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Abstract

The problem of clustering multi-dimensional data has been well researched in the sci-
entific community. It is a problem with wide scope and applications. With the rapid
growth of very large databases, traditional clustering algorithms become inefficient
due to insufficient memory capacity. Grid-based algorithms try to solve this problem
by dividing the space into cells and then performing clustering on the cells. However
these algorithms also become inefficient when even the grid becomes too large to be
saved in memory.
This thesis presents a new algorithm, SingleClus, that is performing clustering on a
2-dimensional dataset with a single pass of the dataset. Moreover, it optimizes the
amount of disk I/0 operations while making modest use of main memory. Therefore
it is theoretically optimal in terms of performance. It modifies and improves on the
Hoshen-Kopelman clustering algorithm while dealing with the algorithm's fundamen-
tal challenges when operating in a Big Data setting.
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Chapter 1

Introduction

Clustering multi-dimensional data is a basic problem in the field of knowledge discov-

ery. The most well-known algorithms in the field are DBscan and K-means ([11,[2]).

Many other algorithms have been proposed for discovering clusters.

With the increasing prevalence of Big Data and very large databases, many of these

algorithms become inefficient due to insufficient memory. Moreover, any algorithm

with non-linear running time becomes prohibitively slow. Hence, there is a need for

a clustering algorithm that can run efficiently when clustering vast amounts of data,

even when the memory is a bottleneck.

1.1 Motivation

Multi-dimensional databases appear in many fields. Examples include geospatial

data, oceanographic data, genomics data and temporal data. (112]). Often, when

observing the distribution of these data in space, regions of higher relative density

emerge. These regions are called clusters. Points that belong to the same cluster

usually share some common characteristics. Therefore it is of interest to efficiently

discover these clusters.

Current clustering algorithms perform clustering in main memory. As the size of

databases increases rapidly, memory becomes a bottleneck. Hence, these algorithms

don't just become inefficient but largely useless.
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A new category of algorithms, called grid-based algorithms (181), have been pro-

posed to solve this problem. These algorithms divide the multi-dimensional space

into regular grids. Then they assign each data point to a cell in the grid and they

perform clustering on the cells instead of the points. This approach is problematic

because when dealing with vast amounts of data located into an equally vast grid, it

is impossible to store all the grid cells in memory.

When dealing with data in the order of Terrabytes or Petabytes, any algorithm

with superlinear running time becomes prohibitively slow. Hence there is a necessity

for an algorithm that can perform clustering with running time that is linear to the

total number of data points. More specifically we want to read each data point exactly

once and we want to perform the theoretical minimum number of disk I/O operations

since they incur a heavy performance cost.

In this thesis we present SingleClus, a grid-based clustering algorithm for 2-dimensional

arrays that processes each data point exactly once. It runs on linear time in CPU

and performs a linear number of I/O operations. Therefore, it is theoretically optimal

in terms of run time. Moreover, our algorithm requires only a small percentage of

the entire database to be resident in main memory at all times. Therefore it does

not suffer from the memory issues that most other algorithms do. Our algorithm

improves on the Hoshen-Kopelman clustering algorithm ([9]) and solves some of this

algorithm's fundamental deficiencies in the Big Data setting.

1.2 Thesis Contribution and Organization

This thesis contributes a design and analysis of SingleClus, a grid-based clustering

algorithm for Big Data on 2-dimensional spatial databases. We present an imple-

mentation and analysis of the algorithm and a description of the basic clustering

query.

SingleClus differs from previous algorithms in that it is only reading each data point

exactly once. In addition, SingleClus works under very modest memory contraints and

it is provably the most efficient algorithm for these constraints.

14



The rest of the thesis is organized as follows. Chapter 2 discusses the background

and related work and explains the main deficiencies of existing clustering algorithms.

It also introduces the Hoshen-Kopelman algorithm and discusses its challenges when

operating in the Big Data setting. Chapter 3 discusses the algorithm design and

provides a run-time and space complexity analysis. Chapter 4 provides a qualitative

evaluation of SingleClus based on is performance on two synthetic datasets. Chapter

5 concludes and discusses future work.
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Chapter 2

Background

This chapter presents background on clustering algorithms, discusses previous litera-

ture, and explains the weaknesses of existing algorithms when dealing with very large

multi-dimensional datasets. It also mentions briefly how SingleClus will solve these

problems.

2.1 Clustering Overview

Clustering is the problem of grouping together elements that are more similar in some

way than elements in other clusters. What constitutes "similarity" depends on the

type of the dataset and the goal of the clustering. In the multi-dimensional array

model, our data are points in multi-dimensional space. Hence similarity is based on

proximity. Intuitively speaking, if many points are close to each other then they form

a cluster.

There is no universal definition of what constitutes a cluster. As will be discussed

below, what constitutes a cluster is highly subjective. Different algorithms produce

different clusters on the same dataset based on the models they follow. Moreover,

most algorithms take some input parameters by the user. Therefore even the same

algorithm will produce different clusters based on the parameters provided by the

user. Hence, clustering quality can only be evaluated subjectively.

There are various algorithms for clustering but most of them fall into one of the
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following categories:

* Centroid-based algorithms

" Connectivity-based algorithms

* Density-based algorithms

" Grid-based algorithms

We proceed to discuss each of these categories below.

2.1.1 Centroid-Based Clustering Algorithms

Centroid-based clustering algorithms are performing clustering by representing each

cluster by a central vector. The central vector of the cluster may or may not be a

member of the data set. Usually the number of clusters to be found is a fixed integer

k. The k-means problem is to find the k cluster centers and assign the objects to the

nearest cluster center, such that the squared distances from the cluster are minimized

([21).

The k-means problem is known to be NP-hard. However, approximate methods

have been devised to solve the problem. The most popular such method is Lloyd's

algorithm (161). Lloyd's algorithm does not find the global optimum to the k-means

problem. Instead it returns a local optimum and is commonly run multiple times

with different random initializations. One of the benefits of Lloyd's algorithm is that

it runs on O(n) time.

Even though fast approximate algorithms such as Lloyd's exist, centroid-based

algorithms suffer some serious setbacks. First, the parameter k that the user provides

in advance may not coincide with the actual number of clusters in the dataset. In

this case, centroid algorithms return very counterintuitive cluster results.

In addition, the algorithms return good quality results only when the clusters are

of approximately similar size and spherical in shape. As can be seen in Figure 2-1

the algorithm may produce problematic borders between clusters even if the number

18
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Figure 2-1: Clusters produced by Lloyd's k-means algorithm for k=3.

k of the clusters has been guessed correctly. Intuitively this makes sense because

centroid-based algorithms try to optimize the centers of the clusters and not the

borders. Variations of k-means often include such optimizations as choosing the

best of multiple runs, but also restricting the centroids to members of the data set

(k-medoids), choosing medians (k-medians clustering), choosing the initial centers

less randomly (K-means++) or allowing a fuzzy cluster assignment (Fuzzy c-means).

However in the end, all theses algorithms suffer from the same qualitative issues.

The linear running time of Lloyd's algorithm make it a very tempting choice to

use with large datasets. However, the obvious quality setbacks when dealing with an

unknown number of randomly shaped clusters eventually make this an inappropriate

choice for cluster discovery.

2.1.2 Connectivity-Based Clustering Algorithms

Connectivity-based clustering, also known as hierarchical clustering, is based on the

idea that objects that are closer to each other are more related than objects further

away from each other. Moreover, in hierarchical algorithms, two data points can be

seen as being part of the same cluster or not, depending on the distance resolution we

choose to operate on. Connectivity-based clustering algorithms do not create a single

partition of the dataset. Instead, they create a hierarchy of clusters that merge when

19
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the distance resolution decreases and split when the distance resolution increases.

Hierarchical algorithms use a dendrogram data structure to represent the different

clusters at different resolutions (17]).

There are two approaches to implement hierarchical clustering algorithms:

" Agglomerative clustering

" Divisive clustering

Agglomerative clustering is a "bottom up" approach. Each data point begins

as a cluster and eventually merges with other clusters when the distance resolution

decreases. Divisive clustering is a "top down" approach. All the points start in the

same cluster and splits are performed while we increase the distance resolution.

Unfortunately, both approaches are prohibitively slow when operating on large

datasets. Agglomerative algorithms' clustering complexity is O(n2 - logn) and can be

improved to 0(n2 ) for special cases. Divisive algorithms' complexity is O(2n). In

addition, these algorithms assume that the entire dendrogram can be stored in main

memory. When we are dealing with very large datasets this is an impossibility. Hence

hierarchical algorithms are not a realistic option for very large datasets.

2.1.3 Density-based Algorithms

The most popular clustering algorithms fall into the density-based category. Density-

based clustering algorithms define a cluster to be a region where each point has at

least a given number of points moderately close to it. The best-known algorithm

in this category is DBscan ([1]). DBscan operates by performing a range query for

each point it encounters that has not yet been marked as noise and has not been

assigned into a cluster. If the neigborhood of radius Eps contains more than MinPts

points, then the point is considered a core point and it is put into a cluster. Then,

the neigborhood points are put into a queue and we iteratively perform the same

procedure to all the points in the queue until there are no more points to be inserted.

DBscan provably satisfies some performance guarantees. It is mentioned in [1]

that the algorithm runs in O(n - logn) time, however this is false. In reality, we are

20



performing n range searches which actually brings the running time to O(n2 ) because

each range search must access entire dataset in the worst case. Recently, Yufei et al.

([41) dealt with the problem of finding an O(n - logn) algorithm for DBscan. They

proved that the exact problem is computationaly intractable when we are operating

on 3 or more dimensions. They proceeded to present an approximate algorithm who

runs in E[O(n)] time. This algorithm produces results that fall between clustering

with Eps'=(1 - c)Eps and Eps"=(1 - c)Eps for all possible values of C.

This result is important as it reinforces the notion that clustering quality is largely

subjective. Hence, an approximate algorithm that produces a clustering within C of

a target and runs in expected linear time can be sufficient for many applications.

However, we must mention the problems of the above algorithm. To perform the

clustering it creates a supporting tree data structure which is implied to reside in main

memory. However the size of it is equal to the entire dataset. Hence, this algorithm

is impossible to be utilized when dealing with very large datasets. If, instead, only

some summary structures are saved in memory the problem of insufficient memory

could be solved.

2.1.4 Grid-based Algorithms

The last category of clustering algorithms that we analyze is grid-based clustering

algorithms. Grid-based clustering algorithms deal with the problem of vast datasets

by dividing the domain space into a grid. Subsequently, they place each point into

the grid cell it belongs while updating the point count of each grid cell. Finally, they

proceed to perform clustering on the grid cells instead of the points themselves ([8]).

