
Performance Engineering of the StarLogo Nova
Execution Engine

by

Jin Pan

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2016

c○ Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 16, 2016

Certified by. .
Eric Klopfer

Director of MIT Scheller Teacher Education Program
Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

2

Performance Engineering of the StarLogo Nova Execution

Engine

by

Jin Pan

Submitted to the Department of Electrical Engineering and Computer Science
on August 16, 2016, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

StarLogo Nova is an online blocks-based programming environment designed for pre-
college students to explore the collective behavior of decentralized agents. Users can
drag and drop blocks to construct graphical scripts that control how individual agents
respond to stimuli. These scripts are run by the Execution Engine and rendered in
real-time. By investigating hypotheses about how small tweaks to individual behav-
ior impact the entire system, students learn to think beyond the centralized mindset
where all actions are dictated by a singular leader.

This thesis migrates the Execution Engine from the aging Adobe ActionScript 3
language to TypeScript, a weakly typed language that transpiles to JavaScript. To
promote code health, this thesis introduces code formatters, linters, test cases, and
a build process. Finally, this thesis optimizes the StarLogo Nova Execution Engine
for performance, consistently beating the previous engine and bringing the execution
time per cycle for key benchmarks under 10 milliseconds.

Thesis Supervisor: Eric Klopfer
Title: Director of MIT Scheller Teacher Education Program

3

4

Acknowledgments

To my parents, for all the difficult sacrifices they have made for my education. I hope

that future StarLogo Nova users are able to indirectly benefit from your hard work.

I would like to thank all the teachers, mentors, and friends that I have met and

learned immensely from, both inside the classroom and outside.

From that list of teachers, mentors, and friends, I would like to specifically Daniel

Wendel and Eric Klopfer for our rich discussions this year: they not only helped

me understand the internal StarLogo codebase, but also its role in the educational

technologies world and students’ lives.

Last but not least, I would like to thank my girlfriend Linda Wang for always

being there and reassuring me in seemingly hopeless situations that there always will

be a way. Thank you for all your inspiration and believing in me.

5

6

Contents

1 StarLogo Nova Background 15

1.1 LISP . 16

1.2 Logo . 16

1.3 StarLogo . 17

1.4 StarLogo: The Next Generation . 19

1.4.1 StarLogoT and NetLogo . 22

1.5 StarLogo Nova . 22

1.6 StarLogo Nova Technical Overview 25

1.7 StarLogo Nova Block and Functionality Overview 29

1.7.1 Agent blocks (figure 1-10) . 29

1.7.2 Detection blocks (figure 1-11) 31

1.7.3 Environment blocks (figure 1-12) 32

1.7.4 Interface blocks (figure 1-13) 33

1.7.5 Keyboard blocks (figure 1-14) 34

1.7.6 List blocks (figure 1-15) . 35

1.7.7 Logic blocks (figure 1-16) . 35

1.7.8 Math blocks (figure 1-17) . 36

1.7.9 Movement blocks (figure 1-18) 37

1.7.10 Procedure blocks (figure 1-19) 37

1.7.11 Sound blocks (figure 1-20) . 38

1.7.12 Trait blocks (figure 1-21) . 38

1.7.13 Variable blocks (figure 1-22) 39

7

1.7.14 Debugger blocks (figure 1-23) 40

2 StarLogo Nova Limitations and Rationale for Contributions 41

2.1 ActionScript3 Migration . 41

2.2 New Tooling . 43

2.3 Performance Engineering the Engine 44

3 Flash Migration 45

3.1 Initial Migration Steps . 45

3.2 Migrating the Engine Core . 47

3.2.1 A Difficulty in Migrating the Engine Core 47

3.2.2 A Simpler Interpreter . 50

3.3 Miscellaneous Migration Details . 55

3.3.1 JavaScript Maps vs Objects 55

3.3.2 Singletons and Static Classes 56

3.3.3 BlockTable . 56

3.3.4 Key Manager . 56

3.3.5 Dead Code . 57

3.3.6 General Statistics . 57

4 New Tooling 59

4.1 Migration Tools . 59

4.1.1 make and tsc . 59

4.1.2 tslint . 61

4.1.3 tsfmt . 63

4.2 Automatic Testing . 65

4.3 Version Control Workflow . 65

5 Performance Engineering the Engine 67

5.1 Overview of JavaScript Engines . 67

5.1.1 Chrome V8 . 68

5.1.2 Firefox SpiderMonkey . 69

8

5.1.3 Safari JavaScriptCore . 70

5.1.4 Microsoft Edge Chakra . 71

5.1.5 Summary of JavaScript Engines 71

5.2 Setting up a Testbed . 72

5.3 Interpreter Optimization Attempt . 74

5.4 Transpilation to JavaScript . 76

5.4.1 Outline of how JavaScript is generated 77

5.4.2 Nuances to generating the JavaScript 77

5.5 Optimizing the Transpiled Code . 81

5.5.1 Benchmark Suite Description 81

5.5.2 Universal Optimizations . 83

5.5.3 Renderer Optimizations . 93

5.5.4 Collision Optimizations . 94

5.6 Negative Optimization Results . 97

5.7 Overall Benchmark Results . 101

6 Future contributions 103

6.1 Better Type Handling . 103

6.1.1 Current Type System . 103

6.1.2 Stronger Typing Challenges and Solutions 104

6.2 Live code editing . 105

6.2.1 Live code editing groundwork 105

6.2.2 Live code editing semantics 106

6.2.3 Live code editing user interface 107

6.3 Debugging . 108

6.3.1 Logging . 109

6.3.2 Stepping . 110

6.3.3 Alternative Stepping Design 110

6.4 User Scripting . 111

6.4.1 Security . 111

9

6.5 Tooling . 112

7 Conclusion 115

10

List of Figures

1-1 Graphical representation of the Dragon Curve 16

1-2 Logo code to generate the Dragon Curve 17

1-3 Logo code to generate the Dragon Curve with errors 19

1-4 Blocks code to generate the Dragon Curve 21

1-5 Screenshot of the StarLogo Nova interface 24

1-6 Block Specification of if . 26

1-7 Compatible blocks for the if block 27

1-8 Incompatible blocks for the if block 27

1-9 StarLogo Nova Execution Engine Pseudocode 29

1-10 Agent Blocks . 30

1-11 Detection Blocks . 31

1-12 Environment Blocks . 32

1-13 Interface Blocks . 33

1-14 Keyboard Blocks . 34

1-15 List Blocks . 35

1-16 Logic Blocks . 36

1-17 Math Blocks . 37

1-18 Movement Blocks . 38

1-19 Procedure Blocks . 39

1-20 Sound Blocks . 39

1-21 Trait Blocks . 40

1-22 Variable Blocks . 40

1-23 Debugger Blocks . 40

11

3-1 AS3 Interpreter code to compute if 48

3-2 AS3 Interpreter code to compute CalcSum 49

3-3 Simpler Interpreter code to compute if 52

3-4 Simpler Interpreter code to compute CalcSum 53

4-1 Makefile all Target . 62

4-2 Overriding tslint . 63

4-3 tsfmt invocation . 64

5-1 Benchmark Script . 74

5-2 Rotate Benchmark . 74

5-3 JavaScript Code Generation for If . 78

5-4 JavaScript Code Generation for ProcCall 79

5-5 Blocks for a Transpilation Example 80

5-6 JavaScript for a Transpilation Example 80

5-7 Profiler with no optimizations . 83

5-8 Profiler with 1 round of optimizations 85

5-9 Profiler with 2 rounds of optimizations 86

5-10 Optimized JavaScript for a Transpilation Example 87

5-11 Profiler with 3 rounds of optimizations 87

5-12 Profiler with 4 rounds of optimizations 88

5-13 Profiler with 5 rounds of optimizations 89

5-14 Profiler with 6 rounds of optimizations 91

5-15 Cumulative Impact of General Optimizations 92

5-16 Unoptimized Renderer Profile . 93

5-17 Optimized Renderer Profile . 94

5-18 Unoptimized Collision Profile . 95

5-19 Optimized Collision Profile . 96

5-20 Strange Profiler Results . 99

5-21 Duff’s Device . 100

5-22 Overall Benchmark Results Graph . 102

12

List of Tables

5.1 Interpreter Optimization Results . 76

5.2 Overall Benchmark Results Table . 101

13

14

Chapter 1

StarLogo Nova Background

StarLogo Nova allows precollege students to create an enormous variety of games

and simulations by dragging and dropping logical blocks together to construct scripts

that provide the power of a regular programming language without the steep learning

curve that comes with many text-based languages. These scripts govern how agents

individually react to stimuli, such as collisions with neighbors or the push of a button.

When a simulation is run, the blocks are run by a time-sharing execution engine

that simulates the agents locally in the browser. The agents in the simulation are

snapshotted between engine cycles, rendered in three dimensions, and shown to the

user in real-time.

StarLogo Nova has a rich ancestry as the latest successor in the StarLogo TNG,

StarLogo, Logo, and LISP lineage. This chapter presents an overview of these previ-

ous environments, the motivations behind the transitions between generations, and

an overview of how StarLogo Nova operates. Chapter 2 discusses StarLogo Nova lim-

itations and the motivation for the contributions of this thesis. Chapters 3-5 describe

the contributions of this thesis: chapter 3 describes the migration of the StarLogo

Nova engine from ActionScript3 to TypeScript; chapter 4 describes new tooling for

the StarLogo Nova codebase; chapter 5 describes performance engineering of the Ex-

ecution Engine. Chapter 6 presents an overview of possible future contributions and

chapter 7 concludes this thesis.

15

Figure 1-1: Graphical representation of the Dragon Curve

The six images shown are the Dragon curve expanded to various iterations.

1.1 LISP

John McCarthy designed LISP in 1958 as a high-level functional language. It is the

second oldest programming language1 and introduced many groundbreaking comput-

ing ideas that we take for granted today, such as conditionals, a first-class function

data type, recursion, dynamic typing, and garbage collection [4].

1.2 Logo

Papert, Feurzeig, and Solomon created Logo in 1967 as an educational programming

language. The Logo language centers around a turtle in a two-dimensional space that

can be controlled with primitive instructions such as forward, left, and right. As

the turtle moves in the space, it traces the path in which it has traversed, allow-

ing users to visualize the outcome of their program. The language was designed to

help students reason about programming by imagining themselves as the turtle and

manually tracing through the execution of a Logo script.

While such primitives can draw arbitrary patterns such as the dragon fractal

shown in figure 1-1, specifying complicated patterns with just primitives is verbose

and difficult to understand. Like LISP, Logo supports recursive procedures, allowing

users to compose complicated patterns as calls to simple recursive procedures. In the

example shown in figure 1-2, dcr and dcl are recursive procedures that can be used to

draw the dragon fractal. Their compact definitions reveal an insightful representation

of the nature of the fractal.

1Fortran predates LISP by one year

16

Figure 1-2: Logo code to generate the Dragon Curve

to dcr :step :length
make "step :step - 1
make "length :length / 1.41421
if :step > 0 [rt 45 dcr :step :length lt 90 dcl :step :length rt 45]
if :step = 0 [rt 45 fd :length lt 90 fd :length rt 45]

end

to dcl :step :length
make "step :step - 1
make "length :length / 1.41421
if :step > 0 [lt 45 dcr :step :length rt 90 dcl :step :length lt 45]
if :step = 0 [lt 45 fd :length rt 90 fd :length lt 45]

end

dcr 9 300

dcr and dcl are recursively defined procedures. The call to dcr 9 300 draws the 9th
iteration of the dragon curve.

1.3 StarLogo

While Logo can help students think about executing a script and decomposing com-

plicated computational steps into smaller procedures, one of its principal limitations

is that it promotes a very centralized mindset since there is one turtle2 and all the

actions are centered on that turtle. While this simple mindset can be useful for trac-

ing a design and thinking about a single algorithm, it can be difficult to use this

mindset to reason about how several agents may cooperate or compete in complex

environments.

In recognition of this limitation, Mitchel Resnick devised StarLogo as a new com-

putational system in 1989 for modeling the world. Instead of controlling a single

turtle tracing patterns, StarLogo users could control an arbitrary number of turtles

representing “almost any type of object in the world: an ant in a colony, a car in a

traffic jam, an antibody in the immune system, or a molecule in a gas.”[7] To reduce
2Some Logo variants can actually support a few turtles, but it is difficult to control them in a

scalable manner.

17

confusion, I will henceforth use the term agent to describe these simulated turtles.

StarLogo diverges from Logo in three main areas: (1) StarLogo supports up to

thousands of agents, (2) StarLogo agents can sense other nearby agents, and (3)

the environment can spawn agents and store scents in addition to storing the drawn

pattern.

With the ability to simulate many turtles at scale, StarLogo users can investigate

how macro-level behaviors emerge from micro-level interactions. Emergent behaviors

from a collective are often determined by the size of the collective and in order to

accurately model many real-life phenomenon, StarLogo must simultaneously simulate

thousands of agents3.

By equipping agents with the ability to sense nearby agents and read markings

in their environment, agents can start interacting together. This allows for users

to create interactive simulations, such as Conway’s Game of Life or even models of

animal colonies. By simulating interactions between agents, StarLogo allows students

to investigate hypotheses for various phenomena and systematically reason like a

researcher.

In contrast to Logo, StarLogo stores more than just pen traces in the environment.

It also divides the scene into a large number of patches that can be individually marked

with scents and chemicals. Additionally, each patch can also run scripts independently

of agents.

By introducing the ability to simulate large quantities of agents, StarLogo allows

users to model complex real-world behavior and understand how the actions of a

few agents can impact the overall behavior of a group. For example, early StarLogo

users modeled how traffic lights impact traffic throughput and found that strategically

placed stops actually increased the traffic throughput, relative to a control group with

no stops. Their conclusions matched both complicated queuing theory equations and

empirical findings from the New York City Port Authority[7].

3StarLogo was initially implemented on Connection Machine, a passively parallel supercomputer
with thousands of cores, with each core simulating a single agent in parallel. Shortly thereafter,
Resnick reimplemented StarLogo on traditional sequential machines by time sharing the processor
to simulate parallelism, allowing users without supercomputer access to use StarLogo.

18

Figure 1-3: Logo code to generate the Dragon Curve with errors

01 | to dcr :step :length
02 | make "step :step - 1
03 | make "length:length / 1.41421
04 | if :step > 0 [rt 45 dcr :step :len lt 90 dcl :step :len rt 45]
05 | if :step == 0 [rt 45 fd len lt 90 fd :len rt 45]
06 | end
07 |
08 | to dcl :step :length
09 | make ’’step :step - 1
10 | make ’’length :length / 1.41421
11 | if :step > 0 [lt 45 dcr ;step :length rt 90 dcll :step :length lt 45]
12 | if :step == 0 [lt 45 fd :length rt 90 fd :length lt 45
13 | end
14 |
15 | dcr 9 300

There are 13 minor errors that a novice may make while trying to implement the dragon
curve. These errors are: 1) line 3: there is a missing space between before the colon in
length:length 2-5) line 4-5: len should be length 6) line 5: == should be = 7) line 5:
missing colon before the first length 8-9) line 9-10: double quotation marks should be used
instead of two single quotation marks 10) line 11: the semicolon should be a colon 11) line
11: dcll should be dcl 12) line 12: == should be = 13) line 12: missing end bracket.

1.4 StarLogo: The Next Generation

StarLogo appears to promise the user unlimited power and complete understanding

of the universe through simulations. However, StarLogo simulations are designed

through careful text-based scripting of how agents interact together. As such, the

simulation environment requires an exact understanding of programming syntax and

minor mistakes can prevent the program from running at all. Figure 1-3 shows the

source from Figure 1-2 with 13 minor errors that prevent the interpreter from running.

These errors can be especially difficult to identify and fix for inexperienced users who

have never seen code before.

Although motivated students picked up the StarLogo syntax and gained from the

simulations, many students were intimidated by the dense juxtaposition of characters.

When they tried to edit the code, they would sometimes be greeted by a sequence of

19

confusing error messages.

In an effort to bring the power of StarLogo to the masses, Eric Klopfer et al

created StarLogo: The Next Generation (TNG) to enable secondary school students

and teachers to construct their own simulations through visual blocks[8]. These blocks

impose limitations on the structure of commands, ensuring that only valid programs

can be assembled. In contrast to the text code for drawing a dragon curve in figure

1-2, the blocks code for drawing the same curve in figure 1-4 provide many hints

about how they fit together and how they may be used. The StarLogo TNG interface

also includes a drawer of blocks so users can quickly review what blocks are at their

disposal instead of having to memorize all the keywords in the programming language.

This shift to blocks allows users with minimal programming experience to focus

on the logic and parameters of their scripts instead of syntax. Consequently, many

students and teachers expressed much greater comfort using the blocks editor in

StarLogo: TNG relative to the textual code editor in previous versions of StarLogo.[8]

Another big advance that StarLogo: TNG brings is the addition of a three-

dimensional renderer. Made possible by huge advances in computational power and

graphics technology, this rich environment motivates users to build realistic models

of systems in a familiar videogame-like setting. Additionally, this renderer makes it

possible for users to create their own interactive 3D video games, bringing fun into

the modeling process.

