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Abstract

The reconstruction of neurons from connectomics image stacks presents a challenging
problem in computer vision. The neuronal objects and their shapes, unlike the objects
in natural images, vary greatly in shape and size. Recent methods for reconstruction
of individual objects like the flood-filling networks and mask-extend showed a possi-
bility of a new direction in the field. By using a CNN to track a single continuously
changing object in the stack, much like a human tracer would do, they achieve a bet-
ter accuracy than previous agglomeration algorithms. Unfortunately, these methods
are costly for dense reconstruction of neurons in a volume as the number of CNN
computations increases linearly in the number of objects.

The cross classification clustering algorithm generalizes these accurate methods
and tracks all objects in the volume at the same time. It uses only a logarithmic
number of fully convolutional CNN passes by reformulating the complex clustering
problem of unknown number of objects into a series of independent classifications on
image pixels. These classifications together uniquely define the labels in each slice
of the volume. We present a pipeline based on cross classification clustering that
delivers improved reconstruction accuracy. A significant contribution of our pipeline
is its streaming nature which will allow very large datasets to be segmented without
storing them.

Thesis Supervisor: Nir Shavit
Title: Professor
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Chapter 1

Introduction

The segmentation of images is one of the most important and well studied problems

in computer vision, and in recent years one of the problems in which machine learning

has managed to provide meaningful breakthroughs. The field of connectomics offers

one of the most challenging segmentation problems, not just because of the shear

volume of data that needs to be processed (petabyte size image stacks), but mostly

because of the desired accuracy and speed (terabytes per hour [201). If tracking a plane

or a sheep moving in a video can provide a segmentation challenge, imagine a hundred

sheep that intermingle as they move, turn into mice and elephants before turning back

into sheep. Moreover, imagine that you don't know how many sheep there are, that

some disappear and reappear, and that frames may be missing or corrupted in the

video. Those are the dynamics of neurons as one tracks them through a connectomics

electron microscopy image stack.

Until recently the state of the art in connectomics reconstruction pipelines [17, 20,

23, 30, 251 had a shared structure following pioneering research in computer vision

on object segmentation of natural images [22, 41): take a boundary map that scores

pixel locations as boundary or non-boundary using a CNN, then apply a flood-filling

criterion such as connected components or watershed to generate segments from the

boundary map [39, 231, and finally perform some form of agglomeration on the seg-

ments [28, 31. These approaches are reaching the desired terabyte-per-hour speeds

[23, 16J but do not deliver sufficient accuracy.
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A promising new approach was recently taken with the introduction of the MaskEx-

tend by Meirovitch et al. [251 and Flood-Filling Networks by Januszewski et al. 1141.

These approaches take a mask defining the past prediction of a single segment on a

given image slice or stack of slices, and then use a CNN to classify which pixels in the

next slice belong to the same masked object. Both MaskExtend and Flood-Filling

Networks are ideal for sparse segmentation and provide very high accuracy but are

prohibitively expensive [141. This makes them, at least for now, an unlikely solution

for fully segmenting large datasets at a terabyte-per-hour rates.

1.1 Contributions

This work has two main contributions:

1. Cross classification clustering (henceforth 3C) that extends the single neuron

classification approach into a mechanism that simultaneously and efficiently

classifies all neurons in a given EM slice based on the segmentation of prior slices.

One can think of the prior segmentation as a collection of masks of neurons

to be extended together. The immediate difficulty is that this generalization

from single neuron classification is a clustering problem not a classification one:

unlike MaskExtend and FFNs that have just two known YES and NO output

classes, in any electron microscopy dataset, the number of classification labels

that may be needed to capture is unknown. Overcoming this difficulty is a key

contribution of the 3C algorithm. The 3C algorithm is described in Chapter 4

in detail.

2. An amalgamating pipeline that implements the 3C algorithm and expands the

objects from a prior segmentation to the full morphological neuronal shapes.

Unlike all previous connectomics pipelines, the amalgamating pipeline is stream-

ing. This is a step toward the inevitable future of connectomics where the

amount of raw electron microscopy data will be so large that processing it as

acquired would be needed (instead of storing). Our pipeline processes the data

14



at a rate 0.25 MB per second and is only 16 times slower than a state-of-the-art

in speed [231 and has a superior NRI accuracy score of 0.54 compared to 0.41

of [23] (perfect NRI score is 1.0). The details of the amalgamating pipeline are

in Chapter 5.

The rest of the thesis contains: background and history of neuroscience (Chapter

2); review of related work in the field of connectomics, image processing and computer

vision (Chapter 3); accuracy benchmarks of the amalgamation algorithm as well as

the performance of the pipeline (Chapter 6); discussion and conclusion (Chapter 7).
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Chapter 2

Background

The human body has been studied for thousands of years and for many organs we

precisely know their structure and function. The structure of the nervous system,

however, remains a mystery despite extensive research in the area. The reason is

that the brain is extraordinarily complicated and contains many more types of cells

compared to other organic tissues. The cells in the nervous system extend of large

volumes, making their study even harder. Connectomics is the most recent attempt

to understand the low level structure of the brain. In this chapter we discuss the

modern history of neuroscience and introduce the basic concepts in the field.

2.1 Origins of Modern Neuroscience

The foundations of modern neuroscience were set at the end of 19th century by

Camillo Golgi and Santiago Ramon y Cajal. The former invented and perfected a

silver staining technique that we now call Golgi's method, using which it was possible

to see individual cells in their entirety using light microscopy for the first time [121.

Ramon y Cajal then used the same method to visualize a variety of cells (Figure 2-1).

This also confirmed an earlier theory suggested by Theodor Schwann and Matthias

Jakob Schleiden that all organic tissues are composed of cells, in the case of neural

tissue - neurons [331. In 1906 Ramon y Cajal and Camillo Golgi were awarded a

Nobel Prize for their discoveries in neuroscience.

17



Figure 2-1: Left: Ramon y Cajal's drawing of cells from a pigeon's cerebellum. Right:
A photograph of dendritic spines by Cajal.

At the time the electrical nature of nerve impulses was known, but it was unclear

how the signal was transmitted from one cell to another. It took another Nobel Prize

(awarded to Otto Loewi and Henry Dale in 1936) to discover that the electric signal in

the nervous system is passed using polarized chemical molecules, neurotransmitters.

The locations in the neural tissue where electronic signal is passed from one neuron

to another are called synapses.