It is easy to see that this approach can help with very big datasets. Instead of

having to cluster billions of points, we are now dealing with grid cells whose number

can be orders of magnitude less than that of the points. Therefore, there is the

possibility to actually perform clustering on main memory.

In the existing bibliography, it is usually assumed that the grid cells can all be

saved in main memory. Even if we were to reduce the entire grid cell into a bitmap

(where a cell with a 0 indicates a cell that is empty or that does not have a significant
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number of points in it and a cell with a 1 has enough points inside) then it is still

possible that the grid too big to fit in main memory. Moreover, saving only a bitmap

is insufficient to save important information about the cell. Indeed, at the very

least we need to store some information regarding the cluster membership of each

cell. Another problem is that if the bitmap is indeed able to fit in main memory,

sometimes this only happens at the cost of resolution. This means that if we choose

a large enough side for our grid cells then it will be definitely possible to fit the grid

in main memory. However, this is usually a bad idea since the quality of the clusters

produced is significantly deteriorated.

2.1.5 The Hoshen-Kopelman Clustering Algorithm

In their paper (19]) Hoshen and Kopelman propose a multi-label clustering algorithm

on a 2-dimensional grid of cells. The algorithm was intended to have application in

the area of percolation theory. We will discuss the algorithm, explain what are the

challenges and shortcomings in our setting and finally explain why our adaptation is

a good model for clustering Big Data.

Algorithm Input

The input to the Hoshen-Kopelman algorithm (henceforth HK) is a grid in 2-dimensions.

Each grid cell either contains a 1 or a 0. Only cells containing a 1 are members of

clusters.

HK Cluster Definition

Definition: A grid cluster C is a maximal set of cells such that for every 2 cells

a, b c C, there exists a sequence a = c1 , c 2 , ... , c1 = b such that:

* ci E C for all i = 1, 2,..,l

e ci and ci+ 1 are neighbours for i = 1, 2,.., 1

22



Figure 2-2: Output of Hoshen-Kopelman Algorithm. On the left is the grid with each
full cell containing a cluster ID. On the right are the trees representing connections
between cluster IDs.

Two grid cells are neighbours if they share a common side. To make this concept

more precise, if we are given two cells c and d with coordinates c = (ci, c2 ) and

d = (di, d2 ) then c and d are neighbours if and only if

2

Z ci - dil = 1
i= 1

Algorithm Output

The output to the algorithm is another grid, of the same size as the original grid,

such that each grid cell contains a cluster ID.( In most applications the old grid just

transforms into the new grid). Two cells can contain the same or different cluster IDs.

The cluster IDs are organized in a data structure that is modeled as a set of disjoint

trees. Each tree contains some IDs and every ID belongs in one tree exactly. If a

grid cell does not belong in any cluster then it contains a cluster ID equal to 0. The

rest of the cells contain positive integer cluster IDs. Two grid cells that belong to the

same cluster, according to the definition given above, contain cluster IDs that belong

to the same tree. Hence, the tree data stucture and the cluster ID of each grid cell

are together needed to determine whether two grid cells belong to the same cluster.

For example, in Figure 2-2 we see the result of HK clustering on a 2-dimensional

cluster. The tree structure corresponding to this clustering is shown in the right. The

roots of the trees are IDs 4 and 6. The roots of each tree are coinciding are their own

23
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parents.

HK Algorithm Description

We will briefly discuss how the HK algorithm works. We will describe how the

algorithm takes the input discussed above and performs the clustering stage.

The algorithm operates by performing a raster scan of the grid. It traverses the

grid in row major order. If a grid cell c contains a 0 then we just proceed to the next

grid cell according to the row major order. If a grid cell c contains a 1 then we invoke

a neighbour finding function which returns the coordinates of all the cell's neighbours

that are before the current cell in the global order.

Once we have found all the previous neighbours of cell c we check their assigned

IDs by accessing their locations in the grid (Since they are previous neighbours, they

have already been visited and hence have been assigned an ID). We collect all the

assigned cluster IDs of the neighbours. To do so we only need to access grid cells in

the current level and in the previous level of the grid.

Definition: A grid level C is the set of all cells that have the same first coordinate.

If all the cluster IDs of the neighbours are equal to 0 then it means that they are

not part of any cluster. In this case, we increase a global counter variable GloballD

by 1 and we assign the new value of GloballD to grid cell c.

If one of the 2 previous neighbours contains a non-zero cluster ID then there are

2 cases:

" Both neighbours contain the same cluster ID. In this case we just assign this

ID to our current grid cell c.

" There are 2 different cluster IDs in the neighbours' grid cells. In this case we

have to merge the IDs to indicate that they all represent the same cluster.

This merging can be done in various ways but the main idea is common in

all methods. First we just choose one representative cluster ID x among those
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found (usually the one with smallest or largest numerical value). Then we set

the root of the tree in which the other ID is contained to point to the root of

the tree that x is contained. This is usually implemented through the UNION-

FIND ([5]) algorithm or through variations thereof. Then we assign the value

of x to the grid cell c.

In the end of this raster scan we are left with the grid and the tree structure.

There is the possibility that there are trees of size 1 (i.e. single nodes) in our tree

structure if there were no merge operations for that node. Each cell in the grid now

either contains a 0 (if it had a 0 to begin with) or a poistive integer cluster ID. Two

grid cells belong to the same cluster if and only if their cluster IDs belong to the same

tree in the tree data structure.

Challenges of Hoshen-Kopelman

There are various challenges when adapting the Hoshen-Kopelman algorithm in a gen-

eral Big Data setting. We discuss them here. We also give some high level description

about how we solve those issues with SingleClus. All of these will be discussed in detail

in the next chapter.

Clustering Data Points: The first challenge is that HK is used to cluster grid

cells containing a 0 or 1 value. However, in a general setting we are interested in

clustering 2-dimensional points. There is a precise definition (which we provided)

of what constitutes a neighbour for a grid cell. The same is not true for random

points. The solution that we propose is the same that is used by many other grid-

based algorithms. Specifically, for each point with coordinates p = (pi, p2) we can

determine the coordinates of the grid cell it is contained in. To achieve this we need

some domain knowledge. Namely, we assume that we are familiar with the range of

possible values [Mini, Maxi] along each dimension i. Moreover we assume that we

know the length cellSidej of the side of each grid cell along dimension i (we assume a

uniform grid). Therefore finding the grid cell is equivalent to performing a divisions

of each of the 2 coordinates pi by the respective cellSidej.
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Moreover, to emulate the binary nature of the grid (i.e. that each grid cell contains

either a 0 or a 1) we define a threshold Th which is a positive integer. If at least Th

points fall within a given grid cell then it is considered full, else it is considered

empty. Th and CellSide can be viewed as analogous to DBScanma's MinPts and

Eps user-defined constants ([1]). With these modifications in mind, a data point

cluster consists of all the points that are contained in grid cells that are themselves

part of a grid cluster in the paradigm of Hoshen-Kopelman.

Memory Bottleneck: Another challenge when using the Hoshen-Kopelman al-

gorithm with Big Data is the potential of a memory bottleneck. By assigning each

data point to a grid cell we are reducing the size of our dataset, however the grid

itself may still be too large to fit in memory. This problematic situaton is briefly

acknowledged in 191. The authors mention that only two levels of the grid need to

reside in main memory at all times and they are correct. However they fail to ac-

knowledge that the tree data structure (or at least parts of it) needs to be in main

memory during clustering and this structure can also get too large for the memory.

Hence we will have to deal with this issue in our algorithm as well.

The final two challenges of clustering Big Data with HK are the most important

and herein also lies the biggest contribution of this thesis.

Query Performance and Disk I/O: There is one query that all clustering

algorithms have to be able to answer successfully. This is the cluster membership

query. In simple terms, given a grid cell ci, we want to know if another cell c 2 belongs

to the same cluster as c1 . The grid can't be saved in main memory in its entirety as

we have mentioned. Therefore, any cluster membership query will involve at least 2

disk reads to bring in memory the information pertaining to the cells that we want

to query. One of the main drawbacks of the simple form of the Hoshen-Kopelman

algorithm is that each tree in the tree structure contains potentially many nodes. So,

the only way to determine whether two IDs belong to the same tree (and by extension

to the same cluster) is to traverse the tree until we reach the root and then check if

the root IDs of the two IDs are coinciding. Unfortunately this can take a long time.

Specifically, in the worst case, a tree with n nodes can have height equal to n (in the
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case where it is isomorphic to a linked list). The average time it takes to reach the

root then is O(n/2) = O(n) which is prohibitively slow when we want to perform

many such queries.

To make matters even worse, the tree may not even fit in main memory in its

entirety so we have to perform multiple I/0 operations just to answer a simple query.

The obvious solution to this problem is that we have to perform a second pass of

the grid and "flatten out" the trees. This means that we want all the cluster IDs

contained in a tree to point to the root of the tree. This was suggested in [9], however

no specific implementation was proposed. A challenge that has to be dealt with is

the fact that only parts of the tree structure can be stored in memory at any given

time and therefore we have to perform various I/0 operations to read parts of the

tree structure in memory.

We mentioned briefly in the introduction that one of the main challenges of clus-

tering (and processing in general) Big Data is the fact that memory is a limited

resource. As we mentioned in the previous paragraph, this is the case even if we

reduce the problem to that of clustering on a grid. When processing vast amounts

of data we have to read each data point in main memory at least once. Moreover

we have to write back in disk information about each grid cell. Hence, we need to

eliminate all I/0 operations that go beyond the absolutely essential ones. In the

research bibliography, there hasn't been a succesfull attempt to provably minimize

the number of I/0 operations.

A proposed solution to this problem was suggested in ([11], [101) where the tree

structure is discarded and instead each cluster has a representative grid cell (and not

ID). The papers propose a two pass algorithm and after the end of the second pass

of the grid all the grid cells in a cluster contain the same cluster ID. There are some

problems with the proposed approach:

9 During the first grid pass, every time that a merging of clusters occurs, we have

to access the representative cells of the relevant clusters. However, there is no

guarantee that these cells will be already in memory, especially if they are in

much earlier grid levels. Hence, every time a merge operation occurs, multiple
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I/Os must happen.

" Another problem is that the representative of a cluster may change during merge

operations, however, grid cells labeled with the prior representative's ID may

still participate in merging operations. Hence, for every merge operation that

involves these grid cells, we have to do what amounts to a tree traversal in

order to find the very latest representative cell of a given cluster. If the merge

operations become sufficiently complicated, this process can become really time-

consuming (many I/O operations and in-memory cost)

" Additionally, in the second pass of the grid, when a grid cell is encountered, in

order to determine its final cluster ID we access the representative cell of the

relevant cluster once more. Hence, again we have to perform I/O operations to

bring the relevant data in memory.

