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Abstract 
 
We propose that human social cognition is structured around a basic understanding of ourselves 
and others as intuitive utility maximizers: From a young age, humans implicitly assume that 
agents choose goals and actions to maximize the rewards they expect to obtain relative to the 
costs they expect to incur.  This “naïve utility calculus” lets both children and adults observe 
others’ behavior and infer their beliefs and desires, their longer-term knowledge and preferences, 
and even their character: who is knowledgeable or competent, who is praiseworthy or 
blameworthy, who is friendly, indifferent or an enemy.  We review studies providing support for 
the naïve utility calculus, and we show how it captures much of the rich social reasoning humans 
engage in from infancy. 
  



Commonsense Psychology 
 
Theories of decision-making have been at the heart of psychology since the field’s inception, but 
only recently has the field turned to the study of how humans – especially the youngest humans – 
think humans make decisions. When we watch someone make a choice, we explain it in terms of 
their goals, preferences, personalities, and moral beliefs. This capacity – our commonsense 
psychology – is the cognitive foundation of human society. It lets us share what we have and 
know, with those from whom we expect the same in return, and it guides how we evaluate those 
who deviate from our expectations. 
 
The representations and inferential power underlying commonsense psychology trace back to 
early childhood – before children begin kindergarten, and often even in infancy. Work on how 
children reason about other agents’ goals [1-8], desires [9-11], beliefs [12-18], and pro-social 
behavior [19-29] has advanced our understanding of what in our commonsense psychology is at 
work in early infancy [30-32] and what develops [16-17,33-35]. Nonetheless, major theoretical 
questions remain unresolved. What computations underlie our commonsense psychology, and to 
what extent are they specific to the social domain? Are there a small number of general 
principles by which humans reason about and evaluate other agents, or do we instead learn a 
large number of special case rules and heuristics? To what extent is there continuity between the 
computations supporting commonsense psychology in infancy and later ages? Is children’s 
social-cognitive development a progressive refinement of a computational system in place from 
birth, or are there fundamentally new computational principles coming into play? 
 
In this article we advance a hypothesis that offers answers to each of these questions, and 
provides a unifying framework in which to understand the diverse social-cognitive capacities we 
see even in young children. We propose that human beings, from early infancy, interpret others’ 
intentional actions through the lens of a naïve utility calculus: that is, people assume that others 
choose actions to maximize utilities -the rewards they expect to obtain relative to the costs they 
expect to incur. The naïve utility calculus can be made precise computationally and tested 
quantitatively (Box 1). Embedded in a Bayesian framework for reasoning under uncertainty, and 
supplemented with other knowledge children have about the physical and psychological world 
(e.g. knowledge about objects, forces, action, perception, goals, desires, and beliefs), the naïve 
utility calculus supports a surprisingly wide range of core social-cognitive inferences and it 
persists stably in some form through adulthood, guiding the development of social reasoning 
even as children’s thinking about others undergoes significant growth. 
 
Figure 1 illustrates some of the basic social intuitions that go beyond goal attribution which the 
naïve utility calculus aims to explain. These examples illustrate the role costs and rewards play in 
commonsense psychology, but they are not specific to agents choosing fruits on shelves; they 
apply to a wide range of situations in which intentional agents of any sort (child, adult, animated 
ball) interact with each other and move toward, reach for, or manipulate objects.  We focus our 
discussion on behaviors where even young children can immediately grasp the costs and rewards 
involved. The naïve utility calculus likely applies to more abstract situations as well, but its 
application may be complex in ways we do not consider here (e.g., cases where cultural norms 
are in play).  Although we focus on intentional behavior (as opposed to habits, reflexes, 



accidents, etc.) some of the most revealing choices are decisions not to act; our proposal aims to 
account for these as well. 
 
The ideas behind this naïve utility calculus have a long history, tracing back to classical 
philosophers like Adam Smith [36] and John Stuart Mill [37]. Its formulation as an intuitive 
theory was anticipated in some form by pioneers in social cognition Fritz Heider [38], Harold 
Kelley [39], and Roger Brown [40], but with the development of new computational cognitive 
modeling tools these ideas can be formulated and tested more precisely [41-46]. 
 
