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Abstract

Formal verification of software has become a powerful tool for creating software sys-
tems and proving their correctness. While such systems provide strong guarantees
about their behavior, they frequently exhibit poor performance relative to their unver-
ified counterparts. Verified file systems are not excepted, and their poor performance
limits their utility. These limitations, however, are not intrinsic to verification tech-
niques, but are the result of designing for proofs, not performance.

This thesis proposes a design for large files and in-memory caches that are amenable
both to a high-performance implementation and proofs of correctness. It then de-
scribes their usage in VDFS, a verified high-performance file system with deferred
durability guarantees. The evaluation of VDFS' performance shows that these addi-
tions measurably improve performance over previous verified file systems, and make
VDFS competitive with unverified file system implementations. This thesis con-
tributes implementation techniques for large files and in-memory caches that can be
applied to increase performance of verified systems.
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Chapter 1

Introduction

In the world of software engineering, it is a generally accepted truism that, despite

programmers' best efforts to the contrary, most software has bugs. While this is not a

new phenomenon, it has received more attention in recent times as software systems

have grown larger and more complex. New techniques and practices have been devel-

oped and incorporated into the standard practice to combat the growth of such errors,

including automated testing, symbolic execution, and mandatory code audits. Like

the software they seek to improve, these systems are imperfect: automated testing

typically covers only a fraction of possible inputs, symbolic execution is impractical

at large scales, and code audits require experienced developers who can still make

mistakes.

More recently, as the computing power available to individuals has increased, the

usage of formal software verification has become practical as another tool for fighting

bugs. Instead of running code through a battery of test cases, formal verification

seeks to rigorously define the expected behavior of code, and prove with mathemati-

cal certainty that its implementation meets this specification. While not widely used,

formal verification has yielded some impressive results, including verified kernels (Cer-

tiKOS [1], seL4 [2]), optimizing compilers (CompCert [3]), and file systems (FSCQ [4],

Yggdrasil [5]). While correct, these systems often have significant asterisks attached,

including missing functionality or lackluster performance relative to their unverified

counterparts. The goal of this thesis is to remove some of the limitations from, and

11



improve the performance of, the FSCQ file system.

1.1 Background: FSCQ

FSCQ [4, 61 is a verified file system written using the Coq 17] proof assistant. As

should be expected from a verified file system, FSCQ provides an implementation

of a significant subset of the POSIX file system operations [8], and includes proven

top-level specifications about each system call. These proofs are fully mechanized,

allowing anyone with access to the source code to run Coq's proof checker and verify

their validity.

Like most verified systems, FSCQ's proofs only address correctness, not perfor-

mance. While an earlier prototype of FSCQ [4] supported only synchronous disk

operations, the version that VDFS builds on implements deferred durability guar-

antees. Instead of being written to disk immediately, each operation is allowed to

be persisted asynchronously, in-order, and is only guaranteed to be durable after

an sync o operation. This deferred durability guarantee is similar to that provide

by ext4 [9], a popular Linux file system. Like ext4, FSCQ exploits the asynchrony

allowed by deferred durability to provide high I/0 efficiency. However, due to high

CPU overhead, FSCQ's actual execution speed is much slower than ext4, which limits

the workloads it can handle.

1.2 Goals

This thesis seeks to address some of the functionality and performance issues of FSCQ,

both by increasing the maximum supported file size by several orders of magnitude,

and by addressing several performance issues through the addition of in-memory

caches. This modification of FSCQ with support for large files and caches will be

referred to as VDFS.
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1.2.1 Large files

The general expectation of file systems is, somewhat obviously, that they are capa-

ble of reliably storing and retrieving files. While important to the proof, the actual

maximum size of the file is of little concern for research systems-both FSCQ and

Yggdrasil only support files of up to 2MB. Unlike FSCQ, VDFS aims to target ap-

plications with more stringent requirements, like high-performance databases, which

are written with deferred durability guarantees in mind and take full advantage of

the speed increases they offer. Such systems, however, typically expect to be able to

allocate much larger files on disk, on the order of hundreds of megabytes or gigabytes

in size. VDFS addresses this limitation in FSCQ by extending the maximum file size

to 513GB.

In FSCQ, VDFS, and other file systems, files are represented as indexed nodes, or

iModes, where each inode logically represents a single file. Since each inode is relatively

small, instead of storing all block numbers for a file in the inode, the inode stores a

few direct block numbers, as well as a number of indirect blocks. Each indirect block

contains several more block numbers, either for direct or additional indirect blocks.

While FSCQ's inodes are limited to several direct block addresses and a single indirect

block, VDFS follows the approach of most Unix file systems and extends this scheme

by adding several levels of indirect block to each inode.

Unlike a typical file system, VDFS implements and proves specifications for op-

erations on general n-indirect blocks. While it may seem counter-intuitive, this helps

to simplify the implementation and reduce the proof burden. By instantiating n with

indirection level 3, VDFS uses the generic code and proofs to succinctly implement

and specify operations over concrete inodes with singly-, doubly-, and triply indirect

blocks. While the generic approach requires reasoning about all indirection levels

simultaneously, it is significantly more conducive to verification. While specialized

implementations for each of the three indirection levels would require proofs over

three cases, the general approach allows each function to be defined once, and allows

proofs to be performed inductively with only a base and an inductive case each.
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In addition to the on-disk representation, FSCQ's code makes certain assumptions

about the maximum size of files. In particular, the fdatasync operation in FSCQ,

which ensures that all changes to the data blocks for a file are persisted to disk, runs

in time proportional to the length of the file. This is acceptable for files which contain

a maximum of approximately 512 blocks, but is less so for files whose maximum size

is more than 227 blocks.

To circumvent this potential performance issue, VDFS, in addition to caching dirty

blocks in-memory before writing them out to disk, keeps a list of dirty blocks for each

file. This allows it to implement f datasync with a running time proportional to the

number of dirty blocks in the file, thus avoiding unnecessarily penalizing operations

on large files.

