note that 𝑡𝑒𝑒 is unspecified until 𝑡𝑠𝑒

is specified. When 𝑡𝑠𝑒 is specified, the resolution time is given by 𝑡𝑒𝑒 = 𝑡𝑠𝑒 +𝑑𝑒.

∙ the time offset 𝑜𝑒 after the resolution of the previous error on car 𝑐𝑒 at which

𝑒 occurs5. The time offset is used in the simulation to specify the error’s start

time. The reason we specify the time at which an error occurs based on the

time at which the previous error on the same car is resolved is to ensure the

property that there is no overlap of errors on the same car. The process of

randomly generating errors that do not overlap becomes simpler when the only

condition that must be met is that the time offsets must be non-negative.

Schedule 𝑆

One of our goals in this chapter is to generate a schedule for the assembly work.

In this model, a schedule 𝑆 consists of a mapping 𝑀 :𝑤 → 𝑡𝑠𝑤 of every task to a

time at which it should be executed. The agents that will perform the tasks are

predetermined and thus do not need to be specified in the schedule.

4In a real factory, cars can experience multiple errors at the same time, but errors are rare enough
that this almost never happens. It would not be worth it for us to complicate our model to account
for this extremely rare occurrence.

5For the first error occurring on a car, the time offset refers to the amount of time after the car
enters the band after which the error occurs.
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3.3 Problem Formulation

Inputs

The inputs to our system are the following:

∙ the set 𝐶 of cars

– the union of 𝑊𝑐 over all 𝑐 ∈ 𝐶 is the set 𝑊 of tasks

– the union of 𝐷𝑐 over all 𝑐 ∈ 𝐶 is the set 𝐷 of temporal constraints

∙ the set 𝐴 of agents

∙ the number 𝑛𝑠 of stations

∙ the cycle time 𝑡𝑐

∙ the set 𝐸 of errors that will occur

Outputs

The outputs of our system are the following:

∙ the schedule 𝑆

∙ the list 𝑇 of moving times at which the cars in the band moved to the next

station

∙ a mapping 𝑀 : 𝑒→ 𝑡𝑠𝑒 of all errors to the times at which they occurred

Input-Output Constraints

Certain relations must exist between our input and output as well as between different

parts of our output for our system to be true to our model for the Conventional Layout.

They are listed below, along with formulations using quantities defined above:

∙ All tasks are scheduled.

∃𝑡𝑠𝑤,∀𝑤 ∈ 𝑊
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∙ No task is in progress while cars are moving to the next station. Another way

to say this is that for every moving time, no task can start before it and end

after it. This means that the difference between the moving time and the task’s

start time must have the same time as the difference between the moving time

and the task’s end time, so their product must be non-negative.

(𝑡− 𝑡𝑠𝑤)(𝑡− 𝑡𝑒𝑤) ≥ 0,∀𝑤 ∈ 𝑊 and ∀𝑡 ∈ 𝑇

∙ No error is in progress while cars are moving to the next station. Another way

to say this is that for every moving time, no error can start before it and end

after it. This means that the difference between the moving time and the error’s

start time must have the same time as the difference between the moving time

and the error’s end time, so their product must be non-negative.

(𝑡− 𝑡𝑠𝑒)(𝑡− 𝑡𝑒𝑒) ≥ 0,∀𝑒 ∈ 𝐸 and ∀𝑡 ∈ 𝑇

∙ Each station is occupied by the appropriate car in the appropriate time frame.

For 0 ≤ 𝑡 < 𝑇 [0], car 0 is at station 0 and all other cars are outside the band.

For 𝑇 [0] ≤ 𝑡 < 𝑇 [1], car 0 is at station 1 and car 1 is at station 0. In the general

case, if 𝑇 [𝑖− 1] ≤ 𝑡 < 𝑇 [𝑖], then car 𝑗 is at station 𝑖− 𝑗. If 𝑖− 𝑗 < 0, then the

car has not yet entered the band. If 𝑖− 𝑗 ≥ 𝑛𝑠, then the car has left the band.

𝑇 [𝑖− 1] ≤ 𝑡𝑠𝑤 < 𝑇 [𝑖]⇒ 𝑠𝑤 = 𝑖− 𝑛𝑐𝑤 ,∀𝑤 ∈ 𝑊

From this it also follows that each station is occupied by at most one car at a

time.

∙ No two moving times are separated by less than the cycle time

|𝑡1 − 𝑡2| ≥ 𝑡𝑐,∀𝑡1, 𝑡2 ∈ 𝑇
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∙ All cars move to the next station if cycle time has passed since the last move

time unless an error is in progress or some cars have not finished their tasks at

their current stations

𝑇 [𝑖]− 𝑇 [𝑖− 1] > 𝑡𝑐 ⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∃𝑒 ∈ 𝐸: 𝑡𝑠𝑒 < 𝑇 [𝑖− 1] + 𝑡𝑐 < 𝑡𝑒𝑒

or

∃𝑤 ∈ 𝑊 : 𝑠𝑤 = 𝑖− 𝑛𝑐𝑤 and 𝑡𝑒𝑤 > 𝑇 [𝑖− 1] + 𝑡𝑐

∙ An agent can be working on at most one task at any given time.

𝐴𝑤1 ∩ 𝐴𝑤2 ̸= ∅ ⇒ 𝑡𝑒𝑤1 ≤ 𝑡𝑠𝑤2 ,∀𝑤1, 𝑤2 ∈ 𝑊 where 𝑤1 ̸= 𝑤2 and 𝑡𝑠𝑤1 ≤ 𝑡𝑠𝑤2

∙ All temporal constraints must be satisfied.

𝛿𝑙𝑖𝑗 ≤ 𝑡𝑗 − 𝑡𝑖 ≤ 𝛿𝑢𝑖𝑗
,∀𝑡𝑖, 𝑡𝑗 bound by a constraint in 𝐷

∙ The errors occur at times that obey their time offsets. Specifically, if we let 𝑒𝑖

be the 𝑖th error that occurs on car 𝑐:

𝑡𝑠𝑒𝑖 = 𝑡𝑒𝑒𝑖−1
+ 𝑜𝑒𝑖

3.4 System Overview

𝑊,𝐷 Pre-Processor

𝐶,𝐴, 𝑛𝑠, 𝑡𝑐, 𝐸

𝑊 ′, 𝐷′

𝐿, 𝐹

Simulation
&

Scheduler
𝑆, 𝑇,𝑀

Figure 3-3: System Overview

The system we develop in this chapter has two main components: the Pre-
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Processor and the Simulation-Scheduler. The Pre-Processor applies some approxi-

mations that simplify the scheduling problem, allowing us to use an efficient schedul-

ing algorithm. The Simulation and Scheduler can be conceptually thought of as two

different entities that perform different tasks, but for convenience and efficiency we

implemented them in one algorithm. The Simulation keeps track of the state of the

band, including the cars occupying each station, the occurrence and resolution of

errors, and the availability of the agents. The Scheduler makes real-time decisions

about which task each agent should perform at any given time. Although the Simu-

lation has access to more information, the Scheduler only uses information about the

cars and the present state of the band, information that would also be available to a

real online scheduler, which is what our Scheduler is emulating. Figure 3-3 shows the

inputs and outputs of each component.

3.5 Pre-Processor

Optimal scheduling for problems that include delay, immediate, and simultaneous

constraints is not solvable in polynomial time, as it is a generalization of the Multi-

Processor Scheduling Problem6, which is NP-complete [22]. We are not necessarily

aiming to produce optimal schedules, as our ultimate goal is to compare factory lay-

outs, not develop an optimal scheduler. In order to generate a good enough schedule

in reasonable time, we make some approximations. Specifically, the Pre-Processor

eliminates simultaneous and immediate constraints by merging tasks that are bound

by such constraints.

Tercio[1], which inspired our scheduling algorithm, does not deal with simultane-

ous constraints. We are willing to make certain approximations, which hold true in

the common case, that make satisfying simultaneous constraints simple. Specifically,

we assume that tasks bound by simultaneous constraints have the same duration. If

this holds true, then the two tasks will be executed by two agents as if they were a

6The original Multi-Processor Scheduling Problem is given a partial ordering of the tasks and
does not include other constraints. Thus, it is a special case of our scheduling problem in which
there are only delay constraints where the delay is 0.

31



single multi-agent task. Our assumption allows us to merge pairs of tasks bound by

simultaneous constraints in the following manner. If we have two tasks 𝑢 and 𝑣, we

merge them into one task 𝑤 with 𝑑𝑤 = max(𝑑𝑢, 𝑑𝑣) and 𝐴𝑤 = 𝐴𝑢 ∪𝐴𝑣. All temporal

constraints that used to apply to one of the initial tasks apply to the merged task. In

the case where our assumption is not true, we do introduce an additional constraint

because we will occupy the agents for the shorter of the two tasks after it has finished

until the longer task has also finished. Also, if any other tasks have a precedence

constraint on the shorter of the two tasks and not the longer one, then they will have

to wait for the longer one. However, the assumption we made almost always holds

true.

Tercio deals with deadline constraints, which are a superset of immediate con-

straints. Much of the complexity of Tercio is derived from trying to accommodate

those deadline constraints. The problem we are trying to solve does not require this

complexity, since satisfying an immediate deadline does not allow a multitude of op-

tions. If we schedule an agent to perform a task that is an immediate constraint to

another task, we know that the other task will be performed immediately after the

first is completed and most likely by the same agent. In the common case, the same

agent will be performing both tasks, so the effect is as if there is one longer task

rather than two shorter ones. Our assumption allows us to merge tasks bound by

immediate constraints in the following manner. If we have two tasks 𝑢 and 𝑣, we

merge them into one task 𝑤 with 𝑑𝑤 = 𝑑𝑢 + 𝑑𝑣 and 𝐴𝑤 = 𝐴𝑢 ∪ 𝐴𝑣. All temporal

constraints that used to apply to one of the initial tasks apply to the merged task. In

the common case7 according to real factory data, this does not introduce additional

constraints, but if another task has a dependence on the first of the two tasks and not

the second, or the second of the two tasks has a dependence on another tasks which

the first of the two tasks does not share, then an additional constraint is introduced

to the problem. In the first case, the other task will have to wait for the entirety of

the merged task time, instead of just the first of the two tasks. In the second case,

7 Usually, two tasks that are bound by an immediate constraint share all other precedence
constraints.
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we will have to wait for the other task to finish before we begin the merged task,

instead of starting it such that we leave enough time for it to finish before we are on

the second part of the merged task.

There is one case in which we do not merge tasks bound by immediate constraints.

This exception is the case in which the two tasks are performed by agents in different

stations. Such a merging would complicate the scheduling process, but more impor-

tantly introduce the inefficiency of one car occupying two stations at the same time.

Our workaround for this is fairly simple. We observe that when tasks in two consecu-

tive stations are bound by an immediate constraint, the task from the earlier station

must be the last one completed in its station, and the task from the later station

must be the first one executed in its station. Thus, the Pre-Processor encodes these

constraints by specifying two lists 𝐿 and 𝐹 , of tasks that must be completed last in

their station and executed first in their station respectively.

We always merge simultaneous constraints first before merging immediate con-

straints because the other order could result in a merged task with unclear relations

to other tasks. The following example shows why merging constraints in the reverse

order can result in unclear behavior. Consider tasks 𝑎, 𝑏, and 𝑐 in Figure 3-4a. Tasks

𝑏 and 𝑐 are bound by a simultaneous constraint. Both 𝑏 and 𝑐 must immediately

follow 𝑎. If we first merge the simultaneous constraint, we get a merged task 𝑏𝑐 which

must immediately follow 𝑎, as shown in Figure 3-4b. We can then merge 𝑎 and 𝑏𝑐 to

get the fully merged task. On the other hand, if we merge immediate constraints first,

we will get a merged task 𝑎𝑏 whose relation to 𝑐 is both simultaneous and immediate,

as shown in Figure 3-4c. Merging 𝑎𝑏 and 𝑐 would be very complicated due to the

information lost during the merging of 𝑎 and 𝑏.

To summarize the Pre-Processor’s function, it takes the set of tasks 𝑊 and the

set of temporal constraints 𝐷 as inputs and outputs a new set of tasks 𝑊 ′ and a new

set of temporal constraints 𝐷′ that account for the merged tasks, as well as the set

𝐿 of tasks that must be completed last in their station and the set 𝐹 of tasks that

must be completed first in their station.
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Figure 3-4: Constraint Merging Example

3.6 Simulation and Scheduler

3.6.1 Approach: Discrete Event Simulation

A Discrete Event Simulation models a system as a state machine whose state can

only change because of certain discrete instantaneous events [23]. It processes these

events in the order they occur to get the state of the system at any given time. This

is in contrast to Continuous Simulation which continuously keeps track of the state

of the system. A Continuous Simulation breaks down time into small periods and

calculates the changes in the system that occur over every such period. Because

of this, Continuous Simulation can provide detailed information about the system

dynamics that is very useful for modeling systems with multiple rapidly changing

parameters. However, its drawback is the higher computational cost due to the large

number of time periods for which calculations are made, as opposed to the smaller

number of time periods that separate discrete events.

We elected to use Discrete Event Simulation, as it better fits our model. Even

though the state of the line doesn’t remain constant between the discrete events, it

changes in a predictable and easy to calculate way. Cars stay in their station for a

predictable amount of time and agents complete their tasks in a predictable amount

of time. The types of events that we use in our simulation are the following:

Agent becomes available (AE): An agent becomes available when it finishes a
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task it was assigned to. An event 𝑧 ∈ 𝐴𝐸 of agent 𝑎𝑧 becoming available occurs

at time 𝑡𝑧 if:

∃𝑤 ∈ 𝑊 : 𝑎𝑧 ∈ 𝐴𝑤 and 𝑡𝑧 = 𝑡𝑒𝑤

Delay constraint is satisfied (DE): A delay constraint is satisfied after the spec-

ified delay time has elapsed since the completion of the releasing task. An event

𝑧 ∈ 𝐷𝐸 of a delay constraint of 𝑑𝑧 being satisfied between two tasks 𝑢 and 𝑤

occurs at time 𝑡𝑧 if:

𝑡𝑧 = 𝑡𝑒𝑢 + 𝑑𝑧

Station finishes its tasks (SE): A station finishes its tasks when the last task to

complete by the car occupying it completes. An event 𝑧 ∈ 𝑆𝐸 of a station 𝑠

finishing its tasks occurs at time 𝑡𝑧 if:

∃𝑤 ∈ 𝑊 : 𝑡𝑒𝑤 = 𝑡𝑧 and 𝑡𝑒𝑢 ≤ 𝑡𝑧,∀𝑢 ∈ 𝑊𝑤

We define 𝑊𝑤 as the set of all tasks 𝑢 ∈ 𝑊 for which 𝑠𝑢 = 𝑠𝑤 and 𝑐𝑢 = 𝑐𝑤.

Error occurs (ESE): An error occurs at the time it is assigned by the simulation.

An event 𝑧 ∈ 𝐸𝑆𝐸 of an error 𝑒 occurring occurs at time 𝑡𝑧 if:

𝑡𝑧 = 𝑡𝑠𝑒

Error is resolved (EEE): An error is resolved after its duration has elapsed since

its occurrence. An event 𝑧 ∈ 𝐸𝐸𝐸 of an error 𝑒 being resolved occurs at time

𝑡𝑧 if:

𝑡𝑧 = 𝑡𝑒𝑒

Cycle time expires (CE): The cycle time expires when it has elapsed since the

last movement of cars to the next station. An event 𝑧 ∈ 𝐶𝐸 occurs at time 𝑡𝑧

if:

∃𝑡 ∈ 𝑇 : 𝑡𝑧 = 𝑡 + 𝑡𝑐
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We place these events in a queue that always returns the one with the earliest times-

tamp to be processed.

3.6.2 Algorithm

We will now describe our Simulate algorithm (Algorithm 1), which also incorpo-

rates the Scheduler. As shown in Figure 3-3, the inputs to Simulate are the Pre-

Processor’s outputs, 𝑊 ′, 𝐷′, 𝐿, and 𝐹 , discussed in Section 3.5, as well as the inputs

to the system 𝐶, 𝐴, 𝑛𝑠, 𝑡𝑐, and 𝐸, discussed in Section 3.3. The outputs of Simulate

are 𝑆, 𝑇 , and 𝑀 , also discussed in Section 3.3.

