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Abstract

The main focus of the thesis is the resting state fMRI data analysis, with much em-
phasis on the anesthesia fMRI experiments. Under this central topic, three separate
themes are developed: resting state fMRI data analysis overview, improved denois-
ing techniques, and application to the Dexmedetomidine experiment data. In the
first part, important and confusing resting state data analysis steps are explored in-
depth, focusing on how and why the pipeline is different from that of the task-based
fMRI. In the second part, the Principal Component Analysis (PCA) based denoising
technique is introduced and compared against the conventional fMRI denoising tech-
niques. Finally, with the PCA denoising technique, the functional connectivity of the
brainstem with the brain is assessed for the Dexmedetomidine-induced unconscious
subjects. We found that the functional connectivity between the Locus Ceruleus (LC)
in the brainstem and the Thalamus & Posterior Cingulate Cortex (PCC) is the neural
correlates of the Dexmedetomidine-induced unconsciousness.

Thesis Supervisor: Emery N. Brown
Title: Edward Hood Taplin Professor of Medical Engineering and of Computational
Neuroscience
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Chapter 1

Introduction

The question of what it means to be conscious and unconscious has been around

for very long, initially more as a philosophical conundrum. Questions, such as what

causes one to become unconscious, whether it is sleep or serious medical conditions

such as coma or vegetative state, and what happens during such unconsciousness,

has remained mysterious. It is without a doubt that these questions were of great

interests to the scientists. Despite all the curiosity and the endeavors, the research

progress has been stagnant for the previous few centuries mainly for two reasons.

First, there were no safe and easy mechanisms through which the subject’s level of

consciousness could be controlled. Second, there were no sophisticated tools to probe

the functional brain states non-invasively. Although invasive probing prodcedures

have been performed on animals, such as monkeys and rats, there were no direct

evidences linking these findings to the humans.

With the advent of anesthesia practice in the late 19th century, the first problem

was partially solved. With different drugs, it was possible to put humans and ani-

mals in different conscious states in a reversible manner, such that the subjects could

be woken up from the unconsciousness [1]. Moreover, with the recent development of

the anatomical and functional neuroimaging techniques, scientists have finally been

able to examine the functional brains states non-invasively. For example, Electroen-

cephalogram (EEG) enabled tracking the brain signals in high temporal resolution
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(milliseconds scale), which helped scientists to discover several brain signatures that

indicated transition from one brain state to the other. Functional Magnetic Resonance

Imaging (fMRI) on the other hand, helped locate which brain regions are functionally

activated or deactiviated throughout the different levels of consciousness, with high

spatial resolution of millimeter scale. With the means of controlling and monitoring

the brain states, scientists have been able to make significant advances in uncovering

the mysteries of the consciousness.

This thesis also started out as an effort to examine how the brain states change in

different levels of consciousness, specifically under a specific drug called dexmedetomi-

dine. There were several reasons behind the choice of Dexmedetomidine as the drug

of interest. First, Dexmedetomidine is an appealing choice for investigating the neu-

ral circuits behind alternating consciousness, as the drug selectively targets the pre-

synaptic 𝛼2-adrenergic receptors on neurons projecting from the locus ceruleus to the

pre-optic area [2]. This selectivity allows researchers to easily trace the mechanisms

behind the Loss of Consciousness (LOC) and the Recovery of Consciousness (ROC)

due to Dexmedetomidine, as shown in Figure 1-1. Second, it has been shown that

the neurophysiological signatures of the unconscious state produced by Dexmedeto-

midine closely resemble those of the non-Rapid Eye Movement II sleep. Therefore,

Dexmedetomidine has a huge clinical potential for the sleep research and therapies.

For this thesis, we focus specifically on the Lous Ceruleus, as this is the main site

where the transition to the unconsciousness begins.

Along the course of the project, I made two observations that intrigued my en-

gineering curiosity, and have since diversified the aims of the thesis. First observation

was that many of the neuroimaging researchers, driven by the clinical aspects of their

studies, did not put as much emphasis on the data analysis as experiment design

and data collection, settling on the popular methods used by the community without

considering how the predefined analysis pipelines can affect their results. In other

words, most of the interest was on how the data could be analyzed, not why the
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Figure 1-1: The neural mechanism behind Dexmedetomidine. Reproduced from [2]

data could be analyzed in such a way. Moreover, the resources on fMRI data anlysis,

such as forums and tutorials, were scarce for the resting-state fMRI paradigm, as the

majority was focused on the task-based paradigm.

Another observation was that the current denoising techniques still had lots of room

for improvements, even after the general denoising problem being of interest for sev-

eral decades. What excited me about the denoising problem, in the fMRI context

particularly, was that the solutions not only required statistical and signal processing

expertise, but also benefited a lot from the knowledge of the underlying neuroanatomy

and the brain dynamics. I learned that, with the advance of the neuroimaging tools

and the expansion of our knowledge of the brain, the denoising techniques for neu-

roimaging would only get better. Throughout the thesis, I tried to establish the links

between the engineering (denoising) and the science (neuroscience).

This brings us to the three main objectives that the thesis tries to achieve. First

is to provide a general overview of the entire data analysis pipeline for fMRI exper-

iments, with emphasis on the resting-state experiments (rs-fMRI) and develop some
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insights in understanding the fundamental principles of the data analysis of not only

the fMRI, but also the neuroimaging field in general. Section 2.1 ∼ section 2.4 con-

tains this first part. Although these sections cover basic concepts in the fMRI data

analysis, it is assumed that the reader is already familiar with these concepts and

also with the task-based fMRI. The second objective is to propose and evaluate im-

provements on the existing data analysis pipelines. The discussion is centered around

the principal component based approach and how its performance compares against

the conventional preprocessing pipelines. Moreover, this discussion includes how the

understanding of the brain can help improve the methods. Section 3.1 ∼ section 3.2

contains this second part. Finally, the last aim is to analyze the fMRI data of subjects

under dexmedetomidine using the proposed pipeline. This analysis is based on the

fMRI dataset collected from the 15 subjects in the previous Dexmedetomidine study

[2]. As such, the detailed imaging protocols are not mentioned in this thesis. Section

4.1 contains this final part.
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Chapter 2

fMRI Data Analysis

2.1 Resting state fMRI Overview

2.1.1 Task-based & Resting State fMRI paradigm

The task-based fMRI aims to test whether certain brain region is activated/deactivated

by a given task. Since a task paradigm is defined explicitly, it is easy to obtain the

reference signal for the experiment, by convolving the experiment (stimulus) time-

frame with the canonical Hemodynamic Response Function. The reference signal is

essentially noise-free.

On the other hand, the aim of the resting state fMRI is to observe what regions

are instrinsically connected. For this experiment, there are no external stimulus and

the subjects are instructed to remain still for the whole scan, to minimize the con-

founding factors for assessing the intrinsic functional connectivity. Nevertheless, the

resting state is loosely defined, as it is unclear what the subjects might be thinking

as they remain still and how these will affect the results. Since the aim is to as-

sess the connectivity between the brain regions, the reference signal is the averaged

BOLD signal of the region of interest (ROI). Since the reference signal contains noise,

denoising the brain signal is important, perhaps even more so than the task-based

paradigm. Past resting state fMRI studies revealed the existence of several intrinsic
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functional networks, such as Default Mode Network (DMN) [3].

2.1.2 Combining Anesthesia & fMRI

Combined with the anesthesia practice, fMRI experiments can reveal how several

functional networks, such as thalamo-cortical connection and cortico-cortical connec-

tion, change when subjects are in different levels of consciousness. Since there are

no external stimulus (other than the verbal stimuli to check whether the subject is

unresponsive) and the subjects are not required to complete any task throughout the

experiment, this is regarded as a branch of resting-state fMRI. Typically three sets

of scans are taken for anesthesia resting state fMRI.

1) Pre - Before Anesthesia Injection: This scan is a conventional resting state fMRI

experiment and serves as a baseline scan for the experiment.

2) Peri - After Loss of Consciousness (LOC): This scan is taken after the subject has

lost consciousness and does not respond to external stimuli.

3) Post - After Recovery of Consciousness (ROC): This scan is taken after anesthesia

injection has stopped and the subject recovers consciousness. This is likely to pro-

duce different results from the baseline scan, as different parts of the brain might take

longer to recover fully.

The second and the third set of scans are also considered resting state scans, as

the subjects are still and do not perform any tasks. For the Dexmedetomidine study,

6:15 min BOLD fMRI scans were performed for all three conditions.

One limitation of the anesthesia fMRI studies is that the imaging modality is not

able to track the change of brain states dynamically, unlike EEG. Part of the reason

is that LOC and ROC typically happens within matter of miliseconds, while the typ-

ical repetition time (TR) for fMRI is on the order of seconds. Moreover, the scans

collected in each state are summarized to a set of parameters for further statistical

analysis, obliterating the temporal information within each brain state. Recently,
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there have been attempts to track dynamical brain state change using wavelet trans-

forms, but it is still unclear whether the results yield meaningful interpretations [4].

2.1.3 Functional Connectivity

The functional connectivity is defined as the statistical dependencies among spatially

remote neurophysiologic events, which was first explored in the context of multiunit

electrode recordings [5]. This is to be differentiated from the effective connectivity,

which measures the influence one neuronal system exerts the other. To state it dif-

ferently, functional connectivity is concerned with the relation, whereas the effective

connectivity is concerned with the causation [6]. The functional connectivity metric is

important in the resting state fMRI context, as the main objective of the experiments

is to observe the change of functional networks, or functional connected regions, of

the brain. The fairly loose definition of the statistical dependency welcomes several

different interpretations of the functional connectivity, such as temporal correlation,

coherence, mutual information, and etc. Here, we only look at the most popular

measure, the temporal correlation.

Temporal Correlation

Temporal correlation of BOLD timeseries between two different regions is the most

widely used metric for the functional connectivity. Among several temporal correla-

tion metrics, the Pearson product-moment correlation coefficient is the most popular

choice. For a given pair of 𝑁 length voxel timeseries, xi = [𝑥𝑖,1, 𝑥𝑖,2, · · · , 𝑥𝑖,𝑁 ] and

xk = [𝑥𝑘,1, 𝑥𝑘,2, · · · , 𝑥𝑘,𝑁 ] where 𝑖 and 𝑘 are two different voxels, the pearson correla-

tion, 𝑟, is given as

𝑟 =

∑︀𝑁
𝑡=1(𝑥𝑖,𝑡 − 𝑥𝑖)(𝑥𝑘,𝑡 − 𝑥𝑘)√︁∑︀𝑁

𝑡=1(𝑥𝑖,𝑡 − 𝑥𝑖)2
√︁∑︀𝑁

𝑡=1(𝑥𝑘,𝑡 − 𝑥𝑘)2
(2.1)

, where 𝑥 is the average timeseries. High correlation (high | 𝑟 |, closer to 1) would

indicate that the two regions have strong functional connectivity, whereas low corre-
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lation (low | 𝑟 |, closer to 0) would indicate the opposite. It is important to note that

𝑟 could be negative, indicating anti-correlation between two regions. High degree of

anti-correlation would indicate that the two regions are functionally related, in an

opposite manner. The entire field of anti-correlation between two different networks,

such as that of task-positive and task-negative networks, stem from the fact that the

correlation is negative [3]. Typically, an averaged BOLD signal from a Region of

Interest (ROI) is extracted and is correlated with every other voxel within the brain

to analyze which regions are functionally connected with the ROI.

Since the ROI BOLD signal is used as the reference signal for the whole-brain corre-

lation analysis, it is important that the reference signal has as much noise removed as

possible. Partially denoised reference signal would lead to spurious correlation mea-

sures. Several physiological noises, such as respiratory or cardiac movement, affect

and modulate the BOLD signal globally within the brain - Thus failure to acknowl-

edge such sources leads undesirable results. For the task-based fMRI framework,

denoising brain BOLD timeseries, although still important, does not have as huge

improvement in terms of accuracy, since the reference signal in this case is essentially

noise-free.

One of the main limitations of the temporal correlation is that the Hemodynamic

Response Function is not likely to be the same in different brain regions. Even if

the underlying neural activities are the same, the different HRF would result in dif-

ferent BOLD signal, which would produce incorrect functional connectivity results.

Nevertheless, this is not so much of an issue in the resting state context, since it is

impossible to ascertain what the underlying neural activities are in the resting state.

Therefore, the focus is less on the underlying neural signals, but more on the measured

BOLD signal and how these signals are temporally correlated to each other.
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2.1.4 Hypothesis Test

As with the majority of scientific experiments, the main objective of the neuroimag-

ing experiments is to test a hypothesis. In fMRI experiments, there are largely two

catergories of hypothesis. In task-related fMRI experiments, the aim is to find the

brain regions that are activated/deactivated when a subject peforms certain tasks.

In other words, the experiment tests the hypothesis that a specific voxel (or region)

gets activated/deactivated when the subject performs the tasks. These tests are per-

formed in every voxel (or region) of the brain, and only the statistically significant

parts are regarded as relevant to the task, albeit with some probability of error. This

is same in the resting state context. The hypothesis for the resting state would be

whether the ROI is functionally connected to a specific voxel (or region) or not. If the

test is statistically significant, it would mean that the ROI is functionally connected

to the voxel (or region) to some degree.

Of course, the hypotheses can be more complicated when several signals are involved.

