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Abstract

Modeling customer preferences over multivariate attributes has long been an endeavor
of marketing research. We provide an updated approach which can learn customer
preferences for complex products with multiple multivariate attributes using modern
Deep Neural Networks. In turn we outline approaches for framing managerial ques-
tions in the form of inference problems. With our empirical application to product
identification in credit cards, we conclude Deep Learning results in significantly better
performance than the state of the art. Our approach is scalable to Big Data and can
derive superior predictive power from the inexpensive unstructured data exhaust of
internet commerce.
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Chapter 1

Introduction

In the last decade, through the breakthroughs of AlphaGo, game A.I.s have demon-

strated the promise of optimal action by approximating reward functions with Deep

Neural Networks [1]. The defeat of the world champion in one of the most difficult

unconstrained games, Go, serves as a premonition of the disruption of A.I. in busi-

ness. If A.I.s can learn to act optimally in the setting of games, how long until they

learn to do so in business?

Deep Learning is a Machine Learning technique that uses Big Data to train Neural

Networks with many layers. It represents a major advance in modeling capability

and power. However Machine Learning has already contributed to the art of Internet

Marketing. Bayesian Inference powers Google's targeted advertising engine: adsense

[3]. Targeted advertising ensures marketing efforts are directed optimally and raises

awareness while minimizing cost. By modeling customers with machine learning, we

can filter our audience efficiently. Advertisement Morphing [2} tailors the message to

the individual and considerably boosts conversion. By once again modeling customers'

cognitive styles we can deliver the most compelling message possible. On the other

hand, all this work assumes the product is predefined; the optimization of products

has received little attention. This thesis seeks to contribute to the problem of product

development by applying Deep Learning, a major recent development in Machine

Learning.

We propose that the passive data emissions of the internet economy betray the
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preferences and desires of the market. We will tap into the inexhaustible unstructured

click data and consumer browsing data and demonstrate its value in predicting con-

sumer preferences. By using less unstructured, more abundant data we demonstrate

Big Data and Deep Learning techniques result in richer more sophisticated models.

The trend in Machine Learning and Deep Learning in particular is the use of over-

parameterized models with increasingly high data critical mass to distill statistical

strength for learning. What distinguishes the work presented here from the state

of the art is we provide a framework for scalability; scaling the current marketing

research process, to fit the next generation of models is prohibitively costly.

1.1 Contributions and Goals

In this work we apply Deep Learning to the problem of product opportunity identifi-

cation. By applying Deep Neural Networks to a large credit card dataset, we confirm

that Deep Neural Networks have superior prediction accuracy than the state of the

art. We then develop a paradigm for answering managerial questions and apply it to

three classes of questions through an empirical case study:

" Inference of Customer Feature Vector given Product Attributes: What

are the target demographics for a particular card?

" Inference of Product Attributes given Customer Feature Vector(s):

What types of cards attracts low income, low credit score consumers vs. high

income high credit score consumers?

" Competitive Market Simulation: Given a cost model, what cards would be

most profitable to introduce?

1.2 Outline

After reviewing background material in Chapter 2, we will introduce the ComScore

Dataset in Chapter 3. Learning the preference model is covered in Chapter 4. We

14



then in Chapter 5 discuss the three general inference capabilities of this framework

and showcase an example simulation for each. We end our work in Chapter 6 with a

discussion on implications aind an outline for future work.

15
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Chapter 2

Deep Learning Background

Machine learning before the resurgence of neural networks involved hand-engineering

representations and input features. One would then train a classification layer built on

hand-engineered representations and features, which can be thought of as optimizing

weights to make the best final prediction.

Deep learning can be thought of jointly learning a representation that optimizes

classification accuracy. It attempts to both learn good features, across a hierarchy of

ascending complexity and abstraction, and a final classification prediction.

In this chapter we will review the breakthroughs that sprung the resurgence of

deep learning. We will also review the general neural network based models, and

cover the basic stochastic gradient descent algorithm. We end this chapter with a

discussion on Markov Chain Monte Carlo methods..

For more material on Deep Learning, I strongly recommend consulting Deep

Learning by Goodfellow et al. [4].

2.1 Why Now?

Deep learning simultaneously solves many of the maladies which ailed traditional

machine learning.

17



2.1.1 Learning Representations

Traditional machine learning often involved handcrafting features and producing ar-

tisanal representations which were often incomplete and over-specified. The task of

designing representations is often laborious and difficult. Data in the wild often tend

to be unstructured and unintelligible to the eye. In this work we shall encounter

URLs which seemingly have no significance, but Deep Learning is able to extract

significant meaning from them. Deep learning provides an automated way of learning

representations customized for a particular prediction problem.

2.1.2 Distributed Representations

Symbolic representations such as a table, or database are often sparse and models tend

to lead to models which generalize poorly. Another way to see the issue with these

representations is one of dimensionality, because the data is very sparse, models often

overfit to the training data. Classical solutions involve either feature engineering or

linear transformations. Deep learning finds subsymbolic continuous representations

which capture subtle similarities and differences between datapoints.

2.1.3 Learning Multiple Levels of Representation

Deep learning models such as convolutional neural networks [12 trained on images

learn similar levels of representations as the human brain. The first layer learns simple

edge filters, the second layer captures primitive shapes and higher levels combine these

to form objects. Deep models are able to capture nonlinear decision boundaries in the

data whereas classical models are restricted to the rigid class of hyperplane decision

boundaries.