The discovery of neurons and their connectivity mechanism led to the establish-

ment of the basic model of a nervous system: individual neurons pass information

to each other through synapses. Unlike other cells in organic tissues neurons have

a tree-like structure. The nucleus of neurons is in the soma, from which axons and

dentrites originate and carry electrical signal. Cajal noticed that the signal always

travels from dentrites to axons, and then, through synapses, to other neurons' den-

drites. Figure 2-2 shows a diagram with two neurons and the direction of a signal

that travels through the axon of a presynaptic cell to the dendrites of the postsynap-

tic cell. The myelin sheath wraps around axons and increases the speed of electric

impulse that travels through the axon.

By analyzing the shapes of neurons Ramon y Cajal himself discovered many types

of neurons. In addition to that, the neural tissue also contains various types of glial

cells, that provide crucial support for neurons (e.g. myelination). As a result the

nervous system is exceptionally hard to study compared to other organic tissues.
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Presynaptic cell Synaptic
Myolin sheath terminals Postsynaptic cell

Figure 2-2: The basic structure of neurons. The electric signal travels from one to
another. Dendrites originate from the soma and have a tree-like structure. Axons are
long and have cylindrical shape until their terminal, where they synapse with next
neurons' dendrites. Myelin sheaths are part of a crucial supporting apparatus in the
nervous system.

2.2 Connectomics

Through experiments on mammalian brains and from patient data, it is known that

the brain has specialized regions, responsible for certain tasks. Also, neurons and

other organelles as individual cells have been studied extensively since their discovery

and are well understood. However, at the nanoscale level the connectivity of the brain

is still a mystery. Connectomics tries to resolve this mystery by mapping the neural

connectivity network in the brain at an accuracy that captures all individual neurons

and synaptic connections. Such networks are called connectomes.

In 1986 White et al. [351 published the first complete connectome of an organism,

the C.elegans worm. After many years of manual mapping they discovered that

C.elegans has 302 neurons that make about 5000 synaptic connections. Despite more

than three decades have past C.elegans remains the only organism with such honor.

The advances in transmission electron microscopy have made it possible to image

large volumes of mammalian brain tissue at a high resolution. At this scale dense

manual tracing of neurons would require thousands (if not millions) of human hours

and is not possible. Therefore automatic tools are needed that can extract connec-

tomes from raw images of the brain tissue. The rise of novel techniques in machine

19



Figure 2-3: Left: fMRI image of the author's brain; Right: A Brainbow image [211.

learning and the availability of increasingly large computational power have turned

connectomic reconstruction into a large-scale computational problem.

2.3 Harvesting Brain Image Data

Brain imaging techniques at varying resolutions exist. Functional magnetic resonance

imaging (fMRI) detects brain activity by detecting oxygen levels in specific regions of

the brain. When a region of a brain is used, the blood flow there increases. fMRI is

often used in medical research for diagnosing patients with brain diseases. Although

neurons are large cells spanning as far as a meter, the diameter of a soma is less than

0.1mm and axons can be 20nm in diameter. The Brainbow imaging technique 1211

uses fluorescent proteins that color neurons to distinguish them from the neighboring

cells. It is similar to the Golgi method of silver staining, but allows to visualize

several hundred cells at once. Brainbow is using optical microscopy and because of the

diffraction limit of visible light, its resolution is larger than hundred nanometers per

pixel. Both fMRI and Brainbow are not suitable for connectomics research because

of their limitations in resolution and incomplete mapping.

Using Electron Microscopy (EM), on the other hand, it is possible to harvest a

nanometer resolution brain images. The brain tissue is first automatically cut into

30 nanometer slices, then it is imaged using an electron microscope. Each pixel of

20



Tissue Slicing Imaging EM image

Figure 2-4: Harvesting EM images.

the resulting image corresponds to 4 x 4 nanometer area of the slice. Such resolution

is enough to see all the details in the tissue including axons, dendritic spines and

synapses (Figure 2-4).

Electron microscopy images of a cubic millimeter of a brain tissue amounts to

roughly 2 petabytes in total (33000 images, 62.5 gigabytes each [201). With a 61-

beam microscope this data can be harvested in 6 months [19, 9]. Since a cubic

millimeter is a miniscule tissue compared to complete brains, even storing the brain

image data can be challenging. Therefore, automatized tools with little interruptions

are necessary to match the speed of the microscopes and store only the essential

information (connectome graph).

Many neuroscience research groups have published datasets that were harvested

using the modern electron microscopy techniques. The only dataset of a complete

brain is that of a C.elegans worm. NeuroData [2] is a community effort with many

publicly available datasets. This work uses a 120,000 pim3 volume of mouse somatosen-

sory cortex ("Si") presented by Kasthuri et al. [15]. The raw image data has 120

GigaVoxels.
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Chapter 3

Related Work

Object detection is one of the central problems in computer vision. Modern machine

learning approaches and the rise of convolutional neural networks have greatly ad-

vanced the field. Much if the research in the area is driven by industry, where the

main problem is to perform object detection on natural images (portraits, landscapes,

etc.). In recent years there has been significant amount of work done in segmentation

in the domain of connectomics. In this chapter we review some of this work. We

first discuss general results in computer vision and then present systems built for

segmentation of electron microscopy image stacks.

3.1 Related Work in Computer Vision

We start by discussing relevant object detection and classification methods in com-

puter vision.

Wolf et al. suggest an alternative way to complete the morphological reconstruc-

tion by using new CNN based learned watershed algorithm 1361. This algorithm grows

multiple objects in an image simultaneously and competitively. Unlike our work, their

growth process is based on a watershed algorithm enhanced with a CNN. In a manner

similar to the MALIS algorithm 181, they operate on the neighborhood graph of pixels.

Their method keeps the basic structure of the watershed algorithm intact: starting

from given seed pixels, they maintain a priority queue storing the topographic dis-

23



tance of candidate pixels to their nearest seed. Each iteration assigns the currently

best candidate to its region and updates the queue. The topographic distance is

induced by an altitude function estimated with a CNN. Note that this is different

from the MALIS algorithm [8] that simply computes shortest paths between pairs of

nodes and applies a correction to the highest edge along paths affected by false splits

or mergers.

