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Abstract

In this paper, we introduce the randomized network interdiction problem that allows the interdictor to use randomness to select arcs
to be removed. We model the problem in two different ways: arc-based and path-based formulations, depending on whether flows
are defined on arcs or paths, respectively. We present insights into the modeling power, complexity, and approximability of both
formulations.
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1. Introduction

Network flows have applications in a wide variety of contexts
(see, e.g., [1]). In some applications, it is useful to consider the
perspective of someone who wants to restrict flows in a net-
work. For example, law enforcement wants to inhibit the flow
of illegal drugs. Water management experts want to control
flows to avoid floods. Health agencies need to protect against
contagion. Here, it is important to consider the problem of lim-
iting flows in the network from the perspective of an interdic-
tor, who is capable of limiting capacity in arcs or eliminating
arcs. Such problems have been applied in many application ar-
eas such as military planning [22], controlling infections in a
hospital [3], controlling floods [16], protecting critical infras-
tructures [13, 19], and drug interdiction [20].

Motivated by the above mentioned applications, network in-
terdiction problems have been well studied in the literature (see,
e.g., [4, 7, 9, 10, 11, 17, 18, 23]). In this paper, we focus on the
basic model of network interdiction, where the interdiction of
an arc requires exactly one unit of resource: a flow player at-
tempts to maximize the amount of material transported through
a capacitated network, while an interdictor tries to limit the flow
player’s achievable value by interdicting a certain number, say
Γ, of arcs. This problem is also known as the Γ-most vital arcs
problem (see, e.g., [16]). Wollmer [15] presents a polynomial
time algorithm for solving this problem on planar graphs. On
general networks, Wood [23] and Phillips [14] independently
show that the problem is strongly NP-complete. Burch et al.
[6] develop approximation algorithms for general instances of
the network interdiction problem. In particular, they consider
the case where each arc has a removal cost and its capacity can
be reduced partially or completely, and there is a limited budget
to attack the network and reduce the arc capacities. They pro-
vide a polynomial-time algorithm, based on a linear relaxation
of an integer optimization formulation, that leads to either an
approximation or pseudo-approximation result for the resulting
problem.

Network interdiction can be viewed as a game between the
interdictor and the flow player. This problem assumes the inter-
dictor moves first and then the flow player determines a maxi-
mum flow in the remaining network. A closely related problem
arises when a flow must be routed before arcs are removed. In
this case, the flow player might be interested to find solutions
which are robust against any failure of arcs. Aneja et al. [2]
study this problem in a path-based formulation and show that
the resulting problem is solvable in polynomial-time for the
special case of Γ = 1. This problem was further expanded to
an arc-based formulation by Bertsimas et al. [5], who introduce
the concepts of robust and adaptive maximum flows. They es-
tablish structural and computational results for both the robust
and adaptive maximum flow problems and their corresponding
minimum cut problems.

Our contribution. The network interdiction problem addresses
a minimax objective against a flow player, which selects adap-
tively a flow after observing the removed arcs. This problem
requires the interdictor to choose a specific pure strategy. We
propose a new modeling framework that permits the interdictor
to use randomness to choose arcs. More precisely, the inter-
dictor assigns a probability to each pure strategy and selects
a pure strategy randomly according to these probabilities. We
refer to the resulting problem as the randomized network in-
terdiction problem. This provides a more realistic model for
various applications such as protecting critical infrastructures
against terrorism or enemy’s attacks. We also consider a fur-
ther modification that requires the flow player to send flow on
paths, rather than the more typical arc-based model. We present
results on the modeling power, complexity, and approximabil-
ity of both arc-based and path-based formulations. In partic-
ular, we prove that ZNI/ZRNI ≤ Γ + 1, ZNI/ZPath

RNI ≤ Γ + 1,
ZRNI/ZPath

RNI ≤ Γ, where ZNI, ZRNI, and ZPath
RNI are the optimal

values of the network interdiction problem and its randomized
versions in arc-based and path-based formulations, respectively.
We also show that these bounds are tight. Further, we provide a



(Γ + 1)-approximation for ZNI, a Γ-approximation for ZRNI, and
a
(
1 + bΓ/2c · dΓ/2e/(Γ + 1)

)
-approximation for ZPath

RNI .

2. Network Interdiction

Let G = (V, E) be a directed graph with node set V and arc
set E. Each arc e ∈ E has a capacity ue ∈ R+ setting an upper
bound on the amount of flow on arc e. There are two specific
nodes, a source s and a sink t. W denote an arc e from a node v
to a node w by e := (v,w). We use δ+(v) := {(v,w) ∈ E | w ∈ V}
and δ−(v) := {(w, v) ∈ E | w ∈ V} to denote the sets of arcs
leaving node v and entering node v, respectively. We assume
without loss of generality that there are no arcs into s and no
arcs out of t, that is, δ−(s) = δ+(t) = ∅.

2.1. Arc-based formulation
An s-t-flow (or simply a flow) x is a function x : E → R+

which assigns a nonnegative value to each arc so that xe ≤ ue

for each e ∈ E, and in addition for each node v ∈ V \ {s, t}, the
following flow conservation constraint holds:∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0.