Critically, the naïve utility calculus is not a scientific account of how people act; it is a scientific 
account of people’s intuitive theory of how people act. These two notions may diverge – indeed, 
the mathematics of utility theory was originally proposed by early economists [47] but fails to 
predict actual human behavior in many important economic contexts ([48, 49]). But this does not 
mean the naïve utility calculus is not in some sense a reasonable and useful model of human 
behavior.  In physics, our intuitive theory is oversimplified with respect to how the physical 
world actually works [50], yet it still helps us navigate everyday life because it tends to support 
accurate predictions on the spatial and temporal scales that matter most to us [51]. Similarly, the 
naïve utility calculus does not require that agents actually compute and maximize fine-grained 
expected utilities in order to be a useful guide in many everyday social situations.  
 
In the remainder of this article we first describe the crucial ideas of the naïve utility calculus in 
their simplest, most ideal form. Next we move on to more nuanced features of the intuitive 
theory necessary to apply it to real-world decision making. We follow by reviewing studies that 
directly test the proposal, as well as the broader literature on goal-directed action, sampling-
sensitive and preference judgments, communication, pedagogy, and social and moral evaluation 
that can be explained by our framework. We conclude with a discussion of how the naïve utility 
calculus relates to accounts of first-person decision-making, and the proper relationship between 
intuitive and scientific theories of intentional action.  
 

Naïve utility theory: Agents as utility-maximizers 
 

Formally, we propose that the naïve utility calculus consist of a theory or a generative model, 
which, embedded in a Bayesian framework, supports predictions about future behaviors (setting 
the costs and rewards and deriving the resulting actions) and inferences about the causes of 
observed behaviors (finding, through Bayes’ rule, the costs and rewards that can generate the 
observed actions). A formal description of the proposal is presented in Box 1. 
 
The generative model specifies how costs and rewards determine agents’ behavior. When agents 
decide how to act (e.g., whether to pursue a goal or which goal to pursue), they estimate the 
expected utility of each goal. Each goal’s utility is calculated by estimating the rewards the agent 
would obtain if she completed the goal, and subtracting the cost she would need to incur to 
complete it. Through this process, agents build a utility function that maps possible plans onto 
expected utilities. Agents then pursue the plan with the highest positive utility. As such, agents 
are only willing to pursue plans where the rewards outweigh the costs, and if a plan has negative 
utility, the agent will be unwilling to act upon it, even in the absence of alternatives. 
 



By assuming that agents behave in accordance with the generative model, observers can work 
backwards to infer the set of costs and rewards most likely to have generated the observed 
behavior. In line with previous work (e.g., [41]), we propose that these reverse inferences can be 
understood as a kind of Bayesian inference (Box 1). 
 
The naïve utility calculus (an intuitive theory of agents as a generative model and a way to 
reverse this model through Bayesian inference) makes some key predictions about how humans 
reason about others’ behavior, some of which are shown in Figure 2.  These predictions not only 
involve people’s qualitative judgments but also their confidence, supporting inferences about the 
ambiguity of exact rewards and costs underlying others’ behaviors. For simplicity, here we only 
consider the rewards associated with outcomes and the costs associated with sequences of 
actions; as we note below, however, an outcome can be costly and the sequence of actions be 
rewarding, too. 
 

Real world reasoning with a naïve utility calculus 
 
Reasoning about decision-making in the real world, however, has several complications that the 
idealized naïve utility calculus cannot handle. These complications reveal more sophisticated 
aspects or the naïve utility calculus that give it traction and point to ways in which commonsense 
psychology may develop (Box 2). 
 
First, agents do not always know their costs and rewards when deciding how to act. As such, 
agents do not maximize true utilities, but expected utilities. In familiar scenarios, agents should 
make accurate estimates. Most people, for instance, can estimate their costs for walking a block 
and their rewards from eating a cookie.  However, agents often pursue novel outcomes in novel 
ways. In these contexts, it is critical that observers understand that agents act based on the 
expected rather than true costs and rewards (Figure 3). Observers should be less likely to infer 
that agents’ choices are stable if the agent might have been ignorant or mistaken about the true 
costs or rewards of her actions, as will often happen for agents who are inexperienced with the 
rewards they are choosing (Figure 1g and 1h). 
 
Moreover, agents have to estimate their own expected utilities, and these estimates may be 
inexact (see Box 1). Intuitively, when two plans have very different expected utilities, it is easy 
to identify the better plan. However, when plans have similar expected utilities, agents may find 
it more difficult to decide which is best – even apart from any uncertainty in their basic costs and 
rewards. This assumption provides flexibility in observers’ inferences, softening the assumption 
that choices unambiguously reveal the highest expected utility. It also allows observers to infer 
agents’ costs and rewards from the dynamics of their decision-making: agents are more likely to 
deterministically choose one plan over another when their utilities are very different, and more 
likely to oscillate between their choices when the utilities are similar. 
 