Recent studies outside of connectomics presented great progress in object detection

with a "less-moving-parts" style DeepMask algorithm [29]. DeepMask avoids fine-

grained segmentations such as edges and superpixels, and uses a single ConvNet

instead. To detect objects it considers a set of dense and overlapping patches of

different scales in the input image. For each patch the model outputs a mask of

a possible object, and a score representing whether such an object is completely

contained in the patch or no. The results from all patches contain the objects from

the input image. Our 3C algorithm is similar in nature to DeepMask (a CNN-based

solution with less moving parts) with the following differences. First, instead of

compounding a solution to object localization and detection our algorithm learns

how to copy a segmentation from one space (a hypothesis) into another (e.g. to

map a segmentation from one image to the next). Unlike DeepMask the presence

of the hypothesis allows 3C to neglect the scale of the object, which is important

in connectomics as neurons have wildly varying size range. Second, our algorithm

can correct existing segmentations and, third, it has an corrective style that can be

trained in recurrent fashion.

3.2 Connectomics Pipelines

In recent years there has been a significant progress in methods and tools designated

for automatized segmentation of three dimensional images of brain tissues. The chal-

lenge is not only in creating a highly accurate method, but also one that is scalable and

can process large datasets that contain meaningful brain connectivity information.

In 2013 International Symposium on Biomedical Imaging (ISBI) started a chal-
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lenge for segmentation of a small volume of brain tissue [1]. The volume consisted of

100 greyscale EM images (each 1024 x 1024) that was also manually traced. Tech-

niques based on hierarchical clustering [27, 3, 28] that ranked highly in the challenge

became the state-of-the-art ones and similar approaches have prevailed since. These

methods were tailored to produce accurate results for small volumes but off the shelf

are not applicable for large scale segmentation. More recently few research groups

have come up with pipelines designated to perform large scale segmentation for con-

nectomics [23, 17, 30]. Another line of work is on sparse segmentation, where a neuron

with a seed is extended throughout a volume [25, 14].

3.2.1 Preliminaries

Most connectomics pipelines assume that the electron microscopy images are aligned

and color-corrected, and as a first step compute membrane probability maps p from

the electron microscopy images. For a voxel v in the dataset, p(v) is the probability

that v is a membrane of a cell in the tissue (typically a neuron). The membrane

probability map can be represented by an image of the same size as the electron

microscopy image (see Figure 3-1). A perfect probability map could be trivially

transformed into a perfect segmentation. All state-of-the-art systems first compute

membrane probability maps as the EMs contain information that is not relevant for

segmentation. This stage of the pipelines is usually performed using convolutional

neural networks (CNNs). The CNNs that are used commonly are three dimensional,

meaning that their field of view spans more than one EM slice. Such networks are

resilient to some level of corruption in images. Significant advances have been made

in generation of membrane probability maps [32].

3.2.2 Agglomeration Based Techniques

GALA (Graph-based Active Learning of Agglomeration) [28] and NeuroProof [3] are

two agglomeration based tools from Janelia Farm Research group that performed well

in the ISBI 2013 challenge. The two use the same sequence of steps shown in Figure
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(a) (b) (c) (d)

Figure 3-1: 2-D visualization of the stages of an agglomeration-based connectomics
pipeline: (a) Electron microscope (EM) image. (b) Membrane probabilities generated

by CNN. (c) Over-segmentation generated by Watershed. (d) Neuron reconstruction
generated by agglomeration. Each color in the last image corresponds to a segmented
object. The image size is 1024 x 1024.

3-1 to segment a three dimensional volume of data.

First, from the electron microscopy images a membrane probability map is gener-

ated. Using a watershed algorithm [51 on the membrane probability maps (either 2D

or 3D), the pipeline creates an over-segmentation of the data. Each object in the over-

segmentation is called a supervoxel. The pipeline then builds a regional adjacency

graph (RAG). The nodes of RAG correspond to supervoxels, and two are connected

if they share an edge. The edges are then contracted (and thus the supervoxels are

merged) based on the decisions of a previously trained random-forest classifier.

GALA is implemented as a Python library and has performance issues related to

the global interpreter lock. It uses standard packages such as SciKit and OpenCV.

NeuroProof is implemented in C++, but for the initial watershed stage it still uses

GALA. Overall, neither of the two is fast enough to be used for large-scale connec-

tomics. Quan Nguyen worked on a concurrent implementation of the classification

step of NeuroProof [26] and achieved a near-linear speedup on a multicore machine.

Wiktor Jakubiuk implemented the watershed algorithm in C [13]. These changes to

NeuroProof were the incorporated into a multicore pipeline for large-scale connec-

tomics by Matveev et al. [23].
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by the RhoanaNet pipeline by Knowles-Barley et al. [17].

3.2.3 Block merging

While [3, 28] produce accurate segmentations, it is hard to deploy them for datasets

that measure in terabytes or more as their algorithm works on all of the data at once.

The common approach is to split the volume into blocks, segment them using the

a technique such as NeuroProof, and merge the blocks to construct a segmentation

for the full volume [23, 30, 17] (see Figure 3-2). Notice that merging is not a trivial

operation of stacking the blocks together. A remapping of labels of segments in

the blocks is necessary i.e. each segment in the blocks has to be associated with

neighboring segments in adjacent blocks. To facilitate the merging process, blocks

are usually padded on all sides, but the overlap between adjacent blocks increases

the computation time of all stages of the pipeline. To merge the blocks into a full

segmentation, it is enough to describe how to merge two adjacent ones. Various

heuristic algorithms have been proposed for the merging procedure.

To decide merge-pairs (segments that need to be merged in two adjacent blocks)

Knowles-Barley et al. [17] create a bipartite graph with nodes corresponding to seg-

ments in the two blocks. The weight of an edge between two segments is proportional

to the volume of overlap they have. Then, a stable matching algorithm [10] is used

to determine merge-pairs. The objects that did not find a stable partner are merged

with the ones with which they have the largest overlap. Plaza and Berg [30] use a

simple heuristic merging strategy that is also based on the overlap that segments from

the adjacent blocks have. These heuristics are hand-crafted and depend on a variety

of parameters that are manually fine-tuned.
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Figure 3-3: Matveev et al. [23] uses a small region next to the boundary of the

adjacent blocks to decide merge-pairs.

The block merging stage of the pipeline by Matveev et al. [23] has two main differ-

ences from other approaches: (1) it uses a machine-learning based merging strategy

instead of a hand-crafted heuristic algorithm; (2) it does not require the two adjacent

blocks to have an overlap, which reduces the per-block segmentation time compared

to [17, 30]. In this pipeline, NeuroProof is used to decide both intra- and inter-block

agglomeration of supervoxels, based on separate random-forest classifiers. The merge

decisions are based only on small subvolumes of the blocks close to their border (Fig-

ure 3-3). The merge-pairs from block-merging form an unweighted graph, where an

edge corresponds to a necessary merge. Thus, each connected component in this

graph is a new object in the segmentation of the whole dataset. Given the merge-

pairs, Matveev et al. use a disjoin-set data structure to efficiently find and label the

connected components.