1.2.2 In-memory caches

While support for larger files increases the applicability of VDFS, it does not address

FSCQ's overall slow execution. Some of the performance penalty seen by FSCQ can

be attributed to its extraction to Haskell, a functional language that Coq supports

natively. Much of it, however, can be attributed to nafve implementations of various

operations in FSCQ that, while slow, are easy to prove correct. Though some of

the performance issues can be addressed by small code changes-iterating forwards

over lists instead of backwards, for instance--many require larger modifications. This

thesis extends FSCQ with several in-memory caches, which are designed to prevent

unnecessary searching and duplication of work.

Like the on-disk state of the file system, each of these caches has an invariant

over its contents that must be maintained throughout execution. These invariants

typically state that the cache reflects some convenient transformation of the on-disk

state, such that the elements of the cache can be used in place of the results of disk

operations. This requires that every operation that updates the disk also update the

cache, and that the cache invariant still hold afterwards. While this adds several

additional proof obligations, it is necessary for correctness. To aid in the proofs of

invariant maintenance, these caches share several common properties.
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The first property is that no cache contents are required for correctness: if a cache

look-up fails, the result is the same as if the cache didn't exist. This ensures that it

is always safe to remove any or all elements from the cache, and that an empty cache

satisfies its invariant. In addition, it allows code that modifies state to update cached

data or remove it, allowing both write-through and invalidation implementations-

both satisfy the invariant.

The second property is that the caches are treated as local and opaque. Caching is

implemented as a separate layer on top of existing code, thus decoupling the responsi-

bility of cache maintenance from operation implementation. This allows transparent

addition of caching layers without affecting other layers or invariants.

Finally, the cache invariants specify absolute consistency between present elements

and the on-disk state. Instead of treating cached elements as hints which must first

be verified to ensure correctness, the invariants ensure that cached results can be used

to satisfy requests without any additional checks.

1.3 Outline and Contributions

Chapter 3 describes FSCQ, upon which VDFS is built, and provides background

context for this work. The contributions of this thesis are presented as follows:

" Chapter 4 describes a design and representation for large files and in-memory

caches that is conducive to verification and performance.

" Chapter 5 details how these optimizations are implemented in VDFS, the first

high-performance verified deferred-durability file system. Note that while their

design is sound, the correctness of these optimizations has not been completely

proven.

" Chapter 6 contains an evaluation of VDFS' performance relative to other file

systems on a variety of disk configurations that demonstrates that VDFS is

significantly faster than FSCQ and competitive with unverified file systems.
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Chapter 2

Related work

The work described in this thesis builds directly on the FSCQ file system developed

in Haogang Chen's doctoral thesis [6], and constitutes a set of optimizations applied

to improve its performance and usability. By implementing common file system tech-

niques in a verified setting, VDFS provides increased performance over FSCQ and

other previous verified file systems.

2.1 File-system verification

While formal verification of programs is not new, there has been significant recent

progress in the area of verified file systems. Cogent [10] is a verified file system that

supports deferred durability and produces highly efficient executable code, but lacks

a specification and proof of the entire file system. FSCQ [61 is another verified file

system; while it implements deferred durability and provides a top-level specification

of correctness, its run-time performance is poor. Yggdrasil 15], the most recent result,

uses a state-of-the-art SMT solver to automatically verify that a file system meets

its specifications without manual proofs. It produces fast executable code, though it

is unable to provide a top-level proof for the example deferred-durability file system.

While the VDFS implementation builds on top of FSCQ, it could benefit from the

use of an SMT solver to reduce manual proof effort as Yggdrassil does. VDFS also

uses the same extraction system as FSCQ; though it would increase the proof burden,
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VDFS could likely reduce execution overheads by using a lower-level or domain specific

language like Cogent.

2.2 Indirect blocks

The use of indirect blocks to store file system data is not a new one; they were used in

the file system for the original Unix time-sharing system 111], which was released in

1974. While verified file systems like FSCQ and Yggdrasil make use of indirect blocks,

and Cogent uses doubly indirect blocks, none of them, nor other prior work on file

system verification [12-201 use VDFS' technique of generalizing the implementation

for all indirection levels.

2.3 In-memory caching

Modern file systems like ext4 perform extensive caching of on-disk information in-

memory [21] with the intent of reducing file system I/O operations. While previous

verified file systems, including FSCQ, cache entire blocks in memory, they do not use

VDFS' approach of retaining deserialized structures in memory for faster lookups.

Whereas some file systems preload caches predictively [22], VDFS implements caches

lazily, loading data only when necessary.
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Chapter 3

Background

One of the main contributions of FSCQ is its development and use of Crash Hoare

Logic (CHL) [4] to reason about the flow of programs and their possible crash

states. In CHL, theorems about execution are stated as quadruples of the form

{{pre, post, crash, prog}}, where post is condition that holds after executing prog, if

the condition pre held before execution. crash is, then, the condition that holds on

any state produced by a crash during the execution of prog. By matching pre- and

post-conditions together, these CHL quadruples can be chained to produce proofs

about larger programs. Indeed, this is exactly how FSCQ works-it chains together

these execution theorems to produce specifications for entire file system operations.

To describe the pre-, post-, and crash conditions, FSCQ uses predicates over the

on-disk contents. Since on-disk contents are cumbersome to reason about directly,

FSCQ makes use of multiple logical address spaces to capture program and disk state

at various levels of abstraction. The directory-level representation of the file system,

for example, is separate from the block-level address space of the physical disk, even

though the directories reside on disk. The connections between these address spaces

are represented as invariants which are then maintained by the program execution.

FSCQ makes these levels of abstraction concrete by splitting the actual implementa-

tion into corresponding layers, each with their own functions and specifications. These

layers are described below, and their relationships are depicted visually in Figure 3-1.
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DirTree AsyncFS

Dir

BFile

Inode Allocators

Cache Log

Figure 3-1: FSCQ is built from individual layers to reduce complexity.

3.1 Construction of FSCQ

At the lowest level of abstraction is FSCQ's block cache layer, which implements a

bounded-size in-memory cache of disk blocks. While not necessary for correctness,

this provides huge performance benefits by substituting most disk reads and writes

with pure memory operations. Built on top of the cache is the log layer, which uses

write-ahead logging to present a "reliable disk" abstraction. Where the physical disk

is capable of reordering writes, the reliable disk wraps operations in transactions and

ensures that each transaction fails or succeeds atomically. This is done using standard

write-ahead logging techniques and a recovery procedure that restores the physical

disk to the last logged state after a crash. By making transactions atomic, the log

layer allows the layers above to mostly avoid reasoning about crashes, as all operations

above the log are transactional.