The StarLogo TNG team found the notion of patches running scripts to be confus-

ing to students since many of them had a difficult time understanding that some blocks

could only be run by patches and vice versa. Patches also contribute significantly to

the simulation time: a rough division of the scene into a 100 by 100 grid results in

the simulation of 10,000 patches each iteration of the execution engine. Consequently,

the StarLogo TNG team deliberately left patches out to reduce student confusion and

increase runtime performance. If a user really wants patch-like behavior, they could

emulate patches by manually constructing and scattering invisible immobile agents.

20

Figure 1-4: Blocks code to generate the Dragon Curve

This is a program to generate the Dragon Curve in a blocks-based programming language.
This script uses slightly different logic than the code in figure 1-2.

21

1.4.1 StarLogoT and NetLogo

Uri Wilensky created StarLogoT and NetLogo to extend StarLogo by introducing

more built-in functions and datatypes to model more complicated behaviors[9]. Net-

Logo also comes with a rich library of existing models and is extensible, allowing users

to interface with external components such as the filesystem and network. NetLogo

is designed for high performance and many user scripts are compiled down to Java

bytecode and executed by the Java Virtual Machine (which may in turn compile user

scripts down to native code for the CPU to execute directly).

NetLogo is currently in the process of being ported to the web, and one of their

challenges is achieving high performance4.

Unlike StarLogo TNG, StarLogoT and NetLogo retain the scripting interface and

are not blocks based. Although NetLogo is a more powerful platform in terms of raw

language features, it also has a higher learning curve than StarLogo TNG due to its

scripting interface.

1.5 StarLogo Nova

One shortcoming of StarLogo: TNG is that it was built as a desktop Java applica-

tion. While it can run on the widely ported Java Virtual Machine, it still encounters

some limitations: (1) students may not be able to access their school StarLogo: TNG

projects from home if they save their files on their school computer (2) school com-

puters are heavily locked down and it is difficult to install native applications (3)

not all operating systems versions are supported because it is expensive to ensure

compatibility across a myriad of system interfaces and hardware drivers.

StarLogo Nova is a descendant of StarLogo TNG that runs on the web, addressing

many of these limitations. (1) By storing projects remotely in a database, users can

create, edit, and run their simulations anywhere from any device. (2) By nature

of being a web application, users will not have to install StarLogo Nova on their
4The NetLogo team describes their challenges with high performance at

http://netlogoweb.org/info#performance. As of mid 2016, they are focusing more on
feature parity than performance.

22

computer directly, allowing teachers to use StarLogo Nova in their classrooms without

having to configure any devices. This significantly increases the number of students

StarLogo Nova can reach. (3) Furthermore, modern browsers offer a consistent API

across a diverse set of platforms5, making it relatively simple to target a wide range of

hardware, including tablets. As an added bonus, with many people and organizations

looking towards the web as the future of applications, it is significantly easier to find

and recruit StarLogo Nova contributors with web experience.

One of StarLogo Nova’s primary goals is to dramatically improve upon the us-

ability of StarLogo TNG and further reduce the learning curve, based on 10 years of

StarLogo TNG user studies. StarLogo Nova allows the user to customize the interface

through a flexible widgets layer and carefully reduces the number of blocks by over

50% to simplify the blocks language. There are also many user interface innovations

upon StarLogo TNG, such the introduction of an omnipresent static block drawer

(figure 1-5).

To summarize the cumulative progress that Logo descendants have made in pursuit

of a better educational tool, StarLogo Nova is a web-based game and simulation

creation environment that combines a blocks-based programming language with a

pseudo-parallel agent-based simulation engine and a 3D rendering engine. Users can

drag and drop blocks to construct scripts that control agents and how they interact

with each other to run biological simulations, first person games, and many other

models of the world. Figure 1-5 shows a screenshot of the StarLogo Nova interface.

The contributions in this thesis revolve around the inner workings of the StarLogo

Nova platform. The next section gives a technical overview of how the platform

operated, prior to the contributions of this thesis.

5Although browsers can somewhat inconsistent between each other, versions, and operating sys-
tems, their differences are vanishingly small compared to native desktop and native mobile environ-
ments.

23

Figure 1-5: Screenshot of the StarLogo Nova interface

The top half of the screen is used by the renderer to display the simulation and the widgets
interface to allow the user to interact with the simulation. The bottom half of the screen
is the block editing interface. The gray left box is the block drawer that users can scroll
through to design the behavior of their agents. The tan right box are where users combine
blocks together to form scripts. The editor is currently on the "Algae" tab and every algae
individually executes each script on this tab. Scripts on other rabs control other sets of
agents.

24

1.6 StarLogo Nova Technical Overview

All block editing in StarLogo Nova is handled by ScriptBlocks, a JavaScript library

written with Closure6. Blocks in StarLogo Nova are defined by ScriptBlocks speci-

fications, which govern how blocks can connect to each other. For instance, an if

block has two sockets: a boolean data socket and an instruction list socket. It also

accepts command instructions to connect before and after it.

ScriptBlocks provides some degree of type safety: only a boolean block can be

used to fill the first socket of the if block and only command blocks can be used to

fill the second socket. These rules prevent a user from constructing many sorts of

invalid programs. Figure 1-6 shows the specification for the if block and figures 1-7

and 1-8 show examples of how the if block can be used with other blocks.

There are 5 data types that ScriptBlocks differentiates between: dropdowns,

booleans, lists, commands, and a generic data type.

Dropdowns restrict the block input to the output of a generic callback, which allows

ScriptBlocks to enforce valid selections for arguments such as widget names,

procedures, and traits.

Booleans (half circles) represent true and false values and are used extensively in

logical comparisons.

Lists (triangles) store lists of either booleans, lists, or generic data types.

Commands (flat) are instruction blocks that do not return a value.

Generic data types (squares) are used as a catch-all to represent numbers, strings,

colors, sounds, shapes, agents, and nulls.

All type safety is enforced by ScriptBlocks and the engine generally does not know

about type information. When a block requires arguments to be of a certain type,

the engine will cast arguments appropriately.
6Closure is a platform created by Google to help developers write optimized JavaScript. It

features an extensive modular library, an optimizing compiler, and code health tools.

25

Figure 1-6: Block Specification of if

{
"name": "if",
"color": "#cde8d5",
"label": "if @test \n @then",
"connections": [

"after",
"before"

],
"arguments": [

{
"dataType": "boolean",
"socketType": "internal",
"name": "test",
"options": []

},
{

"dataType": "command",
"socketType": "nested",
"name": "then",
"options": []

}
],
"returnType": "command"

}

The block specification defines the name, color, label, collections, and arguments of a block.
Arguments are typed with the dataType field.

26

Figure 1-7: Compatible blocks for the if block

The =, and, and < blocks are boolean blocks. The forward, teleport, call, and play
sound blocks are command blocks. Note that blocks that can fit in the first socket (top)
cannot fit in the second socket (bottom) and vice versa.

Figure 1-8: Incompatible blocks for the if block

None of these blocks can fit in either socket for the if block (shown in figure 1-7).

27

For a given state of the editor, ScriptBlocks internally represents the user’s code

as a forest of trees, with each tree corresponding to a stack of visual blocks. Socketed

blocks are represented as the children of the parent block. When a user performs an

action (such as creating, connecting, or disconnecting a block), ScriptBlocks updates

its internal state, updates the DOM with this new state, and sends signals to the

execution engine corresponding to the change event.

The execution engine is responsible for accurately and efficiently simulating the

agents in the environment. For each agent and each script, the execution engine

constructs a thread object and runs all the threads "in parallel". To provide the

illusion that many agents are running in parallel when there is a single execution

thread, threads are divided into small slices with yield blocks. Whenever the ex-

ecution hits a yield block, the engine pauses execution of the current thread and

begins stepping the next thread. yield blocks are invisibly attached to the end of

if-button-pressed blocks and can also be explicitly added by the user. To further

the illusion that agents are running in parallel as opposed to taking turns, all direct

interactions between agents act on the previous states of the agents: upon collision,

all agents create a copy of themselves and collision code runs on these previous states.

When all regular threads have been run once, the engine computes collisions and

then begins running collision threads (if any exist) for agents that have collided. This

concludes one cycle of the engine. Figure 1-9 shows pseudocode for one cycle of the

engine.

Motivated by computational performance, the engine operates in a manner similar

to a CPU that jumps after each instruction. It maintains a linked list of instruction

nodes for each script. Because execution can be nondeterministic (there is support for

random number generators), this list is constructed at runtime: whenever the engine

executes an instruction node, it will pop arguments from a per-thread data stack and

push return values onto this stack. Then the instruction will return a reference to the

next instruction node to execute7.

7There is a compilation stage that sets up all instructions, giving each instruction references to
the set of all instructions that could possibly be executed next.

28

Figure 1-9: StarLogo Nova Execution Engine Pseudocode

for each agent:
for each thread in agent.threads:

done = thread.step() // run each thread until it yields
if done:

agent.threads.remove(thread)

for each (agent1, agent2) that have collided:
for each script for (agent1.breed, agent2.breed) collisions:

// construct a thread based on the script and colliding agents
thread = new Thread(script, agent1, agent2)
done = thread.step()
// if this collision thread has not finished,
// schedule it for running again the next cycle
if not done:

agent1.threads.add(thread)

This pseudocode represents one cycle of the Execution Engine and the Engine is expected
to run many times per second.

The renderer retrieves a snapshot of all the agents’ state and updates the DOM.

Because the execution engine often takes a long time to run a cycle, the renderer will

draw up to 12 frames per engine tick, interpolating between the previous snapshot of

the agents’ state and current snapshot to present the illusion of a smooth real-time

simulation.

1.7 StarLogo Nova Block and Functionality Overview

This section gives an overview of the all the blocks supported in StarLogo Nova and

their intended functionality. All the blocks are shown in figures 1-10 through 1-23.

1.7.1 Agent blocks (figure 1-10)

Agent blocks are used to create, delete, and scatter agents. Additionally, there are

blocks for possessing the camera and passing the agent and its parent around as

29

arguments.

Figure 1-10: Agent Blocks

There are two blocks for creating agents: agent-create and agent-create-do.

agent-create accepts a number and breed and creates that many agents of the given

breed, inheriting the position of the parent agent that created these new agents.

Although the agents all share the same x, y, and z position, the new agents’ headings

are uniformly distributed about a circle so that if they all move forwards, they will

separate. In addition to the number agents and breed arguments that agent-create

accepts, agent-create-do accepts a list of command blocks and will run that list of

commands immediately for each agent it spawns.

At the start of each simulation, there is a single invisible agent spawned in the

center called “The World”. This agent is not allowed to move or die, but can function

as an agent in all other situations, such as creating other agents.

There are three delete blocks: delete, delete-everyone, and delete-agent.

The first two don’t accept arguments and delete the calling agent and all agents

(except the world), respectively. delete-agent takes in an agent as an argument

and deletes that agent. For example, delete-agent could be used in collisions to

30

delete the collidee8 or more generally, delete an agent stored in a trait9.

There are two scatter blocks: scatter and scatter-everyone. scatter will move

the current agent to x and y coordinates chosen uniformly at random. scatter-everyone

applies scatter to every agent (except the world).

take-camera is a special instruction to the renderer to draw the scene from the

current agent’s point of view. If the agent that has taken the camera dies, then the

camera is restored to an aerial view.

me returns a reference of the current agent. my-parent returns a reference of

the current agent’s parent (the agent that created the current agent, which may not

necessarily be of the same breed).

1.7.2 Detection blocks (figure 1-11)

Detection blocks enable agents to sense their environment and react to collisions with

other agents.

Figure 1-11: Detection Blocks

on-collision is a top level block that allows users to control how agents behave

upon collision with other agents. It accepts an argument determining the breed of

the other agent, which allows for precise collision targeting. collidee is a special

block that returns the agent that the current agent has collided with.

81.7.2 describes collisions in greater detail
9Section 1.7.12 describes traits in greater detail.

31

count and count-with return the number of agents of a specified breed within

the given radius (steps). count-with allows users to impose a constraint on the traits

of the agents that are included in the count.

nearest and nearest-with return the nearest agent of the specified breed within

a radius. Like count-with, nearest-with allows users to impose a constraint on the

trait of the agent to be returned.

1.7.3 Environment blocks (figure 1-12)

Environment blocks control how agents can act with the scene, the world (a persistent

agent described in section 1.7.1), and time.

Figure 1-12: Environment Blocks

stamp and stamp-grid allows agents to stamp an imprint of themselves onto the

ground with the given color: stamp draws a circle proportional to the size of the agent

and stamp-grid draws a unit circle centered at the agent. The pen block toggles the

state of an agent’s pen. If it is on, it traces a path of where it has traveled on the

ground whenever it moves.

world-trait returns the given trait of the world agent. set-world-trait sets

the given trait of the world agent to the given value. the-world returns a reference

to the world.

At the end of each cycle, the engine increments a numerical clock. The clock

instruction returns the current value of the clock and set-clock can set the clock

32

value.

terrain-color returns the color underneath the current agent. clear-terrain

clears the terrain of any stamps, unit squares, and traced paths by pens.

1.7.4 Interface blocks (figure 1-13)

During execution, users can interface with agents through graphical widgets such

as buttons, data input boxes, and sliders. Agents can also interface with the user

through labels, data boxes, tables, and graphs.

Figure 1-13: Interface Blocks

when-pushed and while-toggled are two common top level blocks that bind user

actions to push and toggle buttons. For when-pushed, all blocks under when-pushed

are executed once whenever the specified button is pushed. For while-toggled,

while the given button is toggled to the on state, all blocks under the while-toggled

33

execution each cycle. The toggle-button-set instruction allows users to override

the default while-toggled behavior on a per-agent basis, enabling certain agents to

stop running or always run.

The show and hide blocks control the visibility of widgets. The get-data-box

and set-data-box blocks read from and write to data input boxes, respectively. The

label and slider-value blocks return the current state of the label and slider,

respectively.

There are additional blocks for updating charts and tables. These blocks are

primarily designed for the world agent to display the number of agents matching

certain criteria in a persistent widget to help users record simulation outcomes.

1.7.5 Keyboard blocks (figure 1-14)

Keyboard blocks allow users interact with agents with their keyboard. When a key is

pressed, it is added to a set of currently pressed keys and also to a queue of keys that

have been pressed. When a key is released, it is removed from the set of currently

pressed keys. At the end of each engine cycle, it will pop the head of the queue.

Figure 1-14: Keyboard Blocks

The key-held block returns whether specified key is in the set of currently pressed

keys. The key-typed block returns whether the specified key is the head of the queue.

This design feeds the keystrokes to the key-typed blocks at a rate of one key per

engine cycle, preserving the order of the keystrokes and preventing keystrokes from

being dropped.

34

1.7.6 List blocks (figure 1-15)

List blocks allow users to work with lists of generic data. Lists are currently not fully

integrated with other blocks and can only be used in a limited number of places.

Figure 1-15: List Blocks

list-of is a constructor to create a list of data. The - and + buttons allow the

users to dynamically change the number of arguments this block accepts. splice and

insert allow users to combine lists together.

contains, get, and length behave as one would expect: they check if the list

contains an object, get the 𝑛𝑡ℎ item in the list, and return the length of the list,

respectively.

1.7.7 Logic blocks (figure 1-16)

Logic blocks allow agents to branch, loop, check logical operators, and yield.

The majority of these blocks operate intuitively and do not require explanation.

Similar to many programming languages, the and and or blocks short circuit evalu-

ation if the first argument is false or true, respectively.

The yield block signals to the engine to pause execution of the script for the

current cycle and resume execution right where it left off the next cycle. This allows

for the renderer to step in and draw temporary state during a lengthy computation

and also for complicated multithreaded behavior: an agent could jump upon keyboard

35

Figure 1-16: Logic Blocks

input and yield between a list of move-up and move-down blocks. Although yield-

like behavior could be accomplished by creating state machines, yielding is a much

simpler approach to reasoning about multithreaded behavior.

For an interpreter-based engine with per-thread data stacks, one can implement

yield by saving the state of the stack and the cursor position in the stack of blocks

and breaking out of the interpreter loop. However, implementing yield in other kinds

of engines is less straightforward.

1.7.8 Math blocks (figure 1-17)

Math blocks allow users to access common constants, perform calculations, and gen-

erate random numbers. All of these blocks function intuitively.

36

Figure 1-17: Math Blocks

1.7.9 Movement blocks (figure 1-18)

Movement blocks allow agents to move and rotate. Most of these blocks are straight-

forward with the exception of face-towards. face-towards takes in an agent and

rotates the current agent to face the other agent. Because agents, numbers, and

strings are lumped together in a generic datatype, ScriptBlocks unfortunately does

not provide much type safety for this block.

1.7.10 Procedure blocks (figure 1-19)

Procedure blocks allow users to create and for agents to call procedures.