Algorithm 1 Conventional Layout Simulation
1: procedure Simulate(𝐶,𝑊 ′, 𝐷′, 𝐿, 𝐹,𝐴, 𝑛𝑠, 𝑡𝑐, 𝐸)
2: Initialize
3: while 𝑟𝑡 > 0 do
4: 𝑧 ← Queue.remove()
5: 𝑡𝑖𝑚𝑒← 𝑡𝑧
6: HandleEvent(𝑧)
7: if |𝐷𝑆| = 𝑛𝑠 and 𝑒𝑐 = 0 and 𝑐𝑡 then
8: 𝑇 .add(𝑡𝑖𝑚𝑒)
9: move cars to the next station

10: add ESE event for first error of car that just entered the band
11: empty 𝐷𝑆 except for unoccupied stations
12: 𝑐𝑡← false
13: add CE event to Queue
14: end if
15: for 𝑎 ∈ 𝐴𝐴 do
16: if 𝐶𝑆[𝑠𝑎] ̸= nil then
17: 𝑤 ← GetBestHeuristic(𝐴𝑊 [𝐶𝑆[𝑠𝑎]](𝑎))
18: if all agents in 𝐴𝑤 available then
19: schedule 𝑤 at 𝑡𝑖𝑚𝑒 in 𝑆
20: end if
21: end if
22: end for
23: end while
24: return 𝑆, 𝑇,𝑀
25: end procedure

The data structures used in Simulate are initialized in the Initialize procedure

(Algorithm 2). In the beginning of the simulation, there are no cars in the band, and
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Algorithm 2 Conventional Layout Initialize Procedure
1: procedure Initialize
2: create array 𝐶𝑆 of length 𝑛𝑠 ◁ maps stations to the cars occupying them
3: for 𝑖← 0...𝑛𝑠 − 1 do
4: 𝐶𝑆[𝑖]← nil
5: end for
6: 𝑒𝑐← 0 ◁ error count
7: 𝑐𝑡← false ◁ boolean describing whether cycle time has expired
8: create map ℎ:𝑤 → ℎ(𝑤) ◁ ℎ(𝑤) is a heuristic
9: for 𝑤 ∈ 𝐿 do

10: ℎ(𝑤)← −∞
11: end for
12: for 𝑤 ∈ 𝐹 do
13: ℎ(𝑤)←∞
14: end for
15: create map 𝐶𝑊 :𝑤 → 𝐶𝑊 (𝑤) ◁ 𝐶𝑊 (𝑤) is the set of tasks that have a

dependence on 𝑤
16: create map 𝑅𝐷:𝑤 → 𝑅𝐷(𝑤) ◁ 𝑅𝐷(𝑤) is the set of unsatisfied dependencies

of 𝑤
17: create array of lists 𝑋𝐶 ◁ |𝐶| different lists, 𝑋𝐶[𝑛𝑐] holds the sequence of all

errors that will occur on car 𝑐
18: for 𝑒 ∈ 𝐸 do
19: 𝑋𝐶[𝑛𝑐𝑒 ].add(𝑒)
20: end for
21: create set 𝐷𝑆 ◁ set of stations that have finished their tasks this cycle
22: for 𝑖← 0...𝑛𝑠 − 1 do
23: 𝐷𝑆.add(𝑖)
24: end for
25: create set 𝐴𝐴 ◁ set of agents not currently assigned to a task
26: for 𝑎 ∈ 𝐴 do
27: 𝐴𝐴.add(𝑎)
28: end for
29: create array of maps 𝐴𝑊 [𝑖]: 𝑎→ 𝐴𝑊 [𝑖](𝑎) ◁ 𝐴𝑊 [𝑖](𝑎) is the set of tasks of

car 𝑖 assigned to 𝑎 whose precedence constraints have been satisfied
30: for 𝑤 ∈ 𝑊 do
31: if 𝑅𝐷(𝑤) = ∅ then
32: 𝐴𝑊 (𝑎𝑤).add(𝑤)
33: end if
34: end for
35: create empty Queue
36: Queue.add(𝐶𝐸 event at time 0)
37: 𝑟𝑡← |𝑊 ′|
38: end procedure
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Algorithm 3 Conventional Layout Handle Event Procedure
1: procedure HandleEvent(𝑧)
2: if 𝑧 ∈ 𝐴𝐸 then
3: 𝐴𝐴.add(𝑎𝑧)
4: else if 𝑧 ∈ 𝐷𝐸 then
5: 𝑤 ← 𝑧.constrained
6: 𝑅𝐷(𝑤).remove(𝑡𝑐𝑧)
7: if 𝑅𝐷(𝑤) = ∅ then
8: 𝐴𝑊 (𝑎𝑤).add(𝑤)
9: end if

10: else if 𝑧 ∈ 𝑆𝐸 then
11: 𝐷𝑆.add(𝑠𝑧)
12: else if 𝑧 ∈ 𝐸𝑆𝐸 then
13: 𝑒𝑐 + +
14: add 𝐸𝐸𝐸 event to Queue
15: 𝑀 [𝑒]← 𝑡𝑖𝑚𝑒
16: else if 𝑧 ∈ 𝐸𝐸𝐸 then
17: 𝑒𝑐−−
18: if 𝑋𝐶[𝑛𝑐𝑧 ] ̸= ∅ then
19: 𝑒← 𝑋𝐶[𝑛𝑐𝑧 ].remove()
20: add 𝐸𝑆𝐸 event for e to Queue
21: end if
22: else if 𝑧 ∈ 𝐶𝐸 then
23: 𝑐𝑡← true
24: end if
25: end procedure

the only event in the queue is a CE event at time 0 (lines 35–36). At all times, we

keep track of the car occupying each station (𝐶𝑆, initialized in lines 2–5), the number

of ongoing errors (𝑒𝑐, initialized in line 6), whether the cycle time has expired since

the last move time (𝑐𝑡, initialized in line 7), the set of unsatisfied dependencies of

each task (𝑅𝐷, initialized in line 16), the set of stations that have finished their

tasks in the current cycle (𝐷𝑆, initialized in lines 21–24), the set of available agents

(𝐴𝐴, initialized in lines 25–28), the set of tasks each agent is able to execute (𝐴𝑊 ,

initialized in lines 29–34), and the number of tasks that have not yet been scheduled

(𝑟𝑡, initialized in line 37). For a task to be ready to execute, its car needs to be

at the station where its agent is located and all its precedence constraints must be

satisfied. For each task, we calculate the priority heuristic (line 8), whose goal is to
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give the agents as many options of tasks to perform at any given moment as possible

in order to increase agent utilization. The heuristic we use is the number of inter-

agent precedence constraints and is further explained in Section 3.6.4. We set the

heuristic of all tasks in 𝐿 to −∞ since we want them executed last in their station

and the heuristic of all tasks in 𝐹 to +∞ since we want them executed first in their

station (lines 9–14).

The simulation consists of a loop that runs until all tasks in 𝑊 ′ have been sched-

uled (line 3). The loop consists of three parts. In the first part (lines 4–6), the

algorithm processes the earliest event from the queue and any other events with the

same timestamp as that event. In the second part (lines 7–14), the algorithm checks

whether the conditions for the line to move are met and moves the line if they are.

In the third part (lines 15–22), the algorithm assigns available agents to the available

tasks with the highest value heuristic. We will now discuss these parts in more detail.

Events are processed by the HandleEvent procedure (Algorithm 3). Different

types of events are processed in different ways:

∙ AE events add their agent to the set of available agents (line 3).

∙ DE events remove their dependency from the set of unsatisfied dependencies of

the constrained task (line 6), and add that task to the set of available tasks if

its set of unsatisfied dependencies is empty (lines 7–9).

∙ SE events add their station to the set of stations that have finished their tasks

(line 11).

∙ ESE events increment the error count (line 13) and add the EEE event for their

resolution to the queue at 𝑡𝑖𝑚𝑒+ 𝑑𝑒 (line 14). They also assign 𝑡𝑖𝑚𝑒 to 𝑒 in 𝑀

(line 15).

∙ EEE events decrement the error count (line 17) and add the next ESE event

for the car to the queue at 𝑡𝑖𝑚𝑒 + 𝑜𝑒, if there is another error for that car in 𝐸

(lines 18–21).
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∙ CE events set the boolean indicating that the cycle time has expired since the

last move to true (line 23).

The condition that has to hold for the cars to move to the next station is that all

stations must have finished their tasks, the error count must be 0, and the cycle time

must have expired (line 7). If these conditions are met, the line moves. When the

line moves, we add the 𝑡𝑖𝑚𝑒 to 𝑇 (line 8). The algorithm shifts the array that keeps

track of the car at each station to the right and fills the empty spot created with the

next car to enter the band (line 9). It adds the ESE event for the first error that car

will encounter to the queue, if there is one (line 10). It empties the set of stations

that have finished their tasks, with the exception of vacant stations, either because

the last car has left them or the first car has not yet reached them (line 11). It also

sets the boolean of whether the cycle time has expired to false (line 12) and adds the

next CE event to the queue at 𝑡𝑖𝑚𝑒 + 𝑡𝑐 (line 13).

After the events have been processed and the moving condition has been checked,

the last thing the algorithm tries to do before it loops again is assign tasks to the

available agents. It iterates over all available agents (line 15), and for those that are

not at vacant stations it selects the task with the best heuristic of those available

(line 17), checks that any other agents needed for the task are available, and, if so,

schedules it (line 19). After it schedules a task, it removes the assigned agents from

the set of available agents and checks if there are no tasks left to schedule at the

station, and if so puts an SE event in the queue at 𝑡𝑖𝑚𝑒.

3.6.3 Queue Implementation

We implement our queue of events as a min-heap. A heap is a tree-based data

structure that satisfies the heap property, which is a relation between a parent and

each of its children. In our case, this property is that a parent event will have a

timestamp that is lower than or equal to those of its children. It follows from the

heap property that the event at the root will have the lowest timestamp, hence min-

heap, and will thus be the earliest of these events to occur and the first one to be
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processed.

3.6.4 Heuristic

The heuristic we use is that of inter-agent precedence constraints, the most relevant

heuristic to our situation of those used in Tercio. Consider a situation with two

agents 𝑎1, 𝑎2 and three tasks 𝑤1, 𝑤2, 𝑤3. Tasks 𝑤1 and 𝑤2 are assigned to 𝑎1 while

𝑤3 is assigned to 𝑎2. The only temporal constraint in the system is that 𝑤3 must be

executed after 𝑤2 has completed. If we schedule 𝑎1 to execute 𝑤1 before 𝑤2, then 𝑎2

will have to wait for 𝑎1 to finish both its tasks before it can begin working on 𝑤3. On

the other hand, if we schedule 𝑤2 before 𝑤1, then 𝑎2 can work on 𝑤3 while 𝑎1 works

on 𝑤1, resulting in better agent utilization and a schedule that finishes all the tasks

in less time. What makes 𝑤2 a better choice than 𝑤1 in this case is the fact that it

is a precedence constraint for a task on a different agent. Satisfying such constraints

first gives other agents more options for what tasks to execute, resulting in less idle

time. Because of this, the heuristic gives priority to the tasks whose completion will

satisfy the most inter-agent precedence constraints.

As in the case of the event queue, our heuristic is implemented with heaps, specif-

ically max-heaps. Instead of iterating through the entire set of tasks an agent could

execute to find the one with the best heuristic, we use a max-heap whose root will

have the best heuristic thanks to the heap property. This allows us to find the best

heuristic in 𝑂(log 𝑛) time rather than 𝑂(𝑛) time for sets of 𝑛 tasks.

3.7 Runtime and Memory Analysis

The Pre-Processor has to iterate over all temporal constraints to do the merging, and

must produce new lists of tasks and constraints, so its runtime and space requirements

are 𝑂(|𝑊 |+ |𝐷|).

The number of times the simulation algorithm loops is upper bounded by the

number of total events processed. To find the total number of events, we go over how

many were processed for each type. Since the number of agents per task is upper
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bounded by a constant8, there are 𝑂(|𝑊 |) AA events. There are 𝑂(|𝐷|) DE events.

Each station will finish each car once, so there are 𝑂(𝑛𝑠|𝐶|) SE events. There are

𝑂(|𝐸|) ESE and EEE events. There will be |𝐶| moves before the last car enters the

band and 𝑛𝑠 moves after that to get it to the last station, so there are 𝑂(|𝐶| + 𝑛𝑠)

ME events. Thus, the number of total events, and consequently the number of times

the algorithm loops, is

𝑂(|𝑊 |+ |𝐷|+ |𝐸|+ 𝑛𝑠|𝐶|).

Since we implemented our queue as a min-heap, removing the earliest event takes

𝑂(log 𝑛) time, where 𝑛 is the size of the queue9 The processing of AE, DE10, SE, and

CE events takes constant time. ESE and EEE events add other events to the queue,

which is a 𝑂(log 𝑛) operation where 𝑛 is the size of the queue, since we implemented

our queue as a min-heap. Thus, the total amount of time contributed by the first

part of the loop is

𝑂((|𝑊 |+ |𝐷|+ |𝐸|+ 𝑛𝑠|𝐶|) log 𝑛).

The check of whether to move the line is a constant time operation. As stated

earlier there will be a total of 𝑂(|𝐶| + 𝑛𝑠) movements. Each movement includes

shifting the array of cars at each station, which takes 𝑂(𝑛𝑠), and adding an ESE and

a CE event to the queue, which takes 𝑂(log 𝑛). Thus, the total time contributed by

the second part of the loop is

𝑂((|𝑊 |+ |𝐷|+ |𝐸|+ 𝑛𝑠|𝐶|) log 𝑛 + (|𝐶|+ 𝑛𝑠)(𝑛𝑠 + log 𝑛)).

In the third part of each loop, we iterate over all available agents. In practice,

throughout most of the simulation, few agents will be idle, but in the worst case

8Usually there are at most two agents per task, since there are typically at most two agents per
station.

9Reading the earliest event is a constant time operation, since it is just the root of the heap tree,
but removing it leaves a broken tree, which takes 𝑂(log 𝑛) time to repair.

10Processing a DE event involves removing a constraint from the list of unsatisfied constraints of
a task. We can view this as a constant time operation if we assume that the number of precedence
constraints on any single task is small compared to the total number of precedence constraints, which
is a reasonable assumption.
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the size of the available agents set is |𝐴|. The cost of each check is constant time.

The total number of tasks scheduled is |𝑊 |, and for each one, we pick it as the best

heuristic out of the set of available tasks, and add the AA events to the queue, which

is 𝑂(log 𝑛). Thus, the total amount of time contributed is

𝑂((|𝑊 |+ |𝐷|+ |𝐸|+ 𝑛𝑠|𝐶|)|𝐴|+ |𝑊 | log 𝑛).

After summing all the parts of the algorithm we analyzed, we find that the runtime

of the algorithm, including the Pre-Processor, is

𝑂((|𝑊 |+ |𝐷|+ |𝐸|+ 𝑛𝑠|𝐶|)(|𝐴|+ log 𝑛) + (|𝐶|+ 𝑛𝑠)(𝑛𝑠 + log 𝑛)).

In terms of space, the largest potential requirement is the event queue, so the space

required is 𝑂(𝑛). We can upper bound 𝑛 by the total number of events, which is

𝑂(|𝑊 |+ |𝐷|+ |𝐸|+ 𝑛𝑠|𝐶|).
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Chapter 4

Flexible Factory Concept

4.1 Overview

The flexible factory layout aims to reduce the cost of errors. In the conventional

factory layout, an error causes the line to back up, as the car experiencing the error

will impede the progress of the cars behind it. Each station can only be occupied by

one car at a time, and there is no way for the cars behind it to overtake it. The new

layout attempts to solve this problem by decoupling tasks from specific stations and

physical locations. Specifically, cars are placed on mobile platforms that carry all the

tools and resources necessary for all the tasks in the band. When a new car enters the

band, it is placed on such a platform and assigned the required number of workers if

they are available. It then begins moving through the band, as the assigned workers

perform the tasks. The car does not need to be at a specific station or location for

any tasks. Figure 4-1 shows an illustration of a segment of a band in this layout.