The inode layer builds upon the reliable disk abstraction to transform the individ-

ual block-level view of the reliable disk into indexed nodes, or inodes. Each inode is

individually addressable and contains both a set of attributes and a fixed-length list

of block numbers. The block file layer uses these attributes and block number lists

to implement "b-files". Each b-file stores a variable-length lists of blocks and some

associated metadata. Building on the b-file abstraction, the directory layer represents
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directories as specialized b-files whose blocks are used to store variable-length lists of

(name, inode) pairs, which represent directory contents. The directory tree layer uses

the directory representation to present a high-level view of the file system as a tree

of named directories and files. At the top level, the AsyncFS layer wraps directory

tree operations inside transactions to implement the final file system interface that

is exported to callers. For convenience, FSCQ includes a generic allocator that is

instantiated once each to track allocated inodes and blocks.

3.2 Separation logic

Since each level of abstraction introduces additional logical address spaces, it is nec-

essary to have a convenient system for reasoning about their contents. In FSCQ,

this system takes the form of predicates applied to the respective address spaces. By

defining these predicates using separation logic [23], FSCQ's specifications make it

easy to reason about changes to disjoint parts of the disk.

The most basic separation logic predicate is the points-to relation, written a * v;

it specifies that in any address space to which it is applied, the address a maps

uniquely to the value v. This allows predicates to impose conditions on address

spaces, and to describe connections between them. The inode invariant, for example,

is a specification over two address spaces: a concrete array of inode records, and a

list of logical inodes. For a given inode number i, it states that if i -+ I in the

inode record list, then i + INODE(I) in the logical inode space, where INODE(I)

represents the transformation from on-disk to abstract inode state. By maintaining

this invariant, the inode layer ensures that INODE(I) is a correct abstraction of I.

In addition to the points-to relation, separation logic provides a combining oper-

ator *; if the predicate p*q holds over an address space, the space can be separated

into two disjoint address spaces, one of which satisfies p and the other q. This allows

invariants to concisely state facts about parts of address spaces and ignore the rest.

For example, the specification for a write of v to block a can specify that for all pred-

icates F and values vo, if F*a i-+ vo holds on the disk before the write, then F*a H-4 v
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holds after. By using separation logic, this operation can effectively ignore all disk

blocks except a, thus trivially guaranteeing that F is maintained on the rest of the

disk.

3.3 Deferred durability

In order to provide strong guarantees about the durability of data on disk after a

system call, a file system must ensure that the results of each operation are persisted

to disk by waiting for all pending writes to complete before returning. To ensure that

each system call is durable upon completion, the file system must flush all disk writes

from the cache and executes a disk SYNC operation before returning. While this model

provides strong guarantees about consistency, it significantly hampers performance.

In a logging file system like the FSCQ prototype, each system call must write every

block twice: first to the log, and then to the actual location on disk; and sequential

operations that modify the same block still incur this overhead.

To provide improved performance, most modern file systems provide weaker guar-

antees about the durability of data, such that disk operations can be deferred until

convenient. FSCQ implements deferred durability; where the synchronous prototype

of FSCQ ensures that each operation is persisted immediately, FSCQ guarantees only

that a prefix of the operations are persisted. This allows it to buffer, but not reorder,

the results of system calls. FSCQ takes advantage of the weaker guarantees to co-

alesce multiple transactions in-memory before writing them to disk, and to collapse

duplicate block updates between transactions. In addition, FSCQ avoids writing file

data blocks to the log when possible, instead implementing log-bypass writes that

update the actual file blocks directly. FSCQ implements the standard sync () system

call to allow applications to force updates to individual files and directories to be

persisted.

To facilitate reasoning about deferred durability, FSCQ's log layer exposes not

just the current disk, but a sequence of disks. The latest disk represents the contents

that would be returned by a read call, but not necessarily the data persisted on disk.
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Because the block cache can defer writes, and because the disk itself buffers and re-

orders writes, the actual on-disk data can differ significantly from the contents of the

current logical disk. On a crash, the disk "chooses" the contents for each block such

that for each block number, the on-disk contents are in the corresponding location of

some disk in the disk sequence. This models the ability of the disk controller to flush

blocks asynchronously; the selected contents for each block correspond exactly to the

last contents that were flushed. The specification for the sync () operation simply

guarantees that, upon completion, for each disk in the disk sequence, the value for

flushed blocks is exactly the last value written to disk. This ensures that while the

disk can "choose" any values from the disk sequence, the only possible value for flushed

blocks is exactly the last flushed value.

3.4 Extraction

One of FSCQ's primary contributions is that, unlike previous work, it is a complete

file system with both proven specifications and executable code. Because FSCQ's

code and specifications are implemented in Gallina, Coq's code extraction facilities

are used to transcribe the executable functions into Haskell. This extracted code is

then compiled against the Haskell standard library with a small trusted interpreter

into a single binary that, when executed, implements a FUSE server. By using the

FUSE API in the Linux kernel, FSCQ allows applications to read and write files us-

ing the standard POSIX system call interface. VDFS retains FSCQ's extraction code

almost unmodified, though it substitutes some native Haskell functions for their ex-

tracted counterparts when the unverified substitute provides substantial performance

improvements. By combining the trusted interpreter and FUSE implementation with

verified code, VDFS can provide a verified file system implementation to unmodified

applications that use the standard system call interface.
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Chapter 4

Design

The changes that VDFS introduces over FSCQ can be partitioned into two groups:

support for large files, and in-memory caches. With regards to design, VDFS adds

support for large files by generalizing the indirect block representation of FSCQ for

arbitrary levels of indirection. Likewise, the in-memory caches, while diverse in their

function, share similar structure that makes them easy to reason about.

4.1 Indirect blocks

The inode layer builds upon the log layer to transform the block-level view of the

disk into inodes. Each inode is individually addressable and contains both a set of

attributes and a variable-length list of block numbers. The block file layer uses inodes

to implement b-files, storing metadata in the inode attributes and data blocks in the

inode's list of blocks.