For example, a hypothesis could be that the first signal of interest (i.e. stimulus sig-

nal) has more effect than the second signal of interest (i.e. feedback signal) in certain

region. This would require a significant test for the contrast of the effect sizes, namely

𝛽1 − 𝛽2, where 𝛽1 and 𝛽2 are the parameter estimates for the first and the second

signal of interest, respectively. The null hypothesis, 𝐻0, would be 𝐻0 : 𝛽1 − 𝛽2 = 0

and the alternative hypothesis, 𝐻1, would be 𝐻1 : 𝛽1 − 𝛽2 ̸= 0. In general terms,

c𝛽 is used to denote the contrast of parameter estimates (COPEs), where c is the

1× 𝑝 contrast vector and 𝛽 is the 𝑝× 1 parameter estimates vector. For the example,

c = [1 − 1 · · · , 0] and 𝛽 = [𝛽1, 𝛽2, · · · , 𝛽𝑝]
𝑇 .

For most of the neuroimaging studies, the null hypothesis tests whether a given test

statistic at any specific level, be it a single subject or a whole group, equals 0. It is

definitely possible to have the null hypothesis test the statistic against any non-zero

constant 𝑑. However, this is not used as much in the practice. First, the null dis-
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tribution is different. For example, in case of the T-test, the null distribution would

be noncentral T-distribution with a specific non-centrality parameter. Second, since

the effect size of the experiment is often unknown, it is not trivial what 𝑑 means. In

other words, it is hard to interpret what the absolute value of c𝛽 means. In contrast,

regardless of the units or scale factors, the formulation c𝛽 = 0 is an easily inter-

pretable hypothesis. Therefore, unless the researcher has absolute confidence in what

the effect size and the null hypothesis are, it is advised to design the null hypothesis

to be a comparsion of the test statistic against 0.

To conduct hypothesis testing, one needs to define a test statistic and a sampling

distribution that can be used as a null distribution and from which the threshold

for statistical significance can be calculated. There are two different approaches for

constructing the sampling distribution for the hypothesis testing, parametric and non-

parametric approach. The standard procedure for the hypothesis testing is as follows:

1. Using the General Linear Models (GLM), run regression and obtain the test-

statistic.

2. With the sampling distribution as the null distribution for the hypothesis, calcu-

late the p-value for the test-statistic.

3. If the p-value of the test statistic is lower than the p-value threshold, the result

is statistically signficant and the null hypothesis is rejected. If the p-value is higher

than the threshold, it is not statistically significant.

4. Repeat Step 1-3 for the entire brain voxels (or regions).

There are two important consequences of this general procedure. The first is the

multiple comparisons problem. Since this procedure is repeated many times (typi-

cally as many as the number of voxels), the test statistics of some voxels are expected

to have p-values less than the threshold, making them statistically significant, even

though they are sampled from the null distribution. The second consequence is that

the p-value threshold for the statistical significance needs to be carefully chosen, since
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the significance of the region is sensitive to the threshold. This sensitivity gives rise

to an important question in hypothesis testing - Which level of statistical signficance

should be used for the experiment, to produce the best results?

In Hypothesis Testing context, it turns out that there is no such golden threshold

- there is always a tradeoff between the number of false positives and the number of

false negatives. If the threshold is higher, it is less likely that the null regions (or

voxels) become false positives (Type I Error). At the same time, it is more likely

that the regions where the actual effects exist become false negatives. The logic is

similar for the lower threshold, where the false negative regions are less likely but false

positives are more likely. Figure 2-1 is an example of how different thresholds lead

to different interpretations. This is the Locus Ceruleus seed functional connectivity

contrast image between peri-Dex and pre-Dex for threshold of 𝑧 = 1.5 and 𝑧 = 3.1,

for the left and the right image, respectively. With lower threshold, 𝑧 = 1.5, there is

loss of specificity, due to the increased number of false positive voxels. Surely, we can

conclude that all the blue regions, Posterior Cingulate Cortex, Precuneus Cortex, and

Medial Parietal Frotal Cortex, have decreased functional connectivity with the LC

seed. However, this is a very loose interpretation, due to the lack of specificity. Nev-

ertheless, one can argue that it is a safe conclusion, since despite the false positives, it

is unlikely that there exists regions other than the indicated ones that have decreased

functional connectivity. With higher threshold, 𝑧 = 3.1, the result is very specific

to the posterior cingulate cortex. Nevertheless, this tight threshold could leave out

some regions that are important. The standard significance p-value threshold in the

neuroimaging literature is either 𝑝 = 0.05 or 𝑝 = 0.001, which corresponds to the

z-stat threshold of 𝑧 = 2.3 and 𝑧 = 3.1, respectively, in normal distribution. It is

important to note that in fMRI data analysis, because of the multiple comparisons

problem, 𝑧 = 2.3 and 3.1 are not the final thresholds. In voxel-based correction

scheme, this z-stat significance threshold is increased, whereas in the cluster-based

correction scheme, there is an additional significance threshold for clusters. The de-

tails will be covered in section 2.3.
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In essence, most of the efforts to increase the SNR of fMRI data and produce

Figure 2-1: Functional Connectivity contrast image between peri-Dex and pre-Dex
with Locus Cerulues seed for different thresholds. The left image is thresholded at
𝑧 = 1.5 and the right image is threshold at 𝑧 = 3.1

more accurate results can be traced to trying to solve various problems arising from

the hypothesis testing framework. The issues of temporal autocorrelation are impor-

tant since the test statistic can no longer be assumed to follow the easily computable

and familiar 𝑇 , 𝜒2, or 𝑧 distribution under null hypothesis. Several variants of the

parametric or non-parametric approaches aim to address the null distribution prob-

lem. The multiple comparisons problem arises due to the sheer number of hypothesis

tests. Finally, denoising methods of the fMRI signal aim to produce more accurate

test-statistics, to reduce the number of false positive and false negative regions.

2.1.5 Interpreting the z-stat and functional connectivity

In the resting state paradigm, the z-stat of a voxel/cluster would indicate the sta-

tistical significance of the functional connectivity between that voxel/cluster and the

ROI. This is where the misinterpretation often occurs. If a voxel/cluster passes the

statistical significance threshold, it means that the null hypothesis that the ROI and

the voxel/cluster is not functionally connected can be rejected with high probability.

But this does not clearly tell us to what degree these two are functionally connected,

other than that it is non-zero. Recall that the z-stat (or t-stat for that matter) is
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formed as 𝐶𝑂𝑃𝐸
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐶𝑂𝑃𝐸

. This implies that a high z-stat can be caused by 1) high

COPE, 2) small variance of COPE, or 3) combination of both. This is where the

confusion often arises. Based on the magnitude of the z-stats for each voxel/cluster,

it is tempting to draw conclusions about the strength of the functional connectivity

with the ROI and the rest of the brain, based on the magnitude of the z-stats for

each voxel/cluster. However, one must acknowledge that the variance can be a major

factor influencing the z-stat as well. It could be that a certain region/voxel has high

z-stat as the variance of COPE is really small, when in fact the COPE, the strength of

the functional connectivity, itself is also small. Therefore, it is important to also look

at how the variance of COPEs is distributed throughout the brain - if the variance

is relatively uniform, it will make more sense to draw conclusions about the strength

of the functional connectivity based on the z-stat. Having said this, many literatures

establish the link between the strength of the funtional connectivity and the z-stat.

In the resting state experiments, it is common to see that most of the brain (ex-

cept for the WM and CSF) pass the statistical significance threshold. The left panel

of Figure 2-2 shows the pre condition image of the Dexmedetomidine thresholded

at the initial z-stat of 2.3. There are two probable explanations for this. First, the

BOLD signals are not fully denoised. If there are common noise sources still preva-

lent in the brain, then correlating the BOLD signals of the two regions would result

in spurious correlation and incorrect z-stat. Second, since it is the resting-state, it

could be that the ROI has some degree of intrinsic functional connection to many

parts of the brain. Between the two, the preferred conclusion would be the latter.

Nevertheless, both conclusions emphasizes the importance of the denoising pipeline.

It is customary to increase the significance threshold for better visual representation,

as in the right panel of Figure 2-2, thresholded at 3.1.

2.1.6 Preprocessing

The preprocessing pipeline has numerous steps - Registration & Normalization of

the individual brain to the MNI space, Brain Extraction, Slice Time Correction,
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Figure 2-2: Functional Connectivity image of pre condition with Locus Ceruleus seed
for different thresholds - 2.3 (left) and 3.1 (right)

Dewarping, and etc. Although equally important, these steps will not be mentioned,

as these are widely-accepted standard procedures, common in all variants of the

preprocessing pipelines.

Spatial Smoothing

Spatial smoothing is one of the basic steps in the preprocessing pipeline. Spatial

smoothing is justified by the fact that spatially adjacent voxels are going to be cor-

related with each other when activated/deactivated. There are several reasons why

spatial smoothing can be beneficial.

1) Improvement of SNR - Matched filter theorem: The matched filter the-

orem states that if the filter matches the underlying signal affected by additive noise,

the resulting output of the filter would have the maximum SNR. The spatial smooth-

ing Guassian kernel acts as a filter, in the fMRI context. One could expect that if the

width of the kernel matches the underlying voxel activation extent, maximum SNR

would be achieved. However, spatial smoothing is usually done independently of the

underlying signal, as the extent of the activation is unknown most of the time; in

fact, figuring out the spatial extent of activation is one of the main aims of the data

analysis. One possible solution would be to iteratively run spatial smoothing with

increasing spatial smoothing kernel width to find the optimal width with best SNR.

However, this is unfavorable, since it is computationally expensive and the actual

activation extent varies across different brain regions.
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2) Accommodation of anatomical and functional variations between sub-

jects: Even with the sophisticated normalization and the registration algorithms to

map individual brains to the standard brain template, certain regions are not going to

be mapped to the exact same location in the standard space. This variability can be

ameliorated through spatial smoothing, as it blurs together the signals from adjacent

areas.

3) Making the error distributions more normal: The Central Limit Theorem

(CLT) states that the average of the sum of independent Random Variables tends to

a normal distribution. The spatial smoothing procedure sums up the noise signals

of adjacent voxels, improving the chances of the total noise following a normal dis-

tribution, which would satisfy the statistical assumption for inference of parameter

estimates, as will be noted in the following sections.

4) Gaussian Random Field theory: Gaussian Random Field theory (GRF) is

used to solve the multiple comparisons problem in the parametric approach. One

of the basic assumptions of GRF is uniform smoothness across the brain. Spatial

smoothing thus prepares the data to better satisfy the assumption.

To overcome the limitations of uniform spatial smoothing with the pre-determined

kernel width, adaptive spatial smoothing has been proposed recently, which estimates

the kernel width locally depending on the data and also uses the adaptive Gaussian

Random Field theory to account for non-uniform smoothness [7]. Nevertheless, this

procedure is computationally intensive and the resulting improvement in accuracy

could be marginal.

The main aim of the spatial smoothing should be the reduction of the individual

variability. The degree to which the other potential effects are effective, such as

increasing SNR of the data, making the error distribution closer to the normal dis-

tribution and smoothing the BOLD data to satisfy the GRF assumption, remains

unclear. This is because the underlying signal is noisy and its properties, the spatial

extent and smoothness, are hard to estimate. As will be discussed later, the uni-

27



form spatial smoothing is not always desired, especially for the analyses involving the

brainstem, where the conventional kernel width might be too big for brainstem nuclei

[8]. The issue of not satisfying GRF can be overcome by using the nonparametric

approach, which makes weak distributional assumption about the data.
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2.2 General Linear Model & Signal Processing

2.2.1 General Linear Model (GLM)

The General Linear Model (GLM) is a statistical linear model that incorporates a

number of different statistical models such as ANOVA, ordinary linear regression,

t-test and F-test. The framework is flexible enough that it can be used in multi-level

analysis, from the subject level (referred to as 1st-level) to the group level (2nd or

3rd level). This makes GLM a crucial component in fMRI statistical analysis. A

canonical form for GLM is given as,

𝑌 = 𝑋𝛽 + 𝜀 (2.2)

where 𝑌 is 𝑁 ×1 vector, 𝑋 is a 𝑁 ×𝑝 design matrix with each column corresponding

to a regressor, 𝛽 = [𝛽1, 𝛽2, · · · , 𝛽𝑝]
𝑇 is a 𝑝× 1 vector with each element corresponding

to a parameter estimate of the corresponding regressor, and 𝜀 is the residual error

vector. In statistics, 𝑌 is referred as a dependent variable and each column of 𝑋 is

referred as an independent variable. In neuroimaging context, 𝑌 corresponds to the

target signal, such as the BOLD signal of a target voxel. It is easy to see that 𝑁 is the

repetition time, or TR. Design matrix 𝑋 contains two types of regressors: Regressors

of interest and nuisance regressors.

Design matrix regressors

The Regressors of interest refer to the signals for which the parameter estimates

are desired, for further statistical analysis. In task-based fMRI, the reference signal

obtained from convolving stimulus timeline and the canonical HRF would be the re-

gressor of interest. In the resting state fMRI, BOLD signal extracted from the ROI

would be the regressor. The role of the nuisance regressors is to regress out noise

from the BOLD data for more accurate parameter estimates of the regressors of in-

terest. These nuisance regressors can include all kinds of signal that the experimenter

regards as noise. In fMRI, typical nuisance regressors include motion related regres-
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sors, physiological noise, and linear detrending regressor.

1) Motion regressors: Head movement is common in fMRI studies, due to res-

piratory movements or subjects moving slightly out of discomfort. These movements

produce motion artifacts in BOLD timeseries and are known to have nonlinear effects

on different parts of the brain. To remove the motion artifacts, various motion related

regressors are used in the literature. The simplest and the effective way is to include

six motion regressors that contain information on how much a subject has moved and

rotated between each scan, relative to a reference frame (typically chosen to be the

first or the middle scan) in 𝑥, 𝑦, 𝑧 direction and around these three axes, respectively.

