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Abstract

Incentivization is a powerful way to get independent agents to make choices that drive
a system to a desired optimum. Simply offering compensation for making a certain
choice is enough to change the behavior of some people. If you incentivize the right
choices, you can get closer to your desired choice-dependent goal. Ways to optimize
these choices in an environment with many choices and many users is essential for
achieving goals for the least cost. I examine how a model that is aware of the utility
function of each choice and for each user in a system can optimally allocate incen-
tives in real time while considering opportunity cost, personalized incentive response
behavior, and maximizing marginal results. This method is useful in systems that
have direct and private communication with each user but are limited by having users
enter the system at different times. The method must offer a menu of choices and
incentives on demand while still considering users that are yet to come. I discuss
several solutions and benchmark them on the TRIPOD traffic optimization system
which aims to incentivize users to make energy efficient daily commute choices. The
final model incorporates user personalized incentives and opportunity cost of each
incentive to achieve the optimal incentive allocation on an ad-hoc basis.
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Chapter 1

An Initial Incentive System

1.1 The Goal of the TRIPOD System

The TRIPOD system [4, Ben-Akiva, 2015-Present] is based on the simple idea that

a reward can be used to incentivize people to make system optimal choices in their

commutes and travel [1], [5], [7], 18]. We can use these incentives to reduce traffic and

decrease energy use around a road network [6], [9]. This system works by using real

time information from the road network and by offering users of the TRIPOD system

incentives to make choices that are optimal for the network (such as reducing energy

usage).

Tokens/rewards are traded for time and convenience in individuals' discrete choice

models. This is implemented by offering "tokens" to a user based on the route that

they choose to take from a given origin to a given destination. These tokens are meant

to incentivize users to choose routes and mode options that use less total energy.

Our goal is to use these tokens (which may be redeemed for prizes, etc. and

therefore represent a monetary cost to the issuing system) in the most effective way

possible. I aim to maximize the impact of each token - minimizing our total token

usage while maximizing the resulting energy savings. We must be careful to consider

how much value these tokens have to each user so that we neither waste tokens where

they are not needed, dilute their value, nor lose out on incentivizing a user to save a

large amount of energy at once if we don't give them enough incentive.

9
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Figure 1-1: An overview of the TRIPOD System. Real time information about traffic
is used to measure and predict demand. Users of the TRIPOD app are dynamically
incentivized to make more efficient choices by offering them tokens. The number of
tokens is optimized using the latest information about the user and the network. The
system rewards users if they accept the incentive and follow-through on the optimized
choice.

The first half of this first chapter of will describe an initial version of an incentive

system that is already showing some promising results. The second half will discuss

some of the limitations and flaws of the simple design. Chapter 2 will go on to

introduce and formalize a more robust, personalized, and optimized model. Chapter

3 will show a comparison between these systems and discuss the benefits of the more

complete model described in Chapter 2.

1.2 The Token Energy Value System

The first version of this system offers tokens based on the average energy use of

all trip alternatives. We implemented this on top of the DynaMIT [2, Ben-Akiva,

20101 short-term traffic simulation, estimation, and prediction engine and applied the

token rewards to simulated users' route choices in order to measure the effect on

10



energy savings. The initial implementation contains three main components:

1. Token Energy Value optimization by minimizing simulated energy use

2. Max token usage budget per a given interval

3. Uniform token allocation based on energy savings over the "average" trip

We can define a Token Energy Value system as TRIPOD (TokenEnergyValue,

MaxTokens). The TokenEnergyValue is optimized for the whole system at each inter-

val by trying to minimize simulated energy use while using at most MaxTokens. This

method implicitly takes into account the allocation strategy, different user choices,

and the limit on token disbursement.

tad~ b~

9

0

A ..- ' 7 U et"

0

-I

cetwo 47$Au fox"

A 77-. 
Scrollwoi~

down

Click on the Dashboard icon to change page
and move to the user token wallet

Figure 1-2: The TRIPOD trip planner app. Users enter their origin and destination
and are presented with route, mode, and departure time choices which have incentives
attached to energy saving options.