The top level procedure block allows users to define a procedure and adjust the

number of parameters, their names, and their data types. At the bottom of the

procedure block is a dropdown that allows the procedure to return a value.

The two types of call blocks accept a procedure name and upon receiving a name,

expand to provide arguments for the procedure.

parameter blocks are used within a procedure to read the parameters given to

the procedure.

The return-early block allows the user to halt execution of the procedure and

37

Figure 1-18: Movement Blocks

optionally return a value.

1.7.11 Sound blocks (figure 1-20)

Sound blocks are used to play sounds during execution and manage sounds while

users are building their programs.

The sound-play block accepts a sound-options block. The sound-options block

contains an argument to allow users to select a sound. The buttons allow users to play

or delete the current sound and to record a new sound using their system microphone.

1.7.12 Trait blocks (figure 1-21)

Traits are instance variables on every agent. A breed has a set of traits and each

agent of that breed has an instance of each trait. All breeds have a set of universal

traits: id, breedname, x, y, z, heading, color, shape, and size. Users can also add

additional custom traits. When agents are constructed, they inherit shallow copies

of traits from their parent.

38

Figure 1-19: Procedure Blocks

Figure 1-20: Sound Blocks

The my and set-my blocks get and set the current agent’s traits, respectively.

Some traits, such as id and breedname, are read-only so those are not presented in

the dropdown and cannot be set.

There is also a trait-of block that allows users to get a trait of another agent.

There are also environment blocks that allow users to get and set traits of the world

agent (See section 1.7.3).

Internally, colors are represented as numbers from 0 (black) to 0xFFFFFF (white)

and shapes are represented as URLs to shape files. Since these values are not very

human friendly, there are argument blocks (color and built-in shape) that with

human-readable dropdowns that allow the user to pick colors and shapes. Script-

Blocks dropdowns offer a layer of indirection that maps human readable names to

encoded values.

1.7.13 Variable blocks (figure 1-22)

Variables are named values that exist within a block stack.

The three variable blocks allow users to declare, set, and get variables and they

39

Figure 1-21: Trait Blocks

Figure 1-22: Variable Blocks

function as one would expect.

If a variable is accessed within an agent-create-do instruction, then reads and

writes to that variable are within the scope of the outermost variable block.

1.7.14 Debugger blocks (figure 1-23)

Debugger blocks allow users to inspect the state of their scripts through logging.

Figure 1-23: Debugger Blocks

The print-to-JS blocks print the given value to the browser’s JavaScript console.

40

Chapter 2

StarLogo Nova Limitations and

Rationale for Contributions

Despite being a useful tool for students and educators, StarLogo Nova has many

internal challenges. StarLogo Nova was originally written in ActionScript3 (AS3),

which is slated for deprecation by multiple browsers and we must move on to more

modern and secure platforms.

Additionally, the StarLogo Nova codebase has few build processes in place inter-

nally, making it difficult to deploy new features. For example, the lack of test cases

makes it time consuming and error prone to verify that a change does not introduce

regression bugs.

The StarLogo Nova engine can also be slow, which limits the number of agents

and the complexity of their behavior in large simulations.

The following sections describe these limitations in greater detail and present out-

lines of solutions to these challenges. The following chapters describe these solutions

in significantly greater depth.

2.1 ActionScript3 Migration

StarLogo Nova requires fast and local computation in order to simulate up to thou-

sands of agents in real time. The local computation requirement effectively restricts

41

the choice of programming platform to either native JavaScript or browser plugins as

Adobe Flash (which executes AS3). At the time of initial development, JavaScript

performance significantly lagged AS3 and browsers poorly supported native graphics

(only 5% of users could run WebGL on their browsers). In light of these conditions,

the decision was made to build the core engine that simulated agents in AS3.

However, the Flash runtime is notorious for security vulnerabilities. There are fre-

quent reports of zeroday vulnerabilities, which are security vulnerabilities known to

researchers (potentially malevolent black hats) that can exploit fully updated Flash

runtimes with minimal user interaction and take control of the host operating sys-

tem. StarLogo Nova has a high potential for attack because of reliances on external

content delivery networks and a rotating student development team that may not be

necessarily well versed in security best practices. The nail in the coffin for Flash is

that major browser vendors, such as Google and Mozilla, have announced in 2016

that they will be blocking flash by the end of the year due to the recent number of

high profile security incidents[1, 5, 3]. Thus, it is vital to pursue redeveloping the

core engine in a more secure platform.

JavaScript is presently a vibrant and healthy web development platform with

open standards, multiple competing and performant interpreters (including ones that

run on mobile devices), a large community, and exciting proposals for the future.

Additionally, the majority of browsers support native graphics through WebGL. To

advance StarLogo Nova to modern web standards, I migrate the core execution engine

to JavaScript. This large effort will protect the safety of users, support modern

standards, and make the installation even easier for new users.

One major downside of JavaScript is that it is an untyped language that will

silently fail when incompatible types are combined1. TypeScript is an open source

typed weakly language created by Microsoft that compiles to JavaScript, performing

type checks during compilation. This compile-time type checking helps prevent bugs

in a large project while not slowing down execution. Furthermore, since both AS3

1On Chrome v52, [] + [] returns "", + [] returns 0, "A" + 1 returns "A1". For all of these
examples, JavaScript silently type converts and does not throw an exception.

42

and TypeScript are based on the ECMAScript standard, their syntaxes look visu-

ally similar, allowing simple string substitution to do a substantial portion of the

conversion.

2.2 New Tooling

The StarLogo Nova codebase has been through the hands of many MIT undergrad-

uates studying computer science. Although it is packed with ingenuity and clever

snippets, it is also brittle, needlessly verbose, difficult (and scary) to change in many

places, and contains subtle bugs.

One way to address these concerns is to add automated test cases to verify cor-

rectness of the code. With automated tests, it is significantly easier to refactor code

to make a feature as simple and coherent as possible, without having to go through

a laborious manual testing process. This can help cut down on unused variables,

unreachable code, and inefficient algorithms bloating the source code. I introduce a

test suite to ease verification for development and refactoring.

With many languages, there are many valid and efficient ways to accomplish one

thing. Typescript offers several ways to assign foo to a value of 10: for example,

a developer could write const foo: number = 10; or FOO = 10. While these

two snippets generally accomplish the same task, the first approach is significantly

preferred over the latter because it gives the reader (whether it is a human, the

TypeScript compiler, or the JavaScript interpreter) much more information about

the volatility, scope, and type of foo. Additionally, using (mostly) lowercase letters

for local variables and reserving all capital letters for global constants helps enforce

a sense of style consistency that eases the flow of reading. To enforce good coding

practice, I introduce a linting step to the testing process.

Ultimately, there is no substitute for human supervision when contributing a fea-

ture. Even with test cases and linters in place, it is possible to fail edge cases (possibly

by omitting a critical test case) and contribute unnecessarily convoluted implemen-

tations. To improve the human aspect of development, I worked with fellow MEng

43

student William Qian to establish a reasonable version control workflow for developers

to follow, discussed in section 4.3.

2.3 Performance Engineering the Engine

At the heart of StarLogo Nova is an engine that executes the user scripts. A more

efficient engine enables users to simulate more agents and more complicated behaviors

and cuts down on waiting for simulation results. Students can take advantage of the

time saved by faster simulation times to test new hypotheses and see just how far

their decentralized designs can scale.

To render a simulation in real time at 60 frames per second (the typical refresh

rate of a monitor), the engine can take no more than 16.6 milliseconds to execute a

slice of all agent scripts. To allow time for rendering the actual image, the time budget

per step drops to about 10 milliseconds. The previous engine was unable to reliably

meet this deadline so the engine was run only once every 12 frames, with the renderer

interpolating between agent states to maintain the illusion of rapid execution. This

leads to undesirable lag with games receiving keystrokes up to 11 frames (or 200

milliseconds) after they have been pressed.

I performance engineer the engine to make it run in real time, taking advantage

of the incredible performance advances in browser JavaScript engines.

44

Chapter 3

Flash Migration

JavaScript by itself is a generic programming language with little to no type safety.

The runtime will silently allow users to add a string to a number and put falsey values

(sometimes 0, sometimes undefined, sometimes NaN) onto the stack for other oper-

ations, ultimately causing unexpected errors downstream. As such, large JavaScript

codebases exceeding a few thousand lines of code can be difficult to work with because

there are few mechanisms to protect the programmer from teammates or even past

versions of him or herself. Instead of reimplementing the core engine in JavaScript,

TypeScript (TS), an open source gradually typed programming language initially

created by Microsoft that transpiles into JavaScript, was chosen as the development

target. The type safety checks are done at compilation time, helping reduce the risk

of introducing bugs even before any testing is done.

3.1 Initial Migration Steps

ActionScript3 and TypeScript look similar syntax-wise since they were both devel-

oped to be type-safe object-oriented extensions of ECMAScript, the official standard

for JavaScript. Because of this, it is possible to automatically convert the bulk of the

code with naive string substitution. As3-to-typescript1, an open source tool for auto-

matically translating AS3 to TS, was used to do exactly this. Although it automated

1https://github.com/photonstorm/AS3toTypeScript

45

many mundane substitutions, its shallow understanding of the underlying code led it

to make frequent errors in translation.

I was unable to find a conversion tool with a deeper understanding of the under-

lying abstract syntax tree of the AS3 code so I did the rest of the migration process

manually. I chose to first migrate files with few to no dependencies because it allows

for immediate testing of modules whose dependencies have already been satisfied.

This decision traded off initial understanding of the big picture for immediate results,

but was worth it in this case because getting small modules to fully compile helped

me learn the TypeScript language.

To migrate from the bottom up, it is necessary to identify which files constitute the

bottom and have satisfied dependencies. The next step in migration was to construct

a dependency tree of the AS3 files to identify which files are leaves, which files whose

dependencies would be satisfied by migrating those leaves, and so on. Although leaves

were straightforward to identify, it was actually impossible to construct a tree because

AS3 supports circular imports (and the codebase made some use of them), whereas

TypeScript imports do not natively work well with circular references2.

After migrating leaves and some nodes with few dependencies, I refactored parts

of the codebase to eliminate import cycles. One technique I used was to create an

interface for popular classes so that files that just require the type for declaration

purposes can import the interface rather than the class itself. This resolves the case

where the Agent class relies on some file that passes an Agent around and requires the

agent type just for the type declaration. For more strongly coupled files, I resolved

circular imports by merging the two files and having two class declarations within the

same file.

2There are import modules for TypeScript that support circular references, but I did not explore
configuring those because support for circular dependences can encourage unnecessary coupling.

46

3.2 Migrating the Engine Core

The most complicated part about the StarLogo Nova engine is how it actually runs the

scripts which control the agent actions. ScriptBlocks stores each script in a tree-like

data structure, but the engine actually stores each script in a list-like data structure

of StaticInstructions. Each script is run in the context of a thread, which contains

useful attributes such as a reference to the agent, the agent that this agent collided

with (if any), and a data stack. StaticInstructions all have a fn method, which

can pop arguments off the thread’s data stack and push a return value onto the stack.

The fn method also returns a reference to the next StaticInstruction to run. In

order for StaticInstructions to know what StaticInstruction to return, they are

given references to nodes that may succeed them during an initial compilation step.

Figure 3-1 and 3-2 show the original AS3 implementation for the If and CalcSum

instructions.

There is a special yield instruction that signals to the Engine that this thread is

finished running for the current cycle and the Engine should begin executing the next

thread. When the Engine returns to this thread in the subsequent cycle, it should

resume execution as if it had not been stopped at all - the stack state and instruction

pointer should be preserved.

3.2.1 A Difficulty in Migrating the Engine Core

Compiling scripts into a list of StaticInstructions from scratch was measured to

be computationally expensive. One feature that a previous contributor had worked

on was incremental compilations: this feature listens for change events on the blocks

and mutated the instructions list accordingly. Unfortunately, the migrated TS threw

errors during incremental compilations for certain input sequences of modifications,

in spite of repeated checking that the TS mirrored the AS3. Upon closer inspection,

the AS3 feature itself also exhibited the same bug as TS3.

3Fortunately, incremental compilation did not make its way into production so this was an undis-
covered bug in the development branch.

47

Figure 3-1: AS3 Interpreter code to compute if

public class If extends BranchingStaticInstruction
{

public function If()
{

super();
branchLocations = new <int>[1];

}

override public function fn(a:Agent):StaticInstruction {
var test = Boolean(a.thread.dataStack[--a.thread.dataStackIdx]);
// if the test is true, pass execution to the body. Otherwise,
// move on to the "next", which is whatever comes after the if.
if (test && branches.length >= 1 && branches[0] != null) {

return branches[0].first.head();
} else {

return next;
}

}
}

Executing fn pops a test value off of the thread data stack. If test is evaluated to be true,
then it returns a reference to the head of its branches list. Otherwise, it returns a reference
to the instruction that follows the if instruction.

48

Figure 3-2: AS3 Interpreter code to compute CalcSum

public class CalcSum extends StaticInstruction
{

public function CalcSum()
{

super();
}

override public function fn(a:Agent):StaticInstruction {
var tempVal2:Object = a.thread.dataStack[--a.thread.dataStackIdx];
var tempVal1:Object = a.thread.dataStack[--a.thread.dataStackIdx];

var tempNum1:Number = Number(tempVal1);
var tempNum2:Number = Number(tempVal2);

if (isNaN(tempNum1) || isNaN(tempNum2)){
// this is going to be a string append operation so we add in
// reverse order that values were popped from the stack.
a.thread.dataStack[a.thread.dataStackIdx++]= tempVal1 + tempVal2;

} else {
// order doesn’t matter because it’s a numeric sum
var sum:Number = tempNum1 + tempNum2;
a.thread.dataStack[a.thread.dataStackIdx++]=sum;

}
return next;

}
}

}

Executing fn pops two values off of the thread data stack: tempValOne and tempValTwo.
fn then tries to convert these values to numbers. If successful, it adds their sum to the
stack. Otherwise, it tries to do string concatenation (using the built-in + operator) on the
two temporary values and pushes the new value onto the stack. At the end, it returns a
reference to the instruction that follows this CalcSum instruction.

49

This feature requires very precise handling of the Instruction list data structure

to work in every case. There were complicated edge cases involving detachment of

procedure calls with a corresponding complicated implementation. Furthermore, the

implicit structure of the script made it difficult to determine whether the nodes were

correctly attached during debugging.

Because I did not know the full extent of how incomplete the incremental compiles

were and because of the absence of a test suite, it was unclear how difficult it would

be to fix incremental compilation. There could be additional undiscovered bugs in

the codebase: the mechanism that ScriptBlocks uses to send update signals is both

complicated and not fully tested.

Additionally, the current execution design is difficult to scale up for efficiency.

Because the StarLogo Nova interpreter must run in JavaScript, it is very difficult

to make an implementation of the addition block competitive with an add assembly

instruction. Since we intend to replace this current execution design with a faster

approach, it is not worth investing a significant amount of time into fixing this old

approach and immediately discard it.

Instead of migrating the complicated model of a linked StaticInstruction list

and trying to do what the original author failed to accomplish, I designed a differ-

ent approach to interpreting user scripts, with an emphasis on correctness and ease

of debugging. After correctness is established, I could focus on performance and

eliminating bottlenecks.

Even if the interpreter is ultimately not used because of performance limitations,

it centralizes execution, which can make instrumenting execution for tracing and de-

bugging purposes simple. It also introduces a much needed AST structure to provide

a solid backbone for scripts.

3.2.2 A Simpler Interpreter

The ScriptBlocks representation of the blocks is designed for displaying the blocks and

responding to user interaction, but not for the actual interpretation of the code. For

each block, ScriptBlocks maintains a list of sockets that children blocks can plug into,

50

but does not differentiate between argument blocks (blocks that are consumed by the

execution of that block) and branch blocks (blocks that can be conditionally executed

after that block). Furthermore, some blocks like procedure and list contain + and

- buttons that are also represented as sockets but are not used by the engine.

This lack of differentiation requires instructions themselves to explicitly use a stack

to pass arguments and return values around. The choice of using a stack allows small

bugs, such as an extra push or pop from the stack, to easily corrupt the execution

state. Instead of using the ScriptBlocks representation of blocks as the basis for the

new interpreter, I constructed an explicit abstract syntax tree (AST) for each script.

This provides a layer of insulation between ScriptBlocks and the Engine to reduce

coupling, allowing future contributors to change the ScriptBlocks interface or even

use another library, such as Blockly[2], to handle the user interface.

This explicit AST structure differentiates between arguments and blocks and is

designed for fast access during interpretation. An AST is composed primarily of two

data structures: an ASTNode and ASTList. ASTList inherits from Array<ASTNode>

and contains some useful helper methods such as validating that all ASTNodes are

correctly set up. ASTNodes have an ASTList instance for all of their arguments and

an ASTList instance for each branch. This AST structure allows the interpreter

to explicitly gather the return values of a list of argument nodes, allowing for easy

debugging.