This set of regressors could easily be extended to a set of twelve regressors, by adding

temporal derivatives of each of six motion regressors. The additonal temporal deriva-

tives add information of how much the subject has moved at each timeframe relative

to the previous one.

2) Physiological noise regressors: Physiological noise is one of the most domi-

nant noise sources for mainly two reasons. First, it affects the entire brain. Second,

it has been observed that power of the physiological noise is proportional to the fMRI

magnetic field, 𝐵0, whereas that of other noise sources, such as thermal noise, is

proportional to the square root of 𝐵0 [9]. Physiological noise typically consists of

fluctuations due to cardiac and respiratory functions, and is also known to include

interaction terms between these processes.

3) Linear detrending regressor: The fMRI scanner is known to have linearly in-

creasing magnetic field during the experiment, due to equipment imperfections. This

effect is easily accounted for in either of the two ways: By including a linear detrend-

ing regressor in the design matrix, or by high pass filtering BOLD timeseries. Since

the norm of a regressor is not important for regression, the linear detrending regressor

could simply be 𝑥𝑙𝑖𝑛𝑒𝑎𝑟 = [1, 2, 3, · · · , 𝑁 ]. Although the cut-off frequency for high pass

filtering depends on the number of scans, the conventional cut-off is ∼ 0.0083 (𝐻𝑧),

30



which is equivalent to including a linear detrending regressor for 𝑁 = 120 scans, as
1

120
= 0.0083.

Figuring out better ways to account for the motion artifacts and the physiological

noise is an active research topic in the neuroimaging fields, as will be discussed in

the following sections. It is interesting to note that, in addition to signal processing

and statistical analysis expertise, machine learning algorithms are beginning to be

utilized for effective and accurate noise removal.

GLM solutions

Ideally, we want the estimated 𝑌 = 𝑋𝛽 to be as close to 𝑌 as possible. The mean

squared error, or 𝐸[(𝑌 −𝑌 )𝑇 (𝑌 −𝑌 )], is the most popular choice for quantifying the

closeness of 𝑌 and 𝑌 . One of the reasons for popularity is the Gauss-Markov theorem,

which will be covered in the following subsection. Another reason is that this error

criterion allows for vector representations of the regressors, which brings intuitive

interpretation of the regression procedure. For now, let’s assume that 𝑌 − 𝑌 = 𝜀 is

uncorrelated and have homogeneous variance 𝜎2 for each TR, or in other words, that

the variance-covariance matrix is
∑︀

= 𝜎2𝐼, where 𝐼 is the identity matrix. Using the

least squares method, we can get 𝑐𝛽 and 𝑣𝑎𝑟(𝑐𝛽), as follows.

𝑐𝛽 = 𝑐(𝑋𝑇𝑋)−1𝑋𝑇𝑌

𝑣𝑎𝑟(𝑐𝛽) = �̂�2𝑐(𝑋𝑇𝑋)−1𝑐𝑇

�̂�2 =
(𝑌 −𝑋𝛽)𝑇 (𝑌 −𝑋𝛽)

𝑇 − 𝑝

(2.3)

Since 𝜎2 is rarely known a-priori, �̂�2 is used instead, which is estimated from the data.

This estimation results in a tradeoff between the number of regressors, or the Degree

of Freedoms (DOF), and the variance �̂�2. It might be tempting to include as many

nuisance regressors, to account for more possible noise sources in the experiment.

However, this is not possible due to the formulation of �̂�2. One simple observation is

that the number of regressors cannot be more than the number of TRs, since otherwise
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𝑇 − 𝑝 and �̂�2 will be negative. If adding an additional set of nuisance regressors can

account for the unexplained noise variance effectively so that the reduction in the

denominator, (𝑌 − 𝑋𝛽)𝑇 (𝑌 − 𝑋𝛽), can outweigh the reduction in the numerator,

𝑇 − 𝑝, it is recommended. However, if the additional set of regressors does not

provide much explanatory power, the reduction in 𝑇 −𝑝 due to increased 𝑝 will result

in increased �̂�2, contrary to what is desired. Therefore, it is important to carefully

examine each individual nuisance regressor’s quality and check for the colinearity

between them. If there is colinearity between a pair of regressors, meaning that the

two regressors are highly correlated, one might be better off including only one of the

two regressors, for more DOF.

2.2.2 Temporal Autocorrelation

It is desirable to have the estimated error variance, �̂�2, as small as possible. Larger

error variance would indicate that the estimate is suboptimal even if it is unbiased.

Therefore, if Minimum Variance Unbiased Estimator (MVU Estimator) of 𝛽 could

be found, we could be confident that the resulting 𝑐𝛽 is the best estimate possible.

Within the GLM framework, the famous Gauss-Markov Theorem states that if the

residual errors in the linear regression model are unbiased, uncorrelated, and have

homogeneous variances, the least squares estimator is the MVU estimator.

However, in fMRI context, the uncorrelated error assumption is almost always vi-

olated. The BOLD signal is autocorrelated, and the resulting residual error is higly

likely to be autocorrelated. In this case, the COPE and the variance of the COPE

take the following form, for the error variance-covariance matrix �̂�2𝑉 :
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𝑐𝛽 = 𝑐(𝑋𝑇𝑉 −1𝑋)−1𝑋𝑇𝑉 −1𝑌

𝑣𝑎𝑟(𝑐𝛽) = 𝑐(𝑋𝑇𝑉 −1𝑋)−1𝑐𝑇 �̂�2

�̂�2 =
(𝑌 −𝑋𝛽)𝑇𝑉 −1(𝑌 −𝑋𝛽)

𝑇 − 𝑝

(2.4)

This setup, where 𝑉 ̸= 𝐼, is called the General Least Squares (GLS), as opposed to

the Ordinary Least Squares (OLS) where 𝑉 = 𝐼. One immediate question is whether

there is any assurance that the GLS solution 𝑣𝑎𝑟(𝑐𝛽) is indeed the minimum variance.

To answer this, we slightly take a detour and look at the prewhitening method used

to mitigate the temporal autocorrelation problem.

Prewhitening method

The autocorrelation in the residual error vector, 𝜀, violates the Gauss-Markov theo-

rem, preventing any conclusion about the minimality of the variance. The prewhiten-

ing method aims to solve this by transforming the autocorrelated residual error to

an uncorrelated error vector, to satisfy the conditions for the Gauss-Markov theorem.

Let 𝐾 be a matrix that satsifies 𝐾𝑉𝐾𝑇 = 𝐼, where the error variance-covariance ma-

trix is 𝜎2𝑉 , as defined previously. We can observe that 𝐾 is the desired prewhitening

matrix:

𝑐𝑜𝑣(𝐾𝜀) = 𝐸[𝐾𝜀𝜀𝑇𝐾𝑇 ]

= 𝐾𝐸[𝜀𝜀𝑇 ]𝐾𝑇 = 𝜎2𝐾𝑉𝐾𝑇 = 𝜎2𝐼
(2.5)

Now, we have the following formulation for the GLM:

𝑌 = 𝑋𝛽 + 𝜀

⇒ 𝐾𝑌 = 𝐾𝑋𝛽 +𝐾𝜀

⇒ 𝑌 ′ = 𝑋 ′𝛽 + 𝜀′

(2.6)
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Since 𝜀′ now satisfies the Gauss-Markov theorem, we have the COPEs and the

variance of COPEs as follows:

𝑐𝛽𝑝𝑟𝑒𝑤ℎ𝑖𝑡𝑒𝑛 = 𝑐
(︀
𝑋 ′𝑇𝑋 ′)︀−1

𝑋 ′𝑌 ′

= 𝑐
(︀
(𝐾𝑋)𝑇 (𝐾𝑋)

)︀−1
(𝐾𝑋)𝑇 (𝐾𝑌 )

= 𝑐
(︀
(𝐾𝑋)𝑇 (𝐾𝑋)

)︀−1
(𝐾𝑋)𝑇𝐾𝑋𝑋𝑇 (𝑋𝑋𝑇 )−1𝑌

= 𝑐
(︀
(𝐾𝑋)𝑇 (𝐾𝑋)

)︀−1 (︀
(𝐾𝑋)𝑇 (𝐾𝑋)

)︀
𝑋𝑇 (𝑋𝑋𝑇 )−1𝑌

= 𝑐𝑋𝑇 (𝑋𝑋𝑇 )−1𝑌

= 𝑐(𝑋𝑇𝑋)−1(𝑋𝑇𝑋)𝑋𝑇 (𝑋𝑋𝑇 )−1𝑌

= 𝑐(𝑋𝑇𝑋)−1𝑋𝑇𝑌

(2.7)

𝑣𝑎𝑟(𝑐𝛽𝑝𝑟𝑒𝑤ℎ𝑖𝑡𝑒𝑛) = 𝑣𝑎𝑟(𝑐
(︀
𝑋 ′𝑇𝑋 ′)︀−1

𝑋 ′𝑌 ′)

= 𝐸
[︁
𝑐
(︀
𝑋 ′𝑇𝑋 ′)︀−1

𝑋 ′𝑌 ′
(︁
𝑐
(︀
𝑋 ′𝑇𝑋 ′)︀−1

𝑋 ′𝑌 ′
)︁𝑇 ]︁

= 𝑐
(︀
𝑋 ′𝑇𝑋 ′)︀−1

𝑋 ′𝐸
[︁
𝑌 ′𝑌 ′𝑇

]︁ (︁(︀
𝑋 ′𝑇𝑋 ′)︀−1

𝑋 ′
)︁𝑇

𝑐𝑇

= 𝑐
(︀
𝑋 ′𝑇𝑋 ′)︀−1

𝑋 ′𝐾𝑉𝐾𝑇
(︁(︀

𝑋 ′𝑇𝑋 ′)︀−1
𝑋 ′

)︁𝑇

𝑐𝑇

= 𝑐
(︀
𝑋 ′𝑇𝑋 ′)︀−1

𝑋 ′
(︁(︀

𝑋 ′𝑇𝑋 ′)︀−1
𝑋 ′

)︁𝑇

𝑐𝑇

= 𝑐
(︀
(𝐾𝑋)𝑇 (𝐾𝑋)

)︀−1
𝑐𝑇

(2.8)

Due to the Gauss-Markov theorem, 𝑣𝑎𝑟(𝑐𝛽𝑝𝑟𝑒𝑤ℎ𝑖𝑡𝑒𝑛) is the minimum variance. One ob-

servation is that 𝑐𝛽 and 𝑣𝑎𝑟(𝑐𝛽) in (2.4) are the same as 𝑐𝛽𝑝𝑟𝑒𝑤ℎ𝑖𝑡𝑒𝑛 and 𝑣𝑎𝑟(𝑐𝛽𝑝𝑟𝑒𝑤ℎ𝑖𝑡𝑒𝑛)

in (2.7) and (2.8). Since they are the same, 𝑣𝑎𝑟(𝑐𝛽) would be the minimum variance.

But how do we estimate 𝑉 ? The discussion so far is based on the assumption that

we can estimate 𝑉 . Estimating the autocorrelation structure based on the data is

an active research part, which is out of scope of this work. The widely accepted

concept, with regards to fMRI in particular, is that the noise could be modelled with
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ARMA(1,1) model, or AR(1) + white noise [10]. This also agrees well with the ini-

tial study on exploring the structure of the fMRI noise in the resting state, where

the noise was observed to follow 1/𝑓 structure. More sophisticated approach utilizes

band-pass filtering in addition to ARMA models.

All of the previous discussion points to a question of how the temporal autocor-

relations at the subject level get propagated to the higher level. Although it is hard

to exactly quantify how 𝑉 affects the outcome, we can use insights from the formulas

to make predictions for the group level, as will be discussed in section 2.4 .

2.2.3 Common misconceptions in GLM

Insufficient understanding of the GLM framework often leads to several misinterpre-

tations of the results, which has become quite a problem in neuroimaging literature.

In this section, we briefly go over how the linear regression is performed and what the

implications are for issues of colinearity, orthgonalization, and other misconceptions

in neuroimaging literature.

How Linear Regression is performed

The conventional proof of obtaining parameter estimates 𝛽 = [𝛽1, 𝛽2, · · · , 𝛽𝑝], which

involves partial differentiation to minimize the mean squared error, can obscure the

intuitive interpretation of linear regression. Instead, we view it from the geometric

perspective, under the name of Regression by Successive Orthogonalization [11]. The

basic idea is that the parameter estimate 𝛽𝑗 for the 𝑗th regressor, xj, is essentially

the same as the regression coefficient for the univariate linear regression of 𝑦 onto zj,

where zj is the result of regressing out other 𝑝−1 regressors x1, · · · ,xj−1,xj+1, · · · ,xp

from xj. In this case, 𝛽𝑗 would simply be

𝛽𝑗 =
⟨zj,y⟩
⟨zj, zj⟩

(2.9)
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The algorithm, which is also known as the Gram-Schmidt prodcedure for multiple

regression, could formally be written as follows. For notational convenience, let 𝛽𝑝 be

the parameter to be estimated. Then,

1. Initialize z0 = x0 = 1

2. For 𝑗 = 1, 2, · · · , 𝑝,

Regress xj on z0, z1, · · · , zj−1 to get

1) Coefficients 𝜃𝑘𝑗 =
⟨zk,xj⟩
⟨zk,zk⟩

for 𝑘 = 0, · · · , 𝑗 − 1.

2) Residual vector zj = xj −
∑︀j−1

k=0 𝜃kjzk

3. Regress y onto zp, to get 𝛽𝑗 =
⟨zj,y⟩
⟨zj,zj⟩

.