The number of these additional I/O operations depends op the structure of the

grid and, specifically, on the number of tree merge operations during the first grid

scan. However the exact number of I/O operations that are absolutely necessary is

just those required to read the grid into memory twice as we will show.

In our algorithm we propose a method that accesses each data point exactly once.

In addition, and most importantly, we read each grid cell into memory exactly once

and we write it exactly twice back into disk. Hence, we perform the theoretically

optimal number of I1/ operations. Specifically we will prove the correctness of our

algorithm when operating with modest (compared to the size of the entire array)

memory requirements.

2.1.6 The Contributions of Our Algorithm

We suggest that our algorithm SingleClus is the only clustering algorithm for very

large 2-dimensional datasets that satisfies the following requirements:

" i) It clusters data points and not just cells.

* ii) It accesses each data point exactly once.
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" iii) It creates auxiliary structures (grid and tree structure) that are written

twice in disk and only read once back in memory.

" iv) It requires only a minor memory budget compared to the total size of the

array.

Specifically (ii) and (iii) are providing theoretical optimality in terms of perfor-

mance. These contributions make SingleClus an attractive option for clustering very

large multi-dimensional arrays.
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Chapter 3

Algorithm Design

This chapter presents the design, implementation and analysis of SingleClus. We begin

by presenting our operational model. We discuss the memory and disk structures we

will be using and we present theoretical results that prove that SingleClus is correct

and it is performing the optimal number of I/0 operations.

3.1 Disk Model

The data model that we will be using is the 2-dimensional array model. The input

to our algorithm is an array in CSV format. Each line represents a 2-dimensional

data point. Each coordinate is assumed to be an integer, however we can easily

generalize to other types. For each point x = (x 1 , x2 ), we know that xi is always in

a range [Mini, Maxi]. We assume we know this range in advance. We save these

ranges in four constants Min,, Max,, Min2 , MaX 2 . The combination of the 2 ranges

determines the 2-dimensional space boundaries.

The data points are assumed to be sorted in row major order. This means that

points are first sorted by the first coordinate, and then by the second coordinate.

This assumption does not affect clustering efficiency because clusters can be of any

shape and can extend towards any dimension.

Finally, we assume that the input dataset is in a file InputArray. We assume that

the number of data points is too large for all the points to be loaded in main memory
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simultaneously. Hence, multiple I/O operations will be necessary to access the entire

dataset. Therefore, algorithms that assume that the data can reside in memory can't

be utilized.

In our discussions we will follow the disk access model ([3]). This means that we

acknowledge that I/O operations will take the majority of time compared to memory

operations. Therefore, we will be attempting to minimize the number of disk I/O

operations we will be performing. Additionally, our algorithm achieves linear in-

memory performance. Even though not all disk I/O operations take the same time

(depending on where each disk block requested is located in the disk) we accept this

model as a good first order approximation.

3.2 Constants

We utilize the following constants.

Th: This is a user-defined positive integer constant that indicates the number of

points that have to be contained within a grid cell in order for it to be considered

full. Every full cell is part of a grid cluster. If a grid cell does not contain at least T

points then it is considered empty.

(CellSide1 , CellSide2 ): These are 2 user defined positive constants that indicate

the extent of a grid cell along each dimension. If we want the grid cells to have the

same extent along each dimension then we just set these 2 constants equal to each

other. For the rest of the discussion, we just assume that both the extents are equal

to CellSide.

(M 1 , M2 ): Mi is the number of grid cells that exist along dimension i. It can be

calculated by

Maxi - Mini +
CellSide I

MaxPoints: This is a constant that depends on the size of the dataset, as well as

to the memory capacity of the system that will be running SingleClus. It is defined

to be the largest possible integer such that (4 x M2 + M1 + 2 x MaxPoints) integers

32



can fit into main memory at any given time (excluding of course parts of the memory

that are occupied by program execution, kernel code etc). It represents how many

points from InputArray we are reading into memory at once during the clustering

phase. Therefore, the larger MaxPoints is, the less I/0 operations we will have to

perform to access each data point.

The significance of the 4 x M2 + M, term will become obvious in the next section.

Even though we assumed that the grid itself may be too large to fit in main memory

(and therefore M1 x M2 integers do not fit in memory), we assume that 4 x M2 + M1

integers can always fit in main memory. This is a size equal to y of the size of the

entire grid if we assume M1 , M2 are comparable in size. M, can be in the tens of

thousands so we only have to keep a very small portion of the grid in main memory

at all times.

3.3 Data Structures

3.3.1 Grid

Grid is just a file that resides in disk. It starts empty and progressively (during the

first clustering phase) it gets filled with entries containing cluster IDs representing

the contents of the grid cells. We don' save the coordinates of each grid cell along the

cell's cluster ID. We can infer the grid cell's coordinates simply by noting the offset

of each element in Grid and then using the getCoordsFromlD function (described in

the Algorithm Description Section).

3.3.2 TreeStruct

It was explained in the previous chapter that each cluster is represented by a set of

IDs. These IDs are organized as a set of disjoint trees so that two grid cells are parts

of the same cluster if and only if their IDs belong to the same tree. The way we

represent this trees is simple. We save them in a file called TreeStruct. TreeStruct

contains a single integer at each line. If integer j is contained in the i-th line, this
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indicates that the parent of ID i is ID j. If an ID is the root of its respective tree, then

it is pointing to itself. Hence when we have a situation where the integer contained

in the i-th line is i itself, it indicates that i is the root of its tree.

When merging two trees whose roots have IDs i and j, we just have to change ID

j to point to i instead of pointing to itself (or vice versa). This operation happens

in memory in the CurrentTreeList and PreviousTreeList arrays (we will describe those

in the Memory Buffers subsection). An important thing to notice is that the size

of TreeStruct is at most equal to the size of the Grid. The reason for this is that

each cluster ID has to belong to at least one grid cell. An important result of this

observation is that traversing the entire TreeStruct takes less than or equal amount of

time to traversing the entire Grid (and less than or equal number of I/O operations).

3.4 Choosing Th and CellSide

Unfortunately, there is no good way to determine a priori the Th and CellSide pa-

rameters efficiently so that we produce good quality clusters. We will have to do so

heuristically (i.e. intuitively) and check the quality of our cluster a posteriori. This

could mean that we would have to go through a lot of bad guesses before we find the

right combination.

When we are operating with Big Data we might not have the luxury to perform

multiple clusterings of the entire dataset before we find the right choice of Th and

CellSide. This is a problem that is discussed briefly in Chapter 4. One possible

attempt to find good Th and CellSide values, is to read a small portion of the dataset

into memory and perform clustering on them with various choices of Th and CellSide.

3.5 Memory Buffers/Arrays

PointsBuffer This array just holds MaxPoints data points from InputArray during

the first clustering phase. Every time we finish processing all the points in Points-

Buffer we load a new batch of points from the disk until we have read all the points
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from InputArray.

CurrentLevel This is a list of length M2 and it represents the grid cells of the

current level (by "current level" we mean the grid level that we are operating on at

a given instant). For each grid level, while we are reading points from PointsBuffer,

CurrentLevel gets populated with integers indicating how many points are contained

within each grid cell in this level. If at least Th points have fallen within a grid cell

then this grid cell is full. After we have read all data points at a given grid level,

we start performing clustering on the grid cells of that level. After this step, each

entry in CurrentLevel will get updated once again. After the updates, each entry will

contain either a 0 or a cluster ID.

PreviousLevel This is a list of length M 2 containing the cluster IDs of the grid

cells at the previous level of the one we are currently operating on. This array is

necessary for the clustering step because it allows us to determine cluster connections

between the current and previous levels.

CurrentTreeList This is a list of length at most M 2 that contains all the parent

relationships of the cluster IDs that were created in the current grid level. It is used

in the first clustering phase to perform merging operations and in the second phase

to perform the tree flattening operations. CurrentTreeList is accompanied by a vari-

able Current TreeIndex. This variable holds the ID which is represented in the first

location of CurrentTreeList. This is just another way of stating that CurrentTreeList[i]

is the parent of ID Current TreeIndex +i. For example, if CurrentTreeList[2]=22 and

Current TreeIndex = 15 then the parent of ID 17=Current Treelndex+2 is ID 22.

PreviousTreeList This is a list of length at most M2 that contains all the parent

relationships of the cluster IDs that were created in the previous grid level. It is used

in the first clustering phase to perform merging operations and in the second phase to

perform the tree flattening. PreviousTreeList is also accompanied by a variable Pre-
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viousTreefndex. This variable holds the ID which is represented in the first location

of PreviousTreeList. This is just another way of stating that PreviousTreeList[i] is the

parent of ID PreviousTreeIndex+i.

OffsetIDList This is a list of length exactly M1 . It is always entirely in main

memory. OffsetlDListliI contains the ID of the last cluster ID that was created while

clustering the i-th grid level during the first clustering phase. It will be useful in the

tree flattening phase of clustering. From the way our algorithm works, OffsetIDList[i

is equal to OffsetlDList[i - 1] plus the length of CurrentTreeList at the end of clustering

the i-th grid level.

It is true that at any instant Previous Treelndex+length(PreviousTreeList)=Current TreeIndex.

3.6 Algorithm Description

Here we will discuss how our algorithm works. We will be referencing the struc-

tures mentioned above. Before we start, we introduce some useful definitions and

vocabulary to make the discussion more succinct.

3.6.1 Vocabulary

We introduce some terminology to facilitate the description of the algorithm.

" A grid level Li is the set of all grid cells who have their first coordinate equal

to i. Hence, knowing M1 , the first level is LO and the last level is LM1 -1.

" We will refer to grid cells by their two coordinates. Hence, ci is the grid cell

that has coordinates (i, j). Therefore cij is located in the j-th position at level

Li.

" We will be usign capital letters to represent cluster IDs (except the letters T

and L that represent trees and levels respectively). Hence, A,A',B,X,Xi are all

valid cluster ID symbols.
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" At any specific time instant during clustering, we will denote the cluster ID

that is contained in a grid cell cij at that time instant by writing id(cij). The

mentioned grid cell can either be in the level we are currently clustering or at

any other level. For example, if cluster ID 4 is contained in grid cell c1 ,3 then

id(c, 3)=4.

" At any specific time instant during clustering, we will denote by T(X) the tree

that contains cluster ID X at that specific time instant. For example, if T1 is

the tree that contains cluster ID 4, then T, =T(4).

" At any specific time instant during clustering, we will use root(Ti) to denote the

root ID of a tree T at that instant. For example, if the root of the tree that ID

4 is contained in is 2 then root(T(4))=2.