When a user visits the system (a mobile trip planning app, Figure 1-2), they enter

their origin and destination. The system generates the entire set of route, mode,

and departure time options that are possible. For example, a user may take a car

or their bike, they may leave now or 15 minutes from now when traffic is expected

to be reduced (and thus less idle time/energy use), or they may take different routes

(highway/side streets/etc.) which have different expected energy utilization. This is
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very similar to how Google Maps allows a user to plan a trip, except with the added

benefit of suggesting and pushing users toward energy efficient options rather than

offloading that consideration back onto the user [1, Balakrishna, 2016].

After generating all the possible options, the average expected energy usage of

that given trip is computed and tokens are allocated to the alternatives that use

less than average in a manner proportional to the token energy value as defined by

the equation below. A subset of the alternatives that likely appeal most to a user

are provided on a shortened menu and the user chooses from them. Hopefully, they

choose an alternative with tokens that saves some energy in expectation.

k, = max (0,TokenEnergyValue- (average(E(T)) - E(Ti)))

1.3 Initial Energy Saving Results

Using this easy to implement method, I built and extension to the DynaMIT system to

measure both the energy savings and travel time savings that result from incentivizing

users to change their route or departure times on a car-only network. Figure 1-3

shows a scatter plot of the average realized energy and travel time savings on the

simulated road network at different penetration rates of TRIPOD app users. Not

surprisingly, we achieve the biggest energy and travel time reductions if we are able

to offer incentives to 100% of the users on the network. At 100% penetration, we are

able to achieve a 17.3% reduction in travel time and a 16.2% reduction in energy use.

1.4 Limitations and Improvements

The following sections describe some limitations and potential improvements to the

Token Energy Value system which can make the incentive allocation more person-

alized and robust. Chapter 2 discusses in much more detail a new method that is

better suited to distribute tokens in a more personalized and system optimal way.

12
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Figure 1-3: This shows the energy and travel time savings results from a car-only net-
work at different TRIPOD app user penetration rates (labeled next to each point).
At 100% user penetration, the Token Energy Value extension in the DynaMIT simu-
lation engine shows a 17.3% reduction in travel time and a 16.2% reduction in energy
use.

1.4.1 Simple Ideas to Improve the Simple Method

Immediately, we can consider ways to improve our estimate of how many tokens

to allocate to each trip choice alternative. We can better quantify the choice users

are really making by understanding what trip route they would have chosen before

incentives or knowledge of how much energy their choice uses. This can be done either

by simulation on the back-end or by changing the app menu flow to (1) select a route

and then (2) see alternatives with incentives. A better understanding of what we

are trying to incentivize away from gives us a clearer picture of how much energy we

stand to save (instead of using the nebulous "average") and what impact on the user

we are directly proposing, and therefore how much we should be compensating them.

This implicitly solves the issue of what the baseline "alternative" is which may be a

route that is not proposed on the shortened menu at all. By simulating or asking the

user to select a baseline trip that they will take without any incentives, we minimize

our uncertainty (of expected energy use) and provide ourselves a baseline option that

a user is willing to pick without any token usage.

Eventually this even affords us the flexibility to gently whittle down the incentives

in the long term (on a per user basis) and allow their new route choices to become
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habit instead of a token earning endeavor forever.

Additionally, savings over the "average" trip suffers from a bad distributional

assumption - suppose there are four possible alternatives - two with very high energy

use and a two with very low energy use. Savings over the "average" trip will only

allocate half of the difference in energy as tokens between the two extreme options

even though the user would be saving the full difference because there is no "average"

trip they could have taken. Not only is including the incentivized alternative itself in

the calculation of "average" skewing the token reward downward, but incentivizing

for only energy savings ignores how different users respond to the token and different

trip proposals.

From these observations, I propose some simple changes that we can make (in

order) before we move on to a more complete overhaul that puts more emphasis on

user specific behaviors.

1. Remove the incentivized trip from the calculation of average energy usage... we

should only be considering the average alternative trips energy usage.

2. Use a more distributionally robust average method like median or the geometric

mean to calculate the expected alternative energy use.

3. Weight the average energy usage of these alternative trips by the probability a

user will select them as alternatives.

4. Simulate or ask what a user's most probable baseline choice will be and allocate

incentives based off of that instead of a weighted average of alternatives.