Note that xp can be any regressor for which we would like to get the parameter

estimate of, since the order of the regression is irrelevant. In other words, 𝛽𝑗 rep-

resents the unique contribution of xj on y, after xj has been adjusted for all other

regressors x0,x1, · · · ,xj−1,xj+1, · · · ,xp. This interpretation of multiple linear regres-

sion allows us to address common misinterpretations.

Figure 2-3 is a vector diagram that pictorally explains the scheme. 𝑌 is the vector

representation of the target signal and 𝑋1 and 𝑋2 are the regressors. For simplicity,

let’s assume that 𝑌 = 𝛽1𝑋1+𝛽2𝑋2 = 𝑋1+𝑋2, where 𝛽1 = 𝛽2 = 1. b) and c) explain

how regression is performed for each regressor. In b), 𝑋2 is regressed against all other

regressors, 𝑋1 in this case, resulting in 𝑋 ′
2 = 𝑋2 − ⟨𝑋2,𝑋1⟩

⟨𝑋1,𝑋1⟩𝑋1. Finally, 𝑌 is regressed

against 𝑋 ′
2, which yields 𝛽2 =

⟨𝑌,𝑋′
2⟩

⟨𝑋′
2,𝑋

′
2⟩

= 1. The same procedure is applied in c), and

the result is 𝛽1 =
⟨𝑌,𝑋′

1⟩
⟨𝑋′

1,𝑋
′
1⟩

= 1. The results indicate that 𝛽1 = 𝛽1 = 1 and 𝛽2 = 𝛽2 = 1,

as expected.

Resting state ROI signal

One of the confusions in fMRI arises when extracting the signal from ROI in resting

state experiments. Since the ROI signal is used as a reference signal, it can easily

be thought that the ROI signal should be fully denoised. Therefore, the nuisance re-
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Figure 2-3: Regression scheme for Regression by Successive Orthogonalization

gressors would have to be regressed out from the brain prior to the extraction of the

ROI signal. However, we can see that this is not necessary, if we are interested only

in 𝛽𝑅𝑂𝐼 . Even if the ROI signal contains various noise components, the parameter

estimate for the ROI signal, 𝛽𝑅𝑂𝐼 , would only represent the contribution of xROI ad-

justed to all other regressors, the nuisance regressors. In other words, if the nusiance

regressors are correctly set up, 𝛽𝑅𝑂𝐼 would only be relevant to the neuronal BOLD

signal of the ROI, as desired.

Figure 2-4 is a vector diagram with the same vectors as in Figure 2-3. Without loss

of generality, let us assume that 𝑋1 is the nuisance regressor and 𝑋2 is the regressor

of interest. The first step, depicted in b), is to regress 𝑌 against 𝑋1, which returns

the residual vector 𝑅1 = 𝑌 −𝑋 ′
1 = 𝑌 − ⟨𝑌,𝑋1⟩

⟨𝑋1,𝑋1⟩𝑋1 and 𝛽1 =
⟨𝑌,𝑋1⟩
⟨𝑋1,𝑋1⟩ > 1. One impor-

tant point is that 𝑋2 is also regressed against 𝑋1 in the process, as the scheme is to

regress 𝑋1 against the entire brain signal, meaning that 𝑋2, the ROI signal, is also

affected. The regression yields 𝑋 ′
2 = 𝑋2− ⟨𝑋2,𝑋1⟩

⟨𝑋1,𝑋1⟩𝑋1. The next step, depicted in c), is

essentially regressing 𝑅1 = 𝑌 −𝑋 ′
1 against 𝑋

′
2. It is easy to see that 𝑅1 = 𝑋 ′

2, yielding
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Figure 2-4: Regression scheme which regresses out the nuisance regressors (regressors
of no interest) first

𝛽2 = 1. Although 𝛽1 is different from that of the previous example, it is important to

observe that 𝛽2 is the same. This is because from the 𝑋2 perspective, the procedures

to obtain 𝛽2 are the same in both cases. 𝛽1 is increased in this example, as the shared

variability between 𝑋1 and 𝑋2, which is the noise, is soaked up into 𝑋1. Since we

are only interested in the parameter estimate for the regressor of interest, 𝛽2, the

value of 𝛽1 is irrelevant. In general, the COPE, 𝑐𝛽, would be the same in these two

approaches. This has important implication for manually orthogonalizing regressors,

which will be discussed in the following section.

There are indeed cases when noise-free ROI signal is desired and hence nuisance

factors need to be regressed out from the brain first. If the intention is to examine

the Pearson correlation measure between the ROI signal and the BOLD signal of a

target voxel, one would want the reference ROI signal and the target voxel signal to

be as uncontaminated as possible. This approach is used frequently in the studies of

correlated/anti-correlated networks of the resting state brain [12]. If this approach is

to be used for further group analysis, one needs to be careful when calculating the
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variance of the COPEs. In this case, the design matrix would only contain the ROI

signal, which might falsely lead the user (or the program) to assume that the Degree

of Freedom is 𝑇 − 1, when in fact it is 𝑇 − 𝑝. This would result in smaller variance of

the COPEs, and increased test statistics, yielding higher number of false positives.

Orthogonal regressors

Another misinterpretation in the neuroimaging literature is that the orthogonaliza-

tion of regressors is recommended to avoid colinearity between the regressors. In

popular fMRI softwares, such as SPM and FSL, there are options to orthogonolize

the regressors. To see why orthogonalization might lead to misinterpretation, let’s

think of two cases: 1) Orthogonalize all other regressors with respect to x𝑅𝑂𝐼 . 2)

Orthogonalize x𝑅𝑂𝐼 with respect to all other regressors.

In the first case, it is true that the ROI signal is now uncorrelated to the other

orthogonalized nuisance regressors. However, this means that the shared variability

between the ROI signal and other nuisance regressors, which caused the correlations

between the signals in the first place, would be fully soaked up by the ROI signal.

Thus, the orthogonalized nuisance regressors would not be able to denoise the ROI

signal. 𝛽𝑅𝑂𝐼 would then indicate the regression coefficient for the ROI signal + noise

signal in the ROI, instead of the ROI signal denoised with the nuisance regressors,

which is not the desired estimate.

In the second case, the resulting ROI signal is indeed noise-free and thus its shared

variability with other regressors would have been soaked in by others. 𝛽𝑅𝑂𝐼 would now

represent the desired quantity. Nevertheless, this is exactly what would be obtained

through the Gram Schmidt procedure. Therefore, orthogonalization is redundant in

this case.

It is important to realize that regardless of which regressor the rest of the regres-

sors are orthogonalized against, the overall prediction, Ŷ = 𝑋𝛽 will be the same,
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although X and 𝛽 will change according to the orthogonalization scheme. Different

orthogonalization schemes simply correspond to different ways to assign shared vari-

abilities among different parameter estimates, 𝛽𝑖s. If the goal of the linear regression

is to find the best estimate of the dependent variable Ŷ, then orthogonalization is not

required at all. However, if the goal is to get the parameter estimate for some regres-

sor 𝛽𝑖, different orthgonalization schemes would produce different estimate. Thus,

orthgonalization is not recommended, unless there is a strong argument for it.

Nuisance regressors

Other than the motion regressors, which are derived from the external measurements,

the nuisance regressors are extracted from the noise ROIs such as Cereberal Spinal

Fluid (CSF) and White Matter (WM). It is important to ensure that these regions are

unlikely to include neuronal BOLD signals from the adjacent Gray Matter regions.

If there is a contamination, the estimation of 𝛽𝑅𝑂𝐼 will be less accurate. With other

regressors containing parts of x𝑅𝑂𝐼 , the unique contribution of x𝑅𝑂𝐼 on Y adjusted

to other regressors would be misrepresented, due to other regressors containing parts

of x𝑅𝑂𝐼 . Recall that the reciprocal contamination, nuisance signals included in the

ROI signal, is not as serious, since the noise would be taken into account when x𝑅𝑂𝐼

is computed.

This is why extra care must be put into defining the noise ROI masks. If the masks

include the voxels on the boundary regions of WM and GM, or CSF and GM, it is

likely that the neuronal signals would be present in these voxels after spatial smooth-

ing. There are several ways to mitigate this. The simplest and common procedure is

to erode the noise ROI masks to ensure that the confounding voxels are not included.

Another possibility is to extract nuisance signal from unsmoothed noise ROI. This is

particularly effective when the noise ROI is so small, such as the 4th ventricle region,

that erosion of the mask is unfavorable.
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2.2.4 White & Gaussian Noise

One important class of concepts that are often misunderstood is Gaussian noise and

White noise. Gaussian noise is concerned with the amplitude of the noise at the given

point, assuming that the noise amplitude is sampled from the Gaussian distribution.

Gaussian noise in neuroimaging literature is important mainly for two reasons. First,

due to the Central Limit Theorem (CLT), the sum of many independent noise sources

can be treated as having a Gaussian Distribution. Since it is impossible to account for

all possible noise sources affecting the signal, the remaining noise sources after remov-

ing physiological, movement, and scanner noise are treated as a single noise source

following the Gaussian distribution. As it is reasonable to assume that there are

many unaccounted independent noise sources, the Central Limit Theorem provides

the justification for the Gaussian noise. The second importance arises in parametric

model context, which will be addressed in later sections.

On the other hand, the white noise is about the temporal characteristic of the noise,

and states that the noise is temporally uncorrelated with itself. It is best character-

ized by its power spectrum being flat throughout the whole frequency (or to be more

precise, within the bandwidth of interest). Its importance arises in the parametric

model context, as with the Gaussian noise. The parametric approach is predicated

on the assumption that the test statstic follows a certain parametric distribution,

namely the t-distribution. For this assumption to hold, the residual error, or the

residual noise after regression, needs to be normally distributed and temporally un-

correlated, or in other terms, needs to be Gaussian White noise.

The common confusion between the two different terms leads to these being used

interchangeably. For instance, the measurements of fMRI scanner noise indicate that

the noise spectra is flat enough, that it can be approximated as a white noise [13].

However, this is not an indication that the scanner noise is a Gaussian noise.
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2.2.5 Physiological Noise Correction

There are several ways to remove the physiological noise which, along with the move-

ment artifacts, confounds the outcome. Although different, the majority of the de-

noising methods are based on a common observation that the noise ROIs are unlikely

to contain any neuronal signals. Therefore, whatever BOLD signal is captured in

these regions, it is very likely that it is an aggregate of noises from several inde-

pendent sources, such as cardiac, respiratory response, thermal noise, and even head

movements. It is certainly possible for the BOLD signal in noise ROIs, especially on

the boundaries, to contain some neuronal signals leaked from the neighboring Gray

Matter (GM). For this reason, it is important to run physiological noise correction

procedures only on the subregions of noise ROIs not close enough to GM.

Averaged WM/CSF regressors

This is the simplest method for removing the physiological noise. As the name sug-

gests, the nuisance regressors are obtained from averaging BOLD signals of all the

voxels in the noise ROIs. Usually, one is obtained from WM region and the other

from CSF region, thus producing two nuisance regressors in total. These regressors

are shown to capture the representative noise in each ROI relatively well without

reducing DOF by much (in this case, only two DOF reduction). Also, due to simple

implementation, this method has been dominant for a few decades.

The biggest weakness of the method is that it collapses different BOLD signals from

thousands of voxels into one averaged signal. This would work fine if the BOLD signals

in the noise ROIs are in phase, which is rarely the case, due to the nonlinear effects

of physiological noise and motion. If not, this would lead to constructive/destructive

interference when averaging the signals, producing ineffective nuisance regressors.
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Bandpass Filtering

Since the cardiac and respiratory movements are quite regular throughout the exper-

iment, the spectrum of BOLD signal affected by the physiological noise would ideally

have two peaks, corresponding each to cardiac and respiratory source. In this case,

these signals could be bandpass filtered, producing the physiological noise free BOLD

signal. However, this approach is infeasible, as the usual TR value (2∼3 seconds)

results in low Nyquist frequency, much lower than where the physiological noises are

expected to exist. As a result, the physiological noises are aliased to lower frequen-

cies. This is compounded by the fact that there are overwhelming evidences that

the resting state brain maintains its functional connectivity between the regions us-

ing low-frequency signals (∼ 0.1 Hz). As such, bandpassing the suspected frequency

band to remove the phsyiological noise in the low frequency is also likely to remove

the signal of interest. Moreover, recent studies show that there are interactions be-

tween the cardiac and respiratory systems, such as increased cardiac output during

inspiration (respiratory pump) and changes in CSF flow, which are observed to lie

in different frequency bands other than cardiac and respiratory signals [14]. The

interactive term further complicates the bandpass filtering procedure.

CompCor (Component-based Correction)

CompCor uses Principal Component Analysis (PCA) to extract more information

than just the averaged signal from the noise ROIs [15]. PCA is used on the variance-

convariance matrix of the noise ROI data to calculate eigenvalues and the corre-

sponding eigenvectors. Typically, five eigenvectors (Principal Components) with the

biggest eigenvalues are included as the nuisance regressors. With the five regressors

each from CSF and WM, this amounts to ten physiological nuisance regressors.

Previous results show that these principal component regressors show similar perfor-

mance in capturing respiratory and cardiac signals, compared to the RETROICOR.

In addition, the method has also been shown to regress out nonlinearity caused by

the motion artifacts reasonably well.
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The previous works on CompCor does not attempt to explain why the noise ROI

principal components are effective in capturing the noise signal. Explaining the ef-

fectiveness of PCA is one of the main focus of the thesis.