One might wonder why the car should move at all if it has everything it needs

on its own platform. The reason is that by the time the car finishes its tasks for the

band, it will need to have traveled to the entrance of the next band. To handle errors

in this layout, there are parking spots next to the assembly line that cars can park

at if they experience errors. This allows cars from behind to overtake, so the delay

caused by the error only affects the car that experienced it.

Our goal in this chapter is to develop both a simulation of this factory layout and
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Figure 4-1: Flexible Automotive Assembly Layout

a scheduler that will assign agents to cars and tasks. The simulation will be used to

evaluate and compare this layout to the conventional layout. The scheduler need not

be optimal, but should perform reasonably well in the common case.

4.2 Definitions

Task 𝑤 < 𝑐𝑤, 𝑑𝑤, 𝑛𝑤, 𝑡𝑠𝑤, 𝑡𝑒𝑤 >

As was the case for the conventional factory layout, the amount of time a task takes

to complete is an attribute of the task and not dependent on the time at which the

task is executed or the set of agents executing it. In this factory layout, all agents in

a band can perform the same tasks. We define the set of all tasks 𝑊 . A task 𝑤 ∈ 𝑊

is characterized by the following traits:

∙ the car 𝑐𝑤 for which it needs to be executed
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∙ the duration 𝑑𝑤 that it takes to complete

∙ the number of agents 𝑛𝑤 that are required to execute it

∙ the time 𝑡𝑠𝑤 at which it begins being executed. Note that 𝑡𝑠𝑤 is unspecified

until the task is scheduled.

∙ the time 𝑡𝑒𝑤 at which it is finished. Note that 𝑡𝑒𝑤 is unspecified until the task

is scheduled. When 𝑡𝑠𝑤 has been specified, 𝑡𝑒𝑤 is given by

𝑡𝑒𝑤 = 𝑡𝑠𝑤 + 𝑑𝑤.

Temporal Constraint 𝛿𝑙𝑖𝑗 ≤ 𝑡𝑗 − 𝑡𝑖 ≤ 𝛿𝑢𝑖𝑗

The temporal constraints we encounter in this model are the same ones discussed in

Section 3.2: Delay constraints, Immediate constraints, and Simultaneous constraints.

We define the set of these Temporal Constraints 𝐷.

Car 𝑐 < 𝑡𝑐, 𝑛𝑐,𝑊𝑐, 𝐷𝑐 >

We define the set of all cars 𝐶. A car 𝑐 ∈ 𝐶 is characterized by the following traits:

∙ the time 𝑡𝑐 at which it arrives at the start of the band

∙ the number of agents 𝑛𝑐 that need to be assigned to it

∙ the set of tasks 𝑊𝑐 that need to be performed on it

∙ the set of temporal constraints 𝐷𝑐 between its tasks.

Agent 𝑎

Agents are the units that perform the tasks. Unlike in the Conventional Layout, all

agents in a band are capable of performing all the tasks in the band. Sets of agents

are assigned to cars at the beginning of the band, perform all the tasks on their cars
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based on a schedule provided, and return to the beginning of the band to be assigned

again once the car they were assigned to leaves the band.

Band

The assembly line is separated into linear sections which we call bands. Each band

performs different kinds of tasks according to what agents, tools, and resources it has

available. We will simulate the events that occur on a single band.

Makespan 𝑚𝑐

The makespan 𝑚𝑐 of a car 𝑐 is the time difference between the time when its first

task begins being executed and the time its last task is completed. The makespan is

a result of the scheduling process.

Parking Spot 𝑝

A parking spot is a space next to the line at which the mobile platforms can park.

Each spot can be occupied by at most one car at a time. Each parking spot is only

accessible from some areas of the band. We are given a function that given a location

𝑥 on the band, returns a set of parking spots 𝑓(𝑥)→ 𝑃 that are accessible from 𝑥.

Error 𝑒 < 𝑐𝑒, 𝑔𝑒, 𝑡𝑠𝑒, 𝑑𝑒, 𝑡𝑒𝑒, 𝑜𝑒 >

Any event that causes a car’s makespan or travel time to increase is an error. Unlike

in the Conventional Layout, there are different groups of errors that affect the line in

different ways. The grouping resulted from discussions with an automotive manufac-

turer and is based on errors occurring in real assembly lines. In our model, for the

sake of simplicity, each car can only experience one error at a time1. We define the

set of all errors 𝐸. An error 𝑒 ∈ 𝐸 is characterized by the following traits:

1In a real factory, cars can experience multiple errors at the same time, but errors are rare enough
that this almost never happens. It would not be worth it for us to complicate our model to account
for this extremely rare occurrence.
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∙ the car 𝑐𝑒 it occurs to

∙ the group 𝑔𝑒 it belongs to

∙ the time 𝑡𝑠𝑒 at which it occurs. Note that 𝑡𝑠𝑒 is initially unspecified and is

determined by our simulation.

∙ the duration 𝑑𝑒 it takes to resolve. The duration has a slightly different meaning

for different groups of errors. For errors of Group 2 (𝑔𝑒 = 2), the duration is

the time difference between the car parking and the error being resolved. For

all other groups (𝑔𝑒 ̸= 2), the duration is the time difference between the error

occurring and it being resolved.

∙ the time 𝑡𝑒𝑒 at which the error is resolved. Note that 𝑡𝑒𝑒 is unspecified until a

parking time is specified for errors of Group 2 or 𝑡𝑠𝑒 is specified for all other

groups.

∙ the time offset 𝑜𝑒 after the resolution of the previous error on car 𝑐𝑒 at which

𝑒 occurs2. The time offset is used in the simulation to specify the error’s start

time. The reason we specify the time at which an error occurs based on the

time at which the previous error on the same car is resolved is to ensure the

property that there is no overlap of errors on the same car. The process of

randomly generating errors that do not overlap becomes simpler when the only

condition that must be met is that the time offsets must be non-negative.

Depending on its group, an error may display one or more of the following properties:

Requires Immediate Parking: The car experiencing the error needs to park im-

mediately, and the countdown for the error’s resolution doesn’t start until it has

parked. If the car is not able to park, it and all the cars behind it in the band

stop moving until parking becomes available. This means that every position

in the band should have access to at least one parking spot, since otherwise the

2For the first error occurring on a car, the time offset refers to the amount of time after the car
enters the band after which the error occurs.
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entire band would permanently stop moving if this kind of error occurred on a

car located at a position with no access to parking.

Requires Agent to Fix: One of the agents assigned to the car must fix the error,

and will thus be unavailable to perform tasks for the duration of the error.

Causes Blocked Task: One of the tasks that was being performed when the er-

ror occurred becomes blocked for the duration of the error, which means that

progress towards that task is lost and that it cannot be performed until after

the error is resolved.

Can Move Between Parking Spots: After the car experiencing the error has parked,

it can re-enter the line before the error is resolved and park later, if a higher

priority error needs its parking spot.

Increases Makespan By Duration of Error: The car’s makespan increases due

to re-work that needs to occur.

Table 4.1 shows the properties that correspond to each error group used in our

model.

Group 1 Group 2 Group 4 Group 7 Group 8 Group 9
Requires

Immediate Parking ∙

Requires
Agent to Fix ∙ ∙

Causes
Blocked Task ∙ ∙ ∙

Can Move Between
Parking Spots ∙ ∙ ∙ ∙

Increases
Makespan By

Duration of Error
∙ ∙

Table 4.1: Symptoms of the different groups of errors in our model

50



Log Entry 𝑙

Our simulation must output a series of events that occur as a result of the scheduling

and errors. It does this by keeping a log of all the events it needs to output. The

advantage of recording a log is that we can use it to reconstruct intermediate states

for the band and also filter it to view only certain kinds of entries or only entries

regarding certain types of cars if we want to. The types of events that are recorded

in the log are the following:

Assignment of agents to a car: When a car is assigned agents, it begins moving

in the band, and its agents begin executing its tasks. These entries 𝑙𝑎 are

characterized by:

∙ the time 𝑡𝑙𝑎 of the assignment

∙ the car 𝑐𝑙𝑎 which was assigned the agents

∙ the set of agents 𝐴𝑙𝑎 that were assigned

A car finishing its tasks: These entries 𝑙𝑡 are characterized by:

∙ the time 𝑡𝑙𝑡 at which the tasks are finished

∙ the car 𝑐𝑙𝑡 whose tasks are finished

Occurrence of an error: These entries 𝑙𝑒 are characterized by:

∙ the time 𝑡𝑙𝑒 at which the error occurs

∙ the car 𝑐𝑙𝑒 on which it occurs

∙ the group 𝑔𝑙𝑒 that the error belongs to

∙ the duration 𝑑𝑙𝑒 of the error

Resolution of an error: These entries 𝑙𝑟 are characterized by:

∙ the time 𝑡𝑙𝑟 at which the error is resolved

∙ the car 𝑐𝑙𝑟 on which it had occurred
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A car parking: These entries 𝑙𝑝 are characterized by:

∙ the time 𝑡𝑙𝑝 at which the car parks

∙ the car 𝑐𝑙𝑝 that is parking

∙ the parking spot 𝑝𝑙𝑝 which is used

A car leaving a parking spot: These entries 𝑙𝑢 are characterized by:

∙ the time 𝑡𝑙𝑢 at which the car leaves the parking spot

∙ the car 𝑐𝑙𝑢 that is leaving the parking spot

∙ the parking spot 𝑝𝑙𝑢 that is being left

A car leaving the band: When a car reaches the end of the band, it leaves and

the agents assigned to it move back to the beginning of the band. These entries

𝑙𝑏 are characterized by:

∙ the time 𝑡𝑙𝑏 at which the car leaves the band

∙ the car 𝑐𝑙𝑏 that is leaving the band

For two entries 𝑙1, 𝑙2, when we write 𝑙1 < 𝑙2, we mean that 𝑙1 appears before 𝑙2 in the

log, which, since the log is in chronological order, means that 𝑡𝑙1 ≤ 𝑡𝑙1 .

Individual Car Schedule 𝑆𝑐

Besides the high level events that are recorded in the log, our system must also

produce a schedule for each individual car. Each schedule 𝑆𝑐 for a car 𝑐 consists of:

∙ an ordering 𝑂𝑐 of the car’s tasks that matches the chronological order in which

they were performed

∙ a mapping 𝑀𝑡:𝑤 → 𝑡𝑠𝑤 from each task to the time at which it was performed

∙ a mapping 𝑀𝐴:𝑤 → 𝐴𝑤 from each task to the set of agents that performed it.
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4.3 Problem Formulation

Inputs

The inputs to our simulation are the following:

∙ the set 𝐶 of cars

– the union of 𝑊𝑐 over all 𝑐 ∈ 𝐶 is the set 𝑊 of tasks

– the union of 𝐷𝑐 over all 𝑐 ∈ 𝐶 is the set 𝐷 of temporal constraints

∙ the speed 𝑣 of the cars. All cars that are moving in the band move at the same

speed. This means that if we know how long a car has been moving in the band,

we can tell what its position is.

∙ the number 𝑛𝑎 of agents in the band

∙ the time 𝑟 it takes agents to move back to the start of the band. When a car

exits the band, the agents assigned to it get off and move back to the start

of the band. Once they reach the start of the band, they are available to be

assigned to another car.

∙ the length 𝑥max of the line

∙ the mapping 𝑓 :𝑥→ 𝑃 from location along the line to a set of accessible parking

spots

∙ the set 𝐸 of errors that will occur

Outputs

The outputs from the simulation are the following:

∙ a mapping 𝑀𝑠: 𝑐→ 𝑆𝑐 from each car to its schedule

∙ the log 𝐿, which includes an entry 𝑙 for every recorded event in chronological

order. We also define the subsets of 𝐿 according to the Log Entry types:
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– 𝐿𝑎, the set of entries about the assignment of agents to a car

– 𝐿𝑡, the set of entries about a car finishing its tasks

– 𝐿𝑒, the set of entries about the occurrence of an error

– 𝐿𝑟, the set of entries about the resolution of an error

– 𝐿𝑝, the set of entries about a car parking

– 𝐿𝑢, the set of entries about a car leaving a parking spot

– 𝐿𝑏, the set of entries about a car leaving the band

Input-Output Constraints

Certain relations must exist between our input and output as well as between different

parts of our output for our simulation to be true to our model for the Flexible Layout.

They are listed below, along with formulations using quantities defined above:

∙ All tasks are scheduled.

∃𝑡𝑠𝑤, ∀𝑤 ∈ 𝑊

∙ Each car is assigned agents at least once.

∀𝑐 ∈ 𝐶:∃𝑙𝑎 ∈ 𝐿𝑎 with 𝑐𝑙𝑎 = 𝑐

∙ Each car is assigned agents at most once. Along with the previous constraint,

this ensures that each car is assigned agents exactly once.

𝑐𝑙𝑎1 ̸= 𝑐𝑙𝑎2 ,∀𝑙𝑎1 ̸= 𝑙𝑎2 ∈ 𝐿𝑎

∙ Each car is assigned agents after it has entered the band.

∀𝑙 ∈ 𝐿𝑎: 𝑡𝑙𝑎 ≥ 𝑡𝑐𝑙𝑎
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∙ Each car leaves the band at least once.

∀𝑐 ∈ 𝐶:∃𝑙𝑏 ∈ 𝐿𝑏 with 𝑐𝑙𝑏 = 𝑐

∙ Each car leaves the band at most once. Along with the previous constraint, this

ensures that each car leaves the band exactly once.

𝑐𝑙𝑏1 ̸= 𝑐𝑙𝑏2 ,∀𝑙𝑏1 ̸= 𝑙𝑏2 ∈ 𝐿𝑏

∙ A schedule is generated for every car.

∀𝑐 ∈ 𝐶:∃𝑆𝑐 ∈𝑀𝑠

∙ Every task is scheduled.

∀𝑐 ∈ 𝐶:∀𝑤 ∈ 𝑊𝑐:∃𝑡𝑠𝑤 ∈𝑀𝑡 and ∃𝐴𝑤 ∈𝑀𝐴 in 𝑆𝑐

∙ Every task is allocated enough agents.

∀𝑤 ∈ 𝑊 : |𝐴𝑤| ≥ 𝑛𝑤

∙ Each individual car schedule must include at most as many agents as were

assigned to the car.

∀𝑙 ∈ 𝐿𝑎: |𝐴𝑙| ≥ |𝐴𝑆𝑐𝑙
|

∙ Each car should be assigned as many agents as required.

∀𝑙 ∈ 𝐿𝑎: |𝐴𝑙| = 𝑛𝑐𝑙
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∙ No agent should be assigned to more than one car at once.

∀𝑙1 < 𝑙2 ∈ 𝐿𝑎:𝐴𝑙1 ∩ 𝐴𝑙2 ̸= ∅ ⇒ ∃𝑙 ∈ 𝐿𝑏: 𝑙 < 𝑙2 and 𝑐𝑙 = 𝑐𝑙1

∙ No agent should be assigned to more than one task at once.

∀𝑆𝑐 ∈𝑀𝑠:∀𝑤1, 𝑤2 ∈ 𝑊𝑐:𝐴𝑤1 ∩ 𝐴𝑤2 ̸= ∅ ⇒ 𝑡𝑒𝑤1 ≤ 𝑡𝑠𝑤2 or 𝑡𝑒𝑤2 ≤ 𝑡𝑠𝑤1

∙ Each car finishes its tasks after the makespan has elapsed since it was assigned

agents.

∀𝑙𝑎 ∈ 𝐿𝑎,∀𝑙𝑡 ∈ 𝐿𝑡: 𝑐𝑙𝑎 = 𝑐𝑙𝑡 = 𝑐⇒ 𝑡𝑙𝑡 = 𝑡𝑙𝑎 + 𝑚𝑐

∙ Each car leaves the band after it has traversed it.

∀𝑙𝑎 ∈ 𝐿𝑎,∀𝑙𝑏 ∈ 𝐿𝑏: 𝑐𝑙𝑎 = 𝑐𝑙𝑏 = 𝑐⇒ 𝑡𝑙𝑏 ≥ 𝑡𝑙𝑎 + 𝑥𝑚𝑎𝑥/𝑣

If we define the amount of time car 𝑐 was parked 𝑡𝑝, and the amount of time it

was immobilized by a car ahead of it in the band stopping 𝑡𝑠, then

𝑡𝑙𝑏 = 𝑡𝑙𝑎 + 𝑡𝑝 + 𝑡𝑠 + 𝑥𝑚𝑎𝑥/𝑣

∙ Each car leaves the band after it has finished its tasks.