I replaced each Instruction definition with one that extended the ASTNode class

and changed the input output model of the execution of the Instruction. Instead

of reading arguments from the stack and adjusting the stack pointer, they would

instead read arguments from their ASTList arguments member. After the execution,

the Instruction would write two values in a list4: the return value of the instruction

(if any), and an integer representing control state to the interpreter. These control

states are described later in this section. Figure 3-3 shows the If and CalcSum

51

Figure 3-3: Simpler Interpreter code to compute if

export class If extends ASTNode {
constructor() {

super(1, 1); // numArgs = 1, numBranches = 1
}

public fn(a: Agent, scope: Map<string, any>,
args: Array<any>, rets: Array<any>): void {

if (args[0]) {
rets[1] = 0;

} else {
rets[1] = Constants.AST_DONE;

}
}

}

Executing the if’s fn is simpler now. If the first argument is true, then it will write a 0
into the control state, otherwise Constants.AST_DONE, which is a negative integer. If the
interpreter reads a nonnegative value in the control state, it will take that as the branch
index and execute all the nodes in the branch. Otherwise, it will function according to the
specific control state.

instructions implemented as ASTNodes.

This shifts the burden of running user scripts from the compiler to the interpreter.

Instead of having a medium level of complexity across all the instructions, this ap-

proach reduces the complexity across all the instructions and centralizes complexity

at the interpreter. For each thread, a JavaScript generator is constructed represent-

ing the state of the interpreter. This generator serves a critical role in the design

because it pushes the burden of saving the execution state upon yield to the browser

JavaScript engine.

The interpreter provides two generator methods: executeNode and executeList.

executeList effectively calls executeNode for each element in the list. If any nodes

4Returning the two values in a list could increase pressure on the garbage collector so the inter-
preter instead passes a reference to a return array to all nodes it returns. However, some modern
browsers (see section 5.1.2 for an overview of how the Firefox SpiderMonkey JavaScript engine does
this) can automatically deconstruct this return array into individual values defeating the purpose of
this optimization. This assumption about garbage collection performance should be revisited in the
future

52

Figure 3-4: Simpler Interpreter code to compute CalcSum

export class CalcSum extends ASTNode {
constructor() {

super(2, 0); // numArgs = 2, numBranches = 0
}

public fn(a: Agent, scp: Map<string, any>,
args: Array<any>, rets: Array<any>): void {

rets[0] = a + b;
rets[1] = Constants.AST_DONE;

}
}

Executing CalcSum’s fn is also simpler now.

return RETURN PROCEDURE as their control state, then executeList returns immedi-

ately and propagates the RETURN PROCEDURE control state.

executeNode will first set up an infinite loop. For each iteration of the loop, the

generator will call executeList on the ASTList representing the arguments of this

node, storing return values in an array. Then, it will pass those return values as

the parameters to the ASTNode, call the main function, and look at the output of

the main function. Depending on the control state, the interpreter will take different

code paths.

A nonnegative integer: it will run executeList corresponding to this branch in-

dex. If executeList returns RETURN PROCEDURE as its control state, then

executeNode will return and propagate the RETURN PROCEDURE state upwards.

Otherwise, it break out of the infinite loop and return the DONE control state.

All other control states are negative integers.

DONE: it will break out of the infinite loop to execute the next node.

YIELD: it will literally yield the generator and then break out of the infinite loop

when execution resumes.

53

REPEAT: it will look at the return value. If it is nonnegative, then it will construct

a finite loop to repeat running this node’s first branch that many times. If the

return value is negative, then it will run this node’s first branch and continue

to the next iteration of the main infinite loop.

YIELD AND REPEAT: it will yield the generator and then continue running the loop

when execution resumes.

CALL PROCEDURE: it creates a new generator based on the procedure. Then, the

parent generator yields on this new generator, which has the effect of step-

ping through the child generator and yielding each time the child yields. This

child generator retrieves the procedure parameters from the scope and then

recursively constructs a generator to execute the main ASTNode holding the

procedure.

RETURN PROCEDURE: it will break out of the infinite loop. This signal is propagated

to the the runner of the ASTList, which will halt execution and return from the

generator running this procedure.

The recursive nature of this interpreter design helps an implementor reason about

the interpreter and debug any problems. Because of the straightforward design, I was

able to build the interpreter, performance engineer it (section 5.3), and simulate a

paintball game featuring dozens of moving targets, in the span of a week.

A major drawback of this interpreter is that it is incredibly cautious and creates

complicated constructs to accommodate all possible edge cases. For example, the

infinite loop is constructed only to handle the repeat block case. Consequently,

early benchmarks revealed that the execution speed of this interpreter lagged the

AS3 code by over an order of magnitude. There is room for many opportunities for

optimizations down the line, and I describe the application of optimization techniques

to this interpreter in detail in section 5.3.

54

3.3 Miscellaneous Migration Details

This section describes some minor design decisions that were also made in the migra-

tion process.

3.3.1 JavaScript Maps vs Objects

Hash maps data structures are implementations of an associative array, optimized for

rapid key access. Given a key-value pair to store, a hash map will compute a numeric

hash of the key and place the key-value pair into a bucket corresponding to that hash.

For lookup of a value given the key, the hashmap will compute the numeric hash of

the key and search through the appropriate bucket for the key.

The original AS3 code relied extensively on hashmaps to keep track of data. In

JavaScript, there are two primary implementations of a hashmap: (1) a general Map

class introduced in the 2015 ECMAScript 65 update and (2) objects which can map

strings to arbitrary objects. The latter is used almost ubiquitously by web developers

because they have been widely supported for years so browser vendors have invested

major resources to tune their implementations of JavaScript objects. In contrast, Maps

are just beginning to see adoption and the current implementations of Map objects

often trail the performance of objects in benchmarks.

However, using objects as a hashmap also has its drawbacks. Objects can only use

strings as keys and consequently, it is necessary to serialize objects to strings before

using them as keys. Furthermore, two references to the same object must serialize to

the same key, but two copies (but not references) of the same object must serialize to

distinguishable strings, increasing implementation complexity. Furthermore, Type-

script allows developers to declare the types of keys and values for maps, but not for

objects.

In light of these benefits and tradeoffs, I choose to generally use Maps for hashmaps

because of the immediate benefits of type safety. If it is later discovered that some

specific Map access pattern is a bottleneck, then it is possible to use a more opti-

5JavaScript is an implementation of the ECMAScript standard

55

mized data structure, but optimizing for performance at the migration phase is too

premature, particularly for an interchangeable component.

3.3.2 Singletons and Static Classes

AS3 had awkward support for static methods so previous StarLogo Nova contributors

constructed singleton instances. Instead of reimplementing these singleton instances

faithfully, I chose to implement them idiomatically in TypeScript.

As a general rule, I took the liberty to implement the engine as idiomatically as

I could in TypeScript because there are few benefits to keeping the style of the AS3

code.

3.3.3 BlockTable

The engine makes use of a BlockTable to translate between ScriptBlocks names for

blocks to the Instructions. Based on the name, one would expect the translation

to look up the construction function from the name of the instruction and return a

newly instantiated instruction. However, the AS3 BlockTable operated more like a

complex switch statement and executed many compilation steps in the BlockTable.

I refactored BlockTable to reduce it to a map from string (instruction name)

to ASTNode constructor. Previously, the AS3 engine had a 1 to many map from

ScriptBlocks blocks to engine Instructions and this refactoring makes the mapping

1 to 16, significantly reducing the amount of setup logic in the BlockTable. This

reduction in complexity focuses debugging of the compilation stage onto just the

Compiler and ASTNode constructor.

3.3.4 Key Manager

StarLogo Nova uses a KeyManager keep track of keystrokes entered into the display

for the key-held and key-typed blocks (section 1.7.5). The KeyManager maintains
6For example, compare-equals and compare-not-equals would map to the same instruction,

but would pass in a parameter to the constructor of the instruction to invert the instruction return
value in the case of compare-not-equals

56

a set of currently pressed keys and a queue of keys that have been pressed: onKeyDown

adds the key to the set of keys, adds the key to the queue if the key was not already

in this set of keys, and prevents the default behavior; onKeyUp removes the key from

the set of keys.

Preventing the default behavior is necessary to prevent arrow keys and other keys

from scrolling the page. However, we do not want intercept super-f and prevent the

user from searching the page. Thus, we do not prevent the default behavior for keys

with the meta key on.

One initial problem with this approach is that for some onKeyDown events, we never

receive the corresponding onKeyUp event. For example, if a user presses super-t and

opens a new tab, the browser will switch focus away from the StarLogo Nova tab

and the KeyManager will not see the onKeyUp event, even if the user switches back

to the StarLogo Nova tab. To remedy this bug, I clear the set of pressed keys 100

milliseconds after a meta key is pressed in combination with another key.

3.3.5 Dead Code

Some parts of the codebase were deprecated and unreachable. For example, there used

to be separate instructions for reading and writing an agent’s x, y, z, and other traits.

These instructions have since been replaced by two instructions, one for reading traits

and another for writing traits. Instead of transpiling the dead code and keeping it, I

verified that the dead code was indeed unreachable and deleted it.

Dead code can make the code base confusing and potentially slow down the per-

formance of the engine. If it is necessary to revisit old implementations, one can

always use version control to view a deleted function and potentially restore it.

3.3.6 General Statistics

The original AS3 engine contains 10,899 lines and 328,442 characters of code split

across 172 files. This count excludes code for rendering and media operations, which

is not part of the new engine.

57

In contrast, the migrated TypeScript engine contains 10,220 lines and 314,196

characters of code split across 141 files. This count excludes code for test cases,

which was not part of the old engine.

The migration process did not significantly alter the size of the codebase. How-

ever, the resulting object payload sizes are dramatically different. The compressed

AS3 swf file is over 300 KB, whereas the compressed TypeScript engine (after being

compiled to JS) is under 50 KB. This TypeScript engine can be further compressed

with whitespace minification, comment removal, and other tricks to reduce its foot-

print.

58

Chapter 4

New Tooling

I instrument some tooling to make it easier to keep the core engine healthy and reduce

the potential for future technical debt. Tooling helps multiply developer efficiency, but

may also steepen the learning curve for a new contributor. I carefully choose easy-to-

understand tools that boost efficiency. In the following subsections, I describe specific

pain-points and the rationale behind choosing specific tools.

4.1 Migration Tools

To ease the migration from AS3 to TypeScript, in addition to completing a first pass

with the automatic transpiler, I incorporated several tools into the build process.

Although these tools started showing their utility in the migration process, these tools

will help future StarLogo Nova contributors create new features without accumulating

large amounts of technical debt.

4.1.1 make and tsc

Writing large quantities of code without validation introduces enormous opportunities

for errors. During the migration process, I wanted assurances that I was going on the

right track, but did not have reference unit tests to run. In place of testing, I would

frequently run my code through the TypeScript compiler (tsc) just to ensure that

59

what was written was in the correct language. This validation caught many bugs and

actually saved time since the compiler errors pointed out code that I had just been

working on so I could rapidly fix bugs in the moment. However, manually validating

files is a nuisance because it requires repeatedly typing out tsc –out /dev/null

file/to/be/compiled.ts for each edit, no matter how minor. If I were to make

five quick edits to files, I needed to painstakingly go back and recompile each file.

Furthermore, it is difficult to imagine that all future contributors would go through

the trouble of doing this check for every change so I automated this task.

I created a Makefile with an all target, which initially included a serial list

of instructions to compile the individual files, excluding those that were unfinished.

However, this approach has three primary drawbacks: 1) files that were ready to be

compiled needed to be explicitly added to this list of instructions, 2) files that were

already built were wastefully rebuilt each time, and 3) this list of instructions imposes

a serial order on execution, restricting modern multicore machines to use a single core

for compilation.

Instead of using a list of instructions, I instead created a list of TypeScript source

files and explicitly filtered out unfinished files. This choice of blacklisting files from

being compiled as opposed to whitelisting files to be compiles ensures that the con-

tributor is aware of all files that are not being compiled and what work remains to

be done. If there is a new file created, it will automatically be incorporated into the

build process, unless explicitly excluded.

Before make builds a file, it will first check for the existence of and modification

time of the target. If the target exists and the source has not been modified since it

has last been built, then make will not build this file. Since contributors will usually

only edit a small number of files, this will save a significant amount of build time.

The make all target depends on all of the source files in no particular order

between files. This means that although the steps to build each file have a serial

dependency, make is free to build files in any order. In particular, this means that

make is allowed to schedule build stages for multiple files simultaneously, allowing

the build process to be trivially parallelized. To run a build, a contributor can run

60

the command make all -j <number of concurrent jobs>. Figure 4-1 shows the

critical parts of the Makefile.

However, make does not understand the import structure of TypeScript source

files so a successful make all can still leave bugs if a changed dependency breaks

something upstream, but the upstream target has already been built successfully and

not changed since. To combat this, contributors should run incremental make alls

as quick sanity checks and a full make clean; make all prior to making a commit

in version control as a more comprehensive check1.

4.1.2 tslint

While the TypeScript compiler checks for matching types at runtime, it can be very

lenient because it permits variables to be untyped. This design decision was made

to ease the transition of an existing JavaScript codebase into TypeScript, but this le-

niency does not significantly benefit StarLogo Nova because the new execution engine

fully embraces TypeScript. Consequently, I also introduce the use of tslint, an open

source code linter for the TypeScript language created by Palantir. tslint requires

all variables to have a type declaration, effectively strictly typing the language.

tslint also offers many other checks that keep the codebase in good shape. It

enforces consistent whitespace and variable naming practices, alerts the user of unused

variables and imports, and forbids potentially bad practices such as the use of eval.

One of the biggest benefits of the linter is that it helps the source of core engine look

consistent, as if it were written by a single person in a single sitting. This helps future

developers understand the codebase more easily and also reduces decision fatigue:

there is now much fewer ways to write code.

To enforce a consistent style guide for the codebase, I add a tslint check to every

file during the make process.

However, there are cases where it is difficult to do exactly as the linter wants.

1While it is possible to configure make to include dependency information, the effort to keep
that dependency information up to date outweighs the cost of running a comprehensive build. This
assumption may be invalidated if there is a significant increase in the amount of code that needs to
be compiled or if future versions of the compiler significantly slow down.

61

Figure 4-1: Makefile all Target

TSC = tsc
TSC_FLAGS = --target es6 --noEmitOnError
TSFMT = tsfmt
TSLINT = tslint

INCOMPLETE = Compilation/Instructions/CameraTake.ts \
Compilation/Instructions/ShapeOptions.ts \
Compilation/Instructions/SoundPlay.ts \
Compilation/Instructions/SoundPush.ts \
Execution/PopUpUtils.ts \
WebLand/BreedEditor.ts

SOURCES = $(filter-out $(INCOMPLETE), \
$(wildcard *.ts) \

$(wildcard */*.ts) \
$(wildcard */*/*.ts))

OBJECTS = $(SOURCES:.ts=.js)

all: $(OBJECTS)
echo "SUCCESS"

%.js: %.ts
$(TSFMT) --verify $< || $(TSFMT) -r $<
$(TSLINT) $<
$(TSC) $(TSC_FLAGS) $< -out $@

SOURCES is a list of all the typescript files, with the INCOMPLETE files filtered out. OBJECTS is a
mapping of sources to targets. The %.js: %.ts target provides instructions on how to build
each file: 1) the file is automatically formatted (discussed more in section 4.1.3), 2) the file
is verified by the linter (section 4.1.2), and 3) the file is compiled. The flag –noEmitOnError
prevents the file from emitting the target if there is an error during the build process. If this
flag did not exist, then make all would fail the first run, emit the target, and skip building
the target on a subsequent run, effectively allowing the failed file to skip the build process. It
is also important that the compiler is run last, after the formatter and linter. If the compiler
ran and successfully produced an output file and the linter subsequently failed, make would
produce an error and abort the current process. However, on the next make all, make would
detect that the target has been built and skip rebuilding the target, sidestepping the build
and verification process for that file.

62

Figure 4-2: Overriding tslint

let color: Array<number> = [
/* tslint:disable no-bitwise */
((this.state.color & 0xFF0000) >> 16) / 255,
((this.state.color & 0x00FF00) >> 8) / 255,
((this.state.color & 0x0000FF) >> 0) / 255,
/* tslint:disable no-enable */

];

The /* tslint:disable no-bitwise */ comment disables the no-bitwise linter rule until
the /* tslint:enable no-bitwise */ comment.

One common case where we want to disobey the linter is if the best practice harms

performance (performance engineering is described in section 5.5.2). For example,

one can declare variables in TypeScript with the var keyword, but these variables are

scoped to the function, not to the local block. Block scoping can prevent some bugs,

but is deleterious for performance in critical loops. Another example of something

that tslint does not permit the use of bitwise operators because they are infrequent

and likely typographical errors for boolean operators. However, some manipulations

are best expressed with bitwise operators and we know better than the linter.

Instead of disabling the linter check everywhere, I explicitly turn off tslint for

sections of the code that are in violation of the linter for good reasons. Figure 4-2

shows an example of this mechanism for bitwise operators. Again, this style of opt-out

as opposed to opt-in helps keep the build process relevant and useful for the majority

of files.