* At any specific time instant during clustering, we will use parent(X) to refer to

the parent of a cluster ID X in its tree at that specific time instant. If an ID is

the root of its own tree then parent(X)=X (and vice versa).

* We will use ID(Li) to denote the set of all cluster IDs contained in grid cells at

level Li at any specific time instant. This set does not necessarily coincide with

the set of all the cluster IDs that were created during clustering Li. The reason

is that there is the possibility that, at some point, grid cell cij contained ID X

(where X was created during the clustering of Lj) but before the clustering of

the level was complete, the cell's cluster ID was changed. Therefore, at that

instant, X may no longer belong in ID(Li) even though it was created during

the clustering of Li

" We will denote by Grid [O:i] the sub-grid containing all levels up to, and including,

Li. A cluster in a sub-grid Grid[O:i] is defined in exactly the same way as in the

entire Grid, however we only take into account cells up to the i-th level. Two

clusters that are separate in Grid[O:ij may end up merging further down in the

grid.
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3.6.2 Functions and Variables

GlobalID: This is a variable that indicates how many different cluster IDs have been

created thus far. It coincides with the largest cluster ID assigned to a grid cell at any

time.

CurrentLevelCount:

This is a variable that indicates how many different cluster IDs have been created

thus far in the current level(i.e. the one we are currently clustering).

findPointCell

The code for findPointCell is as follows:

1 def findPointCell(Coordlist):

2 CeliCoords=[]

3 for i in range(2):

4 CellCoords.append((CoordListIiJ-MinIil)/CelISide)

5 return CeilCoords

This functions takes as input the coordinates of a data point p. It returns the

coordinates of the grid cell c that this p is contained in. It runs in 0(2) = 0(1) time.

A point p = (pI, p2) is contained within cell c = (ci, c2 ) if and only if

ci<pi - Mini<
cellSide +

for i = 1,2.

convertCoordsId

The code for convertCoordsid is as follows:

1 def convert Coordsld ( CoordsList):

2 return CoordList[1]
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Returns the index in CurrentLevel of the grid cell with coordinates CoordsList. For

a grid cell c = (ci, c 2 ) its position in CurrentLevel is just c2 .

findLevel

The code for this function is as follows:

1 def findLevel(CoordList):

2 return (CoordList[0]-Min[0)/CellSide

This function just returns the grid level that a data point p with coordinates

CoordList is contained in.

findRoot

The code for this function is as follows:

1 def findRoot (id) :

2 if id>=CurrentTreeIndex and id<=Globa1ID:

3 newid=CurrentTreeList [ id-CurrentTreeIndex

4 if newid-id:

5 return newid

6 else:

7 return findRoot(newid)

8 elif id<CurrentTreelndex and id>=PreviousTreeIndex:

9 newid=PreviousTreeList [ id-PreviousTreelndex I

10 if newid=id:

11 return newid

12 else:

13 return findRoot(newid)

This function takes as input a cluster ID X and returns the ID of root(T(X)).

As we will prove later in the discussion, we only to need search this root in the two

buffers CurrentTreeList and PreviousTreeList.

setParent
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The code for this function is as follows:

1 def setParent (X,Y):

2 if CurrentTreeIndex>=-PreviousTreeIndex: \\used during phase 1

3 if X>=CurrentTreelndex and X<=GlobalID :

4 CurrentTreeList [X-CurrentTreelndex]=Y

5 elif X<CurrentTreelndex and X>=PreviousTreeIndex:

6 PreviousTreeList [X-PreviousTreeIndex]=Y

7 else: \\used during phase 2

8 if X>=PreviousTreeIndex:

9 PreviousTreeList IX-PreviousTreelndex]=Y

10 elif X<PreviousTreelndex and X>=CurrentTreelndex:

11 Current TreeList [X-CurrentTreeIndex] =Y

This function takes as input two cluster IDs X and Y and sets parent(X)=Y.

3.6.3 Clustering Phases

The algorithm operates in 2 phases. In the first phase we scan all the data points and

we progressively build Grid and TreeStruct. In the second phase we access and modify

Grid and TreeStruct in such a way that all grid cells in a cluster share the same ID in

the grid. We present those two phases separately.

First Phase (Raster Scan)

Initially the algorithm reads a batch of MaxPoints points from InputArray into Points-

Buffer. We start accessing the points in PointsBuffer. For each point p, we find the

grid cell c that it belongs in by using convertCoordslD. Then we increase c's count

in CurrentLevel by 1. Once we have encountered a point that does not belong to the

same grid level as the previous point, it means that we have read all the points on

that grid level. The logic behind this is that we access points in row major order.

Therefore the first coordinate of a point (the one that determines the grid level) can

never become smaller as we access more points. If we reach the end of PointsBuffer

without ever changing grid level, then we read another batch of MaxPoints points

from InputArray into PointsBuffer.
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When we first encounter a point that does not belong in the same level Li as the

previous point, we start the clustering step for Li.

The clustering of each level Li during the Raster Scan phase, is happening in 3

stages.

Stage 1:

We start reading the elements of CurrentLevel in order. If a grid cell cii has value

smaller than Th (i.e. if CurrentLevelljl< Th) this means it does not belong to any

cluster. We set CurrentLevel[j]=O (i.e. id(cij)=O) and proceed to ci,(j+1).

Alternatively, if cij has value greater than or equal to Th in CurrentLevel, then it

means that it belongs to a cluster. We find the values X=id(c(i_1),j) and Y-id(ci,(j-1))

from PreviousLevel[j] and CurrentLevel[j - 11 respectively. Since we are traversing the

grid cells in row major order, both of these grid cells have already been processed and

have been assigned a cluster ID. There are the following 4 cases regarding X and Y:

" X=Y=O : In this case, neither of the two previous neighbours belongs to a clus-

ter. We let GlobalID=GlobalID+1 and set CurrentLevel[j]=GlobalID. Moreover

we set parent(GlobalID) =GlobalID in Cu rrentTreeList.

" X=O,Y70 : In this case, we just set id(cij)=Y in CurrentLevel and proceed to

the next cell in Li.

" Y=OX$0 In this case, we find R=root(T(X)) and set id(cij)=R in Cur-

rentLevel.

" X#O,Y#O : In this case we find R1=root(T(X)) and R2=root(T(Y)). If R1 <

R2 then set id(cij)=R1 and parent(R2)=R1 . If R2 < R1 then set id(ci))=R 2 and

parent(R1)=R 2. If R1 = R2 set id(cij)=R1.

The last case is the only case where two separate clusters can merge. The above

task is repeated for all cij E Li.

Stage 2:
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Once we have processed the last grid cell in Li (through accessing and modifying

CurrentLevel) we start processing all the grid cells in Li again but in reverse row major

order. Specifically, starting from ci,M2 -1 and proceeding all the way down to cio, for

each cell cij we find X=id(cij) in CurrentLevel. Then we set id(cij)=root(T(X)) and

set parent(X) =root(T(X)). This simply means that we set the cluster ID of each cell

to be the root of the tree that its previous ID was contained in.

Stage 3:

Finally, we process each grid cell cij on Li one more time in row major order

to ensure that ID(Li)nID(Li_ 1)=0. Let G the value of GlobalID after the end of

Stage 2 but before Stage 3 begins. Let R= root(T(id(cij)). Then, if R < G, we in-

crease GlobalID by 1. Then we assign id(c)ij)=GlobalID in CurrentLevel and we set

parent(R)=GlobalID and parent(GlobalID)=GlobalID in CurrentTreeList. If R > G

then set id(cj)=R.

Once all three stages have been completed for Li then we do the following:

" We write all the elements of PreviousLevel into Grid at the disk.

" We set PreviousLevel equal to CurrentLevel (this can be implemented efficiently

by changing pointers if we don't want to copy the entire list).

" We empty CurrentLevel.

" We add an entry to OffsetIDList that is equal to the last entry of OffsetlDList

plus CurrentLevelCount. This is how many new cluster IDs were created on

that level.

" We write the contents of PreviousTreeList into TreeStruct.

" We set PreviousTreeList equal to CurrentTreeList.

" We set Previous Tree Index equal to CurrentTreeIndex and Current TreeIndex

equal to GlobalID+1.
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* We empty CurrentTreeList.

Once we have read all the points from InputArray and have performed all 3 clus-

tering stages for each level Li then the first phase of the clustering is done. After the

first phase is over we do not access InputArray again. The value of GlobalID at the

end of the first phase is the total number of different cluster IDs that were created

and saved in TreeStruct.

Second Phase (Tree Flattening)

The main idea of the second phase is the following:

We access the grid levels in reverse order (i.e. the last level we access is Lo),

however we access the grid cells within each level in row major order

At first we bring into memory (specifically into CurrentLevel) the contents of the

last level of Grid. We can do so because we know M1, M2 and that each grid cell

contains an integer. Therefore we know the byte offset of the first and last grid cell

at the last level of Grid. In addition, we bring into CurrentTreeList the entries of

TreeStruct that correspond to the IDs of the last grid level. This is possible because

we saved this information in OffsetlDList and we know that each cluster ID is an

integer. We initialize PreviousTreeList to be empty.

Then we start accessing each grid cell cij in LM_1 in CurrentLevel in the normal

row major order. For each cij let X-id(cij). We perform the following:

" We find R=root(T(X)).

" We set id(cij)=R in CurrentLevel.

" We set parent(X)=R in CurrentTreeList. The index of X is always either in

CurrentTreeList or in PreviousTreeList as we will show below.

Once we have finished processing CurrentLevel, we write the updated contents of

CurrentLevel in Grid (in the same location we read them from) and bring another MI 2

entries from Grid into CurrentLevel. Moreover we move the contents of CurrentTreeList
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intro PreviousTreeList. Finally, we access OffsetiDList[Mi - 21 IDs from TreeStruct into

CurrentTreeList. There is no need to write anything back into TreeStruct.

We continue until all grid levels have been processed. This completes the algo-

rithm. In the end of the Tree Flattening phase, if two grid cells Ci, Ckl are in the same

cluster then id(cij)=id(ckl) in Grid. We can discard the TreeStruct structure entirely

at this point.

3.7 Assumptions

In this section we mention the assumptions we made above in the design of our

algorithm.

" We assumed that we know the ranges of values [Mini,Maxil. This is reasonable

because, just knowing what the data points are representing, we can determine

the ranges. For example, if we are clustering tweets, then the coordinates are

just longitudes and latitudes. If we are clustering tweets in Cambridge, MA,

then we can restrain our range within the coordinates that encompass Cam-

bridge.