Second, costs and rewards are not objective properties of the physical world, but subjective 
experiences that vary across agents. Some people find walking more difficult than others, and 
some people like cookies more than others. However, the structure of costs and rewards also has 
an agent-invariant structure. Two cookies are better than one and longer distances are costlier to 
travel than short ones. These individual differences may be observable or may have to be 



inferred as part of explaining an agent’s actions, similar to classic attribution theories [52]. By 
integrating both agent-invariant (objective) and agent-dependent (subjective) aspects of costs and 
rewards, the naïve utility calculus allows learners to parcel out known agent-invariant 
contributions to how an agent acts in a given situation and thereby infer latent costs and rewards 
that differ across agents. 
 
Third, the content of costs and rewards goes far beyond physical actions and outcomes. In social 
situations, an agent’s costs and rewards can depend recursively on their expectations about 
another agent’s costs and rewards. If someone is motivated to help, her rewards depend not only 
on her own utilities, but also on promoting the other person’s utilities, or diminishing them if she 
is motivated to hinder [53]. Likewise, acting against what you know another agent wants you to 
do may impose a cost.  By integrating an agent’s own first-order (self-interested) costs and 
rewards with that agent’s second-order appreciation of others’ costs and rewards, the naïve utility 
calculus allows observers to make inferences about the nature and extent of others’ prosocial or 
altruistic tendencies. 
 
Finally, behaviors can have more than one cost-reward decomposition. When agents act they 
may incur costs for the actions and obtain rewards for the outcome; they may obtain rewards for 
the actions and incur costs for the outcome; or they may obtain rewards for both the actions and 
the outcome. The naïve utility calculus in its most general form supports all of these 
representations. However, this flexibility implies that behaviors have multistable cost-reward 
decompositions. As in other domain of cognitions (e.g., [54]), and consistent with the Bayesian 
framework [55], this challenge can be solved through an appropriate inductive bias or prior.  We 
assume that as a default, people most naturally parse plans in terms of costly actions and 
rewarding outcomes, as shown in Figure 1. Other decompositions of costs and rewards can be 
invoked when these favored explanations are unable to account for the behavior (e.g., ascribing 
rewards to actions in themselves; [56]). 
 

Evidence for the naïve utility calculus 
 
Our empirical work provides several lines of evidence that the naïve utility calculus supports 
early social reasoning.  In one series of experiments [57] we found that when five-year-olds learn 
an agent’s costs and choices, they infer a reward function that guarantees that the agent 
maximized her utilities.  We showed children a puppet who chooses crackers over cookies when 
both items are equidistant, but cookies over crackers when the cookies are closer (Figure 4a).  If 
children equate choice with preference, they should think the puppet likes crackers and cookies 
equally; instead, our results show that children integrate the puppet’s choices with cost 
information and recognize that the puppet prefers crackers (i.e., the item chosen when the costs 
were matched; Figure 4c). Similarly, when children observe agents’ choices whose rewards are 
known, they infer a cost function that guarantees utility maximization. We showed children one 
puppet who liked crackers more than cookies and another puppet who liked them both equally.  
We then put the cookies on a low box and the crackers on a high box.  Both puppets chose the 
cookies (Figure 4b).  When asked which puppet couldn’t climb, children chose the puppet with 
the strong preference even though neither puppet even attempted to climb (Figure 4c).   Further 
experiments also showed that children understand how different agents can incur different costs 
(i.e., costs vary across agents) even when taking identical actions.  



 
The naïve utility calculus implies that agents who are ignorant about the costs and rewards of 
actions should be more likely to make poor choices and change their minds (and conversely, that 
agents who make poor choices and change their minds are likely ignorant about costs and 
rewards).  We introduced four-year-olds to two puppets, both of whom reached for and chose a 
rambutan over an African cucumber (see Fig 1. H, and Fig. 3).  One puppet then said “yuck” (or in 
a separate experiment, changed her mind).  Children were asked which puppet knew all about 
these fruits before and which had never seen them before.  Children successfully identified the 
naïve agent (and conversely, if they knew which agent was knowledgeable and which naïve, they 
could guess who said “yuck”).  Children were able to draw similar inferences with respect to 
inferences about agents’ costs (see Fig 1. g; [58]). 
 