4.1.3 tsfmt

While there are many benefits to making code look consistent, there is one immediate

major downside: it is time-consuming. Making code look consistent requires several

mindless edits in throughout the codebase. As I went through the files and corrected

errors made by the transpiler, I found myself spending unreasonable amounts of time

manually fixing whitespace inconsistencies line by line.

63

Figure 4-3: tsfmt invocation

$(TSFMT) --verify $< || $(TSFMT) -r $<

This runs the formatter in verification mode on the source file. If verification fails, then the
formatter is run in replace mode, replacing the source with a formatted copy. $< represents
the input file name.

This costly process of manually fixing of code will only clean up the state of the

codebase in the short term and future contributors may resent this process so much

that they will just disable linting for large swaths of code or even delete the linting

process entirely.

To make future contributions to the codebase painless and consistent, I add an

automatic TypeScript formatter (tsfmt) to the build process. I lightly configure

tsfmt to adhere to existing style conventions. The addition of the formatter also

sped up the remainder of the migration process since I did not have to carefully edit

my code - a contributor could be sloppy and let the formatter take care of the rest.

Although tsfmt is good at adjusting whitespace to align code, it cannot perform

more complicated edits such as adding type annotations or automatically renaming

unconventional variable names. Even with tsfmt as part of the build chain, it is

necessary to keep the lint check for further code validation.

The invocation of tsfmt in the Makefile (reproduced in figure 4.1.3) looks a bit

strange and requires some explanation. The command tsfmt -r <source file> will

format the source file and replace whatever was there previously, even if tsfmt does

not make any changes. This will bump the modification time of the source file to the

current time and for subsequent builds, make will detect that the file has been modified

since the last build and proceed to build the target from scratch. This significantly

increases duration of the build process since each build effectively becomes a full

build. To combat this, I first run tsfmt in verification mode and if that fails, then I

run tsfmt in replacement mode.

64

4.2 Automatic Testing

Test cases are fantastic for catching regression bugs early on. As the number of

features in StarLogo grows, it becomes intractable for a human to try and verify that

all previous features still work. Test cases can automatically verify intended previous

behavior and reveal regressions immediately. This saves time because the contributor

remembers exactly what change they made introduced the bug at the time of the

automated test and prevents end users from discovering the problem.

Test cases also promote good coding practices internally. In order to make a

function easily testable, contributors must write their functions with minimal side

effects, a small number of arguments, limited scope, and a small set of responsibilities.

They can also serve as documentation on how to use a certain function.

In many environments, a testing workflow consists of running a test command into

a shell session and receiving the output of the test. While it is possible to use node

to automatically test the generated JavaScript, this only tests the code for Chrome’s

V8 engine. This provides insufficient coverage for platforms such as the iPad. For

client-facing JavaScript such as the core engine, it is necessary to test with actual

clients to ensure cross browser compatibility.

I create internal test suite using Jasmine, which is a JavaScript testing framework.

Under Jasmine, source files and test specs are imported as scripts on a html page

and the Jasmine library evaluates the test specs and displays the result in a friendly

format to the user. To quickly run this test, I also create a Selenium script to launch

a headless browser to visit the test page and report back the results.

4.3 Version Control Workflow

The best internal tools can still let bad code slip through the cracks. Thus, it is vital

to have a good procedure for code review and version control in place to facilitate

human sanity check.

I worked with William Qian to put together a document helping new contributors

65

work with git. Effectively, we heavily endorse the feature branch workflow where

contributors branch off of the development branch to create their feature and issue

pull requests to merge their feature branch back into the development branch. There

is a separate production branch that picks commits from the development branch to

merge in.

When a contributor begins a feature, they create a new branch named with the

format yyyymmdd-username-feature_desccription. This specific format helps keep

track of who owns what branch, how old it is, and what the feature is.

Then, they do their work in that branch, rebasing their feature branch on the tip of

development as other pull requests land on development. Contributors are encouraged

to checkpoint their progress frequently with small commits. Small commits are then

expected to be squashed into a small number of large commits describing their full

feature. After testing their feature and running the full test suite, they issue a pull

request and work with an experienced contributor to review the pull request and

merge in the code. Upon merge, that feature branch should be deleted globally.

66

Chapter 5

Performance Engineering the Engine

The faster the StarLogo engine can run a script, the more agents it can simulate

and the faster it can deliver results to the user. This can reduce the amount of time

the user spends waiting for the simulation to complete and directly lead to more

exploration of hypotheses and learning experiences.

This section first presents an overview of how JavaScript engines work (section

5.1) and presents how benchmarks were conducted to minimize skew and variance

(section 5.2). Then this section describes both successful and unsuccessful attempts

at speeding up the execution of the core engine (sections 5.3 through 5.5).

5.1 Overview of JavaScript Engines

JavaScript is a high-level, untyped, garbage collected, and interpreted programming

language that is generally executed on browsers. Running JavaScript quickly is a dif-

ficult feat and modern JS engines are marvels of engineering. The previous generation

of JS engines relied on interpreting JavaScript directly and the current generation of

JS engines implement Just-In-Time (JIT) compilation of JavaScript to native code

for greater performance.

This section gives an overview of how major JavaScript engines for Chrome, Fire-

fox, Safari, and Edge (formerly known as Internet Explorer) operate in greater detail.

67

5.1.1 Chrome V8

The Chrome V8 JS engine utilizes two compilers: a full non-optimizing compiler

that quickly emits native code and an optimizing compiler named Crankshaft. When

a function is initially run, the non-optimizing compiler emits code that runs the

function1 and keeps track of the number of invocations of that function with a counting

profiler2. If a function is repeatedly run, Crankshaft will emit optimized code for that

function.

When a function is repeatedly run and deemed hot, Crankshaft kicks in to emit

more optimized code. Crankshaft operates in a series of stages: parsing the JavaScript

into an AST representation, generating an architecture-independent control flow graph

based on the AST and scope analysis, optimizing this control flow graph3, and gener-

ating architecture-dependent machine code. Currently, Chrome uses coarse-grained

locking to protect the heap so Crankshaft must stop the world while generating code.

Since nothing else can run while the world is stopped, Crankshaft must run optimize

quickly and get out of the way, forcing it to trade off deep optimizations for compi-

lation speed. This constraint may change in the future with more parallel versions of

Chrome, but at present, it is sometimes necessary to supply redundant hints to help

the optimizing compiler efficiently generate fast code.

When optimizing the control flow graph, Crankshaft tries to infer variable types

based on types seen previously so it can emit efficient native machine instructions.

For example, if it sees that an array only ever contains small integers, it may represent

that array with an array of 16 bit integers and emit int16 machine code for arithmetic

operators on elements of that array. If the inferred type is wrong, then Crankshaft will

de-optimize that function and fall back to the code generated by the non-optimizing

1This non-optimizing compiler offloads much of the execution to runtime functions, not unlike a
traditional interpreter.

2The advantage of the counting profiler over a sampling profiler is that the counting profiler is
deterministic and lowers variance in performance, at a minor time cost.

3A control flow graph is a graph of the order of how JavaScript statements can be invoked. A
node’s predecessors represent all the nodes that can be executed immediately before this node, and
a node’s successors are all the nodes that can be executed immediately after this node. Control
flow graph analysis can reveal dead code (partitioned nodes) that can be elided and inlineable code
(nodes with indegree and outdegree 1)

68

compiler.

Crankshaft also attempts to inline small functions4 so it is beneficial to tersely

implement functions. Crankshaft will also hoist invariant code out of loops, reducing

the need for the programmer to manually hoist code.

V8 also features an incremental generational garbage collector, which targets

newly created objects more aggressively and rarely scans long-lived objects. Chrome’s

internal scheduler schedules garbage collection to run when there is a large amount

of time before the next frame draw, helping reduce jitter.

Crankshaft’s successor, Turbofan, operates on similar principles. Its main dif-

ferentiation from Crankshaft is a more layered architecture with clearer separations

between JavaScript, V8, and the underlying CPU architecture. This clearer separa-

tion will allow for more sophisticated optimizations, such as instruction reordering,

to run in realtime.

5.1.2 Firefox SpiderMonkey

The Firefox SpiderMonkey JS engine is based on a bytecode interpreter, a low latency

JIT compiler named The Baseline Compiler, and an optimizing JIT compiler named

IonMonkey. The SpiderMonkey interpreter is primarily a long function that steps

through the bytecode instruction by instruction, using a switch statement to interpret

each instruction. The interpreter is slow, but records type information to be used by

the compilers later.

Functions that are somewhat hot are JIT’d by the Baseline Compiler, which is a

fast compiler that generates partially optimized code and collects further statistics.

IonMonkey takes a large amount of time to generate highly optimized machine code

so incorrect type information is very costly.

Functions that are really hot are recompiled by IonMonkey in a separate thread

and undergo complex optimizations, on top of type inference and inlining. One opti-

4Small functions are functions that have fewer than 600 source characters and can be represented
in fewer than 196 AST nodes. Note that inlining is a binary optimization: a function is either inlined
or it is not and that it can be sensitive to small changes to the code.

69

mization analyzes how objects are used: if the object’s attributes are only statically

referred to, the object can be deconstructed into scalars and all operations on those

scalars are inlined. IonMonkey also looks at trace statistics and prunes rarely used

branches to reduce code size and improve cache efficiency. If a rare branch is hit,

then IonMonkey will bailout and fall back to the Baseline code.

SpiderMonkey also features a incremental mark-and-sweep garbage collector.

Firefox will introduce OdinMonkey, an Ahead of Time compiler, primarily aimed

at running asm.js. asm.js is specially-crafted Javascript that contains type anno-

tations that provide hints to JavaScript compilers on how to quickly compile it to

native code.

5.1.3 Safari JavaScriptCore

The Safari JavaScriptCore5 JS engine is comprised of a Low Level Interpreter (LLInt),

baseline JIT, low-latency optimizing JIT (DFG6) and a high-throughput optimizing

JIT (FTL7).

The LLInt executes bytecodes produced by the parser and is designed to have

minimal latency. It obeys calling, stack, and register conventions used by the other

JavaScriptCore compilers to make lowering optimized code simple and also records

type information to feed into later compilers.

The Baseline JIT is invoked for somewhat hot functions and generates correct

code that may be potentially inefficient, similar to Firefox’s Baseline Compiler. If

any further compilers make optimizations that are too aggressive and incorrect, then

JavaScriptCore will fall back to this Baseline JIT.

The DFG is a partially optimizing compiler invoked for hotter functions that

inlines small functions and takes advantage of the stored type information to elide

many type checks.

For very hot functions, JavaScriptCore will use a heavy duty compiler such as

5JavaScript Core is also known as SquirrelFish and Nitro
6DFG is an acronym for Data Flow Graph
7FTL is an acronym for Fourth Tier LLVM and Faster Than Light

70

LLVM or WebKit’s Bare Bones Backend (B3) to generate machine code.

JavaScriptCore uses a generational garbage collector and can actually run the

LLVM compilation in parallel with the garbage collector.

5.1.4 Microsoft Edge Chakra

The Edge Chakra JS engine is comprised of a profiling interpreter, simple JIT, and full

JIT. As with other JavaScript engines, Chakra will first execute JavaScript with the

profiling interpreter, optimize warm functions with the simple JIT, and fully optimize

hot functions with the full JIT.

5.1.5 Summary of JavaScript Engines

All of these JavaScript engines operate based on similar principles:

1. Run code as safely as possible and collect profiling information on what func-

tions are hot and what types variables are

2. Upon detection of frequently used code, try to speed it up by inferring type

information, inlining code, and other optimizations. If these optimizations turn

out to be incorrect, then fall back to the safer executor.

3. Upon detection of even more frequently used code, go back to the previous step

and optimize more aggressively, trading off compilation time for JavaScript

throughput.

All of these JavaScript engines go through great lengths to optimize type infer-

ence. Without type information, a simple object.a + object.b statement must go

through a tremendous amount of cases:

1. If object overrides the default property access policy, then we must execute

the overridden behavior.

2. Then, the engine must check the types of object.a and object.b through

reflection. If either type is object, then the engine must call valueOf() on the

71

object to get its value to be used here. Calling valueOf() may trigger more

recursive valueOf() calls.

3. Once the types of object.a and object.b are ascertained, if either operator

is a string, the engine will perform string concatenation. If both operators are

integers, then an integer addition is attempted. If this addition overflows or if

either operator is a floating point number, then a double addition is performed.

In contrast, good type inference will allow the engine to skip all of these checks

and simply run a machine instruction for addition (or more instructions for string

concatenation)8. Thus, it is vital to help the JavaScript engine generate optimized

code by using consistent types.

5.2 Setting up a Testbed

The benchmarks for guiding optimizations were executed on an Intel i7 M-5Y51 CPU

running at 1.1Ghz. Although it is an "Intel i7" processor, this CPU is highly op-

timized for power efficiency and can be significantly slower than other processors,

especially when Turbo Boost is disabled. Therefore, we expect the engine to run

faster on students’ machines than it runs on this machine.

Reproducible benchmarks can be difficult to conduct on modern processors be-

cause of a variety of factors. This section describes some of the techniques used to

mitigate factors that may confound benchmarking results.

To optimized single threaded performance, modern multicore processors will shut

down some cores to allow the remaining cores to scale up their frequency and take

advantage of the increased power and thermal budget. However, they can only operate

at the higher frequency for a limited amount of time before expending the thermal

budget and will then reduce their frequency. This factor can contribute to great

variances between consecutive runs of the identical code. To eliminate this factor, I

turn off CPU frequency scaling for the test machine, preventing it from scaling up any

8We can think of type inference as really strong branch prediction.

72

CPUs. I verify that CPU frequency has been disabled with the Intel Power Gadget.

As mentioned in the overview, modern JavaScript engines will identify hot spots

of code and optimize them. All user code continually run in StarLogo Nova are hot

spots and we want to measure how quickly the user code runs at steady state with the

most optimized compiler, as opposed to how quickly the code runs with less optimized

compilers or how long the compiler takes. To ensure that we are not measuring cold

unoptimized code or the compiler time, I run a few cycles of the test case to allow

the JavaScript engine to generate optimized code.

Some of the StarLogo Nova code is nondeterministic: the scatter block randomly

places an agent in a different location. This nondeterminism can significantly affect

the state of the simulation and consequently the time it takes to run. Since there

is no way to seed the pseudorandom number generator (PRNG) in JavaScript, for

the purposes of this benchmark, I replace all calls to Math.random() with a simple

seedable PRNG. This seedable PRNG is about twice as slow as Math.random() and

using it results in conservative benchmark figures.

To keep testing complexity low, I test for performance exclusively on the Chrome

browser on OSX. The majority of StarLogo Nova users either use Chrome as their

primary browser or have Chrome installed.

There are a multitude of other confounding factors and it is difficult to individually

address all of them. To be robust against other confounding factors, I make the

assumption that the noise that these factors contribute to measuring is independent

of when I test the code. Then, I ensure that all tests I run take at least a minute so

that the rule of large numbers reduces the likelihood that a test result is significantly

skewed by some confounding factor. To make a sub-minute test take at least a minute,

I run it several times in a loop, and report the mean per-loop time here.

The script used to test is shown in figure 5-1. To report the time per cycle, we

take the total number of iterations (8000 in the case of the example) and divide it

by the time reported by console.timeEnd. The figures reported are effectively wall

time and include the overhead of the profiler.

73

Figure 5-1: Benchmark Script

var num_it = 8000;
console.time(num_it + "it"); console.profile(num_it + "it");

for (var i=0; i<num_it; i++) {
Execution.Engine.tick();

}

console.profileEnd(num_it + "it"); console.timeEnd(num_it + "it");

console.time and console.timeEnd are used to measure the time spent between the two
statements. console.profile and console.profileEnd set up a profiler to inspect the
time spent running the inner loop.

Figure 5-2: Rotate Benchmark

This is a simple benchmark to test the speed of the JavaScript interpreter.

5.3 Interpreter Optimization Attempt

This section describes optimization of the StarLogo Nova interpreter, originally de-

scribed in section 3.2.2. Although this interpreter is ultimately succeeded by a more

performant design (section 5.4), I describe the optimization of the interpreter as an

example of how to optimize a critical section of code.

The basic interpreter design contains many opportunities to optimize. Daniel

Wendel constructed a simple benchmark (figure 5-2) to measure the speed of the

JavaScript interpreter relative to the AS3 interpreter.

74

Without optimization, the JavaScript interpreter ran this loop in 600 milliseconds.

In contrast, the AS3 interpreter was able to run this loop in 30 milliseconds. The

first thing I did to optimize the interpreter was to run the code under a profiler and

find hotspots.

A large amount of time was spent constructing generators, but this is wasteful be-

cause this code does not yield. Because we expect that the majority of user blocks will

rarely yield, it will be profitable to identify blocks of code that cannot possibly yield

and create fast paths that do not require generators. Additionally, a large amount of

time was spent logging so I removed logging statements. These optimizations brought

the runtime down to 80 ms.