" We assumed that our input data are sorted in disk. This is a reasonable

assumption. The reason is that many datasets already come sorted or partially

sorted. In addition, the sorted order does not provide any benefit in the sense

that the clusters can be of any shape. Particularly,since the data is sorted by x

coordinate, we may encounter clusters that are elongated along the y coordinate.

Hence we receive no benefit in terms of performance.

If we really wanted to receive unsorted data then we can sort them in O( log,'L a)

I/0 operations (13]) where n is the number of points to be clustered, b is the

size of a disk block and M is the size of the memory. With modern SSD speeds

( 90k IOPS random access) and moderate sized memories (say M=4Gbyte) and

the usual size of disk blocks (b=4Kbyte) sorting lOTBytes of data can be done
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in around 5 hours. This is definitely not optimal but, if neccessary, it will have

to be done once.

3.8 Correctness

Here we prove that our algorithm is correct. To do so we will first prove the following

theorem.

Theorem 1. During the first phase (Raster Scan) the following statements are

true:

* 1.1 Suppose that Li and L i+ are two consecutive grid levels. Then, during the

first clustering phase, after we have finished clustering both Li and Li+1 , it is

true that ID(Lj)nID(Lj+ 1)=O.

* 1.2 If two grid cells ci, ck, belong to the same cluster, and we have finished clus-

tering both of their levels Li and Lk during the first phase, then T(id(cj))=T(id(ckl)).

Therefore, the cluster IDs in Cij, ckl belong to the same tree in TreeStruct.

* 1.3 During the first clustering phase, for each grid cell cij in Li, after we

have finished clustering Li but before we start clustering Li+1 , it is true that

root (T (id (cij))) =id (cij).

* 1.4 After we have finished clustering Li and Li+1 , then for X EID(Li) either

root(T(X))=X or root(T(X))EID(Li+1 ).

* 1.5 During the clustering of grid level Lj+1 and at any of the 3 stages, if X

is a cluster ID in ID(Li) or in ID(Lj+1 ), then the root R of T(X) is either in

ID(Li) or in ID(Li+1 ). This proves that we can perform the First Clustering

Phase while only keeping CurrentTreeList and PreviousTreeList in memory (and

not the entire TreeStruct)

Proof of Theorem 1:
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We will prove this by induction on last level Lk that we finished clustering during

the first clustering phase. For k = 0 (i.e. LO) all of the assertions are obviously true

from the description of the algorithm. Assume that the above holds for k < d. We

will show that it is true for k = d + 1.

Theorem 1.1 can easily be proven. Suppose that we are in the process of clus-

tering Ld+1 after we finished clustering Ld. Then, at Stage 3 of clustering Ld+1,

each grid cell will be assigned a cluster ID that has never been assigned in Ld (from

the definition of GlobalID and the constant G which is described in Stage 3 as the

maximum GlobalID up to this point). Hence Theorem 1.1 is proven.

To show that Theorem 1.2 is true we just have to prove it for the cluster IDs

that got merged during the clustering of Ld 1. Obviously the cluster IDs that were

in the same tree before the clustering of Ld+1, will remain in the same tree after-

wards. All the merging operations happen during Stage 1 and particularly when we

are dealing with Case 4 of the ones mentioned in the algorithm's description. It is

obvious that, if two clusters that had separate trees after the clustering of Ld are in

the same cluster when Ld+1 is taken into account, then there has to be sequence of

grid cells belonging in Ld+1 that connect two cells in Ld that belonged in the two

separate clusters. Otherwise, the two clusters are not merged during the clustering

of Ld+l. Therefore it is obvious that Theorem 1.2 is true.

To show that Theorem 1.3 is true we just focus on Stage 2 and Stage 3 of

clustering level Ld+1. It is obvious that during Stage 2 there are no new cluster

IDs created, nor are any trees merged. Hence the roots of trees do not change dur-

ing Stage 2. Moreover, during Stage 2, every grid cell cij is modified such that

id(cij)=root(T(id(cij))). Thus, in the end of Stage 2, each grid cell will contain a

cluster ID that is the root of its tree. Moreover, in Stage 3 we just add an extra

level to each tree by letting the root of each tree point to a new cluster ID while at

the same time adjusting the cluster ID in each grid cell in Ld+1 to point to this new
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root. Hence Theorem 1.3 is proved.

It is obvious to show that Theorem 1.4 is true. To do so, assume that for some

X CID(Ld), root(T(X))# X. From Theorem 1.3, right after Ld was clustered it

must have been true that root(T(X))=X. The only way for this to change is if the

root of T(X) got changed during clustering of Ld+l. But the only new cluster IDs

that are turned into roots of trees right after the clustering of Ld+1 are those con-

tained in the grid cells of Ld+1 after Stage 3. Hence this theorem is also proved.

Finally, to prove Theorem 1.5 we only need to notice that, from Theorem

1.4, after the clustering of Li, for each ID X EID(Li) either root(T(X))=X or

root(T(X))EID(Li+ 1). So when we introduce a new level Li+1 there iare only two

possibilities for the root of a tree; either it is an ID that appeared in the previous

level Li, hence it is in PreviousTreeList, or it is an ID that was introduced in the

current level Li+,, hence it is in CurrentTreeList. Thus, Theorem 1.5 is also proved.

This completes the proof of Theorem 1.

According to Theorem 1.2, after having clustered the last level LM,_1 during the

first phase, if two grid cells cij, ck, belong to the same cluster, then T(id(cij)) =T(id(Ckl)).

To complete the proof of correctness, we ony have to show that after the second clus-

tering phase (the Tree Flattening Phase), if two grid cells cii, Ck, belong to the same

cluster, then id(cij)=id(ck1). Namely, all grid cells in a cluster have the same ID.

This is indeed the case and we will show it by proving the following theorem.

Theorem 2. During the second phase (Tree Flattening) the following statements

are true:

* 2.1 Suppose that we just completed processing level Li during the second clus-

tering phase. Then, if a cluster ID X belonged in ID(Li) at the end of the first

clustering phase, it is true that parent(X) =root(T(X)).Equivalently, X is now

Spointing directly to the root of its tree.
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* 2.2 Suppose that we just completed processing level Li. Then, for any grid cell

cij in Li it is true that X=root(T(X)).

Proof of Theorem 2:

We will use induction to prove this theorem. Suppose that both statements are

true for all i > d + 1. Then we will show it is true for i = d. The second statement is

obvious. In essence during the TreeFlattening phase, we set the id(cij) of each grid

cell to be the root ID of the cluster that it belongs in. Since the cluster IDs in each

tree don't change and trees don't merge during this phase, Theorem 2.2 is proven.

To prove Theorem 2.1, just notice that as soon as we encounter an ID X in a

grid cell cij, we set its parent to be the root of its tree. Since the Tree Flattening

phase doesn't ever change the roots of a tree, it follows that 2.1 is true.

The only reason we care to prove Theorem 2.1 is because we want to perform the

Tree Flattening by only accessing two grid levels worth of cluster IDs at a time (since

the TreeStruct may be too large to fit in its entirety in main memory). The implication

of 2.1 is that when we are processing a grid level Li during the Tree Flattening phase,

the root of the tree of each id in the CurrentLevel can be definitely found in either

Current TreeList or Previous TreeList. This follows by combining Theorems 1.4 and

2.1.

This concludes the proof of Theorem 2 and thus we have proven the correctness

of SingleClus. The reason is that due to Theorem 2.2, if two grid cells belonged to the

same cluster, then they were assigned a cluster ID equal to the root of the Tree they

belonged in after phase 1. Since the second phase does not merge trees and therefore

does not affect the roots of the trees, Theorem 2 follows.

3.9 Performance Analysis

Here we will prove that our algorithm performs an optimal (linear) number of I/O

operations and that it has a linear run-time in memory. We also show that we are

always using a small amount of memory. We claim that this algorithm is optimal

with regards to its I/0 performance.
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3.9.1 Memory Budget

It is obvious from the description of the algorithm that at each instant, the maximum

amount of memory that we are utilizing is for storing 4 x M2 + M1 +2 x MaxPoints

integers. This is because we have 4 buffers of length at most M2 (namely Cur-

rentLevel, PreviousLevel,Cu rrentTreeList, PreviousTreeList) and one of length M1 (namely

OffsetIDList) and MaxPoints is a constant defined by the user.

3.9.2 In-Memory Performance

We will show that the in-memory performance of the algorithm is linear in the number

of data points and grid cells. In order to achieve this we will prove that, at any point

during the two clustering phases. whenever we want to find the root R of the tree

that a cluster ID X belongs in, we need to move at most 2 levels up towards the root.

That is equivalent to say that X is always at most 2 steps away from its root at the

time instant that we are in need of finding its root. We make an important note here

regarding this claim: We don't state that the height of the trees in TreeStruct never

grows beyond 2. We just mean that, from the way SingleClus is designed, at the time

instant that we access a grid cell cii with id(cjj)-=X, then X is at most 2 steps away

from its root at that time.

To prove this claim we start with some Definitions and Lemmas.

Definition: We say that a set of full grid cells in a level Li constitute a contiguous

section S if and only if there exist j, k with 0 < j < k < M2 - 1 such that:

* Ci,h is full for all h=j,j+ 1,j +2,...,k

" ci,j_1, Ci,k+1 are empty (if they exist based on the choice of j, k)

It is obvious from this definition and the definition of a cluster, that all the grid

cells in a contiguous section belong to the same cluster. Hence, according to Theorems

1.2 and 1.3, for all cells cij in a contiguous section S on level Li, after the clustering

of Li during the first phase is complete, all the cells in a contiguous section S contain
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Figure 3-1: The two paths must intersect at some point. We have denoted this point

to be the grid cell containing X. Hence, all the grid cells must belong to the same

cluster.

the same cluster ID. We will denote by id(S) the (common) cluster ID of all grid cells

in S after Li has been clusterd during phase 1.

Lemma 1: After the end of clustering Li during the first clustering phase, let

S1. S2 ... , Sk be the contiguous sections of Li in row major order of appearance. Then

there are no j, k, 1,m with j < k < 1 < m such that id(Sj)=id(S,), id(Sk)=id(Sm),

and id(Sjy-Lid(Sk).

Proof of Lemma 1: Suppose that after the clustering of Li there exist j, k, 1, m

with j < k < 1 < rn such that id(S,) )=id(Si), id(Sk)=id(Sll) and id(Sj)#id(Sk). We

will show that we reach a contradiction. Indeed, since id(Sj)=id(Si), we conclude that

all the cells in Si US, belong to the same cluster. Therefore, if we choose two grid cells

Cij E S and cil E S, then there has to exist a path of full cells c1 = cij, c2, ..., ct = Cil

such that ch CGrid[O:i and Ch, Ch+1 are neighbours for all h = 1, 2, ... , t - 1. Similarly,

if we choose two grid cells Cik E Sk and cim C Sm then there has to exist a path of full

cells c' = Cik, c'2, ... , C' = cim such that c' EGrid[0:i] and c' , c'+ 1 are neighbours for all

h = 1,2, ... , s-1.