5. Use tokens to affect the probability (of trip selection) weighted expected energy

use to be a certain percentage above the baseline probability weighted expected

energy use. This method will ensure that only energy saving trips are incen-

tivized and that we are properly considering how useful a given token is applied

to each given trip (i.e. some trips don't impose a large inconvenience but save

a lot more energy therefore a token is better used on a such trips to increase

14



their probability of selection with fewer tokens but more energy savings). This

allows us to reduce the token usage when it is easier to incentivize a given user.

1.4.2 Larger Limitations of the Impersonal Approach

While we already see some great initial energy saving results in Section 1.3 and

we can suggest some simple improvements, we must also recognize that there is some

considerable value being left on the table and that we are not necessarily incentivizing

the right metric.

We can notice that the only parameter being "optimized" in the Token Energy

Framework is the energy value of the token. However, this value is heavily dependent

on the arbitrary token budget constraint (MaxTokens) we set. If we arbitrarily set a

max budget too low, our initial system optimization will simply set the token energy

value low enough that it can incentivize a subset of users with low enough token

energy value and therefore a high enough number of tokens. Thus tokens will be

spent rather greedily and far too early in each interval without regard to the users

that may come later. By relying on a fixed budget to limit token allocation rather

than considering the opportunity cost of each token as a way to ration use, we may

be spending tokens in the wrong place and at the wrong time.

In the Token Energy Value system, some users may get more tokens than they

need to comply with our trip proposals, while others may need a bigger push to take

a trip that saves a lot of energy at once. We can also recognize that allocating tokens

based on the energy savings over an "average" trip sometimes does not adequately

balance the changes in travel time or convenience for a user. Therefore, the tokens

should not be exchanged for "energy" directly but for the impact that changing to a

different trip proposal has on a user because they are the agent making the primary

decision that causes the energy savings. By attempting to pay a user for the energy

they save, we ignore the dynamics of how travel time and convenience play into the

decision they are making.

Below are two illustrative examples. Figure 1-4 is a user that has a high value of

time and has access to a car. Figure 1-5 is the opposite case - a user with a more

15



flexible schedule and that prefers to bike.

Figure 1-4: The post token utility (x-
axis) to energy use (y-axis) of a user
who is in a hurry or has a high value
of time; the tokens have limited effect
on the utilities because the user placed
higher relative value on their time.

Figure 1-5: The post token utility (x-
axis) to energy use (y-axis) of a user who
prefers their bike or naturally prefers
cheaper and greener forms of trans-
portation; the allocated tokens to the
bike option are wasted because that was
the most likely choice already.

In both cases, the tokens we allocate have little to no effect. For the first user

who is in a hurry, the tokens allocated based on the energy savings over the average

option were not enough to make him consider to take a mode of transport other than

his car. For the bike rider, they will happily collect the tokens, but would have likely

used their bike anyway. That just means we have wasted tokens that could have been

better used elsewhere.

From the problems I discussed above, we clearly see that we must begin to con-

sider (1) how many tokens to allocate per alternative based on an individual user's

preferences/betas and (2) how many tokens we should allocate to a user (based on

the tokens' impact for that user) as opposed to saving the tokens to allocate later.

I do this by considering the impact different alternative choices have on important

metrics to users such as time and convenience while allocating tokens. Thus, tokens

will be distributed where they have the most impact both at the user level and at the

system level.

If we incentivize users for their time and choices, we gain the ability to incentivize

different users differently. The price to sway a given user may be different from
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another user and we can take advantage of this with price discrimination strategies

as we learn about each user's preferences and prices and the probability another user

(or set of users) may appear on our network that may be swayed more easily for the

same (or more) energy savings later on.
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Chapter 2

The Optimized Marginal Savings

Model

2.1 Marginal Token Allocation

The proposed model, the Marginal Savings Model, will consider how to allocate tokens

most effectively among a user's trip options and will also consider the opportunity

cost of using the tokens allocated to a user later on.