I expected the JS engine to inline the executeList function, which simply loops

over a list and executes each node, but it did not. I manually inlined this function

for the fast path, bringing the speed of the JS interpreter down to 25 ms and making

it competitive with the AS3 interpreter.

I attempted to unroll the list evaluation code for small loops with a switch state-

ment on the size of the loop, but this did not significantly affect runtimes.

Another trick I tried was to create very fast paths for simple nodes that simply

emit DONE as their control output. At compilation time, it is possible to identify

subtrees whose nodes only emit DONE as their control output and create fast paths

without the infinite loop and run as ordinary non-yielding functions. Executing these

subtrees can be further sped up by inlining recursive calls, significantly reducing the

number of function calls in the tight loop above. This optimization brought the cost

of the JS interpreter down to 10ms.

Table 5.1 summarizes the impact of these optimizations on the interpreter perfor-

mance.

However, the interpreter was quickly gaining many lines of code and complexity

with these optimizations. The choice of which path to use had to be very precise and

it would be increasingly difficult to squeeze further optimizations out of this design.

Furthermore, the interpreter at this point is highly optimized to run the fragment of

code in figure 5-2 but may perform poorly in the general case.

75

Table 5.1: Interpreter Optimization Results

Optimization % speedup
Create fast paths for nonyielding blocks and remove logging statements 650%

Aggressively inline executeList 220%
Create very fast paths for simple computation blocks executeList 150%

This table shows the incremental impact of interpreter performance optimizations.

An alternative approach is to take the AST structure and transpile that to JavaScript,

similar to how browsers will compile JavaScript down to native code. This would put

the difficulty of interpretation onto the host browser JavaScript engine, which is sig-

nificantly more optimized than the StarLogo interpreter. I conducted a benchmark

of the code in figure 5-2 and it completed in under a millisecond, showing promise for

the transpilation approach. There are numerous other benefits to the transpilation

approach, such as easier debugging for contributors, significantly higher performance

in the short term, and the possibility of allowing advanced users to directly write

scripts. There are embeddable JavaScript runtimes for V8 and other JavaScript en-

gines so this design does not bind the StarLogo Nova to the browser: a future native

StarLogo Nova implementation can take the browser JavaScript engine with it. With

these benefits in mind, I pursue transpiling user scripts to JavaScript.

However, it is still worth preserving the interpreter implementation because there

may be potential future use cases for it. Future use cases are described in greater

detail in section 6.

5.4 Transpilation to JavaScript

To transpile the AST structure derived from ScriptBlocks, the first step is to create

a string representing a generator for a given script.

76

5.4.1 Outline of how JavaScript is generated

The simplest model of having a single to_js method per ASTNode that returns a

string representing the JavaScript code for that block is insufficient because proce-

dures can yield before returning a value. For example, if an argument to an addition

block were a call to a procedure that yields, then there is no straightforward way to

call to_js on that procedure call and both yield main thread and return the value

for use by the addition block.

Thus, for each block, I create two methods: to_js_setup and to_js_final.

Whenever a block uses arguments, it must first call to_js_setup for each argument

to allow the block’s arguments to process and potentially yield. Then, it can emit a re-

turn value in to_js_final but is no longer allowed to yield in this second stage. This

allows procedure calls to do all their yielding in the setup phase and for consumers of

those procedures to gather the return value in the final phase. Figure 5-3 shows the

implementation of the If instruction and figure 5-4 shows the implementation of the

ProcCall instruction.

This approach leads to the construction of possibly many temporary variables

because of the setup stack. To avoid collisions, all temporary variables are allocated

with the prefix __wl_<node.id>_ so that even nested blocks of the same type reference

distinct temporary variables. Figure 5-6 shows an example of StarLogo Nova blocks

transpiled to JavaScript. Note how if __wl_8_a and __wl_6_a were just named

__wl_a without the node identifier, then the emitted program would be incorrect.

5.4.2 Nuances to generating the JavaScript

The engine must be careful when executing code because there may be side effects.

For example, the evaluation of (a || b) is expected to evaluate b only if a evaluates

to false. Additionally, a is expected to evaluated exactly once. While this detail

does not matter for the majority of cases, procedure calls may affect state and thus

may not be idempotent. Because of this, we must carefully generate JavaScript that

only executes nodes at most once and skips execution in cases of short circuiting.

77

Figure 5-3: JavaScript Code Generation for If

export class If extends ASTNode {

constructor() {
super(1, 1); // numArgs = 1, numBranches = 1

}

public to_js_setup(): string {
return ‘

${this.args[0].to_js_setup()};

let __wl_${this.id}_cond = ${this.args[0].to_js_final()};
‘;

}

public to_js_final(): string {
return ‘

if (__wl_${this.id}_cond) {
${this.branches[0].to_js()}

}
‘;

}
}

Each argument is setup by calling the to_js_setup method and their return value is cap-
tured by calling the to_js_final method.

78

Figure 5-4: JavaScript Code Generation for ProcCall

export class ProcCall extends ASTNode {
constructor() { super(1, 0); } // numArgs = 1, numBranches = 0}
public to_js_setup(): string {

let ss: Array<string> = []; let fs: Array<string> = [];
for (let i: number = 0; i < this.a.length - 1; i++) {

ss[i] = this.a[i + 1].to_js_setup();
fs[i]=‘let __wl_${this.id}_p_${i}=${this.a[i+1].to_js_final()}‘;

}
let fname: string = String((<UtilEvalData>this.a[0]).getData());
let params: Array<string> = Procedure.getByName(fname).params;
let args: Array<string> = new Array();
for (let i: number = 0; i < params.length; i++) {

args.push(","); args.push(‘__wl_${this.id}_p_${i}‘);
}
return ‘

${this.a[0].to_js_setup()};
${ss.join("; ")}; ${fs.join("; ")};

let __wl_${this.id}_fn_n = ${this.a[0].to_js_final()};
let __wl_${this.id}_fn=State.procGens.get(__wl_${this.id}_fn_n);

let __wl_${this.id}_gen=__wl_${this.id}_fn(__wl_a, __wl_t
${args.join("")});

let __wl_${this.id}_ret;
while (true) {

let iterRes = __wl_${this.id}_gen.next();
if (iterRes.done) {__wl_${this.id}_ret=iterRes.value; break;}
yield "${Constants.YIELD_NORMAL}";

}
‘;

}
public to_js_final(): string {

return ‘
__wl_${this.id}_ret;

‘;
}

}

The bulk of the setup work revolves around processing the arguments to be passed into the
instruction. Some of the code has been edited to fit within the margins of this document by
renaming variables and trimming whitespace.

79

Figure 5-5: Blocks for a Transpilation Example

Figure 5-6: JavaScript for a Transpilation Example

f = function*(__wl_agt, __wl_scp) {
let __wl_1_btn_name = "setup";
while (true) {

if (Common.State.pushedButtons.has(__wl_1_btn_name)
&& !__wl_agt.isButtonDisabled(__wl_1_btn_name)) {

let __wl_3_iters = 60000;
for (let __wl_3_i = 0; __wl_3_i < __wl_3_iters; __wl_3_i++}}) {

let __wl_8_a = 1;
let __wl_8_b = 1;
let __wl_6_a = 1;
let __wl_6_b = __wl_8_a + __wl_8_b;
let __wl_5_amount = __wl_6_a + __wl_6_b;
__wl_agt.moveForward(__wl_5_amount);

}
}
yield "YIELD NORMAL";

}
}

The emitted JavaScript for the blocks in figure 5-5. The emitted JavaScript shown has been
cleaned up to make indentation consistent and remove unnecessary newlines and semicolons.
The emitted JavaScript has been further edited to fit within the margins of this document
by renaming variables and trimming whitespace.

80

To make this feasible for the fast path where we only have a single statement

to ingest our arguments and emit a return value, I create helper functions that the

generated JavaScript calls. While there are cases where it is possible to be excessively

clever and do it in one line, it is not worth the confusion for a future reader.

When we execute the JavaScript string representing our program, calling eval on

the function string is significantly slower than calling a regular function, even after

the JavaScript engine gets around to optimizing the evaled function. To run our

JavaScript program string at full speed, I eval the declaration of the function, saving

it into a Map of functions or generators. Because declaring a function once takes a

negligible amount of time, this tradeoff significantly boosts the speed of executing

scripts.

5.5 Optimizing the Transpiled Code

To optimize the transpiled code, I measure performance across a suite of computa-

tionally expensive StarLogo Nova projects. These key tests were chosen by Daniel

Wendel as a representative suite of demanding user projects.

5.5.1 Benchmark Suite Description

The benchmark suite is comprised of 7 StarLogo projects that stress test different

aspects of the Execution Engine.

10000 fish 10000 agents are spawned and scattered. For each cycle, they move

forward by one. This simple benchmark tests for the overhead of simulating

many agents.

www.slnova.org/djwendel/projects/308260/edit/

Amalyse Up to 50 starch chains of 5 starch agents are created and chains move as

a unit. The head of the chain can detach either with low probability or on col-

lision with an active amylase enzyme. There are large numbers of simultaneous

collisions and heavy trait interaction so this doubles as a correctness test in

81

addition to being benchmark test.

www.slnova.org/djwendel/projects/308261/edit/

Bacteria A single bacteria is created and wanders in the scene. If there are available

resources locally, it will consume some of those resources and divide to generate

new bacteria. If there are insufficient resources, it will die. The number of

bacteria increase exponentially initially, reaching a peak of several thousand

bacteria before declining, testing how quickly the engine can allocate new agents.

This also tests the speed of terrain interaction.

www.slnova.org/djwendel/projects/308253/edit/

Yielding Dragon Fractal A single turtle traces the dragon fractal recursively. It

will occasionally yield, returning control to the browser so the fractal can be

rendered in realtime. This benchmark measures how fast the yielding perfor-

mance is.

www.slnova.org/djwendel/projects/308255/edit/

Non-Yielding Dragon Fractal Similar to the yielding dragon fractal, but it doesn’t

yield. This benchmark measures the straightline performance of the engine.

www.slnova.org/djwendel/projects/308257/edit/

Paintball A player controlled by keyboard input can shoot colored balls at moving

targets. When a colored ball and target collide, the target changes color and

the ball is destroyed.

www.slnova.org/djwendel/projects/308259/edit/

Something’s Fishy Up to 50 fish and hundreds of algae are created. The fish try

to find algae and eat them to increase their energy levels to reproduce. Because

algae periodically reproduce to replenish the supply of algae and fish continually

die and respawn, this benchmark measures how the system responds to high

agent turnover and memory churn.

www.slnova.org/djwendel/projects/308259/edit/

82

Figure 5-7: Profiler with no optimizations

Breakdown of the most expensive functions, sorted by self time. The yellow triangles adja-

cent to some functions indicate that the JavaScript engine was unable to fully optimize the
function. Note that the times are significantly larger than the 362 ms per cycle because this
is in aggregate for the minute-long test.

Although we compare the speed of the compiled JavaScript against the AS3 inter-

preter, the goal is not to beat the interpreter. Rather, it is to try to bring the average

execution speed under 10ms so StarLogo Nova can run the engine in real time.

5.5.2 Universal Optimizations

I first optimize the engine with respect to the first test in the benchmark, 10000 fish.

At steady state, the engine completed 200 iterations in 72.4 seconds, averaging 362

milliseconds per iteration. This is about 2.5 times slower than AS3, which takes about

147 milliseconds per iteration at steady state. Figure 5-7 shows a screenshot of the

Chrome profiler.

Interestingly, the profiler shows that only 9.11% of the time is spent running the

user generated code (g), suggesting that over 90% of the time is spent as overhead.

The most expensive function is getJSThreads, which is called once per agent per

iteration. This function scans the list of scripts on the agent page and adds it to the

list of scripts that an agent is running, if it doesn’t exist. This repeated checking

allows for hot code reloading where agents will instantaneously pick up new scripts,

83

but consumes an outrageous amount of time.

An alternative design that supports hot code reloading is checking once per tick

for changed blocks and then updating all the agents threads if there is a block change.

Because code reloading is a relatively rare event, this alternative design would signif-

icantly speed up iteration.

Other interesting hotspots are the toString method consuming 10% of the time

and assertions consuming 1.7% of the time. Upon closer inspection, toString meth-

ods are invoked in logging statements even when logging is disabled because the

template strings are still evaluated despite ultimately being discarded without any

externally visible impact. Although an omniscient compiler could detect that these

toString calls do not cause side-effects and elide the toString calls, the current

compiler is not that powerful and it is necessary to manually inform the compiler

that these logging statements should not be run. To keep these log statements for

debugging and prevent them from slowing down the engine performance in other

cases, I introduce a make flag that deletes the logging statements from the emitted

JavaScript: if the flag is enabled, after building the JavaScript source file, it runs a

series of sed commands to search for log-like statements and comment them out.

Using the profiler to pin down hot spots is crucial to efficiently optimizing code.

With these two optimizations, the engine runs almost 3 times faster, averaging 128

milliseconds per cycle. Figure 5-8 shows a screenshot of the new profiler.

As intended, the toString and assertion costs have vanished. However, getJSThreads

still consumes an incredible amount of time when all it does is return a copy of the

agent’s internal map of threads. To eliminate this overhead, I made the agent’s inter-

nal map of javascript threads a public member and iterated over the agent’s javascript

threads directly.

This optimization trades off modularity for increased performance. While mod-

ularity and separation of concerns is a central tenant to building robust software

systems, many programming environments such as JavaScript make it difficult to

write performant modular code. We can strive for modularity by not prematurely

optimizing code until we identify hotspots and grant exceptions only when there is

84

Figure 5-8: Profiler with 1 round of optimizations

Screenshot of the profiler after commenting out logging statements and changing the se-

mantics of getJSThreads to just return the current agent’s threads instead of computing
all possible threads for the agent to run.

a big performance difference at stake. In this case, there appears to be a big perfor-

mance opportunity. Figure 5-9 shows the results of this optimization in the profiler.

Directly accessing an agent’s threads significantly speeds up engine, allowing it to

run one cycle every 45.4 milliseconds. At this stage, the new WebLogo Nova engine

is about three times as fast as the AS3 engine and the actual cost of executing the

scripts is significant, consuming 30% of the time.

Modern Chrome versions as of the time of this thesis (v53) do not have optimized

generator implementations and the actual execution of user code can be expensive.

We can take advantage of the fact that few user scripts yield to create fast ordinary

functions for the engine. Furthermore, for implicitly yielding top level blocks like

when-pushed and while-toggled, instead of constructing generators, we can make

functions that represent the inner branch and repeatedly run those functions at the

thread level.

Implementing the check for whether scripts yield is complicated by recursive pro-

cedures: naively checking all procedure calls to see if they yield can result in infinite

loops. To safely check all procedure calls, the checker maintains a set of procedure

calls that it has begun checking and only begins checking procedures if they are not

85

Figure 5-9: Profiler with 2 rounds of optimizations

Screenshot of the profiler after directly accessing each agent’s list of threads.

in that set.

For functions that cannot yield, we can just create a single to_js_no_yield

method that generates the equivalent JavaScript code for each StarLogo Nova block.

In the case of argument blocks, this code must be a single statement so they can

be easily consumed by their parents. Arguments may have side-effects and must be

evaluated at most once (0 times in the case of short circuited logic). To preserve the

number of times arguments are evaluated and only issue a single statement, compli-

cated logic is refactored into helper methods.

We refrain from using helper methods to supply the implementation from every

block because this increases code size and could potentially prevent many JavaScript

engines from inlining and further optimizing code. Thus, we use helper methods only

where strictly necessary to prevent side effects. Figure 5-10 shows an example of

faster emitted code for the blocks in figure 5-5.

The performance results of creating the function fast path are shown in figure

5-11.

Replacing generators with functions wherever possible improved the performance

on this benchmark by about 33%, allowing each cycle to run in 31.1 milliseconds.

Chrome currently does not have fast paths for iterators, resulting in unoptimized

86

Figure 5-10: Optimized JavaScript for a Transpilation Example

f = function(__wl_agt, __wl_scp) {
let __wl_1_btn_name = "setup";
if (Common.State.pushedButtons.has(__wl_1_btn_name)

&& !__wl_agt.isButtonDisabled(__wl_1_btn_name)) {
let __wl_3_num_iters = 60000;
for (let __wl_3_i = 0; __wl_3_i < __wl_3_num_iters; __wl_3_i++) {

__wl_agt.moveForward(1 + 1 + 1);
}

}
}

The emitted JavaScript for the blocks in figure 5-5. Note how much terser this function is,
relative to the previous generator. The code here explicitly allocates the __wl_3_num_iters
variable to 60000 instead of inlining the 60000 because that value could be the result of a
procedure call. If that value were inlined, then that procedure would be repeatedly called,
potentially causing undesirable side effects.

Figure 5-11: Profiler with 3 rounds of optimizations

Breakdown of the most expensive functions, sorted by self time.