2.1.4 The Rise of Big Data

Deep models have far more parameters and thus require far more data to train than

Multinomial Logistic Regressions. Neural networks have been around of decades.

18



Until 2006[101, however deep neural networks were often out performed by shallow

hand-engineered models. Neural networks require Big Data to gain statistical strength

in parameter inference. When the newly minted ImageNet [9] dataset's size reached

a critical mass to fit Deep Neural Networks, the performance sprung a new wave of

enthusiasm in deep models 111].

2.1.5 A different kind of Moore's Law

The recent years have seen a substantial slow down in CPU clock cycle improvements.

We are simply hitting hard limits of what silicon can achieve. However Moore's Law

has been preserved through parallelism - we continue to increase our computational

power not through speeding up cores but by adding more of them. Graphics Process-

ing Units (GPUs) are computer processors with thousands of cores. Machine learning

researchers have hijacked the graphics technology for extremely parallel models. The

revival of Deep Learning with Big Data was largely unlocked through the use of GPU

accelerated neural networks [11].

2.2 Neural Network

A neural network is made of multiple linear transformation layers with a nonlinearity

in between. For our work we choose the Restricted Linear Unit (RELU) 1161 as

our nonlinearity. The RELU layer is simply the identity function restricted to take

positive values.

=I1 f (11Th, + bl)

The RELU function is defined below.

RELU(x) = xl{x > 0}

The parameters for our network consists of a transformation matrix 11V1 and bias

19



b, per layer. Each neural network architecture encodes a family of functions called

the parameter space.

2.3 Stochastic Gradient Descent

The learning process is framed as a optimization problem. We use a loss function, a

measure of goodness of fit, to search for an optimal model in the parameter space.

The squared error loss function (MSE) is commonly used. We train our neural

network using batch gradient descent. In detail, for a single training input output

example pair (x, y), we define the cost function with respect to that single example

to be:

Jw,b(x, y) = 1XN - Y 1 22

On a set of m. training examples the MSE loss function becomes

Jw,b(X, Y) - 2 (Xi)N -- yi2

We often combine various loss functions that are tailored to the problem needs.

Some loss functions ensure generalizability while others ensure predictive accuracy.

Stochastic Gradient Descent (SGD) updates our parameters using the gradient of

the loss function. Two important assumptions are made about our loss function in

order to use SGD. The first is that the loss function is continuous, namely parameters

that are similar should perform similarly. The second is that the loss function is

differentiable with respect to the parameters, we must provide this derivative in order

to update our parameters. The update equations, where a is our step size, are as

follows

20



- ' Jw,(x, y)

JwVb(X, y)
bA =0b41-

b b, -JVbXYOb,

Sometimes imomentum and learning rate decay is added to the equations to im-

prove resilience towards local minima. Learning rate decay is loosely equivalent to

simulated annealing in the Markov Chain Monte Carlo [171. The converged behav-

ior of SGD is a random walk around the local minima whose distance (energy in the

Hamiltonian sense) is proportional to the learning rate. Therefore we decay the learn-

ing rate so that the oscillations of this random walk decrease and we get arbitrarily

close to the minima. The update equations for this established version of the SGD

algorithm are:

let v = momentum

let q= decay

W T=Vi + (I - 117W1-
J~(x, y)

bl,= vb, + (1 - v) bi - Y,
Obj,

Every full pass through the data

a=(11)a

2.4 Regularization

Regularization is a technique that improves predictive accuracy by augmenting the

loss function with an additional loss in order to impose "Occam's Razor" or a bias for

simpler solutions on the model. Various penalties result in different types of solutions:

* 12 penalty: improves how the generalizes to unseen data by "decaying" unused
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weights.

* 11 penalty: biases model parameters to be sparse, thereby improving the in-

terpretability of the solution, as well as improving the predictive accuracy.

In a Bayesian framework various regularizations are equivalent to imposing a prior

distribution on the solutions. In our work we use a L2 regularization loss, which

assumes the model parameters are sampled from a Normal Prior distribution. This

simply adds the L2 norm of the parameter vector to our loss function, scaled by a

training parameter called the weight decay. This encourage our learning algorithm to

find simpler models with more predictive power.

2.5 Classification

We have described the general approach to training Deep Neural Network Representa-

tions. Deep Learning is an augmentation of established classification techniques with

nonlinear representations. Classification is the problem of prediction an outcome or

class from data. In computer vision we want to classify images correctly based on

their content; In our setting we seek to predict the choices consumers make (the card

they select). When we are tasked with a classification task, we add a classifier layer

to our representation layers. This is the only distinguishing feature of Deep Neural

Networks, the insight of Deep Learning was to transform the input into a nonlinear

representation before classification. The two are learned at once, and features are

found in the data automatically.

The learned representations are nonlinear, and take the form of high dimensional

manifolds. The representation layers generalize the top layer linear classifier to the

class of nonlinear classifiers. The representation layers enable Deep Learning to cap-

ture subtle nonlinearities in the data.
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Multiclass Spiral Dataset

Multinomial Logistic Regression Deep Neural Network

34% Accuracy 92% Accuracy

Figure 2-1: We see the class decision boundaries (right) of a Multinomial Logistic
Regression and a Deep Neural Network on a pinwheel dataset (left)

Nonlinearities

A quintessential hallmark of models before Big Data is linearity. The scarcity of data

and computational power restricted the class of tractable models to Linear models.