2.1.1 Per User Optimization

We began to discuss that it is important to allocate tokens to the trips where they

provide the most impact on expected energy savings. The following optimization

setup minimizes the maximum number of tokens allocated to any of the trip options

while making sure the expected energy usage is some multiple n < 1.0 of the baseline

expected energy usage. The probability a given trip is selected is based on a Discrete

Choice Model which uses a logit to estimate the probability of selection from the

utility of each choice. [3, Ben-Akiva, Discrete Choice, 19851

19



k =argminE Pr(T,(k)) -E(T) < nr- ( Pr(Ti(O))-E(T. )
max(k) T /

T is the set of all trip alternatives

Ti(ki) is the alternative with k tokens allocated to it

Ti(0) is therefore the baseline without any tokens

E(T) is the energy use of alternative trip T

Pr(T) is the probability that alternative is taken: exp(,3Ti)
E exp (/Ti)

k is the vector of token allocations for all trips in T

n is a free parameter that we can set to achieve a given energy savings level

We are able to minimize for max(k) because at most one of the alternatives will

be chosen and thus the cost of the trip is at most the maximum number of tokens

allocated to any given route choice. That does in fact mean that we can add tokens

(without penalty) to all trips up to max(k). When we have a linear utility function,

this actually means that we will either fully allocate max(k) tokens to a trip, or none

at all because allocating extra tokens only improves the probability of selection of

these energy saving trips. It is possible to design a token utility function where this

is not true, where it makes more sense to use the number of tokens allocated to an

option as a signal for how likely it is to be chosen such that it saves energy over the

baseline, but if it is too valuable, may cannibalize the more impressive savings of

another option.

The token array k can be constrained to be integers so we can perform integer

optimization on this problem. The substantial advantage of this formulation is that

each trip choice changes in probability at a different rate and tokens will continue to

be allocated to the best energy saving trip that can be increased in probability the

quickest. This continues until a token has more marginal value on another energy

saving trip. Tokens are not allocated greedily to a single trip but rather to the trips

where they have the most impact. The overall expected energy usage is set to a target

value with the smallest number of tokens needed.
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Moreover, this formulation can be adjusted as needed, The constraint can be

changed from a minimum desired energy savings, to a maximum number of tokens

used and we can instead minimize the energy use. Regardless of how it is structured,

this equation represents an optimized allocation of tokens on a per user basis by

considering the utility of each route choice.

2.1.2 Opportunity Cost of a Token

Now that we can optimize how tokens are used within a given user, we can consider

how much energy we want to save (either in percentage or absolute terms) such that

the tokens we use are not better used later on. This can be captured in a simple

probabilistic average that accounts for user and trip heterogeneity and the benefit of

high energy saving trips, while minimizing the tokens on a per user basis. We can

bootstrap the per user optimization described above to calculate the expected cost of

a token and only use it on a user if its benefit meets or exceeds the expected cost of

not being able to use that token later.

The expected energy savings of a given set of trip options with optimized tokens

should (in expectation) be greater than or equal to the expected energy savings of a

randomly drawn user (or set of users) using the same number of tokens or fewer.

We can define this opportunity cost of a token as the average marginal energy

savings up through k tokens (MSk). We don't only consider the marginal value of

the first token but the average marginal value of an investment of up to k tokens.

This allows us to consider users that require a few tokens of investment before we can

reap above-average energy saving results from them. See Figure 2-1 for an example.

_( E(UT(-1)) - E(UT(n)))
MSk Pr(U) - Pr(Ur) -E k

U T

Here, U refers to a user and Pr(U) refers to the probability of seeing that user on

the network. Pr(UT) is similarly the probability that a given user takes a given trip.

This equation simply computes the marginal savings E(UT(n_1)) - E(UT(s)) at each

integer token value up to k over the users and trips we expect to see. We compute up
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through k so that we are considering not only the expected value of the k-th token

but also the expected marginal savings of investment of the previous k - 1 tokens

that are invested into a user. The MS curve is pictured in dashed blue in Figure 2-1.

Marginal Token Savings by User
25 - ------- -

120___

C15
- Wealthy & Time Sensitive

- College Student

- Price Sensitive Biker

I - - - (Average MS up to k)

0 -
0 2 4 6 8 101214161820222426283032 34363840424446

Tokens

Figure 2-1: The marginal token response curves for three different types of users
with different beta parameters. The "college student" curve peaks early, showing a
high impact after just a few tokens, while the token impact on the "wealthy" user
happens after a larger token investment. The dotted curve is the MS curve over this
population of users and the pink circles represent the optimized token allocations to
the "wealthy" and "college student" users.