∀𝑙𝑡 ∈ 𝐿𝑡, 𝑙𝑏 ∈ 𝐿𝑏: 𝑐𝑙𝑡 = 𝑐𝑙𝑏 ⇒ 𝑙𝑡 < 𝑙𝑏

∙ Each car can experience at most one error at a time. Another way to say this

is that there will be an error resolution entry for a car in the log between every

pair of error occurrence entries for that car.

∀𝑙1 < 𝑙2 ∈ 𝐿𝑒: 𝑐𝑙1 = 𝑐𝑙2 = 𝑐⇒ ∃𝑙 ∈ 𝐿𝑟: 𝑐𝑙 = 𝑐 and 𝑙1 < 𝑙 < 𝑙2
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∙ All errors are resolved. We have already established this for all errors except

the last one for each car in the previous constraint. To establish it for the last

error of each car, we add

∀𝑙𝑒 ∈ 𝐿𝑒: ∃𝑙𝑟 ∈ 𝐿𝑟: 𝑐𝑙𝑒 = 𝑐𝑙𝑟 and 𝑙𝑒 < 𝑙𝑟

∙ Each error should resolve only once and a car should experience an error before

an error is resolved for that car. We establish this with two equations very

similar to the last two constraints.

∀𝑙1 < 𝑙2 ∈ 𝐿𝑟: 𝑐𝑙1 = 𝑐𝑙2 = 𝑐⇒ ∃𝑙 ∈ 𝐿𝑒: 𝑐𝑙 = 𝑐 and 𝑙1 < 𝑙 < 𝑙2

∀𝑙𝑟 ∈ 𝐿𝑟:∃𝑙𝑒 ∈ 𝐿𝑒: 𝑐𝑙𝑒 = 𝑐𝑙𝑟 and 𝑙𝑒 < 𝑙𝑟

∙ All errors on a car are resolved before it exits the band.

∀𝑙𝑟 ∈ 𝐿𝑟, 𝑙𝑏 ∈ 𝐿𝑏: 𝑐𝑙𝑟 = 𝑐𝑙𝑏 ⇒ 𝑙𝑟 < 𝑙𝑏

∙ All Temporal Constraints must be satisfied.

𝛿𝑙𝑖𝑗 ≤ 𝑡𝑗 − 𝑡𝑖 ≤ 𝛿𝑢𝑖𝑗
,∀𝑡𝑖, 𝑡𝑗 bound by a constraint in 𝐷

∙ Cars must exhibit symptoms of the errors they occur. An error 𝑒 must be

resolved 𝑑𝑒 after it has occurred if 𝑔𝑒 ̸= 2, or 𝑑𝑒 after its car has parked if 𝑔𝑒 = 2.

An error belonging to Group 2 will immobilize the car experiencing it and all

cars behind it in the band until that car is able to park. A car experiencing

an error of Group 2 or Group 4 will not be able to leave its parking spot until

the error has been resolved. A car experiencing an error of Group 1 or Group

7 will need to spend additional time on its tasks equaling the error’s duration.

Errors of Group 1 and Group 4 require one of the agents assigned to the car

to fix them, which means that a new schedule must be generated for the car to
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account for the agent’s absence for the duration of the error. Errors of groups

4, 8, and 9 will cause a task that was being performed when the error occurred

to be blocked3 for the duration of the error.

∙ In order for our scheduler to be realistic, we must make sure that it doesn’t use

information that wouldn’t be available to it in reality. Specifically, even though

errors are an input to our simulation, we should only process them when we

reach the time at which they occur in the simulation. In other words, our

scheduler should not be able to take future errors into account.

4.4 System Overview

𝑊,𝐷 Pre-Processor

𝐶, 𝑣, 𝑛𝑎, 𝑟,𝑋max, 𝑓, 𝐸

𝑊 ′, 𝐷′
Band-Level
Simulation

&
Scheduler

𝑀𝑠, 𝐿

𝐶,𝑊𝑐, 𝐷𝑐, 𝑒 𝑆𝑐

Car-Level
Scheduler

Figure 4-2: System Overview

The system we develop in this chapter has three main components: the Pre-

Processor, the Car-Level Scheduler, and the Band-Level Simulation-Scheduler. The

Pre-Processor applies some approximations that simplify the scheduling problem,

allowing us to use a much faster scheduling algorithm in the Car-Level Scheduler. The
3 A task being blocked for a period of time means that it can’t be performed during that period

of time. Any progress that had been made on the task at the time when it was blocked is lost.
Blocking a task also blocks all tasks that have it as a precedence constraint.

58



Car-Level Scheduler produces a schedule for each individual car. These schedules are

unaffected and thus can be produced independently of the rest of the simulation, with

the exception of some types of errors. If an error disrupts the schedule of a car, the

Car-Level Scheduler produces a new schedule that accounts for it. The Band-Level

Simulation and Scheduler can be conceptually thought of as two different entities

that perform different tasks, but for convenience and efficiency we implemented them

in one algorithm. The Band-Level Simulation keeps track of the state of the band,

including the locations of the cars and agents, the errors that occur, and the use of

parking spots. The Band-Level Scheduler makes real-time decisions about parking in

response to errors and the assignment of agents to cars. Although the Band-Level

Simulation has access to more information, the Band-Level and Car-Level schedulers

only use information about the cars and the present state of the band, information

that would also be available to a real online scheduler, which is what our schedulers

are emulating. Figure 4-2 shows the inputs and outputs of each component.

4.5 Pre-Processor

The Pre-Processor in this chapter is very similar to the one described in Section 3.5.

It makes the same approximation of merging tasks bound by Simultaneous constraints

followed by merging tasks bound by Immediate constraints. The merging is slightly

different because the model for tasks we use in this chapter is different from the one in

Chapter 3, as tasks specify the number of agents that must execute them rather than

a specific set of agents. When merging two tasks 𝑢 and 𝑣 bound by a simultaneous

constraint, the number of agents required for the merged task 𝑤 is 𝑛𝑤 = 𝑛𝑢 + 𝑛𝑣.

When merging two tasks 𝑢 and 𝑣 bound by an immediate constraint, the number

of tasks required for the merged task 𝑤 is 𝑛𝑤 = max(𝑛𝑢, 𝑛𝑣). Unlike in the case

of the Conventional Layout, there are no exceptions to the merging. To summarize

the Pre-Processor’s function, it takes in the set of tasks 𝑊 and the set of temporal

constraints 𝐷, merges over Simultaneous and Immediate constraints in that order,

and outputs the set of merged tasks 𝑊 ′ and the set of reduced constraints 𝐷′.
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4.6 Band-Level Simulation and Scheduler

The Band-Level Simulation and Scheduler keeps track of the state of the band, makes

decisions about parking and assignment of agents to cars, and calls the Car-Level

Scheduler to generate schedules for the completion of tasks on each car.

4.6.1 Approach: Discrete Event Simulation

Our approach is to use Discrete Event Simulation, discussed in Section 3.6.1. In this

model, the events that cause the state of the band to change are different from those

in Chapter 3, so we use different events in our simulation as well. The types of events

that we use in our simulation are the following:

Agent becomes available (𝐴𝐸): An agent becomes available when it returns to

the beginning of the band after the car it was last assigned to exits the band.

An event 𝑧 ∈ 𝐴𝐸 of agent 𝑎𝑧 becoming available occurs at time 𝑡𝑧 if:

∃𝑐 ∈ 𝐶: 𝑎𝑧 ∈ 𝐴𝑐 and ∃𝑙𝑏: 𝑐𝑙𝑏 = 𝑐 and 𝑡𝑧 = 𝑡𝑙𝑏 + 𝑟

Car enters the band (𝐸𝐵𝐸): An event 𝑧 ∈ 𝐸𝐵𝐸 of car 𝑐𝑧 entering the band

occurs at time 𝑡𝑧 if:

𝑡𝑐𝑧 = 𝑡𝑧

Car finishes tasks (𝑇𝐸): When the agents assigned to a car have spent an amount

of time working on it equal to its makespan, the car’s tasks are completed. An

event 𝑧 ∈ 𝑇𝐸 occurs at time 𝑡𝑧 if that is the time at which 𝑐𝑧 finishes its tasks.

Car leaves the band (𝐿𝐵𝐸): When a car reaches the end of the band, it leaves.

Error occurs (𝐸𝑆𝐸): An error occurs at the time it is assigned by the simulation.

An event 𝑧 ∈ 𝐸𝑆𝐸 of an error 𝑒 occurring occurs at time 𝑡𝑧 if:

𝑡𝑧 = 𝑡𝑠𝑒
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Error is resolved (𝐸𝐸𝐸): An error is resolved after its duration has elapsed since

its occurrence. An event 𝑧 ∈ 𝐸𝐸𝐸 of an error 𝑒 being resolved occurs at time

𝑡𝑧 if:

𝑡𝑧 = 𝑡𝑒𝑒

Parking check (𝑃𝐸): When a car experiences an error that requires it to park or

when the time it requires to finish its tasks exceeds the time it requires to reach

the end of the band, it tries to park.

Leave parking check (𝐿𝑃𝐸): After a car has parked long enough for its error to

resolve or for its time required to reach the end of the band to be greater than

or equal to its time required to finish its tasks, it leaves its parking spot.

4.6.2 Simulation without Errors

In order to explain how our simulation works, we will first explain how it would work

if there were no errors before explaining it fully in the next section. In a world with

no errors, there is also no reason to park, so the only relevant events to place in the

queue are an agent becoming available (AE), a car entering the band (EBE), a car

finishing its tasks (TE), and a car exiting the band (LBE).

The inputs to the SimulateNoErrors algorithm (Algorithm 4) are the Pre-

Processor’s outputs, 𝑊 ′ and 𝐷′, as well as the inputs to the system 𝐶, 𝑣, 𝑛𝑎, 𝑟, and

𝑥max, discussed in Section 4.3. The outputs of SimulateNoErrors are 𝑀𝑠 and 𝐿,

also discussed in Section 4.3.

The data structures used in SimulateNoErrors are initialized in the Initial-

izeNoErrors procedure (Algorithm 5, line 2). At the beginning of our simulation,

all agents are available, there are no cars in the band, and the only events in the

queue are those for each of the car arrivals (lines 3–6). At all times we keep track of

the set of available agents (𝐴𝐴, initialized in line 7), the agents assigned to each car

(𝐶𝐴, initialized in line 8), the makespan of each car (𝑀𝐶, initialized in lines 9–13),

a FIFO4 queue of the cars waiting to be assigned agents (𝐴𝐶, initialized in line 14),
4 First In First Out; the cars are put into a FIFO queue to make sure that cars that arrive earlier
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Algorithm 4 Flexible Layout Simulation in the Absence of Errors
1: procedure SimulateNoErrors(𝐶,𝑊 ′, 𝐷′, 𝑣, 𝑛𝑎, 𝑟, 𝑥max)
2: InitializeNoErrors
3: while 𝑑 < |𝐶| do
4: 𝑧 ← Queue.remove()
5: 𝑡𝑖𝑚𝑒← 𝑡𝑧
6: HandleEventNoErrors(𝑧)
7: while |𝐴𝐴| > 0 and |𝐴𝐶| > 0 do
8: 𝑐← 𝐴𝐶.first()
9: if |𝐴𝐴| < 𝑛𝑐 then

10: break
11: else
12: 𝐴𝐶.removeFirst()
13: 𝐴𝑐 ← 𝐴𝐴.remove(𝑛𝑐)
14: 𝐶𝐴[𝑐]← 𝐴𝑐

15: log 𝑙𝑎 entry for assignment of 𝐴𝑐 to 𝑐 at 𝑡𝑖𝑚𝑒
16: add 𝑇𝐸 event for 𝑐 at 𝑡𝑖𝑚𝑒 + 𝑀𝐶[𝑐]
17: add 𝐿𝐵𝐸 event for 𝑐 at 𝑡𝑖𝑚𝑒 + 𝑡𝑏
18: end if
19: end while
20: end while
21: return 𝑀𝑠, 𝐿
22: end procedure

Algorithm 5 Flexible Layout Simulation Initialization in the Absence of Errors
1: procedure InitializeNoErrors
2: initialize 𝑀𝑠 and 𝐿 to be empty
3: create empty Queue
4: for 𝑐 ∈ 𝐶 do
5: add 𝐸𝐵𝐸 event for 𝑐 at 𝑡𝑐
6: end for
7: 𝐴𝐴 initialized to contain 𝑛𝑎 agents
8: 𝐶𝐴 initialized as empty array of size |𝐶|
9: 𝑀𝐶 initialized as empty array of size |𝐶|

10: for 𝑐 ∈ 𝐶 do
11: 𝑀𝑠[𝑐]← CarScheduler.Schedule(𝑊 ′

𝑐, 𝐷
′
𝑐, 𝑛𝑐)

12: 𝑀𝐶[𝑐]←𝑀𝑠[𝑐].𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
13: end for
14: 𝐴𝐶 initialized as empty FIFO
15: 𝑑← 0
16: 𝑡𝑏 ← 𝑥max/𝑣
17: end procedure

are assigned agents earlier.
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Algorithm 6 Flexible Layout Event Handler in the Absence of Errors
1: procedure HandleEventNoErrors(𝑧)
2: if 𝑧 ∈ 𝐴𝐸 then
3: 𝐴𝐴.add(𝑎𝑧)
4: else if 𝑧 ∈ 𝐸𝐵𝐸 then
5: 𝐴𝐶.add(𝑐𝑧)
6: else if 𝑧 ∈ 𝑇𝐸 then
7: log 𝑙𝑡 entry for completion of tasks of 𝑐𝑧 at 𝑡𝑖𝑚𝑒
8: else if 𝑧 ∈ 𝐿𝐵𝐸 then
9: log 𝑙𝑏 entry for car 𝑐𝑧 at 𝑡𝑖𝑚𝑒

10: 𝑑 + +
11: for 𝑎 ∈ 𝐶𝐴[𝑐𝑧] do
12: add 𝐴𝐸 for 𝑎 at 𝑡𝑖𝑚𝑒 + 𝑟
13: end for
14: end if
15: end procedure

and the number of cars that have left the band (𝑑, initialized in line 15). We also

define the time required to traverse the band 𝑡𝑏 = 𝑥max/𝑣 (line 16). The Car-Level

Scheduler is called to generate the schedules in 𝑀𝑠 (line 11).

The simulation runs the following loop until all cars in 𝐶 have left the band. In

each loop, we first process the earliest event from the queue (line 6). Then we try

to assign agents to cars until there are no agents available or no cars waiting (lines

7–19). For each car we assign agents to, we remove it from 𝐴𝐶 (line 12), remove the

assigned agents from the pool of available agents (line 13), log the event (line 15),

and create events for that car finishing its tasks5 (line 16) and reaching the end of

the band6 (line 17).

Events are processed by the HandleEvent procedure (Algorithm 6). Different

types of events are processed in different ways:

∙ 𝐴𝐸 events add their agent to the set of available agents (line 3).

∙ 𝐸𝐵𝐸 events add their car to the queue of available cars (line 5).

∙ 𝑇𝐸 events add an entry to the log about their car finishing its tasks (line 7).
5 The timing of this event is given by the makespan of the car’s internal schedule.
6 The timing of this event is given by the time it takes to traverse the band, which is the same

for all cars and is equal to 𝑥max/𝑣.
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∙ 𝐿𝐵𝐸 events add an entry to the log (line 9), increment the counter of cars

that have left the band (line 10), and add 𝐴𝐸 events for the agents that were

assigned to the car becoming available again (lines 11–13).

4.6.3 Simulation with Errors

Errors can disrupt the model described above in three main ways. First, they can

change a car’s makespan by blocking a task or occupying an agent. Second, they can

cause the car to park, either because the error’s resolution requires it or because the

increased makespan would cause the car to reach the end of the band before finishing

its tasks if it didn’t park. Third, if a car experiences an error that requires immediate

parking, but is not able to park, it stops moving, as do all the cars behind it in the

line. When disturbances like these occur, the simulation’s previous prediction for the

timing of 𝑇𝐸 and 𝐿𝐵𝐸 events is no longer accurate, which makes the events that are

in the queue corresponding to those predictions stale. We could remove these stale

events from the queue, but it is more efficient computationally to instead remember

that they are stale and ignore them when they are processed. The disturbances

always result in the events happening later, not earlier, so we know that we will

process all the stale events before we process the valid event. Thus, it is sufficient to

keep counters of how many stale events of each type are in the queue. When an error

makes a prediction obsolete, the corresponding counter is incremented. When a 𝑇𝐸

or 𝐿𝐵𝐸 event is processed, if the counter is positive, it means we just removed a stale

event from the queue, so the corresponding counter is decremented and the event is

ignored. If the counter is zero, it means the event we are processing is accurate, so

we log it. Also, since there will be parking events, the time spent working on tasks

will not necessarily match the time spent moving in the band, so we will need to keep

track of the progress of each car in those two areas separately.