To ensure inode retrieval and update operations run quickly, the inodes are packed

on disk as fixed-size entries in a single contiguous region. While this allows constant-

time access to individual inodes, it complicates inode block storage, as each inode can

only contain a fixed number of block addresses. One possible solution is to simply

make each inode large enough to store the addresses of all of its blocks. While usable,

this results in either enormous space inefficiency or an extremely small maximum

file size. Instead, the scheme adopted by many file systems, and by FSCQ, is to
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inode record

attributes 5 11 8 14 1 12

disk blocks

Figure 4-1: Each inode contains attributes, direct block references, and a single indi-
rect block address.

store a number of block addresses in each inode, followed by an optional indirect

block address. If an indirect block address is present, then the block it addresses is

assumed to contain an array of block addresses that belong to the inode. The full list

of addressed blocks for an inode can be computed by simply prepending the direct

block addresses-those contained in the inode-to the list of addresses in the indirect

block. This layout is depicted graphically in Figure 4-1. Each inode in FSCQ has

space for 10 direct blocks and a single indirect block; with 4KB blocks and 64-bit

block addresses, this implies a maximum file size of (10 + 512) -4KB = 2.039MB.

Since one of its stated goals is to support much larger files than FSCQ, VDFS

must use a different scheme for representing inodes on disk. One possible solution is

simply to make all direct blocks into indirect blocks, so that each inode is capable

of storing (11 - 512) - 4KB = 22.5MB. While this is an incremental improvement

on FSCQ, it is still unrealistic, and introduces additional overhead for small files as

well. Instead, VDFS adds additional levels of indirection to each inode, allowing it

to store files several orders of magnitude larger than FSCQ. While the use of doubly-

and triply-indirect blocks is common practice, VDFS takes advantage of the common

structure and generalizes the approach to n levels of indirection. While VDFS' imple-

mentation uses only three levels of indirection, this generalization allows for a simple

recursive implementation of all operations and correspondingly straightforward proofs

of correctness.
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4.1.1 Representation

VDFS' representation for indirect blocks connects a block number b and the list 1 of

data block numbers referenced through b:

" if the block with address b has indirection level 0, then its contents are exactly

the serialized form of 1;

" if the block with address b has indirection level (n + 1), then it contains some

list of blocks [b', b', ... , b'v_ 1], where N is the number of addresses that can be

stored in a block, each b' is the address of a block with indirection level n that

references a list of data blocks l, and the top-level 1 is exactly the in-order

concatenation of the ls.

Then b can be treated as the root of a tree of indirect blocks, where I corresponds

logically to the collective contents of its leaves as depicted in Figure 4-2. Furthermore,

since every indirect block contains a full list of children, every indirect tree is complete.

This requires that the number of blocks referenced by a tree with indirection level n

is De Ni+1, where N is the number of addresses that can be stored in a block.

Requiring that every block number be valid and unique would waste space as

every file, no matter how small its actual contents, would use the same number of

blocks on disk. Instead, VDFS representation invariant, depicted in Figure 4-3 has

an additional rule:

e if any block number b is zero, the actual contents of the block at address 0 are

ignored and are substituted with a list of O's as the children of b.

As a direct corollary, if 1 is the list of blocks with block number 0 at the root,

then the elements of 1 are 0. Since VDFS' block allocator never allocates the 0

block, this maintains the invariant that every indirect block tree is logically complete

without wasting disk space on unused blocks. As Figure 4-3 shows, this representation

invariant is defined inductively over the level of indirection.

The representation invariant in Figure 4-3 has a number of convenient properties.

First, it is recursive, such that a block with root b and indirection level n is the root
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Figure 4-2: A depiction of the logical contents of an indirect
addresses per block. Dotted blocks are purely logical and are not

block tree, with 5
stored on disk.

of its own tree, regardless of whether the address b itself was obtained from an inode

or from the contents of an (n + 1)-indirect block. This allows programs and proofs to

reason about indirect block trees while remaining oblivious to the contents of the rest

of the disk, which is exactly the case that separation logic covers. In addition, it does

not require blocks to store any information about their level of indirection. Instead,

the level of indirection is prescribed externally, either by a root for its children, or

by some higher-level representation invariant. This allows proofs to treat every block

with a non-zero indirection level identically, which makes recursion easy. Finally,

this representation allows for efficient space usage. Since 0-rooted trees take up no

space on disk, and every block address is required to be either 0 or valid, then for

any indirection level, the number of valid blocks required to store a tree on-disk is

logarithmic in the number of non-zero lowest-level block numbers.
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Definition indrep.nhelper b iblocks

if (b =? 0) then

[[ iblocks = repeat $0 NIndirect ]]
else

b 1-> serialize (iblocks).

(* indlv = 0 if ibn is the address of an indirect block,

indlvl = 1 for doubly indirect, etc. *)

Fixpoint indrep-ntree indlvl b 1

match indlvl with

1 0 => indrepn-helper b 1

1 S indlvl' =>

exists iblocks 1.part,
indrep-nhelper b iblocks * E[ 1 = concat Lpart ]] *
listmatch (fun b' 1' => indrep.n_tree indlvl' b' 1') iblocks Lpart

end.

Figure 4-3: The recursive indirect block representation invariant specifies how a tree

rooted at b is connected to its blocks 1.

4.2 In-memory caching

In order to implement caching without compromising correctness, the caches must

have their own representation invariant over the contents of the cache and the logical

representation of the cached data that must be maintained throughout execution. To

facilitate this, each cache is implemented within an additional layer of VDFS that

provides the same guarantees as the layer below while fulfilling requests from the

cache where possible. This allows the cache invariant to reason about the logical

abstraction exported by the layer below, instead of the on-disk state, and to remain

compatible with the layer above by exporting the same functions and specifications.

While VDFS' caches support different functions, they share three key properties.

The first is that each cache, like the layer it wraps, only reasons about the state of the

current transaction. Since the representation for the layers above the log are stated

relative to state of the current transaction, this allows the cache invariant to refer-

ence only a single disk state. While this makes the invariant succinct, it introduces

complications for aborted transactions, which will be discussed in chapter 5.

