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Single walled carbon nanotube’s (SWCNT’s) cross section can be flattened under hydrostatic

pressure. One example is the cross section of a single walled carbon nanotube successively deforms

from the original round shape to oval shape, then to peanut-like shape. At the transition point of

reversible deformation between convex shape and concave shape, the side wall of nanotube is

flattest. This flattest tube has many attractive properties. In the present work, an approximate

approach is developed to determine the equilibrium shape of this unstrained flattest tube and the

curvature distribution of this tube. Our results are in good agreement with recent numerical results,

and can be applied to the study of pressure controlled electric properties of single walled

carbon nanotubes. The present method can also be used to study other deformed inorganic and

organic tube-like structures. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4863455]

I. INTRODUCTION

Carbon nanotubes (CNTs) have superior mechanical

properties due to strong carbon-carbon atomic interactions in

their honeycomb lattices.1 CNTs’ high elastic modulus,

exceptional axial stiffness, and low density, make them ideal

for nanotechnology applications.2 CNTs’ mechanical proper-

ties are highly anisotropic, and have been studied exten-

sively.3,4 In contrast to the high tensile strength,5 CNTs are

susceptible to mechanical distortion in their radial directions

under applied hydrostatic pressure on the order of GPa.6–17

The radial deformation controlled by the applied pressure

provides an approach to modify the electronic properties of

single walled carbon nanotube (SWCNTs),18 consequently,

radial deformation of SWCNTs can be observed by optical

spectroscopy since the electronic band structure of a

SWCNT is sensitive to its morphological transition.4,19 In

addition, a SWCNT’s chemical reactivity depends on its me-

chanical deformations,20–22 which plays the key role in the

design of CNT-based gas sensors.23

Among the radially deformed SWCNTs, the fully col-

lapsed structure with two strained edges bridged by a flat mid-

dle section24–27 attracts intense interest because of its physical

and chemical properties28–30 associated with its flat ribbon-like

middle part.30 However, the fully collapsed SWCNTs are

stabilized by van der Walls (vdW) interaction between

two opposing flat walls (with typical interlayer distance

d0 � 3.4 Å) leads to irreversible collapsing. The vdW interac-

tion may also induce twist and bending of the flat section in a

fully collapsed SWCNT. Moreover, the edge section of a col-

lapsed SWCNT is highly strained. As it is widely known, with

the increase of hydrostatic pressure, a cylindrical SWCNT at

first becomes oval-shaped, and then becomes peanut-shaped.15

Between these two shapes, there exists a critical shape under

certain pressure which is the unstrained flattest configuration

of SWCNTs. The radially deformed SWCNT with a flat sec-

tion that is similar to fully collapsed SWCNTs have advan-

tages over fully collapsed ones: (1) it can be shifted back to the

state with a circular cross section reversibly; (2) there is no

twist in the flat section since vdW interaction can be neglected;

(3) there is no strain in the two edges, therefore avoiding the

strain-induced change of the electronic band structure.

II. MODEL

In the present manuscript, we will theoretically deter-

mine the shapes of the unstrained flattest SWCNTs. Although

the problem has been studied by molecular dynamical simula-

tions and numerical calculations,15 there still lacks the analyt-

ical explicit expressions which can provide a design principle

for CNT-based devices. We will accomplish this task by care-

fully studying the transition of the SWCNT deforming from a

convex shape to a concave shape, and giving an analytical

expression of the critical shape for an unstrained flattest tube.

Based on this analytical expression, we can calculate the criti-

cal pressure for the unstrained flattest SWCNTs. We will also

discuss the curvature effect for the orbital hybridization of

carbon atoms on the sidewall of the SWCNT. The latter is im-

portant for studying the absorption of molecules on

SWCNTs. Although the deformation of the SWCNT investi-

gated in the present work is in ideal conditions, the results can

be used as the theoretical limits for the actual CNT-devices.

The equilibrium shape of deformed SWCNTs is deter-

mined by minimizing the free energy under certain constraints.