But since j < k < 1 < m this must mean that cij, Cik, cjj, cim appear in this

order (i.e. Cik appears between ci and cil etc). Hence, because the two paths are
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continuous (since they consist of neighbouring cells) we conclude that they have to

intersect at some point (see Figure 3-1). Therefore, since the two paths intersect, we

conclude that Cik, Cikcii, cim actually all belong to the same cluster. Therefore, after

the clustering of Li during the first phase, id(cij)=id(Cik)=id(ci)=id(cim). But this

in turn means that id(Sj)=id(Sk)=id(S)=id(Sm) which contradicts the assumption

that id(Sj)#id(Sk). Hence we have reached a contradiction. Therefore, Lemma 1 is

proven.

Lemma 2: After finishing clustering level Li during the first clustering phase, let

X, Y cID(Li) such that X < Y. Let , ciI2 be the first grid cells in row major order

such that id(cisj)=X and id(cij2 )=Y. Then it is true that j, < J2. This is equivalent

to saying that, if X < Y, then the first appearance of X in Li is before the first

appearance of Y.

Proof of Lemma 2: This Lemma can be proved by noticing the operation of

Stage 3 during clustering a level Li. Specifically, each grid cell cij in Li receives its

final cluster ID for the first clustering phase during Stage 3 of the clustering of this

level. We will procede by induction and assume that Lemma 2 holds for all Cih with

h < j - 1.

While we process grid cell cij during Stage 3, we find R=root(T(id(cij))). If

R < G, then we increase GlobalID by 1 and we set id(ci)=GlobalID. Moreover

we set parent(R) = GlobalID. Since no other grid cell before cij can contain this new

GlobalID, Lemma 2 holds. Alternatively, if R > G then we set id(cij)=R. This means

that cell cij will now contain a cluster ID R that was already assigned to a previous

grid cell in that level during Stage 3. Hence, by the induction hypothesis, Lemma

2 holds. This completes the proof.

Lemma 3: During Stage 1 of clustering a level Li, whenever we perform a root

search for a cluster ID X, X is always at most 1 step away from the root of its tree.

Proof of Lemma 3: For the sake of contradiction, assume that during the first

clustering phase of a level Li, and during Stage 1, we will perform a root search for

a cluster ID X such that X is two or more steps away from the root of its tree. There

are two possible scenarios:
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* The first scenario is that X is a cluster ID that did not appear in ID(Li_ 1 ). This

means that X was created during Stage 1 of clustering level Li. When X is

first created during this stage, it is obvious from the description of the algorithm

that parent(X)=X. Therefore, at some point during Stage 1, a merge has to

occur, so that the parent(X) is changed to some ID Y # X. By the description

of the algorithm during Stage 1, it is cleat that if parent(X)=Y then Y < X.

We claim that we never encounter another grid cell with an ID equal to X

during Stage 1 of clustering Li. The reason is that X can't appear on a grid

cell on Li- 1 (from the assumption of this scenario). In addition X can't appear

again on Li since it now has a parent ID that is different than X. Therefore,

there is no way that a root search will take more than one step for an ID in the

first scenario.

* In the second scenario, X is an ID in ID(Li_ 1). Therefore, X was created

during Stage 3 of clustering Li. 1. We have already mentioned that, at the end

of clustering Li_ 1 during the first phase, for each X CID(Li- 1 ), it is true that

parent(X)=X. Therefore, if X is at some point two steps away from the root

of T(X), this could have only happened if there exist indices ji < j2 < j3 such

that:

- During clustering of grid cell ci, during Stage 1, it is true that id (ci_ 1, )=X

and id(ci,-j1 )-Y, where root(T(Y))=R and R < X. Then, after this grid

cell has been proccessed, parent(X)=R. The reason why such a ji exists

is because, at some point, X will have to change its parent for the first

time after the clustering of Li_ 1. The index ji is the first index that this

happens during Stage 1 of clustering Li.

- During clustering of grid cell ci, during Stage 1, it is true that one of

the following two options are true:

* root(T(id(ci_1 , 2 )))=R and root(T(id(ci,j_ 1 )))=R', where R' < R.

* root(T(id(ciIJ2 )))=R' and root(T(id(c,-_ 1 )))=R, where R' < R.
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After cij2 has been proccessed during Stage 1, it is true that parent(X)=R

and parent(R)=R'. The reason why such an index j2 has to exist is because

we assumed that at some point of clustering Li during Stage 1, X will be

at least two steps away from its root. Then we choose J2 to be the first

index at which X is two steps away from its root. Obviously, ji < j2.

- Finally, during the clustering of grid cell ci,j3 during Stage 1, it is true

that id(c_1 ,>J3)=X and therefore we will be forced to perform a root search

for an ID that is at least two steps away from its root. The reason why

such an index j3 exists, is because we assumed that we will actually have

to perform a root search for X after its distance from its root has become

greater than 1. The reason why X appears on a grid cell ci_1 , 3 of the

previous level and not on the current level is the same exact reasoning

that we provided in evaluating the first scenario of this Lemma. Then, we

just let j3 be the smallest such index. Again, it is obvious that j2 < J.

Since R < X and X EID(Li_ 1) we conclude that R cID(Li_ 1) as well. More-

over, since R < X, according to Lemma 2, the first appearance of R in Lj 1

has to be before the first appearance of X. But the latest X appears in Lj 1

is on position ji. Hence R appears in some position jo < ji in Li_ 1. But,

according to the above discussion, X also appears on position j3. There are two

cases as we described above:

- Case 1: root(T(id(ci- 1,J 2 )))=R and root(T(id(ciJ2-1)))=--R', where R' <

R. Then R appears on position J2 in Li_ 1. Therefore R appears on po-

sitions jo, j2 and X appears on positions ji, j with Jo < ji < 12 < Ja.

But, according to Lemma 1 this is impossible. Hence we have reached a

contradction and, therefore, Lemma 3 is proved.

- Case 2: root(T(id(ci- 1,J2 )))=R' and root(T(id(ciJ2-1))) =R, where R' <

R. This case is impossible for the same reasons discussed in scenario 1 of

this Lemma.
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This concludes the proof of Lemma 3.

Lemma 4: During Stage 2 of clustering a level Li, whenever we perform a root

search for a cluster ID X, X is always at most two steps away from the root of its

tree.

Proof of Lemma 4: Let Cik be the last grid cell that we have processed during

Stage 2 of clustering level Li. We will prove that Lemma 4 is true using induction

on k. The induction hypothesis is the following. Assume that for j = M2- 1 down

to j = k + 1, during Stage 2 of clustering a level Li, it was true that X=id(cij) after

then end of Stage 1. Then, right before we start processing Cik during Stage 2, it

is true that parent(X) =root(T(X)). Equivalently, this is saying that all the IDs that

appeared in positions k + 1 through M2 - 1 on Li at the end of Stage 1 are now at

most one step away from their roots.

We will prove that the induction claim holds immediately after we have processed

Cik. Let X=:id(Cik) immediately after the end of Stage 1. If after Stage 1 X appeared

in some position on Li between positions k + 1 and M2 - 1 then we are done because

of the induction hypothesis. Alternatively, the last position that X appeared on in

Li was at position k. But then, during Stage 1, X must still have been the root of

its tree right before Cik was processed.

Let h be the first position where X was no longer the root of its tree during Stage

1. Then it is true that h > k. In addition, when we processed Cih, parent(X) became

equal to some ID Y and id(cil,) was set equal to Y. Therefore, by the induction

hypothesis, since h > k, Y was at most one step away from its root at the time

of processing Cik during Stage 2. This would make X be at most two steps away

from its root while processing Cik during Stage 2. Moreover, after having processed

Cik during Stage 2, X's parent will now be equal to root(T(X)). Therefore, the

induction hypothesis is still true. Meanwhile, we have also proved that at no point

during Stage 2 will we have to search the root of and ID X that is more than two

steps away from rootT(X). Hence, Lemma 4 is proved.

Lemma 5: During Stage 3 of clustering a level Li, whenever we perform a root

search for a cluster ID X, it is true that X is always at most one step away from the



root of its tree.

Proof of Lemma 5: This is obvious from the operation of Stage 3. At the end

of Stage 2, every cluster ID that appears on a grid cell on level Li, is the root of its

tree. During Stage 3, these roots change at most once and the new roots are never

modified. Hence, Lemma 5 is proven.

Lemma 6: During the second clustering phase (Tree Flattening), whenever we

perform a root search for a cluster ID X, it is true that X is always at most two steps

away from the root of its tree.

Proof of Lemma 6: This is also a trivial thing to prove using Theorem 1 and the

above Lemmas. Specifically, for any ID X in ID(Li-), after Stage 2 of clustering Li

during the first clustering phase, it is true that parent(X)=root(T(X). After, Stage

2 of clustering Li, in the worst case, X is now one step away from the root of its tree.

Therefore after Stage 3 of clustering Li, in the worst case, X is now two steps away

from the root of its tree. Therefore, during the second clustering phase, X is at most

two steps away from the root of its tree.

Moreover, using induction, we claim that from j = M, - 1 down to j = k + 1, all

cluster IDs that appeared in a grid cell in levels Lk+1 through LM,_1 are now one step

away from their root. Using the result of the previous paragraph this is also true for

j = k after we have processed Lk during the second clustering phase. Hence Lemma

6 is proved.

Using the above Lemmas, we proceed to find the in-memory runtime of SingleClus.

Specifically, during the first clustering phase, we process each grid cell exactly three

times (once per each Stage). Each time, we perform at most 2 root searches that

take at most 0(1) time. Moreover, we proccess each cluster ID at most three times.

The reason is that after a cluster ID X is created during clustering Li, we may only

process it once per Stage to change parent(X).

In the second clustering phase, we process each grid cell in memory exactly once.

Moreover, we perform exactly one root search that takes 0(1) time. Similarly, for

cluster IDs, we change the parent of each cluster ID at most once during the second
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clustering phase.

Combining these two facts we see that the in-memory runtime of the algorithm

is O(size(InputArray)+size(Grid)+size(TreeStruct)) =0(size(InputArray) +size(Grid)). There-

fore SingleClus is operating on time linear to both the input array size and the grid

size.

3.9.3 I/O cost

We proceed to determine the number of I/O operations that our algorithm performs.

To determine the I/O cost we just need to observe the following:

" During the first clustering phase (Raster Scan) we read into memory each point

in InputArray exactly once.