RETROICOR

The RETROICOR method utilizes physiological recording to subtract the physiolog-

ical noise from fMRI signal [16]. Photoplethysmogram is used to monitor the cardiac

cycles and pneumatic belt is used to capture the respiratory cycles. These infor-

mation are used to construct low order Fourier series to represent the physiological

signals. Despite its simplicity, RETROICOR has maintained its status as the most

effective method to account for the physiological noise, should the monitoring tools

be available throughout the experiment.
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2.3 Multiple Comparisons

The multiple comparisons problem arises as there are too many hypothesis tests to be

performed within a single image, as many as the number of voxels in the image, if the

tests are voxel-based. Even if we assume that every voxel response follows the null

distribution, if the significance threshold is 𝛼, there will be (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠)× 𝛼

false positive (Type I Error) voxels by chance. This is troublesome, when there are

activated voxels, as it would be difficult to distinguish the voxels from the false posi-

tive voxels. The multiple comparisons problem arises in numerous different contexts,

and thus has occupied interests of many statisticians over the past decades. Among

several measures, Family-wise error rate (FWER) is the most widely used measure

and thus will be the central focus of the section.

In fMRI context, there are two important aspects to consider. The first is the basic

unit on which the hypothesis testing is performed. The unit could be each individual

voxel in the image, which requires as many tests as the number of voxels in the im-

age. The unit could also be a cluster formed by adjacent suprathreshold voxels (the

threshold is manually defined), which requires much less tests than the voxel case,

but requires sophisticated mathematics for analysis. The second aspect is choosing

between the parametric and non-parametric approach. The aim of this section is to

explore how the hypothesis tests for both cases are dealt with, in both the parametric

and non-parametric contexts.

2.3.1 Family-wise error rate (FWER)

The conventional p-value 𝛼 will result in non-trivial number of false positives when

there are many multiple comparison tests to be done. Therefore, 𝛼 needs to be read-

justed to exhibit tighter control over the number of false positive voxels or clusters.

Family-wise error rate (FWER), 𝛼𝐸, controls the probability of there being at least

one false positive result in the entire family of hypothesis tests. In fMRI context,

the family of tests would refer to the collection of hypothesis tests carried out the
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whole brain. It is a very stringent measure, especially for a voxel case, since out of

106 voxels, we are controlling the probability of there being at least one false pos-

itive voxel to be low, typically 0.05. As can be seen in following subsections, as a

result of the stricter control over the entire family, the adjusted individual p-value

𝛼 will become really small, resulting in high significance threshold. For example, let

𝐹𝑊𝐸𝑅 = 𝛼𝐸 = 0.05 and there are 106 voxels in the brain. The adjusted 𝛼 or the

corrected 𝑝-value would now be 𝛼 = 5× 10−8, which is much stricter than the usual

𝛼 = 0.05.

2.3.2 Voxel test

Parametric approach - Sidak Correction & Bonferroni Correction

Putting the fMRI context aside for a bit, let’s assume that there are 𝑚 independent

hypothesis tests in the family and we want to control FWER, 𝛼𝐸, by adjusting the

individual voxel hypothesis threshold 𝛼. Notice that

𝑃 (𝐹𝑊𝐸𝑅) = 𝛼𝐸 = 𝑃 (𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 1 𝐹𝑃 𝑖𝑛 𝑡ℎ𝑒 𝐹𝑎𝑚𝑖𝑙𝑦)

= 1− 𝑃 (0 𝐹𝑃 𝑖𝑛 𝑡ℎ𝑒 𝐹𝑎𝑚𝑖𝑙𝑦)
(2.10)

Note that Sidak Correction is concerned with the omnibus null hypothesis, where all

the data are assumed to be drawn from null distribution and thus there are 𝑚 number

of null hypothesis beinging tested. Since the probbility that a single voxel drawn from

the null distribution is not false positive is 1−𝛼, or 𝑃 (𝑡ℎ𝑒 𝑣𝑜𝑥𝑒𝑙 𝑖𝑠 𝑛𝑜𝑡 𝐹𝑃 ) = 1−𝛼,

we have

𝑃 (𝐹𝑊𝐸𝑅) = 𝛼𝐸 = 1− (1− 𝛼)𝑚

⇒ (1− 𝛼)𝑚 = 1− 𝛼𝐸

⇒ 𝛼 = 1− (1− 𝛼𝐸)
1
𝑚

(2.11)
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Obviously, this is only one of numerous possibilities, as some voxels are bound to have

true signal that are not from null distributions. In these voxels, 𝑃 (𝑡ℎ𝑒 𝑣𝑜𝑥𝑒𝑙 𝑖𝑠 𝑛𝑜𝑡 𝐹𝑃 ) =

1, since these voxels cannot be false positives. To control for the case in which only

𝑚0 voxels out of 𝑚 voxels are from the null distribution,

𝛼𝐸 = 1− 𝑃 (0 𝐹𝑃 𝑖𝑛 𝑡ℎ𝑒 𝐹𝑎𝑚𝑖𝑙𝑦) = 1− (1− 𝛼′)𝑚0

⇒ 𝛼′ = 1− (1− 𝛼𝐸)
1

𝑚0 ≥ 𝛼 = 1− (1− 𝛼𝐸)
1
𝑚

(2.12)

Since 𝛼′ ≥ 𝛼, and thus the significant threshold for 𝛼′ is lower than that for 𝛼, we

have less strict control as a result of knowing 𝑚0. This is nearly impossible, as we

do not know exactly how many voxels are going to be from null distribution before

running the experiment. Nevertheless, what we do know is that regardless of the

value of 𝑚0, 𝛼′ ≥ 𝛼 always holds. No matter what the actual number of "true" voxels

is in the image (from 0 to all voxels in the image), setting the adjusted p-vlaue to be

𝛼, calculated assuming that every voxel is drawn from the null distribution, ensures

that the FWER will be kept below 𝛼𝐸. This is why the Sidak Correction is termed

as a strong control of FWER.

This is a parametric approach, as the p-value is converted to the corresponding sig-

nificance threshold according to the parametric null distribution, which most likely

would be the z distribution. The voxels that pass this threshold can be treated sta-

tistically significant, adjusted for multiple comparisons.

However, the Sidak correction is not as practical in fMRI context. The basic as-

sumption of the Sidak Correction is that the tests need to be independent of each

other. However, the tests in voxels cannot be independent, especially if the voxels are

close to each other, for various reasons. First, an activated brain region already im-

plies that the voxels in the region are activated/deactivated together, not independent

from each other. Second, due to the several procedures in preprocessing, especially

spatial smoothing, the BOLD signals in the voxels are bound to be correlated with
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each other to some degree. This makes it hard to determine the number of indepen-

dent hypothesis tests, which is the fundamental assumption of the Sidak Correction.

This is why the multiple comparisons solutions for clusters are preferred over those

for the voxels. Having stated this, lots of literature still use the Sidak correction in

the form of voxel-wise correction.

Non-parametric approach

The basic idea of the nonparametric approach is to minimize the distributional as-

sumptions about the data, by constructing the reference null distribution from the

given data. Recall that in the parametric approaches, parametric distributions such

as t-distribution and 𝜒2 distribution were used as the reference null distribution. The

main idea for the nonparametric approach is that if the data are sampled from the

null distribution, even if the data are shuffled, the newly computed test statistic for

the shuffled data would still be statistically insignificant.

Another important advantage of the nonparametric approach is that the test statis-

tic does not have to be standard, meaning that closed mathematical form needs not

exist. In imaging context, this can range from the standard t-statistic or cluster size,

to the non-standard statistic such as cluster-mass, pseudo t-statistic, and threshold-

free cluster enhancement statistic. The only requirement is that these quantities be

pivotal statistics [18].

It is important to define how the test statistics are to be computed for each iter-

ation, or more explicitly, how the existing data is going to be exploited. The most

dominant procedure in the field is randomize, or shuffling, the existing data - it is

hard to find works using Bootstrapping, also a very popular framework in general

nonparametric context, in neuroimaging studies. In the single subject context, the

BOLD signals across TRs within each voxel are shuffled to produce new test statis-

tic for each iteration. This is a reasonable choice, as the new test statistic of the

shuffled data should not be statistically significant, if the voxel were in the null con-
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dition. These test statistics, collected from entire iteration, are used to construct the

null distribution from which the significance threshold corresponding to the desired

FWER is calculated.

This is where the confusion arises. Should the null distribution be constructed for

each individual voxel, using the test statistics gathered only from that voxel? In this

case, the statistical significance of a voxel will be decided on the basis of the specifc

null distribution for the voxel. However, this is incorrect since the multiple compar-

isons problem is not solved - the hypothesis tests will still be performed as many

times as the number of voxels. This method brings us back to ground zero.

Now, the question remains as to how the test statistic in each voxel and iteration

is used in the whole brain image. This extension from the single voxel to the whole

image requires an additional concept, namely the max distribution. Since the family-

wise error rate controls the probability that there is at least one false positive voxel

in the image, the idea is to only look at the maximum statistic in the entire image.

If this maximum statistic does not exceed the significance threshold, then none of

the other voxels within the image would cross this threshold. Therefore, the proba-

bility that the maximum statistic crosses the threshold under the null hypothesis is

equivalent to the probability that at least one voxel is false positive under the null

hypothesis, namely the FWER.

𝑃 (𝐹𝑊𝐸𝑅) = 𝑃 (𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑣𝑜𝑥𝑒𝑙 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 | 𝐻0) = 𝑃 (𝑀𝑎𝑥 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 | 𝐻0)

(2.13)

The procedure is to keep track of the max statistic value across the image for each it-

eration and construct the null reference distribution from these values. Then, the test

statistics of the original image would be compared against the significance threshold

from the null reference distribution to determine the significance.

On the side note, it is important to note that the non-parametric approach also
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suffers from the temporal autocorrelation in the BOLD signal. The crucial assump-

tion for being able to shuffle the data is that it is inherently exchangeable, which is

hard to guarantee in the presence of the temporal autocorrelation. This has led to

numerous studies on exchangeability of data in general and how to perform nonpara-

metric approaches even if the assumption is violated. As will be discussed in the later

section, this is not so much of a problem at the group level, since the COPEs are

shuffled within the restricted exchangeable blocks, not the BOLD signals within each

voxel.

2.3.3 Cluster test

The alternative to the voxel-based approach is the cluster-based approach. This

requires significantly less number of hypothesis tests, since the number of clusters is

going to be much less than the number of voxels. It is interesting to note that the

number of tests for the cluster-based approach itself is a random variable, since the

number of clusters is not a fixed quantity. This is in contrast with the voxel-based

approach, where the number of the test are fixed (unless some pre-masking is done),

as the number of voxels are fixed. There are mainly two test statistic for the cluster-

based approach: 1) cluster size and 2) cluster size and height. Among these two

metrics, cluster size is generally preferred, due to its relative simplicity.

Parametric approach - Gaussian Random Field Theory

The Gaussian Random Field Theory is a parametric approach that constructs an

overall joint null reference distribution for the voxels in the image. More specifically,

the theory assumes that under the null reference hypothesis, the voxels in the image

are jointly distributed under a multivariate normal distribution, with some amount

of spatial correlation between the neighboring voxels. If the spatial correlation within

the image is known, it would be possible to calculate a significance threshold of the

cluster size, similar to 𝛼 in the Sidak correction, which also depends on the desired

FWER. The spatial correlation within the image, or the amount of smoothness, is
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termed as the resolution units (RESELs) in the context of GRF, and is the most

fundamental quantity that needs to be calculated for the application of GRF for

fMRI multiple comparisons problem. If the assumptions of GRF are satisfied, the

threshold for the cluster size can be analytically derived, as a function of RESELs

and FWER in 2D and 3D [17]. These solutions are used frequently by the fMRI

processing softwares for parametric approaches, such as FSL and SPM.

Nonparametric approach

There are several steps to the nonparametric cluster approach. For each iteration,

shuffling within the voxel (same as the procedure in the nonparametric voxel test)

is performed to calculate z-stat for each voxel. After the caculation is done for the

whole brain, the conventional z-stat threshold of choice (normally 2.3 or higher) is

applied. Among the clusters formed by the thresholding process, the largest cluster’s

size is recorded for constructing the max distribution. These steps are repeated for

the number of iterations. For the cluster approach, eq 2.13 is slightly modified as the

following,

𝑃 (𝐹𝑊𝐸𝑅) = 𝑃 (𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑙 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 | 𝐻0)

= 𝑃 (𝑀𝑎𝑥 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 > 𝑠𝑖𝑧𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 | 𝐻0)
(2.14)

Only the clusters that pass the threshold corresponding to the FWER in the max

distribution, are deemed statistically significant.

2.3.4 Application in pre-masked regions

So far, the image in the multiple comparison discussion meant the whole brain, en-

compassing ∼ 106 voxels (in MNI space with 2mm isotropic voxel). Ensuring FWER

of 0.05 on this sheer number of voxels could result in stringent significance thresholds,

which is not desirable in some cases. One popular solution is to simply reduce the size

of the image, by restricting the mask to certain regions of the brain that are likely

to be significant. Since the number of the required tests is reduced, the significance
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threshold is also lowered, possibly showing more activated voxels/clusters. In the

parametric approach, this is reflected in the equations yielding lower threshold due

to the reduced number of voxels (Sidak Correction) and RESELS (GRF), respectively.

In the nonparametric approach, we can arrive at the similar conclusion as follows.