Although linearity leads to computational efficiency and simpler math, it is a very

harmful assumption to make about the underlying structure of the data. Assuming

decision boundaries are hyperplanes on the input data leads to very constrained, re-

stricted models which perform poorly. The reason behind this is geometric: In two

dimensional space it is hard for data to be arranged in a line. In three dimensional

space it is even harder for things to be arranged in a plane. As the dimensionality

grows, from two to three, the space to near-the-plane ratio increases. As the dimen-

sionality increases more and more, area expands exponentially faster and points grow

farther and farther apart. This issue is referred to as the curse of dimensionality and

is the strongest motivation for using nonlinear models as the dimensionality of data

increases. The larger the dimensionality of data, the larger the error of a linear fit.

Deep Learning learns a representation that warps the input space such that the

top linear classification model's decision boundaries are nonlinear in the input space.

Consider the classic pinwheel example. We can see that the Multinomial Logistic

23
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Classifier is restricted to linear decision boundaries on the input space. However the

Deep Neural Network untangles the input space until the optimal decision boundaries

at the top layer are linear. The top layer sees a linearly separable problem, however,

when we look at the decision boundaries in the input space we see a nonlinear classifier.

This insight is what propels Deep Learning ahead in performance. It automatically

learns a representation of the data that simplifies the classification problem.

We will now discuss the top classification layer.

2.6 Multinomial Logistic Model

Multinomial Logistic regression (or Softmax regression) is a generalization of logistic

regression handling multiple classes. In logistic regression we assumed that the labels

were binary: yi E {0, 1}. We used such a classifier to distinguish between two kinds

of classes. Multinomial Logistic regression allows us to handle y E { 1,..., K} where

K is the number of classes we wish to separate.

Note that this model is referred to as the Softmax classifier in the Deep Learning

community - the two are equivalent.

Recall that in logistic regression we have a training set {(Xi, yi),... (., Y.)} of

m labeled examples, where the input features are x E R1. With logistic regression,

in our binary classification task, so our labels took the values yj E {0, 1}, so our

hypothesis took the form of

1ho (x) =OX
1 + exp(-OTx)

and model parameters 0 were trained to minimize the cost function

Jo(x, y) = - yi log ho(xi) + (1- yi) log(1 - ho(xi))
i 1
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The Multinomial Logistic regression generalizes logistic regression to K classes.

Our hypotheses take the form of

P(y =Ix; ) exp(O' X)

ho(x) = j =
K exp(OTX)

P(y = Kjx;6) 3 3 [exp(OiX)J

Note that 0 is now an n x K matrix, and each 0; is a column of lengtli n.

Our generalized Multinonial Logistic cost function now takes the form:

m K

Jo(x,y) = lI{yi = k} log (ho(x)k)
i=1 k=O

2.7 Markov Chain Monte Carlo

Markov Chain Monte Carlo methods allow us to sample from a probability distribu-

tion (posterior) that incorporates our beliefs without looking at the data (prior) and

our beliefs from the data (likelihood). This is extremely difficult to do in general -

it is known to be NP-Hard [6]. If we could perfectly sample from the posterior proba-

bility distribution we could automatically solve every practical problem in computer

science.

Why is this so hard? Remark Bayes Formula:

P(0|x) = P(XI0)P(0)
P(x)

Its numerator, the likelihood and prior are easy to compute and have a closed

form. Its denominator is extremely difficult to compute and requires an intractable

25



integral, the law of total probability:

P(x) = J P(x|9)P()dO

Markov Chain Monte Carlo (MCMC) allows us to approximate the posterior distri-

bution by creating a random walk-like process which converges in distribution to our

posterior. We will focus on the simplest of the MCMC techniques - the Metropolis-

Hastings algorithm.

2.8 Metropolis-Hastings

The Metropolis-Hastings Algorithm is essentially a random walk that begins at a

random location xi. We sample a new xj in any arbitrary manner. This could be

from a uniform distribution, or it can be a minor perturbation of xi. We accept

proportional the ratio of the posterior of xj and xi. We then repeat the algorithm

indefinitely. The acceptance criterion ensures we stay at samples with larger posterior

probability for longer, and it warps our sampling distribution into the posterior. A

full treatment of the Metropolis-Hastings Algorithm can be found in Hastings et al.

[5].

The Full Metropolis Hastings Algorithm

1. For n = 1, 2,... , N, set current state to xi and do

2. Sample from the proposal distribution q(xj Ixi).

3. Evaluate a = q(xiJxj)p(xj)

4. Accept the proposal sample, xj with probability min[1, a] otherwise keep

the current sample xi as the new sample.

Running the Metropolis Hastings Algorithm produces an approximate series of

samples from the posterior distribution. Usually this involves running the Algorithm
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for a burn in period of a few hundred samples before we begin to record samples.

A major difficulty of MCMC methods is identifying when when the algorithm has

converged to the posterior distribution. This is an active research problem.

2.8.1 Stochastic Search

Stochastic Search seeks to optimize a reward function by searching for solutions using

MCMC. The algorithm simply runs a MCMC algorithm to gather a large set of

samples. However, we modify the acceptance criterion to be the ratio of the two

reward functions to favor movements into a high reward regions. The algorithm

returns the sample which resulted in the most reward along the random walk.

27



28



Chapter 3

ComScore Data Analysis

In the previous chapter we described the theory of deep learning. Before we can

apply it to a marketing decision in the context of credit cards, we will introduce the

comScore Credit Card Acquisition dataset. In this chapter we outline comScore's

methodology, describe the data, and discuss statistics about the dataset.