The second property is that for every element in the cache, the cached data repre-

sents a function of the logical state of the layer below. This allows caches to maintain
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correctness relative to the abstract state of the wrapped layer instead of reasoning

about the actual on-disk state. The third and final property is that each cache is only

guaranteed to be partially correct, such that any look-up in a valid cache is allowed

to fail. This has several implications that simplify proofs and implementation which

will be discussed further below.

4.2.1 Partial correctness

The partial correctness property of each cache has several implications that aid in

proofs. The first is that any element in the cache can be invalidated at any time

without affecting the correctness of the cache. While cache limits are not implemented

in VDFS, this ensures that implementation code is always allowed to evict elements

at-will in order to maintain strict bounds on the cache size.

Starting with any valid valid cache and removing all of its elements results in the

empty cache; thus, as a corollary, the empty cache is always valid. Alternatively,

since no look-up in the cache will succeed, and all cache look-ups are allowed to fail,

an empty cache satisfies the partial correctness property. This allows the various

caching layers to initialize the in-memory state with empty caches, and to fill them

opportunistically. In addition, it allows the current cache to be dropped at-will and

replaced with an empty cache. While wholesale cache invalidation is generally unde-

sirable, it allows VDFS to restore the caches to a valid state after a crash without

consulting the on-disk contents.

Each cache guarantees that if a look-up succeeds, the retrieved contents are exactly

some transformation of the logical state of the wrapped layer. This can be trivially

maintained by ensuring that every write to the on-disk state also updates the cache,

thus implementing the cache with a write-through strategy. For some operations,

however, the transformation maintained by the cache is expensive to update. Since

elements in the cache can be dropped without affecting correctness, this expensive

update can be avoided by simply invaliding the respective cache entry. This allows

each cache to be updated on a best-effort basis, where every disk write corresponds

to either a cache write or invalidation.
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Chapter 5

Implementation

The implementation of VDFS is based on the FSCQ file system with some key mod-

ifications. The code and proofs for the logging, block cache, and top-level file system

interface is retained almost unmodified, as are the directory and directory tree layers,

but with the insertion of caching layers in between. The block and inode bitmap al-

locators are extended with in-memory caches, as is the inode layer. Finally, the inode

implementation is extended with support for doubly- and triply-indirect blocks, and

the block file data synchronization operation is replaced entirely.

5.1 Indirect blocks

VDFS' n-indirect blocks are implemented as a representation invariant over indirect

trees and several functions that manipulate indirect block trees. Like the represen-

tation invariant, these functions are written recursively to match the indirect block

tree structure. As an example, consider the indget function, depicted in Figure 5-1.

Given an address b and an offset, it returns the block number at the given offset in

the leaves of the tree rooted at b. When the indirection level is 0, it simply indexes

into the contents of block b and returns the value there. When the indirection level

is nonzero, it indexes into the top level block, retrieving the root of a smaller indirect

block tree, and recurses. While VDFS ensures that calls to indget never traverse 0

blocks, this is guaranteed by invariants above the indirect block abstraction. Thus,
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Fixpoint indget indlvl b off

If (b =? 0) {
Ret 0

} else {
let divisor := NIndirect indlvl in

b' <- IndRec.get b (off / divisor);

match indlvl with

1 0 => Ret b'
I S indvl' => indget indlvl' b' (off mod divisor)

end

Figure 5-1: The indget function retrieves 1[off], where b is the root of an indirect

tree with leaves 1.

to maintain correctness in all cases, indget also handles the case of a 0 block; since

its leaves are identically 0, the value at any index is also 0.

The specification for indget is equally simple, and simply declares that if b is the

root of an indirect block tree with leaves 1, then for all values off such that off <

length(l), the return value is 1[off]. Since both the representation invariant and

implementation are defined as recursive functions over decreasing indirection levels,

the proof for this specification is naturally recursive. Indeed, the proof is simple; most

of the effort is proving equivalence between nested and flat list representations for 1.

While not all functions are as simple as indget, they and their corresponding

proofs follow a similar recursive structure. The proofs of correctness are more in-

volved, though the large part of the proof work is showing equivalence of list opera-

tions. These list operation proofs are then used to demonstrate that modifications to

inner blocks in an indirect block tree produce the correct lowest-level block list.

The most complex operation implemented over indirect block trees is clearing

ranges of blocks. Given a root b of an indirect block tree and a range [r, r + len), the

indclear function ensures that, upon completion, the leaves of b's tree are the same

as before except that every block in the given range is now 0. While this could be

implemented simply by setting the contents of bottom-level blocks to 0 in appropriate

ranges, such a naive approach wastes space unnecessarily.

For example, consider the case where the given range covers the entire indirect

block tree, so that afterwards the tree rooted at b has leaves that are identically 0.
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Definition get (ir : irec) off
If (off < NDirect) {
Ret (IRBlocks ir) [off] (* select from indirect blocks *)

} else {
let off := off - NDirect in (* offset relative to indirect

blocks

If (off < NIndirect) {
indget 0 (IRIndPtr ir) off (* retrieve through indirect

block

} else {
let off := off - NIndirect in

If (off < (NIndirect ^ 2)) {
indget 1 (IRDindPtr ir) off (* retrieve through doubly

indirect block

} else {
let off := off - NIndirect ^ 2 in

indget 2 (IRTindPtr ir) off (* retrieve through triply-

indirect block

}
}

Figure 5-2: The inode get function either indexes into the direct blocks or retrieves
from an indirect block, depending on the offset.

Since this has the same contents as the tree rooted at 0, all internal indirect blocks

of the tree rooted at b are redundant, and so represent wasted space. More generally,

since the representation invariant guarantees that any 0 entry in a tree has leaves

that are identically 0, any block with identically 0 contents can be replaced in its

parent by a 0 entry. Thus, the efficient implementation of indclear used in VDFS

both clears entries in blocks and opportunistically replaces them with 0 references in

their parent indirect block when possible.

While these operations over indirect block trees are written and specified for all

levels of indirection, they are used to implement singly-, doubly, and triply-indirect

blocks in VDFS. The get function that the inode layer exports is implemented

using the indget function with constant indirection levels as depicted in Figure 5-2.