2.1.3 Allocating Tokens Optimally Using the MS Curve

The MSk curve is the opportunity cost of an investment of up to k tokens into a

given user. Therefore, the intersection of the MS curve with the marginal benefit of

the k-th token per user curves (marked by circles in Figure 2-1), are the optimized

token allocation per user.

We need to observe two rules when allocating tokens to users. (1) We want the

marginal savings of the k-th token to meet or exceed the MSk value, and (2) we want

the total energy savings of the k tokens to a user (the integral of the user marginal

curve above) to be greater than or equal to the total expected energy savings with k

tokens on the population. We define this as the TSk curve.
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TSk = Pr(U) - Pr(U) -E(UrTe))
U T

This simply calculates the expected energy savings with k tokens optimized using

the optimized per-user token allocation method. The energy savings of a user's trip

with k tokens must be greater than or at least equal to the expected energy use of

an average user's trip using at most k tokens. This allows us to amortize initial low

value tokens with higher marginal savings later on. This is most clearly visible for

the "wealthy" user in Figure 2-1.

This is the same as saying that the optimized energy use of this trip is less than or

equal to the energy use of an average optimized trip using the same number of tokens

or fewer. This sets a nice limit on how we use tokens to save at least a certain amount

of energy; if we cannot save that amount for a certain number of tokens used, it is

not worth spending tokens on this trip because (in expectation) another, better user

will come along later. Therefore, instead of a token budget (MaxTokens), we control

our use of tokens by considering their expected future value.

These two checks over our distribution of other potential users and trips sets an

implicit limit on how many tokens can be allocated to a particular user given that

there may be other users that place more value on the token that may appear on the

network and cause the same or better expected energy savings at a smaller cost to

us.

2.2 Properties of the Optimized Method

2.2.1 Methods of Calculating the MS Curve

The MS curve requires us to have an estimate of the users we expect to see in the

future on our network. The better our estimate of the users we expect to see, the

more representative our MS curve becomes of our future value (opportunity cost) of

our tokens.

In our applied case, DynaMIT (our traffic simulation system) predicts a set of
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users that it expects to see in the next 3 intervals. This can be used directly to

compute the MS curve dynamically while running our system. Since we have already

have a sample from the distribution of users 3 intervals forward, we just need to

take the simple average of all users marginal expected savings at each token level

(by optimizing each user locally) to get the global average marginal expected savings.

This is a very quick computation and can be done "online" (in real-time) as the traffic

prediction system is running. This keeps our MS curve fresh and representative of

what types of users we expect to see on our network at a given time.

If we want to be more analytical, we can leverage the actual user beta, and trip

distributions and compute an analytical and/or large random sample size sample

of the whole population and keep the MS curve as a static parameter (updated

infrequently). The MS curve needs to only be calculated once over a reasonable

sample of users and corresponding trips for a reasonable subspace of integer k. Using

the simulated users gives us some implicit time dependence (as long as there is implicit

time dependence in the empirical simulated users). However leaving this relationship

time independent perhaps allows us to consider a more indefinite time horizon that

tokens will be better spent on a different trip.

The MS curve need not be a single value at each k. Instead, because we are

taking an average over several dimensions, we can consider the MS value at k to be

distribution. If we want to relax our token allocation criteria and be more liberal, we

can move our token allocation MS percentile to 30th instead of the implicit 50th. We

should certainly keep in mind that the average (the 50th percentile) is the optimal

allocation in expectation, but it might make sense to be a little more generous when

our budget exceeds our more conservative usage. This gives us a nice parameter to

tweak to control the token usage speed.

2.2.2 Fully Ad-hoc versus the Benefit of a bit of Waiting

When we allocate tokens in a fully ad-hoc manner, we rely on our understanding of

the expected future value of a token in the future to other future users that may

appear on our network. This uncertainty about future users is the only constraint
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to our problem that prevents us from simply running an optimization to allocate

tokens among every user we expect to see (because we don't really know who we

expect to see). However, we can recapture some of this uncertainty and therefore

recapture some value that we lose by using an estimate of future users instead of a

true knowledge of who we will see next.