3.1 Data

ComScore is an American Marketing Data and Analytics company that curates an-

alytics for the worlds largest companies; ComScore helps Enterprises make informed

decisions regarding their Marketing efforts and innovations. The ComScore Credit

Card Acquisition dataset contains data for 55,000 applications to 15 major bank

credit card sites, with an average of 28 browsing history URLs per person. Over 30%

of the panelists visit more than one site. Panelists demographics are included as well

as the details of the credit card applications that are accepted (e.g. APR, Reward

Rate, Amount)

29



Database Organization

- -44

- .4

*

Figure 3-1: The organizational structure of the ComScore

dataset.

Credit Card Panelist
Demographics
Machine id
Age, income, zip, machine id

Credit Card
I nformation
Machine id
Sessionid
APR, Reward deta&/s. Fees

APR information

Reward information

Fee information

Credit Card Visitation
Data
Machine id
Session id
URLS visited per session.

Credit Card Acquisition

3.2 Methodology

ComScore builds a very large panel using aggressive recruiting methodology and ac-

counts for error by using advanced statistical methods and controls [8]. Panelists are

paid to participate and install their Ulnified Data Management software. ComScore

developed this proprietary browser extension to defend against cookie deletion and

cookie rejection. The Credit Card Acquisition dataset and the analysis below is only

representative of one of their products.

30
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3.2.1 Credit Card Application Data

This dataset records a panelist's application for credit card and contains the session

id for the application. This dataset has records for 88,524 applications submitted by

55,772 panelists. The bank domains represented include: 'fni-stl.com', 'bankofamer-

ica.com', 'citibankonline.com', 'discovercard.com', 'wellsfargo.com', 'capitalone.com',

'americanexpress.com', 'citicards.com', 'chase.com', 'applyonlinenow.com', 'partner-

cardapply.com', 'barclaycardus.coin', 'usbank.com', 'accountonline.com'. The file-

name for the database is Credit _Card_ Application_Data_FINAL.txt.

Example Row

April 2015 , 2015-04-01 01:04:07.087 , 177051334 ,2639159865552,capitalone.coi

Platinum , 1 , 1

Schema

1. Month: the month the applica-

tion was submitted

2. Event time: the time stamp of

the initiation if there was no sub-

mission or the time stamp of the

submission (GMT)

3. Session id: unique identifier for

the session

4. ProductDetail : name of the

card (standardized)

5. Init: 1 means that a panelist ini-

tiated the application

6. Submit: 1 means that a pan-

elist submitted the application, 0

means that a panelist abandoned

the application
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3.2.2 Credit Card Visitation Data

This dataset records for 179,603 URL navigations in particular sessions. It contains

7,738 panelists with a mean number of URLS per panelist of 23.21. The standard devi-

ation of URLs per panelists is 29.66. The bank domains with URLs are: 'bankofamer-

ica.com', 'discovercard.com', 'capitalone.com', 'americanexpress.com', 'chase.com',

'applyonlinenow.com', 'barclaycardus.com'.

The filenames for the databases are Credit _CardVisitation_ Dataq_2015.txt,

Credit _Card Visitation_ D ata q1 2016.txt, Credit _CardVisitation Dataq2_2015.txt,

Credit _ CardVisitation Dataq2_2016.txt.

Example Row

203774723, 8205829755262666019,2016-03-11

vices2.capitalone.com///keepAliveSinglePage

Schema

1. Machineid: unique identifier 3. E

for each panelist. vi

4. U

2. Session id: unique identifier for to

the browsing session. U

01:11:49.037, ser-

vent time: time- stamp of the

3it (GMT).

RL: includes the host, direc-

ry, and page portions of the

?cL.
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3.2.3 Credit Card Panelist Demographics

This dataset records the demographics of 55,772 panelists. Many panelists submit

multiple demographics surveys over time. There are 70,270 demographics survey

records. The filenames for the database is CreditCardDemosDataFINAL.txt

Example Row

17523872, March 2016, US; 25k-39.999k Louisiana, 35-44, 70115, <600

Schema

1. Machine id: unique identifier

for each panelist.

2. Month: the month the survey

was submitted

3. HH income:

come.

Household in-

4. State: the panelist's state of res-

idence.

5. HH _age: He

age.

6. Zip Code: th

panelist's home.

ad of household

e zip code of the

7. Risk-break: the credit score of

the panelists.
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3.3 Auxiliary Credit Card Information

The Credit Card Acquisition Info datasets are provide auxiliary data about the credit

card awarded to the accepted applicants. All records are indexed by the app-id

attribute.

3.3.1 APR information

This dataset Provides 213,613 records detailing the APR terms of the card. The total

number of panelists with a record is 45,997. The filename for the database is

Credit _ Card_ CCAcqDtl_ APRinfo _final.txt.

Example Row

8714537, 1874857256000003830, citicards.com, Purchase, 0%, 13.24%, 21 months, 1

Schema

1. machineid: unique identifier

for each panelist.

2. session id: unique identifier for

the browsing session.

3. domain-name: URL of the

bank.

4. aprType: the record type, aspect

of APR being detailed.

5. IntroAPRRate: the

the card begins with.

APR rate

6. OnGoingAPRRate: the APR

rate the card has after the intro-

ductory period.

7. APRDuration: the duration of

the introductory period.