We refer to xe as the flow on arc e. We denote the set of all
s-t-flows by X. The value Val(x) of an s-t flow x is the net
flow into t, that is, Val(x) :=

∑
e∈δ−(t) xe. In the maximum flow

problem (also referred to as the nominal problem), we seek an
s-t flow x with maximum value Val(x).

We next assume that there is an interdictor, who wants to re-
duce the capacity of the network. Suppose that the interdictor is
able to eliminate Γ (1 ≤ Γ ≤ |E|) arcs in the network. The net-
work interdiction problem is to find the Γ arcs whose removal
from the network minimizes the maximum amount of flow that
can be sent to the sink. To formulate this problem, we let

Ω :=
{
µ = (µe)e∈E ∈ {0, 1}|E| |

∑
e∈E

µe = Γ
}

denote the set of all possible scenarios, that is, the set of all
subsets of Γ arcs. The binary variable µe indicates whether or
not arc e is to be removed, depending on whether µe = 1 or µe =

0, respectively. Given µ ∈ Ω, we denote by E(µ) := {e ∈ E |
µe = 1} the set of removed arcs and by F(µ) := {e ∈ E | µe = 0}
the set of available arcs after removing the arcs in the scenario
µ. We also denote by G(µ) = (V, F(µ)) a network with arc set
F(µ).

The network interdiction problem is formulated as

ZNI := min
µ∈Ω

max Val(x)

s.t. x ∈ X,

xe = 0 ∀e ∈ E(µ).

(1)

This problem determines the interdictor’s best choice, as-
suming the flow player is in a position to select a maximum
flow after observing the removed arcs. In many applications,
the flow player has to make a decision before the interdictor
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Figure 1: Illustration of the difference between the network interdiction prob-
lem and maximum adaptive flow problem. The numbers on the arcs indicate
the capacities. We have ZNI = K + 1 − Γ, while ZADP = 5K

2(Γ+1) .

selects her strategy. Here, the flow player might be interested
in those solutions that are robust against any possible scenario.
This leads to the following problem, referred to as the adaptive
maximum flow problem:

ZADP := max
x∈X

min
µ∈Ω

f (µ, x), (2)

where f (µ, x) is the maximum amount of flow that the flow
player can push through the network with respect to the flow
x if scenario µ is selected. Mathematically, the function f is
given by

f (µ, x) := max Val(y)
s.t. y ∈ X,

0 ≤ ye ≤ xe ∀e ∈ F(µ)
ye = 0 ∀e ∈ E(µ).

(3)

This problem is introduced by Bertsimas et al. [5], who estab-
lish structural properties and complexity results for the prob-
lem. In particular, they show that the adaptive maximum flow
problem is NP-hard using a reduction from the network inter-
diction problem.

Note that ZADP ≤ ZNI. This follows from the fact that Prob-
lem (1) is equivalent to

ZNI = min
µ∈Ω

max
x∈X

f (µ, x). (4)

To compare the difference between the network interdiction
problem and the adaptive maximum flow problem, we consider
a network with three nodes s, v, and t as shown in Figure 1.
There are K arcs with unit capacity and one arc with capacity
3/2K from s to t and there are Γ + 1 arcs with infinite capac-
ity from v to t. Let Γ ≥ 2 and K be enough large. It is easy
to see that ZNI = K + 1 − Γ, while ZADP = 5K

2(Γ+1) . Hence,
ZNI/ZADP =

2(Γ+1)(K+1−Γ)
5K , and the ratio the becomes close to

2(Γ + 1)/5 when K gets large. An interesting question is: How
large can ZNI/ZADP be in general? We will show later that this
ratio is bounded by Γ + 1 and this bound is tight.

2.2. Path-based formulation
So far, we have considered flows in an arc-based formulation.

We next focus on an alternative formulation of flows, in which
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the flow player must specify paths on which to route the mate-
rial. This leads to a different model for the adaptive problem.

Let P denote the set of all s-t-paths (i.e., paths from s to t).
For P ∈ P, we write e ∈ P to indicate that arc e ∈ E lies on P.
An s-t-(path-based) flow is a function x : P → R+ that assigns
a nonnegative value to each path so that the total flow on each
arc does not exceed the capacity of the arc, that is,∑

P∈P:e∈P

xP ≤ ue ∀e ∈ E.

The value of x is the sum of the flows on the paths, i.e.,
Val(x) =

∑
P∈P xP. We use XP to denote the set of all s-t-path-

based flows.
Notice that the flow on path P cannot reach the sink if some

arc in P is removed. In particular, if the interdictor selects the
strategy µ and the flow player chooses a flow x ∈ XP, then the
amount of flow that can reach the sink is given by

g(µ, x) :=
∑
P∈P

max
{
0, 1 −

∑
e∈P

µe

}
xP

This function differs from the arc-based function f , defined in
Equation (3), because flows are not permitted in this version to
be routed. The value g(µ, x) gives the amount of flow that can
reach the sink if the the arcs in µ are removed. We point out that
if no arc in a path P is removed, then max

{
0, 1 −

∑
e∈P µe

}
= 1

and the flow on path P is counted in computing the value g(µ, x).
Otherwise, we will have max