Likewise, the inode shrink function uses indclear to free blocks whose contents are

no longer necessary. Since the proofs for the indirect block manipulation functions

are valid for all levels of indirection, they can be used in proofs of specifications for
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get, shrink, and the other functions exported by the inode layer.

5.1.1 Syncing large files

Since VDFS supports the sync() system call, it must guarantee that, when called

with a file as an argument, all data blocks for the file are persisted to disk upon

returning. FSCQ implements this by iterating over each block in file and flushing

it from the cache, then executing a SYNC disk operation. Since the sync operation

doesn't complete until all pending writes are persisted, and since all blocks in the file

were written, the entire contents of the file are persisted to disk after the sync. While

this is easy to prove correct, it has a running time that is linear in the length of the

file. If the maximum file size is small, as it is in FSCQ, the total execution time has

a small upper bound so the linearity is acceptable.

For larger files, however, this scheme presents a significant problem, especially if

only a few of the blocks have been modified since the last disk sync. Enumerating all

the blocks of a large file requires retrieving the contents of every indirect block either

from the in-memory cache or directly from disk. This wastes space in the cache and

requires additional unnecessary disk operations. VDFS solves this by keeping track

of a set of dirty blocks per file, and only flushing the appropriate set from the cache

on a sync (. This makes the running time linear in the number of blocks dirtied

since the last sync instead of in the length of the file.

While this optimization is intuitively correct, the disk sequence abstraction in

FSCQ does not provide enough information to prove it so. As part of its transactional

interface, the log layer exposes the sequence of disks in the current transaction but

does not expose information about how the disks are related. This makes it easy for

higher layers to reason about the state of the current transaction, but not about the

state of the physical disk or of previous disks in the disk sequence. Since the sync()

system call must ensure that all blocks in a file are synced on disk, information about

the state of each block must be maintained for both the current and all previous disks

in the disk sequence.

To supply this information, VDFS' log layer exposes a new abstract memory state
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that indicates whether a block's contents are persistent in all previous disk states. The

invariant maintained by the log layer is that, for a disk sequence ds and associated

synced map sm, Va, if a '-4 true in sm, then Vd E ds, a '-4 v in d z=> synced(v).

Similar to the caches, this invariant is one-way: addresses that map to f alse in a

synced map don't guarantee anything about the corresponding values in the disk

sequence. Since logged writes only affect the latest disk in the disk sequence, and

since they always write synced blocks, logged writes preserve the synced map. The

only operations that alter the synced map are a direct write to an address, which

changes a - b to a -+ false for any b, and an explicit sync of an address, which

changes a - b to a - true.

Since all writes to non-data blocks in VDFS are logged writes, the only operations

that modify the synced map are those in the block file layer. By using this "synced

map", the block file layer can state and maintain the invariant that for every block in

every file, the block number is either in the relevant list of dirty blocks or is synced

in all previous disks. Since syncing an already-synced block is a no-op, the block

file layer can use this invariant to prove that syncing only the dirty blocks for a file

equivalent to syncing all the blocks.

5.2 In-memory caches

The implementation of FSCQ includes a generic serialization module that is used to

store "records" on disk. The record array module builds on this to implement serial-

ization of sequences of arbitrary homogeneous objects, and is used in both the inode

and directory layer to store and load inodes and file entries to and from the disk, and

in the block and inode allocators to store individual bits. Because FSCQ's executable

code is compiled Haskell extracted from the verified Gallina source, serialization and

de-serialization are much slower than if they were implemented directly in C. VDFS

provides improved performance over FSCQ while retaining the serialization code by

caching de-serialized records which can be used to satisfy read requests.
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5.2.1 Inode cache

The inode cache is implemented as part of the inode layer, and stores de-serialized in-

ode contents in memory. Since inode contents are used to service every file operation-

block numbers for reads and writes, and attributes for metadata operations-this pro-

vides a measurable performance increase over repeated serialization and de-serialization.

The cache is implemented as a key value store that maps each inode number to either

the de-serialized inode contents, or the special value "none". The correctness invariant

for the cache is stated such that for any inode number that does not map to "none",

the value in the cache is exactly the de-serialized version of the inode on the cur-

rent disk in the disk sequence. This corresponds to the partial correctness guarantee

mentioned previously, where "none" entries are invalid. Since any contents retrieved

by a look-up are guaranteed to be valid, the cache can be used to fulfill most read

operations without any disk operations or de-serialization.

5.2.2 Directory entry cache

FSCQ's directory layer is built on top of the block file layer and implements directories

as lists of (name, inum) pairs, where name is a fixed-length string of bits and inum

is the corresponding inode number. Since the list of entries is unsorted, directory

look-ups are implemented as linear searches through the list. VDFS introduces a new

directory caching layer that stores name-to-inode mappings for individual directories

in memory. Like the inode cache, it is implemented as a map from directory inode

numbers to optional values.

The invariant requires that for each directory inode number in the cache, the

corresponding value is a map from names to inode numbers that exactly corresponds

to the on-disk contents of the directory. Thus while no directory is required to be

in the cache, every cached map of directory contents must contain exactly the same

contents as the directory's logical state. This ensures that if some directory contents

d are in the cache, the directory caching layer can provide a correct response for a

look-up of any name n: if n is in d, n is in the directory on disk; if n is not in d,
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n must not be in the on-disk directory. To maintain the invariant, when a directory

is loaded into the cache, it must be loaded in its entirety. While this requires that

VDFS traverses the entire directory list on the first look-up, the cost is amortized

over all later look-ups.

In addition to directory contents, the cache also contains an unverified "hint" field

that is used when adding a file to the directory. The hint is unverified in that it

must be checked instead of assumed correct, and so requires no additional invariants

or proofs. The hint is set for a directory cache entry by the last successful unlink

operation, and its value is the index of the removed file entry. It is then checked by

the next link operation when attempting to add a file to the directory. If the hinted

directory entry index does not contain a file entry, the new file entry added there;

otherwise the link call falls back to a linear search through the directory to find an

empty entry.