8. appid: the unique identifier for

the application
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3.3.2 Fee Information

This dataset provides 252,528 datapoints detailing fee information for the card. The

cards are awarded to 46,231 applying panelists in the dataset. The filename for the

database is Credit Card_CCAcqDt1 FEEinfofinal.txt.

Example Row

10390288, 3797221850298904303, chase.coin, Balance Transfer Fee,5.00%,$5 $5, 2

Schema

1. machine id: unique identifier

for each panelist.

2. session id: unique identifier for

the browsing session.

3. domain-name: URL of the

bank.

4. feeType: the type of fee being

recorded.

5. feePercent: the percentage

fined, if the fee is a percentage.

6. feeAmount: the fined amount, if

the fee is an absolute amount.

7. feeMin: minimum

amount to be fined.

absolute

8. appid: the unique identifier for

the application

35



3.3.3 Reward Program Information

This datast provides 45,159 datapoints detailing the reward programs for the cards

awarded to 20,082 applying panelists in the dataset. The filename for the database is

CreditCardCCAcqDtlMAINinfo_final.txt.

Example Row

7661215, 62959841, capitalone.com, Ongoing, 1%, cash back, 1

Schema

1. machineid: unique identifier

for each panelist.

2. session id: unique identifier for

the browsing session.

3. domain-name: URL of the

bank.

4. rewardcategory: details if the

fee was ongoing or a one time

award..

5. rewardamount: the amount

awarded often as a percentage.

6. rewardtype: the general, e.g.

miles, points, credits.

7. appid: the unique identifier for

the application
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3.3.4 Auxilliary Information Header

This datset provides the indexing information for all other card infornation records.

There are 79,839 records for 50,638 applying panelists. The filename for the database

is Credit _ Card_ CCAcqDtlMAINinfofinal.txt.

Example Row

13703835, 52474229, citicards.com, Sears, 2

Schema

1. machine id

2. session id

3. domain-name

4. productdetail

5. appid
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Dataset Statistics

In this section we will cover some statistics about the dataset we derive from the com-

Score data. We use a small portion of the comScore data which is at the intersection

of users with Demographics, Visitation, and Auxiliary Card information. This repre-

sents a dataset of 58,043 datapoints and is a subset of the comScore panelists. The

statistics here are for that subset, and are not statements about the general comScore

panel.

Incomes

We present the incomes for the dataset. There is a good representation for all general

income levels less than $150k.

Dataset Income Distribution
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Age Distribution

The age distribution for our dataset peaks at 45-54.
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The location distribution of panelists in the dataset matches the general distribution

in United States. Population with over representation in California and Florida.
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Application Statistics

In this section we will focus on the credit card application statistics.

Number of Accepted Applications per Panelist

Since our dataset requires cards to have been approved, about one third of the pan-

elists in our dataset were granted more than one card.
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Number of Applications per Company

We see a power law distribution in companies represented in our dataset. The most

represented company is Discover.

Number of Applicants per Company
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Links distribution

The most common URLs tend to be rather mundane and are the loaded guts of the

websites. Often these files are used to govern the website behavior and control the

appearance of the website. These are example URLs which account for the top 1000

URLs:

1. applynow. chase. com/FlexAppWeb/styles/flexapp/css/blank.html,

A seed template which styles the rest of the pages on chase.com.

2. www.chase.com/apps/services/tags/https/applynow.chase.com/

FlexAppWeb/renderApp. do,

A URL which calls a java API call. This tells the backend to serve the applica-

tion.

3. application. capitalone. com/icoreapp/jsp/gmcLanding.faces,
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A photo icon.

However the mid-frequency URLs tend to carry information about the interests

of the consumer. These higher variance URLs are often indicative of the consumer's

interests and background.

1. www. chase. com/apps/services/tags/https/www. chase.com/online/

military/military-personal.htm,

A landing page for military personnel.

2. www262. americanexpress . com/business-card-application/prospect-app/

business-platinum-charge-card/prospectsubmit/0-9-0,

The initial page of the Chase Business Platinum card application.

3. creditcards.chase.com/slate-credit-card/learnmore-applyl,

The Slate Card information page

4. www. chase. com/resources/fraud-prevention,

Information on Chase's fraud prevention program.

The higher variance, less frequent URLs carry the most information about the

panelists interest. Furthermore we can see the wealth of information that lays un-

tapped in browsing history.

Although most browsing information tends towards the mundane browser me-

chanics necessary to operate the website, we are interested in the dark data. The

humdrum of internet commerce produces an extraordinary amount of unused brows-

ing data. Classical models are ill equipt to handle the data as often the relationships

are statistically complex and nonlinear.

In the next chapter we set the stage for a comparison of Deep Learning and Logistic

Regression and demonstrate the ability of Deep Learning to find useful representations

of data emissions.
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Chapter 4

Preference Modeling

4.1 Motivation

The main contribution of this thesis is in exploring the use of more advanced models to

answer manageriaI questions formulated as inference problems. To perform Bayesian

inference we need to learn a preference model of customers for credit cards. Deep

Learning can learn rich representations of customers and capture subtle variations of

preferences.

4.2 Preference Model

Given a feature vector which encodes a customer, we wish to learn a distribution over

card attribute preferences. The preference model of a card c given customer x is the

product of all attributes a likelihoods in the attribute set A.