{
0, 1 −

∑
e∈P µe

}
= 0, and then the

flow on path P does not contribute to the value g(µ, x).
We now present an alternative formulation of the network

interdiction problem as follows:

ZPath
NI := min

µ∈Ω
max
x∈XP

g(µ, x). (5)

We point out that ZPath
NI = ZNI. We next consider the case where

the flow player has to choose a flow up front before the inter-
dictor chooses her strategy. In this situation, the flow player
addresses the following problem:

ZPath
ADP := max

x∈XP

min
µ∈Ω

g(µ, x). (6)

This problem is introduced by Aneja et al. [2], who study the
case where only one arc is permitted to be removed. They show
that the problem is solvable in polynomial time in this special
case. Later, Du and Chandrasekaran [8] claim that the problem
is NP-hard if two arcs can be removed. Unfortunately, Ma-
tuschke et al. [12] find out that the proof that is given in [8] is
wrong, and therefore the complexity of the problem is open for
Γ > 1.

Problems (4) and (5) are equivalent; that is, ZNI = ZPath
NI , since

the interdictor first chooses arcs to be removed and then the
flow player solves a maximum flow problem in the remaining
network. But this situation becomes different for the adaptive
problem, and in general ZADP , ZPath

ADP. To see the difference
between the arc-based and path-based formulations, we refer
to the network in Figure 1. In this network, ZPath

ADP = 2K
Γ+1 and

ZADP = 5K
2(Γ+1) for Γ ≥ 2. We notice that ZADP = K when Γ = 1.

Thus, ZADP/ZPath
ADP = 5

4 for Γ ≥ 2. We will show that this ratio is
bounded by Γ and this bound is tight.

3. Randomized network interdiction

Network interdiction can be viewed as a two-person zero-
sum game between an interdictor and a flow player. The set of
(pure) strategies for the interdictor is given by the scenario set
Ω. The set of (pure) strategies for the flow player is given by
the feasible set X. If the interdictor chooses the pure strategy
µ ∈ Ω and the flow player chooses the pure strategy x ∈ X, then
f (µ, x) is the payoff of the game. In the network interdiction
problem, the interdictor goes first and determines Γ arcs to be
removed. The flow player observes the set of removed arcs and
determines a flow to be sent through the remaining network.
In this case, the flow player has complete knowledge of the in-
terdictor’s behavior. Our goal is to make the interdictor more
powerful and make the flow player weaker. To achieve this, we
allow the interdictor to use randomness to decide which strat-
egy to play. More precisely, the interdictor assigns a probability
to each pure strategy, and then randomly selects a pure strategy
according to the probabilities. The flow player does not see the
interdictor’s strategy, but observes a probability distribution of
how the interdictor decides to select arcs. In what follows, we
formally define the randomized network interdiction problem.
We first focus on the arc-based formulation of flows and then
turn our attention to flows on paths, instead of arcs.

A mixed (or randomized) strategy over Ω is given by a prob-
ability distribution α : Ω→ [0, 1], where α(µ) is the probability
that strategy µ is selected by the interdictor. We denote the set
of all mixed strategies over Ω by ∆(Ω). We extend the payoff

function to mixed strategies by defining

f (α, x) :=
∑
µ∈Ω

α(µ) f (µ, x) ∀α ∈ ∆(Ω), x ∈ X.

The value f (α, x) represents the expected payoff of the game if
the interdictor chooses a mixed strategy α ∈ ∆(Ω) and the flow
player selects a pure strategy x ∈ X.

Given a mixed strategy α, the flow player aims to find a
flow with maximum expected value. The interdictor wishes to
choose a mixed strategy to minimize this value. Therefore, the
interdictor deals with the following problem:

ZRNI := min
α∈∆(Ω)

max
x∈X

f (α, x). (7)

We refer to this problem as the randomized network interdiction
problem.

Theorem 1. ZRNI = ZADP.

Proof. The basic idea is to allow the flow player to select a flow
randomly. It is well known from game theory (see, e.g., [21])
that if both players select their strategies randomly, then there
exists an equilibrium; that is, no matter which player selects her
strategy first, no one has an incentive to change her mixed strat-
egy. Notice that the set of pure strategies for the flow player is
an infinite set. Here, a mixed strategy is given by a finite distri-
bution overX. In fact, a random strategy overX is a probability
distribution β : X → [0, 1] with finite support, that is, it only
assigns a non-zero value to a finite number of s-t-flows. The
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value β(x) gives the probability that the flow x is selected. We
denote the set of all mixed strategies over X by ∆(X).

We extend the payoff function f to mixed strategies for both
players by defining

f (α, β) :=
∑
µ∈Ω

∑
x∈X:β(x)>0

α(µ)β(x) f (µ, x) ∀α ∈ ∆(Ω), β ∈ ∆(X).

The value f (α, β) gives the expected payoff of the game if the
interdictor chooses a mixed strategy α and the flow player se-
lects a mixed strategy β. If the interdictor chooses a pure strat-
egy µ and the flow player chooses a mixed strategy β, we denote
the expected payoff by f (µ, β) :=

∑
x∈X:β(x)>0 β(x) f (µ, x).