In another set of experiments [59], we showed that the naïve utility calculus supports toddlers’ 
social evaluations.  We showed two-year-old children two puppets making a toy play music; one 
puppet was able to make the toy play music on the first try (low cost) while the other took several 
attempts (high cost). At baseline, toddlers preferred to play with the more competent agent and 
judged him to be nicer. When both puppets refused to help the parent activate the toy, toddlers 
continued to prefer the more competent agent but now judged that the less competent agent was 
nicer (See Figure 4d and 4e). Consistent with the naïve utility calculus, these results suggest that 
two-year-olds can infer an agent’s motivation to help (her subjective rewards) given information 
about her costs and, like adults, are more likely to exonerate agents for whom helping is costly 
than those who are simply unmotivated to be helpful. 
 

The naïve utility calculus as a unifying framework for social cognition 
 
 Beyond these studies that directly test the predictions in Figure 1, the naïve utility calculus has 
implications for a wide array of other phenomena in social cognitive development. As noted, 
researchers have looked extensively at children’s intuitions about agents’ goal-directed actions, 
desires and beliefs, pro-social behavior, and teaching and learning from others.  Each of these 
aspects of social cognition has typically been treated as a separate problem, and explored through 
different paradigms. However, findings in many of these areas can be unified under the 
assumption that humans predict and explain behavior through a naïve utility calculus, as we 
illustrate below. 
 
Goal-directed action 
 
A large body of work in cognitive development suggests that even infants expect agents to 
complete their goals as efficiently as possible [2-3,60-65]. If for instance, infants are habituated 
to one agent hopping over a barrier to reach another agent, infants look longer when the agent 
continues to hop in the absence of a barrier than when she moves in a straight line [2,65].  
 
Theses inferences have been explained by the hypothesis that infants adopt a “teleological 
stance” [3], a non-mentalistic representation of behavior where agents are assumed to move 
efficiently towards goal-states, subject to situational constraints. The teleological stance is 
thought to underlie infants’ earliest forms of reasoning about agents and to serve as the basis for 
mentalistic representations that emerge later in life.  The teleological stance is compatible with 



the naïve utility calculus: if agents maximize utilities, they should incur the minimum costs 
necessary to obtain rewards. However, the naïve utility calculus expands on the teleological 
stance by explaining how agents select their goals, and by explaining how objective (e.g., walls) 
and subjective (e.g., competence) constraints not only influence goal-completion, but also goal-
formation. Related ideas have been explored [45,66], although not with the same focus on cost-
reward tradeoffs in childhood as we emphasize here. 
 
Is it possible that infants merely expect agents to take the shortest possible path to a goal, without 
an abstract representation of costs or an expectation that agents should minimize them? Several 
studies suggest that infants represent efficiency in terms of relative costs that go beyond simply 
computing the length of the path. Southgate et al. [64] showed that infants appear to expect 
actions with fewer number of steps to be performed, over actions that take more steps or more 
time. Gergely et al. [67] showed infants an actor who used their head to light up a toy when their 
hands were either free or occupied. Infants themselves were more likely to imitate the head 
action in the hands-free condition compared to the hands-occupied condition, suggesting they 
inferred the actor had a specific intention (indicating a source of strong reward) to use their heads 
only when that was clearly the more costly of available alternative actions. Together, these 
findings suggest that infants’ expectation for efficient action may be driven by an abstract notion 
of cost-minimization. Nevertheless, experiments that directly pit a path’s simplicity, straightness, 
length, time and energy costs against each other are needed to reveal if a general metric of cost 
minimization is at work an infancy, or if it arises later, building on top of some more limited, 
primitive notion of action efficiency. 
 
More generally, a number of studies suggest that infants believe that the ability to perform 
effortful, high cost actions in the service of salient or plausible goals is the special provenance of 
agents (and only agents). Abilities attributed to agents (but not to objects or physical forces) 
include the ability to engage in self-generated movement [4,68-69], the ability to resist gravity 
[70], the ability to cause objects to move or change state [71-72], the ability to create order [73], 
the ability to generate patterns [74], and the ability to spontaneously and non-deterministically 
cause changes in the world [75-76]. 
 
Such studies provide evidence that infants have intuitions about the costs of agents’ actions. 
Other work suggests that infants also understand the rewards of goal-directed actions.  Ten-
month-olds appear surprised when an agent expresses a negative emotion following a completed 
(versus failed) goal [77], suggesting that they expect agents to find goal-completion rewarding. 
Ten-month-olds also attribute a preference to an agent who consistently chooses one goal over 
another [11] suggesting that infants understand that agents can find some goals more rewarding 
than others. By 18-months, children also understand that different agents can find the same goal 
more or less rewarding [10].  
 