87

Figure 5-12: Profiler with 4 rounds of optimizations

Screenshot of the profiler after replacing many Map data structures with Array data struc-

tures for iteration. These replacements are profitable because current browsers do not have
highly optimized implementations for Map iterations. Furthermore, optimized Map iteration
is unlikely to beat optimized Array iteration because Array-based iteration should achieve
higher data cache-hit rates.

code for tick_to_js. Instead of storing agent threads a map of node to the thread to

allow for easy update of JavaScript threads upon recompilation, we can attain better

performance by using simple arrays to store threads. When updating an agent’s set of

threads for a given node, we can iterate through the list of threads, find the matching

node, and then make the substitution. Using the array data structure trades off code

reloading time for faster access during regular execution.

getAllAgents consumes a large amount of the time constructing an array of all

the agents. We can use a similar trick as before and make the array of all agents

public and loop over it directly. Again, we trade modularity for performance.

This first benchmark does not do anything upon collision but wastes 20% of the

time in runCollisions. At compile time, we can determine whether or not collisions

need to be run and speed up cases where collisions do not need to be computed.

Figure 5-12 shows the result of the smarter choice for data structures and avoidance

of unnecessary work.

These better choices in data structures and avoidance of unnecessary work shave

88

Figure 5-13: Profiler with 5 rounds of optimizations

Screenshot of the profiler after eliminating unused code.

off 66% of the execution time, bringing the time per cycle down to 10.1 milliseconds.

At this stage, the overhead in executing user scripts is about 30% and we are

beginning to see marginal benefits in further optimizing the overhead.

Nicholas Zakas’s O’Rielly book on High Performance JavaScript[10] offers some

tips on improving JavaScript loop performance but none of the proposed alternative

loop syntax beat C-style for loops on modern versions of Chrome. I discuss negative

results in greater detail in section 5.6.

Noting that sin and cos account for over 10% of the execution time, I tried

creating lookup tables instead of calling Math.sin and Math.cos. Despite being faster

in microbenchmarks, this optimization actually slowed down the overall runtime of

the engine.

Surprisingly, one optimization that did work was eliminating unused data struc-

tures. This elimination might have tripped a critical threshold in module size, al-

lowing for more aggressive inlining. Figure 5-13 shows the heaviest functions after

eliminating unused data structures.

These changes squeezed out 30% better performance, reducing the runtime per

iteration to 7.02 milliseconds.

About 40% of the time is spent in looping over the agents and each of their

89

threads. This figure seems high and upon further inspection, Chrome does a poorer

job of optimizing let compared to var. Both let and var allocate variables, but

variables allocated with let are scoped only to the block, whereas variables allocated

with var are scoped to the entire function. let offers better modularity and scoping

but trades off performance at the moment. For very tight loops, I replace instances of

let with var and observe a performance improvement (figure 5-14). However, I keep

using let elsewhere in the codebase because the performance cost is insignificant and

the block-based scoping can prevent scoping bugs.

There is a third way to declare variables in JavaScript by using the const keyword.

This tells the JavaScript engine that the declared variable is constant, which allows

it to optimize the generated machine code to leverage this information. Although

omniscient JavaScript engines could prove whether a variable is constant, the current

generation of JavaScipt engines gain a modest speed boost from this hint so I use

const where possible.

It is interesting to note here that we literally trade off modularity (block-scoped

let) for performance (function-scoped var). Based on what we have observed so far,

we seem to have to fundamentally trade off modularity for performance. Looking

at this observation from another perspective, we can purchase modularity and clean

code by paying with performance.

The engine now runs each cycle in 6.01 milliseconds, over 23 times faster than the

original AS3 engine for this benchmark. With CPU frequency scaling enabled, the

engine can execute 60 cycles in under a quarter of a second on a fairly slow hardware

platform so many users can expect smooth performance.

To recap how I was able to speed up the execution engine by a factor of 23, I

1. cached the output of getJSThread so the engine does not have to compute

what threads an agent should run each iteration. I also stripped out logging

statements. It is insufficient to just prevent the logging statement from calling

console.log since the string format will still get serialized. This optimization

leads to a 183% speed up.

90

Figure 5-14: Profiler with 6 rounds of optimizations

Screenshot of the profiler after replacing let with var in tight loops.

2. directly accessed an agent’s threads instead of referencing a copy. This opti-

mization leads to a 182% speed up.

3. used functions instead of generators wherever possible. This optimization leads

to a 46% speedup.

4. replaced map iteration with array iteration, directly iterated over the array of

agents, and computed collisions only when necessary. This optimization leads

to a 208% speed up.

5. deleted unused data structures. This optimization leads to a 44% speed up.

6. used var and const instead of let. This optimization leads to a 17% speed

up.

Figure 5-15 summarizes the cumulative effects of these optimizations.

At this stage, the renderer is the bottleneck, consuming over 90% of the cpu during

the simulation.

91

Figure 5-15: Cumulative Impact of General Optimizations

Summary of all the changes and their performance relative to the AS3 engine. Stage 0:

unoptimized engine. Stage 1: Cached the value of getJSThreads and remove logging state-
ments. Stage 2: Directly access threads. Stage 3: Use functions wherever possible. Stage
4: Replace map iteration with array iteration, directly access agents list, compute collisions
only when necessary. Stage 5: Delete unused data structures. Stage 6: Use var/const
instead of let.

92

Figure 5-16: Unoptimized Renderer Profile

The add and getAllAgentsToRender total times account for the time (21.67%) it takes to

transfer data from the engine to the renderer, which is more than double of the actual engine
execution time (8.04%).

5.5.3 Renderer Optimizations

The current renderer uses the THREE.js JavaScript library to draw agents on a html

canvas. While work to speed up the actual rendering time is out of the scope of this

thesis, we can optimize how data is transferred between the engine and the renderer.

Currently for each tick, the renderer requests a list of render objects from the engine.

For each object, it will append state data (such as the object’s x, y, z coordinates,

rotation, color, size) to per-shape arrays. This inefficient transfer accounts for

over 20% of the time per frame and more than double the time for the actual engine

to run. Figure 5-16 shows a profiler trace for the full engine-renderer pipeline.

I optimize the renderer to directly store a reference to an array of agent states so

the engine does not have to construct an array with all the agent states each iteration.

To construct the per-shape arrays, it first allocates the full length of all the arrays

(instead of incrementally appending to the arrays). Then it iterates through the agent

states list reference it has to populate the per-shape arrays.

93

Figure 5-17: Optimized Renderer Profile

The bulk addition of all the agents reduces the time to load all the states to 16.49% and

significant reduces the amount of garbage collection time by nearly 90%.

This optimization has the potential to increase the coupling between the renderer

and engine in exchange for higher performance. To reduce the the coupling, the

renderer is given the agent state array reference during the setup process so it does

not require explicit knowledge of the engine. This optimization speeds up the frame

rate by 88% and figure 5-17 shows the results of this optimization.

5.5.4 Collision Optimizations

StarLogo Nova needs to calculate collisions when there are user scripts attached to

collision events. Internally, StarLogo uses a binning system to compute collisions: the

space is divided up in a uniform grid. Agents are inserted into any bins that they

may land in and to compute collisions and each agent is checked against every other

agent in each of the bins that the original agent is in. This binning system is also

used to support efficient lookups of nearby agents and counting the number of nearby

94

Figure 5-18: Unoptimized Collision Profile

As expected, the call to getCollisions consumes a plurality of the computation time.

agents.

I optimize collisions against the Something’s Fishy benchmark which spawns 48

fish agents and hundreds of algae agents. Fish try to swim towards algae and eat the

algae upon collision, killing the algae and boosting the fish’s internal energy. If the

fish has sufficient energy, it will expend a lot of that energy to reproduce asexually.

Algae also reproduce if the algae population is not too crowded locally.

Compared to the other optimized parts of the engine, the unoptimized collision en-

gine is expected to be the slowest part. Figure 5-18 is a profiler screenshot confirming

this hypothesis.

The engine takes 128ms per cycle, compared to 34.79ms for AS3. We can do better

by applying some of the profitable micro-optimizations from before, such as using var

instead of let in critical loops, passing references instead of creating copies, and using

flat arrays instead of maps and sets for iteration.

During the migration process, I found a bug in the previous collision detection

code where it would incorrectly prevent two agents from colliding in an edge case. I

9Because I was unable to set a deterministic seed for AS3’s random number generator and this
test heavily relies on nondeterminism, this figure is the best of 5 runs, with each run spanning at
least a minute of engine time. The individual times (in sorted order) were [34.7, 40.8, 46.1, 48.5,
and 51.8] milliseconds with a standard deviation of 6.7ms.

95

Figure 5-19: Optimized Collision Profile

After optimization, the call to getCollisions is no longer a bottleneck.

inefficiently patched it by constructing collision interest maps at runtime to determine

whether two agents had scripts to run if they collided: if no scripts need to be run

if they collide, then we can skip the check for if the agents collide. However, this

collision interest map can be constructed at compile time since all the colliding breeds

are known.

In the old implementation, all breeds are stored in the same bins, but this makes

collision detection inefficient since agents that do not collide are looped over. I intro-

duce finer grained collision by binning each agent breed separately.

In the previous implementation, bins were updated by taking each agent, removing

it from all the bins that it was in, and reinserting it into the bins. I add a small check

to only update bins if the agent has moved or resized since the last cycle. Figure 5-19

shows the results of these optimizations.

These optimizations enable the engine to run each cycle in 9.03ms, which is about

4 times faster than AS3 and 14 times faster than before. It is important to note that

this isn’t the fairest comparison since the nondeterminism in the simulation makes it

difficult to directly compare figures.

96

As with the 10000 fish case, the renderer time dominates the engine time, dimin-

ishing the benefit of further optimizations.

5.6 Negative Optimization Results

The previous sections highlight successful approaches to optimizations and serve to be

useful to practitioners seeking higher performance in their web applications. However,

it is also useful to practitioners to describe failed optimization attempts so they know

what may not work well.

Figure 5-14 shows that a significant amount of time was spent calling Math.sin

and Math.cos. I attempted to reduce this cost by creating lookup tables so values for

sine and cosine can be simply looked up. While lookup tables seemed promising based

on microbenchmarks that computed sine and cosine in tight loops, I found that the use

of lookup tables actually slowed down the benchmark. This somewhat contradictory

behavior can be explained how browsers will inline functions: Chrome will only inline

functions if both the called function is small and the calling function is not too large.

In the case of the microbenchmark, the calling function is small so the table could

have easily been inlined. However, in the case of the actual StarLogo Nova engine, the

calling function could have been too large to inline into, resulting in greater overhead

than the native sine and cosine calls. It is important to note that JavaScript engines

cannot squeeze optimizations out of inlining everything because that could make a

hot function too large to fit into the L1 instruction cache, increasing the rate of cache

misses, L2 fetches, and pipeline stalls, ultimately slowing down execution.

This optimization that did not work raises an interesting point about performance

engineering. It would be nice to be able to think of every performance tweak as

additive and independent of the other changes. To make a program fast, all we have

to do is apply several additive changes. However, there is a large amount of coupling

as some changes can increase or decrease program sizes, changing the outcomes of

the various optimization heuristics browsers apply. Thus, it is very important to

continuously monitor the engine performance with each additional feature to track

97

performance regressions and fix them immediately.

Chrome 53 introduced a profiler feature to track how much time was spent on each

line (figure 5-20), similar to tools like gcov for C. However, the numbers reported by

this feature seem wildly inaccurate, possibly due to bugs mapping execution time of

the compiled code back to the source. It would be interesting to revisit this feature

in future versions of Chrome and use it to further guide optimizations.

Nicholas Zakas published an O’Reilly book on High Performance JavaScript (HPJ)

in 2010[10]. I tried some of the applicable advice in Chapter 4: Algorithms and

Flow Control, but did not find that the suggestions improved overall performance for

StarLogo Nova. This is likely a reflection of the evolving JavaScript engine landscape.

One suggestion HPJ makes is to cache array lengths in loops: instead of loop-

ing with for (var i=0; i<arr.length; i++) ..., HPJ suggests doing for (var

i=0, len=arr.length; i<len; i++) The two approaches were basically in-

distinguishable performance-wise for large arrays (> 1000 elements) and the first

approach was actually slightly faster for small arrays (10 elements). Caching array

lengths did not significantly impact the actual performance of the engine, possibly

because the JavaScript engine already caches array lengths behind the scene. These

measurements contradict the HPJ claims that one can save 25-50% off the total loop

execution time by caching array lengths.

Another suggestion HPJ makes is to try looping over arrays backwards. Instead of

doing for (var i=0; i<arr.length; i++) ..., looping backwards would look like

for (var i=arr.length; i--;) ...10. I found that looping backwards actually

has a significant detrimental impact, taking about 20% longer than looping forwards.

These measurements also contradict HPJ claims that one can save an additional 25%

off of the total loop execution time by looping backwards.

One promising suggestion that HPJ makes is to use Duff’s device (figure 5-21) to

unroll large loops. Unrolling loops decreases the amount of overhead spent keeping

10The case for looping backwards is that we can shave off one statement by combining the array
index update with the ending condition check. However, backwards loops are more uncommon than
forward loops so it is likely that modern browsers have significantly more optimized paths for forward
loops.

98

Figure 5-20: Strange Profiler Results

Profiler breakdown of how much time was spent on each line. The reported figures are highly
suspect because more than 723 milliseconds (nearly 40% of the runtime) are reported to be
spent checking the State.binningOn boolean, but an inconsequential amount of time was
spent running through the for loop of each agent’s threads.

99

Figure 5-21: Duff’s Device

if (arr.length > 0) {
var iterations = (arr.length + 7) >> 3;
var startAt = arr.length & 0x7;
var i = 0;

do {
switch (startAt) {

case 0: foo(arr[i++]);
case 7: foo(arr[i++]);
case 6: foo(arr[i++]);
case 5: foo(arr[i++]);
case 4: foo(arr[i++]);
case 3: foo(arr[i++]);
case 2: foo(arr[i++]);
case 1: foo(arr[i++]);

}
startAt = 0;

} while (--iterations);
}

An example of Duff’s device unrolling a loop 8 times. The number of iterations is 1
8th of the

original array size, significantly reducing the amount of checks and increments of the loop
counter (iterations). Since startAt is 0 for every iteration of the loop past the first loop,
branch prediction should be very accurate and the cost of the switch statements should be
minimal.

track of the number of loops to run. Preliminary microbenchmarks show that Duff’s

device does improve loop performance over 40% for loops with 10000 iterations. How-

ever, when we replace the main loop over all the agents with Duff’s device, we actually

observe a minor performance regression. I suspect that this performance regression

is due to the increase in code size and prevention of other aggressive inlining tricks

that Chrome applies.

To its credit, HPJ pointed out that object iteration and function-based iteration

were slower than their direct array iteration counter parts. We were able to cor-

roborate these claims, but since we do minimal object and function iteration, this

information does not help us speed up the execution engine.

100

Table 5.2: Overall Benchmark Results Table

Benchmark AS3 time JavaScript time
10000 Fish 147 ms 6.0 ms
Amylase 29 ms 7.7 ms
Bacteria 128 ms 10.6 ms

Yielding Dragon Fractal 40 ms 6.2 ms
Non-Yielding Dragon Fractal 209 ms 13.6 ms

Paintball 3.8 ms 0.43 ms
Something’s Fishy 35 ms 9.0 ms

I also tried to unroll the loop over each agent’s threads by creating a switch

statement on the length of the thread array. If the thread array were greater than

some length k, then it would enter the default case where it would fallback to a loop.

Since most agents have the same number of threads, the branch prediction should

be incredibly accurate, but this optimization also slowed down the execution engine,

presumably due to the larger code footprint preventing inlining.

Many of these unsuccessful attempts bring up another general idea in perfor-

mance engineering: microbenchmarks are useful for validating assumptions about

how quickly certain code constructs run, but they are insufficient for proving that

something will be faster or slower in the context of the entire program. However,

they are a useful starting step because they can be a low-cost way to demonstrate

optimizations that are unlikely to make a difference (for example, i++ vs ++i at the

end of loop and declaring a variable inside a loop vs outside a loop do not make a

performance difference).

5.7 Overall Benchmark Results

Overall, we are able to bring the average execution time per cycle under 10ms for

most benchmarks.

Figure 5.2 shows figures across the entire benchmark suite.

101

Figure 5-22: Overall Benchmark Results Graph

The new execution engine is 54% to 2350% faster than the previous engine across this
benchmark suite. The black horizontal line represents the baseline performance of the AS3
interpreter across all the benchmarks.

102

Chapter 6

Future contributions

6.1 Better Type Handling

6.1.1 Current Type System

One area that StarLogo Nova suffers is type safety. As first described in section 1.6,

StarLogo Nova lumps together many data types such as numbers, strings, colors,

shapes, agents, and nulls into a generic data type. This lack of type safety can allow

users to assemble incorrect programs. For example, a user could use the trait-of

block to look up a trait on a number, which does not make sense: trait lookups are

only defined for agents. Since the agents are dynamic, we cannot use a drop down to

restrict the trait-of block (and other similar blocks) to operate solely on agents.

The StarLogo Nova engine’s policy towards incorrect programs is that the show

must go on. trait-of will return undefined in the case where the trait lookup fails

(either the lookup is performed on a non-agent or the requested trait does not exist

on the agent).