The result now follows from the following observations:

ZRNI = min
α∈∆(Ω)

max
x∈X

f (α, x) = min
α∈∆(Ω)

max
β∈∆(X)

f (α, β) (8)

= max
β∈∆(X)

min
α∈∆(Ω)

f (α, β) (9)

= max
β∈∆(X)

min
µ∈Ω

f (µ, β) (10)

= max
x∈X

min
µ∈Ω

f (µ, x) = ZADP. (11)

The second equality in Equation (8) holds since the payoff

function f (α, x) is concave in x and the pure strategy set X is
convex.

The equality in Equation (9) follows from the well-known
Wald’s Minimax Theorem [21] due to the fact that pure strategy
set Ω is finite.

Furthermore, the equality in Equation (10) holds since

min
α∈∆(Ω)

f (α, β) = min
µ∈Ω

f (µ, β)

for a fixed β ∈ ∆(X) due to the fact that Ω is a finite set.
It remains to prove the validity of the first equality in

Equation (11). For a fixed x ∈ X, we define AVal(x) :=
minµ∈Ω f (µ, x). This function is concave in x. Hence, the first
equality in Equation (11) holds. This completes the proof of the
theorem.

Theorem 1 shows that randomization permits the interdictor
to perform as well as when she has perfect knowledge of the
flow player’s choice. On the other hand, it follows from the
proof of the theorem that the randomization does not help the
flow player, as the randomization of a flow is just a flow.

We next consider the path-based formulation of network in-
terdiction and assume that the interdictor uses randomness to
select arcs to be deleted. This leads to the following problem,
referred to as the randomized network interdiction problem in
the path-based formulation:

ZPath
RNI := min

α∈∆(Ω)
max
x∈XP

∑
µ∈Ω

α(µ)g(µ, x). (12)

Theorem 2. ZPath
RNI = ZPath

ADP.

Proof. The flow player does not benefit by choosing a mixed
strategy because the payoff function g(µ, x) is linear in x and
the set of pure strategies XP is convex. The proof now follows
in a similar way as in the proof of Theorem 1.

4. Complexity results

In this section, we investigate computational complexity of
the randomized network interdiction problem. By Theorems 1
and 2, we know ZRNI = ZADP and ZPath

RNI = ZPath
ADP, respectively.

Thus, complexity results for computing ZADP and ZPath
ADP carry

over ZRNI and ZPath
RNI , respectively.

Bertsimas et al. [5] formulate the adaptive maximum flow
problem as a linear optimization problem with exponentially
many variables and constraints. When Γ is fixed, the linear
optimization problem has polynomial many variables and con-
straints, and thus can be solved in polynomial time. But, in
general, they show that the adaptive maximum flow problem is
strongly NP-hard by a reduction from the network interdiction
problem. Thus, we have the following theorem.

Theorem 3. For a fixed Γ, the value ZRNI can be computed in
polynomial-time as a linear optimization problem. For a gen-
eral Γ, it is strongly NP-hard to compute ZRNI.

The next result (proved by Aneja et al. [2]) shows that that
computing ZPath

ADP is solvable in polynomial-time when Γ = 1.

Theorem 4. If Γ = 1, then ZRNI = ZPath
RNI and an optimal mixed

strategy can be computed in polynomial-time.

For Γ > 1, the complexity of the path-based randomized net-
work interdiction problem is open. We note that the NP-hard
proof in [8] for computing ZPath

ADP for the case that the interdictor
is able to remove only two arcs is wrong [12].

5. On the power of randomization

In this section, we provide tight bounds on the ratio of the
optimal value of the network interdiction problem to that of ran-
domized versions. In particular, our main result is the following
theorem.

Theorem 5. It is always true that

ZNI

ZRNI
≤ Γ + 1, (13)

ZNI

ZPath
RNI

≤ Γ + 1, (14)

ZRNI

ZPath
RNI

≤ Γ. (15)

and these bounds are tight.

To prove this theorem, we require several lemmas. The core
of the our analysis is based on the following parametric linear
optimization problem:

ZLO(θ) := max Val(x) − Γθ

s.t.
∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = 0, ∀v ∈ V \ {s, t},

0 ≤ xe ≤ ue, ∀e ∈ E,

xe ≤ θ, ∀e ∈ E.
(16)
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We let ZLO := maxθ≥0 ZLO(θ) and refer to the latter problem as
the LO model. It is worth to point out that this model is the
dual of a linear relaxation of an integer optimization formula-
tion examined by Burch et al. [6] to obtain approximations for
network interdiction.

We first show that the optimal value of the LO model gives a
lower bound on ZPath

RNI , ZRNI, and ZNI.

Lemma 1. We have

ZLO ≤ ZPath
RNI ≤ ZRNI ≤ ZNI. (17)

Proof. By Theorems 1 and 2, we know ZRNI = ZADP and
ZPath

RNI = ZPath
ADP, respectively. Thus, it suffices to show that

ZLO ≤ ZPath
ADP ≤ ZADP ≤ ZNI.