The inputs to the Simulate algorithm (Algorithm 7) are the Pre-Processor’s

outputs, 𝑊 ′ and 𝐷′, as well as the inputs to the system 𝐶, 𝑣, 𝑛𝑎, 𝑟, 𝑥max, 𝑓 , and 𝐸,

discussed in Section 4.3. The outputs of Simulate are 𝑀𝑠 and 𝐿, also discussed in

Section 4.3.
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Algorithm 7 Flexible Layout Simulation with Errors
1: procedure Simulate(𝐶,𝑊 ′, 𝐷′, 𝑣, 𝑛𝑎, 𝑟, 𝑥max, 𝑓, 𝐸)
2: Initialize ◁ Differs with Errors
3: while 𝑑 < |𝐶| do
4: 𝑧 ← Queue.remove()
5: 𝑡𝑖𝑚𝑒← 𝑡𝑧
6: HandleEvent(𝑧)
7: while |𝐴𝐴| > 0 and |𝐴𝐶| > 0 do
8: 𝑐← 𝐴𝐶.first()
9: if |𝐴𝐴| < 𝑛𝑐 then

10: break
11: else
12: 𝐴𝐶.removeFirst()
13: 𝐴𝑐 ← 𝐴𝐴.remove(𝑛𝑐)
14: 𝐶𝐴[𝑐]← 𝐴𝑐

15: 𝑈𝑇 [𝑐]← 𝑡𝑖𝑚𝑒 ◁ Differs with Errors
16: log 𝑙𝑎 entry for assignment of 𝐴𝑐 to 𝑐 at 𝑡𝑖𝑚𝑒
17: add 𝑇𝐸 event for 𝑐 at 𝑡𝑖𝑚𝑒 + 𝑀𝐶[𝑐]
18: if |𝐹𝐶| = 0 then ◁ Differs with Errors
19: add 𝐿𝐵𝐸 event for 𝑐 at 𝑡𝑖𝑚𝑒 + 𝑡𝑏
20: end if ◁ Differs with Errors
21: if 𝑋𝐶[𝑐] ̸= ∅ then ◁ Differs with Errors
22: 𝑒← 𝑋𝐶[𝑐].remove() ◁ Differs with Errors
23: add 𝐸𝑆𝐸 event for 𝑒 at 𝑡𝑖𝑚𝑒 + 𝑜𝑒 ◁ Differs with Errors
24: end if ◁ Differs with Errors
25: end if
26: end while
27: end while
28: return 𝑀𝑠, 𝐿
29: end procedure

The data structures used in Simulate are initialized in the Initialize procedure

(Algorithm 8, line 2). Simulate keeps track of all the data structures that Simu-

lateNoErrors keeps track of (line 2). It additionally keeps track of the following:

∙ the time each car has spent moving in the band (𝑀𝑃 , initialized in line 3)

∙ the time each car has spent working on its tasks (𝑇𝑃 , initialized in line 4)

∙ the number of stale 𝐿𝐵𝐸 events for each car in the queue (𝐼𝑀 , initialized in

line 5)
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Algorithm 8 Flexible Layout Simulation Initialization with Errors
1: procedure Initialize
2: InitializeNoError
3: initialize 𝑀𝑃 as array of zeroes with size |𝐶|
4: initialize 𝑇𝑃 as array of zeroes with size |𝐶|
5: initialize 𝐼𝑀 as array of zeroes with size |𝐶|
6: initialize 𝐼𝑇 as array of zeroes with size |𝐶|
7: initialize 𝐸𝑇 as array of zeroes with size |𝐶|
8: initialize 𝑈𝑇 as array of -1’s with size |𝐶|
9: initialize 𝑀𝐷 as array of false with size |𝐶|

10: initialize 𝐸𝐶 as empty map
11: initialize 𝑃𝐶 as empty map
12: initialize 𝐶𝑃 as empty map
13: initialize 𝐹𝐶 as ∅
14: create array of lists 𝑋𝐶 ◁ |𝐶| different lists, 𝑋𝐶[𝑛𝑐] holds the sequence of all

errors that will occur on car 𝑐
15: for 𝑒 ∈ 𝐸 do
16: 𝑋𝐶[𝑐].add(𝑒)
17: end for
18: end procedure

Algorithm 9 Flexible Layout Event Handler with Errors
1: procedure HandleEvent(𝑧)
2: if 𝑧 ∈ 𝐴𝐸 ∪ 𝐸𝐵𝐸 then
3: HandleEventNoErrors(𝑧)
4: else if 𝑧 ∈ 𝑇𝐸 then
5: HandleEventTE(𝑧)
6: else if 𝑧 ∈ 𝐿𝐵𝐸 then
7: HandleEventLBE(𝑧)
8: else if 𝑧 ∈ 𝐸𝑆𝐸 then
9: HandleEventESE(𝑧)

10: else if 𝑧 ∈ 𝐸𝐸𝐸 then
11: HandleEventEEE(𝑧)
12: else if 𝑧 ∈ 𝑃𝐸 then
13: HandleEventPE(𝑧)
14: else if 𝑧 ∈ 𝐿𝑃𝐸 then
15: HandleEventLPE(𝑧)
16: end if
17: end procedure

∙ the number of stale 𝑇𝐸 events for each car in the queue (𝐼𝑇 , initialized in line

6)
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Algorithm 10 Flexible Layout 𝑇𝐸 Event Handler
1: procedure HandleEventTE(𝑧)
2: if 𝐼𝑇 [𝑐𝑧] > 0 then
3: 𝐼𝑇 [𝑐𝑧]−−
4: else
5: log 𝑙𝑡 entry for completion of tasks of 𝑐𝑧 at 𝑡𝑖𝑚𝑒
6: end if
7: end procedure

Algorithm 11 Flexible Layout 𝐿𝐵𝐸 Event Handler
1: procedure HandleEventLBE(𝑧)
2: if 𝐼𝑀 [𝑐𝑧] > 0 then
3: 𝐼𝑀 [𝑐𝑧]−−
4: else
5: log 𝑙𝑏 entry for car 𝑐𝑧 at 𝑡𝑖𝑚𝑒
6: 𝑑 + +
7: for 𝑎 ∈ 𝐶𝐴[𝑐𝑧] do
8: add 𝐴𝐸 for 𝑎 at 𝑡𝑖𝑚𝑒 + 𝑟
9: end for

10: 𝑀𝐷[𝑐𝑧]← true
11: end if
12: end procedure

∙ the time each car has left before the error it is currently experiencing is resolved

(𝐸𝑇 , initialized in line 7). If the car isn’t experiencing an error, its entry in 𝐸𝑇

is zero.

∙ the time at which each car last updated its entries in 𝑀𝑃, 𝑇𝑃 , and 𝐸𝑇 (𝑈𝑇 ,

initialized in line 8)

∙ a boolean for each car indicating whether that car has left the band (𝑀𝐷,

initialized in line 9)

∙ a map from each car experiencing an error to the error it is experiencing (𝐸𝐶,

initialized in line 10)

∙ a map from each occupied parking spot to the car occupying it (𝑃𝐶, initialized

in line 11)
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Algorithm 12 Flexible Layout 𝐸𝑆𝐸 Event Handler
1: procedure HandleEventESE(𝑧)
2: Update(𝑐𝑧)
3: log 𝑙𝑒 event for 𝑒𝑧 on 𝑐𝑧 at 𝑡𝑖𝑚𝑒
4: 𝐸𝐶[𝑐𝑧]← 𝑒𝑧
5: if ReschedulingRequired(𝑒𝑧) then
6: 𝑀𝑠[𝑐𝑧]← CarScheduler.Reschedule(𝑊 ′

𝑐, 𝐷
′
𝑐, 𝑛𝑐,𝑀𝑠[𝑐𝑧], 𝑒)

7: 𝑀𝐶[𝑐𝑧]←𝑀𝑠[𝑐𝑧].makespan
8: 𝐼𝑇 [𝑐𝑧] + +
9: add 𝑇𝐸 event for 𝑐𝑧 at 𝑡𝑖𝑚𝑒 + 𝑀𝐶[𝑐𝑧]− 𝑇𝑃 [𝑐𝑧]

10: end if
11: if ImmediateParking(𝑒𝑧) then
12: add 𝑃𝐸 event for 𝑐𝑧 at 𝑡𝑖𝑚𝑒
13: else
14: add 𝐸𝐸𝐸 event for 𝑐𝑧 at 𝑡𝑖𝑚𝑒 + 𝑑𝑒𝑧
15: if ShouldPark(𝑐𝑧) then
16: add 𝑃𝐸 event for 𝑐𝑧 at 𝑡𝑖𝑚𝑒
17: end if
18: end if
19: end procedure

Algorithm 13 Flexible Layout 𝐸𝐸𝐸 Event Handler
1: procedure HandleEventEEE(𝑧)
2: Update(𝑐𝑧)
3: log 𝑙𝑟 event for 𝑐𝑧 at 𝑡𝑖𝑚𝑒
4: if 𝑋𝐶[𝑐𝑧] ̸= ∅ then
5: 𝑒← 𝑋𝐶[𝑐𝑧].remove()
6: add 𝐸𝑆𝐸 event for 𝑒 at 𝑡𝑖𝑚𝑒 + 𝑜𝑒
7: end if
8: 𝐸𝐶.remove(𝑐𝑧)
9: end procedure

∙ a map from each parked car to the parking spot at which it is parked (𝐶𝑃 ,

initialized in line 12)

∙ the set of all cars that are blocking the progress of cars behind them because

they are experiencing an error that requires them to park, but they cannot find

parking (𝐹𝐶, initialized in line 13). Since each car in 𝐹𝐶 blocks all cars behind

it, the only car that matters is the one that has progressed the furthest because

all the cars that are blocked by the other cars are also blocked by it. Thus,
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Algorithm 14 Flexible Layout 𝑃𝐸 Event Handler
1: procedure HandleEventPE(𝑧)
2: Update(𝑐𝑧)
3: 𝑃 ← 𝑓(𝑀𝑃 [𝑐𝑧]𝑣)
4: for 𝑝 ∈ 𝑃 do
5: if 𝑝 /∈ 𝑃𝐶 then
6: 𝑃𝐶[𝑝]← 𝑐𝑧
7: 𝐶𝑃 [𝑐𝑧]← 𝑝
8: if not Blocked(𝑐𝑧) then
9: 𝐼𝑀 [𝑐𝑧] + +

10: end if
11: log 𝑙𝑝 entry for 𝑐𝑧 parking at 𝑝
12: if 𝑐𝑧 ∈ 𝐸𝐶 and ImmediateParking(𝑐𝑧) then
13: add 𝐸𝐸𝐸 event for 𝑐𝑧 at 𝑡𝑖𝑚𝑒 + 𝑑𝐸𝐶[𝑐𝑧 ]

14: end if
15: add 𝐿𝑃𝐸 event for 𝑐𝑧 to queue
16: return
17: end if
18: end for
19: if 𝑐𝑧 /∈ 𝐸𝐶 or not ImmediateParking(𝑐𝑧) then
20: add new 𝑃𝐸 event for 𝑐𝑧 later
21: return
22: end if
23: for 𝑝 ∈ 𝑃 do
24: if CanRelocate(𝑃𝐶[𝑝]) then
25: Relocate(𝑐𝑧, 𝑃𝐶[𝑝], 𝑝)
26: return
27: end if
28: end for
29: initialize 𝑂𝐵 to be an array of booleans of length |𝐶|
30: for 𝑐 ∈ 𝐶 do
31: Update(𝑐)
32: 𝑂𝐵[𝑐]← Blocked(𝑐)
33: end for
34: 𝐹𝐶.add(𝑐𝑧)
35: for 𝑐 ∈ 𝐶 do
36: if not 𝑂𝐵[𝑐] and Blocked(𝑐) and 𝑐 /∈ 𝐶𝑃 then
37: 𝐼𝑀 [𝑐] + +
38: end if
39: end for
40: end procedure
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Algorithm 15 Flexible Layout 𝐿𝑃𝐸 Event Handler
1: procedure HandleEventLPE(𝑧)
2: Update(𝑐𝑧)
3: 𝑝← 𝐶𝑃 [𝑐𝑧]
4: log 𝑙𝑢 entry for 𝑐𝑧 leaving spot 𝑝
5: 𝑃𝐶.remove(𝑝)
6: 𝐶𝑃 .remove(𝑐𝑧)
7: if not Blocked(𝑐𝑧) then
8: add 𝐿𝐵𝐸 event for 𝑐𝑧
9: end if

10: for 𝑐 ∈ 𝐹𝐶 do
11: if 𝑝 ∈ 𝑓(𝑀𝑃 [𝑐]𝑣) then
12: for 𝑐′ ∈ 𝐶 do
13: Update(𝑐′)
14: end for
15: 𝑃𝐶[𝑝]← 𝑐
16: 𝐶𝑃 [𝑐]← 𝑝
17: initialize 𝑂𝐵 to be an array of booleans of length |𝐶|
18: for 𝑐′ ∈ 𝐶 do
19: 𝑂𝐵[𝑐]← Blocked(𝑐′)
20: end for
21: 𝐹𝐶.remove(𝑐)
22: for 𝑐′ ∈ 𝐶 do
23: if 𝑂𝐵[𝑐′] and not Blocked(𝑐) and 𝑐 /∈ 𝐶𝑃 then
24: add 𝐿𝐵𝐸 event for 𝑐′

25: end if
26: end for
27: end if
28: end for
29: end procedure

we find it useful to define 𝐹𝐶.furthest() which returns the car in 𝐹𝐶 with the

largest entry in 𝑀𝑃 .

Simulate mostly differs from SimulateNoErrors in the types of events used

and the way events are handled. Besides the event handler (HandleEvent, Algo-

rithm 9, called in line 6) which we will discuss later, there are a few differences in

what happens when agents are assigned to a car 𝑐. 𝑈𝑇 [𝑐] is set to 𝑡𝑖𝑚𝑒 (line 15), so

that future progress in tasks and position can be calculated based on the time elapsed

since the agents were assigned. The 𝐿𝐵𝐸 event for 𝑐 is only generated if 𝐹𝐶 is empty
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Algorithm 16 Flexible Layout Simulation Progress Update Function
1: procedure Update(𝑐)
2: if InBand(c) then
3: ∆𝑡← 𝑡𝑖𝑚𝑒− 𝑈𝑇 [𝑐]
4: if 𝑐 /∈ 𝐶𝑃 and not Blocked(𝑐) then
5: 𝑀𝑃 [𝑐]←𝑀𝑃 [𝑐] + ∆𝑡
6: end if
7: 𝑇𝑃 [𝑐]← 𝑇𝑃 [𝑐] + ∆𝑡
8: if 𝑐 /∈ 𝐹𝐶 then
9: 𝐸𝑇 [𝑐]← max(0, 𝐸𝑇 [𝑐]−∆𝑡)

10: end if
11: 𝑈𝑇 [𝑐]← 𝑡𝑖𝑚𝑒
12: end if
13: end procedure

Algorithm 17 Checks if a car is blocked by another car
1: procedure Blocked(𝑐) ◁ is 𝑐 blocked by another car?
2: return InBand(𝑐) and |𝐹𝐶| > 0 and 𝑀𝑃 [𝑐] < 𝑀𝑃 [𝐹𝐶.𝑓𝑎𝑟𝑡ℎ𝑒𝑠𝑡()]
3: end procedure

Algorithm 18 Checks if a car is in the band
1: procedure InBand(𝑐) ◁ is 𝑐 in the band?
2: return 𝑈𝑇 [𝑐] ≥ 0 and not 𝑀𝐷[𝑐]
3: end procedure

Algorithm 19 Checks if a car should part to avoid reaching the end without finishing
its tasks and resolving its errors
1: procedure ShouldPark(𝑐) ◁ should 𝑐 park now?
2: return 𝑡𝑏 −𝑀𝑃 [𝑐] < 𝑀𝐶[𝑐]− 𝑇𝑃 [𝑐] or 𝑡𝑏 −𝑀𝑃 [𝑐] < 𝐸𝑇 [𝑐]
3: end procedure

Algorithm 20 Checks if an error disrupts the car’s internal schedule
1: procedure ReschedulingRequired(𝑒)
2: return 𝑔𝑒 ∈ {1, 4, 7, 8, 9}
3: end procedure

(line 18) because if it is not, it means the cars behind a car in 𝐹𝐶 can’t move, and

since 𝑐 is located at the start of the band, it will be immobilized. If any errors in 𝐸

are to occur on 𝑐, the 𝐸𝑆𝐸 event for the first is added to the queue (lines 21–24).