Without large overlaps between adjacent blocks it is hard to ensure that their

independently constructed segmentations match well. Therefore, heuristic algorithms

based on overlapping pixel counts are prone to making errors, especially on objects

that are small (but still important). Even though the merging approach by Matveev

et al. [231, it too, makes and accumulates merges across the whole volume.

Unlike the discussed methods above, our amalgamating implementation of the 3C

algorithm does not split the dataset into blocks. Instead it processes the dataset in

the order of the EM image stack, in a streaming fashion. This eliminates the need

for a complicated and heuristic block merging.
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Figure 3-4: Information flow in sparse reconstruction approaches like MaskExtend
and Flood-Filling Networks.

3.2.4 Pipeline implementations and performance

Because of the large amount of data in connectomics the performance of a segmen-

tation pipeline is just as important as its accuracy. In order to process the data

fast enough, performance engineering and distribution techniques are applied in the

pipelines. Plaza and Berg use Spark [371 to distribute the computation into many

machines. Each block is segmented using the NeuroProof tool [3]. Their system of

32 machines (512 cores and 2.9 terabytes of memory in total) is able to process a

terabyte of data in 140 hours. In contrast, the pipeline by Matveev et al. [23] does

all the computation on a single 72-core machine with 500 GB of memory, and is able

to process the same amount of data in under 10 hours. Such a massive difference in

speed is due to the highly performance engineered implementation of the components

in the Matveev et al. pipeline. In particular, their CPU-based implementation of

CNN framework ("XNN") is 70x faster than the previous state-of-the-art [23, 38].

These agglomeration based approaches to segmentation can reach the desired

terabyte-per-hour speed of the microscope, however they are not accurate enough

for further research in neuroscience.

3.3 Sparse Segmentation Methods

A promising new approach was recently taken with the introduction of the MaskEx-

tend [25] by Meirovitch et al. and Flood-Filling Networks [14] by Januszewski et

29



al. As seen in Figure 3-4, these algorithms use CNN to extend the mask defining

the past prediction of a single object. The CNN classifies which pixels in the next

slice belong to the same masked object and which do not. The process is repeated

throughout the image stack, thus, tracing a single object at a time, similar to what

a human tracer would usually do. The approach overcomes complex morphological

changes as it traverses the images tack. This provides improved accuracy compared

to previous watershed/agglomeration based algorithms. However, MaskExtend and

Flood-Filling Networks are prohibitively expensive [14], which makes them, at least

for now, an unlikely solution for fully segmenting large datasets at terabyte-per-hour

rates.
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Chapter 4

Cross Classification Clustering

In this chapter we present the cross classification clustering (3C) algorithm in detail.

It is an extension of object-centered segmentation methods that in connectomics are

called "sparse reconstrions." These sparse segmentation methods 125, 14] take a mask

of a single object, and use CNN to predict which voxels belong to the same object

in the next images. The lower part of Figure 4-1 shows how the mask from previous

layers is used to predict the pixels belonging to the same object (the blue object in

the figure).

The 3C technique uses a similar mechanism with a key difference: it classifies

pixels from the next image into an a-priori unknown set of objects (neurons). In

reality this is more similar to a clustering problem than a classification one. Unlike

MaskExtend and FFNs that have 2 output classes, the number of neurons that the

pixels have to be associated with by the 3C algorithm is unknown. The problem is

thus restructured into a classification one by remapping the labels of objects into a

sequence of labels, each over an a-priori known fixed and finite alphabet. Since the

alphabet is finite, for each label in the sequence, the data is classifiable just as with

MaskExtend and FFNs. One can think of the segmentation of the previous layers as

a collection (cartesian product) of masks that have to be extended together, as in the

upper part of Figure 4-1.
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Figure 4-1: Information flow in the Cross Classification Clustering algorithm vs sparse
reconstruction approaches like MaskExtend and Flood-Filling Networks [25, 141.

4.1 Formal Description

Our goal is to approximate a classification function f() for the voxels v of the next

image in the stack using a segmentation s of previous layers. s is really a 2D or 3D

matrix of integers, each representing a label of an object. f() thus maps v and s to

a decision label 1 if v belongs to the extension of the unique object labeled 1 in s.

The labels in s are allowed to overlap at most one neuron each. It is clear that the

range of f() is not known or bounded a-priori like in classification problems. A key

contribution of the 3C algorithm is that it is able to turn this clustering problem into

a classification one.

This is done by remapping the coordinate representation of the input label space

before applying the classification operations. Assume that the input segmentation

s is an integer matrix over some set N of labels. Each of the labels represents a

unique object. For simplicity let us number them {1, -.- , N}. We define a new

space of labels, the k-length strings in Ak where A is a predetermined alphabet. The

length k of the strings is such that |Al" > N is an upper bound on the number of
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Figure 4-2: Relabeling for Cross Classification. The segmentation on the left has
unique labels for each object, and can be represented as a cartesian product of the
labelings on the right.

neuronal objects we expect in a classification. In Figure 4-2, s is two dimensional,

A = {0, 1, 2, 3} (represented by 4 colors) and k = 3.

To compute the relabeling we define a uniformly random mapping x from labels

{1, ... , N} to string labels (words) in Ak without repetition. Thus, each label 1 is

assigned a unique word from X(l) in A'. After we apply x to a segmentation s,

the objects are still labeled with unique strings that form a subset of A'. In Figure

4-2, A is represented by 4 colors, and x defines k = 3 maps, so we have a total of

43 = 64 possible strings of length 3 to which the L = 10 neuronal objects can be

mapped. Each of the objects is colored by X to a random string that corresponds

to the combination of colors. Thus, for example, object 5 is mapped to the string

(Green, Purple, Orange) and object 1 is (Green, Green, Purple).

We next define the classification function g() that is the equivalent of f() but has

a domain and range of Ak instead of the set of original labels. g( is defined on string

labels as the product of k traditional classifications, each with an input segmentation
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of labels in A, and an output of labels in A. Since x(s) E Ak, it can be written as

x(s) = xI(s) .. xk(s) E Ak

where each Xi(s) is the projection of x(s) in the i-th location. Given this restructuring,

we can define go on x(s) as

g(v, x(s)) = g'(v, X1(S)) x ... x g'(V, Xk(s))

where each g'(V, Xk(s)) is a traditional classification function and x is the concatena-

tion operation on labels in A. Since x is a one-to-one function

f(v,s) = x-1(g(v, x(s)))

In the example in Figure 4-2, even though in the map representing the most significant

digit of the original neurons 5 and 1, they are both green, when we perform the

classification and take the cross labeling of all three maps, the two objects are classified

into unique labels.