By relaxing the requirement to respond to requests for token allocations imme-

diately, and instead waiting, perhaps 2-3 seconds (or whatever amount of time is

reasonable), we can run a full optimization over users and allocate tokens purely

based on the per user marginal expected savings curves. This would allow us to

capture the value of some smaller benefit users that otherwise fell below the MS

curve, such as the "biker" in Figure 4. We can see quite easily from the figure that

the marginal savings of the first two tokens of the "biker" user actually exceed the

savings of the last token of the other two users, despite falling below the MS curve.

If we knew with certainty that we would see all 3 users, we could conduct a rolling

global optimization (still using the MS curve as a guideline). This lets us capture

more of this value by simply waiting and collecting more concrete information about

what users are coming next.

2.2.3 Benefits of Automatic User Recalibration

As users interact with our system, we have the ability to continuously learn more

about their utility functions (beta parameters). This in turn allows us to produce

better estimates of our MS curve and allocate tokens better on the user and system

level. This means that if a user commonly takes a certain trip daily (with a small

incentive), the Marginal Savings Model will naturally attempt to reduce the number

of tokens needed to continue this behavior. If the user accepts this smaller incentive,

the process will continue and discover the minimum price needed to incentivize this

user until they begin rejecting our lower incentive proposals (at this point the system

will self-correct).

The by using the latest estimate of users' utility functions, the Marginal Savings

Model is able to do some natural price discovery and learn about the user in a closed-
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loop way. As we push a user toward certain behaviors, we must consider that we

are helping to form a new habit for a user and that our tokens are not simply a

cost but rather an investment into a long term habit of energy saving choices. As a

user gets more accustomed to a path that we incentivize them toward, the number

of tokens that are required to maintain this behavior naturally decreases - this will

be automatically captured in our continuously recalibrated utility function estimates.

This makes this self-adjusting nature a very powerful mechanism to dynamically

reduce our cost and help us form habits for our users rather than continually pay

them to make certain choices.

2.2.4 A Natural Limit on Token Usage

One of the major benefits of the Marginal Savings Model is that the opportunity cost

of a token is built in as we aim to maximize the impact of our incentives. This means

that we no longer have to set an arbitrary MaxTokens parameter. Instead our model

limits the number of tokens used by being frugal - by considering the potential benefit

of a token later on versus using it on a user that is immediately available. Moreover,

the marginal benefit of tokens is typically higher at lower token investments as we see

a diminishing return after some incentive level in most users. This means that the

system will also not over allocate tokens to any one particular user and will continue

to save them for other users that will come later.

2.2.5 Using the MS to Calculate Token Budgets

In addition to allowing us to allocate tokens to users confidently in an ad-hoc way

while still considering the future value, we can use the MS curve to calculate what

our total budget should be a priori such that we get the biggest impact per token.

As mentioned at the end of Section 2.2.1, this value is simply informative and shows

us how to get the most value for our investment but may not correspond with how

many tokens we actually have to give out to achieve our total target energy savings.

This computation can be done in an ad-hoc way (basically running the full Marginal
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Token Allocation strategy that I describe) to get the optimized value, or more accu-

rately by actually simulating/predicting all the users that will appear on the network

and conducting a global optimization at each possible token count, allocating tokens

optimally on a per user basis and among users. This allows us to create a single

optimized population average marginal token value that we can similarly compare

against the same MS curve in order to understand how many tokens should be al-

located to our system as a whole. This may become useful if we have to allocate

budgets optionally between multiple cities, for example.
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Chapter 3

Simulation Results and Contributions

3.1 Experiment Parameter Setup

In order to measure the effect of the new method compared to the old method and

the baseline (no tokens), the following experiment was setup outside of DynaMIT.

A random set of 2000 users was generated and picked one of six simple trip options.

These trips included two routes in a car, an Uber, a train/subway public transit, a

bus public transit, and a bike trip. The parameters of these trips (shown at the end

of this section) are indicative of a choice a user might have to make during their

morning compute in a metropolitan area.

Users were generated from a random distribution with means and a covariance

matrix between the betas. For this experiment, the nine beta dimensions were:

" Time e Train 9 Taxi

" Cost e Bike o Miles

" Bus * Car * Tokens

The means and the covariance matrix were derived from a weighted subsample

of a few hand designed representative users. Six distinct (extreme) user types were

created by hand and weighted to indicate how representative they were of users in

the population. The mean and covariance coefficients were easily calculated from
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this subsample, the mean by taking the mean of each beta across the subsample of

users and the covariance as the UTU matrix product. This allows us to generalize

these five kinds of extreme users to all the types of users in between while still being

representative of how the beta (like for example and time, cost, and token betas)

covary. The weightings and betas for the sample users as well as a simple description

of their user type is detailed in the table below.