PcIx(c,x) = PCIX((,aIX)
a-A

We will explore three different models to learn the distribution with interesting

consequences. We will also evaluate their performance with Bootstrap sample (ex-

plained in the performance section).
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1. Baseline We use a baseline which predicts the most common card in the train-

ing data. For our dataset this was the Discover It Card with a cashback rewards

program. Because each bootstrap sample randomly splits the dataset, the accu-

racy of the baseline (percentage of cards which is the Discovery it Card) varies

from bootstrap sample to sample.

2. Multinomial Logistic Regression (MLR) We learn each attribute distri-

bution is shallow PCaIx(ca x) model independently and assume the likelihood

factors over card attributes.

3. Deep Neural Network Regression (DNN) We learn each attribute distri-

bution pcaix(cajx) model over a deep neural network. This uses Deep Learning

to model customers with a rich hierarchical representation.

Deep Neural Network Multinomial Logistic Regression

Card Attribute Distribution Card Attribute Distribution

U

>

Representation Layers Classificatlon Layer

Figure 4-1: Visualization of the model architectures. We can see that the Deep Neural

Network can be thought of as a Multinomial Logistic Regression on top of a Deep

Representation.

A similar Multinornial Logistic and Deep Learning model performance would sug-

gest that there is little mutual information between various attributes, and the dataset

has few nonlinearities. It could also suggest that we have insufficient data to attain

statistical strength for a Deep Learning model (as deep models have more parame-

ters).
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4.2.1 Independence structure

The representation layers of the Deep Neural Network model create interdependence

between the various attribute distribution layers and allow us to make predictions

about unseen attribute combinations. A Multinomial Logistic Regression model can

not capture interdependence between attributes and models them as separate models.

This independence structure constrains the class of questions we can ask. A Multi-

nomial Logistic Regression can not answer managerial questions about the interplay

of attributes such as "Would a higher reward rate make customers more willing to

accept a higher interest rate?"

The Deep Neural Network models captures a representation where we can perform

inference on unseen cards through its similarity to learned cards in the representation

space.

4.3 Datasets

We are interested in investigating the ability of various models to distill information

that lies in the unstructured unintelligible links data. Two datasets are considered:

1. Demographics (NOLINKS): A dataset of 58k pairs of customer feature vec-

tors and chosen card attribute vectors. The customer feature vectors include

only demographics information.

2. Demographics+Links (LINKS): A dataset of 58k pairs of customer fea-

ture vectors and chosen card attribute vectors. The customer feature vectors

both demographics information as well as a 30 minute session browsing history

encoded as a 0-1 vector.

4.4 Training

Training algorithms search for the best model by iteratively changing the parameters

to improve a loss function.
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Figure 4-2: The training statistic on the validation set. We use the entropy loss
criterion to terminate training and we see convergence occurs after 40,000 iterations.

The Multinomial Logistic Regression model was trained using the classical L-

BFGS [191. L-BFGS is a classic second order optimizer.

We trained the Deep Neural Network using Stochastic Gradient Descent provided

by the Torch 118] optim package. The performance reported here was achieved with

the following learning parameters.

" learning rate: a = 0.05,

" learning rate decay: q = 0.0001

* weight decay: A = 0.0001

" momentum: v = 0.1

Furthermore we use batches of size 100, and GPU accelerates training. Batches

increase the statistical strength of our gradients and improve convergence speed and

stability of the algorithm.

4.5 Evaluation

We use two criteria to evaluate the performance of the models. The maximum like-

lihood prediction rule captures the prediction accuracy of the models. The cross

entropy criterion is a measure of how well the models capture the probability distri-

bution of the attributes.
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1. Maximum Likelihood Prediction: We predict the attributes which have the

highest likelihood. The value of this criterion is the number of correct attributes

in the prediction.

2. Cross Entropy Criterion The cross entropy criterion captures the surprise

of the model by the outcome. Namely, the number of bits necessary to encode

the result given the predictive distribution. It is a measure of distance between

distributions.

N

L (x, c) =[log (1p, 1x (ci ))
i=:1

4.5.1 Performance

To evaluate the performance of each model we employ a simple Monte Carlo technique

called Bootstrap Sampling. The idea is simple - If we have a statistic, such as a

performance metric, we can estimate the true distribution of the performance metric

by generating N datasets, each a different random training-validation-test set split.

We can then estimate p-values for our hypothesis. Namely, Deep Neural Networks

have superior performance over Multinomial Logistic Regressions.

We gathered 100 bootstrap samples with a 50-25-25 training-validation-test set

split and report the mean evaluation statistics. All p-values were well below 0.001.
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Figure 4-3: 100 Bootstrap sample performance on the LINKS dataset (Above) and

the NOLINKS dataset (below).

NOLINKS Bootstrap Samples Statistics

Model Prediction Accuracy(Standard Deviation) Cross Entropy

Baseline 33.41%(0.55%) 00

MLR 43.45%(0.53%) 2.1028

DNN 52.01%(0.21%) 1.2367

LINKS Bootstrap Samples Statistics

Model Prediction Accuracy(Standard Deviation) Cross Entropy

Baseline 33.45%(0.55%) 00

MLR 45.74%(1.32%) 1.7314

DNN 58.50%(0.27%) 0.8721

As we can see the DNN model outperformed the MLR model on all datasets.

Furthermore, we observe a superior cross entropy on the DNN which demonstrates

that Deep Learning models are better able to capture the attribute distribution.