4.2 Implementation of 3C

Our 3C algorithm uses a learning algorithm to approximate the classification function

f () as follows. Unlike the sparse segmentation methods, instead of answering whether

a pixel belongs to a single neuronal object, f() answers 1 E A only if the input pixel

belongs to a neuronal object "colored" with the label 1 in the segmentation proposal.

We use the classification function g'() to compute f (). We execute k applications

of g'() for each "letter" of the remapped segmentation x(s) and then take the cross

labeling of the results as the final classification of a voxel v. Note that k has to be

logarithmic in N. If the original segmentation s is such that all the pixels of a given

label 1 are a subset of the actual true pixels of the same neuron, then the learning

algorithm's task is relatively easy.
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The difficulty is that often s is imperfect. It is possible that there is a split error

in which more than one label is assigned to the true neuron in the proposal. As we

will discuss later on, one solution to this problem is that the algorithm answers with

the "strongest" label (concretized by the learning rule during training). Merge errors

the opposite type of issue, where more than one true neurons have the same label in

the proposal. The key difficulty in devising a learning algorithm is to overcome the

split and merge errors and deliver a classification algorithm that can be applied many

times and always assigns exactly one label to each true neuron.

The effectiveness of 3C is that even though we are classifying N objects, we apply

only about log(N) CNN executions to the data, and these can be fully convolutional

on a full image. As we will show below, this new clustering tool, when applied to

connectomics, allows for the first time a CNN based "tracing" approach to multiple

neurons at a time while avoiding the problematic combination of watershed followed

by agglomeration of traditional pipelines [23, 30, 171. We next discuss why 3C delivers

a significant performance improvement over an approach that applies state-of-the-art

single neuron tracing algorithms to neurons in the data set one after the other.

4.3 Analysis

We analyze the time complexity of the 3C algorithm and compare it to that of single

neuron methods like MaskExtend and FFNs for n x n square input images comprising

of N disconnected neuronal objects and a CNN architecture of depth d. We denote

the arithmetic cost of a single forward-pass of a minimal patch by C = C(d). In the

simplest scenario described above, our 3C algorithm applies log N fully-convolutional

(FC) operations on an n x n input image in order to output an n x n image seg-

mentation. A single FC pass in the 3C algorithm has time complexity 9(d(nr + C)2 ).

Applying 3C requires a logarithmic number of FC calls and hence its time complexity

is E(d(n + C)2 log N), which for sufficiently large images is

8(dn2 log N) = O(dn2 logn)
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Instructions Cycles Li Cache Pressure
MaskExtend 101, 991 - 109 64,244. 109  1, 242.953 MB/sec

3C 17,656-109 22,506-109 601.961 MB/sec

Table 4.1: Empirical performance comparison of MaskExtend and 3C on a volume of
size 100 x 1024 x 1024.

Computing 3C on all (minimal-size) patches, and thereafter aggregating the results

into contiguous map (i.e., patch-inference), is costly and requires 9(Cn2 ) operations,

where the factor C depends on the networks architecture. For popular CNN archi-

tectures, C is exponential in the network's depth d: C = E (exp (ad)) for a constant

a > 0 which depends on the network's layout. This asymptotic bound demonstrates

that aggregated patch inference is suboptimal. We demonstrate here that competing

approaches to 3C inherit this weak point of patch-inference into their running-time

complexity. The idea is that many objects are small compared to usual field of view

of CNNs, running many instances of sparse segmentation results in overlapping com-

putations of CNNs harming its performance.

We first analyze the time complexity of MaskExtend (ME) in the worst case

scenario independently of the segmentation layout and provide exact asymptotic in

terms of the number of neuronal masks in the input image. We then estimate the

distribution of 2-D neuronal masks in order to empirically assess the complexity of

ME on neuronal apparatus. The analysis for FFNs would be similar and their depth

would typically be much deeper (see [14]) than that the networks in ME [25]. Before

continuing to the rigorous analysis, it is interesting for the reader to look at Figure 4-3

that shows the number of times the ME must apply a CNN in a given region of an

image based on its neuronal density. Table 4.1 shows that the 3C algorithm does

indeed outperform MaskExtend in terms of instructions and compute cycles.

An immediate upper bound on time complexity for ME is derived by assuming

that pixels straddle on distinct neuronal objects. In such a reconstruction scenario the

number of calls to ME is exactly n2 and the cost of each call C(d) is super linear in the

network's depth's d. An exact asymptotic of C in terms of the network's depth can

be readily computed for sufficiently simple network architectures. For example, the
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Figure 4-3: Compute cost per pixel using MaskExtend. We computed the number of

calls to MaskExtend per pixel on a human annotated 256 image stack (AC3). For

the highly dense areas 23 calls of MaskExtend are required whereas areas with large

objects require a single call.

cost of a single patch calculation for the the Max-Out architecture used in Kasthuri

et. al [15] and Meirovitch et. al [25] is exponential in the depth parameter d, with

the growth rate depending on the CNN's pooling operation. For kernel size k x k and

m-pooling operations, a single layer can be computed to have an arithmetic cost of

(kmd-I + (k - 1)m ZO,<i<d-3 mi) 2 . Fixing the network's layout except for its depth,

the arithmetic cost of the forward-pass is exponential in the networks depth d. From

this worst-case scenario we conclude an upper bound on the time complexity of ME

as

0 (n 2(2m)d)

The primary gap between FC and patch inference therefore comes from the multiplica-

tive exponential dependency of field of view (FoV) on a network's depth in patch

inference, which is only additive in a FC computation. In reality, the term (2m)d

makes the patch-inference extremely inefficient (see [11] for an empirical assessment).

The exponential dependency on network's depth above can be readily extended
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to a general architecture by assuming that FoV depends exponentially on the CNN's

depth d. For such a general scenario we can derive the time complexity of ME and

ask whether there exist cases in which our dense-inference algorithm is inferior to the

sparse ME reconstruction. In general, the time complexity of ME cannot be lower

than the sum of the following two terms: the area of all neuronal objects (which is

@(n2 )) and the number of objects N multiplied by the FC overhead C(d) (whose

complexity is exponential in depth d). Hence, considering that the CNN's FoV f()

depends exponentially on depth d, ME will have time complexity

Q (dn2 + N exp (ad))

for a constant a > 0 which depends on the architecture at hand. This is a lower

bound since the object geometries can be more costly than that of equal size square

objects. An interesting question is the asymptotic growth of the number of objects

N as a function of image size n2 which can shed light on the empirical running-time

of CNN-based sparse reconstruction approaches.