5.2.3 Caching bitmap allocator

While FSCQ uses separate bitmap allocators for tracking both inodes and data blocks

on disk, both are specialized versions of the same generic bitmap allocator. VDFS'

caching bitmap allocator exposes the same functions and specifications, and is used

to implement both the inode and block allocator. Unlike the inode and directory

caches, which service look-ups and updates for a single key, VDFS' bitmap allocator

is allowed to return any valid element for a response. This difference of function

requires that the bitmap allocator use a different implementation than the key-value

map used in the inode and directory entry caches.

Instead, the bitmap allocator maintains an optional list, which has value either

"none"l or "some f", where f is a list containing free blocks. The bitmap allocator

implements partial correctness by requiring in its invariant that if a list is present,

the list must contain exactly the blocks marked free in the bitmap. By maintaining

this complete list, the bitmap allocator is able to check in constant time whether an

available block exists. If so, the block is marked as allocated in the bitmap, removed

from the cache, and returned to the caller. If the list is empty, the invariant implies
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that no blocks are available, which allows the allocator to return a response without

consulting any on-disk state.

While the non-caching bitmap allocator never allocates the 0 block, the block is

never marked as allocated on disk; the guarantee is ensured by special-casing in the

allocate function. Thus the bit for the 0 block always indicates "free", and it remains

in the logical list of free blocks exposed by the non-caching block allocator. To emulate

this behavior, the caching allocator also does not allocate the 0 block, though it does

so by ensuring that it is never in the list of free blocks. To maintain the property that

the cache invariant is a function of the logical state, the invariant requires that the

cached list, if present, is a permutation of the result of removing the 0 block from the

abstract free list. This ensures that any block returned by the caching allocator is

valid without requiring special-casing in the cache-aware allocate function. Instead,

this special casing is implemented as a linear list traversal that occurs when the cache

is first filled from disk. While not free, the cost is amortized over all later allocations

and frees.

5.2.4 Cache rollback

All of these cache invariants require only that the cache contents be correct relative

to the latest disk in the disk sequence. Since every logged write produces a new

disk in the disk sequence, the caches' correctness is maintained by ensuring that the

contents are updated or invalidated for each write. Each one of these logged writes is

part of a transaction that is started and ended by the top-level AsyncFS layer. When

all operations within the transaction succeed, the transaction is committed and the

last disk in the disk sequence becomes durable. If an operation executed during a

transaction fails (because a directory is out of space or nonexistent, the disk is full,

etc.), the transaction is aborted and the disk sequence is truncated to the last disk

before the start of the transaction.

Though this ensures that file system operations are atomic, it breaks the repre-

sentation invariant for the caches, as they could have been modified by operations

preceding the one that failed. To restore consistency between the caches and on-disk
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state after a transaction abort, VDFS rolls back all changes in the cache since the

last commit.

Every AsyncFS operation that is not strictly read-only (since read-only transac-

tions never fail) simply saves a copy of each cache at the start of each transaction.

On commit, the saved copies are ignored and the updated cached copies are retained;

on an abort, the updated caches are dropped and the saved copies are substituted in

their place. Because VDFS' code is purely functional, the caches are not mutable,

so the saved copies are guaranteed to remain unchanged. Since an abort restores

the pre-transaction disk and the pre-transaction caches, the cache invariants trivially

hold for both post-commit and post-abort states, thus maintaining correctness.

5.3 Status of proofs

The implementation of caches in VDFS is completely specified and proven correct,

such that each cache's invariant is maintained throughout execution. Likewise, the

indirect block tree implementation is proven correct in the general case and in its

use for singly-, doubly-, and triply-indirect blocks in VDFS. The dirty block list

is currently only partially proven correct; while the foundational proofs have been

verified and the synced map invariant is proven to hold, it has not yet been used to

prove the sync o operation correct. The correctness of the dirty blocks list after a

crash and recovery has also not been proven correct.
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Chapter 6

Evaluation

The evaluation of VDFS seeks to answer the following questions:

e Does VDFS handle more workloads than FSCQ?

e Does VDFS improve over current verified file systems?

9 Does VDFS achieve comparable performance to ext4?

e How much improvement do each of VDFS' optimizations provide?

6.1 Method

To measure performance of VDFS, two microbenchmarks and three application work-

loads are used. For context, the benchmarks are run on VDFS, FSCQ [41, and

Yxv6 151, which represent recent state of the art in machine-checkable verified file

systems, and on ext4, which is a highly-optimized but unverified Linux file system.

The Yxv6 file system is run in two modes: the verified synchronous mode where all

system calls immediately persist their changes, and the asynchronous mode where sys-

tem calls are deferred in memory, called groupcommit by Yggdrasil, which is denoted

Yxv6*. This second mode, however, does not have a top-level file-system specification

that describes how changes are deferred [24, 25]; as a result, it provides no mean-

ingful proof of crash safety. ext4 is also run in two modes: one with data=ordered
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(denoted here as ext4) and the other with data=journal, journal.asynccommit
mount options (denoted ext4/J). Because using both can lead to consistency errors

on a crash [26], ext4 prohibits the use of j ournal-async commit in data=ordered

mode.

All experiments were run on a Dell PowerEdge R430 server with two Intel Xeon

E5-2660v3 CPUs and 64GB of RAM. To ensure that VDFS is applicable across

multiple disk configurations, the benchmarks were run on a diverse set of drives. One

is a 7200rpm Toshiba MG03ACA100 rotational disk, which is denoted as HDD. Two

SSDs are used both because of demonstrated performance differences and because

it is not clear which, if either of them, provide strong crash safety guarantees 1271.

One is an inexpensive Samsung 850 SSD, which is denoted SSD1, and the other is an

expensive high-performance Intel S3700 SSD, denoted SSD2. Finally, to simulate a

"maximally performant" disk, a virtual RAM drive, denoted RAM, is used as well.

6.2 Microbenchmarks

The microbenchmarks are intended to measure performance of deferred writes for

small file operations and large file writes, inspired by LFS [28]. The smallfile

benchmark creates 1,000 files; for each, it creates the file, writes 100 bytes to it, and

f syncs it; throughput is measured as the number of files created per second. The

largef ile benchmark overwrites a 1 GByte file, calling f sync every 10 MBytes;

throughput is measured as the average disk write speed, in MB/s.