Collectively these results suggest that at least many key prerequisites to a naïve utility calculus 
emerge early in development: an expectation that agents act efficiently in the sense of acting to 
maximize rewards relative to costs, an expectation that agents (and only agents) can perform 
effortful actions in the service of goals, and an expectation that agents experience subjective 
rewards consistent with goal outcomes.   
 



Sampling and preferences   
 
Infants as young as six months expect randomly sampled sets, but not deliberately selected sets, 
to be representative of the population from which they are drawn [78-82]. This sensitivity to the 
sampling process supports learning properties of novel objects [83] and the scope of the meaning 
of novel words [84-85]. For instance, Gweon et al [83] showed 15-month-old infants a box full 
of blue and yellow toys and an agent taking out three blue toys to demonstrate that they all share 
some hidden property (e.g., they squeak). Infants appeared to expect all toys to share the hidden 
property when the blue balls were common (suggesting that the agent sampled three blue balls 
by chance), but not when they were rare (suggesting that the agent sampled three blue balls 
selectively). In the absence of a clear purpose behind an agent’s sampling actions, infants 
attribute preferences [9,11]. For instance, if an agent pulls three frogs in a row from a box that 
contains mostly ducks, 20-month-olds infer that the agent prefers frogs to ducks; they do not 
infer this if the box contains more frogs than ducks or if the box contains only frogs. 
 
The intuitions underlying toddlers’ and infants’ sensitivity to the sampling process can be 
explained through the naïve utility calculus. This is easy to see if we imagine unpacking a 
population of objects into a generic spatial configuration where objects are randomly distributed 
in space, with some closer and others further from an agent, and hence less costly or more costly 
for the agent to reach (see Figure 5). If all the objects in a box are equally rewarding, then agents 
should minimize costs by taking the objects that are the easiest to reach, generating a sample 
representative of the population. However, if one type of object is more rewarding than the 
others, then the agent should selectively draw that kind of object even if it is more costly to 
obtain, generating a biased sample. Reversing these inferences, if an agent generates a sample 
that could have been obtained simply by minimizing costs, her actions provide no reason to think 
that some objects are more rewarding than others. However, if generating the sample required 
the agent to perform costly actions (in time, effort, and attention), the rare objects must have 
been more rewarding. 
 
Communication and pedagogy 
 
The naïve utility calculus also provides a principled explanation for how the assumptions 
underlying pedagogical communication emerge. If a teacher shares information, the reward from 
sharing must exceed the cost for teaching.  As such, in small and simple domains (e.g., a toy with 
just a few functions) where the cost of sharing information is negligible, agents should share all 
the information necessary for the learner to draw accurate inferences, and learners can use this 
expectation to make inferences accordingly. Consistent with this expectation, children assume 
that teachers share all relevant information in simple domains [86], and when a teacher 
demonstrates only one of many functions of a toy, children rate the teacher poorly and mistrust 
his subsequent teaching [87]. These inferences should be cost-sensitive, however: learners' 
expectation that informants will communicate all relevant information should be weaker when 
the costs are higher. Consistent with this, children prefer exhaustive informants when costs are 
low but prefer informants who provide only information sufficient for a good inductive inference 
when costs are high [88]. In more complex domains, more complex inferences are warranted. 
The naïve utility calculus makes the untested predictions that observers should be less surprised 
if teachers fail to provide exhaustive evidence about a toy with many functions than a toy with 
only a few. Similarly, if a toy has many equally rewarding functions but some are costlier to 



demonstrate than others, observers should be less surprised if the teacher fails to share high-cost 
information than low-cost information. 
 
As noted earlier, the costs and rewards of pedagogy crucially can have recursive components: In 
addition to the teacher's intrinsic reward for teaching, her utilities for sharing some information 
may depend on how rewarding it is for the learner to learn it, and how costly the learner's 
different learning options are. Consistent with this, a number of studies suggest that very young 
children go out of their way to communicate information that is currently unknown to the learner 
[89-90], relevant to the learner’s goal [91], or difficult for the learner to discover by herself [92-
93]. 
 
Finally, in linguistic communication more broadly, the classic Gricean maxims – that speakers 
communicate things that are relevant to the conversation (maxim of relation), and they provide 
all the information needed (maxim of quantity) in a manner that is truthful (maxim of quality) 
and clear (maxim of manner). [94] - are central in pragmatic inferences for both adults and 
children [95-96] and can be derived from the naïve utility calculus. Minimizing utterance length 
(communication costs) while maximizing information transfer to the listener (communicative 
rewards) can be seen as optimizing an overall utility function trading off these costs and rewards. 
 