Most of neuronal objects are "sufficiently convex" which allows us to sample the

distribution of areas of 2-D object masks from a relatively small sample (e.g. within

our groundtruth) and obtain a good approximation of the the expected value of the

areas of 2-D object masks and their count in a unit of volume in the inference space.

Using a Monte Carlo approximation we obtained the object size statistics and esti-

mated the expected number of objects per n2 image, resulting in a linear relationship

N = 3n2 (with increasing variance as a function of n; for our test statistics # = 0.0002;

p < 0.00001). For such neuronal statistics the time complexity of ME is

E(n2 exp(ad))

compared to 3C's time complexity of 9(dn2 log N). Our experiments clearly show

that in the terabyte data size domain, log(N) is several orders of magnitude smaller

than the architecture's constant exp(ad)). Finally, it is trivial to replace log N with

a constant, and achieve better scalability, by confining the FC operations to a certain
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range in which N is constant (e.g. operate on gigabyte images) and aggregate results

across tiles as done in our experiments. Partitioning the space on which 3C algorithms

runs 0(n) times makes the number of objects per tile 0(1) and so allows 3C, for very

large images, to run at 3C to run in time complexity e(n2 exp(ad)).
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Chapter 5

An Amalgamating Pipeline

Many systems for connectomics reconstruction have been developed recently. One

of the main challenges in these systems is to combine performance and accuracy in

one place. Two recent pipelines by Matveev et al. [231 and Plaza and Berg [301

deliver processing speed that is only one order of magnitude away from the speed of

data acquisition. They, however, do not have good enough accuracy. More accurate

methods such as MaskExtend and FFNs suffer from the opposite problem: they are

accurate but do are not useful for dense reconstruction as of now. This chapter

presents the amalgamation algorithm for connectomic reconstruction, an attempt to

bring best of both worlds: accuracy and performance.

The amalgamation approach uses the 3C algorithm to expand the objects in an

initial "backbone" segmentation that contains the skeletons of neurons but not nec-

essarily their fine details such as dendritic spines. A simple way to generate a such

a backbone is to create a segmentation H consisting of voxels that have membrane

probability that is less than Peed. The voxels are grouped into objects based on

their 6-connectivity in the 3-D dataset i.e. each object is a connected component

of high-fidelity voxels. With high quality membranes a simple construction like this

is acceptable, but small mistakes in it can result in catastrophic merge errors. The

mistakes can occur in areas that the membrane generating CNN has not been trained

on and if the images are misaligned.

We next describe the MultiMask algorithm for generating such backbone segmen-
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Algorithm 1 MultiMask

Input:
Hi 2-D segmentation image stack for layers z1 ,..., zzMax
Pi Membrane probability image stack for layers zl, ... , ZZMax

MultiMask CNN

for any two adjacent layers Hi, H do
Use 3C in fully-conv mode to compute Rj (x, y)
(clustering of H based on H,)

Update the weight between any two segments v E Hi, u E H,
based on the votes Rij(x, y) for all voxels (x, y) E v.

end for
Merge segments with strong edges.

tation, which uses 3C to also generate an initial backbone segmentation. MultiMask

is more resilient to errors in the membrane probability maps, especially those related

to misaligned images. Then, we present the actual amalgamation algorithm.

5.1 MultiMask Algorithm

The MultiMask algorithm generates a neuronal backbone segmentation. Each seg-

mentation object contains the skeleton of the corresponding true neuron. Although

connectomics tries to reconstruct the full morphology of objects (including spines and

small details), reconstruction of the skeletons of objects is just as difficult. We call

this algorithm MultiMask since it simultaneously extends many 2-D neuronal "masks"

from once slice to the next in the 3-D stack. Empirical tests show that starting from

2-D segments and extending them in positive and negative z directions results in

better segments than starting from 3-D pixel clusters. This is mainly due to image

misalignment and poorer resolution in the z axis. This was the approach taken by

interesting past methods like the fusion algorithm of [16J. Extending in z is the hard

part and this is where the MultiMask algorithm introduces a new approach.

The MultiMask algorithm first creates an initial 2-D set of seeds in all slices of

the image stack. Then the algorithm proceeds through the volume, applying the

3C clustering from the current slice z to z + 1, and then back from z + 1 to z.
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Slice z: {u3 } Slice z+1: {vj}

Figure 5-1: The bipartite graph induced by the MultiMask algorithm. Objects are
linked by two calls of the 3C algorithm: from z to z + 1 and back. The number of
pixels in a segment voting for another segment in the adjacent layers are stored as
edges of a bi-partite graph which is thresholded to yield the final 3-D link.

This results in a bipartite directed graph for every pair of consecutive images in

which nodes are the segments and weighted edges represent the prospects of a merge

operation, namely, how well merging the two 2-D segments will serve the entire graph.

Figure 5-1 shows an example of such a graph. The segments are then recolored in

the original segmentation by thresholding the edges of the bipartite graph. The final

connection in z among the objects is decided by the number of pixels in one segment

voting for a segment in the other slice. Algorithm 1 shows the pseudocode for the

MultiMask algorithm. This approach has the advantage that the 2-D initial clusters

more accurate compared to the simple thresholding of membrane probabilities. It

also captures the situations where neurons actually split or merge from one layer to

the next. The end result is a 3-D segmentation of the volume.

5.2 Amalgamation Algorithm

The 3-D segmentation output by MultiMask may not be morphologically accurate and

thus not useful for analysis of the connections. The MaskExtend and FFN algorithms

would at this point repeat the process applying the CNN to refine the classification
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of pixels to the object. We would like to apply such a refinement here to all the

objects at once, to yield morphologically accurate objects. To do so, we will take the

3-D segmentation that was the output of the MultiMask and apply to it a refinement

phase using the 3C algorithm. In this application of the 3C algorithm, we augment

the alphabet A with two special labels, NEW and NONE, so that the new set of

labels is (A U {NEW, NONE})k.