In the present problem, the free energy contains the elastic
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energy and the pressure term, Fb ¼ Eb þ p DV. Although both

bond bending and bond stretching contribute to the elastic

energy of SWCNTs, at the energy scale Dp � V0 � 1 eV � kc

(kc is the bending stiffness of SWCNTs31,32), the bond bending

effect predominates.33 The bond-bending energy of a SWCNT

can be described by its curvatures24,33

Eb ¼
kc

2

þ
ð2HÞ2 dAþ �k

þ
K dA: (1)

Here, H and K are the mean curvature and Gaussian curvature

of the surfaces of carbon atoms, and kc¼ 1.17 eV (Ref. 33) is

consistent with the result of Tersoff et al.31 The expression of

free energy can be mapped to 2D. Consider a straight

SWCNT with radius qð/Þ, without the inclusion of its two

end-caps, the surface of the tube can be described in cylindri-

cal coordinates as, ~rð/; lÞ ¼ fqð/Þ cos /; qð/Þ sin /; lg.
Here, 0 � / < 2p, and 0 � L � L0, with L0 the length of

straight tube axis. The origin of q is arbitrary. The surface’s

mean and Gaussian curvature are 2H ¼ � q2 þ 2q02 � qq00
� �

q2 þ q02
� �3=2

;K ¼ 0. Comparing with the relative curvature

kr ¼ j q2 þ 2q02 � qq00
� �

j= q2 þ q02
� �3=2

of a plane curve

q¼qð/Þ, the bending energy can be rewritten as Eb¼ kcL0=

2
Þ

k2
r ds, where s the arc parameter of boundary curve C :qð/Þ,

and line element ds¼½q2þ dq=d/ð Þ2�1=2
d/.

The equilibrium shape of a deformed SWCNT is the solu-

tion of the 2D variation problem dð1ÞF ¼ 0; dð2ÞF > 0, with

F ¼ kc

2

þ
k2

r ðsÞdsþ p

ð
dAþ k l0 �

þ
ds

� �
; (2)

where k is the Lagrange multiplier, which is introduced to

keep the tube circumference at constant l0. Distorting the

curve C by a small perturbation w(s) along the normal direc-

tion of the curve, the variations in d(1)F are

dð1Þ
þ

ds ¼ �
þ

ds krðsÞwðsÞ;

dð1Þ
þ

ds k2
r ðsÞ ¼

þ
ds k3

r ðsÞ þ 2kr
00ðsÞ

� �
wðsÞ;

dð1Þ
þ

dA ¼
þ

ds wðsÞ;

(3)

which can be obtained in a simple way, as shown in

Appendix A. Then, the equation for the equilibrium shape of

SWCNTs is obtained

p þ kc

2
krðsÞ 3 þ kckr

00ðsÞ þ kkrðsÞ ¼ 0: (4)

Obviously, there is a special solution corresponding to the

tube of circular cross-section, kr¼ 1/q0, which implies the

necessary condition for maintaining SWCNT’s circular cross

section. The initial equation of Eq. (4)

p kr þ
kc

8
k 4

r þ
kc

2
kr
0ð Þ2 þ k

2
k2

r ¼ c1; (5)

leads to the equation of kr

kr
0 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ a kr � b k 4

r þ ck2
r

q
; (6)

with a � �2p=kc; b ¼ 1=4; c � �k=kc.

Under hydrostatic pressure, the tube of circular cross-

section tube can be deformed to a convex structure with

lower symmetry Cnv. With the increase of pressure, the cur-

vature changes continually from kr> 0 (convex shape) to

kr< 0 (concave shape). A critical shape for the transition

from convex to concave satisfies kr	 0, with the minimal

curvature being exactly zero, kr,min¼ 0. The critical shape is

the flattest shape for unstrained SWCNTs. In particular, for

the deformed SWCNT with C2v symmetry, the convex shape

is the “oval” shape, and concave shape is “peanut-like”

shape, as shown in Fig. 1. Equation (6) can be solved

numerically by iteration.15 Due to the symmetry of the

deformed shape, only a quarter of the curve C need to be con-

sidered, as shown in Fig. 2. For convenience, the length of

curve C is re-scaled to 2p. The krðs ¼ p=2Þ ¼ 0 and the inex-

tensible condition l0¼ 2p lead to a constraint

p
2
¼
ð0

kr;max

dkrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ a kr � b k 4

r þ ck2
r

p : (7)