Here, the first inequality from the right is immediate since

ZADP = max
x∈X

min
µ∈Ω

f (µ, x) ≤ min
µ∈Ω

max
x∈X

f (µ, x) = ZNI.

The second inequality is intuitively straightforward because the
flow player in Problem (6) is more restricted than Problem (2).

Therefore, it remains to prove ZLO ≤ ZPath
ADP. We assume

that the optimal value of the LO model is strictly positive since
otherwise the statement is trivial. Let (x∗, θ∗) be an optimal
solution for the LO model and (x∗P)P∈P be an arbitrary path-
decomposition of x∗. It is easy to see that

ZLO = Val(x∗) − Γθ∗ ≤ min
µ∈Ω

g(µ, x∗). (18)

This completes the proof of the lemma.

In what follows, we exploit structural properties of the LO
model that are needed for the proof of Theorem 5. We first give
some basic definitions and notation. An s-t-cut is defined as a
subset S ⊆ V of nodes with s ∈ S and t ∈ V \ S . The capacity
Cap(S ) of S is defined as the sum of the capacities of the arcs
going from S to V \ S , that is, Cap(S ) :=

∑
e∈δ+(S ) ue. Here

and subsequently, δ+(S ) denotes the set of arcs e = (v,w) with
v ∈ S and w ∈ V \ S . We use S to denote the set of all s-t-cuts.
For a given value θ ≥ 0, we let ue(θ) := min{ue, θ}, and we let
Cap(S , θ) :=

∑
e∈δ+(S ) ue(θ) denote the capacity of the cut with

respect to the arc capacities u(θ). We let A(S , θ) denote the set
of all arcs e ∈ δ+(S ) with θ ≤ ue, and we let B(S , θ) denote the
set of all arcs e ∈ δ+(S ) with θ < ue.

Lemma 2. Suppose that (x∗, θ∗) is an optimal solution to the
LO model with maximum value θ∗ (i.e., if there are multiple
optimal solutions, the one with the largest value θ∗ is selected).

(i) There exists an s-t-cut S ′ so that

Val(x∗) = Cap(S ′, θ∗) and |A(S ′, θ∗)| ≥ Γ.

(ii) There exists an s-t-cut S ′′ so that

Val(x∗) = Cap(S ′′, θ∗) and |B(S ′′, θ∗)| < Γ.

Proof. For each ε > 0, we have

ZLO(θ∗) ≥ ZLO(θ∗ − ε), (19)
ZLO(θ∗) > ZLO(θ∗ + ε), (20)

since (x∗, θ∗) is an optimal solution with maximum value θ∗. In
addition, there exists an s-t-cut S ′ which is a minimum cut with
respect to arc capacities u(θ∗) and arc capacities u(θ∗ − ε) for a
very small ε > 0. More precisely, it is enough to choose ε as
follows:

ε :=
1
|E|

min
S∈S
{Cap(S , θ∗) − Val(x∗) | Cap(S , θ∗) − Val(x∗) > 0}.

Therefore, we can write

ZLO(θ∗) = Cap(S ′, θ∗) − Γθ∗,

ZLO(θ∗ − ε) = Cap(S ′, θ∗ − ε) − Γ(θ∗ − ε)

=
∑

e∈S ′\A(S ′,θ∗)

ue +
∑

e∈A(S ′,θ∗)

(θ∗ − ε) − Γθ∗ + Γε

= Cap(S ′, θ∗) − ε|A(S ′, θ∗)| − Γθ∗ + Γε.

It then follows from Inequality (19) that |A(S ′, θ∗)| ≥ Γ.
We prove the second part of the lemma by a similar argu-

ment. There exists an s-t-cut S ′′, which is a minimum cut with
respect to arc capacities u(θ∗) and u(θ∗ + ε) for a very small
ε > 0. Therefore,

ZLO(θ∗) = Cap(S ′′, θ∗) − Γθ∗,

ZLO(θ∗ + ε) = Cap(S ′′, θ∗ + ε) − Γ(θ∗ + ε)
= Cap(S ′′, θ∗) + ε|B(S ′′, θ∗)| − Γθ∗ − Γε.

It now follows from Inequality (20) that |B(S ′′, θ∗)| < Γ.

Lemma 3. Suppose that (x∗, θ∗) is an optimal solution to the
LO model with maximum value θ∗. Then,

(i) ZNI = ZLO if ZLO < 1
Γ+1 Val(x∗);

(ii) ZNI = ZLO if ZLO < θ∗;

(iii) ZNI ≤ Val(x∗);

(iv) ZRNI = ZLO if x∗ is a maximum flow for the nominal prob-
lem;

(v) ZRNI ≤ Val(x∗) − θ∗;

Proof. Part (i): It follows from ZLO < 1
Γ+1 Val(x∗) that

Val(x∗) < (1 + Γ)θ∗. In addition, by Part (i) of Lemma 2, there
exists an s-t-cut S ′ with Val(x∗) = Cap(S ′, θ∗) and |A(S ′, θ∗)| ≥
Γ. Therefore,

(1 + Γ)θ∗ > Val(x∗) = Cap(S ′, θ∗) =
∑

e∈A(S ′,θ∗)