Social and moral reasoning 
 
Many studies have suggested that social evaluation emerges in the first year of life, with infants 
preferring agents who help others achieve their goals to those who hinder those goals [19,23]. 
Moreover, infants’ evaluations are transitive (they prefer agents who hinder hinderers and help 
helpers; [97-98]) and they only positively evaluate agents if they helped intentionally [21] and 
did so with knowledge of the recipients’ preferences [22]. Such studies are consistent with a 
naïve utility calculus: in every case, the helper or hinderer takes costly actions (i.e., goes out of 
his/her way to intervene), supporting the inference that the goal (helping or hindering the other) 
must be rewarding. Moreover, these studies suggest that infants may already understand that 
agents’ utilities can go beyond including their individual costs and rewards and also integrate 
others’ costs and rewards. As noted, our own work suggests that toddlers also use agents’ 
relative costs to distinguish their motivations: if someone refuses to help when helping is costly, 
two-year-olds think she is nicer than a more competent agent who refuses to help at low cost 
[59]. 
 
The naïve utility calculus has many other, untested, implications for social evaluation.  Consider 
for instance, that agents who underestimate rewards or costs may be more liable to abandon 
plans or commitments, with consequences for how others judge them and whether they trust 
them in the future.   It is also noteworthy that there is a special category of moral blame 
(“exploitation”) for those who knowingly take advantage of others’ ignorance of their utilities; it 
is unethical to convince someone to commit to an action when you know their expected reward is 
too high and/or their expected costs are too low. By the same token, agents with selective 
knowledge of their utilities can incur special moral credit or blame: It is particularly admirable to 
commit to a helpful action when you are ignorant of any extrinsic reward; it is particularly 
heinous to knowingly perform a costly (e.g., planned and premeditated) harmful action. In short, 
a wide range of intuitions underlying our judgments of others’ competence and values involve 



considering how agents’ might maximize their utilities given subjective and objective elements 
of costs and reward.  In this way, a naïve utility calculus may play a critical role in social 
evaluation broadly. 
 
 

Concluding Remarks 
 
The connection between the naïve utility calculus as an account of intuitive decision-making and 
formal theories of decision-making developed in economics may appear coincidental or simply 
convenient, but we believe the relation runs deep. As Fritz Heider argued [38], scientific 
theories, especially in their early stages, may be grounded on commonsense; what better way to 
formulate initial hypotheses if not by what we intuitively believe to be true? Heider quotes the 
physicist Robert Oppenheimer: “…all sciences arise as refinement, corrections, and adaptations 
of common sense.” 
 
Suppose that scientific theories of human decision making, starting with classical utility theory 
and moving through their descendants in behavioral economics, really began grounded on the 
common sense theory we discussed here. This view has several implications. First, the reason 
that our models of common-sense psychology in children look like classical utility theory might 
be because early economists were, with a different purpose in mind, doing exactly what we do 
here: formalizing common-sense psychology. Second, our common-sense psychology is, at its 
core, right. Despite the memorable cases where we fail to understand each other, we get others 
right more often than not. Even if it fails to account for human decision-making in less 
ecologically relevant domains (e.g., economic choices in the modern marketplace), the naïve 
utility calculus, as the first models in utility theory, captures key features of human intentional 
action in the most basic everyday situations even the youngest children appreciate. And as 
Heider observed, even when commonsense psychology is wrong with respect with how we make 
choices, it’s still right in an important sense. Our most important everyday choices involve 
others, and our ability to reason about their own choices influences what we do. This intuitive 
decision-theory is therefore, by definition, a cornerstone of any scientific theory of human 
decision making.  
 
Finally, the ways in which people’s decision making fails to conform with basic assumptions of 
classical utility theory, which are often counterintuitive and surprising, are surprising precisely 
because they go against our common-sense. As such, these surprises may point to features of the 
naïve theory that we have not yet elucidated. To cite just one salient example, we may 
overinterpret others’ failures to help in a low-cost situation as a sign that they don’t value helping 
us. But maybe our naïve theories do not sufficiently take into account agents’ non-optimal 
planning; they wanted to help but they didn’t plan well. Or perhaps our naïve theories 
oversimplify by assuming we know all the relevant costs (or rewards) even when we don’t, or 
assuming that others’ costs are like ours even when they’re not; both of these assumptions could 
lead us to mistake a failure to help as a low-cost refusal even when it isn’t. Understanding how 
our commonsense psychology is oversimplified in these ways could advance not only our 
understanding of core social cognition as scientists, but also, ultimately, help us better 
understand each other as human beings.  
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Box 1. The Naïve Utility Calculus as a formal computational theory. 
 