" During the first clustering phase, we write the contents of each grid cell into

Grid in the disk exactly once.

" During the first clustering phase, we write the contents of each created cluster

ID into TreeStruct in the disk exactly once.

" During the second clustering phase, we read and write each grid cell in Grid

exactly once.

" During the second clustering phase, we read and write each grid cell in TreeStruct

exactly once.

Moreover, as we have already mentioned, the size of TreeStruct is always smaller

than that of Grid. Hence, the total number of I/O operations that we have to perform

is O(size(In putArray)+size(Grid)+size(TreeStruct)) =O(size(In putAray) +size(Grid)). Fi-

nally, it is important to note that we perform the theoretically optimal number of disk

reads for InputArray since we have to read each data point at least once. The same is

true for Grid and TreeStruct. Specifically, we write each element in those structures

in disk exactly once during the first phase (when these structures are being created).

56



Since we require fast queries, and hence a second tree flattening phase is neccessary,

we read and write each element in those structures in disk exactly once more.

This proves that our algorithm is theoretically optimal in the number of I/0 op-

erations it performs.

3.10 Cluster Membership Query

In this section we just describe the basic query after we have finsihed clustering the

dataset.

3.10.1 Description of Query

The basic cluster membership query takes as input two data points pi = (Pi,, Pi,2)

and p1 = (Pj,i, pj,2) and determines whether or not they belong to the same cluster.

We do this as follows:

For each point pi, first we determine which grid cell they belong in. We do

this using findPointCell function. After we have found the coordinates of the grid

cell cij that pi = (Pi,1,Pi,2) belongs in, we bring id(ckl) in memory from Grid by

reading the contents of Grid at the offset of CUl. For a cell CkI its byte offset will be

i x M 2 + j x sizeof(integer). This completes this step and we now have the cluster ID

of the first point (potentially 0 if it wasn't contained in a grid cell that was part of a

cluster). We repeat the proccess for p3 .

The code for the cluster membership query is as follows:

1 def findCluster(pointCoords ):

2 c_ 1, c_2=findPointCelI(pointCoords)

3 offset =c_ 1*M_2+-c_2

4 f = open("Grid. txt" ,'r ')

5 ID=f.seek(offset*sys.getsizeof(int))

6 return ID

The above function finds the cluster ID of a data point. We assume that clustering

has completed and the file Grid is saved in our current directory. sizeof is
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1 def sameCluster (pointCoordsl , pointCoords2):

2 id1=findCluster (pointCoordsl)

3 id2=findCluster (pointCoords2)

4 return ((idi- id2) and (id1!=O))
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Chapter 4

Qualitative Evaluation

In order to evaluate the quality of our clustering algorithm, we implemented SingleClus

and ran experiments to determine the types of datasets that we can use SingleClus on

and get qualitatively good clusters. In this chapter, we propose a basic qualitative

comparison metric between SingleClus and DBscan, and we discuss our results and

methodology.

4.1 Choice of Datasets

We ran our algorithm on two synthetic datasets that were introduced in ([14],1151).

The datasets are shown in Figures 4-2 and 4-3.The first dataset consists of 3000 data

points organized in 20 clusters of approximately equal size and shape. The clusters

have a spherical shape. The second dataset consists of 8000 data points organized

in random shaped clusters that are not equally sized. Moreover the second dataset

contains points that are just noise and do not belong to any cluster.

The reasons we decided to use these datasets are the following:

o The first dataset, shown in Figure 4-2, contains clusters that are of approxi-

mately equal shape and size. Moreover, the clusters are close to each other,

meaning that the boundaries of two clusters can be hard to discern. Therefore,

running our algorithm on this dataset is important because we can determine
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whether SingleClus can effectively discern between clusters that are very close

to each other. In practice, many applications were we must cluster very large

spatial datasets will involve sparse and skewed data. For example, the locations

of ships in the oceans will naturally create clusters around ports. These clusters

will be sufficiently far from each other that their boundaries will be easy to dis-

cern. However, we chose this dataset to evaluate our algorithm's performance

in extreme cases. Our goal is to determine whether SingleClus can be utilized

in datsets where the cluster boundaries are very close to each other.

9 The second dataset, shown in Figure 4-3 contains clusters that don't have the

same shape. Moreover, the dataset contains points that do not belong in any

cluster and, hence, they are just noise. Therefore, running our algorithm on

this dataset is important because we can determine whether SingleClus can

effectively find clusters of various shapes, while at the same time disregarding

data points that are just noise.

We expect SingleClus to perform better in the second dataset than in the first

dataset. The reason is that the grid-based approach of SingleClus does not take into

account the relative densities of regions inside clusters. We explain this using Figure

4-1. In this scenario, all the data points of the one grid cell are placed in the top

left part of the cell, whereas all the data points of the second grid cell are placed

in the lower right part of the cell. However, since there are enough points in both

cells, SingleClus will consider that the cells are full and will place all of their contained

points in the same cluster. DBscan on the other hand is not operating relative to a

grid. Therefore, using a reasonable Eps parameter, it will place the two sets of points

in different clusters.

4.2 Choosing Parameters

We experimented with various combinations of CellSide and Th. To evaluate the

performance of our algorithm we decided to compare it against DBscan. An important
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Figure 4-1: This is a scenario where SingleClus would place all the points belong to
the same cluster, whereas DBscan would place them in different clusters.
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a cluster are uniformly distributed. Therefore, if we set MinPts = Th then the

equivalent areas that the points must be contained in have to be equal. Hence,

we must set 7rEps2 = CellSi~de2 or, equivalently, CellSide = v/rEps. Since V5

is approximately equal to 1.77, for any given combination of (MinPts, Eps) in

DBscan, we ran SingleClus with TI, = MinPts and CellSide = 1.77 x Eps
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* For each pair of (MinPts, Eps) and (Th, CellSide) that satisfy the relation

mentioned above, we determine the quality of SingleClus using the number of

discovered clusters as a metric. That is, we determine how many clusters DB-

Scan discovers and compare that number to how many clusters SingleClus dis-

covers. There is the possibility that, based on our choice of parameters, DBscan

or SingleClus may discover more or less clusters than there exist in our datasets.

In this scenario, we only care about the discovered clusters that we knew a

priori that they were clusters. Suppose SingleClus finds 20 clusters in the first

dataset, but does so by merging two different clusters into one and by dividing

a single cluster into two clusters. In this scenario, we will consider that Sin-

gleClus found 19 of the clusters we were searching for. We will consider that it

completely missed the smallest of the two clusters it merged. Moreover, out of

the 2 clusters that SingleClus found by dividing the single cluster, we will only

consider as valid cluster the one cluster that has the greatest overlap with the

original cluster.

4.3 Results

We ran SingleClus and DBScan on the two datasets using an already existing imple-

mentation of DBScan (113]). We present some of our results.

Let us describe our results. In Figures 4-4 and 4-5 we ran SingleClus and DBscan

on the first dataset. The parameters we chose are MinPts = Th = 4, Eps = 600, and

CellSide = 1080 = 1.8 x Eps. With these parameters, DBscan finds 19 clusters and

SingleClus finds 17. In the next two figures, we used MinPts = Th = 5, Eps = 700,

and CellSide = 1260 = 1.8 x Eps. Here, DBscan finds 19 clusters and SingleClus

finds 16. Therefore, as we predicted, SingleClus is not well suited for datasets where

the distance between clusters is of the same order as the diameter of the clusters.

In Figures 4-8 and 4-8 we ran DBscan and SingleClus on the second dataset. The

parameters we chose are MinPts = Th = 12, Eps = 8, and CellSide = 13 = 1.64 x

Eps. With these parameters, both DBscan and SingleClus find all 6 clusters. In the
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Figure 4-7: SingleClus on the first dataset with CellSide = 1260 and Th = 5
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next two figures, we used MinPts = Th = 6, Eps = 7, and CellSide = 11 = 1.8 x Eps.

Here, DBscan finds only 5 clusters whereas SingleClus finds all 6. As we predicted,

SingleClus performs better in the second dataset than in the first dataset in terms of

cluster discovery. Therefore, it is reasonable to claim that SingleClus (and Hoshen-

Kopelman by extension) are better suited to clustering sparse and skewed arrays, or

datasets where the cluster boundaries are easily discerned.
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Chapter 5

Discussion and Future Work

In this section we discuss potential improvements on our algorithm and new directions

on clustering Big Data.

5.1 Compression and Minimizing Disk Space

One thing that we mentioned while we were discussing SingleClus in Chapter 3, was

that every grid cell cij is saved in Disk structure Grid. In the HK setting, we are

already given the entire 0-1 grid. However, as we mentioned in Chapter 2, we are

clustering points and the grid is created to facilitate this clustering. Therefore, if we

can avoid saving the empty grid cells, it will be an improvement both in disk usage

and on clustering performance.

If our dataset is very sparse and skewed, then a great proportion of the grid cells

will not contain at least Th points and hence will contain a cluster ID of 0 (indicating

that they are empty). This is bad both for storage purposes (we are storing more

grid cells then we potentially need) and slows down the tree flattening step of the

clustering algorithm since we have to process more grid cells.

There are 2 ways to solve this problem:

* Change Algorithm Design The most obvious solution is to just change the

algorithm design so that we don't save some or all of the empty grid cells in
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disk. However this is not a trivial challenge. In our algorithm, and especially in

the tree flattening phase, we rely on the fact that we have saved all the grid cells

in row major order. Without this fact, we have to perform searches to bring

into memory the relevant portions of the grid. The same is true for querying

the data. We have depended on the fact that we know exactly what the offset

of a grid cell is in the grid so that we can read it into main memory with a

single read from disk. If we don't know the offset of each cell then we have to

save some index structure which will allow is to know where each grid cell is in

the disk. There may not be a trivial change in the algorithm design that will

solve this problem.

e Compression The alternative is to use some sort of compression algorithm

that will take advantage of empty grid sections. However, again it is not trivial

to perform queries on the compressed grid data.

Therefore, it becomes obvious that the problem of storing empty grid cells is not

trivial and it is an interesting problem to solve.

5.2 Clustering for general k

5.2.1 The Choice of 2-Dimensions

We have decided to focus on the 2 dimensional case instead of the general k-dimensional

problem for the following reasons:

" Visualization Unlike higher dimensions, clustering in 2 (and 3) dimensions

allows us to inspect our clusters and determine their quality. When dealing

with higher dimension (k > 4) this can only be achieved by projecting the

clusters into a lower dimensionality (usually k = 2 or k = 3) and then perform

the visualization in those dimensions.