θ∗ +
∑

e∈δ+(S ′)\A(S ′,θ∗)

ue

= θ∗|A(S ′, θ∗)| +
∑

e∈δ+(S ′)\A(S ′,θ∗)

ue,

and consequently

|A(S ′, θ∗)| = Γ and ZLO = Val(x∗) − Γθ∗ =
∑

e∈δ+(S ′)\A(S ′,θ)

ue.
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If the arcs in A(S ′, θ∗) are removed, then the maximum flow
value in the remaining network is at most

∑
e∈δ+(S ′)\A(S ′,θ∗) ue,

which is equal to ZLO. This implies that ZNI ≤ ZLO. On the
other hand, it follows from Theorem 1 that ZLO ≤ ZNI. Hence,
we must have ZLO = ZNI.

Part (ii): Notice that

ZLO < θ∗ ⇐⇒ Val(x∗) − Γθ∗ < θ∗

⇐⇒ Val(x∗) − (Γ + 1)θ∗ < 0
⇐⇒ (Γ + 1)(Val(x∗) − Γθ∗) < Val(x∗)

⇐⇒ ZLO <
1

Γ + 1
Val(x∗).

Therefore, it follows from the previous part that ZLO = ZNI.
Part (iii): By Part (ii) of Lemma 2, there exists an s-t-cut

S ′′ with Val(x∗) = Cap(S ′′, θ) so that |B(S ′′, θ∗)| < Γ. For each
e ∈ δ+(S ′′)\B(S ′′, θ∗), we have ue ≤ θ

∗. Therefore, if the arcs in
B(S ′′, θ∗) are removed, the maximum amount of flow that can
be sent from s to t is at most

∑
e∈δ+(S ′′)\B(S ′′,θ∗) ue. This means

that ZNI ≤
∑

e∈δ+(S ′′)\B(S ′′,θ∗) ue. Hence, we can write

Val(x∗) = Cap(S ′′, θ∗) =
∑

e∈B(S ′′,θ∗)

θ∗ +
∑

e∈δ+(S ′′)\B(S ′′,θ∗)

ue (21)

≥ θ∗|B(S ′′, θ∗)| + ZNI, (22)

and consequently ZNI ≤ Val(x∗).
Part (iv): For an s-t-cut S and an s-t-flow x, we define

R(x, S ) := min
µ∈Ω

∑
e∈δ+(S )

(1 − µe)xe.

It follows from Lemma 8 in [5] that

min
µ∈Ω

f (µ, x) = min
S∈S

R(x, S ).

Therefore, we can write

ZADP = max
x∈X

min
S∈S

R(x, S ) ≤ min
S∈S

max
x∈X

R(x, S ).

Furthermore, we know from Part (i) of Lemma 2 that there ex-
ists a cut S ′ with |A(S ′, θ∗)| ≥ Γ so that

Val(x∗) = Cap(S ′, θ∗) =
∑

e∈A(S ′,θ∗)

θ∗ +
∑

e∈δ+(S ′)\A(S ′,θ∗)

ue.

Since x∗ is a maximum flow for the nominal problem, Val(x∗) is
the maximum amount of flow that can be pushed through the cut
S ′. The cut S ′ has |A(S ′, θ∗)| arcs with capacity ue ≥ θ

∗ and the
remaining arcs have capacity ue < θ

∗. Hence, the maximization
of R(x, S ′) is attained by sending ue units of flow on arcs e ∈
δ+(S ′) \ A(S ′, θ∗) and θ∗ units on arcs e ∈ A(S ′, θ∗) as in flow
x∗. This implies that maxx∈X R(x, S ′) = R(x∗, S ′), and we can
write

ZADP ≤ max
x∈X

R(x, S ′) = R(x∗, S ′) = min
µ∈Ω

∑
e∈δ+(S ′)

(1 − µe)x∗e

= Val(x∗) − Γθ∗ = ZLO.

Moreover, we have ZLO ≤ ZADP by Lemma 1. This proves
ZLO = ZADP. In addition, we know ZADP = ZRNI because of
Theorem 1. Hence, we must have ZLO = ZRNI.

Part (v): If x∗ is a maximum flow for the nominal problem,
then it follows from previous part that ZRNI = ZLO = Val(x∗) −
Γθ∗ ≤ Val(x∗) − θ∗ and we are done. Hence, we assume that
x∗ is not a maximum flow. Let S ′′ as in Lemma 2 be an s-t-
cut with Val(x∗) = Cap(S ′′, θ∗) and |B(S ′′, θ∗)| < Γ. We must
have 1 ≤ |B(S ′′, θ∗)| since otherwise it follows from Val(x∗) =

Cap(S ′′) that x∗ is a maximum flow. Furthermore, it follows
from Inequality (21) that ZNI ≤ Val(x∗) − θ|B(S ′′, θ∗)|. This
shows that ZNI ≤ Val(x∗) − θ∗ since |B(S ′′, θ∗)| ≥ 1.