For the 𝑖th iteration, let 𝑡𝑖,𝑤ℎ𝑜𝑙𝑒 be the max test statistic of interest (i.e. cluster size)

in the whole brain. Let 𝑡𝑖,𝑚𝑎𝑠𝑘𝑒𝑑 be the equivalent counterpart in case of the masked

brain. We can easily see that 𝑡𝑖,𝑤ℎ𝑜𝑙𝑒 ≥ 𝑡𝑖,𝑚𝑎𝑠𝑘𝑒𝑑 always holds. If this does not hold,

such that for some iteration j, 𝑡𝑗,𝑤ℎ𝑜𝑙𝑒 < 𝑡𝑗,𝑚𝑎𝑠𝑘𝑒𝑑, it is a contradiction since 𝑡𝑗,𝑤ℎ𝑜𝑙𝑒

is defined to be the max test-statistic in the whole brain, and the masked region

is a subset of the whole brain. As a result, it is also straightforward to see that

𝛼𝑤ℎ𝑜𝑙𝑒 ≥ 𝛼𝑚𝑎𝑠𝑘, or in other words the significance threshold for the whole brain is

greater than or equal to that for the masked brain, since the null distributions are

constructed from {𝑡𝑖,𝑤ℎ𝑜𝑙𝑒} and {𝑡𝑖,𝑚𝑎𝑠𝑘𝑒𝑑}, respectively. A simple example is shown

in Figure 2-5. Since 𝛼, the original test-statistic p-value for ROI, is greater than

𝛼𝑚𝑎𝑠𝑘, but smaller than 𝛼𝑤ℎ𝑜𝑙𝑒, the ROI will be statistically significant in the masked

analysis, but insignificant in the whole-brain analysis.

The effectiveness of the pre-masking procedure depends on how much the threshold

is reduced - If the lowered threshold is still higher than the test statstics of the ROIs,

these regions will still be statistically insignificant. Moreover, one needs to make sure

that the mask is well-defined, so that it does not leave out any potentially significant

regions.
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Figure 2-5: The shifted Max-statistic distribution of the test statistic of interest.
𝛼𝑤ℎ𝑜𝑙𝑒 and 𝛼𝑚𝑎𝑠𝑘𝑒𝑑 are the signficance thresholds of the unmasked and masked brain,
respectively. 𝛼 is the original test statistic of ROI. The two null distributions are not
necessarily the same shape.

2.4 Group-Level Inference

After the parameter estimation at the subject level, the estimates are passed onto the

higher level for inference on a group or whole population from which these subjects

were selected. Since the neuroimaging experiments can never be run on the entire

population, one must rely on statistical techniques to carefully extend the results

from the sampled group (usually 𝑁 < 100) to the general population. There are two

major ways for group-level inference, the fixed model and the mixed model.

One must first understand the concept of fixed and random factors. For a given

set of experiments, any factor that is used in repetition throughout the experiments

are called fixed factors [19]. For example, if a study wants to investigate the levels

of unconsciousness caused by a certain anesthetic drug on different age groups, the

drug would be treated as a fixed factor. These factors are chosen carefully for their

specific properties. On the other hand, if certain factors are not fixed and randomly

sampled for each experiment, these are called random factors. Subjects are usually

the random factors, since the subjects recruited for a specific study are almost never

the same subjects, and thus could be treated as having been sampled randomly from

the whole population. However, it must be noted that there are studies where the
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subjects are fixed factors. For example, experiments that are run on patients with

neurophysiological disorders due to their uniqueness, are likely to use the same set of

subjects repeatedly.

Parameter estimations on the fixed factors are limited in a sense that the param-

eters provide little to no information regarding the other factors. For example, if a

certain anesthesic drug is used as a fixed factor, the estimate from the study does not

provide any information on other types of the drugs. This makes the fixed factors

unfavorable for generalization to bigger groups which these are part of. Nevertheless,

estimation is more accurate when a factor is fixed rather than random, for the reasons

we will soon address. On the other hand, the random factors enable the estimation

to be generalized to the broader category.

In the following subsections, we will focus on how treating the subjects as fixed

or random factors produce different results and what the implications would be in

terms of resource allocation.

2.4.1 GLM at the higher level

At higher levels, the objective of the inference is whether the group average effect

size has any statistical significance. The inference is based on the individual effect

size, calculated from the subject-level. Therefore, the design matrix takes a different

form, with each row representing either a session or subject effect size, instead of a

voxel intensity at a specific TR. It is convenient to regard each element of the design

matrix as an indicator variable, with 1 representing that the subject/session is indeed

in the group and 0 otherwise.

𝑌𝑖 = 𝑋𝑖𝛽𝑖 + 𝜀𝑖

𝛽𝑖 = 𝛽𝐺 + 𝜀𝐺,𝑖

⇒ 𝑌𝑖 = 𝑋𝑖𝛽𝐺 +𝑋𝑖𝜀𝐺,𝑖 + 𝜀𝑖

(2.15)
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Depending on what the focus of the experiment is, the design matrix setup is different.

We briefly look at the three most common cases and how the design matrix is set up

in each of these scenarios.

Group average effect - one sample t-test

This is the simplest case in which the aim is to test whether the group average effect

size, which is 𝛽𝐺 = 1
𝑁

∑︀𝑁
𝑖=1 𝛽𝑖, is statistically different from 0. Therefore, the null

hypothesis would be 𝐻0 : 𝛽𝐺 = 0. The design matrix would simply be a column of

1s, size of 𝑁 × 1.

Difference between group average effect - two sample t-test

The aim is to test whether the effect size of group A, with 𝑁1 subjects, is significantly

different from that of group B, with 𝑁2 subjects. This is mostly the case when there

is a control group and an experiment group, and the subjects in either groups are

not necessarily the same. Let 𝛽𝐺,1 =
1
𝑁1

∑︀𝑁1

𝑖=1 𝛽𝑖 and 𝛽𝐺,2 =
1
𝑁2

∑︀𝑁2

𝑖=1 𝛽𝑖 be the group

average effect size for group 1 and 2, respectively. Then, the null hypothesis would

be 𝐻0 : 𝛽𝐺,1 − 𝛽𝐺,2 = 0, and the design matrix would be of the following form:

𝑋 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
...

...

1 0

0 1
...

...

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝛽𝐺 =

⎛⎝𝛽𝐺,1

𝛽𝐺,2

⎞⎠ (2.16)

, where 𝑋 is (𝑁1 +𝑁2)× 2 matrix.

Difference between group average effect - paired t-test

The aim is same as the two sample t-test. The only difference is that the subjects

in the both group are the same, and the measurements are taken at two different
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conditions. The design matrix would be of the following form:

𝑋 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 · · · 0

1 0 1 · · · 0
...

1 0 0 · · · 1

−1 1 0 · · · 0

−1 0 1 · · · 0
...

−1 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝛽𝐺 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝛽𝐺,1

𝛽2

...

𝛽𝑁+1

⎞⎟⎟⎟⎟⎟⎟⎠ (2.17)

where𝑋 is a 2𝑁×(𝑁+1)matrix, where𝑁 is the group size. 𝑖th row and (𝑁+𝑖)th row

would correspond to the subject 𝑖, where 1 ≤ 𝑖 ≤ 𝑁 . 𝛽𝐺,1 is the parameter estimate of

the effect size difference between the two conditions within each individual, whereas

𝛽𝑖, where 2 ≤ 𝑖 ≤ 𝑁 + 1 is the dummy parameter to regress out any mean effect of

the (𝑖 − 1)th individual. The null hypothesis would be 𝐻0 : 𝛽𝐺,1 = 0, meaning that

the group difference is not significant. It is easy to see that the effect size difference

for subject 𝑖, 𝑌𝑖,𝐴 − 𝑌𝑖,𝐵 is 2𝛽𝐺,1. 𝛽2, 𝛽3, and 𝛽4 are for modeling the average effect

size for each subject and have no statistical meaning and therefore, is irrelevant to the

hypothesis. It is important to acknowledge that each of these parameters capture what

is common between the two conditions within each subject, such as age (assuming

that these measurements were taken within few weeks of each other) and gender.

two sample t-test vs. paired t-test

Since the two sample and the paired t-test both aim to compare the group average

effect between the two groups, both are eligible for the Dexmedetomidine study.

Nevertheless, the paired t-test is preferred, as the individuals in the two groups are

the exactly the same. A simple example will help us understand why. Suppose

𝑁 = 3 (Female 30 years old, Male 40 years old, Female 55 years old), and we wish to

test whether there is any significant difference in the effect size for condition A and
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condition B. Then, the GLM in the two-sample t test case will be⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑌1,𝐴

𝑌2,𝐴

𝑌3,𝐴

𝑌1,𝐵

𝑌2,𝐵

𝑌3,𝐵

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 30

1 0 0 40

1 0 1 55

0 1 1 30

0 1 0 40

0 1 1 55

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
𝛽1

𝛽2

𝛽𝑠𝑒𝑥

𝛽𝑎𝑔𝑒

⎞⎟⎟⎟⎟⎟⎟⎠+ 𝜀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛽1 + 𝛽𝑠𝑒𝑥 + 30𝛽𝑎𝑔𝑒

𝛽1 + 40𝛽𝑎𝑔𝑒

𝛽1 + 𝛽𝑠𝑒𝑥 + 55𝛽𝑎𝑔𝑒

𝛽2 + 𝛽𝑠𝑒𝑥 + 30𝛽𝑎𝑔𝑒

𝛽2 + 40𝛽𝑎𝑔𝑒

𝛽2 + 𝛽𝑠𝑒𝑥 + 55𝛽𝑎𝑔𝑒

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝜀

(2.18)

The GLM in the paired t-test case will be⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑌1,𝐴

𝑌2,𝐴

𝑌3,𝐴

𝑌1,𝐵

𝑌2,𝐵

𝑌3,𝐵

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 1 30

1 0 1 0 0 40

1 0 0 1 1 55

−1 1 0 0 1 30

−1 0 1 0 0 40

−1 0 0 1 1 55

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛽1

𝛽2

𝛽3

𝛽4

𝛽𝑠𝑒𝑥

𝛽𝑎𝑔𝑒

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝜀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛽1 + 𝛽2 + 𝛽𝑠𝑒𝑥 + 30𝛽𝑎𝑔𝑒

𝛽1 + 𝛽3 + 40𝛽𝑎𝑔𝑒

𝛽1 + 𝛽4 + 𝛽𝑠𝑒𝑥 + 55𝛽𝑎𝑔𝑒

−𝛽1 + 𝛽2 + 𝛽𝑠𝑒𝑥 + 30𝛽𝑎𝑔𝑒

−𝛽1 + 𝛽3 + 40𝛽𝑎𝑔𝑒

−𝛽1 + 𝛽4 + 𝛽𝑠𝑒𝑥 + 55𝛽𝑎𝑔𝑒

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝜀

(2.19)

The difference between (2.18) and (2.19) is the existence of the mean effect parameter.

Note that in the paired t-test, the age & sex effects can be absorbed into 𝛽2 ∼ 𝛽4 (for

example, 𝛽′
2 = 𝛽2 + 𝛽𝑠𝑒𝑥 +30𝛽𝑎𝑔𝑒), as we are only interested in the difference between

the two conditions, 𝛽1, not the absolute value of the effect size. Even if there are

some unaccounted effects that might cause individual variability, the mean parame-

ters would automatically take care of these. However, in (2.18), these factors need

to be explicitly modelled due to the absence of the mean parameters. Otherwise, the

unaccounted variability would be absorbed into 𝛽1 and 𝛽2, the group average param-

eter estimates, and affect the outcome of the test.
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For these reasons, if the control and the experiment group are the same, the paired

t-test is always preferred over the two-sample t-test - It is more efficient as the number

of required subjects to make statistical conclusion is smaller in the two-sample t-test.

Nevertheless, if the control and experiment group are of different individuals, which

is a very common situation, the paired t-test cannot be applied and the two-sample

t-test should be used.

2.4.2 Summary Statistic approach

For group-level analysis, inference results for each individual subject are required. It

has been shown that only the COPEs and the variance of COPEs are required from

the subject level, a method termed as the summary statistics approach [20]. This

approach saves great deal of computation power, as not all the information, such as

design matrix, has to be passed on to the group level from the subject level. In fact,

only one group-level inference method requires both the information on COPEs and

the variance of COPES. As for the other parametric method and the nonparametric

method, only the COPEs are required.

Parametric approach - Fixed model

For the fixed model, we assume that the subjects are fixed factors. This is rarely

assumed, as most of the clinical studies are aimed at the population-level inference.

In this case, the parameters to be inferred are only the within subject variances, as

the between subject variance does not carry any statistical meaning.

Parametric approach - Mixed model + OLS & GLS

In the mixed model, the difference between the Ordinary Least Squares (OLS) and

the General Least Squares (GLS) is how the within subject variance of the effect size

is incorporated with the between subject variance of the effect size. In the former
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method, the within subject variance are treated to be homogeneous, 𝜎2
𝑤. The total

variance for individual effect size would be �̂�2
𝑤 + �̂�2

𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = �̂�2
𝑂𝐿𝑆 for all subjects. In

the GLS approach, the within subject variance are thought to be heterogeneous, and

defined based on the variance of COPEs from the subject level. The total variance

for the individual effect size would be �̂�2
𝑖 + �̂�𝑏𝑒𝑡𝑤𝑒𝑒𝑛 for the 𝑖th subject.

Only a single variance term, �̂�2
𝑂𝐿𝑆, needs to be estimated in the OLS approach,

making it a relatively simple estimation procedure. Another advantage is that the

variance of the COPEs from the subject level is unneccesary, as the within subject

variance are treated as homogeneous. The SPM software uses this approach and the

OLS method in FSL uses this as well. For the GLS approach, the procedure is more

complicated, since the total variance for each subject is heterogeneous - there are

several options available for the estimation, such as restricted maximum likelihood

or MCMC. For this approach, both the COPEs and the variance of COPEs from the

subject level are required. In FSL, this is implemented as FLAME 1 and FLAME 2.