U Q N H O 0 H 0 Description
-0.3 -0.1 -0.2 -0.15 -0.4 0.1 0.2 -0.4 0.3 2/10 Young professional

who values time
and has a modest
amount of money

-0.2 -0.5 -0.1 -0.1 0.1 0.1 0.3 -0.2 0.9 4/10 A college student
that is more flexi-
ble with time and
distance if it means
saving money

-0.1 -0.8 -0.1 0.2 0.3 0.2 0.1 -0.6 0.8 2/10 Particularly en-
vironmentally
conscious user who
prefers their bike
and puts less value
on their time

-0.9 -0.1 -0.9 -0.7 -1 0.6 0.5 -0.6 0.1 1/10 Very wealthy user
who needs conve-
nience and speed
and is not very con-
scious about cost
and tokens

0.3 -0.9 -0.4 -0.2 -0.3 0.6 -0.1 0.1 0.9 1/10 An Uber driver who
makes a small living
by driving and likes
to earn tokens while
doing it
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The derived statistics that are used to simulate the population are below:

Mean

-0.22

-0.48

-0.23

-0.12

-0.11

0.22

0.22

-0.33

0.68

Time

Cost

Bus

Train

Bike

Car

Taxi

Miles

Tokens

Time

1.26

0.44

0.91

0.7

0.91

-0.54

-0.86

1.09

-0.88

Cost

0.44

3.12

0.85

0.16

-0.23

-1.14

-0.76

1.41

-3.96

Bus

0.91

0.85

1.11

0.77

1.08

-0.9

.0.63

0.86

-1.09

Train

0.7

0.16

0.77

0.695

0.96

-0.53

-0.47

0.36

-0.38

Bike

0.91

-0.23

1.08

0.96

1.63

-0.7

-0.45

0.45

0.23

Car

-0.54

-1.14

-0.9

-0.53

-0.7

0.86

0.44

-0.7

1.34

Taxi

-0.86

-0.76

-0.63

-0.47

-0.45

0.44

0.72

-0.83

1.32

Miles

1.09

1.41

0.86

0.36

0.45

-0.7

-0.83

1.57

-1.89

Tokens

-0.88

-3.96

-1.09

-0.38

0.23

1.34

1.32

-1.89

5.52

Figure 3-1: The derived mean and covariance matrix of the betas of the population
colorized by correlation level for easy parsing.

Users were generated randomly by selecting from this distribution. Each user's

randomly selected betas were then used to weight a choice between six different trip

options. These options are shown in the table below.
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S0 EEnergy Use Description

15 4 0 0 0 1 0 4 100 Car Route 2

22 5 0 0 0 1 0 5 87 Car Route 1

27 5 0 0 0 0 1 5 69 Uber

25 4 0 1 0 0 0 7 11 Train

28 2 1 0 0 0 0 5 9 Bus

37 0 0 0 1 0 0 3 1 Bike



3.2 Simulation Setup

Now, that we have some statistics on our population, we can set up three experiments:

The baseline with no tokens, token energy value model, and, our optimized marginal

savings model. The baseline case is simple, 2000 users are randomly generated (seed

2) and using their utilities for each of the route choices, routes are chosen randomly

(weighted by the probability derived from the utility) and an energy use baseline is

computed without adding any incentives into the network.

The Token Energy Value model and our new Marginal Savings model require some

optimization work upfront. In order to choose an optimized token energy value, we

can first choose a different set of 2000 users (from the same population parameters)

(seed 1) and optimize the token energy value by doing a simple linear search at a token

limit 10K tokens. The result of this initial search is shown in Figure 3-2 showing an

optimized token energy value of 0.23.

105000

100000 L

95000

C

90000-

850001
0.0 0.5 1.0 1.5 2.0

Token Energy Value

Figure 3-2: The results of a Token Energy Value pre-optimization. Using a budget
of 10K tokens, the TokenEnergyValue that achieves the lowest energy in simulation
is chosen as the value for the interval. Here, 0.23 Token/EU is the best solution.