The results of these benchmarks are shown in Figure 6-1, and lead to several

conclusions. First, VDFS achieves good performance, significantly improving on all

prior verified file systems, due to its I/O and CPU optimizations. VDFS is also

more complete: no prior verified file system is even capable of running the large-

file benchmark because they lack doubly indirect blocks, and Yxv6 is not capable of

supporting more than 256 files in a directory.

Second, VDFS' performance is close to that of ext4 for smallf ile on HDD, and

even beats ext4 on SSD1. This is because VDFS is as efficient as ext4 in terms of
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disk barriers, but ext4 writes out one additional block to its journal (to initially zero

out the new file), which VDFS combines with the subsequent data write. VDFS

also achieves performance close to that of ext4 for largef ile on HDD and SSD1.

However, on SSD2 and RAM, VDFS's performance lags behind that of ext4 due to

the CPU overhead of Haskell.

6.3 Applications

Figure 6-2 shows the performance for three applications. mailbench is a qmail-like

mail server [29], which has been modified to call f sync and f datasync to ensure

messages are stored durably in the spool and in the user mailbox. "dev. mix" is

measuring the result of running git clone on the xv6 source code repository [30]

followed by running make on it. The TPCC benchmark measures the performance of

executing a TPC-C-like [31] workload against a SQLite database.

The results reinforce the conclusions drawn from the microbenchmarks. VDFS

significantly outperforms other verified file systems, and is able to run applications

that others cannot. VDFS' performance on HDD and SSD1 is comparable to ext4,

but VDFS' Haskell overhead becomes much more significant with SSD2 and RAM in

particular.

6.4 Impact of optimizations

To examine how much impact each of this thesis' optimizations had on performance,

the same application and microbenchmark suite were run with each of the optimiza-

tions turned off. The results of the the microbenchmark comparisons are presented

in Figure 6-3, and for the application benchmarks in Figure 6-4. The optimizations

implemented in VDFS are grouped into three sets:

o the per-file dirty block list optimization,

o the free items caches in the block and inode allocators,
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Figure 6-1: Performance for Linux ext4, VDFS, FSCQ, Yggdrasil for microbench-
marks. Both measure throughput; higher is better. Benchmarks that didn't complete
are marked with "X."

e and the look-up caches used for directory and inode contents.

The results presented here are for the full VDFS system, and for the same system

but with each set of optimizations disabled individually. The label "VDFS " is used

for results with all optimizations enabled, "VDFS-D" for VDFS with the dirty block

lists disabled, "VDFS-A" for VDFS with the allocator caches disabled, and "VDFS-L"

for VDFS with the look-up caches disabled.

The per-file dirty list significantly increases the performance of the largefile and

mailbench benchmarks, which both write small sections of large files and then sync ()

44

C)

10

bt

2)5r

- 6 7



them to disk. Since the list of dirty blocks is kept directly in memory, VDFS avoids

the need to iterate over entire file block lists.

Likewise, the cached lists of free elements for the block and inode allocators sig-

nificantly increase performance on workloads that allocate many inodes or file data

blocks. This includes all of the benchmarks except largefile, which simply overwrites

data in-place and so performs no allocations at all.

Lastly, the effects of the look-up caches can be seen in the mailbench benchmark,

which writes files then looks them up by name, and the smallfile benchmark, which

uses the directory entry index hint to avoid searching for an available directory entry.

Across all the benchmarks, the difference in execution time between VDFS and

VDFS-D, VDFS-A, and VDFS-L demonstrates the impact of the particular opti-

mizations. Interestingly, the relative impact of the optimizations on running time

and throughput is correlated with the speed of the block device upon which the tests

are run. Since faster block devices take less time to perform I/O, more time is spent

executing file system code on the CPU. As expected, the trend of larger performance

differences for faster I/O shows that these optimizations significantly reduce VDFS'

CPU utilization.
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Figure 6-2: Performance for Linux ext4, VDFS, FSCQ, Yggdrasil for application

workloads. mailbench and TPCC measure throughput; higher is better. Dev. mix

measures run time; lower is better. Benchmarks that didn't complete are marked

with "X."
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Figure 6-4: Application workload performance with optimizations selectively disabled.
mailbench and TPCC measure throughput; higher is better. Dev. mix measures run
time; lower is better.
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Chapter 7

Conclusion

As in many systems, there is a tension when building a verified system between

designing for performance and for ease of verification. FSCQ is a verified file system

that takes the latter route-it is written in a functional style that is amenable to

automated reasoning and proofs. While convenient for verification, this causes FSCQ

to exhibit poor performance that prevents its use in real-world applications.

This thesis presents the first high-performance verified deferred-durability file sys-

tem. By building on FSCQ, VDFS demonstrates that the use of a high-level language

for building verified programs allows for a high-performance implementation while

maintaining correctness guarantees.

The thesis first describes an indirect block representation and the design of in-

memory caches that are amenable to both verification and high performance. It

then describes how these optimizations were applied to FSCQ to produce VDFS, a

verified file system that implements deferred-durability guarantees. Lastly, this thesis

presents an evaluation of VDFS against FSCQ and other verified and non-verified file

systems that demonstrates its performance on both microbenchmarks and realistic

application workloads.

While VDFS provides improved performance over state-of-the-art verified file sys-

tems, its execution is still CPU-bound on sufficiently fast disks. This is due in large

part to its use of Haskell as an intermediate extraction language. While convenient,

this extraction to Haskell produces inefficiencies that unverified file systems avoid by
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using C or other low-level programming languages.

Though it demonstrates high performance for serial workloads, VDFS is unable to

make use of multiple cores, which are common in modern machines. While unverified

scalable file systems are used in practice, defining the specification for a concurrent

general-purpose file system remains an open problem. Though significant progress has

been made in certifying concurrent systems [1, 32], the development of techniques for

verifying general concurrent systems also remains open.

Despite these unsolved problems, recent work on verified systems has made real

strides towards matching the performance of unverified counterparts. This thesis

alone demonstrates that high performance can be achieved for a verified file system

without losing correctness. Hopefully the design and implementation of its optimiza-

tions will be useful for future verified systems work.
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