Although this policy makes all programs "run", it can make agents run in unex-

pected and confusing ways. A stronger type system would help users create correct

programs.

103

6.1.2 Stronger Typing Challenges and Solutions

One problem with a stronger type system is that it may require many more blocks.

Instead of a single addition block that is overloaded both as a numeric addition

operator and a string concatenation operator, there would be a separate block for

each type. This undesirably increases the size of the blocks drawer and can confuse

users: before, they could use an overloaded addition block for both actions and now

they must use two different blocks.

An alternative design is to create the visual analog of generic blocks that accept

arguments only if their types match. For example, a generic block would initially

accept arguments of any type. However, all further arguments would have to match

the first accepted argument’s type. This way, StarLogo Nova could create data types

for strings and numbers without having to double the number of blocks.

This generic block requires type knowledge and ScriptBlocks can supply that in-

formation for a limited number of cases. For example, the count instruction must

return a number, the collidee instruction must return an agent, and an addition

of two strings must return a string. However, there is not enough type information

on every block to determine the type of their inputs. For example, the generic data

sockets allow users to type in string or number literals, but it is difficult to distinguish

between strings and numbers (Does 7 mean "7" or the numeric 7? Does 0xDEAD-

BEEF mean the string literal "0xDEADBEEF" or the decimal value 3735928559?)

Furthermore, scripts are allowed to write values to widgets and read values back, but

ScriptBlocks cannot guarantee that if all written values are of a certain type, then all

read values must of the same type: a user is allowed to manually mutate those values

between write and read stages so if a script wrote a number, it can get a string back.

Because it is impossible to ascertain type information automatically, stronger

typing requires the user to supply type information about blocks that ScriptBlocks

cannot determine. However, requiring the user to supply a type for every input box

can be tedious and verbose, which is a common argument against strongly typed

languages.

104

StarLogo Nova can instead operate as a weakly typed language, where it will allow

users to declare types but not require those type declarations. It will infer types as

much as it can, preventing users from setting the shape of an agent to a color, but

it will also retain the generic data type for cases where the type of arguments is

ambiguous.

When users suspect that they have bugs in their simulation arising from mis-

matched types, they can then declare types in ScriptBlocks and use the static type

checker to help them catch type errors.

6.2 Live code editing

One limitation of StarLogo Nova is that users must reset the state of their simulation

each time they update their code. For example, if a user were creating a path-finding

algorithm to solve a maze and wanted to see the effects to tweaking the search step

size, the user must reset their simulation, click on the setup buttons, and wait for the

simulation to run to an interesting state where the effects of their search step size can

be observed. This tedious workflow can take long periods of time and the manual

stages can be error prone.

One feature that would speed up this workflow is the support of live code editing:

users can update their blocks and immediately see agents execute this new behavior.

This section outlines some of the work done to support live code editing and proposes

semantics and user-interface for live code editing.

6.2.1 Live code editing groundwork

I started laying some of the groundwork for live code editing from the engine’s point

of view.

Under the previous assumption that everything would be reset between compiles

of the code, it is acceptable to directly refer to all renamable objects, such as breeds,

traits, and procedure calls by their name since the names are immutable until a global

reset. However, this assumption is no longer valid if we want to allow seamless code

105

editing without resetting the entire state.

It can be easy to forget to rename a particular data structure that stores the name

of a renameable object, resulting in data corruption. To eliminate the possibility of

this kind of bug, I restructure how these renameable objects can be accessed: each

renameable object is assigned an immutable numeric ID and all users of these objects

have a reference to this immutable ID. For cases where we want to look up the object

from its name, all lookups go through a single getObjectByName method. By forcing

this pattern of going through a getObjectByName method, we can update the name

in a single place and be confident that all consumers of this object will be able to

detect the change.

6.2.2 Live code editing semantics

There are two main approach to support live editing. One way is akin to time travel,

where we go back in time to the start of the simulation and rerun all the cycles with

the updated code, replaying all user interactions such as widget button presses and

keyboard events. The other approach is to leave the past untouched and only run the

new code from now on[6].

Although the first approach is much more powerful and guarantees that any state

reached by the simulation after editing is a reproducible state, it is also consider-

ably more difficult to implement and performance will be inferior to leaving the past

untouched. If a simulation has used a minute of engine time, then this time travel

approach will use a significant amount of time to recalculate the present1, which fails

to address one of the fundamental reasons why we want to support live editing.

We recommend pursuing the second approach of leaving the past untouched and

just running the new code. One downside of this "preserve-the-past" approach is that

the simulation could enter a state that would be impossible to enter if the simulation

had started from the beginning with either the old code or the new code, making

some results irreproducible. However, we anticipate that the user will be interested

1If we skipped the renderer steps to speed up the recomputation, this would be jarring and hang
the simulation for a significant amount of time.

106

only in the high level details of the simulation and those details should be resilient to

this reproducibility problem.

The majority of code can be swapped out easily on reload: for threads that do

not explicitly yield, we can easily swap out the function for these threads at the end

of the cycle.

The difficult case is for when these blocks do yield. Since the problem of deter-

mining how many iterations it takes these yielding threads to stop is undecidable2, we

have to build heuristics for when to kill these yielding threads and restart them with

the new code. One heuristic is to run the interface thread for up to n iterations, where

n is a small number (<60). If at any cycle the interface thread execution returns to

the top, then we kill the old thread and construct a new one. If at the end of these

iterations, the thread execution never returns to the top, then we kill the old thread

and construct a new one.

These heuristics reduce the likelihood of corrupting agent state. For example, if

an agent had a block stack that implemented jumping by checking for key-pressed,

and yielded between vertical movements if the given key were pressed, then agent

state would be safe if n were greater than the number of yield statements. A more

naive implementation that immediately halted old threads could leave the agent stuck

in midair.

It is possible to deliberately construct programs that throw this heuristic off, but

we suspect that those programs will not be a common occurrence (since the yield

block is used highly infrequently). If a user does run into an issue with the semantics

of live code reloading, they can always recover by executing a hard reset and running

their code normally.

6.2.3 Live code editing user interface

Although it is desirable to quickly update agent behavior to match user code, it is

undesirable to update the agent behavior upon every small change to the user code.

2If it were decidable, then one could construct a program that runs the checker on itself and yield
one more time than the checker thinks it would, leading to a contradiction.

107

If a user were in the middle of updating a parameter from 10 to 11, the user would

not intend for the simulation to read a parameter value of 1. Another reason why it is

infeasible to update agents each time is because the scripts could be in an intermediate

state that cannot run normally due to missing arguments. Furthermore, the cost of

recompiling code upon every user update could lead to undesirable input lag.

An alternative interface would be to show that the script has deviated from the

currently loaded script and that a recompile is necessary to update the agents’ behav-

ior. Upon a change, ScriptBlocks would run an internal consistency check to verify

that all required sockets are filled. If this check succeeds, ScriptBlocks could present

a button for the user to press to load the new code. Upon loading the code, the

Execution Engine would recompile the code and swap it in as discussed above. It

could then fire a signal to the user interface to let the user know that the code has

been reloaded.

If the consistency check is computationally expensive to run, ScriptBlocks could

defer execution of this consistency check until some number of milliseconds after the

last user action, preventing the checker from stopping the world and making the user

interface unresponsive.

Performance-wise, compilations to JavaScript are fast. However, there will be

an ephemeral performance penalty because the underlying JavaScript engine needs

to optimize this new code. We do not anticipate this penalty to be significantly

expensive or noticeable to the user.

6.3 Debugging

Even with the friendly blocks-based editor, users can make mistakes with their pro-

grams and need to figure out why their agent behavior doesn’t match their intentions.

As previously mentioned in section 6.1, a stronger type system for ScriptBlocks could

help users quickly fix type-related problems. However, not all problems can be fixed

by type checking.

There are two primary ways of debugging programs: logging and stepping. Log-

108

ging is the high throughput approach, where programmers add print statements to

critical sections and watch the output of their program for these print statements.

By observing enough logged data, programmers can get a sense for what sections of

code are reached and a general idea of internal state. Logging is especially useful for

when there is a large volume of code being executed and they need to figure out what

section the error is in.

Stepping is a much more precise approach than logging, but can be much slower.

Programmers can step through code line by line with the aid of a debugger and

inspect the state of any variable. They can also step into called functions to get a

sense for what is happening underneath the surface and even alter variables to force

the system into a certain state. Although stepping is very powerful, it is a slow

process that requires the programmer to know exactly what needs to be stepped.

To help users, StarLogo Nova should implement functionality for both approaches

to debugging.

6.3.1 Logging

By nature of being a blocks-based programming environment, StarLogo Nova can

do much better than just outputting logs to a console. Similar to the YinYang

editor made by Microsoft Research, StarLogo Nova can encode information about how

frequently code is run in the blocks[6], perhaps by altering the color or saturation of

frequent code paths. This can help users quickly determine if a certain if condition

is never met.

For data types, StarLogo Nova can show a distribution of the values of data

adjacent to the blocks, allowing users to get a feel for the range of values actually

being used in their program.

Although it is possible to instrument the generated JavaScript with tracing and

recording of values, it would be simpler to instrument the StarLogo interpreter to trace

and record values: instead of having to update every single instruction to generate a

different set of JavaScript just for debugging purposes, we can instead just update the

interpreter. This requirement underscores the necessity of test cases to help maintain

109

the correctness of all three methods of executing blocks: interpretation, possibly

yielding code, and non-yielding code.

6.3.2 Stepping

Stepping can also take advantage of the StarLogo interpreter to allow users to walk

through their scripts block by block. Breakpoints, step in/out, and many powerful

stepping tools can be implemented by requiring the interpreter to yield information

about the node to be executed and the type of node for every single instruction (not

just yield instructions). If a user chooses to resume execution, the stepping layer

can suppress yields and continue stepping until it reaches a breakpoint block. If

a user chooses to step into a procedure call, then the stepping layer can just step

normally. If the user chooses to step over a procedure call, then the stepping layer

can suppress procedure calls, maintaining a counter of procedure entrances and exits.

Once the number of exits equals the number of entrances, then the stepping layer can

stop suppressing yields. If the user chooses to step out of a procedure call, then the

stepping layer can suppress yields, maintaining a counter of procedure entrances and

exits. Once the number of exits exceeds the number of entrances, then the stepping

layer can stop suppressing yields.

The interpreter can be further modified to eval user-supplied scripts immediately

before the execution of each node to allow deep inspection of the current state of

execution.

All of these features add considerable weight to the interpreter and can make it

incredibly slow. However, we expect the user to understand the tradeoff between

debuggability and performance and to not expect fast simulations while they are

tracing execution.

6.3.3 Alternative Stepping Design

An alternative to creating a StarLogo Nova specific stepping debugger is to show

users how they can inspect the state of their code directly with their built-in browser

110

debugging tools. Although this alternative approach can have a higher learning curve

than an in-house stepping debugger, it can introduce students to a powerful tool that

many web developers use.

Furthermore, the browser debugger can do more than inspect the state of their

code: it can inspect all of the StarLogo Nova engine and show the curious user how

agent management and thread scheduling is done underneath the hood. It can also

show users how their blocks map to an actual scripting language. Another benefit to

this alternative approach is that it already works — all that there is to do for this

feature is to write up instructions for users.

6.4 User Scripting

One common criticism of blocks-based programming is that it can be very verbose

and require many individual user actions to build something simple. For example, a

simple expression for calculating the average of 4 numbers 𝑎+𝑏+𝑐+𝑑
4

can take over 8

blocks and many more clicks to construct.

Allowing advanced users to create their own text-based scripts will allow them to

harness the execution environment and 3D renderer to run very powerful simulations.

Since the engine already runs JavaScript threads, much of the backend support for

running user defined scripts is already in place.

To give the user examples of how to write their text-based scripts, we can show

the generated JavaScript for blocks they have in their ScriptBlocks workspace.

6.4.1 Security

One area that we must be careful about with user scripting is security. The current

security policy for StarLogo Nova projects is relaxed since all current blocks have

limited access to the browser scope. No blocks have the ability to directly interact

with the DOM or make XMLHttpRequests. Because this guarantee makes StarLogo

Nova projects safe, anyone can run anyone else’s public project and even remix that

project.

111

However, once we open the door to user scripts, all of those guarantees fly out

the window. A malicious user could construct a user script that steals the current

session cookie and sends them to a remote server the malicious user controls and

anyone running this script could lose their account to this malicious user. Another

attack could be constructing username and password boxes in the DOM, letting the

browser’s password manager fill in the appropriate credentials, and sending those

credentials off to the attacker-controlled server. The list of possible attacks is endless

if an attacker is allowed full access to execute JavaScript under the same origin as

StarLogo Nova.

To mitigate all these attacks, the compiler should generate functions and gener-

ators by using evalInSandbox instead of eval. evalInSandbox operates like eval

in many cases, but has a very restricted set of global variables, preventing it from

accessing cookies or making remote requests.

There may be demand by power users to access some of these sandboxed off

utilities. For example, a user may want to interface with networked devices during

their simulation. To serve this segment of the StarLogo Nova community, it may be

worthwhile having separate sandbox semantics depending on who is executing the

program: if the person executing the program is the original author (and the project

is not a remix), then they are be allowed to run arbitrary JavaScript.

6.5 Tooling

While many tools are in place to keep the codebase tidy and correct, there are no

tools in place to keep the code fast. Tooling is especially important in this case

because it is difficult for a human to ascertain that a change won’t cause performance

regressions. As described in section 5.5.2, even a seemingly innocuous change to add

a few auxiliary data structures can have a deleterious impact on performance.

StarLogo Nova should run automated performance tests across a range of browsers

and potentially a range of various hardware devices. To automate performance tests,

StarLogo Nova can use Selenium, a scriptable browser driver that can be configured

112

to run benchmarks. These automated benchmarks can help StarLogo Nova adapt

to future browser releases that may alter timing profiles and change fundamental

assumptions about what techniques are fast and what techniques are slow.

The current build process operates only locally: a contributor must opt into this

build process. If a contributor forgets to run unit tests, there currently isn’t an au-

tomated mechanism to catch errors. Thus, it would be good to run a build server

(buildbot and travis are possible candidates) for all pull requests into the devel-

opment. It would also be good to prevent users from directly merging their feature

branches directly into development. They should first issue a pull request, which

triggers the test suite (see sections 4.1 and 4.2). After the test suite verifies the

correctness of the branch and the branch has been peer reviewed, then contributors

should be allowed to merge in their branch.

113

114

Chapter 7

Conclusion

StarLogo Nova is an online blocks-based simulation platform designed to help prec-

ollege students create powerful decentralized models to understand the world. This

platform was initially built in ActionScript3, which is being deprecated by many

browsers because of Flash security vulnerabilities. To respond to this, I migrate the

ActionScript3 codebase to TypeScript, a weakly typed language that compiles to

JavaScript.

During the migration process, I introduce a build and validation and testing pro-

cess aimed at keeping the new codebase healthy. This process includes automatic

code formatters, linters, and test cases.

StarLogo Nova is a demanding application in terms of performance since it tries

to simulate potentially hundreds or even thousands of agents in realtime. I engineer

the StarLogo Nova engine for performance, beating the previous engine by margins

of 280% to 2300% in key benchmarks. These performance enhancements enable the

engine to run a cycle in under 10 milliseconds on relatively slow hardware and open

the door to faster, larger, and smarter simulations.

115

116

Bibliography

[1] Flash and chrome. https://chrome.googleblog.com/2016/08/flash-and-
chrome.html. Accessed: 2016-08-15.

[2] Google for education > blockly. https://developers.google.com/blockly/.
Accessed: 2016-08-15.

[3] Reducing adobe flash usage in firefox. https://blog.mozilla.org/futurereleases/
2016/07/20/reducing-adobe-flash-usage-in-firefox/. Accessed: 2016-08-15.

[4] What made lisp different. http://www.paulgraham.com/diff.html. Accessed:
2016-08-15.

[5] Yet more bad news for flash as google chrome says goodbye.
https://nakedsecurity.sophos.com/2016/05/18/yet-more-bad-news-for-flash-
as-google-chrome-says-goodbye-sort-of/. Accessed: 2016-08-15.

[6] Sean McDirmid. Usable live programming. In Proceedings of the 2013 ACM
international symposium on New ideas, new paradigms, and reflections on pro-
gramming & software, pages 53–62. ACM, 2013.

[7] Mitchel Resnick. Decentralized modeling and decentralized thinking. In Modeling
and simulation in science and mathematics education, pages 114–137. Springer,
1999.

[8] Kevin Wang, Corey McCaffrey, Daniel Wendel, and Eric Klopfer. 3d game design
with programming blocks in starlogo tng. In Proceedings of the 7th international
conference on Learning sciences, pages 1008–1009. International Society of the
Learning Sciences, 2006.

[9] Uri Wilensky. {NetLogo}. 1999.

[10] Nicholas C. Zakas. High Performance JavaScript. O’Reilly Media / Yahoo Press,
2010.

117