We also remark that the DNN model is able to distill more information from the

48

0,35 ).6

0

degit
.8E2 deep

0.35 0.4 0.45
Accuracy

nks

3



unstructured browsing session than the MLR model. We see that the increase in

performance across the two datasets is significantly larger in the DNN.

4.6 Conclusion

In this section we outlined a method for capturing a preference model that predicts

customer choices. We outlined various training algorithms and demonstrated that

Deep Neural Networks significantly outperform the Multinomial Logistic Regression

model.

In the next chapter we will see how to utilize the learned preference model to

answer a variety of managerial questions.
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Chapter 5

Managerial Applications

5.1 Motivation

In this section we frame several managerial questions as inference problems empow-

ered by sophisticated Deep Learning models. There are three general inference prob-

lems we will tackle, offering an example managerial question for each.

" Inference of Customer Feature Vector given Card Attributes: What

are the target demographics for a particular card?

" Inference of Card Attributes given Customer Feature Vector(s): What

types of cards attract low income, low credit score customers vs. high income

high credit score customers?

" Competitive Market Simulation: Given a cost model, what cards would be

most profitable to introduce?

5.2 Inference of Customer Feature Vector given Card

Attributes

Given a card we wish to infer the customer demographics distribution. We approach

this problem by applying Markov Chain Monte Carlo methods to sample from the
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posterior distribution. The posterior over customer feature vectors X given a par-

ticular card attribute set c is simply Bayes rule with the model likelihood and the

testset prior distribution..

p(XIC = c) = p(clX)p(X)
P(c)

Feature vectors for our model include demographics information and browsing

history. Inference problems involving browsing history may inform choices pertaining

to customer acquisition. Browsing history may evaluate advertisement venues, as well

as inform the optimization of websites.

We will explore inference of customer demographics by comparing the Jetblue and

Delta cards. Both cards offer similar rewards schemes yet differ drastically in their

target demographics. The JetBlue MasterCard offers 5,000 miles and a 1 mile per

dollar reward. The Delta Reserve card offers 10,000 miles and a 1 mile per dollar

reward. We see the JetBlue card is more popular with students 18-24 earning $60k-

74k. The Delta Reserve card on the other hand appeals to a more adult customer

base with the strongest affinity for 55-64 year olds earning $25k or less.
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Figure 5-1: Target demographics of the Delta Reserve Card vs. the JetBlue Master-

Card.

Next we will compare the hotel card category. We pick two similar cards which

attract very different customer demographics, the Marriot Rewards Premier Business
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card and the Hilton Honors card. Both cards offer 10 points per dollar spent at the

hotel chain. However, we see that the Marriott Rewards Premeier Business card has

a much stronger affinity for the 23-34 year olds with income more than $200K, and

780+ credit scores, whereas the Hilton Honors card has a much broader customer

base. Part of this difference may be due to over-fitting as the dataset has few points

for individuals in this income bracket.
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5.3 Inference of Card Attributes given Customer Fea-

ture Vector(s)

Given a customer feature vector inference on card attribute preferences is performed

as a forward pass of the Deep Neural Network model. We choose two samples to show

the subtle changes in preferences in two customers from the test set.

1. high income high credit score: We can see that the model has high affinity

for cash reward business cards, and premium hotel cards. The model suggests a

mid-low APR range with high probability (14.24%). The reward schemes with

highest probability is are cashback, points, and miles systems.

Product Detail
APR

Classic Platinum MasterCard
14.24%

Barclaycard Rewards Mastercard
10.99% -14.24%

Marriot Rewards Premier Business Card

2. low income low credit score: The model also predicts a high interest rate for

the customer (19.49%). The reward schemes with highest likelihood are travel

related.

Product Detail
APR

Disney Reward Premium Visa
19.49%

Delty Sky Miles Gold
19.24%

Venture One Rewards Visa

5.4 Competitive Market Simulation

In this section we will explore new product introduction strategy using Stochastic

Search methods. Stochastic Search methods have a rich history in A.I., ranging from

the record breaking chess program Deep Blue [7] , to the Monte Carlo Tree Search

algorithm employed by Alpha Go [1]. Stochastic Search explores a search space by

moving in a random walk biased towards areas that have the best reward, and keeping



the best strategy so far. In other words, stochastic search seeks the best strategy in

a search space, and does so proportional to the observed reward in the area.

We will use Stochastic Search to find the best strategy to introduce a new card

into the market by using our preference model to approximate card adoption and a

cost model to compute the reward function.

5.4.1 Cost Model

Our profit model is computed as a percentage of expenditure. We assume that each

customer spends 10% (Scustomer = 0.1) of their annual income (icustomer) using the card.

We charge 1% in transaction costs (t = 0.01). We assume that customers borrow 50%

of their expenditures bcustomer = 0.5, and we charge a card dependent interest rate

(acard). The card dependent rewards rate (rcard) is deducted as a cost of the product.

Furthermore, we assign a default probability to each customer proportional to their

credit score(dcustomer). (see appendix).

t = transactionCharge

bX = customer borrowing rate

acard = card interest rate

dc = defaultRate

rcard = reward rate for card

sX = Monthly spend as a percentage of income

ic = customer income

Reward(customer, card) = (t + acard * bcustorner - dcustomer - rcard) * Scustomer * icustomer

5.4.2 Stochastic Search Algorithm

Our Search Algorithm receives a set of customer feature vectors from the test set

which represent our market, and a set of N competition cards as a list of attributes
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per card. We generate a random card to introduce, x. Given our current card x we

randomly change an attribute and use our preference model to sample customer card

choices and compute the profits for the new proposed card. We accept according

to a Metropolis Hastings acceptance criterion. After 1000 MCMC samples from the

reward distribution, return the card with the highest estimated reward.