Our amalgamation algorithm assigns NEW if there is consensus among all of the

classifications g' (see Section 4.1) that a pixel should be labeled NEW and similarly for

NONE. Otherwise amalgamation assigns the pixel's category from the set Ak. Being

able to answer NONE is imperative since in many cases there is no specific neuron

that can be assigned a pixel, hence the pixel is just "background." In practice we treat

extracellular and membrane pixels as NONE. Augmenting the answer with NEW is

also imperative since a neuron may be under represented by the input because the

volume being segmented in one iteration does not contain any representation of the

correct neuron incidental to the pixel being classified.

Algorithm 2 is a pseudocode of the amalgamation algorithm. After the initial

hypothesis H is created using MultiMask or by other means, the 3C algorithm is

used to expand the segments in a hypothesis segmentation repeatedly until the desired

outcome is reached e.g. the segmentation does not change anymore.

Algorithm 2 Amalgamation

Input:
Segmentation hypothesis H E t"x"xd {segmentation of the entire space}

H' = owxhxd

while H' is different than H do
H' = H
pick a subset P C H
P' = Cluster(P) {use 3C to re-decide the clustering of P' }
H = P' applied to H

end while
return H' revised segmentation
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5.3 System Design

Another key contribution of this work is the implementation of an end-to-end con-

nectomic reconstruction pipeline that is able to process a terabyte size dataset in a

streaming fashion. Previous such pipelines use agglomeration techniques [23, 17, 30]

that have many moving parts (per-block watershed and agglomeration, block merg-

ing). Our amalgamating pipeline operates on large electron microscopy images at

once, without splitting the dataset into blocks. This also allows the data to be

streamed into the pipeline, thus, enabling the possibility of feeding the data from the

microscope into the pipeline.

5.3.1 A streaming approach

In our implementation we used initial high-fidelity pixel clusters, but MultiMask seg-

mentation could be used in a similar way. Let So this initial hypothesis segmentation.

To compute So we used a threshold of Peed = 0.02 on the membrane probability val-

ues. Two pixels belong to the same cluster if there is a 6-connectivity path between

them that is inside So.

To compute So one needs to run a simple flood-fill algorithm on the volume in

advance, and store the data for the next steps of the algorithm. For a streaming

pipeline, however, this is not acceptable. Instead, we determine the clusters of So in a

streaming fashion with a lookahead parameter b using a sliding window. Define P(i)

as the subvolume of P composed of the first j images. Then let "30() be the initial high-

fidelity clustering of P(). Now, when processing image j, our algorithm uses A'5+0

as its initial hypothesis for segmentation. Since S j+b) may have distinct clusters that

are in fact the same in So, we have to account for merges of objects that happen as

the algorithm processes future images. When a merge happens relabelling all affected

pixels is costly, so we keep a disjoint-set data structure to record all merges that

happen during the execution. Using this data structure we can relabel all necessary

pixels in one final pass.

A drawback of the streaming approach is that the amalgamation algorithm runs
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using a partial initial clustering rather than So. In practice, however, this is not an

issue as the algorithm always "looks b images ahead." We have observed that very

few merges are necessary in the disjoint-set data structure. A far bigger advantage

of our streaming approach is that it shows the feasibility of segmentation of large

connectomics datasets with negligible overhead. The streaming approach needs just

one pass over the dataset to generate the segmentation.

5.3.2 Implementation

We implemented the logic of the amalgamation algorithm in C. The extensive usage

of the efficient OpenCV library 17] allowed us to write relatively simple MATLAB-

like code in C. For performance, we used Cilk [61, a work-stealing scheduler, for

parallelizing loops. To ensure that there are no I/O bottlenecks (as EM images can

get very large), we read images in batches using Cilk and recycled the memory. We

implemented a sequential but efficient disjoint-set algorithm [341 to keep track of the

merges that have occurred during the streaming of the data. The mapping of this

data structure is written on the disk after the execution is done. It is later applied

to the dataset to get a final segmentation.

The dominant part of our system is executing CNNs, which is done by the XNN

framework [23]. The efficiency of XNN is based on several factors. First, it lever-

ages customized C inline AVX2 assembly to fully utilize the two FMA units of Intel's

Haswell chip. Second, it automatically generates C code for each specific CNN archi-

tecture. As a result, the C code parameters are mostly static, which enables GCC

compile-time optimizations. Finally, for scalability, XNN combines Cilk [61, a work-

stealing scheduler for parallelizing loops, with cache-aware coding to avoid concurrent

conflicts and contention.

In this work, we extended the XNN framework to support large input images. For

this, we modified the fully-convolutional mode, so that it executes on sub-images of the

large input image, while taking into account CNN's field of view to automatically fill

gaps between the sub-images. To get multicore scalability, we parallelize into the sub-

image execution (and not between the sub-images), so that the L3 cache utilization

46



will be maximized (a working set should fit into the L3 cache). In addition, we avoid

expensive NUMA inter-socket communications by breaking each EM slice to 4 large

parts, and then executing each part on a different CPU. Since the label space in each

of the images is the same, there is no additional stitching to be done.
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Chapter 6

Results

In this chapter we present the accuracy and performance benchmarks of our amal-

gamating pipeline. We ran experiments on the mouse somatosensory ("Si") dataset

by Kasthuri et al. [15] representing a tissue of 120,000 cubic microns. Table 6.1

summarizes the VI and NRI scores of our segmentation compared to the current

state-of-the-art on a small ground truth subvolume of S1. The full segmentation of

S1 using the amalgamating pipeline took 135 hours (0.25 MB per second). Figure 6-1

shows fragments of the resulting segmentation.

6.1 Accuracy Benchmarks

The evaluation of dense segmentation of a neural tissue is a challenging problem due

to the lack of large ground truth datasets. Typically the measurement is done on

small volumes which are manually traced. We use two different metrics Variation

of Information (VI) [241 and Neural Reconstruction Integrity (NRI) [311. The VI

VI NRI
Agglomeration 0.87 0.41

MultiMask 1.08 0.54

Table 6.1: The VI and NRI scores of the our segmentations compared to the state-
of-the-art agglomeration-based technique [231. The larger NRI and smaller VI scores
are better.
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Figure 6-1: Results on mouse somatosensory cortex (Si). Left: Once slice from the
reconstruction of the S1 dataset overlayed with EM image. Right: Five objects from
S1 reconstructed using the amalgamation algorithm.

is a general information-theoretic metric to compare two clusterings of the same set

(voxels in the dataset). NRI, on the other hand, is a novel metric taking values in

[0, 1] specifically designed to measure segmentation quality of connectomic datasets.