The direction of tangential line changes from h¼p/2 to

h¼ 0, as the arc parameter s changes from 0 to p/2, which

provides another independent equation

�p
2
¼
ð0

kr;max

krdkrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ a kr � b k 4

r þ ck2
r

p : (8)

FIG. 1. Illustration of shape transitions for a cross section of SWCNT with

C2v symmetry. The critical shape for the transition from the oval shape to

the peanut-like shape is the unstrained flattest shape of SWCNT.

FIG. 2. Illustration of a quarter of the deformed cross section of a SWCNT

with C2v symmetry. The h is the angle between x-axis and the direction of

the curve C’s tangential line. The / is the polar angle.
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Equations (7) and (8) can be calculated self-consistently.

The relation dh ¼ krds is used in the derivation of Eq. (8). In

principle, the flattest shape with high order symmetries

(Cnv; n 	 3) can be obtained similarly.

In the application of deformed SWCNT related devices,

such as a gas sensor, it is necessary to derive an explicit

expression of the critical pressure for the flattest shape as the

design guideline for working conditions. In this study, we

will give an analytical solution for that.

III. CALCULATION

Based on the numerical result of kr, we know that c0 is

very small. Thus c¼ 0 is a good initial guess for the

self-consistent of shape equations. (7) and (8). We get

an approximate solution with c¼ 0, and then compare it with

the numerical solution to check the consistency. For c¼ 0,

kr,min¼ 0, Eq. (6) implies c2¼ 0, it can be reduced to

dkrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a kr � b k4

r

p ¼ ds ¼ 1

kr
dh; (9)

with the additional necessary condition of equilibrium

critical shape: kr reaches its maximum at h¼ p/2, and its

minimum at h ¼ p=2þ p=n. Thus, we have, kr; nðhÞ ¼
ð4aÞð1=3Þ

sin2=3 3 hþc1ðnÞð Þ=4½ � and c1ðnÞðhÞ¼5p=6�p=n,

(see Appendix B for the details). The constant length of

curve C, l0¼2p requires

l0

2n
¼ pq0

n
¼ ð4aÞð�1=3Þ

ðp=2þp=n

p=2

k�1
r; n ðhÞ dh ¼ c2ðnÞ

ð4aÞð1=3Þ :

(10)

The constants c2(n) can be derived as

c2ðnÞ ¼
4
ffiffiffi
p
p

C 7
6

� �
C 2

3

� � � 4

3
2F1

1

2
;

5

6
;

3

2
; cos2 3p

4n

	 

cos

3p
4n

	 
" #
:

Here, 2F1ða; b; c; zÞ is the hypergeometric function.34 Some

constants c2(n) for a unstrained flattest tube with Cnv symmetries

are listed in Table I. The curvature krðnÞ; n 	 2 has the form of

kr; nðhÞ ¼
n c2ðnÞ
pq0

	 

sin2=3 3

4
hþ 5p

6
� p

n

	 
� �
: (11)

In particular, c2(2)¼ 4.3244, predicts the critical shape for

the transition from oval-shaped tube to peanut-like shape.

The equilibrium shape of the unstrained flattest

SWCNTs with C2v symmetry can be described by parametric

equations (see Appendix C for the details)

x2ðhÞ ¼
2pq0

c2

sin
h
4
þp

4

	 

sin1=3 3h

4
þp

4

	 

;

y2ðhÞ ¼
2pq0

c2

sin2=3 p
8

	 

ffiffiffi
2
p þ sin

h
4
�p

4

	 

sin1=3 3h

4
þp

4

	 
2
64

3
75
:

8>>>>>><
>>>>>>:

(12)

The comparison of the explicit result and the exact result is

shown in Fig. 3.