" Logical Clusters When clustering (using the HK model) in 2 dimensions we

have the guaraneee that our cluster contains cells that are all in the same plane.
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However, when we increase dimensions, we may end up with clusters that extend

towards multiple dimensions and hence do not necessarily make intuitive sense.

e 2k passes adding complexity to design. The most important reason why

we chose k = 2 is because it facilitates the design and the analysis of the

correctness of the algorithm. It appears that, to follow the same algorithm

design for a higher dimension k, we would first have to cluster completely every

(k - 1)-dimensional level both during the Raster Scan and during the Tree

Flattening phases. Therefore there will be twice as many accesses to each grid

cell (and consequently twice as many I/0 operations) as there were for solving

the problem in k - 1 dimensions. This is obviously an exponential increase

in the number of disk acceses and in-memory performance as well. Even for

moderately small k, the factor 2 k adds a non signifiant factor in the performance

of our algorithm and it can't be claimed that it is optimal anymore since the

correctness proofs of Chapter 3 were all based on the fact that we operate in 2

dimensions.

Therefore, the problem of modifying our algorithm to cluster multi-dimensional

data is an open one and would turn out to be a challenging future project.

5.3 Parallel Version

There have been algorithms that solve the problem of parallelizing HK (110]). Even

though they have produced good results, it remains to be seen if our algorithm can

be modified so that it can outperform these algorithms.

5.4 Choosing Th and CellSide

We mentioned in the previous chapter that T, and CellSide are chosen heuristically

by the user. We suggested that unless we start processing the data, there is no way

to determine a priori what a good value would be for these two parameters. The
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fact that we are operating on very large datasets that don't fit in memory makes it

even harder to solve this problem (say by randomly and uniformly sampling a few

points to determing the dataset's properties). Therefore, an interesting problem is

to determine whether we can somehow choose Th and CellSide efficiently in the Big

Data setting.
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Appendix A

Pseudo-Code of SingleClus

In this Appendix we present the pseudo-code of SingleClus. We have utilized the

functions that we presented in Chapter 3.

A.1 Code

This section provides the pseudo-code of the algorithm.

The main procedure is as follows:

1 def cluster (InputArray, CellSide T_h, Min 1 Max_1, Min_2,Max_2):

2 M1=(Max 1-Min 1)/CellSide+1

3 M2=(Max_2-Min_2)/CellSide+1

4 CurrentTreeIndex=0

5 PreviousTreeIndex=0

6 GlobalID=0

7 PtsRead=0

8 Level=O

9 CurrentLevel=[]

10 PreviousLevel []
11 CurrentTreeList =[

12 PreviousTreeList=[I

13 OffsetIDList =[J

14 PointsBuffer [I
15 //First Phase - Raster Scan
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16 while PtsRead<size (InputArray):

17 BointsB uffer=read ( Input Array , st ar t=PtsRead , end=PtsRead+MaxPoints)

18 PtsRead+=MaxPoints

19 for point in PointsBuffer: ///point=[p x,p_y]

20 TempLevel=findLevel (point)

21 if TempLevel-Level: //update count in CurrentLevel

22 index=convertCoordsId (findPointCell (point))

23 CurrentLevel [index]+=1

24 elif TempLevel!=Level: //start clustering current level

25 Current LevelCount=0

26 //Stage 1

27 for i in range (M2):

28 if CurrentLevel[ i]>=T_h: //full cell

29 if Level==O:

30 if i==0:

31 GlobalID+=1

32 CurrentLevel [ i1=GlobalID

33 CurrentTreeList [ CurrentLevelCount]=GlobalID

34 CurrentLevelCount+=1

35 else:

36 if CurrentLevel[i-1]!=0:

37 CurrentLevelfi]=CurrentLevel[i-1]

38 else:

39 GlobalID+=l

40 CurrentLevel [ i]=GlobalID

41 CurrentTreeList I CurrentLevelCount]=GlobalID

42 CurrentLevelCount+=1

43 else :

44 if i==0:

45 if PreviousLevel[ i !=0:

46 CurrentLevel [i]=PreviousLevel [i]

47 else:

48 GlobalID+=1

49 CurrentLevel [ i]=GlobalID

50 CurrentTreeList I CurrentLevelCount]=GlobalID

51 CurrentLevelCount+=1
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52 else:

53 X=PreviousLevel [ i

54 Y=CurrentLevel [ i -1]

55 if (X==0 and Y==0):

56 GlobalID+=1

57 CurrentLevel [ i]=GlobalID

58 CurrentTreeList [ CurrentLevelCount]=GlobalID

59 CurrentLevelCount+=l

60 elif (X=-0 and Y!=0):

61 CurrentLevel [ i]=Y

62 elif (X!=0 and Y==0):

63 R=findRoot (X)

64 CurrentLevel [ i]=R

65 elif (X!=0 and Y!=0):

66 R1=findRoot (X)

67 R2-findRoot (Y)

68 if R1<R2:

69 CurrentLevel [ ij=R1

70 setParent (R2,R1)

71 elif R2<R1:

72 CurrentLevel [ i]=R2

73 setParent(R1,R2)

74 else: //R1=R2

75 CurrentLevel I i]=R1

76 else: //empty cell

77 CurrentLevel [ i]=O

78 //Stage 2

79 for i in range (M2):

80 X=CurrentLevel [M2-i -11

81 if X!=0:

82 R=find Root (X)

83 CurrentLevel [M2-i -1]=R

84 setParent(X,R)

85 //Stage 3

86 G-GlobalID

87 for i in range(M2):
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88 X=CurrentLevel [ii

89 R=findRoot (X)

90 i f R<zG:

91 GlobalID+=1

92 CurrentLevel [ i]=GlobalID

93 CurrentTreeList I CurrentLevelCount]=GlobalID

94 CurrentLevelCount+=l

95 setParent (R, GlobalID)

96 elif RG:

97 CurrentLevel [ i]=R

98 //Flush Data to Disk

99 if Level>0:

100 write ( PreviousLevel , Grid)

101 write ( PreviousTreeList , TreeStruct , start =0,end=

CurrentLevelCount)

102 OffsetIDList [ Level]= OffsetIDList [ Level -1]+CurrentLevelCount

103 PreviousTreeIndex=CurrentTreeIndex

104 CurrentTreeIndex+=C urrent LevelCount

105 PreviousLevel=CurrentLevel

106 CurrentLevel=zeros (M2)

107 PreviousTreeList=CurrentTreeList

108 CurrentTreeList=zeros (M2)

109 //Determine Empty Levels

110 EmptyLevels=TempLevel-Level -1

111 for i in range(EmptyLevels)

112 Level+=1

113 write ( zeros (M2) ,Grid)

114 OffsetIDList [Level]= OffsetlDList [ Level+1] \\ this indicates

that the entire level is empty

115 CurrentLevelCount=0

116 Level=TempLevel

117 //Second Phase - Tree Flattening

118 CurrentLevel=[]

119 PreviousLevel=[]

120 CurrentTreeList=[]

121 CurrentTreeIndex=OffsetIDList [Mi-1]
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122 PreviousTreeIndex=GlobalID+1

123 for i in range(M1):

124 Level=M1-1-i

125 if CurrentTreeIndex=OffsetIDList [Level][0]==-1:

126 continue

127 Current Level=read (Grid, start =Level*M2, end=(LeveI+1)*M2)

128 Current TreeList=read ( TreeStruct , st art=OffsetIDList [ Level I, end=

OffsetIDList [Level+1])

129 Current TreeIndex=OffsetIDList [ Level]

130 for i in range (M2):

131 X=CurrentLevel [ i

132 R=find Root (X)

133 CurrentLevel [ i]=R

134 setParent (X,R)

135 PreviousTreeList=CurrentTreeList

136 PreviousTreeIndex=CurrentTreeIndex

137 write (CurrentLevel , Grid , start=Level*M2, end=(Level+1)*M2)

77



78



Bibliography

[1] M. Ester, H.P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for dis-

covering clusters in large spatial databases with noise", in Proceedings of 2nd In-

ternational Conference on Knowledge Discovery and Data Mining (KDD), AAAI

Press, 1996, pp. 226-231

[2] J.B. MacQueen, "Some Methods for classification and Analysis of Multivariate

Observations", in Proceedings of 5th Berkeley Symposium on Mathematical Statis-

tics and Probability, University of California Press, 1967, pp. 281-297

[3] A. Aggarwal, J.S. Vitter, "The input/output complexity of sorting and related

problems", in Communications of the ACM, v.31 n.9, 1988, pp. 1116-1127

141 Y. Tao, J. Gan, "DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approxi-

mation", in Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data, 2015, pp. 519-530

[5] R.E. Tarjan, J.V. Leeuwen, "Worst-Case Analysis of Set Union Algorithms", in

Journal of the ACM, v.31 n.2, 1984, pp. 245-281

[61 S.P. Lloyd, "Least squares quantization in PCM", in IEEE Transactions on In-

formation Theory, 28, 1982, pp. 129-137

[7 R. Sibson, "SLINK: an optimally efficient algorithm for the single-link cluster

method", The Computer Journal. British Computer Society. 16, 1973, pp. 30-34

79

UMP419]"Wil111J.ilymaplim]ITPFI'll 4--',1'gym'm.5.7 illil siqgimigrilampl"ilglge-iskiluli15'14-49!1141"1 T!'ir.199iM1FliFFF li



[81 C. Zhao, J. Song, "GDILC: A grid-based density isoline clustering algorithm",

in Proceedings of the Internet Conf. on Info-Net, IEEE Press, Beijing, 2001, pp.

140-145

[91 J. Hoshen, R. Kopelman, "Percolation and Cluster Distribution. I. Cluster mul-

tiple labeling technique and critical concentration algorithm", in Physical review.

B, Condensed matter, 1976

[10] J.M. Teuler, J.C. Gimel, "A Direct Parallel Implementation of the Hoshen-

Kopelman Algorithm for Distributed Memory Architecture", in Computer Physics

Communications 130, 2000, pp. 118-129

[11] M. Flanigan, P. Tamayo, "Parallel Cluster Labeling for Large-Scale Monte Carlo

Simulations", in Physica A 215, 1995, pp. 461-480

[121 National Oceanic and Atmospheric Administration. Marine Cadastre.

http://marinecadastre.gov/ais/

[13 scikit-learn library of data mining and data analysis tools. http:/scikit-

learn. org/stable/modules/clustering. html

[141 I. Karkkainen, P. Fra nti, "Dynamic local search algorithm for the clustering

problem", in University of Joensuu Research Report A-2002-6, 2002

[151 G. Karypis, E.H. Han, V. Kumar, "CHAMELEON: A hierarchical 765 clustering

algorithm using dynamic modeling", in IEEE Trans. on Computers, 32 (8), 1999,

pp. 68-75

80