Obviously, the GLS approach is more accurate than the OLS approach, since it is

reasonable to assume that the within subject variance is going to be different. Nev-

ertheless, it is shown, at least in the one paired t-test context, that both approaches

do not show significant difference [21]. Another point to consider is how the temporal

autocorrelation of the errors at the subject level is propagated to the group level.

As discussed in section 2.2.2, the COPEs, 𝑐𝛽 is going to be the same regardless of

the degree of temporal autocorrelation as long as 𝑐, 𝑋, and 𝑌 are kept the same.

The only affected quantity would be the variance of the COPEs. The intermediate

conclusion is that the OLS is not affected by the autocorrelation, as only the COPEs

are required for the estimation, whereas the GLS might be affected, as it requires the

variance term for the estimation. Despite these pros and cons, the common standard

in the fMRI field is to use the GLS approach over the OLS approach to account for

the subject heterogeneity.
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Nonparametric approach

In nonparametric approach at the group level, it is important to notice that the

COPEs cannot be shuffled across the subjects, as these quantities are expected to be

significantly different even under the null condition due to subject variability. The

only permissible shuffling is the sign of the COPEs. Under the null distribution,

the group average effect (in one sample t-test) or the difference between the group

average effects (in two sample t-test or paired t-test) is expected to be zero, and

the sign change should have no effect. For one sample t-test and a paired t-test, this

means that there are only 2𝑁 number of possible permutations, where𝑁 is the number

of subjects. Since the null reference distribution is built from the permutations of

COPEs, the variance of COPEs is not necessary for the nonparametric approach.

2.4.3 Group-level Inference with Multiple Comparisons

The multiple comparisons argument in section 2.3, which is focused on single sub-

ject case, can easily be extended to the multiple subject case. For the parametric

approach, the procedure that first applies z-stat threshold and later the voxel thresh-

old (calculated from Sidak correction) or the cluster threshold (calculated from GRF

theory) is used in the same manner. The only difference is that the COPES and the

variance of the COPEs are the group level parameters, 𝑐𝛽𝐺 and 𝑣𝑎𝑟(𝑐𝛽𝐺). For the

nonparametric approach, the max statistic distribution is constructed from taking the

max value of 𝛽𝐺 from each iteration, which is estimated after shuffling the COPEs.
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Chapter 3

Denoising

3.1 Brainstem Quality Control

The BOLD signals in the brainstem are more susceptible to physiological noise as

the brainstem is located closer to the heart and therefore affected by more intense

fluctuations, compared to the rest of the cortex [22]. Moreover, the nuclei in the

brainstem, which are associated with numerous different neural circuits, are very small

in size - if a ROI mask is misplaced by several voxels, the result will be completely

different from what is expected. Therefore, extra caution is required for the brainstem

BOLD signals. In this section, several aspects of the brainstem quality control are

discussed.

3.1.1 Brainstem-specific Nuisance Regressors

Generally, the nuisance regressors are extracted from the cortical area, such as white

matter cortex and CSF. As such, it is unclear as to how effective these regressors

are in accounting for the noise affecting the brainstem. It is thus sensible to add

nuisance regressors extracted from the regions in close proximity to the brainstem.

Here, we consider two regions for extracting the brainstem-local nuisance regressors,

the cerebellum white matter and the 4th ventricle.
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Cerebellum WM Regressor

Cerebellum white matter, due to the fact that it is close to the brainstem and also that

white matter only contains non-neuronal signals, was initially an appealing choice as

a brainstem nuisance regressor. However, some properties of the cerebellum white

matter make this an unfavorable candidate. Within the cerebellum, there are four

nuclei called deep nuclei, which are clusters of gray matter lying within the white

matter at the core of the cerebellum. The four nuclei - dentate, globose, emboliform,

and fastigial - are the sole sources of output from cerebellum and each communicate

with different parts of the brain and the cerebellar cortex. Therefore, when extracting

the nuisance regressors from the cerebellum white matter, there is a risk of also

including the neuronal BOLD signal as well. Moreover, the complicated structure of

the cerebellum makes it hard to analyze what kind of neural processes, if at all, are

reflected in the cerebellar BOLD signal [23].

Figure 3-1: The group functional connectivity with the cerebellum white matter seed
in pre state in MNI space (x=45, y=42, z=22).

Figure 3-1 and Figure 3-2 further corroborate the argument. The group functional

connectivity with the cerebellum white matter seed in the pre state shows that the

region is functionally connected with almost all parts of the cortical gray matter

and the brainstem. This shows that the cerebellum white matter BOLD signal does

contain neuronal signal as discussed previously. Therefore, the cerebellum white
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Figure 3-2: The group functional connectivity with the cerebellum white matter seed
in peri state in MNI space (x=45, y=42, z=22).

matter signal would confound the result, rather than denoise the brainstem-specific

noise as intended.

4th Ventricle Regressor

Figure 3-3 shows the seed used to extract the 4th ventricle ROI (33 voxels). It is

important to note that the 4th ventricle is located dorsally to the Locus Coeruelus

seed (in Figure 4-1) and thus requires extra caution not to include parts of the LC

seed within the noise ROI mask. To ensure this, the extracted 4th ventricle signals

are spatially unsmoothed.

Figure 3-4 and Figure 3-5 show the group functional connectivity with the 4th

ventricle seed in pre and peri state, respectively. Both the pre and peri images show

that the 4th ventricle region is mostly functionally connected with the adjacent parts

of the cerebellum and the brainstem. Since the region is expected to only contain

noise, the connected regions show the extent to which the noise affects the brainstem.

The fact that there is no significant functional connectivity with the cortical noise

ROIs supports the argument that the 4th ventricle noise is different (or uncorrelated)

from the noise extracted from the cortical noise ROIs. In summary, these observations

justify the inclusion of the nuisance regressors from the 4th ventricle region, as the
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Figure 3-3: 4th ventricle seed (red) in MNI space (x=45, y=40, z=22)

means to denoise the brainstem-specific noise.

Figure 3-4: The group functional connectivity with the 4th ventricle seed in pre state
in MNI space (x=45, y=42, z=21)

3.1.2 Laterality

The brainstem nucleus of our interest, the Locus Coeruleus, are consisted of two parts,

right and left. Although it seems natural to assume that the BOLD signals in either

side should be similar due to the symmetry, there are some factors to consider be-

fore drawing the conclusion. First, the structural variability between the individuals

might result in asymmetric registration of the brainstem to the MNI space. Since the
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Figure 3-5: The group functional connectivity with the 4th ventricle seed in pre state
in MNI space (x=45, y=42, z=21)

brainstem masks are defined in the MNI space, not in the individual structural space,

these standard masks could include different regions for some individuals. Second,

the movement artifacts or the pulsations in the ventricle region could have different

effects on the either side. Finally, it is entirely possible that the left and the right

nuclei exhibit different functional connectivity to the brain.

For these reasons, a quality control step to check the cross-correlation of BOLD

signals between the voxels in the left and the right brainstem nuclei masks would

be helpful. Ideally, the cross-correlation matrix would entirely be 1, which would

mean that the BOLD signals are perfectly correlated not only within each mask, but

also across the masks, indicating symmetry. For this dataset, this procedure was

performed both on the LC mask. The LC mask on the MNI space had 20 voxels

on both sides (40× 40 cross-correlation matrix). The cross-correlation matrices were

averaged over all subjects. Moreover, to check the effects of the denoising pipelines on

the lateral regions, cross-correlation maps for three different preprocessing pipelines

were created: (1) Raw: Raw signal without denosing (Figure 3-6) (2) Avg: Denoised

signal with averaged nusiance regressors from WM, CSF, and 4th Ventricle regions

(Figure 3-7) (3) Compor: Denoised signal with five principal components from WM,
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CSF, and 4th Ventricle (Figure 3-8).

Figure 3-6: Cross-correlation matrix (averaged over subjects) for LC mask voxels
without noise removal

Figure 3-7: Cross-correlation matrix (averaged over subjects) for LC mask voxels
denoised with averaged nuisance regressors from WM, CSF, and 4th Ventricle regions

It is easy to see that in LC seeds, the voxels can be quite uncorrelated without

66



Figure 3-8: Cross-correlation matrix (averaged over subjects) for LC mask voxels
denoised with principal nuisance regressors from WM, CSF, and 4th Ventricle regions

denoising, even within the same left or right masks, as in Figure 3-6. With some

degree of denoising, we see marked increase in nearly all cross-correlation values,

although we still see that the cross-correlation is not as strong across different lateral

masks.

3.1.3 Spatial Smoothing

Since the brain nuclei are small, the conventional 5 ∼ 6mm FWHM spatial smoothing

can result in including BOLD signals from adjacent nuclei, confounding the specificity

of the functional connectivity. Some studies chose not to smooth the brainstem BOLD

signal at all for this reason, while smoothing the cortex with the conventional kernel

[24]. This ensures that there is some degree of smoothing in place, since the BOLD

signals are averaged over the ROI mask. A systematic comparison between the dif-

ferent amounts of spatial somoothing shows that the FWHM of 1 or 1.5 voxels is

appropriate [8].

For the Dexmedetomidine study, we chose minimum spatial smoothing with the
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FWHM of 1.5 voxel, or 3mm. This was preferred over the unsmoothing scheme,

as we expected some amount of spatial smoothing to account for the BOLD signals

of the adjacent voxels that could have been left out of the ROI masks.

68



3.2 Principal Component Approach

3.2.1 Is Principal Components for noise removal effective?

As previously discussed, there are several methods of denoising, without any clear ex-

planations of which one is better than the other. Due to its simplicity, using averaged

regressors from the noise ROIs has been popular; ICA-based approach has also been

gaining popularity as it is readily implemented for use. Here, we focus on denoising

via the principal component based approach.

There are two important assumptions that enable the noise ROI-based nuisance re-

gression approach. First is that the ventricle and the white matter regions contain

BOLD signal only of non-neuronal origin. The second assumption is that the noise

structure observed in the noise ROI is prevalent throughout the entire brain. If the

underlying structure for the noise were to be radically different in some brain regions

from that of the noise ROI, this approach would be less effective. This of course,

is not to conclude that denoising with signals or components derived from the noise

ROIs produces complete noise-free BOLD signal in Gray Matter region. Nevertheless,

this is the best we can do without external physiological measurements or additional

information.

Under these assumptions, the most rudimentary method would be to include the

BOLD signal from every voxel in the noise ROI as the nuisance regressors. Such

model would account for the common underlying noise structure as well as small

noise sources that cause subtle differences between the BOLD signals. As one could

suspect, this is never feasible due to the issues of degree of freedom. Normally, the

number of scans is on the scale of hundreds, whereas the number of voxels in the

noise ROIs are well over the scale of thousands, resulting in negative DOF. Even if

the number of scans was greater than the number of voxels, the computation would

be very expensive.
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Thus, the idea is to reduce the number of regressors within the range of suitable

DOF and also ensure that these regressors capture the essence of the noise. The

simplest approach is averaging every voxel in each noise ROI to get a single nui-

sance regressor. This approach is based on the idea that pooling over different BOLD

signals would yield a representative noise signal. The idea of averaging, due to its

simplicity, is prevalent not only in the neuroimaging research, but also in most of the

fields involving timeseries analysis. Nevertheless, there remains a doubt as to whether

the procedure causes information loss, as subtle details existent only in some subset

of voxels could be averaged out and thus not accounted for. This is the motivation

for the principal component based approach, as we are able to include additional

representative signals as nuisance regressors. The remaining section looks at how the

principal component based approach compares with the averaged regressor approach

and also the additional insights provided by the method.

Comparison between the averaged regressor and the principal component

approach

To assess how different the averaged regressor and the principal component regres-

sors are, we ran a cross-correlation between these regressors for each subject. The

expectation was that the first few principal components would be correlated with the

averaged regressors, as these were expected to capture the dominant nuisance signals

respectively.

Figure 3-9 and Figure 3-10, which are the averaged cross-correation matrices for

pre and peri condition respectively, confirm the initial prediction in a stronger fash-

ion. The first principal component regressor for each noise ROI (WM: #2, CSF: #8,

4th Ventricle: #14) is almost perfectly correlated with the averaged regressors from

respective regions (WM: #1, CSF: #7, 4th Ventricle: #13), with the exception of

the CSF region, which still shows high correlation of around 0.7. Since the almost

perfect correlation between two regressors means that these regressors are very sim-
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Figure 3-9: Cross-correlation matrix (averaged over subjects) in pre condition between
nuisance regressors - #1: WM averaged, #2∼#6: WM principal components, #7:
CSF averaged, #8∼#12: CSF principal components, #13: 4th ventricle averaged,
#14∼#18: 4th ventricle principal components

Figure 3-10: Cross-correlation matrix (averaged over subjects) in peri condition be-
tween nuisance regressors - #1: WM averaged, #2∼#6: WM principal components,
#7: CSF averaged, #8∼#12: CSF principal components, #13: 4th ventricle aver-
aged, #14∼#18: 4th ventricle principal components

ilar, we can state that the first principal component of each noise ROIs extract the

same signal as that captured by the averaged regressor, almost exactly. Figure 3-11

71



shows an example of this statement. The averaged regressor and the first principal

component, both extracted from WM, are almost the same, whereas the second prin-

cipal component is uncorrelated with the first, as expected. This observation allows

us to further conclude that several principal components as a whole is guaranted to

include more noise signal than the averaged regressor, since the first principal compo-

nent is almost equivalent to the averaged regressor, and thus the additional principal

component regressors would add more noise information not already accounted for.