The cross-sectional area of the tube is

S2 ¼
1

2

pq0

c2

	 
2ðp

p=2

sin h sin h=4þ p=4ð Þ
sin1=3 3h=4þ p=4ð Þ

¼ 2:449q2
0: (13)

Comparing with the undistorted tube, S0 ¼ pq 2
0 , the geometric

constant is G ¼ S2=S0 ¼ 0:78, which is in good accordance

with the exact value G ¼ 0:8195.15

The curvature distribution characterizes the flatness of the

deformed SWCNTs. The curvature distribution provides use-

ful information about the bond hybridization of SWCNTs,

which governs the gas-absorbing ability of SWCNTs. We

compare the curvature distributions of our approximate result

and the exact solution, as shown in Fig. 4. The exact curvature

distribution can be calculated self-consistently according to

Eqs. (7) and (8). The hybrid orbital of carbon atoms in the

SWCNT is sensitive to the local curvature of the tube. For a

SWCNT, in the local coordinate of a given carbon atom i, the

three neighbours of the center atom i have coordinates32

x0j ¼ cos hj �
ða0=RÞ2

3
sin4 hj cos hj;

y0j ¼ sin hj þ
ða0=RÞ2

6
sin3 hj cosð2hjÞ; j ¼ 1; 2; 3;

z0j ¼
ða0=RÞ

2
sin2 hj; (14)

with h1¼ hc, h2 � hc þ 2p=3, and h2 ¼ hc þ 4p=3 being the

angles between bond curves and the direction of the tube

axis, at the position of atom i.33 Here, a0¼ 1.42 Å is the

equilibrium bond length of carbon-carbon bond, R is the

FIG. 3. Comparison of the explicit solution and exact solution of deformed

SWCNTs’ at the critical flattest shape with C2v symmetry. The solid line

curve is the present explicit approximate solution of the shape equation, the

dashed-dotted line curve is the exact numerical solution, and the dashed line

is unperturbed circular shape of a SWCNT. The q0 is the radius of the

SWCNT without the deformation.

TABLE I. The c2 values for the approximate solution of a unstrained flattest

SWCNT whose cross section has Cnv symmetry.

n 2 3 4 5 6 7 8 9 10

c2 4.324 3.728 3.372 3.124 2.936 2.788 2.665 2.562 2.473

044512-3 Mu, Cao, and Ou-Yang J. Appl. Phys. 115, 044512 (2014)
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radius of the SWCNT, a0/R characterizes the curvature

dependent properties of SWCNTs. The distance between

atom i and their three neighbours can be described as

r0
ij ¼ 1� ða0=RÞ2

24
sin4 hj. The directions (the direction of sym-

metry axis) for the three sp2 orbits can be written as

êj ¼ fx0j; x0j; z0jg=r0
ij.

In the local coordinate system associated with the give

carbon atom i, the p orbit and three sp2 orbits can be decom-

posed as, jpi ¼ c1j2si þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

1

p
j2pzi, and jsp2ij ¼ c2 j2si

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�c2

2

p
ejkj2pki
� �

; k¼ x;y;z. with, c1¼
ffiffiffiffiffiffiffiffiffiffiffi

6a2
0

32�3a0

q
�
ffiffi
3
p

4
a0;

c2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32�9a2
0

3ð32�3a2
0
Þ

r
� 1ffiffi

3
p 1� 3

32
a2

0

� �
, and a0�a0=R. Therefore,

jpða0Þi¼
ffiffi
3
p

4
a0j2siþ 1� 3

32
a2

0

� �
j2pzi, which plays a key role

in the electronic and chemical properties of SWCNTs.20 For

graphene, jpða0¼0Þi¼ j2pzi. By adjusting applied hydro-

static pressure, the jpi at the main part of a SWCNT can be

switched between jpða0Þi and j2pzi reversibly.