Before we describe how events are processed, we will first introduce some helper
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Algorithm 21 Checks if a parked car can relocate
1: procedure CanRelocate(𝑐)
2: if 𝑐 /∈ 𝐸𝐶 then
3: return true
4: else
5: 𝑒← 𝐸𝐶[𝑐]
6: return 𝑔𝑒 ∈ {1, 7, 8, 9}
7: end if
8: end procedure

Algorithm 22 A parked car and a non-parked car switch places
1: procedure Relocate(𝑐𝑖, 𝑐𝑜, 𝑝)
2: 𝐶𝑃 .remove(𝑐𝑜)
3: 𝑃𝐶[𝑝]← 𝑐𝑖
4: 𝐶𝑃 [𝑐𝑖]← 𝑝
5: if not Blocked(𝑐𝑖) then
6: 𝐼𝑀 [𝑐𝑖] + +
7: end if
8: log 𝑙𝑢 entry for 𝑐𝑜 leaving spot 𝑝
9: log 𝑙𝑝 entry for 𝑐𝑖 parking at 𝑝

10: if 𝑐𝑖 ∈ 𝐸𝐶 and ImmediateParking(𝑐𝑖) then
11: add 𝐸𝐸𝐸 event for 𝑐𝑖 at 𝑡𝑖𝑚𝑒 + 𝑑𝐸𝐶[𝑐𝑖]

12: end if
13: add 𝐿𝑃𝐸 event for 𝑐𝑖 to queue
14: add 𝑃𝐸 event for 𝑐𝑜 later
15: if not Blocked(𝑐𝑖) then
16: 𝐼𝑀 [𝑐𝑖] + +
17: end if
18: if not Blocked(𝑐𝑜) then
19: add 𝐿𝐵𝐸 event for 𝑐𝑜
20: end if
21: end procedure

Algorithm 23 Checks if an error requires the car experiencing it to park immediately
1: procedure ImmediateParking(𝑒)
2: return 𝑔𝑒 = 2
3: end procedure

functions that we will use.

InBand (Algorithm 18, lines 1–3) takes in a car as input and outputs a boolean

indicating whether the car given is in the band. InBand returns true for cars that
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have been assigned agents, but have not yet left the band. It recognizes cars that

have been assigned agents by the fact that their entries in 𝑈𝑇 are non-negative. It

recognizes cars that have not left the band by the fact that their entries in 𝑀𝐷 are

false.

Blocked (Algorithm 17, lines 1–3) takes in a car as input and outputs a boolean

indicating whether the car is immobilized because a car in 𝐹𝐶 has blocked the line.

For a car to be blocked, it has to be in the band, and there has to be a car in 𝐹𝐶

that is ahead of it.

Update (Algorithm 16, lines 1–13) takes in a car as input and updates its entries

in 𝑀𝑃, 𝑇𝑃,𝐸𝐶, and 𝑈𝑇 . It first checks if the car is in the band, and only performs

the updates if it is. It then calculates the amount of time that has passed since the

last update ∆𝑡 (line 3). ∆𝑡 is added to the car’s entry in 𝑇𝑃 (line 7), since agents

will have been working on its tasks. If the car is not parked and not blocked, ∆𝑡 is

added to its entry in 𝑀𝑃 (line 5), since it has been moving in the band. If the car

is not in 𝐹𝐶, then it will have been making progress on an error if it had one, so its

entry in 𝐸𝑇 is set to the maximum of zero and the old entry minus ∆𝑡 (line 9).

CanRelocate (Algorithm 21, lines 1–8) takes in a parked car and outputs a

boolean indicating whether the car is able to leave its parking spot. If the car is not

experiencing an error or if it belongs to one the groups 1, 7, 8, 9, then it is able to

relocate. Otherwise, it is not.

ReschedulingRequired (Algorithm 20, lines 1–3) takes in an error as input

and outputs a boolean indicating whether that error causes a disruption that will

require the generation of a new schedule by the Car-Level Scheduler. Errors from

groups 1, 4, 7, 8, and 9 exhibit this behavior.

ImmediateParking (Algorithm 23, lines 1–3) takes in an error as input and

outputs a boolean indicating whether that error requires immediate parking. If a car

experiencing this kind of error is not able to find parking, it will stop moving and

prevent all cars behind it in the line from moving until it can find parking. Errors

from group 2 exhibit this behavior.

ShouldPark (Algorithm 19, lines 1–3) takes in a car (which is not experiencing
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an ImmediateParking error) as input and outputs a boolean indicating whether

the car should park. There are two reasons for which the car should park. First, if

the time the car needs to finish its tasks exceeds the time it will stay in the band if

it doesn’t park. Second, if the time the car needs to resolve the error it is currently

experiencing (if any) exceeds the time it will stay in the band if it doesn’t park. The

reason that the car has to park in both these cases is that each car has to finish all

its tasks and resolve its errors before exiting the band, as mentioned in Section 4.3.

Relocate (Algorithm 22, lines 1–21) takes in a parked car, the spot at which

it is parked, and a non-parked car that has access to that spot, and performs the

operations of the parked car leaving the spot and the non-parked car parking there.

First, it updates 𝑃𝐶 and 𝐶𝑃 accordingly. It adds entries to the log for the parking

and leaving parking. It increments the 𝐼𝑀 counter for the car parking and adds an

𝐿𝐵𝐸 event for the car leaving if they are not blocked. It adds an 𝐸𝐸𝐸 event for the

car parking, since it was a car that needed parking to be able to resolve its error. It

also adds a 𝑃𝐸 event for the car leaving the parking to try to park once it has moved

to an area where different parking spots are accessible.

Events are processed by the HandleEvent procedure (Algorithm algo:flexible-

3). 𝐴𝐸 and 𝐸𝐵𝐸 events are processed in the same way as the no-error case. The

rest of the events are processed by the following procedures:

HandleEventTE (Algorithm 10): 𝑇𝐸 events add an entry to the log about their

car finishing its tasks only if the 𝐼𝑇 counter is zero (line 5). Otherwise, they

are ignored and the counter is decremented (line 3).

HandleEventLBE (Algorithm 11): 𝐿𝐵𝐸 events check the 𝐼𝑀 counter. If it is

zero, they are processed in the same way as in the no-error case (lines 5–9)

and also update 𝑀𝐷 (line 10). Otherwise, they are ignored and the counter is

decremented (line 3).

HandleEventESE (Algorithm 12): 𝐸𝑆𝐸 events call Update (line 2), add an en-

try to the log for the error occurring (line 3), and add an entry for their car

that points to the error in 𝐸𝐶 (line 4). If ReschedulingRequired returns
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true for the error, the Car-Level Scheduler is called to produce a new schedule

(line 6), the car’s entry in 𝐼𝑇 is incremented (line 8), and a new 𝑇𝐸 event is

added for the car, according to the makespan of the new schedule (line 9). If

ImmediateParking returns true for the error, a 𝑃𝐸 event is added for the car

at 𝑡𝑖𝑚𝑒 (line 12). If ImmediateParking returns false for the error, a 𝐸𝐸𝐸

event is added for the car at 𝑡𝑖𝑚𝑒+𝑑𝑒 (line 14). The reason we do not generate

the 𝐸𝐸𝐸 event for ImmediateParking errors is that their resolution time

depends on when they park, which is not yet determined. Also, if Should-

Park returns true for the car, a 𝑃𝐸 event is added for the car at 𝑡𝑖𝑚𝑒 (lines

15–new:ESE-shouldp-endif).

HandleEventEEE (Algorithm 13): 𝐸𝐸𝐸 events call Update (line 2), add an en-

try to the log for their car resolving its error (line 3), add an 𝐸𝑆𝐸 event to the

queue for the next error their car will encounter if there is one (lines 4–7), and

remove their car from 𝐸𝐶 (line 8).

HandleEventPE (Algorithm 14): 𝑃𝐸 events first call Update (line 2). Then they

iterate over the accessible parking spots until they find a vacant one (lines 3–

18). If they find a vacant one, they park the car there by updating 𝑃𝐶 and 𝐶𝑃 ,

incrementing the car’s 𝐼𝑀 counter if the car isn’t blocked, and add an entry to

the log for the car parking. If the car is experiencing an ImmediateParking

error, an 𝐸𝐸𝐸 event is added to the queue for the error’s resolution. A 𝐿𝑃𝐸

event is also added to the queue. If no vacant spaces are found and the car

is not experiencing an ImmediateParking error, then a 𝑃𝐸 event is added

to the queue, and the search for immediate parking stops (lines 19–22). If no

vacant spaces are found and the car is experiencing an ImmediateParking

error, then we iterate over the accessible parking spots in search of a car that

can relocate (lines 23–28). If we find such a car, we make it leave the parking

spot and park our car there, by calling the Relocate procedure. Finally, if

no accessible spot is found that is occupied by a car that can relocate, it means

that the car stops moving, so we add it to 𝐹𝐶 and increment 𝐼𝑀 for all the

75



non-parked cars that become blocked by it (lines 30–39).

HandleEventLPE (Algorithm 15): 𝐿𝑃𝐸 events call Update (line 2), update 𝐶𝑃

and 𝑃𝐶, and add an entry to the log for the car leaving the parking spot (line

4). If the car is not blocked, a 𝐿𝐵𝐸 event is added to the queue for it. If a car

in 𝐹𝐶 has access to the newly vacated parking spot, we park it there, updating

𝐶𝑃 and 𝑃𝐶, adding an entry to the log for the car parking, and check if any

previously blocked and non-parked cars are no longer blocked, and if so, add

𝐿𝐵𝐸 events for them to the queue (lines 12–new:LPE-FC-end).

4.7 Car-Level Scheduler

The Car-Level Scheduler generates the schedules for the completion of tasks on each

car and modifies those schedules when the occurrence of errors makes them infeasible.

Once agents have been assigned to a car, it doesn’t share them with other cars nor do

its tasks depend on those for other cars. This means that unlike in the Conventional

Layout, we can solve the task scheduling problem for each car individually. Note that

the schedules generated have their own convention for time and agents. The time

is such that the schedule begins at time zero. When viewing such a schedule at the

Band-Level, one must add the time at which the agents were assigned to the car to

all the times to convert them to Band-Level Simulation Time. One must also map

the token agents used in the Car-Level Scheduler to the agents assigned to the car by

the Band-Level Scheduler.

4.7.1 Discrete Events

Like the Band-Level Simulation and Scheduler, the Car-Level Scheduler also uses

discrete events placed in a queue that always returns the earliest one. It uses two

types of events, which are:

Agent becomes available (𝐴𝐸): An agent becomes available when it finishes a

task it had been working on. An event 𝑧 ∈ 𝐴𝐸 of agent 𝑎𝑧 becoming available
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occurs at time 𝑡𝑧 if:

∃𝑤 ∈ 𝑊 ′: 𝑎𝑧 ∈ 𝐴𝑤 and 𝑡𝑧 = 𝑡𝑠𝑤 + 𝑑𝑤

Task dependency is resolved (𝐷𝐸): When a Temporal Constraint’s delay has

elapsed since the completion of its releasing task, the constraint is satisfied

and the constrained task will be ready to execute if it has no remaining un-

satisfied precedence constraints. An event 𝑧 ∈ 𝐷𝐸 for a constraint between

releasing task 𝑟𝑤 and constrained task 𝑐𝑤 with delay 𝑑 occurs at 𝑡𝑧 if:

𝑡𝑧 = 𝑡𝑠𝑟𝑤 + 𝑑𝑟𝑤

4.7.2 Scheduling Algorithm

The Schedule algorithm (Algorithm 24) takes in a car’s tasks 𝑊𝑐
′, temporal con-

straints 𝐷𝑐
′, and number of agents assigned 𝑛𝑐 as inputs. Its output is a schedule

𝑆𝑐 for the completion of the car’s tasks, comprised of the ordering of tasks 𝑂𝑐, the

mapping from tasks to time of execution 𝑀𝑡, and the mapping from tasks to the set

of agents executing them 𝑀𝐴.

The scheduling algorithm works as follows. Besides the queue, we also keep track

of the agents who are not busy (𝐴𝐴, initialized in line 2), the tasks whose dependencies

have been satisfied (𝐴𝑇 , initialized in line 3), the unsatisfied dependencies of each

task (𝑅𝑇 , initialized in line 3), and the number of tasks that have been scheduled (𝑑𝑡,

initialized in line 8). Until we have scheduled all the tasks, we repeat the following

loop, shown in ScheduleLoop (Algorithm 25). We process the earliest event in the

queue and any other events that occur at the same time (lines 2–11), and then we

try to schedule tasks until we have no available agents remaining or no tasks whose

dependencies have been met (lines 12–25). When we schedule a task, we create and

place in the queue events for the release of each of the agents that were assigned to

the task (lines 19–21), as well as for the satisfaction of each dependency on the task

(lines 22–24). If we have to choose one of many tasks to schedule, we use a heuristic
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that prioritizes tasks that many other tasks depend on. This heuristic is similar to

the one used by Tercio and aims to minimize the time agents spend idle by increasing

the number of tasks that are ready to be executed at any given time. How we process

an event from the queue depends on the type of the event. Events indicating the

release of an agent add the agent to the pool of available agents. Events indicating

the satisfaction of a dependency remove that dependency from the list of unsatisfied

dependencies of the constrained task. If the list becomes empty, it means that the

task is ready to execute, so it is added to the pool of ready-to-execute tasks.

Algorithm 24 Individual Car Scheduling
1: procedure Schedule(𝑊𝑐

′, 𝐷𝑐
′, 𝑛𝑐) ◁ initialized to include one no-op event

2: 𝐴𝐴 initialized to contain 𝑛𝑐 agents
3: 𝐴𝑇 initialized to contain all tasks that do not depend on other tasks
4: 𝑅𝑇 initialized such that 𝑅𝑇 [𝑤] gives a list of all tasks that task 𝑤 depends

on
5: 𝐶𝑇 initialized such that 𝐶𝑇 [𝑤] gives a list of all tasks that depend on task 𝑤
6: 𝑄𝑢𝑒𝑢𝑒 initialized to contain one no-op event at time 0
7: 𝑂𝑐,𝑀𝑡,𝑀𝐴 initialized empty
8: dt ← 0
9: while 𝑑𝑡 < |𝑊𝑐

′| do
10: ScheduleLoop
11: end while
12: return 𝑆𝑐(𝑂𝑐,𝑀𝑡,𝑀𝐴)
13: end procedure

4.7.3 Rescheduling Algorithm

The Reschedule algorithm (Algorithm 26) takes in a car’s tasks 𝑊𝑐
′, temporal

constraints 𝐷𝑐
′, number of agents assigned 𝑛𝑐, the previous schedule 𝑆𝑐, and the

disrupting error 𝑒 as inputs. Its output is a new schedule 𝑆𝑐
′ that takes into account

the disruption caused by the error.