As an additional comment, the cross-correlation between the principal component

regressors within each noise ROI should be zero, as expected from the properties of

the Principal Component Analysis.

Figure 3-11: Averaged, the first principal component, and the second principal com-
ponent regressors of 008-AR White Matter in pre condition. The averaged regressor
and first principal component regressor are almost the same. All timeseries are nor-
malized so that the maximum intensity is 1.

Subject Variability in variance explained by Principal Components

Due to subject variability, the 𝑘th principal component of noise ROIs will explain

different amounts of variance for each subject. This is demonstrated by Figure 3-
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12 ∼ Figure 3-19, where the accumulated explained variance is plotted against the

number of principal components for different conditions and noise ROIs. Here, the

15 subjects are divided into two groups for increased visibility.

Figure 3-12: WM cortex accumulated explained variance plotted against the number
of principal components in pre condition for 7 subjects

It is easy to observe that the subject variability in terms of the accumulated ex-

plained variance is quite big. In Figure 3-12, the first two principal components are

able to explain about 50% of the variance for subject 007-DB, whereas the first ten

principal components are barely able to explain about 30% of the variance for subject

005-KS. However, these observations are not consistent across different conditions, as

in Figure 3-13, or the peri condition, - principal components in 005-KS are able to

explain more variance than 007-DB.

It is not apparent why such individual variability exists, or more specifically, what is

implied by the different magnitudes of explained variances. One possible explanation

is that the explained variance somehow indicates how ’structured’ the brain states

are in general. If the first few principal components, or the first principal component

specifically, explain great amount of total variance, this means that much of the brain
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Figure 3-13: WM cortex accumulated explained variance plotted against the number
of principal components in peri condition for 7 subjects

Figure 3-14: WM cortex accumulated explained variance plotted against the number
of principal components in pre condition for 8 subjects

BOLD signals can be explained by some linear combination of the principal compo-

nents. Stated differently, these principal components could be treated as underlying

signals that explain much of the variance in the noise ROI.
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Figure 3-15: WM cortex accumulated explained variance plotted against the number
of principal components in peri condition for 8 subjects

Figure 3-16: CSF accumulated explained variance plotted against the number of
principal components in pre condition for 7 subjects

However, if the explained variance by the first few principal components is low, such

as 004-TS in Figure 3-13, the brain structure would be less structured. If PCA was
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Figure 3-17: CSF accumulated explained variance plotted against the number of
principal components in peri condition for 7 subjects

Figure 3-18: CSF accumulated explained variance plotted against the number of
principal components in pre condition for 8 subjects

to be run on the dataset and the different principal component is chosen as the first

principal component and all others components subsequently, the trend between the

accumulated explained variance and the number of principal components would be
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Figure 3-19: CSF accumulated explained variance plotted against the number of
principal components in peri condition for 8 subjects

similar. Since there is no dominant principal component in this sense, any principal

component could be treated as the underlying signal, implying that the brain BOLD

signals are relatively unstructured. This is actually the idea behind the Bartlett’s

test for sphericity [25]. A structured dataset, with few dominating eigenvalues, would

form hyperellipsoid, oblong along the dominant principal components, whereas an

unstructured dataset would form a shape close to a sphere.

This brings up a crucial question: What factors give rise to the structured and un-

structured signal? How do these factors affect the subjects differently in the pre, peri,

and post states? At this point, without more sophisticated measurements, we can only

make speculations about the underlying factors. Here are some possible explanations:

1) Since cardiac/respiratory noise is periodic, it can be treated as a structured signal.

2) Movement artifacts can both be structured and unstructured. It is structured in a

sense that the whole brain is shifted by similar amount, but unstructured in a sense

that movements can cause nonlinear effects throughout the brain.
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3) Since the brain state is expected to be more stable and structured under anesthesia

(or unconscious states), it is expected that more variance is explained by the same set

of principal components in the peri state than the pre state. The comparison between

the pre and peri plots seems to support the argument, albeit not clearly. Although

the average explained variance is increased, some subjects have decreased explained

variance, such as 004-TS and 006-AA in Figure 3-12 and Figure 3-13.

Noise ROI Variability in variance explained by Principal Components

Another observation is that the type of noise ROIs also causes the amount of explained

variance to be different for same subject. Fewer number of principal components are

required to explain certain amount of the total variance in CSF than WM cortex.

This was also noted in the other work on the principal component approach, where

the mean number of principal components to explain 50% variance of the signal was

17.9 (standard deviation: 9.8) for WM and 3.0 (standard deviation: 1.1) for CSF

[26]. Although not included in this work, even fewer numbers are required for the 4th

ventricle ROI. In lieu of the previous structured signal argument, we could conclude

that the CSF region is more ’structured’ than the WM region. However, there are no

plausible biophysical explanations yet.

3.2.2 Effective number of Principal Components

Typically, about five principal components from each noise ROI are included as nui-

sance regressors [15]. This decision is bsed on the broken stick method [25], which

examines the eigenvalues of the principal components to see whether some significant

signal is captured by the eigenvectors as opposed to normally distributed random

noise. According to this method, the mean of five principal components was sufficient

to include non-trivial signal, or axis in the context of PCA, from noise ROI. There

has also been a study that systematically examines the effect of different number of

principal components, from a single to ten components [12]. This study concluded

that, although including higher number of principal components seems to result in
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more effective noise correction, there is a diminishing return, reflected in the reduc-

tion of the correlational strengths, suggesting that the five principal components is

recommended. Another study focused on how many principal components would be

required individually to explain 50% of total noise variance from the noise ROI and

compared this approach with the five principal component approach [26]. Apart from

some subtlety, the results were not significantly different, further attesting to the suf-

ficiency of five principal components.

Nevertheless, this does not entirely settle the argument on the effective number of

principal components. as some crucial questions are left unanswered. If the first five

principal components are able to explain some percentage of the total signal variation

in the noise ROI, what does the remaining unexplained variation mean? Since the

signal is extracted from the noise ROI, the unexplained variance should also have the

noise characteristics. Including as many principal components as possible to explain

more variation, for example 50% of total variation, is impractical since the reduction

in the degree of freedom is too significant. Recall that the total degree of freedoms in

GLM is constrained by the number of TRs, which is normally set to be around 100

scans. Now, what if the unexplained variance includes crucial structured noise other

than random Gaussian noise, not accounted otherwise? In addition, as the amount

of variance explained by a specific number of principal components is different from

subject to subject, what is the implication for the group-level inference, when the

individual results are pooled together to draw a group-level conclusion? This brings

us back to the fundamental question of finding a sufficient denoising strategy.

3.2.3 Several interpretations of Principal Components

As the previous results show, the first principal component from the noise ROI

matches the averaged regressor of the noise ROI, and it is thus possible to give a

meaningful interpretation to the first principal component. Nevertheless, interpret-

ing the rest of the principal components from the noise ROI is not so intuitive, other

than that these explain the most variance in a sequential manner. It is possible that
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some principal components capture the nonlinear interactions between the physiolog-

ical processes, or even a single physiological process alone. The point is that, as in

other applications of PCA, it is hard, and maybe meaningless, to make sense of what

each principal component represents, since the technique is purely based on the data

without external information.

One possible interpretation of the principal components based approach is by ex-

amining the power spectra of raw and denoised BOLD signals in the noise ROIs.

Figure 3-20 ∼ Figure 3-23 show how different number of principal components affect

the denoised power spectra. The spectra are averaged over all the voxels in the WM

and CSF and only temporal filter (HPF with cut-off frequency of 0.008 hz) is applied

to the raw signal. Numbers represent the number of principal components included

as the nuisance regressors.. As the number increases, the resulting spectra roughly

becomes flatter, or closer to the white noise. Note that the averaged regressor result

closely resembles the first principal component regressor result. Also, the raw signal

spectra roughly follows the 1/𝑓 pattern, as noted in many literatures.

If the spectra, or the power spectral density (PSD), of the signal is flat, there is

no autocorrelation (or minimum autocorrelation, since the spectra is not perfectly

flat). From this perspective, the denoising pipeline removes the noise components

that are autocorrelated in the noise ROIs, leaving roughly uncorrelated noise signal

as the result. The more the principal components, the more the autocorrelation seems

to be removed, since the spectra becomes flatter. However, beyond some number of

components, the shape of the spectra is roughly kept the same, with only the inten-

sity becoming smaller, suggesting that beyond some point, including more principal

components is similar to subtracting white noise from the signal.

Since the functional connectivity between the intrinsic brain networks involves in-

trinsic autocorrelation in the BOLD signal, if the denoising can remove non-neuronal

autocorrelation from the signal, or in other words, autocorrelation in the noise ROIs,

we could be confident that the resulting signal is almost noise-free. The principal
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Figure 3-20: White Matter cortex spectra for a subject (004-TS) with different de-
noising schemes.

Figure 3-21: White Matter cortex spectra for a subject (012-PE) with different de-
noising schemes.
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Figure 3-22: White Matter cortex spectra for a subject (007-DB) with different de-
noising schemes.

Figure 3-23: White Matter cortex spectra for a subject (018-ND) with different de-
noising schemes.
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component based approach can perform the task on the same level or better than

the averaged regressor approach. Nevertheless, one should try to find the appropri-

ate number of principal components, as there exists a tradeoff between the degree of

freedom and the flatness of the resulting spectra in the noise ROI.

The drawbacks of this approach are, 1) since the Nyquist Frequency is low for this

analysis (0.17Hz), aliasing could be the confouding factor in assessing the flatness of

the spectra and 2) the analysis needs to be done more rigorously, to quanitfy the

flatness of the spectra with some metric (for instance, Wiener entropy).

In conclusion, the previous discussions give us confidence in preferring the princi-

pal component approach over the averaged apporach, in the absence of the sureproof

metric for the comparison of the two denoising schemes.
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Chapter 4

Application to fMRI data

4.1 Functional connectivity between the brainstem

and the brain under Dexmedetomidine

In this section, we discuss the results on functional connectivity between the brain-

stem nucleus, Locus Coereleus (LC), in altered arousal states by Dexmedetomidine,

produced by different pipelines. As mentioned in 1, Dexmedetomidine is of great

clinical interest and specifically targest LC nucleus. Figure 4-1 represents the mask

used to extract ROI signals from LC. The mask was drawn based on the probabilistic

atlas of LC [27].

All the necessary preprocessing steps were preformed on the Dexmedetomidine

dataset, including brain extraction, slice-time correction, B0 correction, temporal

filtering, and registration onto MNI space. 5 principal components with highest

eigenvalues each from the eroded masks of cortical WM and CSF, and 1 principal

component from the eroded 4th ventricle mask were included as nuisance regressors

for each subject’s GLM. The noise ROI nuisance regressors were extracted from the

spatially unsmoothed data, to further minimize the possibility of the inclusion of

the gray matter neuronal signal. The brainstem was spatially smoothed with 3mm

FWHM and the rest of the brain was spatially smoothed with 5mm FWHM. The re-

gressor of interest was extracted from the LC mask. Along with 6 motion regressors,
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Figure 4-1: Coronal, Sagittal, and Transverse view of the Locus Coereleus seed (red)
in MNI space (x=54, y=44, z=25)

the total number of regressors in the GLM ended up being 18, with one regressor of

interest and 17 nuisance regressors. The COPEs and the variance of COPEs for the

regressor of interest for each subject were passed onto the group level analysis.

For the individual condition group analysis (Figure 4-2, Figure 4-3, and Figure 4-

4), one sample t-test was used with the initial z-stat threshold of 3.1 and the cluster

size threshold for FWER of 0.05. For the contrast between two different conditions,

peri and pre & post and peri (Figure 4-5 and Figure 4-6), paired t-test was used with

the initial z-stat threshold of 2.3 and the cluster size threshold for FWER of 0.05.

It is interesting to see which regions have decreased functional connectivity with

LC in the Dexmedetomidine-anesthetized state. The Posterior Cingulate Cortex

(PCC), Medial Prefrontal Cortex (MPFC), Thalamus, and Putamen are such re-

gions. Since the thalamo-cortical functional connectivity is also disrupted when the

subject is unconscious due to Dexmedetomidine [2], it makes sense that the functional

connectivity between LC and Thalamus, and LC and PCC are decreased. These re-

gions seem to regain functional connectivity in the recovery state (post) as can be

observed from Figure 4-6. Nevertheless, only small portion of Thalamus/Putamen

and even smaller portion of PCC are recovered, which is expected by the fact that
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Figure 4-2: Coronal, Sagittal, and Transverse view of the LC functional connectivity
in pre condition in MNI space (x=45, y=43, z=40)

Figure 4-3: Coronal, Sagittal, and Transverse view of the LC functional connectivity
in peri condition in MNI space (x=45, y=43, z=40)

the subjects are not fullly recovered. These findings are further supported by the

neuroanatomical findings. As with many other brainstem nucleus, LC projects to the

Thalamus. In addition, The LC projects to the anterior and posterior cingulate cor-

tex [28]. Therefore, it would be a natural conclusion that Dexmedetomidine binding

to 𝛼2-adrenergic receptors affects the afferent conenction to both the Thalamus and
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Figure 4-4: Coronal, Sagittal, and Transverse view of the LC functional connectivity
in post condition in MNI space (x=45, y=43, z=40)

Figure 4-5: Coronal, Sagittal, and Transverse view of the LC functional connectivity
in the contrast image of peri and pre in MNI space (x=45, y=43, z=43)

PCC and therefore result in decreased functional connectivity.
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Figure 4-6: Coronal, Sagittal, and Transverse view of the LC functional connectivity
in the contrast image of post and peri in MNI space (x=45, y=43, z=43)
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