For simplicity we assume that costs depend on actions and that rewards depend on states of the 
world (e.g., being in a desirable physical location or having a specific object), and we focus on 
deterministic scenarios where agents have perfect information. The formalization can be easily 
extended to handle more realistic situations. 
 
Generative model 
 
Utility estimation. If A is the set of actions that an agent can take (e.g., take a step forwards, 
pickup an object, etc) and S is the set of possible states of the world (determining, for instance, 
the agent’s position in space or her possessions), then a cost function is a mapping C: A → ℜ& 
from actions to costs, and a reward function is a mapping R: S → ℜ& from states to rewards. 
 
A plan (or policy) π: S → A determines what the agent will do in each state in order to arrive at 
her goal, or final state, s+, from her initial state s,. Given cost and reward functions C and R and 
a set P of plans, a utility function U.,0: P → ℜ assigns a utility to each plan. In deterministic 
situations, this utility is the sum of the rewards the agent obtains minus the costs she incurs: 
 

U.,0(π) = R S5 − C(π(S5)
78

79:7;

) 
 
(1) 

 
where s, is the starting state, s+ is the target state, s5 are the intermediate states the agent travels 
through, and π(s5) is the planned action in each of these states. 
 
Plan selection. Because agents’ estimates are noisy, they sometimes fail to select the best 
possible plan. This is modeled through a Boltzmann policy, where the probability of selecting a 
plan is proportional to 
 

p π ∝ exp	
  
U.,0(π)

κ  
(2) 

 
where κ ∈ (0,∞) determines the noise in the agent’s choice. The smaller the value of κ, the more 
likely the agent will select high-utility plans. 
 
Inference 
 
Given an agent’s actions, the unobservable cost and reward functions can be inferred using 
Bayes’ rule: 
 

p C, R 	
  Actions) 	
  ∝ p Actions	
   	
  C, R)	
  p(C, R) (3) 
 

	
  
 



Here, p C, R  is the prior probability over cost and reward functions, capturing constraints and 
expectations, and p Actions	
   	
  C, R) is the likelihood that the agent would take the observed 
actions given the cost and reward functions. This likelihood term is computed by running the 
generative model and calculating the probability of the agent selecting each plan and multiplying 
it by the probability that each plan, in turn, produces the observed actions: 
 

p Actions	
   	
  C, R) = p Actions	
   	
  π)p π	
   C, R)
J∈K

 
 
(4) 

 
The Bayesian cost and reward inferences specified by Equation 3 are illustrated in Figure I, using 
an example stimulus from an experiment designed to test the quantitative predictions of this 
model with adults (who saw a large number of similar stimuli, parametrically varying the agent's 
path and the configuration of objects and terrain types in the environment). 
  



Box 2: Development of the Naïve Utility Calculus 
 

The studies reviewed here show successes of children in different age groups in different 
scenarios. Altogether, these open the possibility that some form of the naïve utility calculus is at 
work from birth. Nevertheless, many aspects of the naïve utility calculus may develop in crucial 
ways. Here we describe four aspects of the naïve utility calculus that may develop over time. 
 
The dimensions of costs and rewards 
 
As adults we assume that agents’ utilities integrate many sources of costs and rewards. Time, 
effort, attention, or even intangible things like damaging one’s reputation can be costly. 
Similarly, eating, learning, or having a good reputation, for example, can be rewarding. The 
dimensions that infants consider in utility computation are likely limited and expand over time. 
For instance, it is not clear how one could assign a cost to breaking social norms without 
knowing what these social norms are. 
 
Properties of cost and reward functions 
 
As different sources of costs and rewards increase or diminish, so do the costs and rewards. This 
relation, however, is not linear. For example, the cost associated with exhaustion from walking 
increases as a function of the distance, but the first steps are less costly than the last ones. 
Similarly, eating is usually highly rewarding, but eating too little or too much is not. Even if 
children understand that certain actions or outcomes are costly or rewarding, learning the shape 
of the cost and reward functions may develop. 
 
Development of the representation of costs and rewards 
 
As adults, we understand that agents act based on their expected costs and rewards. As such, they 
select the goal with the highest expected utility. In contrast, infants may assume that agents know 
and act upon exact costs and rewards and over time learn that this is not the case. 
 