Unlike VI, the NRI score is not sensitive to voxel-level errors. It measures how well

does the segmentation preserve the connectivity between synapses compared to the

ground truth dataset. Representing this connectivity in the segmentation is crucial

for connectomic studies.

We ran accuracy benchmarks using two small subvolumes of S1 (called "AC3"

and "AC4") that have been manually and densely segmented [15]. AC3 is a block

of size 256 x 1024 x 1024 and AC4 of size 100 x 1024 x 1024. The AC3 volume

was used to train the CNNs. We present NRI and VI scores of the segmentation

generated by the MultiMask algorithm. We extended the objects of the MultiMask

segmentation by mapping each pixel to its nearest object on the affinity graph of

the membrane channel. This type of heuristic is necessary to accurately associate

synapses, a requirement for NRI. Notice that the heuristic does not introduce split or

merge errors, it merely "grows" the objects. Table 6.1 shows the VI and NRI scores

of the segmentations. See below for precise definitions of the two metrics. While the
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agglomeration-based techniques outperform MultiMask by the VI measure, they do

not preserve the connectivity between synapses of the dataset. For that reason their

NRI score is significantly lower.

6.1.1 Variation of Information

Variation of Information (VI) [24] is a robust metric that allows to quantify the

difference of two general clusterings of the same set. Suppose, the given set P with

?' = JPJ elements that has two clustering X = {X1, ... , Xm} and Y = {Y1 , ... , Y.},

where the elements of both X and Y are disjoint, and their union is the whole set

P. VI is equal to the shared information distance of two random variables defined

uniformly on P i.e. Pr[S] = IS/n for S C P. More precisely, define

rij= ,~ - and q -M
n n n

Then the variation of information is defined as

M k

VI(X, Y) = -Z ri log + log
i=1 j=1

V = 0 means that two clusterings are identical. In our case, if P is the set of all voxels

in the volume, then both the ground truth and automatic segmentations represent

two different clusterings of the dataset. Therefore, we can use variation of information

to compare our algorithm's output to the ground truth segmentation. This metric

can be computed in a linear time with respect to the number of pixels in the data

set. Moreover, if two clusterings (segments) are joined, or if a cluster is split into

two, the recalculation of the variation of information is linear in time with respect to

the number of clusters and not the pixels. Another important quality of variation of

information is that it can be split into two summands

VI = VImerge + VIspitu
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where VI,,,,eg and VI.4it.

As it can be seen from the definition of VI it is sensitive to voxel-level inaccura-

cies, that may not be significant for connectomics. This is an issue when comparing

two segmentations since the amount of intercellular space different methods generate

varies.

6.1.2 Neural Reconstruction Integrity Metric

The Neural Reconstruction Integrity (NRI) is a new metric proposed by Reilly et al.

[311. The NRI metric measures how well does the segmentation preserve the con-

nectivity between synapses. Each synapse consists of pre- and post-synaptic regions,

called synaptic terminals. The terminals are associated with objects in ground truth

(G) and in test segmentations (S). Using this association, pairs of synaptic terminals

can be classified as (1) true positive if they belong to the same object both in G and

S; (2) false positive if they belong to different objects in G but same object in S

(merge error); (3) false negative if they belong to the same object in G but not in S

(split error). Using the number of pairs in each category, the precision and recall of

S compared to G are computed. The NRI is defined as the corresponding F1 score.

NRI depends on the detection of synaptic terminals in S. The authors of NRI

suggest using the Hungarian-Munkres [181 algorithm to associate synaptic terminals

to objects in G and S. We propose a version of NRI that uses only the ground

truth synapses and vesicle annotations, and thus measures the accuracy of just the

segmentation. We designate the two closest objects to each synapse as candidates for

pre- and post-synaptic neurons. Using the vesicle annotations the objects in G can

be trivially classified as pre- or post- synaptic, because only pre-synaptmic neurons

contain vesicles. However, in S both candidates may contain vesicles. The candidate

neuron with closest weighted average distance of vesicles will be marked as the pre-

synaptic neuron. The weights determined based on the distance from the synapse.
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6.2 Performance

We ran our amalgamating pipeline on the S1 dataset that represents 120,000 cubic

micros of mouse brain tissue. The data contains 1800 images roughly of size 10, 000 x

13000. Because of the non-rectangular shape of the dataset only half of the voxels

contain electron microscopy data. Thus, the non-empty image stack is roughly 120

GigaVoxels. On a 72-core machine with 500GB of memory, the segmentation of

this dataset takes 135 hours, which also includes 8 hours of membrane probability

computation. 87 hours were spent on CNN computation that used the XNN multicore

framework [23]. The rest of the time (48 hours) was spent on the amalgamation

algorithm logic that is implemented in C. This pipeline at 0.25 MB per second is 16

times slower than the state-of-the-art in performance [23], while outperforming it in

the NRI score. The pipeline by Plaza and Berg [30] has roughly the same throughput

as our amalgamating pipeline.

53



54



Chapter 7

Conclusion

This thesis introduces a new method of object detection and tracing, and presented

a use case for it in the form of connectomic reconstruction. Recent interesting results

used neural networks to detect single objects [29, 141, but did not directly tackle the

clustering problem of many neurons. A significant contribution of our work is the

ability to make inference on many object categories in a given image slice based on

the segmentation of previous slices. It does so by restructuring the reconstruction task

into a logarithmic number of mask extension problems and then uses their cartesian

product to determine the segmentation of the current slice.

Our cross classification clustering algorithm leverages the joint statistics, geometry

and topology of adjacent neurons in order to detect each of them in similar images,

with or without partial labeling in those images. Using the 3C algorithm we built a

pipeline that can process datasets of size in the terabyte range. To our best knowledge,

it is the first streaming pipeline for connectomic reconstruction. As the data is fed to

the pipeline slice by slice, it has to keep track of branches of objects that get merged.

Our pipeline maintains a disjoint-set data structure to do that. A streaming approach

similar to this one has to be eventually adopted by such pipelines as the size of the

datasets grows.

Based on the new NRI metric, the accuracy of our method is significantly bet-

ter than the segmentation of state-of-the-art agglomeration-based techniques. This

means that it captures the connectivity of the neurons, which is essential for connec-

55



tomic studies. In terms of speed it is only one order of magnitude slower than the

fastest connectomic reconstruction pipeline.

The problem of segmentation is only one of many challenging ones that connec-

tomics faces. It is an important stepping stone that can allow neuroscientists to make

new discoveries about the brain. While our segmentation solution is not perfect it

proposes a new direction in the area of connectomic reconstruction.
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