Some types of errors require changes in the internal schedule of the car experi-

encing them. There are three ways in which this can occur. The first is by a task

being blocked7 for the duration of the error, which is the case for errors from groups 8

7Unable to be performed

78



Algorithm 25 Individual Car Scheduling Loop Procedure
1: procedure ScheduleLoop
2: 𝑧 ← Queue.remove()
3: 𝑡𝑖𝑚𝑒← 𝑡𝑧
4: if 𝑧 ∈ 𝐴𝐸 then
5: 𝐴𝐴.𝑎𝑑𝑑(𝑎𝑧)
6: else if 𝑧 ∈ 𝐷𝐸 then
7: 𝑅𝑇 [𝑐𝑤].𝑟𝑒𝑚𝑜𝑣𝑒(𝑟𝑤)
8: if 𝑅𝑇 [𝑐𝑤] = ∅ then
9: 𝐴𝑇.𝑎𝑑𝑑(𝑐𝑤)

10: end if
11: end if
12: while 𝐴𝐴 ̸= ∅ and 𝐴𝑇 ̸= ∅ do
13: 𝑤 ← 𝐴𝑇.𝑔𝑒𝑡𝐵𝑒𝑠𝑡𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐()
14: 𝐴𝑤 ← 𝐴𝐴.𝑟𝑒𝑚𝑜𝑣𝑒(𝑛𝑤)
15: 𝑂𝑐.𝑎𝑑𝑑(𝑤)
16: 𝑀𝑡[𝑤]← 𝑡𝑖𝑚𝑒
17: 𝑀𝐴[𝑤]← 𝐴𝑤

18: 𝑑𝑡 + +
19: for 𝑎 ∈ 𝐴𝑤 do
20: add 𝐴𝐴 event for 𝑎 to Queue at 𝑡𝑖𝑚𝑒 + 𝑑𝑤
21: end for
22: for 𝑤′ ∈ 𝐶𝑇 [𝑤] do
23: add 𝐷𝐸 event for satisfaction of constraint between 𝑤 and 𝑤′

24: end for
25: end while
26: end procedure

and 9. The second is by the error requiring an agent to fix it, thus making the agent

unavailable for the duration of the error, which is the case for errors from Group 1.

The third is a combination of the first two, a blocked task and a busy agent, which

is the case for errors from Group 4.

The algorithm for adjusting a car’s schedule in response to such an error is as

follows. The schedule up until the point in time when the error occurred remains as

is, since it has already been executed by the time of the rescheduling. For the tasks

that have not yet been executed, we use the same algorithm that we used for the

original scheduling with a few modifications to take into account the new constraints.

In the case of a blocked task, we add a fake dependence to it and an event to

the queue to remove that dependence after the error is resolved. Because of this
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Algorithm 26 Individual Car Rescheduling
1: procedure Reschedule(𝑊𝑐

′, 𝐷𝑐
′, 𝑛𝑐, 𝑆𝑐, 𝑒) ◁ initialized to include one no-op

event
2: 𝑂𝑐,𝑀𝑡,𝑀𝐴 initialized to include all tasks scheduled in 𝑆𝑐 before 𝑒 occurred
3: 𝑡𝑖𝑚𝑒← 𝑡𝑠𝑒
4: 𝑑𝑡← |𝑂𝑐|
5: 𝐴𝐴 initialized to contain all agents not busy at the time 𝑒 occurred
6: 𝐴𝑇 initialized to contain all tasks that do not depend on tasks that have not

been scheduled
7: 𝑅𝑇 initialized such that 𝑅𝑇 [𝑤] gives a list of all non-completed tasks that

task 𝑤 depends on
8: 𝐶𝑇 initialized such that 𝐶𝑇 [𝑤] gives a list of all tasks that depend on task 𝑤
9: 𝑄𝑢𝑒𝑢𝑒 initialized to contain the 𝐴𝐴 and 𝐷𝐸 events corresponding to the

completion of all in-progress events
10: if 𝑔𝑒 ∈ {1, 4} then
11: 𝑎← 𝐴𝐴.remove()
12: Add 𝐴𝐸 event for 𝑎 at 𝑡𝑖𝑚𝑒 + 𝑑𝑒
13: end if
14: if 𝑔𝑒 ∈ {4, 8, 9} then
15: 𝑤𝑏 ← 𝐴𝑇 .removeBlocked(𝑒)
16: 𝑅𝑇 [𝑤𝑏].add(𝑤𝑓 ) ◁ 𝑤𝑓 is a fake task, added as a dependence to prevent 𝑤𝑏

from being scheduled
17: add 𝐷𝐸 event for resolution of 𝑤𝑏’s dependence on 𝑤𝑓 at 𝑡𝑖𝑚𝑒 + 𝑑𝑒
18: end if
19: while 𝑑𝑡 < |𝑊𝑐

′| do ◁ The loop is exactly the same as the one in Schedule
20: ScheduleLoop
21: end while
22: return 𝑆𝑐

′(𝑂𝑐,𝑀𝑡,𝑀𝐴)
23: end procedure

dependence, the task will never be added to the ready-to-execute tasks pool and thus

will not be executing for the duration of the error, thus effectively being blocked.

In the case of an error that requires an agent to solve it, we first must decide which

agent will solve the error. If there is an idle agent, we select it. If not, we select the

agent that has made the least progress on their current task, since that progress will

be lost. Once the agent has been selected, we remove it from the pool of available

agents and we add an event to the queue that will add it back to the pool after the

error is resolved. This way, this agent will not be assigned to any tasks while it is

busy fixing the error.
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When we have an error that blocks a task and requires an agent to solve it, we

select one of the agents that were working on the blocked task to solve the error.

Recall that the tasks being blocked were in progress when the error occurred, so the

agents that were performing them will be idle after the task is blocked. Beyond that,

we use the exact same methods we described above to take into account the blocked

task and the busy agent in our schedule.

4.8 Runtime and Memory Analysis

4.8.1 Pre-Processor

The Pre-Processor has to iterate over all temporal constraints to do the merging, and

must produce new lists of tasks and constraints, so its runtime and space requirements

are 𝑂(|𝑊 |+ |𝐷|).

4.8.2 Car-Level Scheduler

The number of times the ScheduleLoop procedure is called is upper bounded by

the number of events processed. In both cases, the amount of 𝐴𝐸 events is 𝑂(|𝑊𝑐|)

and the amount of 𝐷𝐸 events is 𝑂(|𝐷𝑐|). The work in each loop is 𝑂(log 𝑛 + log𝑚),

where 𝑛 is the maximum size of 𝐴𝑇 and 𝑚 is the maximum size of the Event Queue.

This is because both 𝐴𝑇 and the Event Queue are implemented as a heaps (such that

the head has the highest heuristic value or the earliest event, respectively), so that

the add and remove operations are 𝑂(log 𝑛) and 𝑂(log𝑚) respectively. The number

of available tasks is upper bounded by the total number of tasks, and the size of the

Event Queue is upper bounded by the total number of events, so the total runtime

of a call to Schedule or Reschedule is

𝑂((|𝑊𝑐|+ |𝐷𝑐|) log(|𝑊𝑐|+ |𝐷𝑐|))

In terms of memory requirements, 𝐴𝐴 is 𝑂(𝑛𝑐), 𝐴𝑇 is 𝑂(|𝑊 |), 𝑅𝑇 , 𝐶𝑇 , and the
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Event Queue are 𝑂(|𝑊 | + |𝐷|), and 𝑂𝑐,𝑀𝑡, and 𝑀𝐴 are 𝑂(|𝑊 |). Thus, the space

requirement for a call to Schedule or Reschedule is 𝑂(|𝑊 |+ |𝐷|).

4.8.3 Band-Level Scheduler and Simulation

The Simulate algorithm calls Car-Level Scheduler’s Schedule once for every car,

and the total runtime of that is

𝑂(|𝐶|(|𝑊𝑐|+ |𝐷𝑐|) log(|𝑊𝑐|+ |𝐷𝑐|))

The number of times Simulate loops is upper-bounded by the number of events

processed. There are 𝑂(|𝐶|) 𝐴𝐸 events, since they are generated by cars finishing,

and the number of agents per task is upper-bounded by a constant. There are 𝑂(|𝐶|)

𝐸𝐵𝐸 events, since there is only one for each car. There are 𝑂(|𝐶| + |𝐸|) 𝑇𝐸 and

𝐿𝐵𝐸 events, since there is at most one stale one for every error and one valid one

for every car. There are 𝑂(|𝐸|) 𝐸𝑆𝐸 and 𝐸𝐸𝐸 events because there is only one

per error. There are 𝑂(|𝐸|) 𝑃𝐸 and 𝐿𝑃𝐸 events in the common case because the

number of parking checks and relocations caused by each error is upper-bounded by

a constant on average.

In each loop, the algorithm removes an event from the Queue, which is 𝑂(log 𝑞),

where 𝑞 is the size of the Queue. Then it processes the event. Then it assigns agents

to cars. Each time an agent is assigned to a car, the runtime is 𝑂(log 𝑞), since events

are added to the queue. The total number of times an agent is assigned is 𝑂(|𝐶|),

since the number of agents assigned to each car is upper-bounded by a constant.

We will now analyze the runtime for processing each event type. 𝐴𝐸 and 𝐸𝐵𝐸

events are 𝑂(1), since they only involve one operation of adding an element to an

unsorted collection. 𝑇𝐸 events are 𝑂(1) because they only involve appending to the

log. 𝐿𝐵𝐸 events are 𝑂(log 𝑞), since they involve adding a number of events to the

Queue, upper-bounded by a constant. 𝐸𝑆𝐸 events add events to the queue and call

the Car-Level Scheduler, so their runtime is 𝑂((|𝑊𝑐|+ |𝐷𝑐|) log(|𝑊𝑐|+ |𝐷𝑐|) + log 𝑞).

𝐸𝐸𝐸 events are 𝑂(log 𝑞) because they add an event to the Queue. 𝑃𝐸 events iterate
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over all accessible parking spots, and then add some events to the queue, or, in the

rare case when no parking can be found for an error requiring immediate parking,

iterate over all cars. If we assume the number of parking spots accessible from any one

location is upper-bounded by a constant, then the runtime for the common case of

𝑃𝐸 events is 𝑂(log 𝑞), and the runtime for the at most 𝑂(|𝐸|) instances of a car being

added to 𝐹𝐶 is 𝑂(|𝐶| + log 𝑞). 𝐿𝑃𝐸 events similarly are 𝑂(log 𝑞) in the common

case and 𝑂(|𝐶|+ log 𝑞) when a car is removed from 𝐹𝐶.

Now we multiply the number of occurrences of each event type with its runtime

to get the total contribution. We get 𝑂(|𝐶|) for 𝐴𝐸 events, 𝑂(|𝐶|) for 𝐸𝐵𝐸 events,

𝑂(|𝐶| + |𝐸|) for 𝑇𝐸 events, 𝑂((|𝐶| + |𝐸|) log 𝑞) for 𝐿𝐵𝐸 events, 𝑂(|𝐸|((|𝑊𝑐| +

|𝐷𝑐|) log(|𝑊𝑐| + |𝐷𝑐|) + log 𝑞)) for 𝐸𝑆𝐸 events, 𝑂(|𝐸| log 𝑞) for 𝐸𝐸𝐸 events, and

𝑂(|𝐸|(|𝐶|+ log 𝑞)) for 𝑃𝐸 and 𝐿𝑃𝐸 events. Thus, the total runtime of Simulate is

𝑂((|𝐶|+ |𝐸|)((|𝑊𝑐|+ |𝐷𝑐|) log(|𝑊𝑐|+ |𝐷𝑐|) + log 𝑞) + |𝐸|(|𝐶|+ log 𝑞))

where 𝑞 = 𝑂(|𝐶| + |𝐸|) and |𝑊𝑐| and |𝐷𝑐| are the maximum number of tasks and

temporal constraints for one car, respectively.

The space requirement is 𝑂(|𝐶| + |𝐸|) because none of the data structures used

are larger than that.

4.8.4 Overall System

To get the total runtime of the system, we add that of the Pre-Processor and that of

Simulate to get:

𝑂(|𝑊 |+ |𝐷|+ (|𝐶|+ |𝐸|)((|𝑊𝑐|+ |𝐷𝑐|) log(|𝑊𝑐|+ |𝐷𝑐|) + log 𝑞) + |𝐸|(|𝐶|+ log 𝑞))

To get the total space requirement of the system, we add that of the Pre-Processor

and that of Simulate to get:

𝑂(|𝑊 |+ |𝐷|+ |𝐶|+ |𝐸|)

83



84



Chapter 5

Comparison of Automotive Assembly

Layouts

In this chapter, we will develop a method to compare the Conventional Automotive

Assembly Layout, described in Chapter 3, and the Flexible Automotive Assembly

Layout, described in Chapter 4, in terms of their throughput and response to errors.

We will make use of the simulations we developed for the two layouts in the previous

chapters. Our goal will be to make the comparison as fair as possible and to draw

useful conclusions about the merits of the two layouts, which will help determine

whether development of technology to enable the Flexible Layout could be worthwhile.

5.1 Layouts

Before we describe our comparison method, let us first review the two layouts we will

be comparing. Both are divided into linear segments called bands. Each band has

different agents, resources, and tools available, and performs a different class of tasks

accordingly. The setup of each band is where the two layouts differ, which is why

each of our simulations of the two layouts models a single band.
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5.1.1 Conventional Automotive Assembly Layout

In the Conventional Automotive Assembly Layout, the band is comprised of a moving

belt. All cars are placed on the belt and move together. During normal operation,

the belt moves forward at a constant speed. As the cars move, they pass without

stopping by successive stations, in each of which specific tasks are performed. The

tasks are performed by agents agents situated in each station by the side of the belt.

When an error occurs, preventing the agents from completing their tasks on a car

before it leaves the station limits, the belt stops. The belt remains stationary until

the error is resolved. As a result, an error that occurs on a single car also delays every

other car in the band.

Recall from Section 3.3 the inputs to our simulation of the Conventional Layout:

∙ the set 𝐶 of cars

∙ the set 𝐴 of agents

∙ the number 𝑛𝑠 of stations

∙ the cycle time 𝑡𝑐

∙ the set 𝐸 of errors that will occur

5.1.2 Flexible Automotive Assembly Layout

In the Flexible Automotive Assembly Layout, the cars are placed on mobile platforms

that carry all the required resources for the tasks in the band. Agents get on platforms

at the beginning of the band and stay on them until they reach the end, performing

all the tasks in the band for the car on the platform. During normal operation, the

platforms move through the band at a constant speed. When an error occurs, the

affected car’s platform can move to a parking spot at the side, thus allowing other

platforms to overtake it. The main motivation for this layout is that an error only

delays the affected car.

Recall from Section 4.3 the inputs to our simulation of the Flexible Layout:
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∙ the set 𝐶 of cars

∙ the speed 𝑣 of the cars

∙ the number 𝑎 of agents in the band

∙ the time 𝑟 it takes agents to move back to the start of the band

∙ the length 𝑥𝑚𝑎𝑥 of the line

∙ the mapping 𝑓 :𝑥→ 𝑃 from location along the line to a set of accessible parking

spots

∙ the set 𝐸 of errors that will occur

5.2 Comparison Method

In this section, we will describe our method for comparing the two layouts by going

over how we selected each of the inputs to our simulations.

5.2.1 Car Tasks and Temporal Constraints

Each car that is passed as an input to either of the two simulations has an associ-

ated set of tasks that are performed on it in the band, as well as a set of temporal

constraints between its tasks. The cars produced in the factory we are modeling are

highly customizable, so, for each one, a different set of tasks is performed. To generate

cars with realistic sets of tasks and constraints, we used a blackbox tool, provided by

the sponsor, that takes into account order frequencies for different optional features

to generate cars with the corresponding tasks. The tool takes 8 minutes to generate

one car in a virtual machine on a commercial 2.3GHz Intel Core i5 processor with

8GB of RAM. Because the tool is so slow, generating each car every time one is

needed for a simulation was not a viable option. Instead, we created a pool of 1385

cars and randomly selected our cars from that set. We ran each simulation where our

𝐶 was sequence of 700 cars, which is the number produced daily in the factory our
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models are based on. For each variation of our parameters, we ran simulations with

the same 30 sequences of 700 cars on both layouts to make the results as comparable

as possible.

5.2.2 Agents and Stations

For the Conventional Layout, the agents that perform each task and subsequently the

stations at which those tasks are performed are specified by the same blackbox tool

that generates the tasks and the temporal constraints. The set 𝐴 of all the agents

specified and the count of distinct stations 𝑛𝑠 give us the inputs to our Conventional

Layout Simulation.

For the Flexible Layout, we used the same number of agents 𝑎 as those used in

the Conventional Layout to make the comparison fair. This is not necessarily the

number of agents that maximizes throughput in this layout1.