Lemma 4. It is always true that

ZNI

ZLO
≤ Γ + 1, (23)

ZRNI

ZLO
≤ Γ. (24)

Proof. Suppose that (x∗, θ∗) is an optimal to the LO model with
maximum value θ∗. If ZLO ≥

1
Γ+1 Val(x∗), then ZLO ≥

1
Γ+1 ZNI

because of Part (iii) of Lemma 3, and consequently Inequal-
ity (23) holds. If ZLO < 1

Γ+1 Val(x∗), then ZLO = ZNI by Part (i)
of Lemma 3. This establishes Inequality (23).

We proceed to prove the validity of Inequality (24). If ZLO <
θ∗, then by Part (ii) of Lemma 3 we must have ZNI = ZLO. This
implies that ZRNI = ZLO since ZLO ≤ ZRNI ≤ ZNI by Lemma 1,
and consequently Inequality (24) holds. Thus, we assume that
ZLO ≥ θ

∗. We can write

ZRNI ≤ Val(x∗) − θ∗ = ZLO + (Γ − 1)θ∗ ≤ Γ · ZLO,

where the first inequality follows from Part (v) of Lemma 3 and
the second inequality follows from the fact that ZLO ≥ θ

∗. This
shows that Inequality (24) always holds.

Proof of Theorem 5. The validity of the bounds in (13), (14),
and (15) immediately follows from Lemmas 1 and 4. We next
provide two examples to show these bounds are all tight.

In the first example, we consider a network with three nodes
s, v, and t, and parallel arcs from s to v and v to t. There are
K parallel arcs with unit capacity from s to v and Γ + 1 par-
allel arcs with infinite capacity from v to t (see the network in
Figure 2(a)). We let K ≥ Γ + 1. In this network, we have
ZNI = K − Γ, whereas ZRNI = ZPath

RNI = K/(Γ + 1). Therefore,
ZNI
ZRNI

=
ZNI

ZPath
RNI

=
(Γ+1)(K−Γ)

K . When K gets enough large, the bound
becomes enough close to Γ + 1. This shows the bounds in In-
equalities (13) and (14) are tight.

In the second example, we consider a network with four
nodes s, v, w, and t as shown in Figure 2(b). There are K par-
allel arcs with unit capacity from s to v and Γ parallel arcs with
infinite capacity from v to t. In addition, there is one arc from
s to v with capacity Γ · K, one arc from w to v with capacity K,
and one arc from w to t with infinite capacity. In this network,
we have ZRNI = K − Γ + 1, whereas ZPath

RNI = K/Γ. Therefore,
ZRNI

ZPath
RNI

=
Γ(K−Γ+1)

K . When K gets enough large, the bound becomes
enough close to Γ. This shows the bound in Inequality (15) is
tight.
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s v t

1

1

1

1

1

K arcs with unit capacity

∞

∞

∞

∞

Γ + 1 arcs with infinite capacity

(a) ZNI = K − Γ and ZRNI = ZPath
RNI = K/(Γ + 1)

s v t

w

1

1

1

1

1

K arcs with unit capacity

∞

∞

∞

∞

K

K ·
Γ

∞

Γ arcs with infinite capacity

(b) ZRNI = K − Γ + 1 and ZPath
RNI = K/Γ

Figure 2: Networks for the proof of Theorem 5. The numbers on the arcs
indicate the capacities.

6. Approximation bounds

As mentioned before, a pseudoapproximation algorithm is
developed by Burch et al. [6] for the network interdiction prob-
lem. For a given ε > 0, their algorithm generates either a
(1 + ε)-approximation or a solution whose value is at most that
of an optimal solution for network interdiction, but it requires
to delete Γ(1 + 1/ε) arcs. When ε = Γ, their algorithms returns
a (Γ + 1)-approximation or a solution whose value is at most
ZNI, but requires to delete Γ(1 + 1/Γ) = Γ + 1 arcs. However,
it is not known which is a priori. If the latter case happens, the
solution is not technically feasible. In contrast, it follows from
Lemma 4 that the optimal value of the LO model is a (Γ + 1)-
approximation for ZNI and a Γ-approximation for ZRNI. We next
show that the optimal value of the LO model also provides a
good approximation for ZPath

RNI .

Theorem 6. We have

ZPath
RNI

ZLO
≤ 1 +

bΓ/2c · dΓ/2e
Γ + 1

, (25)

and this bound is tight.

Proof. By Theorem 2, it is enough to show that

ZPath
ADP

ZLO
≤ 1 +

bΓ/2c · dΓ/2e
Γ + 1

. (26)

Suppose that (x∗, θ∗) is an optimal to the LO model with max-
imum value θ∗. By Parts (i) and Parts (ii) of Lemma 2, there are
s-t-cuts S ′ and S ′′ so that |A(S ′, θ∗)| ≥ Γ, |B(S ′′, θ∗)| < Γ, and

Val(x∗) =
∑

e∈δ+(S ′)

ue(θ∗) =
∑

e∈A(S ′ ,θ∗)

θ∗ +
∑

e∈δ+(S ′)\A(S ′ ,θ∗)

ue, (27)

Val(x∗) =
∑

e∈δ+(S ′′)

ue(θ∗) =
∑

e∈B(S ′′ ,θ∗)

θ∗ +
∑

e∈δ+(S ′′)\B(S ′′ ,θ∗)

ue. (28)

We let a and b denote the number of arcs in A(S ′, θ∗) and
B(S ′′, θ∗), respectively. Further, we let p :=

∑
e∈δ+(S ′)\A(S ′,θ∗) ue

and q :=
∑

e∈δ+(S ′′)\B(S ′′,θ∗) ue. Then, we can rewrite (27) and
(28) , respectively, as

Val(x∗) = aθ∗ + p, and Val(x∗) = bθ∗ + q. (29)

Note that a ≥ Γ. If a = Γ, then

ZLO = Val(x∗) − Γθ∗ = p.