IV. CONCLUSION

In summary, we have theoretically investigated the

unstrained flattest shape of SWCNT under hydrostatic pres-

sure, which can recover to its original circular cross-section

after withdrawing the pressure. We find a good approximate

solution for the shape of this flattest SWCNT, and theoreti-

cally determine the curvature distribution. We also discuss the

curvature-dependent hybrid orbital of the SWCNT. The pres-

ent analytical solution is in good agreement with the exact nu-

merical solution, and it can be used as the design guideline in

CNT-based nano-electronic devices. Our approach can be

generalized to investigate other inorganic and organic elastic

membrane systems,35–37 including the self-assembled polymer

materials and colloidal aggregations.38,39 In the actual devices,

the deformed SWCNT may be supported by the substrate.

The present results provide the theoretical boundary for this

CNT-based devices. It is worth noting that the variations in

Eq. (3) can also been obtained in other approaches.40,41
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APPENDIX A: THE DETAILS OF VARIATIONAL
CALCULATIONS

We will show the details of deriving the variations in

Eqs. (3). The curve is shown in Fig. 5.

1. dð1Þ
Þ

ds

With the distorsion w(s) along the normal direction of the

closed boundary curve, the plane boundary curve C becomes

~rðsÞ !~rðsÞ þ wðsÞn̂ðsÞ;

with n̂ the normal direction of the curve C : ~rðsÞ, and s the

arc parameter. The line element

ds ¼ j~r 0ðsÞjds!
���� d~rðsÞds

þ d wðsÞn̂ðsÞð Þ
ds

����ds;

¼ j 1� krðsÞwðsÞð Þt̂ðsÞ þ w0ðsÞn̂ðsÞjds;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� krðsÞwðsÞð Þ2 þ w02ðsÞ

q
ds;

¼ 1� krðsÞwðsÞð Þdsþ O w2ðsÞ
� �

: (A1)

The length of the C becomes

FIG. 5. A general closed curve.

FIG. 4. Comparing the approximate and exact results of the curvature distribu-

tion of unstrained SWCNTs at the transition from oval to peanut shape. Here, /
is the polar angle as shown in Fig.2. The curvature kr is in the unit of 1/q0, with

q0 being the radius of unperturbed circular cross section of a SWCNT.
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þ
ds ¼

þ
1� krðsÞwðsÞð Þdsþ O w2ðsÞ

� �
: (A2)

Here, we have used the relation between the tangent and

normal vector of a plane curve

t̂ðsÞ � d~rðsÞ
ds

; t̂ 0ðsÞ ¼ krðsÞn̂ðsÞ; n̂0ðsÞ ¼ �krðsÞt̂ðsÞ;

and 0 denoted d/ds. Thus, the first order variation of the

length of curve C has the form

dð1Þ
þ

ds ¼ �
þ

krðsÞwðsÞds:

2. dð1Þ
Þ

k 2
r ds

With the distorsion ~rðsÞ !~rðsÞ þ wðsÞn̂ðsÞ, the s is not

the arc parameter of the deformed curve ~r 0ðsÞ, the curvature

changes to

krðsÞ!
j~r 0ðsÞ
~r 00ðsÞj
j~r 0ðsÞj3

¼ krþw00ðsÞ�2k2
r ðsÞwðsÞ

1�krðsÞwðsÞð Þ3
þO w2ðsÞ

� �
;

¼ krðsÞþk2
r ðsÞwðsÞþw00ðsÞþO w2ðsÞ

� �
: (A3)

Here, we have used the relations

~r 0ðsÞ ! 1� krðsÞwðsÞð Þdsþ O w2ðsÞ
� �

;

~r 00ðsÞ ! ð�k
0

rðsÞ � 2krðsÞw0ðsÞÞt̂ðsÞ
þ krðsÞ þ w00ðsÞ � k2

r ðsÞwðsÞ
� �

n̂ þ O w2ðsÞ
� �

:

Consider

ds! 1� krðsÞwðsÞð Þdsþ O w2ðsÞ
� �

;

we have

k2
r ðsÞds! k2

r ðsÞdsþ k3
r ðsÞwðsÞdsþ 2krðsÞw00ðsÞds

þ O w2ðsÞ
� �

:

The first order variation of
Þ

k2
r ðsÞds is therefore

dð1Þ
þ

k2
r ðsÞds ¼

þ
ds k3

r ðsÞwðsÞ þ
þ

ds 2krðsÞw00ðsÞ;

¼
þ

ds k3
r ðsÞwðsÞ þ

þ
ds 2k00rðsÞwðsÞ: (A4)

3. dð1Þ
R

dA

As shown in Fig. 5, dA ¼ êz � j~r 
 d~r j=2 ¼ êz � j~rðsÞ

 t̂ðsÞjds=2, with the distorsion, the dA changes to

dA! êz

2
� ds 1� 2krðsÞwðsÞð Þ~rðsÞ 
 t̂ðsÞ þ w0ðsÞ~rðsÞ
�


 n̂ðsÞ þ wðsÞêz� þ O w2ðsÞ
� �

:

Thus,

ð
dA! êz

2
�
þ

ds 1� 2krðsÞwðsÞð Þ~rðsÞ 
 t̂ðsÞ
�

þ w0ðsÞ~rðsÞ 
 n̂ðsÞ þ wðsÞêz� þ O w2ðsÞ
� �

¼ êz

2
�
þ

ds 1� 2krðsÞwðsÞð Þ~rðsÞ 
 t̂ðsÞ � wðsÞ ~rðsÞð
�


 n̂ðsÞÞ0 þ wðsÞêz� þ O w2ðsÞ
� �

;

¼
ð

dAþ
þ

wðsÞdsþ O w2ðsÞ
� �

: (A5)

Therefore

dð1Þ
ð

dA ¼
þ

wðsÞds:

APPENDIX B: THE DERIVING OF kr,n(h)

Equation (9)

dkrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
akr � bk3

r

p ¼ dh
kr
; a > 0; kr > 0; b ¼ 1=4; (B1)

can be rewritten as

krdkrffiffiffi
a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k3
r =ð4aÞ

p ¼ dh; (B2)

which can be reduced to

d k3=2
r

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k

3=2
r

� �2
=ð4aÞ

q ¼
ffiffiffi
a
p

dh: (B3)

Integrating the terms on both sides, we have the approxi-

mate expression of kr,n(h) as

kr;nðhÞ ¼ ð4aÞ1=3
sin2=3 3 hþ c1ðnÞð Þ=4½ �: (B4)

Since kr,n¼ 0, at h ¼ p=2þ p=n for the critical shape, we

have c1ðnÞ ¼ 5p=6� p=n. Then a can be determined based

on Eq. (10). The explicit expression of kr,n(h) is shown in

Eq. (11).

APPENDIX C: THE DERIVING OF EQ. (12)

The curvature kr,n(h) is the approximate explicit solution

of Eqs. (7) and (8), which plays the center role in determin-

ing the parametric equations for the curve C for n¼ 2.

The curve C (n¼ 2) can be expressed as

x2ðsÞ ¼ x2ð0Þ þ
ðs

0

d~s x2
0ð~sÞ ¼ x2ð0Þ þ

ðs

0

d~s cosð~sÞ;

y2ðsÞ ¼
ðs

0

d~s sinð~sÞ: (C1)

Here, s is the arc parameter. The origin is set at the center of

the cross section, and x2ðs ¼ p=2Þ ¼ 0; y2ð0Þ ¼ 0. According

to the definition of the curvature of the curve, kr � dh=ds, the

line element can be described by
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d~s ¼ d~s

dh
dh ¼ 1

kr
dh;

the equation can be further reduced to

x2ðhÞ ¼ x2ð0Þ þ
ðh

p=2

d~h
cos ~h

kr;2ð~hÞ
;

y2ðhÞ ¼
ðh

p=2

d~h
sin ~h

kr;2ð~hÞ
:

(C2)

Substitute the explicit expression of kr,2(h) to the above

equation and integrate, we can obtain Eq. (12).
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