We can use this optimized value to compare the Token Energy Value method to

the baseline by selecting the same 2000 users (seed 2) and checking the total energy
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and token usage.

The same pre-optimization step is done for our new model. I precompute the MS

and TS curves from 2000 users of (seed 1) and use these curves to compute the best

token allocations on seed 2. The following code snippet describes the exact method

for allocating tokens used for this simulation.

def makenewTokenAllocator(ms,ts):
def tokenAllocationNew(user, trips):
u-edist = getEnergyDist(user, trips, t=len(ms))
ums = [0] + [k for k in uedist[:-1]-u_'edist[1:]]
for k in xrange(len(rns)-1,-1,-1): #backwards

if (u-edist [0] -u-edist [k] >= ts [k]) and (ums [k] >= ms [k]):
return usertriptokens(user, k, trips)

return [0]*1en(trips)
return tokenAllocationNew

Here, getEnergyDist computes the optimized energy use of the user at every

token level. Then, ums is the user-specific marginal energy savings curve of each

token. We then iterate and check for the highest token value that both exceeds the

average total energy savings (the TS curve) and the average marginal energy savings

through that token level (the MS curve). Finally, user.triptokens returns the

array of tokens corresponding to each trip using a maximum of k tokens.

By optimizing on the initial set of 2000 users (seed 1) for both the token energy

value and the new optimized method, we can perform a more realistic out of sample

test on a new set of 2000 users (seed 2). Figure 3-3 shows the CDF of energy use by

user of the three models. There is a startling difference between the three methods.
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Figure 3-3: Plotted in blue, the top line is the baseline method without tokens. It
used 112,235 EU. Plotted in red just below the top is the Token Energy Value method
which used 90,127 EU (a savings of 19.7%) and gave out 10009.6383 tokens to achieve
that. Plotted in green at the bottom of the graph is the new Optimized Marginal
Savings model which used only 23,586 EU for the same 2000 users (a 78.9% savings)
and gave out just 10860 tokens.

The baseline method in blue used 112,235 EU and of course no tokens. The red

line, shows the token energy method which uses 90,127 EU and just slightly exceeds

its limit using 10009.6383 tokens. That's a 19.7% energy savings over the baseline

and a realized energy savings per token of 2.2 EU. However, the green line shows the

savings of the new optimized model. For the same 2000 users, we only use 23,586 EU

and spend only marginally more tokens (10860). This is an impressive energy savings

of 78.9% and nearly a 4 times increase in realized energy savings per token of 8.16

EU. This shows the huge contribution of our new model: we improve both the impact

and the effectiveness of our token allocation.
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3.3 Contributions

The goal of this thesis was to drastically improve our capability to incentivize users

toward system optimal choices using information about their personalized preferences

and utility functions and the distribution of users we expect to see in our system. This

was achieved by framing our problem as an ROI (return on investment) maximiza-

tion as opposed to simply a target variable (energy use) minimization. This allowed

us to consider and leverage user preferences and offer incentives where (and only

where) they will have the most impact. Token use is minimized and token impact is

maximized to achieve the highest ROI.

In the Marginal Savings Model, high value users are captured for minimum cost

using price discrimination and cost minimization. Instead of a TokenEnergyValue

that sets an exact value for how many tokens to give each user, the MS curve offers

a population specific minimum guideline and allows us to capture more value from

each user whenever possible. Moreover, the MS curve dynamically adjusts with the

number of tokens invested to allow us to explore the possibility of larger investments

into certain users that can have a huge positive impact. After calculating the MS

curve for our population, incentive allocation is fast and there is no need to contin-

ually re-optimize our parameters as the Token Energy Value method needed to do.

Additionally, the model is self-correcting as we can continually use the information

we get from users' decisions to reestimate their beta parameters and thus re-optimize

how much we need to incentivize each user.

In summary, I:

" Formulated a method to optimize the use of each token at the user level by
minimizing token use for a given target energy savings

" Optimized the use of each token at the system level by considering the oppor-
tunity cost of each marginal token

" Minimized incentive usage while maximizing incentive impact

" Achieved a 3-4 times increase in energy savings per token in simulation
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