5.2.3 Cycle Time and Car Speed

In the factory our model is based on, the cycle time 𝑡𝑐 is 100 seconds and the length of

each station is 6.65 meters. We use the same cycle time in our Conventional Layout

simulation. We can divide the station length by the cycle time to get the speed of

the cars in the Conventional Layout, and we use the same speed2 𝑣 in the Flexible

Layout.

5.2.4 Comparing the Effect of Errors

It is not immediately obvious how to set up the error input 𝐸 to the simulations in

order to perform a fair comparison between the two layouts. We could measure the
1To maximize throughput in this layout, enough agents would have to be allocated such that a

car would never have to wait for agents. Specifically, if a new car arrives at the band every 𝑡𝑐 and
the agents take 𝑡𝑎 to finish the tasks on the car and return to the start, the number of agents for
optimal throughput assuming no errors is 𝑡𝑎/𝑡𝑐.

2They did not necessarily have to be the same. In both layouts, the speed of the cars needs
to be slow enough for the agents to be able to perform tasks on them. The difference is that, in
the Conventional Layout, the agents are stationary, while, in the Flexible Layout, the agents move
along with the car. Because of this the speed limit of the Flexible Layout is higher than that of the
Conventional Layout.
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performance of the two models in response to the same errors at the same times on

the same sequence of cars. Although this seems like a fair comparison, it is somewhat

misleading. The cause of the errors is not considered in our model, but we know

that each error is associated with a certain car, station, agent, or task. The two

layouts schedule the execution of the same tasks on the same car at different times,

by different agents, and at different locations. Thus, two errors of the same duration

occurring at the same time in the two models would not necessarily be the reflection

of the same real-life error, nor would they have similar effects on the two layouts. We

could separate the errors based on their cause and apply them to the two models in

appropriately similar ways. For example, a task-related error would occur on the same

task in the two models, even if those tasks are scheduled at different times. There

are two reasons why we don’t take this approach. First, we don’t have information

about the cause of different errors. We have information about the frequency and

duration of different error groups, but we don’t know the cause of each group, as that

is proprietary information of the sponsor. Second, our models for both layouts would

need to change to allow us to specify the time occurrences of different errors based

on different aspects of the state of the simulation.

Our solution to this problem is to not try and compare the effect of “similar” errors,

and instead run enough simulations of errors randomly drawn from a probability dis-

tribution on the two models that we can draw general conclusions about the behavior

of the two models. This is one reason why we run simulations with the same param-

eters on 30 different sequences of cars. We vary the frequency of errors to evaluate

their effect on the two models. Specifically we simulate 0𝜑, 0.25𝜑, 0.5𝜑, 𝜑, 2𝜑, 4𝜑, 8𝜑,

where 𝜑 is the average frequency of errors per car observed in the factory our models

are based on. We use errors per car rather than errors per car per unit time because

that is the metric we have data for. Using the errors per car per time metric would

have favored the Flexible Layout, as the higher latency3 of each individual car in the

Conventional Layout would give it more time to experience an error.

3The Flexible Layout has lower latency for individual cars, since the spacial constraints of the
tasks have been lifted, resulting in a less constrained problem that can be scheduled within a lower
makespan.
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While the error frequency determines the number of errors in 𝐸, the specific errors

used are randomly generated. We generate them using a different tool provided by

the sponsor. The tool generates errors whose duration and group are drawn from

probability distributions based on observations of errors in a real factory. The errors

we used were drawn uniformly from a pool of 1194 errors generated by the tool.

5.2.5 Band Length

The only parameter that we did not align in the two models was the length of the

band. The length of the band in the Conventional Layout is given by the number of

stations4 multiplied by the length of each station5. It would be wasteful to set the

length of the band for the Flexible Layout to be the same as that of the Conventional

Layout. Due to the lack of spacial constraints, cars in the Flexible Layout finish their

tasks in a shorter amount of time than those in the Conventional Layout. If the two

bands had the same length, agents in the Flexible Layout would remain idle for a

long time after they finished the tasks on their car, waiting for it to reach the end of

the band. If we instead set the length of the band 𝑥𝑚𝑎𝑥 such that the time to traverse

it is slightly more than the typical amount of time an error-free car in the Flexible

Layout takes to complete its tasks, then the agents will return to the beginning of

the band to work on the next car quicker, which means that we achieve better agent

utilization.

We ran some simulations of the Flexible Layout with different lengths to determine

a good length to use in the comparison. Figure 5-1 shows, for four different band

lengths, the agents’ total idle time between the times at which they finished the tasks

on a car and the time at which the car left the band. Note that these results are

specific to the band whose data we were using and not universal. Our simulations

determined that most cars finished their tasks after traveling somewhere between 56

and 60 meters in the band. As a result, most cars had to park in the 56 meter band to

avoid reaching the end without finishing their tasks. This created higher contention

414 stations, based on the real factory band we got the task data from
56.65 meters, based on real factory measurements
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for the parking spots and even resulted in some instances of cars reaching the end

without being able to park, and stopping the entire band behind them in order to

finish their tasks. Figure 5-2 shows that such stoppages were only observed for the

56 meter band. Due to these additional stoppages, we ruled out the 56 meter band.

Of the remaining lengths we simulated, the 60 meter band exhibited the lowest agent

idle time, so we used that in our comparison.

5.2.6 Flexible Layout Band Shape

There are two other inputs we have not yet addressed. The first one is the time 𝑟

it takes agents to move back to the beginning of the band. The second one is the

mapping 𝑓 :𝑥 → 𝑃 from location along the line to a set of accessible parking spots.

Both depend on the shape of the band. The shape we decided to use, shown in Figure

5-3, has several desirable traits. The line along which the cars move is wrapped around

a linear arrangement of parking spots, such that each parking spot is accessible from

either side of the line. The number of parking spots depends on the length of the

line. In the case of Figure 5-3, the line of parking includes 5 spots because that is

how many fit in it. The band length we simulated for happened to also fit 5 parking

spots. We also added two additional parking spots that are accessible from the final

section of the band (P6 and P7 in Figure 5-3). As stated in Chapter 4, if a car can’t

find parking at its current location, it stays in the line until it reaches an area where

different parking is available. This is problematic for cars at the final section of the

band, so we added the extra spots to make it unlikely that they exit the band before

finding parking. The end of the band is close to the start of the band, which makes 𝑟

low, which results in better agent utilization. The area requirement for the layout is

relatively small, as its ratio of parking space to total space is approximately 1/3. We

considered trying layouts that featured more parking, but this layout provided enough

parking for the amounts of errors we tested for, so layouts with more parking would

be wasting space. It may seem as though the layout is too long and narrow, which

would make it hard to fit into a closed space, but that is not necessarily the case. The

line of parking spots does not have to be straight. We could have the line of parking
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Figure 5-1: Idle time in Flexible Layout for different band lengths
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Figure 5-3: The line along which the cars move wraps around the line of parking
spots. Additional parking spots P6 and P7 are accessible from the final section of the
band.
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turn and fold on itself, and, as long as the line of cars continues to wrap around it,

the same parking spot mapping holds6. By folding the line of parking spots, we can

fit this layout into a variety of differently shaped areas. As long as there is one row of

parking spots between two parallel and approximately equally long segments of the

line, the layout is correctly modeled by our simulation. An example of the line of

parking spots folding is shown in Figure 5-4.

P1 P2

P3

P4P5

Figure 5-4: The line of parking spots folds to fit into a shorter but wider space.

5.2.7 Space Comparison

Now that we have specified the shape of the Flexible Layout, we can compare it to

the Conventional Layout in terms of the area they occupy. It is reasonable to assume

that the line along which the cars move in the Flexible Layout will be wider than

that of the Conventional Layout, since it needs to fit platforms that carry not only

the car, but also the agents working on it and the tools and resources required for its

tasks. Let the ratio of the Flexible Layout line’s width to the Conventional Layout

line’s width be 𝜆. Also let the Conventional Layout line’s width be 𝑤 meters. We

assume that the parking spot width is also 𝜆𝑤, since parking spots also must have

enough space for the mobile platforms. The area covered by the band we simulate in

the Conventional Layout is given by the number of stations multiplied by the station

6This ignores the difference between the length of the outside and inside turning radius, but is
a good approximation, especially if the line of parking spots turns left and right approximately the
same number of times.
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length multiplied by the width, which is 14×6.65×𝑤 = 93.1𝑤 meters squared. Based

on the shape we used for the Flexible Layout, the line along which cars move is 60m,

and the line of parking is approximately half of that, estimated here as 30m long.

We also add in two additional parking spots, each with size 6.65𝜆𝑤 meters squared.

Thus, according to our assumptions, the area of the band we simulate in the Flexible

Layout is 103.3𝜆𝑤 meters squared.

5.2.8 Performance Metric

We evaluate the performance of each layout under a given error frequency by measur-

ing the amount of simulated time it needs to finish a sequence of 700 cars. Note that

the time we are referring to is how long it takes the cars to pass through the band

in the simulation, not how long our simulation takes to run. One might argue that

measuring throughput of the two layouts in steady state, meaning when all agents are

occupied, would yield a better metric of performance. We observe that our metric is

a good approximation of steady-state throughput because the time taken by one car

to move through the band is small compared to the total time all 700 cars take.

5.3 Results

The simulations were implemented in Java and took two hours to run on two cores of

a commercial 2.2GHz Intel Core i7 processor with 16GB of RAM. Figure 5-5 shows

the data points for all of our simulations. Figure 5-6 and Table 5.1 show the mean and

standard deviation of the time in hours to complete 700 cars for each error frequency

for the two layouts. The Error Delay columns in Table 5.1 show the cumulative

delay added by errors to each model as a percentage of the 0𝜑 average time. The

Average Speedup column in Table 5.1 shows the speedup of the Flexible Layout as a

percentage of the Conventional Layout time at each error frequency.

In the case of no errors, the Flexible Layout finished in 17.1% less time than

the Conventional Layout. This can be explained by the following observations. In

the Conventional Layout, each task must be executed at a particular station. On
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Error
Frequency
(multiples

of 𝜑)

Conventional Flexible
Average
SpeedupMean

(hours)
Error
Delay

Standard
Deviation
(hours)

Mean
(hours)

Error
Delay

Standard
Deviation
(hours)

0 24.01 0.0% 0.22 19.91 0.0% 0.01 17.1%
0.25 25.26 5.2% 0.52 19.99 0.4% 0.06 20.9%
0.5 26.38 9.9% 0.71 20.07 0.8% 0.07 23.9%
1 28.66 19.4% 0.85 20.23 1.6% 0.10 29.4%
2 33.01 37.5% 1.49 20.63 3.6% 0.14 37.5%
4 40.25 67.7% 1.83 21.41 7.6% 0.25 46.8%
8 53.06 121.0% 1.75 23.23 16.7% 0.26 56.2%

Table 5.1: Simulation Result Comparison

the other hand, the tasks in the Flexible Layout can be executed at any location

of the band. Thus, a car in the Flexible Layout will not have to wait to reach the

appropriate station to execute certain tasks, when it would have to do so in the

Conventional Layout. Simply stated, the scheduling problem for the Conventional

Layout is more constrained, so the solution found will usually be slower than that of

the Flexible Layout. The only case in which the two layouts would result in solutions

of equal duration is if the time the tasks in each station took to complete was exactly

equal to the time spent at each station, which would mean that the additional spatial

constraint would not affect the problem’s solution.

The advantage of the Flexible Layout becomes even greater in the presence of

errors. Recall that an error that occurs on a car in the Conventional Layout will

cause the entire band to stop moving, while a car experiencing an error in the Flexible

Layout can park and allow other cars to overtake it. As a result, an error in the

Conventional Layout delays all cars in the band, while an error in the Flexible Layout

delays only the affected car. Because of this, the Conventional Layout discussed needs

19.38% more time to finish in the case of 1𝜑 (average) error frequency compared to

no errors, while the Flexible Layout is barely affected at 1𝜑 error frequency. Overall,

in the case of 1𝜑 error frequency, the Flexible Layout finished in 29.4% less time than

the Conventional Layout. With more errors, the difference in the performance of the

two layouts grows further, with a trend that is approximately linear. In the extreme
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case of 8𝜑 error frequency, the Flexible Layout finished in 56.3% less time than the

Conventional Layout.

5.4 Conclusions

Our comparison showed that the Flexible Layout produces better throughput than the

Conventional Layout and the resulting schedule is more robust to errors. In order to

decide whether implementing the Flexible Layout is worthwhile, these benefits must

be weighed against the cost of the investment. The Flexible Layout requires mobile

platforms that can carry a car, the agents working on it, and the necessary tools and

resources for all the car’s tasks in the band. It also requires agents able to perform

all the tasks a car needs done in a band rather than just all the tasks a car needs

done in a station. Improving the throughput of a single band by switching it to the

Flexible Layout will only improve the factory’s overall throughput if that band was a

bottleneck. If it was not, it will continue to get blocked or starved because of errors

in other bands. To gain the full benefit of the Flexible Layout, it must be applied

to enough bands such that the bottleneck becomes a band in the Flexible Layout.

A future cost-benefit analysis could use the findings of this chapter to determine

whether the productivity improvement warrants such a large-scale change to existing

factories.
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Chapter 6

Conclusion

6.1 Review

For automobile companies, increasing the throughput of their assembly lines can

prove very profitable, as it allows them to meet demand with lesser resources. The

current assembly process is very efficient under normal operation, but suffers greatly

when unpredictable disturbances, such as equipment failure or logistics errors, occur.

Companies are searching for a layout that can lower the cost of errors, while retaining

the same or better efficiency.

In this thesis, we developed simulations for two assembly layouts and used those

simulations to evaluate the layouts. The first is the Conventional Layout, in which

cars are placed on a conveyor belt that moves at a constant speed. Agents on both

sides of the belt perform a small variety of tasks on the cars passing in front of them.

The main downside of this layout is the fact that when an error occurs, the entire

line stops moving until the error is resolved. The second is the Flexible Layout, in

which cars along with the agents working on them are placed on mobile platforms

and move together along the line. In this layout, agents are required to be able to

perform a larger variety of tasks, as opposed to the Conventional Layout, in which

they are fixed to a specific station in the line, performing similar tasks for a large

number of cars. The main advantage is that in the case of an error, the affected car

can move to the side and allow the other cars to overtake it, thus limiting the effect
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of the error to one car, instead of the entire line.

We developed Discrete Event Simulations for both layouts. We applied approxima-

tions for some types of temporal constraints to computationally simplify our schedul-

ing algorithms. We developed mathematical formulations of the problems that our

systems solved. We explained the architecture of the simulation and schedulers for

each layout and analyzed the runtime and memory usage.

We explained the setup of our comparison, which we tried to make as fair as

possible. We reported our results, which show that the Flexible Layout was able

to finish the same number of cars 17.1% faster in the case of no errors and 29.4%

faster in the case of an average number of errors, according to observations of real

factories. We provided an explanation of why these simulation results matched our

expectations.

6.2 Future Work

Our simulations show that the Flexible Layout can provide better throughput and

robustness to errors. It does, however, require significant investment. It requires

mobile platforms capable of fitting a car, the agents working on it, and the tools and

resources required for all the tasks in one band. The factory’s logistics will need to be

modified, as materials will need to be available at the beginning of the band instead of

at a station. Agents will be required to perform a larger variety of tasks, since a small

set of them will be performing all the tasks for a car in one band. This is in contrast

to the Conventional Layout, in which agents are fixed to a station and perform a

small variety of tasks on all the cars that pass through the station. A cost-benefit

analysis taking all the aspects of a potential investment into account, along with the

results of this thesis, could determine whether a switch to the Flexible Layout could

be profitable.

Our simulations modeled a single band within the factory. An increase in the

throughput of one band from switching to the Flexible Layout will only affect overall

throughput significantly if that band was the bottleneck or experienced a particularly
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large amount of errors. Bands have buffer zones between them in order to contain

starving and blocking effects to the band in which the error that caused them occurred.

However, long-lasting errors can cause the buffers to fill or empty, thus spreading the

effects to surrounding bands. A future project could study the behavior of multiple-

band segments of these layouts, and compare them with each other, or even with

hybrid layouts in which some bands are under one layout, while others are under the

other. Such a study could give insight into the larger-scale effects that a change from

Conventional to Flexible Layout could have on the assembly line throughput.
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