5.4.3 Simulation Results

We constrained the card space to include only three attributes Rewardanount, Re-

wardtype, OnGoingAPRRate. These were allowed to only take values which could

be priced by the reward function. For example, we removed reward attributes such

as 'Amazon Gift Card'. The test market contained 14, 511 customer feature vectors.

We chose the five most popular competitor cards.

1. Mixed Market: Our first experiment is to optimize a card in a varied market

that has strong competitors in every category. We selected the most popular

card of each category. The algorithm identifies opportunity in competing with

the existing cashback card. We see that by reducing our APR to 12.9% we

capture a predicted $15.9M in market share.

Card Rewards Rewards rate APR Profit(Pre-existing)

1 Cashback 1% 17.24% $8.94M($20.9M)

2 Points 1% 19.24% $6.48M($8.6M)

3 Miles 1% 15.99% $2.2M($3.9M)

new Cashback 1% 12.9% $15.9M

2. Competitive Market: We restrict our existing market to the three most

popular cashback cards in our dataset. We see that the algorithm arrives at a

solution that has the lowest APR. Although this suggestion seems trivial, there

is a trade-off between profit and customer share in optimizing APR. Our result

underscores the importance of the cost model.
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Conclusion

We have developed a paradigm for answering managerial question by framing them

as inference problems. We translate frameworks developed to allow Game A.I.s to act

optimally to the context of making marketing decisions. We have shown the potential

applications of this framework with empirical data.
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Card Reward Amount APR Profit (pre-existing)

1 Cashback 5% 23.24% $3.18M($6.2M)

2 Cashback 1% 23.99% $5.87M($10.8M)

3 Cashback 5% 16.99% $9.49M($13.99M)

new Cashback 1.5 % 12.99% $13.2M



Chapter 6

Conclusion

We have presented a framework for learning about customer product preferences

from inexpensive Big Data exhaust. The power of our approach is that we are able

to train Deep Neural Networks by embracing unstructured Big Data. A surprising

amount of predictive power can be distilled from the data exhaust of ordinary internet

commerce. In turn, these sophisticated models can be used to answer managerial

questions regarding product opportunity discovery.

6.1 A Leap of Faith

Perhaps the most unsettling of implication of the work presented here is that so

much of our predictive advantage comes from uninterpretable data exhaust in models

which seem over-parameterized. Deep Learning may give us the ability to automate

the search of relevance and importance in the input data, but by having so many

parameters it may actually blind us from the interpretation of the unstructured data.

It suggest future methods might let go of interpretability and take a leap of faith.

When Deep Learning revolutionized computer vision, the research community aban-

doned symbolic models which took constructive approaches to identifying objects in

images because it became obvious that although we see, say, a cat we lack an ability

to explain how and why we came to that conclusion. When intuition was abandoned,

connectionist models like Deep Neural Networks were found to converge to strikingly
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similar networks as those found in the early vision system in the human brain. Deep

Neural Networks form continuous representations that are otherwise inaccessible.

6.2 Future Research

The comScore dataset is quite restricted in size and depth. Furthermore this work

assumes that consumers implicitly reject all other cards by acquiring a card. Websites

like Credit Karma and Nerd Wallet would give this research a rigorous notion of the

consideration set. The input to the Deep Neural Network could contain a set of flags

for which cards are being considered.

6.2.1 Sequential Modeling

The Monte Carlo techniques we use to answer managerial questions represent a sin-

gle iteration of the techniques used in Deep Reinforcement Learning systems like

AlphaGo. In the setting of a Game A.I., we repeat the process of searching for op-

timal actions and sequentially observe their outcome rewards. In our setting we can

not simulate the true market response and therefore we can only estimate one move

ahead. Improving our method to tackle a sequential control process is difficult in

an academic setting and seems strictly an applied problem. But perhaps sequential

modeling of browsing history might result in more predictive power. Recurrent Neu-

ral Networks require even larger datasets and are perhaps out of the scope of the

comScore Dataset.

6.2.2 Tackling other Products

The credit card domain has a clear intuition as the structured product space of

attributes. A card constitutes of a reward program, an interest rate, and borrowing

limit policies that operate rather independently and can be mixed. Other products

with more amorphous product spaces, such as cars, remain out of reach.

However, credit cards are a capricious product space themselves. Brand loyalty
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can be difficult to capture and integrate into answering managerial questions. We

approached this problem by marginalizing the distribution over all brands and ignor-

ing it in our inference. However this might lead to suggestions that Alaskan Airlines

should introduce a cashback card to compete against Bank of America. Integrating

brand information is an important future work for this project.

6.3 Conclusion

Our framework for learning about customer preferences from Big Data has the po-

tential to scale to levels which are prohibitively costly with current Market Research

and Analytics methods. Moreover it is capable of extracting from the dark knowl-

edge in unstructured data exhaust. We have shown that our predictive models can

be successfully used to answer managerial products regarding product opportunity

discovery.

In Targeted Advertisement, enterprises select their audience through sophisticated

models. In Advertisement Morphing, enterprises can customize their messages. Our

framework empowers enterprises to optimize their products in an automated manner,

allowing for customization to the needs of the customer.
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