Further, we have ZNI ≤ p since if the interdictor deletes the Γ

arcs in A(S ′, θ∗), then the capacity of the cut S ′ will be p, and
consequently the flow player can push at most p units of flow
from s to t. This implies that ZPath

ADP ≤ p since ZPath
ADP ≤ ZNI.

Hence, Inequality (26) holds for a = Γ. In what follows, we
assume that a ≥ Γ + 1 and derive an upper bound on ZPath

ADP by
computing the maximum amount of flow that can be sent from s
to t under the following restriction on the set Ω: The interdictor
deletes all the arcs in B(S ′′, θ∗) and is restricted to select the
remaining Γ − b arcs from A(S ′, θ∗).

We define

Ω′ :=
{
µ ∈ {0, 1}|E| | µe = 0 ∀e ∈ E \

(
A(S ′, θ∗) ∪ B(S ′′, θ∗)

)
µe = 1 ∀e ∈ B(S ′′, θ∗),

∑
e∈A(S ′,θ∗)

µe = Γ
}
.

It is obvious that

ZPath
ADP ≤ Z := max

x∈XP

min
µ∈Ω′

g(µ, x).

since Ω′ ⊆ Ω. We next provide an upper bound on Z.
After deleting the arcs in B(S ′′, θ∗), the cut S ′′ has a capacity

of q. It follows from (29) that

q = Val(x∗) − bθ∗ = p + (a − b)θ∗.

Therefore, at most p + (a − b)θ∗ units of flow that can be sent
through the arcs in the cut S ′.

The flow player should send as much flow as possible
through the arcs in the δ+(S ′) \ A(S ′, θ∗) since these arcs are
not subject to removal. Let r be the maximum amount of flow
that can be sent through the arcs in δ+(S ′) \ A(S ′, θ∗) among all
s-t-flows. Note that r ≤ p. Then, at most p − r + (a − b)θ∗ units
of flow that can be sent through the arcs in A(S ′, θ∗). On the
other hand, the interdictor is allowed to remove Γ− b arcs from
this set. Thus, at most

(p − r + (a − b)θ∗)(a − Γ + b)
a

units of flow can be pushed through the arcs in A(S ′, θ∗) using
a path-based formulation. This upper bound is obtained from
the fact that in the best case the flow player distributes (p − r +

(a − b))(a − Γ + b)θ∗ units of flow equally among the a arcs in
A(S ′, θ∗) and the interdictor is only allowed to deleted Γ−b arcs
in this set.

Following the above discussion, in total, the flow player can
send at most r +

(p−r+(a−b)θ∗)(a−Γ+b)
a units of flow from the source
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s to the sink t even if the interdictor is restricted to remove the b
arcs from B(S ′′, θ∗) and the remaining Γ−b arcs from A(S ′, θ∗).
This implies that

ZPath
ADP ≤ Z ≤ r +

(p − r + (a − b)θ∗)(a − Γ + b)
a

≤ p +
(a − Γ + b)(a − b)θ∗

a
. (30)

where Inequality (30) is satisfied as equality when p = r and as
strict inequality when r , p since b < Γ.

On the other hand, we have

ZLO = Val(x∗) − Γθ∗ = p + (a − Γ)θ∗.

Therefore,

ZPath
ADP

ZLO
≤

p +
(a−Γ+b)(a−b)θ∗

a

p + (a − Γ)θ∗
≤

(a − Γ + b)(a − b)
(a − Γ)a

. (31)

It is easy to verify that the right hand side of Inequality (31)
attains its maximum when a = Γ + 1 and b = bΓ/2c. By sub-
stituting a = Γ + 1 and b = bΓ/2c in the the right hand side of
Inequality (31) , we obtain

ZPath
ADP

ZLO
≤ 1 +

bΓ/2c · dΓ/2e
Γ + 1

.

This establishes the validity of Inequality (26).
We next show that the bound is tight. Consider a network

with three nodes s, v, and t. There are Γ parallel arcs with unit
capacity from s to v and Γ+1 parallel arcs with infinite capacity
from v to t. In addition, there are bΓ/2c parallel arcs from s to
v with capacity K. In this network, we have ZPath

ADP =
(bΓ/2c+1)K

Γ+1 ,
whereas ZLO = K

dΓ/2e+1 . Therefore,

ZPath
ADP

ZLO
=

(bΓ/2c + 1) · dΓ/2e + 1
Γ + 1

= 1 +
bΓ/2c · dΓ/2e

Γ + 1
.

This shows that the bound in Inequality (26) is tight.
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