Agent-independent priors on costs and rewards 
 
Although individual differences in agents’ subjective costs and rewards can only be learned from 
individuals themselves, agents largely overlap on what they like and dislike. For instance, most 
people agree that eating sweets is rewarding and that spending time is costly. These priors help 
observers zoom in on the appropriate cost and reward decompositions. Are these priors learned 
by finding similarities in costs and rewards across agents? Or do we initially assume all agents 
have the same costs and rewards, and later infer individual variations across agents?



  
Figure captions 

	
  

Figure 1 (The logic of costs and rewards underlying out commonsense psychology): (a) If 
the blue agent wearing glasses (the protagonist) chooses the orange over the apple, how confident are you that she 
prefers oranges in general to apples? (b) If the orange were high on the top shelf and the agent climbs up to get it, 
would you become more confident she prefers oranges in general? (c) What if she had chosen the apple instead? 
Does this indicate any strong preference for apples? (d) If the protagonist wants the orange from the top shelf, 
whom should she ask for help?  (e) If she is the tallest person in the room, is it still appropriate for her to ask for 
help? (f) If both the red and green agent refuse to help, are they equally mean or is the red one meaner? (g) If the 
protagonist cannot see the shelf and says she is going to get the orange, are you confident she won’t change her 
mind? (h) If both agents choose kiwanos over rambutans, but one says “yum” and the other says “yuck” after 
tasting it, who’s more likely to have never tasted the fruits before?  
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Figure 2 (Key predictions of the naïve utility calculus): Utility maximization in scenarios where 
costs depend on actions and rewards depend on outcomes. (a) Qualitative plot of how the decision to act reflects 
the total utility. The utility is positive when the rewards outweigh the costs and negative otherwise. (Green 
indicates the agent will act and red that she will not.) (b) If an agent pursues a low-cost plan, a wide range of 
rewards could have produced a positive utility, thus low-cost actions do not reveal much about the agent’s 
reward. However, if the agent pursues a high-cost plan, we can be more confident that the reward was high. (c) 
The structure of these inferences flips when the agent refuses to pursue a plan. For low cost plans, the rewards 
must be low to make the net utility negative, thus we can be confident that a decision to forego acting indicates a 
small reward. By contrast, a wide range of rewards is consistent with refusing to pursue a costly plan, so if the 
agent refuses to pursue a high cost plan, her refusal is not very informative about her rewards. (d) The 
implications are parallel when we infer costs given reward knowledge. Low rewards only motivate action when 
the costs are low, while high rewards motivate action under a wide range of costs; thus pursuit of a goal when 
rewards are low is more informative about an agent’s costs (that they are probably low). (e) If an agent foregoes a 
low reward we may be uncertain about the costs of acting but if she foregoes a high reward, we can be more 
certain the costs were high. 
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Figure 3 (Relation between experience and reward estimation): Schematic of utility 
maximization as a function of experience. Ignorant agents (leftmost side of x-axis) have high uncertainty about 
potential rewards (represented as ovals on the y-axis), and thus are more likely to misidentify the highest-utility 
option, and more likely to revise their choices over time.  Even one encounter with a novel object may cause a 
large change in the agent’s estimate of their expected reward. 
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Figure 4 (Empirical support for the naïve utility calculus): Experiments evaluating the Naïve 
Utility Calculus. (a) Experiment 1 in [57]. Children infer which treat Ernie prefers after watching him pick each 
one once. (b) Experiment 2 in [57]. Children infer which puppet cannot climb when two agents with different 
preferences make the same low-cost choice. (c) Results from Experiment 1 (test condition and a control 
condition) and Experiment 2 (condition where Cookie Monster cannot climb, shown in (b) and a parallel version 
where Grover cannot climb). (d) Experiments in [59]. (e) Results from the experiments. The control condition in 
Experiment 3 (not shown in panel (d)) consisted of a baseline measurement of children’s judgment of which of 
the two puppets is nicer. 
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Figure 5 (Costs in statistical and spatial contexts): Graded inferences about preferences in sampling 
scenarios along with equivalent scenarios unfolded spatially, showing how the assumption of utility maximization 
supports both types of inferences. 

 

Figure I (Box 1): An agent navigates from a starting point (middle left square) to a target destination (middle 
right square). If she desires, the agent can also collect the orange package, the white package, or neither. The 
model infers that the blue terrain is easier to cross than the pink terrain, and that the orange package is less 
valuable than the white package. 
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